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This paper investigates the transport of a solute carried by the cerebrospinal fluid
(CSF) in the spinal canal. The analysis is motivated by the need for a better under-
standing of drug dispersion in connection with intrathecal drug delivery (ITDD), a
medical procedure used for treatment of some cancers, infections, and pain, involving
the delivery of the drug to the central nervous system by direct injection into the CSF
via the lumbar route. The description accounts for the CSF motion in the spinal canal,
described in our recent publication (Sánchez et al. 2018). The Eulerian velocity field
includes an oscillatory component with angular frequency ω, equal to that of the cardiac
cycle, and associated tidal volumes that are a factor ε � 1 smaller than the total CSF
volume in the spinal canal, with the small velocity corrections resulting from convective
acceleration providing a steady-streaming component with characteristic residence times
of order ε−2ω−1 � ω−1. An asymptotic analysis for ε � 1 accounting for the two time
scales ω−1 and ε−2ω−1 is used to investigate the prevailing drug-dispersion mechanisms
and their dependence on the solute diffusivity, measured by the Schmidt number S.
Convective transport driven by the time-averaged Lagrangian velocity, obtained as the
sum of the Eulerian steady-streaming velocity and the Stokes-drift velocity associated
with the nonuniform pulsating flow, is found to be important for all values of S. By way
of contrast, shear-enhanced Taylor dispersion, which is important for values of S of order
unity, is shown to be negligibly small for the large values S ∼ ε−2 � 1 corresponding
to the molecular diffusivities of all ITDD drugs. Results for a model geometry indicate
that a simplified equation derived in the intermediate limit 1 � S � ε−2 provides
sufficient accuracy under most conditions, and therefore could constitute an attractive
reduced model for future quantitative analyses of drug dispersion in the spinal canal. The
results can be used to quantify dependences of the drug dispersion rate on the frequency
and amplitude of the pulsation of the intracranial pressure, the compliance and specific
geometry of the spinal canal, and the molecular diffusivity of the drug.
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1. Introduction

1.1. Intrathecal drug delivery

The cerebrospinal fluid (CSF) is a colourless fluid that fills the subarachnoid space
(SAS), bathing the external surfaces of the brain and the spinal cord, as shown schemat-
ically in figure 1(b). The treatment of a number of central-nervous-system (CNS) patholo-
gies, including some cancers of the CNS, as well as the management of severe chronic
and post-operative pain involve in some cases the direct injection of the medication into
the CSF in the intrathecal space of the spinal canal that surrounds the spinal cord.
This procedure, used since the early 1980s (Onofrio et al. 1981), is often referred to as
intrathecal or intraspinal drug delivery (ITDD). The standard ITDD protocol consists of
placing a small catheter along the spine in the SAS of the lumbar region to continuously
pump the drug or to release a finite dose at selected times. Sometimes ITDD is used to
deliver the drug to sites along the spinal cord close to the location of injection, while in
other cases the medication is delivered to distant target sites in the brain. While the most
easily accessed and most commonly used injection route is a puncture in the posterior
spine in the lumbar area, typically using the L3/L4 intervertebral space indicated in
figure 1(a), an alternative injection site is the cisterna magna, an opening in the SAS
located below the cerebellum. However, this latter route carries the risk of apnea and
other serious complications and is generally only used by neurosurgeons. A rarely used
route for intrathecal injection is the C1/C2 puncture, but only a few specialists in spine
imaging, neuroradiologists mostly, use this approach.

ITDD allows for the use of potent analgesic drugs that cannot be administered sys-
temically because of metabolic or other biochemical reasons, an example being ziconoide,
an analgesic agent for the amelioration of severe and chronic pain (Bottros & Christo
2014; Hettiarachchi et al. 2011; Kroin et al. 1993; Lanz et al. 1986; Nelissen 2008; Penn
2003). More importantly, as compared to systemic drug delivery methods, such as oral,
transdermal, or intravenous delivery, ITDD reduces the amount of medication needed
to treat a given condition by a factor as large as 300, thereby drastically diminishing
life-threatening side effects (Lynch 2014). It is also useful to treat cases of CSF infection
(e.g. meningitis) that require direct and prompt antibiotic therapy (Remeš et al. 2013).
In addition, ITDD is used to bypass the blood-brain barrier in treatments of certain
cancers that have reached the CNS, including some types of lymphoma, medulloblastoma,
oligodendroglioma, and intracranial germ-cell tumors (Lee et al. 2017). As in the case
of pain and antibiotic medication, the advantage of ITDD chemotherapy is to maximize
CNS exposure to the drug while reducing or even eliminating systemic drug toxicity as
compared with intravenous or oral delivery.

Although ITDD is currently used with satisfactory results, the drug dispersion rate
is rather unpredictable and exhibits dependences that are not thoroughly understood.
For instance, Hsu et al. (2012) have shown that doubling the heart rate causes a
26.4% decrease in intrathecal drug concentration at the injection site due to a faster
drug dispersion rate along the canal. It has also been shown that doubling the stroke
volume in the CSF pulsation across the foramen magnum may decrease intrathecal drug
concentration at the injection site up to 38% (Carpenter et al. 2003). Patient posture
and amplitude of the intracranial pressure have also been shown to affect the motion of
the CSF and the dispersion of the drug in the spinal canal (Shafer et al. 1998).

The limited predictive capability of drug-delivery rates to targeted locations, resulting
from a lack of a clear understanding of the complex convective and diffusive mechanisms
controlling the transport of the drug, may result in unexpected complications that
cannot be explained by current knowledge of pharmacokinetics (Kamran & Wright 2001;
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Figure 1. Schematic view of the spinal canal, with indication of the curvilinear coordinates
used in the analysis and the most common injection route in ITDD procedures; adapted from
Sánchez et al. (2018).

Pardridge 2011). Recent studies have revealed inexplicable variations in patient response,
which may be attributed to differences in the physical and molecular characteristics of
the injected solution, and more importantly, to the patient physiological parameters and
specific anatomy and characteristics of the spinal canal. Inadvertent over- or under-dosage
may result in serious clinical consequences. Under-dosage may occur in 30% or more of
patients receiving standard regimes of chemotherapy and those who are inadvertently
under-dosed are at risk of a significantly reduced anticancer effect, with an estimated 20%
relative reduction in survival rate (Wallace & Yaksh 2012). In addition, over-dosing with
anesthetic via ITDD may produce serious consequences including acute nerve damage
or chronic subclinical nerve damage (Buchser et al. 2004). Thus, there is an imperative
need to develop a methodology capable of accurately predicting the dispersion of the
drug along the spinal canal for the specific anatomy and physiological conditions of the
individual patient as well as for the molecular characteristics and injection rate of the
drug.

1.2. Flow and transport in the spinal canal

A major feature of spinal fluid flow is its oscillation, which is driven mainly by the
intracranial pressure fluctuations that occur with each heart beat as a result of the
cyclic variation of the cerebrovascular blood volume (du Boulay 1966; Bhadelia et al.
1997). As follows from conservation of intracranial volume, i.e. the so-called Monro-Kellie
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doctrine or hypothesis (Mokri 2001), this pressure fluctuation drives CSF periodically
into and out of the compliant spinal canal (du Boulay 1966). The oscillating CSF flow is
accommodated by the compression of the venous and fatty tissue in the epidural space
that surrounds the dural sac (Marmarou et al. 1975; Shapiro et al. 1980). The compliance
of the canal is very limited, with the result that the tidal volume of CSF flowing across
the foramen magnum from the cranial vault into the SAS space of the spinal canal during
each cardiac cycle is approximately∆V = 1−2 cm3 (Linninger et al. 2016), corresponding
to a very small fraction (2% to 3%) of the total CSF volume V ' 40− 60 cm3 contained
inside the spinal canal. As a consequence, the stroke length of the fluctuating motion is
just a few centimeters, resulting in velocities that are of the order of a few cm/s in the
cervical region, progressively diminishing along the canal to reach much smaller values
in the lumbar region.

In addition to this oscillatory flow, it has been known since the early radiological
observations of Di Chiro (1964) that the CSF exhibits a slow bulk motion with charac-
teristic velocities of the order of 1 cm/min, much smaller than those of the periodic
fluctuating flow, and corresponding characteristic residence times of the order of 30
minutes, much longer than the period of the oscillating motion (about 1 second). This
slow bulk motion has been reasoned in our recent paper to be the result of a steady-
streaming phenomenon (Sánchez et al. 2018). Our analysis models the SAS as a slowly
varying annular canal. A linearly elastic model is adopted in the description, with the
displacement of the dura membrane determined as the product of the local pressure
fluctuation and a compliance factor γ′. The canal deformation is small, as dictated by
the condition ∆V/V � 1. Correspondingly, the dura-membrane displacement, given in
order of magnitude by the product γ′c(∆p)c of the characteristic value γ′c of the compliance
factor and the amplitude (∆p)c of the pressure fluctuation in the cranial cavity, is much
smaller than the characteristic width hc ∼ 0.2 cm of the spinal canal, with their ratio

ε =
γ′c(∆p)c
hc

∼ ∆V/V ∼ 1/50 (1.1)

defining a small parameter characterizing the limited compliance of the canal.
At leading order in the limit ε � 1 the oscillatory motion is determined by a linear

unsteady lubrication problem, with the nonlinear terms associated with the convective
acceleration and the deformation of the canal producing a small velocity correction with a
steady component, which is commonly referred to as steady-streaming flow (Riley 2001).
The resulting magnitude of this steady velocity is a factor ε smaller than that of the
pulsating flow, consistent with the experimental observations of the bulk flow. Recent
numerical computations with anatomically correct geometries have verified the existence
of steady streaming (Khani et al. 2018). In addition, their simulations show the steady-
state augmentation resulting from the presence of nerve roots in the cervical region. It
is worth noting that steady streaming in CSF flow in the spinal canal was also identified
in earlier work in connection with the presence of the catheter used to infuse the drug
(Nelissen 2008; Borhani et al. 2011).

Besides the steady-streaming component of the Eulerian velocity field, there are a
number of additional transport mechanisms that may contribute to the dispersion of the
drug along the spinal canal. For example, as demonstrated by Larrieu et al. (2009) in
their analysis of viscous oscillating flow near a wavy wall, the Lagrangian mean motion
of an oscillating fluid particle may contain a contribution arising from Stokes drift. This
is a purely kinematic effect associated with the spatial nonuniformity of the pulsatile
flow. In the presence of a velocity gradient, a fluid particle subject to an oscillating
velocity field experiences small velocity variations, so that it does not recover at the
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end of each cycle the position it occupied initially at the beginning of the cycle. The
small cyclical displacements accumulate in time to give the so-called Stokes drift, with
associated velocities that are comparable to those of steady streaming (Larrieu et al.
2009).

A different mechanism that has been postulated to be relevant in connection with
drug dispersion in the SAS is the enhancement of the streamwise transport rate arising
from the coupling of the velocity shear with the transverse diffusion (Linninger et al.
2016), a phenomenon first investigated by Taylor (1953). This so-called Taylor dispersion,
described theoretically for oscillatory flow in a pipe by Watson (1983), is particularly
effective in gaseous flow, where the molecular diffusivity of the solute κ is comparable
to the kinematic viscosity of the carrier fluid ν (i.e. values of the Schmidt number S =
ν/κ ∼ 1). For example, Taylor dispersion is known to play an important role in the
transport of oxygen and carbon dioxide in the lung airways during pulmonary high-
frequency ventilation (Grotberg 1994), involving high-frequency oscillatory flows with
small tidal volumes. The effects of Taylor dispersion in solute transport in liquids are
necessarily limited by the smaller solute diffusivities. Although the resulting effective
diffusion velocities along the spine have been estimated to be negligibly small (Sánchez
et al. 2018), more work is necessary to quantify diffusion enhancement stemming from
the presence of micro-anatomical features (Linninger et al. 2016).

The existence of two markedly different time scales (i.e. a period of oscillation of
about 1 second and a residence time of about 30 minutes) hinders computational efforts,
limiting their long-time predictive capability as well as their potential for providing
understanding of the specific physical mechanisms that regulate the coupling between
convection and diffusion and ultimately determine the drug-dispersion rate along the
spinal canal. In particular, since solute transport in oscillatory flow is associated with
nonlinear mechanisms (e.g. steady streaming, Stokes drift, and Taylor dispersion) that
have an accumulative effect over many cycles, computational analyses based on numerical
integrations over a finite number of cycles are not well suited for investigating drug
dispersion. Despite these inherent limitations, previous numerical analyses have helped
understand local aspects of the problem. Many of the previous numerical studies of CSF
flow and solute transport have been based on modeling of short segments of the SAS of
the spinal canal. Most of these investigations consider rigid walls and open input and
output cross sections, with boundary velocity profiles adjusted to satisfy some radiological
measurements (Kurtcuoglu 2011). The effect of deformable walls (compliance of the
canal) has been included in some simulations (Linninger et al. 2016), which have been
recently extended to patient-specific 3D models of the anatomy of the canal. Some of
these computational studies also include modeling pharmacokinetics parameters such as
drug enzymatic decay, tissue uptake, and clearance by the blood (Pizzichelli 2016; Tangen
et al. 2017).

