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I. Introduction

When comparing some phenomena between two populations, the di§erent populations

composition, i.e. the distribution of characteristics causally related to the phenomenon,

must be taken into account in order to avoid misleading conclusions. Standardization

techniques are commonly used for adjusting this confounding e§ect and providing mean-

ingful comparisons. These techniques, introduced by Neison (1844), known as direct

standardization, assume a particular population as standard and recomputes the mar-

ginal distribution of the population of interest plugging-in the component distribution of

the standard population into the joint distributions of the target variable and compon-

ents, i.e. covariates, giving by granted that an estimator of the conditional distribution is

available.

This methodology was formerly applied in demography to standardizing "crude" mor-

tality rates using contingency tables in order to compare populations with di§erent age

distributions. Kitawaga (1955) is credited as the first formalization of standardization

methods and proposed decomposing the total di§erence between crude rates into an ef-

fect related to population composition and a remaining structure e§ect (residual e§ect in

Kitagawa’s terms). Each e§ect, which is in fact the di§erence between an observed rate

and its corresponding standardized rate, has a counterfactual interpretation. The com-

position e§ect is the di§erence that would have been observed if the populations had only

di§ered in the components, while the structural e§ect is the di§erence that would have

been observed if the components distribution in the two populations had been identical.

For further discussion of standardization and decomposition in the context of mortality

rates see Kigatawa (1964), DasGupta (1993) and Canudas-Romo (1993).

Estimators of the cumulative distribution function (CDF) of the variable of interest

and components used in the standardizations are based on some specification of the un-

derlying conditional distribution function (CCDF), which can be parametric, semipara-

metric or nonparametric. Standardizations of many distributional features does not need
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estimating the CCDF, e.g. a regression function estimate is enough for mean standard-

ization. In fact, these techniques became popular in economics from Oaxaca (1973) and

Blinder (1973), OB henceforth, who proposed a standardization of the mean based on

ordinary least squares (OLS) fitted values, which in fact assumes an underlying linear

regression model. When the regression function is nonlinear, OB method can provide

misleading counterfactual decompositions, but it can also be applied using flexible re-

gression specifications, e.g. polynomial with a fixed degree, semiparametric or pure non-

parametric regression models. For decompositions based on nonparametric specifications

see Kitawaga (1955, 1964), Stock (1989) or Rothe (2010). Kitawaga’s method applied

to mean decomposition using grouped data can be interpreted as based on regressogram

estimates of the underlying nonparametric regression using fix bindwidths, while Stock’s

(1989) method uses Nadaraya-Watson kernel regression estimators with a suitable band-

width choice. Rothe (2010) uses kernel estimates of the CCDF for CDF standardization.

Machado and Mata (2005) and Chernozhukov, Fernández-Val and Melly (2013) considered

semiparametric specifications of the conditional distribution, like quantile or distributional

regression model CCDF specification.

Fortin et al. (2011) review applications of standardization and decomposition meth-

ods in economics. The most numerous applications study gender wage gaps, e.g Oaxaca,

(1973), Blinder (1973), Cain (1986), Blau and Kahn (1992), Oaxaca and Ransom (1999),

Machado and Mata (2005) or O’Neill and O’Neill (2006). There are also studies on other

sources of wage di§erentials, like racial (Reimers, 1983; Melly, 2005), unions (Freeman

1980, 1984), returns to skills (Juhn et al., 1993), between countries (Donald et al., 2000),

or immigrant/resident (Chiquiar and Hanson, 2005). See Lemieux (2002) for a compre-

hensive review on decomposing changes in wage distributions. There are also applications

in other contexts, like gender di§erences in smoking behavior (Bauer 2007) or housing

prices in terms of cleaning up a hazardious-waste site (Stock 1989).

In duration analysis, the hazard function (HF), which completely characterizes the
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CDF, is most informative and often directly specified. The popular Cox’s proportional

hazard (PH) specification of the conditional hazard function (CHF) has been used to

studying duration of unemployment spells by comparing the averaged CHF (ACHF),

which is the integrated CHF with respect to the distribution of the relevant population

components. See Ham et al. (1999), Gonzalo and Saarela (2000), Du and Dong (2008),

Tansel and Tasci (2010), Baussola et al. (2015) or De la Rica and Rebollo-Sanz (2017).

However, the ACHF and HF shapes are typically unrelated, and inferences based on the

ACHF can be misleading. At the best of our knowledge, there are no counterfactual

studies based on direct standardization of the HF, or other CDF’s relevant features, using

right censored data.

