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Abstract. Polygonal approximation is based on the division of a closed
curve into a set of segments. This problem has been traditionally approached
as a single-objective optimization issue where the representation error was
minimized according to a set of restrictions and parameters. When these
approaches try to be subsumed into more recent multi-objective ones, a
number of issues arise. Current work successfully adapts two of these tra-
ditional approaches and introduces them as initialization procedures for a
MOEA approach to polygonal approximation, being the results, both for ini-
tial and final fronts, analyzed according to their statistical significance over
a set of traditional curves from the domain.

1 Introduction

Segmentation problems are based on the division of a given curve in a set
of n segments (being each of these segments represented by a linear model,
which points to another common naming convention for this process: piece-
wise linear representation, PLR) minimizing the representation error. Polyg-
onal approximation techniques [10] are offline segmentation algorithms (since
they require the whole curve they will be applied to) and can be divided into
three different categories: sequential approaches, split and merge approaches
and heuristic search approaches.

Sequential approaches are constructive methods based on a given local
search over the current time series, trying to obtain, at each step, a new seg-
ment division (where the length of these segments is sequentially increased)
which satisfies a certain criterion. Examples of the criteria used may be find-
ing the longest possible segments ([12]). Split and merge approaches perform
an initial segmentation over the given time series and afterwards start an it-
erative process to merge the initial segments until a certain criterion is met.
According to their definition, these approaches have to deal with two differ-
ent issues, the initial segmentation procedure and the merging criterion. An
example of these processes is the bottom-up algorithm [7]



Heuristic search approaches are based on the development of heuristic
methods in order to avoid the exhaustive search of the optimal dominant
points for the given time series (which is a process with an exponential com-
plexity). Different techniques may be used for this purpose, such as dynamic
programming [11] or different metaheuristics, among them different solutions
based on evolutionary algorithms [13]. The idea proposed by these works is
to codify the time series as a chromosome with n genes, corresponding each
of these genes to one of the points in the original data. If the gene value is
a 717 it is considered a dominant point, and the algorithm tries to find the
ideal codification of the chromosome according to a fitness function which
evaluates the quality of the given codified segmentation in the chromosome.

Recently, the multiobjective nature of these processes is being explicitly
approached from different perspectives [8, 5]. In [5] a multi-objective evo-
lutionary algorithm [1] is proposed for the multi-objective solution of the
segmentation issue, while in [4] a comparison between different possible ini-
tializations was carried, focusing on the different results between a random
initialization aiming at the coverage of the obtained Pareto fronts versus the
results from different local search techniques. One of the detailed issues is
the single-objective nature of the traditional techniques used, which required
different executions with different parameters in order to obtain different in-
dividuals from the front, also introducing issues regarding the configuration
of these techniques to obtain such different individuals.

Current work will introduce a multi-objective explicit formulation from
two traditional techniques for the polygonal approximation domain: bottom-
up [7] and top-down algorithms[9]. This implementation will produce a whole
Pareto front from a single execution without parametrization required from
the user. These initializations will be later tested as initial populations for
a MOEA approach, in order to determine whether they have successfully
created better initial populations than the approach presented in [4] and how
these initial populations translate into the final results of the algorithm.

The structure of this work is divided into three different sections: sec-
tion two will present the techniques according to their traditional and multi-
objective approach. After the new implementation has been presented, section
three will present the results when these implementations are used to create
the specified initial populations, analyzing the final results of the chosen al-
gorithm. Finally the conclusions which can be extracted from the presented
results will be presented in the final section, leading to the future lines of the
work.

2 A Multiobjective Perspective to Local Search
Polygonal Approximation Techniques

Two different issues can be stated regarding a polygonal approximation prob-
lem: Min — # and Min — e. Min — # is based on the optimization of the
representation error for a previously set number of segments. Min — €, on



the other hand, tries to find the minimum number of segments such that the
final representation error does not exceed a previously established error e.
In [5] it was stated that, according to these two different perspectives, the
segmentation issue is in fact a multi-objective problem, and also analyzed,
according to different techniques available in the literature, how this nature
had been faced. It was also shown that, given that some key dominant points
are shared by different solutions with different resolutions, the solutions for
Min —# and Min — € problems can be closely related and share information
between them. This multi-objective nature is faced with a Multi-objective
evolutionary algorithm.

Local search algorithms may be introduced to enhance this approach, lead-
ing to several issues: the configuration to obtain the different individuals is
hard to establish, and each of this individuals requires an independent exe-
cution of the local search algorithm, providing disappointing results [4]. This
section will present alternative, parameter-free versions of two well known
local search algorithms for polygonal approximation which provide a whole
Pareto front of solutions: Top-Down and Bottom-up algorithms.