The present analysis of solute dispersion in the spinal canal is motivated by the
need for increased understanding and better quantification of the transport mechanisms
responsible for long-time drug dispersion in ITDD procedures. Our work uses as a starting
point our recently published asymptotic analysis of the motion of the CSF in the SAS of
the spinal canal (Sánchez et al. 2018). The disparity between the period of the oscillatory
motion and the characteristic dispersion time is exploited in a two-time scale analysis
accounting for the slenderness of the spinal SAS and its limited compliance, the latter
measured by the parameter ε ∼ ∆V/V ∼ 1/50 defined in (1.1). We begin in § 2 by
addressing the motion in the spinal canal, including the computation of fluid-particle
trajectories, which provides the Lagrangian mean velocities involved in the long-time
convective transport of the solute. The two-time scale methodology is employed in § 3
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to investigate the dispersion of the solute, yielding a simplified transport equation in the
long-time scale, with separate derivations given in the two distinguished limits S ∼ ε−2,
which applies to drug diffusion in the CSF, and S ∼ 1, relevant for diffusion in gaseous
flows. An important conclusion is that Taylor dispersion, which is important for S ∼ 1, is
nevertheless negligible for S ∼ ε−2. Numerical evaluations of the results of the asymptotic
analysis are performed in § 4 for a canal of simplified geometry. The results suggest that,
over a large range of values of S of interest in ITDD applications, solute transport
is largely controlled by the convective transport associated with the Lagrangian mean
velocities averaged across the width of the canal. Concluding remarks and comments on
limitations and future extensions of the work are given in § 5.

2. CSF motion in the spinal canal

2.1. Characteristic scales

CSF is an incompressible Newtonian fluid with density ρ and kinematic viscosity ν
similar to those of water. It fills the subarachnoid space of the spinal canal, a thin annular
gap surrounding the spinal cord bounded internally by the pia mater and externally by
the deformable dura membrane, as indicated in figure 1(d). The spinal canal is doubly
slender, in that its length L ∼ 60 − 80 cm, characteristic perimeter `c ∼ 2 cm, and
characteristic width hc ∼ 0.2 cm satisfy the inequalities

L� `c � hc. (2.1)

The associated total volume of CSF in the spinal canal is of the order of V ∼ L`chc ∼
40− 60 cm3.

The fluctuating motion of CSF in and out of the spinal canal is associated with the
periodic variation of the intracranial pressure, driven by the pulsating blood flow in
the rigid cranial vault, of angular frequency ω. In addition to the pulsation associated
with the arterial blood flow, it has also been observed in many radiological studies (Kao
et al. 2008; Dreha-Kulaczewski et al. 2015) that respiration also produces a modulation
of the intracranial pressure, resulting in a smaller additional oscillation of the CSF
in the spinal canal at a lower frequency (12 to 18 cycles per minute in adults). For
simplicity and reduced complexity of the algebraic manipulations, our analysis assumes
the cranial pressure to be a periodic function with angular frequency ω, equal to that of
that of the cardiac cycle. The effects of the lower frequency component associated with
respiratory effects should be addressed in future work by considering a more general
temporal variation of the intracranial pressure.

Because of the limited compliance of the spinal canal, measured by the small parameter
ε defined in (1.1), the tidal volume that is displaced along the canal during each cardiac
cycle, ∆V ' εV ' 1−2 cm3, is much smaller than V . Correspondingly, the periodic flow
involves axial displacements of order εL in times of order ω−1, resulting in streamwise
velocities of the CSF with characteristic values uc = εωL of the order of a few cm/s
near the entrance, progressively decaying along the canal to vanish at its closed-end
sacral region. The corresponding characteristic values of the azimuthal wc = εω`c and
transverse vc = εωhc velocities are much smaller, a consequence of the slenderness of the
canal.

2.2. The Eulerian velocity field

The Eulerian velocity field in the spinal canal was described in our recent paper
(Sánchez et al. 2018) using the parameter ε ∼ ∆V/V � 1, defined in (1.1), as an
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asymptotically small quantity. A brief account of the associated asymptotic analysis is
given in appendix A, where the previous treatment is generalized by allowing for a more
general description of the compliance properties of the canal. The following paragraphs
review the salient results that will be needed below in analyzing the transport of the
solute.

The slenderness of the flow is accounted for in defining a nondimensional curvilinear
coordinate system (x, y, s), with x measuring the distance from the entrance scaled
with L, y measuring the transverse distance from the pia mater scaled with hc, and
s measuring the azimuthal distance, normalized with the local perimeter (see figures 1(c)
and 1(d) for an indication of the coordinate system). The corresponding nondimensional
velocity components (u, v, w) are scaled with the characteristic velocities (uc, vc, wc) in
the longitudinal, transverse, and azimuthal directions respectively. The time is scaled
with the period of the angular frequency ω−1 to give the dimensionless variable t.
Correspondingly, the velocity is 2π periodic in t. The shape of the canal is described
by the dimensionless inner perimeter `(x) (scaled with `c) and the width distribution
h(x, s, t) (scaled with hc). The deformation of the dura membrane leads to small changes
of the canal width h = h̄(x, s) + εh′(x, s, t), where h̄ is the unperturbed canal width
and h′(x, s, t) measures the time-dependent radial deformation, such that the transverse
velocity satisfies v = ∂h′/∂t at y = h.

A straightforward order-of-magnitude analysis of the momentum conservation equation
reveals the main characteristics of the CSF flow in the SAS of the spinal canal. The
Strouhal number, measuring the relative importance of the local acceleration and the
convective acceleration, is ωL/uc = ω`c/wc = ωhc/vc = ε−1 � 1, so that effects of
inertia are small. The viscous time across the canal, h2

c/ν, is of order ω−1, yielding order-
unity values of the Womersley number α = hc/(ν/ω)1/2 ∼ 1, with α2 measuring the ratio
of the local acceleration to the viscous forces. In the first approximation, therefore, the
local acceleration balances the pressure and viscous forces, resulting in a linear unsteady
lubrication problem with zero time-averaged velocity at any given point. The convective
acceleration introduces a small relative correction of order ε to this oscillatory lubrication
velocity. Because of the nonlinear nature of the inertial terms, this velocity correction, of
order εuc = ε2ωL in the axial direction, includes a steady component known as steady
streaming (Riley 2001).

The problem can be simplified in the slender-flow approximation (2.1) by consistently
neglecting terms of order (`c/L)2 and (hc/L)2 when writing the conservation equations.
Furthermore, to account for the deformation of the dura membrane and the resulting
variable geometry, the distance to the pia mater is normalized with the local instanta-
neous width h(x, s, t) to give the alternative transverse coordinate η = y/h. The set of
governing equations, given in appendix A, includes the mass conservation balance

1

`

∂

∂x
(`u)− ∂h

∂x

η

h

∂u

∂η
+

1

h

∂v

∂η
+

1

`

∂w

∂s
− 1

`

∂h

∂s

η

h

∂w

∂η
= 0, (2.2)

along with the axial and azimuthal components of the momentum conservation equation.
An additional constitutive equation must be introduced to relate the deformation of the
canal h′(x, s, t) with the local pressure, with a linearly elastic model used for simplicity
in the present analysis. The resulting problem is solved in the asymptotic limit ε� 1 by
introducing regular expansions of the form u = u0(x, η, s, t) + εu1(x, η, s, t) + · · ·

v = v0(x, η, s, t) + εv1(x, η, s, t) + · · ·
w = w0(x, η, s, t) + εw1(x, η, s, t) + · · ·

(2.3)
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and

h− h̄(x, s) = εh′(x, s, t) = ε(h′0 + εh′1 + · · · ), (2.4)

with additional similar expansions introduced for the functions p′(x, t) and p̂(x, s, t) de-
scribing the streamwise and azimuthal pressure variations. As previously mentioned, the
leading-order velocity component, determined by integration of an unsteady lubrication

problem, has a zero time average 〈u0〉 = 〈v0〉 = 〈w0〉 = 0, with 〈·〉 = 1
2π

∫ t+2π

t
·dt,

whereas the first-order correction, accounting for the effects of convective acceleration,
includes nonzero steady-streaming components (〈u1〉, 〈v1〉, 〈w1〉). An analytic solution
was found in Sánchez et al. (2018) for the case of a harmonic intracranial pressure
variation, such that the leading-order velocity components u0, w0, and v0 and wall
deformation h′0(x, s, t) are harmonic functions of the form

u0 = Re
(
ieitU

)
, v0 = Re

(
ieitV

)
, w0 = Re

(
ieitW

)
, h′0 = Re

(
eitH ′

)
. (2.5)

The functions U , V , W , and H, carrying the spatial dependence of the leading-order
flow, are given in appendix A, along with integral expressions for the associated steady-
streaming components 〈u1〉, 〈v1〉, and 〈w1〉.

2.3. Fluid-particle trajectories

In view of the characteristics of the Eulerian velocity field, including harmonic leading-
order components (u0, v0, w0) and first-order corrections (u1, v1, w1) that contain nonzero
steady components (〈u1〉, 〈v1〉, 〈w1〉), it can be anticipated that, in addition to the small
oscillations of dimensionless amplitude ε induced by the pulsatile component of the flow,
the fluid particles undergo relative displacements of order unity in characteristic times
of order ε−2ω−1. We shall see that, besides the direct contribution resulting from the
steady-streaming velocity 〈v1〉 = (〈u1〉, 〈v1〉, 〈w1〉), this slow Lagrangian motion includes
an additional contribution associated with the Stokes drift of the fluid particles, stemming
from the nonuniformity of the harmonic leading-order velocity field v0. This can be
clarified by considering the motion of a fluid particle, whose trajectory is obtained by
integration of

dxp

dt = εu(xp, ηp, sp, t)
dyp
dt = h

dηp
dt +

(
∂h
∂t + ∂h

∂x
dxp

dt + ∂h
∂s

dsp
dt

)
ηp = εv(xp, ηp, sp, t)

`
dsp
dt = εw(xp, ηp, sp, t)

(2.6)

with initial conditions (xp, ηp, sp) = (xi, ηi, si) at t = 0.

It is convenient to exploit the existence of the two time scales ω−1 and ε−2ω−1 in
a formal multiple-scale analysis that introduces a second time variable τ = ε2t to
describe the slow evolution of the fluid-particle location, with xp(t, τ), ηp(t, τ), and sp(t, τ)
assumed to be periodic in the short time scale t. This presumed time dependence is used
to write (2.6) in the form

∂xp
∂t

+ ε2 ∂xp
∂τ

= εu, (2.7)

h

(
∂ηp
∂t

+ ε2 ∂ηp
∂τ

)
+ ε

(
∂h′

∂t
+
∂h

∂x
u+

1

`

∂h

∂s
w

)
ηp = εv, (2.8)

`

(
∂sp
∂t

+ ε2 ∂sp
∂τ

)
= εw. (2.9)
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The problem can be solved by introducing the expansions xp = x0(t, τ) + εx1(t, τ) + ε2x2(t, τ) + · · ·
ηp = η0(t, τ) + εη1(t, τ) + ε2η2(t, τ) + · · ·
sp = s0(t, τ) + εs1(t, τ) + ε2s2(t, τ) + · · ·

. (2.10)

Correspondingly, the Eulerian velocity components appearing in (2.7)–(2.9) must be
expressed in the Taylor-expansion form

u = u0(x0, t) + ε
[
u1(x0, t) + x1

∂u0

∂x (x0, t) + η1
∂u0

∂η (x0, t) + s1
∂u0

∂s (x0, t)
]

+ · · ·

v = v0(x0, t) + ε
[
v1(x0, t) + x1

∂v0
∂x (x0, t) + η1

∂v0
∂η (x0, t) + s1

∂v0
∂s (x0, t)

]
+ · · ·

w = w0(x0, t) + ε
[
w1(x0, t) + x1

∂w0

∂x (x0, t) + η1
∂w0

∂η (x0, t) + s1
∂w0

∂s (x0, t)
]

+ · · ·
(2.11)

where the known functions (u0, v0, w0), (u1, v1, w1), . . . and their derivatives are evaluated
at x0 = (x0, η0, s0). Similarly, the canal perimeter `(x) and width h(x, s, t) must be
expanded according to

` = `(x0) + εx1
∂`

∂x
(x0) + · · · (2.12)

and

h = h̄(x0, s0) + ε

[
h′0(x0, s0, t) + x1

∂h̄

∂x
(x0, s0) + s1

∂h̄

∂s
(x0, s0)

]
+ · · · , (2.13)

with similar expansions introduced for the known geometrical functions ∂h′/∂t, ∂h̄/∂x,
and ∂h̄/∂s.

2.4. Lagrangian velocity in the spinal canal

Substituting (2.10)–(2.13) into (2.7)–(2.9) and collecting the terms that appear at
different orders in powers of ε lead to a set of equations that can be solved sequentially.
At the leading-order, O(1), the problem becomes

∂x0

∂t
=
∂η0

∂t
=
∂s0

∂t
= 0, (2.14)

which can be readily integrated to give the result x0 = [x0(τ), η0(τ), s0(τ)], indicating
that the leading-order terms evolve only in the long time scale, so that the fast oscillatory
motion is restricted to the first-order corrections x1 = (x1, η1, s1), as is consistent with
the small stroke lengths of order ε of the Eulerian velocity field. The rate of change in the
long time scale dx0/dτ determines the time-averaged Lagrangian velocity components of
the slow bulk motion according to

uL =
dx0

dτ
, vL =

dy0

dτ
= h̄

dη0

dτ
+ η0

∂h̄

∂x

dx0

dτ
+ η0

∂h̄

∂s

ds0

dτ
, wL = `

ds0

dτ
(2.15)

to be obtained below by carrying the analysis to order ε2.
At order ε we find

∂x1

∂t
= u0, (2.16)

h̄
∂η1

∂t
= v0 −

(
∂h′0
∂t

+
∂h̄

∂x
u0 +

1

`

∂h̄

∂s
w0

)
η0, (2.17)

`
∂s1

∂t
= w0. (2.18)
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Since the dependence on the short time scale t enters above only through the harmonic
functions u0[x0(τ), t], v0[x0(τ), t], w0[x0(τ), t], and ∂h′0/∂t[x0(τ), s0(τ), t], given in (2.5),
straightforward integration provides

x1 =

∫
u0dt+ x̃1(τ), (2.19)

η1 =
1

h̄

[∫
v0dt−

(
h′0 +

∂h̄

∂x

∫
u0dt+

1

`

∂h̄

∂s

∫
w0dt

)
η0

]
+ η̃1(τ) (2.20)

s1 =
1

`

∫
w0dt+ s̃1(τ), (2.21)

with ∫
u0dt = Re

(
eitU

)
,

∫
v0dt = Re

(
eitV

)
,

∫
w0dt = Re

(
eitW

)
, (2.22)

as follows from (2.5). The slowly varying terms x̃1, η̃1, and s̃1 appearing in (2.19)–(2.21),
which represent small relative corrections of order ε to the long-time evolution of the
fluid-particle location, are not to be further considered in the present development. They
could be obtained by carrying the analysis to higher order if needed to compute the
Lagrangian velocity (uL, vL, wL) with increased accuracy.