Since consistent estimation of the duration mean is not possible under censoring, be-

cause there is no information beyond the boundary of the censoring variable, we propose

comparing the restricted mean survival time (RMST) that can always be consistently es-

timated for a suitable boundary restriction. We consider two specification settings, from

which we propose alternative standardization and decomposition techniques. On one

hand, under a semiparametric PH specification of the CHF, which results in a semipara-

metric specification of the underlying CCDF. On the other hand, under a pure nonpara-

metric specification of the joint distribution of survival time and component variables

that is consistently estimated buy the Kaplan and Meier (1958) (KM) method. This

allows standardizing the RMST both applying the OB methodology and using a pure

nonparametric estimator of the underlying regression function.

The proposal is applied to study spells of unemployment duration gender gaps in

Spain during the period 2004-2007 using data from the European Survey on Income and

Living Conditions (SILC). Our findings suggest that the distributional components play

a minor role explaining gender gaps in spells of unemployment duration. We also show

the substantial di§erence between the HF and the ACHF shapes for this data set.

The rest of this article is organized as follows. Next section introduces the main nota-
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tion, standardization concepts and corresponding counterfactual decompositions. Section

III and IV present estimators based on PH and nonparametric specifications of the under-

lying CCDF, respectively. The finite sample performance is studied by means of Monte

Carlo experiments in section V. Section VI applies the proposed methodologies to analyze

unemployment duration gender gaps in Spain. Conclusions and final remarks are in the

last section.

II. Standardization and Counterfactual
Decompositions in Duration Analysis

The challenge consists of standardizing duration distribution features of two popula-

tions, 0 and 1 say, when durations T (j) are observed under right censoring according to a

variable C(j), using the information given by a k×1 vector of population componentsX(j),

j = 0, 1. That is, inferences are based on an observed random vector
!

Z(j), δ(j), X(j)
"

,

where Z(j) = min
#
T (j), C(j)

$
and δ(j) = 1{T (j)≤C(j)} indicates whether or not the observed

duration is censored with 1{A} the indicator function of the event A.

Denote by P(j) the induced probability of
#
T (j), C(j), X(j)

$
, F (j)T,X

#
T (j), X(j)

$
=

P(j)
#
T (j) ≤ t,X(j) ≤ x

$
is the joint CDF of

#
T (j), X(j)

$
, inequalities are coordinatewise

and F (j)T |X
#
·|X(j)

$
is the CCDF of T (j) given X(j), i.e.

F (j) (t, x) = E
h

F
(j)
T |X

#
t|X(j)

$
· 1{X(j)≤x}

i

=

Z

{x̄≤x}
F
(j)
T |X (t| x̄)F

(j)
X (dx̄)

for all (x, y) 2 R+ × Rk and j = 0, 1, where, henceforth, E is the expectation operator

applied both to P(0) and P(1), and for any random variable or random vector ξ(j), which

can be T (j), C(j), Z(j) or X(j), and F (j)ξ (w) = P
(j)
!

ξ(j) ≤ w
"

is its marginal distribution.

The standardized distribution of F (j,s)T , using population s as standard, is

F
(j,s)
T (t) = E

h

F
(j)
T |X

#
t|X(s)

$i

=

Z

Rk
F
(j)
T |X (t|x)F

(s)
X (dx). (1)

Therefore, F (j,j)T (·) ≡ F
(j)
T (·) ≡ F (j)(·,1), using the notation 1 = (1, ...,1)t , where

”t” means transpose. That is, F (j,s)T represents the distribution of the duration outcome
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in population j that one would have observed if their population components had been

distributed as in population s. Henceforth, we give by granted that integrals in (1) are

well defined, which requires that the support of the components X(s) in the standard

population is contained in the support of the standardized population. It is also possible

to use the pooled distribution as standard, i.e. P(p) = λP(0)+(1− λ)P(1), where λ 2 (0, 1)

is the probability of picking up at random an individual of population 0 from the pooled

population. In what follows we only consider the case where one of the two populations

is the standard.

Any F (j)0T s feature, like the mean, can be standardized. For instance, the standardized

mean of population j, using population s as standard, is

µ(j,s) =

Z

R+
tF

(j,s)
T (dt) =

Z

Rk
m(j) (x)F

(s)
X (dx) =

Z

R+

!