Top Down algorithm [9] is an offline process based on finding the best
splitting point (understanding by this that measurement which divides the
trajectory into the two segments with the lowest added errors) recursively,
until all the resulting segments have an error value bellow a user defined
boundary. The Top Down algorithm is applied in a wide variety of domains
and fields, being also known by different names|2].

The multi-objective version of the Top Down algorithm suppresses the two
issues available in the traditional implementation: the recursive calls (which
may prevent the application of the algorithm to figures with a large number
of points) and the user configuration (which introduces the issues previously
described in the obtaining of a whole Pareto front). At each step, the best
splitting point is located (the one which provides with the smallest represen-
tation error), a new individual is generated adding that new dominant point
and the costs of the possible segments are updated (implying the recompu-
tation of the costs of the segments from the dominant point immediately to
the left of the new splitting point and those from the splitting point to the
dominant one immediately to its right). Therefore, no recursive calls are in-
cluded, and each split point choice has a global view of the representation
error (as opposed to the partial one available in the traditional implementa-
tion). Figure 1 represents the multi-objective version implementation of this
algorithm.

Bottom up algorithm[7] is an offline process complementary to Top Down,
where the time series is initially divided into every possible segment (com-
posed of two measurements) and finds the best possible segment fusion af-
terwards (understanding by this the fusion which obtains the segment with
the lowest error) until any possible fusion obtains a segment having an er-
ror above a user defined boundary. The bottom up algorithm, as well, has
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Fig. 1 Top Down algorithm multi-objective implementation

spread to different fields and research areas using different names, such as
the computer graphics domain and decimation methods[6].

The multi-objective version of bottom-up algorithm removes the user-
defined boundaries for the algorithm termination, being this ending trig-
gered once no further merging can be performed. Figure 2 presents the
multi-objective version. It must be noted that each update here triggers only
one segment update, while every new splitting point in the top down algo-
rithm triggered the recomputation of all the possible new splitting points for
the two new segments created in the representation. Since each of these steps
are, in fact, mutations over the chromosome guided by a specific heuristic,
the principles for an efficient implementation established in [3] can be applied
for the computation of the fitness values of each of the produced individuals.

3 Experimental Validation: Initialization for MOEA
Polygonal Approximation

The experimental validation proposed will include the two detailed multi-
objective local search procedures to create the initial populations for a Multi-
objective evolutionary approach to polygonal approximation. This algorithm
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Fig. 2 Bottom up algorithm multi-objective implementation

is based on the SPEA2 [14] MOEA, according to the configuration presented
in [5]. The default initialization process creates a uniform Pareto Front in
terms of coverage of the objectives, as presented in [4]. This section will
cover the comparison between the initial and final populations of the two
techniques presented and the suggested initialization process. The dataset
used is composed of three traditional curves, usually named chromosome,
leaf and semicicle. Their definition, according to ther freeman chain-code
representation, can be found in [5]. Figure 3 represents these figures.

(a) Chromosome curve (b) Leaf curve (c) Semicircle curve

Fig. 3 Curves included in the data set

It is interesting to notice the complementary nature of the two multi-
objective techniques presented, since once applied its heuristic with a value
of 1 dominant point and applies successive splitting over the figure (Top-
Down) and the other begins with a solution with all of its points considered
dominant and applies successive merging (Bottom-up). Since the solutions
tend to degrade with the successive application of the heuristic, each of them
will be more successful at their initial individuals. This can be seen in figure
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Fig. 4 Analysis of unified local search front non-dominated individuals

4 which shown the non-dominated individuals of a Pareto front composed of
bottom-up and top-down initial fronts for the chromosome curve (figure 3a).

The results for the four techniques, including their mean and median values
for the hypervolume of the obtained Pareto fronts are included in tables 1
(initial fronts values) and 2(final fronts values). Also, a best technique column
has been added. This value is calculated according to a Wilcoxon test with
a 95% confidence performed over 30 different executions, since the values do
not follow a normal distribution. If one technique is superior to the remaining
ones, its name is included, otherwise the -’ value is included.