The Lagrangian velocity components (2.15) are obtained by taking the time average
of the trajectory equations that emerge at the following order. For instance, collecting
terms of order O(ε2) in (2.7) provides

∂x2

∂t
+

dx0

dτ
= u1 + x1

∂u0

∂x
+ η1

∂u0

∂η
+ s1

∂u0

∂s
, (2.23)

which leads to

dx0

dτ
= 〈u1〉+

〈
∂u0

∂x

∫
u0dt

〉
+

1

h̄

〈
∂u0

∂η

∫
v0dt

〉
+

1

`

〈
∂u0

∂s

∫
w0dt

〉
− η0

h̄

(〈
∂u0

∂η
h′0

〉
+
∂h̄

∂x

〈
∂u0

∂η

∫
u0dt

〉
+

1

`

∂h̄

∂s

〈
∂u0

∂η

∫
w0dt

〉)
(2.24)

upon taking the time average 〈·〉 = 1
2π

∫ t+2π

t
·dt. The above equation includes products

of harmonic functions, to be evaluated with use made of (2.5) and (2.22) together with
the expressions given in appendix A for U , V , W , and H. Using the relation

1

`

∂

∂x
(`u0)− ∂h̄

∂x

η0

h̄

∂u0

∂η
+

1

h̄

∂v0

∂η
+

1

`

∂w0

∂s
− 1

`

∂h̄

∂s

η0

h̄

∂w0

∂η
= 0, (2.25)

stemming at leading order from the continuity equation (2.2), along with integration by
parts enables the above equation (2.24) to be written in the compact form

uL =
dx0

dτ
= 〈u1〉 +

1

h̄

{
〈u0h

′
0〉+

1

`

∂

∂s

(
h̄

〈
u0

∫
w0dt

〉)}
+

1

h̄

∂

∂η

〈
u0

[∫
v0dt− η

(
h′0 +

1

`

∂h̄

∂s

∫
w0dt

)]〉
. (2.26)

As expected, besides the steady-streaming velocity 〈u1〉, the Lagrangian velocity includes
a Stokes-drift component arising from the interactions of the pulsating axial velocity with
the pulsating azimuthal and transverse motion and also with the deformation of the canal.
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Similar manipulations of the corresponding equations for dη0/dτ and ds0/dτ lead to

vL = 〈v1〉 +
1

`

∂

∂x

(
`

〈
v0

∫
u0dt

〉)
+

1

`

∂

∂s

〈
v0

∫
w0dt

〉
− η

h̄

∂

∂η

〈
v0

(
h′0 +

∂h̄

∂x

∫
u0dt+

1

`

∂h̄

∂s

∫
w0dt

)〉
(2.27)

and

wL = 〈w1〉 +
1

h̄

[
〈w0h

′
0〉+

∂

∂x

(
h̄

〈
w0

∫
u0dt

〉)]
+

1

h̄

∂

∂η

〈
w0

[∫
v0dt− η

(
h′0 +

∂h̄

∂x

∫
u0dt

)]〉
(2.28)

also exhibiting both the steady-streaming and the Stokes-drift components.
The Lagrangian velocities computed above will be seen to determine the convective

transport of the solute in the long time scale τ . The three components satisfy the mass
conservation equation

1

`

∂

∂x
(`uL)− ∂h̄

∂x

η

h̄

∂uL

∂η
+

1

h̄

∂vL

∂η
+

1

`

∂wL

∂s
− 1

`

∂h̄

∂s

η

h̄

∂wL

∂η
= 0, (2.29)

which can be integrated across the canal to give

1

`

∂

∂x

(
`h̄

∫ 1

0

uLdη

)
+

1

`

∂

∂s

(
h̄

∫ 1

0

wLdη

)
= 0 (2.30)

relating the width-averaged values∫ 1

0

uLdη =

∫ 1

0

〈u1〉dη +
1

h̄

[∫ 1

0

〈h′0u0〉dη +
1

`

∂

∂s

(
h̄

∫ 1

0

〈
u0

∫
w0dt

〉
dη

)]
(2.31)

and ∫ 1

0

wLdη =

∫ 1

0

〈w1〉dη +
1

h̄

[∫ 1

0

〈h′0w0〉dη +
∂

∂x

(
h̄

∫ 1

0

〈
w0

∫
u0dt

〉
dη

)]
(2.32)

of the axial and azimuthal components of the time-averaged Lagrangian flow, also of
interest in the following development.

3. The description of solute dispersion in the spinal canal

3.1. Characteristic scales

The velocity field in the spinal canal determines the convective transport of the
drug injected in the lumbar region. Besides the characteristic time associated with the
pulsating flow ω−1, we have seen that the time-averaged Lagrangian motion introduces
a second characteristic time scale, the residence time ε−2ω−1. Molecular diffusion is
characterized by the solute diffusivity κ, typical values of which are of the order of
κ ' 5 × 10−10 m2/s for chemotherapy drugs such as methotrexate (Blasberg et al.
1975), with even larger values pertaining to the radioactive tracers used in exploratory
radiological imaging. The associated Schmidt number S = ν/κ, defined as the ratio of
the kinematic viscosity to the molecular diffusivity, is very large, of the order of a few
thousand. Diffusion occurs primarily in the direction transverse to the width of the canal,
with associated characteristic times h2

c/κ, whereas the times characterizing axial and
azimuthal diffusion, given by L2/κ and `2c/κ, are much longer owing to the slenderness
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of the flow, so that these processes play a negligible role and can be discarded in the
description.

To anticipate the relative importance of diffusion in the transport of the solute along
the SAS of the canal it is of interest to compare the two flow characteristic times ω−1

and ε−2ω−1 identified above with the diffusion time h2
c/κ = Sα2ω−1, expressed in terms

of the square of the Womersley number α2 = ωh2
c/ν, which as previously mentioned is

of order unity for the CSF flow in the spinal canal. The comparison of the large values
S ∼ 1000 of the Schmidt number with the typical values of the parameter ε ∼ 1/50
suggests that the distinguished limit S ∼ ε−2 applies under most conditions of interest
for intrathecal drug delivery, for which the diffusion times h2

c/κ are comparable to the
characteristic residence time ε−2ω−1 of the fluid particles in the spinal canal. As a result,
in the limit S ∼ ε−2 the temporal variation of the solute concentration is determined by
the combined effects of the time-averaged Lagrangian convection and the diffusion across
the canal width. The latter will be seen to become dominant for solutes with smaller
values of S � ε−2, causing the solute concentration to be uniform across the canal at
leading order and resulting in a simpler transport equation involving the width-averaged

Lagrangian velocities
∫ 1

0
uLdη and

∫ 1

0
wLdη.

The variation of the solute concentration in the short time scale ω−1 occurs through
small fluctuations of order ε. For solutes with Schmidt numbers S ∼ 1, the interactions
of these nonuniform fluctuations with the pulsating velocity field will be shown to lead
to an additional dispersion mechanism, with transport rates that are seen to be of the
order of (although significantly smaller than) those of the time-averaged Lagrangian
convection. We shall see that this shear-enhanced dispersion, which has been shown to
be an important transport mechanism in applications involving oscillatory gaseous flow,
such as pulmonary high-frequency ventilation (Grotberg 1994), becomes less effective
as the value of S increases, and is entirely negligible for the Schmidt numbers typical of
drugs delivered intrathecally, for which transport relies mainly on Lagrangian convection.

The analysis below will employ the asymptotic limit ε � 1 to derive an equation
for the transport of the solute in the long-time scale ε−2ω−1. The discussion in the
preceding paragraphs indicates that the interactions of the solute diffusion with the
flow are fundamentally different depending on the solute Schmidt number, with the two
limiting cases S ∼ ε−2 and S ∼ 1 leading to different transport equations, given below
in (3.9) and (3.33), respectively. As expected, both equations consistently reduce to the
same simplified form (3.13) in the intermediate limit 1� S � ε−2.

3.2. Transport equation

For the curvilinear coordinates (x, y, s) the transport equation for a solute of molecular
diffusivity κ with concentration c takes the form

∂c

∂t
+ ε

(
u
∂c

∂x
+ v

∂c

∂y
+
w

`

∂c

∂s

)
=

1

α2S

∂2c

∂y2
, (3.1)

where α ∼ 1 is the Womersley number and S is the Schmidt number. The diffusion term
in the above equation involves only derivatives in the y direction, a simplification that
follows from the slenderness condition (2.1). Effects of second-order derivatives in the
azimuthal and axial direction are anticipated to introduce corrections that are of order
(hc/`c)

2 and (hc/L)2, respectively, which are not described in the present development,
consistent with the lubrication approximation used in computing the velocity field. The
analysis below will be performed for the case of impermeable bounding surfaces, yielding
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boundary conditions

∂c

∂y
= 0 at y = 0, h. (3.2)

The description of solute absorption on the surface of the pia mater and dura membrane,
leading to modified boundary conditions at y = 0, h, is to be discussed in § 5

It is convenient to rewrite the above problem in terms of the normalized transverse
coordinate η = y/h. Also, because of the anticipated slow evolution of the concentration
in the canal, with characteristic transport times ε−2ω−1, the problem is analyzed with the
two-time formalism used above in § 2.3 to describe fluid-particle trajectories, involving the
long time scale τ = ε2t in addition to the short time scale t. The resulting concentration
field c(x, η, s, t, τ), assumed to be 2π periodic in t, satisfies the transport problem

∂c

∂t
− ε∂h

′

∂t

η

h

∂c

∂η
+ ε2 ∂c

∂τ
+ ε

[
u

(
∂c

∂x
− ∂h

∂x

η

h

∂c

∂η

)
+

v

h

∂c

∂η
+
w

`

(
∂c

∂s
− ∂h

∂s

η

h

∂c

∂η

)]
=

1

α2Sh2

∂2c

∂η2
;

∂c

∂η
= 0 at η = 0, 1 (3.3)

as follows from (3.1).
The problem will be solved by expressing the solute concentration in the expansion

form

c = c0 + εc1 + ε2c2 + · · · , (3.4)

consistent with (2.3) and (2.4). All expansion terms cj(x, η, s, t, τ) for j = 0, 1, 2, · · ·
are assumed to be expressible in the form cj = 〈cj〉 + c̃j , where the average in the

short time scale 〈cj〉(x, η, s, τ) = 1
2π

∫ t+2π

t
cj dt varies in the long-time scale τ , while the

harmonic functions c̃j(x, η, s, t, τ) carry the pulsatile short-time dependence. Introduc-
ing (2.3), (2.4), and (3.4) into (3.3) and collecting terms in increasing powers of ε yield a
series of problems that can be solved sequentially, as done below in the two distinguished
limits S = O(ε−2) and S = O(1).

3.3. Solute transport for S ∼ ε−2

We begin by considering the clinically significant case of large values of the Schmidt
number S ∼ ε−2, corresponding to most drugs used in ITDD procedures. In this distin-
guished limit, the diffusion time across the canal h2

c/κ is comparable to the characteristic
residence time ε−2ω−1, and therefore much larger than the oscillation time ω−1 ∼ h2

c/ν,
so that interactions between the short-time fluctuations of concentration and velocity do
not lead to appreciable enhancement of the solute dispersion. We begin by rewriting the
Schmidt number in the starting equation (3.3) in the rescaled form

σ = ε2S, with σ ∼ 1. (3.5)

At O(1) the solution provides

∂c0
∂t

= 0 → c0 = c0(x, η, s, τ), (3.6)

indicating that at leading order the concentration evolves only in the long time scale.
The short-time variation of the concentration is limited to the corrections c1, which are
described by the problem that arises at the following order, given by

∂c1
∂t

= −u0
∂c0
∂x
− w0

`

∂c0
∂s
−
[
v0 −

(
∂h′0
∂t

+
∂h̄

∂x
u0 +

1

`

∂h̄

∂s
w0

)
η

]
1

h̄

∂c0
∂η

. (3.7)

Since the dependence on t enters in (3.7) only through the harmonic functions u0, v0,
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w0, and ∂h′0/∂t, to be evaluated using the expressions (2.5), straightforward integration
provides

c1 = −
∫
u0dt

∂c0
∂x
−
∫
w0dt

1

`

∂c0
∂s
−
∫
v0dt

1

h̄

∂c0
∂η

+

(
h′0 +

∫
u0dt

∂h̄

∂x
+

∫
w0dt

1

`

∂c0
∂s

)
η

h̄

∂c0
∂η

+ 〈c1〉 (3.8)

including the time-averaged value 〈c1〉(x, η, s, τ) and the harmonic functions h′0,
∫
u0dt,∫

v0dt, and
∫
w0dt given in (2.5) and (2.22).