1− F (j,s)T (t)
"

dt,

where m(j) (x) =
R

R+ tF
(j)
T |X (dt|x) is the conditional expectation of the survival time in

population j evaluated at x, and µ(j,j) = µ(j) = E
#
T (j)

$
.

Let #(j)(x) = a(j) + xtb(j) be the best linear predictor (BLP) of T (j) given X(j) = x,

i.e.
#
a(j), b(j)t

$t
is a vector of parameters such that T (j) − #(j)(X(j)) has zero mean

and is uncorrelated with each component of X(j). OB exploited the fact that , since

µ(j) = E
!

#(j)(X(j))
"

and µ(j) = µ(j,j) = `(j,j), where

`(j,s) =

Z

Rk
#(j)(x)F

(s)
X (dx) = a

(j) + E
#
X(s)

$t
b(j),

is the suggested standardized mean. In practical terms, this is equivalent to assume

that m(j) is linear, which explains why the standardization can be misleading under non-

linearity of the underlying conditional expectation (see Barsky et. al, 2002). In fact,

whenever β(j) = 0, `(j,s) = µ(j) for all j, s = 0, 1, i.e. there is no e§ective standardization.

Of course, we can use a more flexible specification ofm(j), e.g a polynomial of some degree.

For instance, adding squares of the variables components in the least squares fit, i.e.

6



#(j)(x) = a(j) +

kX

l=1

b
(j)
l X

(j)
l +

kX

l=1

b
(j)
l+kX

(j)2

l ,

where T (j)−#(j)(X(j)) is a zero mean r.v. uncorrelated with X(j)
l and

!

X
(j)
l

"2

, l = 1, ..., k,

but other powers or interactive e§ects can be introduced. A nonparametric specification

of m(j) is a reasonable alternative when there are doubts on the underlying regression

functional form.

Henceforth, for any generic random variable ξ(j) in population j = 0, 1, τ (j)ξ =

inf
!

t : F
(j)
ξ (t) = 1

"

, is the upper bound of its support. Therefore, consistent estimation of

F
(j)
T beyond τ (j)Z = min

!

τ
(j)
C , τ

(j)
T

"

is no possible because there is no relevant information

on T (j). In fact, F (j) (t, x) cannot be identified from the CDF of the observable random

vector
!

Z(j), X(j), δ(j)
"

. Hence, consistent estimation of the sub-CDF,

F̄ (j) (t, x) =

8

><

>:

F (j) (t, x) for t < τ (j)Z

F (j)
!

τ
(j)
Z −, x

"

+ 1n
τ
(j)
Z 2A(j)

oF (j)
!n

τ
(j)
Z

o

, x
"

t ≥ τ (j)Z ,

is the best we can hope for, where A(j) =
0
z : P(j)

#
Z(j) = z

$
> 0

1
is the number of jumps

in F (j)Z . Notice that F̄
(j)(t, ·) = F (j)(t, ·) for all t < τ (j)Z , and also for all t ≤ τ

(j)
Z , when

either, F (j) ({t} , ·) = 0 or F (j) ({t} , ·) > 0 and P(j)
!

C(j) ≤ τ (j)Z
"

< 1.

Of course, F̄ (j) = F (j) when no censoring is present. Furthermore, assuming T (j) inde-

pendent of C(j), F̄ (j) = F (j) when τ (j)T < τ
(j)
C , e.g when τ

(j)
C =1, irrespective of whether

or not τ (j)T is finite. However, these restrictions cannot be tested using the sample inform-

ation. If τ (j)T > τ
(j)
C , F̄

(j) 6= F (j) and it is not possible consistently estimating the mean,

among other distributional features.

We can always use the RMST, introduced by Irvin (1949), as a relevant summary

parameter for comparing durations in two distributions. For any τ ∗ < τ (j)Z , we can con-

sistently estimating the RMST
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µ
(j)
τ∗ =

Z τ∗

0

!

1− F (j)T (t)
"

dt = E
#
min

#
T (j), τ ∗

$$
,

which is the average duration in the first τ ∗ periods. Notice that µ(j)
τ
(j)
Z

is the closest possible

approximation to µ(j) = µ
(j)
1 , but other values of τ ∗ might be of interest. For instance,

the average unemployment duration during the first 24 months (τ ∗ = 24) which is related

to short-term unemployment. Karrison (1997), Zhang and Schanbel (2011), Zucker(1998)

or Chen and Tsiatis (2001) provide applications of RMST to di§erent contexts.