The results show that, on the one hand, the multi-objective search ap-
proach is able to provide better initial populations in terms of hypervolume.
When these populations are used by the underlying MOEA algorithm, dif-
ferent cases appear. For easy problems, such as Chromosome, the uniform
initialization provides better final results. This happens due to the focus
which the local search initialization introduces according to its underlying
heuristic. Even though the initial results are clearly improved, the final ones
are too guided by the initial heuristic. For harder problems, the initializa-
tion provides the algorithm with an important enough advantage such that
the final populations are either not statistically significant (leaf) or signifi-
cantly better (chromosome). These results seem to point to a combination of
both techniques to provide initial populations that, while benefiting from the



Table 1 Initial populations comparison

Bottom-up Top-down Local search Uniform
Mean Median Mean Median Mean Median Mean Median

Chrom. 0,98647 0,98647 0,98646 0,98646 0,98651 0,98651 0,98436 0,98427 L.S.
Leaf 0,99355 0,99355 0,99322 0,99322 0,99365 0,99365 0,99271 0,99281 L.S.
Semi. 0,99157 0,99157 0,99183 0,99183 0,99218 0,99218 0,99101 0,99111 L.S.

Figure Best

Table 2 Final populations comparison

Bottom-up Top-down Local search Uniform
Mean Median Mean Median Mean Median Mean Median

Chrom. 0.98665 0.98664 0.98667 0.98671 0.98665 0.98667 0.98671 0.98672 Unif.
Leaf 0.99376 0.99376 0.99374 0.99376 0.99376 0.99376 0.99377 0.99378 -
Semi. 0.99206 0.99219 0.99213 0.99217 0.99219 0.99219 0.99213 0.99217 L.S.

Figure est

enhanced initial populations of local search techniques, can be not hampered
by the heuristic focus.

4 Conclusions

Local search techniques have been the focus of polygonal approximation, de-
veloping different techniques based on specific heuristics for this issue. How-
ever, the new multi-objective approaches require modifications over these
techniques in order to efficiently obtained the required Pareto Fronts. This
work has modified Bottom-up and Top-down techniques to provide a multi-
objective approach with the required characteristics presented. The results
have been tested for the initialization of a MOEA algorithm. These results
show that the multi-objective techniques are successful in providing statisti-
cally better initial populations, however the final results may be too focused
on the heuristic used in these techniques, which in some cases hamper their
quality. Future lines imply the research of the combination which may be per-
formed over local-search and uniform initialization in order to provide initial
populations taking advantage of local search improved initial populations
without their excessive focus on their underlying heuristic.

Acknowledgement. This work was supported in part by Projects MEyC
TEC2012-37832-C02-01, MEyC TEC2011-28626-C02-02 and CAM CONTEXTS
(S2009/TIC-1485).



References

10.

11.

12.

13.

14.

. Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary algorithms for solving

multi-objective problems. Springer-Verlag New York Inc. (2007)

Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley (1973)
Guerrero, J., Berlanga, A., Molina, J.: Fitness-aware operators for evolutionary
polygonal approximation. In: Applied Computing, pp. 283-290. IADIS (2012)

. Guerrero, J.L., Berlanga, A., Molina, J.M.: Initialization procedures for mul-

tiobjective evolutionary approaches to the segmentation issue. In: Corchado,
E., Snésel, V., Abraham, A., Wozniak, M., Grana, M., Cho, S.-B. (eds.) HAIS
2012, Part III. LNCS, vol. 7208, pp. 452-463. Springer, Heidelberg (2012)
Guerrero, J., Berlanga, A., Molina, J.: A multi-objective approach for the seg-
mentation issue. Engineering Optimization 44(3), 267-287 (2012)

Heckbert, P., Garland, M.: Survey of polygonal surface simplification algo-
rithms. In: Multiresolution Surface Modeling Course. ACM Siggraph Course
notes (1997)

Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey
and novel approach. Data Mining in time series databases, 1-21 (2004)
Kolesnikov, A., Franti, P., Wu, X.: Multiresolution polygonal approximation of
digital curves. In: Proceedings of the 17th International Conference on Pattern
Recognition, ICPR 2004, vol. 2, pp. 855-858. IEEE (2004)

Ramer, U.: An iterative procedure for the polygonal approximation of plane
curves. Computer Graphics and Image Processing 1, 244-256 (1972)

Sarfraz, M.: Linear capture of digital curves. In: Interactive Curve Modeling,
pp. 241-265. Springer, London (2008)

Sato, Y.: Piecewise linear approximation of plane curves by perimeter opti-
mization. Pattern Recognition 25(12), 1535-1543 (1992)

Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves.
Pattern Recognition 12(5), 327-331 (1980)

Yin, P.: Genetic algorithms for polygonal approximation of digital curves. In-
ternational Journal of Pattern Recognition and Artificial Intelligence 13(7),
1061-1082 (1999)

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In: EUROGEN 2001, pp. 95-100. International Center
for Numerical Methods in Engineering (CIMNE), Athens (2001)