The evolution equation for c0 emerges at the following order. Collecting terms of O(ε2)
in (3.3) and taking the time average leads, after significant algebra, to the convection-
diffusion equation

∂c0
∂τ

+ uL

(
∂c0
∂x
− ∂h̄

∂x

η

h̄

∂c0
∂η

)
+
vL

h̄

∂c0
∂η

+
wL

`

(
∂c0
∂s
− ∂h̄

∂s

η

h̄

∂c0
∂η

)
=

1

α2σh̄2

∂2c0
∂η2

, (3.9)

involving the time-averaged Lagrangian velocities (2.26)–(2.28) and the rescaled Schmidt
number σ ∼ 1 defined in (3.5). Equation (3.9) is to be integrated for a given initial
distribution c0 = ci(x, η, s) with the boundary conditions ∂c0/∂η = 0 at η = 0, 1. An
integral equation for the total amount of solute contained between a given section x and
the end of the canal follows from integrating (3.9) to yield

∂

∂τ

{∫ 1

x

[
`

∫ 1

0

(
h̄

∫ 1

0

c0dη

)
ds

]
dx

}
= `

∫ 1

0

h̄

(∫ 1

0

uLc0dη

)
ds, (3.10)

involving the solute flux across section x

φc = `

∫ 1

0

(∫ 1

0

uLc0dη

)
h̄ds. (3.11)

It is also worth noting that one may alternatively write the problem (3.9) in the form

∂c0
∂τ

+ uL

∂c0
∂x

+ vL

∂c0
∂y

+
wL

`

∂c0
∂s

=
1

α2σ

∂2c0
∂y2

;
∂c0
∂y

= 0 at y = 0, h̄(x, s), (3.12)

obtained from (3.9) by using the relation y = ηh̄(x, y) to express uL, vL, and wL as
functions of (x, y, s). Despite the apparent simplicity of (3.12), the associated com-
putational domain varies in time according to 0 6 y 6 h(x, s, t), so that the more
complicated equation (3.9), involving a transverse coordinate with normalized constant
bounds 0 6 η 6 1, offers advantages for computational purposes.

One can rewrite simpler descriptions of the above equation for extreme values of σ =
ε2S. For example, for σ � 1, corresponding to tracers with S � ε−2, diffusion is entirely
negligible, with the result that the fluid particle conserves its initial concentration at all
times. On the other hand, in the opposite limit σ � 1 corresponding to values S � ε−2

(but still sufficiently larger than unity for the analysis leading to (3.9) to remain valid),
the transverse diffusion term on the right-hand side of (3.9) becomes dominant. Since
∂c0/∂η = 0 at η = 0, 1, it follows that the concentration of the solute is uniform across
the width of the canal, with small departures of order σ that need not be considered in
the first-order approximation. In deriving an equation for c0(x, s, τ) it is convenient to
remove the singular diffusion term by integrating (3.9) from η = 0 to η = 1 taking into
account the condition ∂c0/∂η = 0 in evaluating the convective terms, leading to

∂c0
∂τ

+

(∫ 1

0

uLdη

)
∂c0
∂x

+

(∫ 1

0

wLdη

)
1

`

∂c0
∂s

= 0 (3.13)
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involving the width-averaged Lagrangian velocity components (2.31) and (2.32). The
predictive capability of this simple description is to be tested in § 4.3.

3.4. Solute transport for S ∼ 1

Although the molecular diffusivities of the drugs used in ITDD are always much smaller
than the kinematic viscosity, yielding large values of S = ν/κ � 1, to investigate the
role of Taylor dispersion it is of interest to consider the transport of solutes with S ∼ 1.
In this distinguished limit the diffusion time across the canal h2

c/κ is comparable to
the oscillation time ω−1 ∼ h2

c/ν, and therefore much smaller than the characteristic
residence time ε−2ω−1. As a result, the leading-order time-averaged solute concentration
〈c0〉(x, s, τ) becomes independent of the transverse coordinate η. We shall see that the
small short-time fluctuations of the concentration described by the harmonic function
c̃1 are essential in the description, in that their interactions with the oscillating velocity
provide an additional dispersion mechanism for the solute, described in the time-averaged
transport equation for 〈c0〉(x, s, τ) through apparent diffusion rates proportional to
Taylor diffusivities.

At O(1) the problem (3.3) becomes

∂c0
∂t

=
1

α2Sh̄2

∂2c0
∂η2

,
∂c0
∂η

= 0 at η = 0, 1, (3.14)

with c0 = 〈c0〉+ c̃0. An equation for 〈c0〉 follows from taking the time average of (3.14)
to yield

0 =
∂2〈c0〉
∂η2

,
∂〈c0〉
∂η

= 0 at η = 0, 1, (3.15)

which can be readily integrated to give ∂〈c0〉/∂η = 0. The complex function C̃0 that
determines the leading-order harmonic contribution c̃0 = Re(eitC̃0) is identically zero, as
can be seen by integrating

iC̃0 =
1

α2Sh̄2

∂2C̃0

∂η2
,

∂C̃0

∂η
= 0 at η = 0, 1. (3.16)

Consequently, at this order the solution reduces to

c0 = 〈c0〉 = c0(x, s, τ). (3.17)

At O(ε) the transport problem (3.3) yields

∂c1
∂t

+ u0
∂c0
∂x

+
w0

`

∂c0
∂s

=
1

α2Sh̄2

∂2c1
∂η2

,
∂c1
∂η

= 0 at η = 0, 1 (3.18)

for the first-order correction c1. The leading-order velocity components satisfy 〈u0〉 =
〈w0〉 = 0, so that the time average of (3.18) provides

0 =
∂2〈c1〉
∂η2

,
∂〈c1〉
∂η

= 0 at η = 0, 1, (3.19)

which readily yields 〈c1〉 = 〈c1〉(x, s, τ). The harmonic fluctuation c̃1, needed in the
following development, is determined by integration of

1

α2Sh̄2

∂2c̃1
∂η2

− ∂c̃1
∂t

= u0
∂c0
∂x

+
w0

`

∂c0
∂s

,
∂c̃1
∂η

= 0 at η = 0, 1. (3.20)
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The solution reduces simply to

c̃1 = −
(∫

u0dt

)
∂c0
∂x
−
(∫

w0dt

)
1

`

∂c0
∂s

for S � 1, (3.21)

when the diffusion term in (3.20) becomes negligibly small, whereas in the general case
S ∼ 1 the solution is more complicated and requires consideration of the variation with
η of the axial and azimuthal velocity components u0 = Re

(
ieitU

)
and w0 = Re

(
ieitW

)
.

The functions U(x, η, s) and W (x, η, s), obtained in appendix A, can be used to write

u0 = Re

(
ieit dP

′

dx
G

)
and w0 = Re

(
ieit 1

`

∂P̂

∂s
G

)
, (3.22)

where the dependence on η is carried by the function

G = 1−
cosh

[
αh̄
2

1+i√
2

(2η − 1)
]

cosh
[
αh̄
2

1+i√
2

] . (3.23)

The functions P ′(x) and P̂ (x, s) in (3.22), independent of η, define the spatial variation of

the leading-order pressure functions p′ and p̂. Using (3.22) together with c̃1 = Re
(

eitC̃1

)
in (3.20) yields

1

α2Sh̄2

∂2C̃1

∂η2
− iC̃1 = iG

(
dP ′

dx

∂c0
∂x

+
1

`

∂P̂

∂s

1

`

∂c0
∂s

)
,

∂C̃1

∂η
= 0 at η = 0, 1. (3.24)

which can be integrated to give

C̃1 = −F

(
dP ′

dx

∂c0
∂x

+
1

`

∂P̂

∂s

1

`

∂c0
∂s

)
, (3.25)

where

F =
λ

2

[(
eλ
∫ 1

0

Ge−ληdη + e−λ
∫ 1

0

Geληdη

)
eλη + e−λη

eλ − e−λ

+ e−λη
∫ η

0

Geλη̄dη̄ − eλη
∫ η

0

Ge−λη̄dη̄
]
, (3.26)

with λ = 1+i√
2

√
Sαh̄(x, s). The resulting expression for c̃1 = Re

(
eitC̃1

)
can be cast in the

compact form

c̃1 = −
(∫

uadt

)
∂c0
∂x
−
(∫

wadt

)
1

`

∂c0
∂s

(3.27)

by introducing the apparent velocities

ua = Re

(
ieit dP

′

dx
F

)
and wa = Re

(
ieit 1

`

∂P̂

∂s
F

)
. (3.28)

Equation (3.26) can be approximated by

F = G+ S−1(G− 1) + S−1/2(1 + S−1) tanh

(
1 + i

2
√

2
αh̄

)
×
{

exp

[
−1 + i√

2

√
Sαh̄η

]
+ exp

[
−1 + i√

2

√
Sαh̄(1− η)

]}
(3.29)
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for large values of the Schmidt number S � 1, indicating that F = G as S → ∞, with
the result that ua = u0 and wa = w0, so that (3.27) reduces to (3.21) in that limit.

The transport equation for c0 can be obtained from the analysis of (3.3) at O(ε2). The
solution can be derived directly by considering the global conservation equation

∂

∂t

(
h

∫ 1

0

cdη

)
+ ε2 ∂

∂τ

(
h

∫ 1

0

cdη

)
+
ε

`

[
∂

∂x

(
`h

∫ 1

0

ucdη

)
+

∂

∂s

(
h

∫ 1

0

wcdη

)]
= 0, (3.30)

obtained by integrating (3.3) between η = 0 and η = 1. Writing (3.30) for the two-time
formalism and introducing the expansions (2.3), (2.4), and (3.4) provides

h̄
∂c0
∂τ

+

(
h̄

∫ 1

0

〈u1〉dη +

∫ 1

0

〈h′0u0〉dη
)
∂c0
∂x

+

(
h̄

∫ 1

0

〈w1〉dη +

∫ 1

0

〈h′0w0〉dη
)

1

`

∂c0
∂s

+
1

`

∂

∂x

(
`h̄

∫ 1

0

〈u0c̃1〉dη
)

+
1

`

∂

∂s

(
h̄

∫ 1

0

〈w0c̃1〉dη
)

= 0 (3.31)

after taking the time average and accounting for the conditions ∂c0/∂η = 0 and 〈u0〉 =
〈w0〉 = 0.

As can be inferred from observation of (2.31) and (2.32), the factors in the apparent
convective terms in the first line of (3.31) correspond to the width-averaged Lagrangian
velocity components

∫
uLdη and

∫
wLdη, except for the last Stokes-drift terms in (2.31)

and (2.32), which are missing in (3.31). The integrals in the second line of (3.31)
account for the interactions of the fluctuations of concentration with the fluctuations
of velocity. When S � 1 the fluctuations of concentration, given in (3.21), are not
affected by diffusion and the interactions described by the last two terms in (3.31) result
in the missing contribution to the Stokes-drift convective transport, as can be seen by
using (3.21) to write

1

`

∂

∂x

(
`h̄

∫ 1

0

〈u0c̃1〉dη
)

+
1

`

∂

∂s

(
h̄

∫ 1

0

〈w0c̃1〉dη
)

=

1

`

∂

∂s

(
h̄

∫ 1

0

〈
u0

∫
w0dt

〉
dη

)
∂c0
∂x

+
∂

∂x

(
h̄

∫ 1

0

〈
w0

∫
u0dt

〉
dη

)
1

`

∂c0
∂s

, (3.32)

Consequently, in the limit S � 1 the transport equation (3.31) reduces to (3.13), which
was derived earlier from (3.9) by considering values of σ = ε2S � 1.

In the general case S ∼ 1, the effect of transverse diffusion modifies the short-time
fluctuations c̃1, as described by (3.27). In this case, the interactions of these fluctuations
with the fluctuations of velocity, described by the nonuniform velocity profiles u0 and w0,
lead to Taylor dispersion in the azimuthal and axial directions, providing an additional
transport mechanism for the solute, supplemental to the convection associated with
the time-averaged Lagragian motion. Using (3.27) in evaluating in (3.31) the integrals
containing c̃1 and rearranging the result to isolate the effect of Taylor dispersion lead to

h̄
∂c0
∂τ

+ h̄

(∫ 1

0

uLdη

)
∂c0
∂x

+ h̄

(∫ 1

0

wLdη

)
1

`

∂c0
∂s

=
1

`

∂

∂x

(
`Dxx

∂c0
∂x

)
+

1

`

∂

∂x

(
Dxs

∂c0
∂s

)
+

1

`

∂

∂s

(
Dsx

∂c0
∂x

)
+

1

`

∂

∂s

(
Dss

1

`

∂c0
∂s

)
, (3.33)

involving the width-averaged Lagrangian velocities given in (2.31) and (2.32) along with
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the Taylor diffusivities

Dxx(x, s) = h̄
∫ 1

0

〈
u0

(∫
uadt

)〉
dη

Dxs(x, s) = h̄
∫ 1

0

〈
u0

(∫
(wa − w0)dt

)〉
dη

Dsx(x, s) = h̄
∫ 1

0

〈
w0

(∫
(ua − u0)dt

)〉
dη

Dss(x, s) = h̄
∫ 1

0

〈
w0

(∫
wadt

)〉
dη.