We can apply the OB method for µ(j)τ∗ using the standardization `(j,s)τ∗ = α
(j)
τ∗ +

β
(j)T
τ∗ E

#
X(s)

$
, for τ ∗ ≤ τ (j)Z ,

0

B
@

α
(j)
τ∗

β
(j)
τ∗

1

C
A = argmin

a,b
E
#
min

#
T (j), τ ∗

$
− a− btX(j)

$2
, (2)

i.e µ(j)τ∗ = `
(j,j)
τ∗ .

A very informative distributional feature in survival analysis is the hazard rate. If T (j)

is discrete,

λ(j)(t) = P
#
T (j) > t+ 1

8
8T (j) ≥ t

$
(3)

=
F
(j)
T {t}

1− F (j)T (t−)
, t = 0, 1, 2, ...,

where for any generic CDF G, G {t} = G (t) − G (t−) . It T (j) is continuous and F (j)T is

absolutely continuous with pdf f (j)T ,

λ(j)(t) = lim
h!0

1

h
P
#
T (j) > t+ h

8
8T (j) ≥ t

$
(4)

=
f
(j)
T (t)

1− F (j)T (t)
, t 2 R+

The hazard rate λ(j)(t) is interpreted as the instantaneous probability that an individual

does not survive longer than a period of length t given that she/he is alive after t periods.

However, counterfactual analysis in the existing empirical research is based on comparing
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the ACHF

γ(j) (t) = E
h

λ
(j)
T |X(t|X

(j))
i

, t < τ
(j)
Z ,

where λ(j)T |X( ·|X
(j)) is the conditional hazard rate of T (j) given X(j). The corresponding

standardized ACHF is

γ(j,s) (t) = E
h

λ
(j)
T |X(t|X

(s))
i

, t < τ
(j)
Z ,

The HF and ACHF shapes are, in general, unrelated, and so λ(j,s) and γ(j,s) are. For in-

stance, if T (j) givenX(j) is exponentially distributed (memoryless), the CHF λ(j)T |X(t|X
(j))

is independent of t a.s., and so do γ(j) is, but λ(j) may variate with t (see the example in

next section.)

A. Standardization Based on the Semiparametric Proportional
Hazard Specification

The most popular CHF specification is Cox’s (1972) PH model,

λ(t|X(j)) = λ
(j)
b (t) · exp

#
X(j)tη(j)

$
, (5)

where λ(j)b is the nonparametric baseline hazard function, and η(j) is a vector of unknown

parameters. Tsiatis (1981) shows that η(j) and the cumulative baseline hazard Λ(j)b (t) =
R t

0
λ
(j)
b (t̄)dt̄ can be identified from the joint CDF of the observed

!

Z(j), X(j), δ(j)
"

, for

t < τ
(j)
Z , assuming that,

A.0. T (j) is independent of C(j) conditionally on X(j), j = 0, 1.

Cox (1972) proposed the partial likelihood method to estimate η(j), which only uses the

non censored observed durations, while Breslow (1974) proposed a consistent estimator

of Λ(j)b (t) for t < τ
(j)
Z by a function with jumps at each non-censored observed duration.

See Kalbfleisch and Prentice (1973) and Andersen and Gill (1982) for further discussion

and Tsiatis (1981) for formal justification of the asymptotic properties of these estimators

under assumption A.0. These two estimators provide consistent estimators of F (j)T |X and
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F
(j)
T when the PH specification is correct, which forms a basis for consistently estimating

the standardized distribution

F
(j,s)
T (t) = 1− E

h

exp
n

−Λ(j)b (t) exp
#
X(s)tη(j)

$oi

,

and the corresponding HF

λ(j,s)(t) = λb(t) ·
E
h

exp
#
X(s)tη(j)

$ !

1− F (j)T |X(t|X
(s))
"i

1− F (j,s)T (t)
.

Note that, when λb(t) = 1, which corresponds to an exponential CCDF,

F
(j)
T |X

#
t|X(j)

$
= 1− exp

#
−t exp

#
X(j)tη(j)

$$
a.s.,

and γ(j,s) (t) = E
#
exp

#
X(s)tη(j)

$$
is constant for all t. However, in this case,

F
(j,s)
T (t) = 1− E

9
exp

#
−t exp

#
X(s)tη(j)

$$:
,

and

λ(j,s)(t) =
E
9
exp

#
X(s)tη(j) − t exp

#
X(s)tη(j)

$$:

E [exp (−t exp (X(s)tη(j)))]
,

which varies with t, but the ACHF γ(j,s) = E
9
exp

#
X(j)tη(j)

$:
is constant.