(3.34)

Since ua = u0 and wa = w0 for S � 1, it is clear from the definitions (3.34) that all
diffusivities vanish as S →∞, so that (3.33) naturally reduces to (3.13) in this limit. An
integral conservation equation, the counterpart of (3.10) for S ∼ 1, can be derived by
integrating (3.33) to give

∂

∂τ

{∫ 1

x

[
`

∫ 1

0

c0h̄ds

]
dx

}
= φc, (3.35)

where

φc = `

∫ 1

0

(∫ 1

0

uLdη

)
c0h̄ds− `

∫ 1

0

Dxx
∂c0
∂x

ds−
∫ 1

0

Dxs
∂c0
∂s

ds (3.36)

is the solute flux across section x.

4. Selected results for a model problem

The time-averaged transport equation for the solute takes different forms depending
on the value of the Schmidt number. For S ∼ ε−2 � 1 the solute concentration at
leading order c0(x, η, s, τ) is obtained from the reduced transport equation (3.9), involving
transverse diffusion across the width of the canal and convective transport, the latter
driven by the time-averaged Lagrangian velocity (uL, vL, wL). For S ∼ 1 the solute
concentration c0(x, s, τ) is found to be uniform across the width of the canal in the first
approximation as a result of the dominant effect of transverse diffusion. As seen in the
associated transport equation (3.33), convective transport involves the width-averaged
axial and azimuthal components of the Lagrangian velocity, while the apparent diffusion
terms resulting from the interactions of the small fluctuations of the concentration with
the pulsatile flow are expressed in terms of Taylor diffusivities.

The relevant transport coefficients, i.e. uL, vL, and wL in (3.9) and
∫ 1

0
uLdη,

∫ 1

0
wLdη,

Dxx, Dxs, Dsx, and Dss in (3.33), can be evaluated using the expressions given in
appendix A for the Eulerian velocity components and wall deformation, along with the
expressions given in (3.34) for the Taylor diffusivities. The results depend on two order-
unity parameters, namely, the Womersley number α defined in (A 6), which measures
the relative importance of viscous forces, and the dimensionless wave number defined
in (A 2), which enters in the elastic equation (A 1) relating the pressure with the canal
deformation, with the Taylor diffusivities (3.34) having an additional dependence on
the Schmidt number S, entering in (3.28) through the function F given in (3.26). The
geometry of the canal is defined by two nondimensional functions of order unity, namely,
the inner perimeter `(x) and unperturbed canal width h̄(x, s). Additionally, a compliance
function γ(x, s) ∼ 1 is introduced for generality to describe the spatial variation of the
elastic properties of the outer dura membrane.

Although the formulation given above can be used to describe transport in
anatomically-correct spinal-canal geometries through introduction of appropriately
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Figure 2. A schematic view of the model geometry used in the numerical evaluations (left
figure) and the associated distributions of Lagrangian-velocity components at different sections
x for β = 0.5, α = 3, k = 0.5 (right-hand-side panels).

selected functions `(x), h̄(x, s), and γ(x, s), to illustrate the most prominent features
of the drug-dispersion process we shall use in the following computations the simplified
model geometry employed in Sánchez et al. (2018) to evaluate the Eulerian velocity.
Following our previous work, the SAS is modeled as an annular canal with uniform elastic
properties (i.e. γ = 1) bounded between two eccentric parallel circular cylinders whose
radii differ by a small amount hc and their axes are displaced by βhc with 0 6 β < 1,
so that ` = 1 and h̄ = 1 − β cos(2πs). The resulting canal geometry is schematically
represented on the left side of figure 2. We begin by evaluating time-averaged Lagrangian
velocities and Taylor diffusivities for different values of α, k, and β. The results are then
used in computations of the temporal evolution of solute distributions from a prescribed
initial condition. The quantitative results given below will serve to assess the relative
importance of the different transport mechanisms.

4.1. Time-averaged Lagrangian velocity

The expressions given in (2.26)–(2.28) together with the leading-order Eulerian velocity
components u0, v0, w0, wall deformation h′0, and steady-streaming components 〈u1〉, 〈v1〉,
and 〈w1〉 can be used to evaluate (uL, vL, wL). The panels on the right side of figure 2
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Figure 3. The left-hand side maps show the distributions of the width-averaged axial and
azimuthal Lagrangian velocity components for β = 0.5, α = 3, and k = 0.5, while the

right-hand side plots show the parametric variation of their root-mean-square values ||
∫ 1

0
uLdη||

and ||
∫ 1

0
wLdη||, with the dots indicating the values corresponding to the distributions shown

on the left.

show the resulting distributions at different sections x for β = 0.5, α = 3, and k = 0.5,
with the width of the annular cross-section arbitrarily enlarged to facilitate visualization.
As expected, the distributions of uL and vL are symmetric with respect to the symmetry
plane of the canal, whereas wL is antisymmetric.

For the geometry investigated, steady streaming is the dominant contribution to the
Lagrangian velocity, while the contribution of Stokes drift is comparatively smaller. This
is apparent when comparing the distributions of axial and azimuthal Lagrangian velocity
uL and wL shown in figure 2 with the distributions of 〈u1〉 and 〈w1〉, given for these
same conditions in figures 5 and 6 of Sánchez et al. (2018). The comparison reveals that
the Lagrangian velocity and the steady-streaming velocity display the same qualitative
characteristics. In particular, the axial motion is directed towards the cranial vault (i.e.
negative values of uL and 〈u1〉) in the narrow part of the canal and towards the lumbar
region in the wide part, with the azimuthal velocity being directed from the narrowest
section s = 0 to the widest section s = 0.5 to accommodate the deceleration of the flow
as the closed end is approached.

The width-averaged axial and azimuthal components of the Lagrangian velocity∫ 1

0
uLdη and

∫ 1

0
wLdη, which determine the convective transport of solutes with values

of the Schmidt number S � ε−2, as seen in the reduced transport equations (3.13)
(for 1 � S � ε−2) and (3.33) (for S ∼ 1), are plotted on the left-hand side panels
of figure 3 for the same conditions as figure 2. Parametric dependences on the three
controlling parameters β, α, and k, are investigated on the right-hand-side plots by

showing the variation of the root-mean-square values ||
∫ 1

0
uLdη|| and ||

∫ 1

0
wLdη|| (where

||·|| =
[∫ 1

0

∫ 1

0
(·)2dsdx

]1/2
) with each individual parameter, while keeping the other two

at the fixed constant values of figure 2.
The results in figure 3 indicate that for axisymmetric configurations, corresponding in

the model to the case β = 0 of concentric cylinders, the azimuthal motion is absent, and



Solute transport in the spinal canal 21

the resulting width-averaged axial velocity is strictly zero, as follows from the continuity
equation (2.30). This feature of the solution underscores the important role of eccentricity,
in that if the spinal canal had perfect axial symmetry, convective transport would be

drastically limited. Nonzero values of
∫ 1

0
uLdη and

∫ 1

0
wLdη are found for any β > 0, with

the motion being most pronounced for an intermediate value (i.e. β ' 0.4 for α = 3, and
k = 0.5). The existence of a maximum in the curves is partly attributable to the fact that,
for increasing values of β, the canal becomes narrower near s = 0, promoting the action
of viscous forces there. The resulting local flow slows down, diminishing the contribution

of this region to the net values of ||
∫ 1

0
uLdη|| and ||

∫ 1

0
wLdη||, so that the variation of

these two quantities with increasing β shows a decline after reaching a maximum, as
observed in figure 3.

The effect of viscous forces is measured in the problem through the Womersley number
α = hc/(ν/ω)1/2. When this effect is dominant for α � 1, the resulting pulsating flow
is very slow and the associated Lagrangian motion, involving time-averaged products of
fluctuations, becomes negligibly slow. In the opposite limit α � 1 effects of viscosity
are confined to near-wall Stokes layers. The numerical evaluations reveal a persistent
Lagrangian motion with associated root-mean-square velocities that approach finite
values for α � 1. It is of interest that, for intermediate values α ∼ 1, pertaining to

spinal-canal flow conditions, the curves of ||
∫ 1

0
uLdη|| and ||

∫ 1

0
wLdη|| in figure 3 display

a non-monotonic variation, with maxima reached at α ' 4 followed by local minima
around α ' 10.

The last column in figure 3 investigates the influence of the wave number k, which
measures the ratio of the canal length to the characteristic elastic-wave length, a pa-
rameter of order unity in the spinal canal, as shown by MRI measurements (Kalata
et al. 2009). This parameter determines the amplitude of the tidal volume flux for
the leading-order oscillatory flow, as shown in Sánchez et al. (2018). The numerical

computations reveal finite values of ||
∫ 1

0
uLdη|| and ||

∫ 1

0
wLdη|| for k � 1, corresponding

to canal deformations that are everywhere in phase with the cranial pressure variation.
The Lagrangian velocities increase initially with increasing k, but eventually decrease
to vanish in the short-wave-length limit k � 1, associated with vanishing tidal volume
fluxes. The most vigorous Lagrangian motion is found around k ' 1, associated with the
peak in the amplitude of the tidal volume flux (see figure 2 in Sánchez et al. (2018)).

The complicated parametric dependences of the Lagrangian motion revealed by the
strong non-monotonic dependences shown in figure 3 emphasize the need for detailed
descriptions of the geometry and elastic properties in future quantitative analyses of
CSF flow in the spinal canal.

4.2. Taylor diffusivities in the spinal canal

The diffusion terms in (3.33) describe the dispersion resulting from the interactions of
the short-time fluctuations of concentration and velocity, when the former are influenced
by transverse diffusion. The relative contribution of this additional transport mechanism
to the dispersion of the solute along the canal depends on the values of the Taylor
diffusivities (3.34), to be compared with the width-averaged Lagrangian velocities, which
determine in (3.33) the convective transport. For the model geometry considered here,

the values of
∫ 1

0
uLdη and

∫ 1

0
wLdη are shown on the left panels of figure 3 for β = 0.5,

α = 3, and k = 0.5. Corresponding distributions of Dxx, Dxs, Dsx, and Dss are given in
figure 4 for S = 1.

A first observation from the numerical results is that, even for this case of very diffusive
solutes with S = 1, the magnitude of the Taylor diffusivities is relatively small, compared
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Figure 4. The distributions of the Taylor diffusivities for β = 0.5, α = 3, k = 0.5, and S = 1.

with those of the width-averaged axial and azimuthal Lagrangian velocities. The axial
diffusivity exhibits the largest values Dxx ∼ 0.1, while the other three diffusivities remain
everywhere smaller than 0.01, with Dss showing the smallest values.

The spatial distributions of axial diffusivity Dxx and azimuthal diffusivity Dss, sym-
metric about s = 0.5, show a strong correlation with the distributions of the amplitudes
of the oscillatory velocity components |u0| and |w0|. Thus, the distribution of Dxx is
concentrated near the entrance in the widest part of of the canal (s = 0.5), where the
axial motion is more pronounced. Similarly, the distribution ofDss shows two longitudinal
bands centered about s ' 0.25 and s ' 0.75, corresponding to the peaks of the azimuthal-
velocity amplitude |w0|. Outside these distinct regions the diffusivities are found to be
negligibly small, that being a result of the quadratic dependence of Dxx and Dss on
the fluctuations. The diffusivities Dxs and Dsx are antisymmetric about s = 0.5, and
therefore show positive and negative values, with spatial distributions that tend to be
more uniform than those of Dxx and Dss.

Parametric dependences of the Taylor diffusivities are investigated in figure 5 by
plotting their root-mean-square values. The plots are generated by varying one of the four
controlling parameters β, α, k, and S at a time, while keeping the other three constant
and equal to the values employed in figure 4. Due to the absence of azimuthal motion
in axisymmetric canals, for β = 0 the only nonzero diffusivity is Dxx. All diffusivities
increase for increasing values of the eccentricity and reach their maximum values at β = 1.
By way of contrast, the curves showing the variations with α, k, and S are non-monotonic,
with diffusivities peaking at intermediate values of these controlling parameters. The
computations with varying Schmidt number were extended up to S = 1000, a value
representative of the drugs used in intrathecal-delivery procedures. As can be seen, the
resulting diffusivities are negligibly small for S > 100, indicating that shear-enhanced
dispersion is ineffective under conditions of interest for therapeutical applications, for
which the mean Lagrangian motion becomes the dominant transport mechanism. This
is to be further assessed in the time-dependent computations given below.
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Figure 5. The parametric variation of the root-mean-square values of the Taylor diffusivities,
with the dots indicating the values corresponding to the distributions shown in figure 4.

4.3. Numerical computations of solute dispersion

Once the time-averaged Lagrangian velocities and Taylor diffusivities are evaluated for
given values of the governing parameters and geometry, the computation of the solute
dispersion reduces to the integration of a linear transport equation, given in (3.9) for
σ = ε2S ∼ 1 and in (3.33) for S ∼ 1, with the simpler equation (3.13) applying in the
intermediate case 1 � S � ε−2. In these equations convective transport is driven by
the time-averaged Lagrangian velocity, given by the sum of the steady-streaming and
Stokes-drift components. Taylor dispersion emerges in (3.33) as an additional transport
mechanism for solutes with S ∼ 1. Although this mechanism in principle can be

important, in view of the relative magnitude of the width-averaged velocities
∫ 1

0
uLdη and∫ 1

0
wLdη, shown in figure 3, and the much smaller Taylor diffusivities, shown in figures 4

and 5, it can be anticipated that, even for S ∼ 1, convection largely dominates the
transport of the solute under most conditions, as verified in the integrations below. The
only exception is that of perfectly axisymmetric canals (i.e. with h̄ = h̄(x) and γ = γ(x)),
for which the azimuthal motion is absent, with the result that the width-averaged axial
velocity along the closed-end canal is identically zero, as follows from (2.30), so that (3.33)
reduces to

h̄
∂c0
∂τ

=
1

`

∂

∂x

(
`Dxx

∂c0
∂x

)
. (4.1)

This case, of some academic interest, is analyzed separately in appendix B. The results
are, however, of limited practical relevance for solute transport in the spinal canal, be-
cause of the lack of axial symmetry therein. For that reason, the remaining computations
shown here consider instead an eccentric canal, a geometry that is more relevant in
connection with ITDD applications.

The results given in figures 6 and 7 correspond to an eccentricity β = 0.5, a Womersley
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Figure 6. Distributions of width-averaged concentration
∫ 1

0
c0dη at different instants of time

as obtained numerically for β = 0.5, α = 3, and k = 0.5 by integration of (3.9) with σ = 10 (a)
and σ = 1 (b), by integration of (3.13) (c) and by integration of (3.33) with S = 1 (d). The

axial distribution of the average concentration at each canal section
∫ 1

0
h̄
∫ 1

0
c0dηds is indicated

along the right side of each panel.

number α = 3, and a nondimensional wave number k = 0.5. The corresponding La-
grangian velocity components and associated width-averaged values displayed in figures 2
and 3, whereas the Taylor diffusivities for S = 1 are shown in figure 4. The numerical
computations, employing a second-order central finite-difference approximation for the
spatial discretizations and a Runge-Kutta 4/5 method for the time advancement, consider
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a solute delivered at τ = 0 in a localized region centered about x = 0.75. The resulting

distributions of width-averaged concentration
∫ 1

0
c0dη as a function of x and s at different

instants of time are shown in figure 6 for different solute diffusivities. For improved clarity,
the azimuthal coordinate in the plots is extended beyond the range 0 < s < 1, with values

of
∫ 1

0
c0dη at s < 0 corresponding to those at 1 + s and values at s > 1 corresponding

to those at s− 1. The axial distribution of the averaged concentration at each section x,

computed according to
∫ 1

0
(h̄
∫ 1

0
c0dη)ds, is indicated on the side of each individual panel.

Results of integrations of (3.9) for σ = ε2S = 10 and σ = ε2S = 1 are shown in
figures 6(a) and 6(b), respectively, while figure 6(c) shows results for 1 � S � ε−2,
obtained from (3.13), and figure 6(d) shows results for S = 1, computed with use of (3.33).
With the characteristic value of ε being of order ε ∼ 1/50 and the Schmidt number of
drugs typically used in ITDD procedures being or order S ∼ 1000, it appears that the
conditions investigated in figure 6(b) are directly relevant to drug dispersion in the spinal
canal, while the results for σ = ε2S = 10, corresponding to Schmidt numbers of order
S ∼ 25, 000, are representative of transport of radioactive or fluorescence tracers, used
in clinical studies. On the other hand, the results for S = 1, corresponding to mixing
of two gases, are included to illustrate effects of Taylor dispersion and the intermediate
case 1� S � ε−2 is included to test the predictive capability of the simplified transport
equation (3.13).

For all of the computations shown in figure 6 the initial concentration is given by the
Gaussian distribution ci = exp[−162(x − 0.75)2]. The integration of (3.9) employs the
boundary conditions ∂c0/∂η = 0 at η = 0, 1, corresponding to impermeable bounding sur-
faces. Additionally, a boundary condition must be specified for c0 at the open boundary
x = 0. Since convection is the only axial transport mechanism in (3.9), the appropriate
condition is determined by the sign of uL at x = 0, indicated by blue (upward) and red
(downward) colors in the upper left circular plot of figure 2. In regions of upward flow
(negative values of uL) the concentration is given by that within the canal at earlier
times, whereas in regions of downward flow (positive values of uL) the concentration
is that found outside the canal, assumed to be c0 = 0 in our integrations. The same
boundary conditions are used at the canal entrance x = 0 when integrating (3.13). On
the other hand, the presence of Taylor dispersion in (3.33), involving second-order spatial
derivatives, necessitates introduction of suitable modified boundary conditions at the
entrance x = 0, but not at the closed end x = 1, because there the diffusion rate vanishes
as a result of the zero values of Dxx, Dxs, and Dsx, which are apparent in the plots of
figure 4. As discussed by Hydon & Pedley (1993) in connection with axial dispersion in
a channel with oscillating walls, the determination of the entry conditions requires in
principle consideration of the flow outside the canal, which would be dependent upon
the specific geometry found there. To avoid this complicating aspect of the problem, in
the integrations reported in figure 6(d) we chose a simplified computational strategy,
in which the axial diffusive transport across the boundary at x = 0 is eliminated, and
in which the axial convective transport is treated as described before, i.e. in regions of
inflow the concentration is set to zero, whereas in regions of outflow it is determined by
its value within the canal at earlier times.

A notable finding of the numerical integrations in figure 6 is the striking qualitative
agreement of the different transport patterns, that being a result of the dominant
effect of convection driven by the Lagrangian motion, with the axial velocity uL largely
determining the evolution of the solute in all cases. As expected from the distributions of
uL shown in figure 3, regardless of the Schmidt number the solute is transported rapidly
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towards the canal entrance along the preferential path s = 0 (or s = 1), corresponding
to the narrow part of the canal where we find large negative values of uL.

The extent of the effects of Taylor dispersion can be assessed by comparing the
snapshots in figure 6(d), corresponding to S = 1, with the dispersion-free results shown
in figure 6(c) for the same rescaled times. As can be seen, even for this large-diffusivity
case S = 1, the differences between both sets of computations are not significant, and are
mainly observed in the solute distribution in the low-velocity region near the closed end,
where the effect of Taylor dispersion tends to spread the solute concentration. Additional
results of integrations of (3.33) for S = 50, not shown in figure 6, gave solute distributions
that are virtually indistinguishable from those shown in figure 6(c). These findings,
consistent with the quantitative results in figure 5, indicate that Taylor dispersion,
which is known to play a central role in axial dispersion in axisymmetric or planar
configurations, contributes negligibly to the transport of drugs delivered intrathecally in
the spinal canal.

As previously discussed, for S � ε−2 the solute concentration is uniform across the
width of the canal in the first approximation, while in the opposite case S � ε−2

molecular diffusion is entirely negligible, so that each fluid particle conserves its initial
concentration. An intermediate behavior is found in the distinguished limit S ∼ ε−2,
the case considered in figures 6(a) and 6(b), where transverse molecular diffusion is
significant, although it is not able to uniformize completely the solute concentration. As
a result, the solute located initially near the bounding surfaces η = 0 and η = 1, where
the velocity is small, tends to remain at the initial location, an effect that is clearly visible
in the computations for σ = ε2S = 10 in figure 6(a). Away from the walls the solute is
convected by the flow, so that the resulting transport pattern in 6(a) and 6(b) is similar
to that found in 6(c).

To provide a more direct quantitative assessment of the effects of the Schmidt number
on solute dispersion, the value of the solute flux φc was computed at three different
sections x = (0, 0.25, 0.5) for the solute evolutions of figure 6 and also for additional
computations with S = 50 based on (3.33). The value of φc(x, τ) is evaluated from (3.11)
in the integrations for σ = ε2S = 10 and σ = ε2S = 1 and from (3.36) in the integrations
for S = 1 and S = 50, with the simpler expression

φc = `

∫ 1

0

(∫ 1

0

uLdη

)
c0h̄ds (4.2)

applying in the intermediate limit 1� S � ε−2. The results are represented in figure 7.

Since the solute migrates towards the canal entrance, the corresponding values of φc
are negative. The curves at different sections display the expected delay associated with
the distance from the injection location (x = 0.75). The differences in the temporal
variation of the solute flux between the extreme values of the Schmidt number ε2S = 10
and S = 1 can be attributed to their distinct convective transport. For the least diffusive
case (ε2S = 10) the concentration of each fluid particle remains almost constant, so
that particles located initially near the center of the canal η = 0.5, where the velocity
is higher, tend to move faster, whereas those near the bounding surfaces η = (0, 1)
move more slowly. By way of contrast, for S = 1 the concentration, uniform in η, is
convected with the width-averaged velocity, smaller than the peak velocity found near
the center. As a result, for ε2S = 10 the flux φc increases earlier than that for S = 1,
because of the rapid motion of the fluid particles near the center of the canal, but reaches
a peak value that is significantly lower, because near-wall fluid particles take a long
time to move from the initial location. The differences between the other three curves
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Figure 7. The variation withtime ofthesolute flux φc(τ) atthree differentsections
x=(0,0.25,0.5)forβ=0.5,α=3,and k=0.5.Thevalueofφc forS=1(thindot-dashed
curves)andS =50(thickdot-dashedcurves) wasevaluatedfrom(3.36), whereasthatfor
1 S ε2 (thicksolidcurves) wasevaluatedfrom(4.2)andthatforσ= ε2S=1(thick
dashedcurves)andσ=ε2S=10(thindashedcurves)wasevaluatedfrom(3.11).

(S=50,1 S ε2andσ=ε2S=1)aremuchsmaller,withassociatedpredictionsof
solutefluxdifferingtypicallybyabout10%.Thisquantitativeagreementsuggeststhat
thesimplifiedtransport model (3.13),involvingonlyconvectiondrivenbythewidth-
averagedLagrangianvelocities,canprovideasufficientlyaccuratedescriptionfor many
purposes.Additionalcomputationsinvolvingcanalswith morecomplicatedgeometries
wouldbeneededtoascertainthelevelofaccuracytobeexpectedinpredictivestudies
forITDDapplications.

5. Concludingremarks

Thispaperaddressesthetransportofasolutecarriedbythe CSFintheSASof
thespinalcanal.Theobjectiveistoimproveunderstandingofthetransportprocesses
governingthedispersionofdrugsadministeredbyITDD.Theanalysistakesadvantage
oftheexistenceoftwodifferenttimescales,namely,theperiodoftheCSFoscillatory
motion ∼ ω−1 (ashorttimescaleoftheorderof1second)andtheresidencetime
associatedwiththebulkflow∼ε−2ω−1(alongtimescaleoftheorderof30 minutes),
withthesmallparameterε∼1/50 1 measuringtheratioofthetidalvolumetothe
totalvolumeofCSFinthespinalcanal.Thetwo-timescaleanalysisrevealsthatthe
mechanismscontrollingthedispersionofthesoluteinthelongtimescale ε−2ω−1 are
aconsequenceofthenonlinearconvective/diffusiveinteractionsoccurringintheshort
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time scale ω−1, with different mechanisms arising depending on the magnitude of the
Schmidt number S.

To gain insight into the short-time diffusive/convective interactions, the analysis
considers in particular the distinguished limit S ∼ 1, which applies strictly to solute
diffusion in gases, not relevant for the present application. In this limit, the diffusion time
across the width of the canal is comparable to the period of the pulsating flow, with the
consequence that the interactions of the small short-time fluctuations of the concentration
with the oscillating velocity lead to Taylor dispersion, represented by apparent diffusion
terms in the resulting long-time transport equation (3.33). As can be seen in figure 5,
the magnitude of the effective diffusivities decreases rapidly with increasing values of S,
becoming vanishingly small for the characteristic values S ∼ 1000 of ITDD drugs, for
which Taylor dispersion is entirely negligible.

In the distinguished limit S ∼ ε−2, which represents the case of clinical interest,
the dispersion of the solute is determined by the reduced transport equation (3.9)
(or (3.12)). This involves the competition of molecular diffusion across the width of the
canal and convective transport driven by the time-averaged Lagrangian velocity (2.26)–
(2.28), obtained as the sum of the Eulerian steady-streaming velocity and the Stokes-
drift component associated with the nonuniform oscillating flow. The reduced transport
description can be further simplified by considering solutes with smaller Schmidt numbers
S � ε−2, for which the solute concentration is uniform across the width of the canal in
the first approximation. The results presented in figures 6 and 7 for a model geometry
suggest that this simplified description, given in (3.13), may provide sufficient accuracy
for many purposes.

The application of our formulation for patient-specific computations in a clinical
setting requires knowledge of the functions `(x), h̄(x, s), and γ(x, s) that describe the
geometry and elastic properties of the spinal canal. Current high-resolution anatomic
MRI techniques permit the 3D reconstruction of the spinal canal geometry. The procedure
involves the acquisition of a series of axial or sagittal images, which are posteriorly
segmented in a semi-automatic fashion to delimitate the boundaries of the spinal cord
and dura membrane (Tangen et al. 2017; Sass et al. 2017). From these, the spinal-
cord perimeter can be characterized as a function of the axial position, yielding—
upon normalization by a conveniently chosen characteristic value `c—the dimensionless
function `(x). Similarly, the canal width function h̄(x, s) can be constructed by computing
the spacing between the cord and the dura membrane as a function of the azimuthal and
axial position followed by normalization by an appropriately selected hc. The spatial
distribution of the canal compliance, characterized here through the function γ(x, s), has
been hypothesized (Marmarou et al. 1975; Shapiro et al. 1980) to be influenced by the
presence of fatty tissue and blood vessels in the epidural space, but precise measurements

are not available. Nevertheless, the axial variation of the average compliance
∫ 1

0
γ(x, s)ds,

which enters in the determination of the pressure distribution through (A 18), can be
indirectly inferred from patient-specific in-vivo measurements of the variation of the
stroke volume ∆V along the canal. These in-vivo measurements of the stroke volume
are facilitated by the recent advent of cardiac-gated phase contrast CINE MRI (see, e.g.
Tangen et al. 2017; Sass et al. 2017).

Although our analysis retains the essential transport mechanisms, there are various
effects that should be incorporated in future extensions of the model. For example, the
presence of the microanatomical features of the spinal canal (i.e. ligaments, nerve roots,
and trabeculae), not included in the slowly varying geometry assumed in the analysis,
could have a localized influence on the steady streaming flow and on the dispersion
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of the drug. In that regard, recent numerical analyses indicate that interactions of the
oscillating flow with nerve roots may lead to increased steady streaming, with the effect
being more prominent in the cervical region (Khani et al. 2018). Lattice Boltzmann
simulations of solute transport in an idealized concentric model of the spinal canal
(Stockman 2007) found that inclusion of the fine structure of the subarachnoid space
(nerves and trabeculae) enhances both the longitudinal and transverse drug dispersion,
with the enhancement factor reaching values on the order of 10 for solutes with S = 100.
Attention should also be given to buoyancy effects resulting from density differences
between the drug and the CSF, with the extent of the associated induced flow depending
on the position of the patient during infusion.

From the clinical point of view, it is worth mentioning that the model results pre-
sented above, involving the evolution of the solute from a prescribed initial distribution
ci(x, η, s), are representative of drug transport following a rapid injection of a bolus.
The initial condition clearly depends on the details of the injection procedure, typically
occurring in a time scale much shorter that ε−2ω−1 but much longer than ω−1, posing a
flow problem that should be investigated in future work. A different scenario emerges in
connection with chronic ITDD procedures, in which the drug is administered continuously
at a small rate using a small pump that is surgically placed under the skin of the abdomen,
delivering the medication into the intrathecal space through a tunneled catheter. Since
the resulting injection velocity is typically too small to affect the CSF flow in the canal,
the corresponding transport problem could be described on the basis of our long-time
transport equations supplemented with an appropriately modified boundary condition
for c0 accounting for the localized release of the drug. As revealed in in-vivo experiments
(Flack & Bernards 2010), the drug dispersion rate associated with intrathecal bolus
injection and slow intrathecal infusion can be substantially different, an aspect of the
problem that warrants future investigation.

It should also be pointed out that our analysis has been devoted to the convec-
tive/diffusive transport processes governing the dispersion of the drug but did not
consider pharmokinetic effects, i.e. drug decay due to enzymatic effects, tissue uptake,
and clearance by the blood, which are essential in ITDD applications. Extensions of the
analysis to account for these effects should be addressed in future work. Drug uptake
by the spinal nerve as well as through the dura membrane can be incorporated by
modeling the drug absorption rate at the tissue surfaces as a function of the local
solute concentration and the characteristics of the tissue. If the characteristic absorption
time is of the order of the residence time ε−2ω−1, a nonnegligible fraction of the solute
deposited in the lumbar region can be expected to be absorbed along the canal before
reaching the cranial cavity. This can be accounted for in our formulation by incorporating
modified boundary conditions on the inner and outer boundary surfaces. For instance,
if the absorption rate is assumed to be linearly proportional to the local concentration,
then the boundary conditions ∂c0/∂η = 0 at η = 0, 1 for equation (3.9), corresponding
to the relevant limit S ∼ ε−2, must be replaced with

1

α2σh̄

∂c0
∂η

= Bpc0 at η = 0 and
1

α2σh̄

∂c0
∂η

= −Bdc0 at η = 1, (5.1)

where the order-unity functions Bp(x, s) and Bd(x, s) measure the absorption rate on
the pia mater and dura membrane, respectively. Correspondingly, the reduced equa-
tion (3.13), describing solute transport in the limit 1 � S � ε−2, must be replaced
with

∂c0
∂τ

+

(∫ 1

0

uLdη

)
∂c0
∂x

+

(∫ 1

0

wLdη

)
1

`

∂c0
∂s

= −∆c0, (5.2)
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obtained by integrating (3.9) across the canal width with account taken of the modified
boundary conditions (5.1). According to (5.2), the solute evolution is determined by a
convection-reaction balance involving the width-averaged Lagrangian velocity compo-

nents
∫ 1

0
uLdη and

∫ 1

0
wLdη along with an effective Damköhler number ∆(x, s) = (Bp +

Bd)/h̄ measuring the absorption rate. The results of the model-geometry computations
discussed above suggest that the simplified description (5.2), which applies strictly in
the intermediate limit 1 � S � ε−2, might be sufficiently accurate in the clinically
relevant limit S ∼ ε−2. Future quantitative studies should assess its predictive capability
in connection with clinically-relevant ITDD processes.

In summary, our asymptotic analysis of solute transport has clarified the role of
steady streaming, Stokes drift, and Taylor dispersion in the transport of a drug injected
intrathecally in the spinal canal. An important outcome of the asymptotic analysis is a
reduced transport equation describing the dispersion of the solute. By focusing on the
evolution in the long-time scale ε−2ω−1 ∼ 30 min, relevant for solute dispersion along the
canal, the formulation reduces drastically the required computational time, circumventing
the need to describe the small concentration fluctuations occurring in the short time scale
ω−1 ∼ 1 sec. The results can be employed in future quantitative studies to investigate
differences in drug dispersion due to anatomical and physiological differences between
patients, enabling the patient-specific optimization of drug delivery to a target site from
injection by a lumbar puncture.
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de Estado de Investigación, Desarrollo e Innovación) through grants DPI2014-59292-C3-3
and DPI2017-88201-C3-2-R, co-financed by the European Regional Development Fund
(ERDF).

Appendix A. CSF motion in the spinal canal

This appendix summarizes the results of the analysis presented in Sánchez et al. (2018)
for the motion of CSF in the spinal canal. The flow is driven by the periodic pressure
fluctuation in the cranial cavity (∆p)cΠ(t), where (∆p)c is the amplitude and Π(t)
is a dimensionless periodic function. The resulting volume flux is accommodated by
the deformation of the dura membrane. For simplicity, the displacement of the dura
membrane is assumed to be linearly proportional to the local pressure fluctuation, with a
compliance factor γ′ whose characteristic value γ′c � hc/(∆p)c defines in (1.1) the small
parameter ε measuring the limited compliance of the spinal SAS as well as the small
oscillatory displacements of the CSF in the canal. In dimensionless form, the constitutive
equation becomes

h− h̄ = εγp ⇒ h′ = γ(Π + k2p′) (A 1)

involving the canal deformation h− h̄ = εh′ from its unperturbed distribution h̄(x, s) and
the streamwise pressure distribution p−Π(t) = k2p′(x, t), where p′(x, t) is the pressure
variation from its entrance value scaled with ρεω2L2 and

k =
Lω

[(hc/γ′c)/ρ]1/2
(A 2)

is a dimensionless wave number, with [(hc/γ
′
c)/ρ]1/2 representing the relevant elastic wave

speed. In our previous analysis (Sánchez et al. 2018) the compliance factor was defined as
the ratio of the section-averaged canal width to an effective elastic modulus, both being
functions of x only, so that the resulting canal deformations h′ were only a function of x
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and t. Here the description is generalized by allowing for a more general variation γ′/γ′c =
γ(x, s) ∼ 1, so that h′(x, s, t). Besides the velocity field, given by the three velocity
components u, v, and w, and the deformation h′ the solution determines the pressure
distribution. This is given in the first approximation by its streamwise distribution
p′(x, t) appearing in (A 1), with a supplementary function p̂(x, s, t) introduced in the
azimuthal component of the momentum equation (A 5) to describe the small relative
pressure variations occurring within each section, of order (`c/L)� 1.

In the slender-flow limit (2.1) , the continuity equation takes the form

1

`

∂

∂x
(`u) +

∂v

∂y
+

1

`

∂w

∂s
= 0, (A 3)

whereas the axial and azimuthal components of the momentum equation are

∂u

∂t
+ ε

[
1

`

∂

∂x
(`u2) +

∂

∂y
(uv) +

1

`

∂

∂s
(uw)

]
= −∂p

′

∂x
+

1

α2

∂2u

∂y2
(A 4)

∂w

∂t
+ ε

[
∂

∂x
(uw) + 2

uw

`

∂`

∂x
+

∂

∂y
(vw) +

1

`

∂

∂s
(w2)

]
= −1

`

∂p̂

∂s
+

1

α2

∂2w

∂y2
, (A 5)

where

α =
hc

(ν/ω)1/2
(A 6)

is the Womersley number, which takes values of order unity.
The pressure drop is negligible at the entrance of the canal, corresponding to the

condition p′ = 0 at x = 0. The velocity satisfies u = v = w = 0 at y = 0 and u =
v − ∂h′/∂t = w = 0 at y = h. Since the canal is symmetric the azimuthal velocity
component w vanishes at s = 0 and s = 1. The requirement that the axial volume

flux
∫ 1

0

(∫ h
0
udy

)
ds must vanish at the closed end x = 1 completes the set of boundary

conditions needed to determine the flow in the canal.
In the computation, it is convenient to introduce the normalized transverse coordinate

η = y/h, along with the regular expansions (2.3) and (2.4) for the velocity and deforma-
tion and similar expansion in powers of ε for the pressure functions p′ and p̂. The solution
for the first two terms in the expansions is given below for an intracranial pressure of the
form Π(t) = cos t. Additional terms in a Fourier expansion for Π(t) could be computed in
a similar manner, thereby enabling the extension of the analysis to general non-harmonic
periodic functions Π(t).

A.1. Leading-order solution

In the limit ε � 1 with α ∼ 1 and k ∼ 1, the problem defined by (A 1) and (A 3)–
(A 5) with the boundary conditions given below (A 5) can be solved in terms of regular
expansions of the form

u = u0 + εu1 + · · · , v = v0 + εv1 + · · · , w = w0 + εw1 + · · · ,
h′ = h′0 + εh′1 + · · · , p′ = p′0 + εp′1 + · · · , p̂ = p̂0 + εp̂1 + · · · . (A 7)

The linear problem encountered at leading order can be readily integrated to give

u0 = Re
(
ieitU

)
, v0 = Re

(
ieitV

)
, w0 = Re

(
ieitW

)
,

p′0 = Re
(
eitP ′

)
, p̂0 = Re

(
eitP̂

)
, h′0 = Re

(
eitH ′

)
, (A 8)

involving the complex functions U(x, η, s), V (x, η, s), W (x, η, s), P ′(x), P̂ (x, s), and
H ′(x, s), to be defined below.
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The axial and azimuthal velocity are given in terms of the components of the pressure
gradient by

U =
dP ′

dx
G and W =

1

`

∂P̂

∂s
G (A 9)

with

G(x, η, s) = 1−
cosh

[
αh̄
2

1+i√
2

(2η − 1)
]

cosh
[
αh̄
2

1+i√
2

] (A 10)

as follows at this order by integration of (A 4) and (A 5) with boundary conditions u0 =
w0 = 0 at η = (0, 1). The transverse velocity can be evaluated by integrating (A 3) with
the condition v0 = 0 at η = 0 to give

V = −1

`

∂

∂x

(
`
dP ′

dx
h̄

∫ η

0

Gdη

)
− 1

`

∂

∂s

(
1

`

∂P̂

∂s
h̄

∫ η

0

Gdη

)

+
∂h̄

∂x

dP ′

dx
ηG+

1

`

∂h̄

∂s

1

`

∂P̂

∂s
ηG (A 11)

where

h̄

∫ η

0

Gdη = h̄η − 1− i√
2α

sinh
[
αh̄
2

1+i√
2

(2η − 1)
]

+ sinh
[
αh̄
2

1+i√
2

]
cosh

[
αh̄
2

1+i√
2

] . (A 12)

Evaluating (A 11) at η = 1, where V = H ′ as corresponds to v0 = ∂h′0/∂t, gives

H ′ +
1

`

∂

∂x

(
`
dP ′

dx
q(x, s)

)
+

1

`

∂

∂s

[
1

`

∂P̂

∂s
q(x, s)

]
= 0, (A 13)

with

q(x, s) = h̄

∫ 1

0

Gdη = h̄−
√

2(1− i)

α
tanh

(
αh̄

2

1 + i√
2

)
(A 14)

and

H ′ = γ(1 + k2P ′), (A 15)

the latter stemming from (A 1). Note that (A 13) corresponds to the leading-order form
of the continuity equation

∂h′

∂t
+

1

`

∂

∂x

(
`

∫ h

0

udy

)
+

1

`

∂

∂s

(∫ h

0

wdy

)
= 0, (A 16)

obtained by integrating (A 3) across the canal with boundary conditions v = 0 at y = 0
and v = ∂h′/∂t at y = h. Integrating (A 13) around the canal section with ∂P̂ /∂s = 0
at s = 0, consistent with the symmetry condition w0 = 0 at s = 0, yields

q

`2
∂P̂

∂s
+

1

`

∂

∂x

[
`

∫ s

0

qds̃
dP ′

dx

]
+

(∫ s

0

γds̃

)
(k2P ′ + 1) = 0. (A 17)

Evaluating the last equation at s = 1, where ∂P̂ /∂s = 0, finally yields the problem

1

`

d

dx

[
`Q

dP ′

dx

]
+

(∫ 1

0

γds

)
(k2P ′ + 1) = 0;

{
P ′ = 0 at x = 0
dP ′

dx = 0 at x = 1
, (A 18)
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involving the average section compliance
∫ 1

0
γds and the volume-flux function

Q(x) =

∫ 1

0

qds =

∫ 1

0

[
h̄−
√

2(1− i)

α
tanh

(
αh̄

2

1 + i√
2

)]
ds. (A 19)

For given values of γ(x, s), h̄(x, s), and `(x) the integration of (A 18) determines P ′(x),
which can be used to evaluate U and H ′ with use made of (A 9) and (A 13), while
the associated azimuthal pressure gradient ∂P̂ /∂s, determined from (A 17), is needed
to evaluate the functions W and V from (A 9) and (A 11), thereby completing the
description of the harmonic solution (A 8). The solution simplifies when the average
section compliance and the shape of the canal section are independent of x, so that∫ 1

0
γds = 1, ` = 1, and Q = constant. In that case, integration of (A 18) yields

P ′ =
1

k2

{
cos[k(1− x)/

√
Q]

cos(k/
√
Q)

− 1

}
. (A 20)

A.2. Steady streaming

Because of nonlinear interactions, associated with the convective terms and with the
temporal and spatial variations of the canal width, the first-order corrections to the flow
contain a steady component in addition to the oscillatory component. The computation
of this steady-streaming flow begins by collecting terms of order ε in (A 4) and (A 5).

Taking the time average 〈·〉 = 1
2π

∫ 2π

0
·dt of the resulting equations yields

Fx = −∂〈p
′
1〉

∂x
+

1

h̄2α2

∂2〈u1〉
∂η2

(A 21)

Fs = −1

`

∂〈p̂1〉
∂s

+
1

h̄2α2

∂2〈w1〉
∂η2

, (A 22)

where

Fx =
1

`

∂

∂x
(`〈u2

0〉) +
1

h̄
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∂η
〈u0v0〉+

1

`

∂
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〈u0w0〉

− η
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∂η
〈∂h

′
0
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∂h̄
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η
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〈u2
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1
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η

h̄

∂

∂η
〈u0w0〉+

2
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and

Fs =
∂

∂x
〈u0w0〉+ 2

〈u0w0〉
`

∂`

∂x
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1

h̄
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〈v0w0〉+

1
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1
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η

h̄

∂

∂η
〈w2

0〉+
2

h̄3α2

∂2

∂η2
〈h′0w0〉 (A 24)

can be evaluated in terms of the leading-order solution. The computation of the time
averages is facilitated by use of the identities 〈Re(ieitA) Re(ieitB)〉 = Re(AB∗)/2 and
〈Re(eitA) Re(ieitB)〉 = Im(AB∗)/2, which apply to any generic time-independent com-
plex functions A and B, with the asterisk ∗ denoting complex conjugates.

Integrating (A 21) and (A 22) subject to 〈u1〉 = 〈w1〉 = 0 at η = 0, 1 yields

〈u1〉
h̄2α2

= −d〈p′1〉
dx

(1− η)η

2
+ η

∫ η

0

Fxdη̄ −
∫ η

0

Fxη̄dη̄ − η
∫ 1

0

Fx(1− η)dη (A 25)

and

〈w1〉
h̄2α2

= −1

`

∂〈p̂1〉
∂s

(1− η)η

2
+ η

∫ η

0

Fsdη̄ −
∫ η

0

Fsη̄dη̄ − η
∫ 1

0

Fs(1− η)dη (A 26)
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in terms of the unknown axial and azimuthal pressure gradients d〈p′1〉/dx and ∂〈p̂1〉/∂s.
Our previous paper (Sánchez et al. 2018) did not explicitly considered the transverse
steady-streaming velocity 〈v1〉, which enters in the transport description of the solute
through the Lagrangian velocity component (2.27). This important quantity can be
obtained by considering terms of order ε in the time-averaged continuity equation,
yielding

〈v1〉 = −1

`

∂

∂x

[
`

∫ η

0

(
h̄〈u1〉+ 〈h′0u0〉
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]
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+ η

1

`

∂h̄
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〈w1〉+ η

〈
w0

1

`

∂h′0
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〉
. (A 27)

The axial and azimuthal steady-streaming components are related by

∂

∂x

[
`

(
h̄

∫ 1

0

〈u1〉dη +

∫ 1

0

〈h′0u0〉dη
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+
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(
h̄

∫ 1

0

〈w1〉dη +

∫ 1

0

〈h′0w0〉dη
)

= 0 (A 28)

obtained by taking the time average of (A 16). Integrating this last equation in the
azimuthal direction gives

h̄

∫ 1

0

〈w1〉dη +

∫ 1

0

〈h′0w0〉dη = − ∂

∂x

[
`

∫ s

0

(
h̄

∫ 1

0

〈u1〉dη +

∫ 1

0

〈h′0u0〉dη
)

ds

]
, (A 29)

which can be used together with (A 25) and (A 26) to determine ∂〈p̂1〉/∂s as a function
of d〈p′1〉/dx. Evaluating (A 29) at s = 1 and using the condition that the canal is closed
at x = 1, so that the time-averaged value of the axial volume flux has to be necessarily
zero, leads to ∫ 1

0

h̄

(∫ 1

0

〈u1〉dη
)

ds+

∫ 1

0

∫ 1

0

〈h′0u0〉dηds = 0, (A 30)

which can be used, together with (A 25), to compute the average streamwise pressure
gradient d〈p′1〉/dx, thereby completing the determination of the steady-streaming flow.

Appendix B. Solute transport in concentric annular canals.

As discussed in the main text, axisymmetric annular canals constitute a singular
configuration of academic interest, although its anticipated relevance in connection with
transport in the spinal canal is limited. A distinctive characteristic of axisymmetric
geometries is that, because of the absence of azimuthal motion, the width-averaged axial

velocity
∫ 1

0
uLdη is identically zero, so that solute transport for S ∼ 1 depends exclusively

on Taylor dispersion, as described by (4.1).
To investigate this case in more detail, we consider a concentric annular canal of

uniform elastic properties (i.e. ` = 1, h̄ = 1, and γ = 1) with an initial solute
concentration

ci(x) = exp[−162(x− 0.75)2]. (B 1)

A detailed description of the temporal evolution requires integration of the full transport
equation (3.1) over multiple cycles in the short time scale t for a sufficiently small value
of ε. For the concentric canal, the equation takes the simplified form

∂c

∂t
− ε∂h

′

∂t

η

h

∂c

∂η
+ εu

(
∂c

∂x
− ∂h

∂x

η

h

∂c

∂η

)
+ ε

v

h

∂c

∂η
=

1

α2Sh2

∂2c

∂η2
. (B 2)

The instantaneous velocity and canal deformation were evaluated from the results of
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appendix A from the approximate expressions u = u0 + ε〈u1〉, v = v0 + ε〈v1〉, h − 1 =
εh′ = εh′0. Besides the nonpermeability boundary conditions ∂c/∂η = 0 at η = 0, 1, the
integration of (B 2) must specify a boundary condition at x = 0. To handle the oscillatory
nature of the axial flow at that boundary, the computational domain was artificially
extended in the upward direction by an absorbing buffer region between x = −0.1 and
x = 0, in which the values of the transport coefficients in equation (B 2) were set equal to
those at x = 0. An absorption term −Bc with B = max(0,−{1− tanh[20(x+ 0.05)]}u)
is added the right-hand-side of the transport equation (B 2) to effectively absorb the
solute concentration that enters the buffer region during the upward-moving part of
the oscillation cycle. The numerical integrations of (B 2) with the additional absorption
term were performed using a third order implicit backward difference scheme for time
derivatives and a fourth-order centered finite difference discretization for the spatial
derivatives.

Results of integrations of (B 2) are to be compared with those of the reduced evolution
equation

∂c0
∂τ

=
∂

∂x

(
Dxx

∂c0
∂x

)
(B 3)

which follows from (4.1) when h̄ = ` = 1. A boundary value c0 = 0 at x = 0 was used in
the integrations, with no boundary conditions needed at the canal end x = 1, since Dxx

vanishes there.

Instantaneous concentration maps c(x, η, t) obtained from (B 2) for S = 1 and ε = 0.02
are shown in figure 8(a). In the integrations, the velocity and canal deformation are
evaluated with α = 6 and k = 1. As indicated in the top right corner, the times selected
t−π/2 = 2π(125, 250, 375, 500, 626) incorporate a π/2 shift, so that the specific snapshots
shown in the figure represent intermediate instants between peaks of the fluctuating

cycle. The results are used to compute the width-averaged concentration
∫ 1

0
cdη, whose

axial distribution is shown as a solid curve on the right side of each plot. The results
are compared with the profiles of c0(x, τ) at corresponding times τ = ε2t obtained by
integrating (B 3), with the value of Dxx evaluated for α = 6, k = 1, and S = 1. As can be
seen, the accuracy of the predictions provided by the reduced equation (B 3), represented
by dashed curves, is excellent in all cases.

The time-averaged variable c0(x, τ) does not describe the short-time fluctuations of the
concentration that are driven by the oscillatory flow. These can be significant initially
when the solute is injected in a small localized region, that being the case considered
in (B 1). The extent of the resulting fluctuations, larger for larger values of ε, is illustrated

by plotting in figure 8(b) the variation of
∫ 1

0
cdη with t at x = 0.65. The solution is

compared with the corresponding variation of c0 with τ = ε2t at that same location,
obtained by integrating (B 3). The comparisons indicate that the time-averaged value
c0 describes adequately the evolution of the envelope of the fluctuating solution, with

decreasing errors that reduce to values of order |
∫ 1

0
cdη − c0| ∼ ε for long times, as is

consistent with the order of the approximation used here.

The model equation (B 3), describing the long-time evolution of the solute in the
distinguished limit S ∼ 1, involves a concentration c0(x, τ) that is uniform across the
canal. Correspondingly, convective transport is absent in this limit, because the axial

velocity uL has a zero width-averaged value
∫ 1

0
uLdη = 0. The nonuniformities of the

concentration across the canal become more pronounced for increasing values of S,
thereby promoting convective transport by mean Lagrangian motion. This is clearly
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Figure 8. (a) The evolution of the solute concentration in a concentric canal (β = 0.0) obtained
for α = 6, k = 1, and S = 1: (a) Instantaneous spatial distributions at six instants of time.
Each panel shows on the left the concentration c(x, η, t) obtained from integration of (B 2) for

ε = 0.02, with the corresponding width-averaged value
∫ 1

0
c dη (red solid line) compared on

the right with the value of c0(x, τ) obtained from the simplified transport equation (B 3) (thick

dashed line). (b) Comparison of the temporal evolution of the width-averaged value
∫ 1

0
c dη

at x = 0.65 obtained from (B 2) for ε = 0.02 (pink) and ε = 0.1 (purple) with the value of
c0(x = 0.65, τ) (black) determined from (B 3).

seen in the reduced transport equation that arises in the distinguished limit S ∼ ε−2,

∂c0
∂τ

+ uL

∂c0
∂x

+ vL

∂c0
∂η

=
1

α2ε2S

∂2c0
∂η2

, (B 4)

obtained by writing (3.9) for a concentric canal.
The reduced transport equations (B 3) (for S ∼ 1) and (B 4) (for S ∼ ε−2) involve

different transport mechanisms, namely, Taylor dispersion for S ∼ 1 and convection
driven by steady streaming and Stokes drift for S ∼ ε−2. Since the Taylor diffusivity
Dxx vanishes for S � 1 whereas convection becomes ineffective as the concentration
becomes uniform across the canal for S � ε−2, neither transport mechanism can operate
efficiently for values of S in the intermediate range 1� S � ε−2. This reasoning seems
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to suggest that in concentric canals the dispersion rate must exhibit a nonmonotonic
behavior as the Schmidt number increases from that of gases S ∼ 1 to that of liquids
S ∼ ε−2, with a minimum in the dispersion rate reached for an intermediate value of S
in the range 1� S � ε−2.

This paradoxical behavior is illustrated in figure 9(a) by representing instantaneous
distributions of c(x, η, t) obtained after 125 integration cycles (i.e. at t/(2π) = 125) by
integration of (B 2) for ε = 0.02 and different values of S. In agreement with the reduced
transport equation (B 3), for Schmidt numbers S ∼ 1 the plots in figure 9(a) reveal
that dispersion is seen to proceed as a nearly one-dimensional diffusion process, with the
diffusion rate decreasing for increasing values of S as a result of the decreasing Taylor
diffusivity Dxx. On the other hand, convection is seen to dominate the solute transport
in the limit S ∼ ε−2, as is apparent for S = 2500, where the axial velocity, positive in
the central region and negative near the walls, is responsible for the resulting spreading
pattern. Neither of these mechanisms is effective at intermediate values of S, where the
dispersion rate is seen to be much more limited.

The differences in dispersion rate observed in figure 9(a) can be quantified by evaluating

∆c =
∫ 1

0

∫ 1

0
(c − ci)2 dη dx/

∫ 1

0

∫ 1

0
(ci)

2 dη dx as a global measure of the dispersion. The
value of ∆c is normalized to be ∆c = 0 at t = 0 and ∆c = 1 as the solute abandons the
canal for t→∞. The evolution of ∆c(t) obtained from the results of integrations of the
transport equation (B 2) is shown in figure 9(b). As can be seen, since ∆c is subject to
short-time fluctuations, when represented over many cycles the resulting curves appear
as bands that evolve slowly in the long time scale ε2t.

The results for increasing S appear to be in agreement with the previous discussion of
the two different transport mechanisms. Thus the slope of the resulting bands, measuring
the rate of dispersion, is seen to decrease initially as the Schmidt number increases from
S = 1, a result that can be attributed to the diminished effect of Taylor dispersion.
The slope is very small in the intermediate cases S = 50 and S = 250, but increases
substantially for S = 1000 and S = 2500, as convection driven by the mean Lagrangian
motion becomes effective.

The plots clearly support the existence of an intermediate range of values of S where
neither Taylor dispersion nor Lagrangian convection are very effective, a distinctive
feature of solute transport in perfectly axisymmetric canals. As shown in figures 6
and 7, corresponding to a canal defined between two eccentric cylinders, in the presence
of asymmetries convection driven by the time-averaged Lagrangian motion remains
the dominant transport mechanism regardless of the Schmidt number. An important
conclusions of those results is that, with the exception of axisymmetric canals, the
simplified equation (3.13) provides a reasonably accurate model for the description of
solute transport.
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