B. Standardization under a Nonparametric Specification.

Identification of the nonparametric F̄ (j) requires the following conditions,

A.1 T (j) is independent of C(j), j = 0, 1.

A.2 δ(j) and X(j) are independent conditional on T (j) a.s., j = 0, 1.

Condition A.1 is the standard identification condition for the nonparametric F̄ (j)T ,

which justifies consistency of the KM product limit estimator using censored data. As-

sumption A.2 is the extra condition, provided by Stute (1993), for F̄ (j) identification. In

Stute (1993) words, “...This is a convenient way to remind you of the uneasy fact that
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once T (j) is known, things that had been considered of some importance in your life then

become irrelevant.”

The KM estimator of F̄ (j) forms a basis to estimate `(j,s)τ∗ in (2) using the OB approach.

Moreover, a nonparametric identification of F̄ (j)T can be used from Kigatawa (1955) type

of standardization, which is designed for grouped data. Consider a fixed partition of

Rk, Am = {Ai}
m
i=1 say, i.e. Ai are disjoint with

Sm
i=1Ai = Rk. The CDF of T (j) given

0
X(j) 2 A

1
is

F
(j)
T |A (t| A) = P

(j)
#
T (j) ≤ t

8
8X(j) 2 A

$
=
p
(j)
A (t)

q
(j)
A

,

with p(j)A (t) =
R

x2A F
(j) (t, dx) and q(j)A = p

(j)
A (1). Thus,

F
(j)
T (t) =

mX

i=1

F
(j)
T |Ai

(t| Ai) q
(j)
Ai =

mX

i=1

p
(j)
Ai (t),

which suggests the standardization,

F
(j,s)
TAm (t) =

mX

i=1

F
(j)
T |A (t| Ai) q

(s)
Ai =

mX

i=1

p
(j)
Ai (t)

q
(j)
Ai

q
(s)
Ai , t < τ

(j)
Z . (6)

Notice that F (j,j)TAm = F
(j)
T , but F

(j,s)
TAm and F

(j,s)
T are di§erent for j 6= s. When X(j) is a

vector of discrete variables taking a finite number of values, or when data is grouped, the

partition is natural.

The standardized RMST using partitions is

µ
(j,s)
τ∗Am =

Z 1

0

min (t, τ ∗)F
(j,s)
TAm (dt) =

mX

i=1

q
(s)
Ai

q
(j)
Ai

Z 1

0

min (t, τ ∗) · p(j)Ai (dt),

and the corresponding standardized HF is

λ
(j,s)
Am (t) =

F
(j,s)
TAm {t}

1− F (j,s)TAm (t−)
, t < τ

(j)
Z ,

in the discrete case, and

λ
(j,s)
Am (t) = limh!0

1

h

F
(j,s)
TAm (t+ h)− F

(j,s)
TAm (t)

1− F (j,s)TAm (t)
, t < τ

(j)
Z ,

in the continuous case.
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C. Counterfactual Decompositions

The total di§erence of the CDFs between population j and s at t, ∆(j,s)(t) = F
(j)
T (t)−

F
(s)
T (t), can be written as

∆(j,s)(t) =
h

F
(j,j)
T (t)− F (j,s)T (t)

i

+
h

F
(j,s)
T (t)− F (s,s)T (t)

i

(7)

= ∆(j,s)C(t) +∆(j,s)S(t), t < τZ ,

where ∆(j,s)S is the counterfactual structural e§ect, ∆(j,s)C(t) is the counterfactual com-

position e§ect and τZ = min
!

τ
(j)
Z , τ

(s)
Z

"

. Likewise, we perform the decomposition using

standardizations based on a partition Am by substituting F
(j,s)
T by F (j,s)TAm in (7). We can

also decompose any distributional characteristic summarized by a functional θ : G 7! R,

whereG can be either F (j,s)T or F (j,s)TAm(t). For instance, θ
!

F
(j,s)
T

"

=
R τ∗

0

!

1− F (j,s)T (t)
"

dt =

µ
(j,s)
τ∗ or θ

!

F
(j,s)
T

"

= `
(j,s)
τ∗ with τ ∗ ≤ τZ , or θ

!

F
(j,s)
T

"

= λ
(j,s)
T (t) for t < τZ .

The corresponding decomposition is

∆
(j,s)
θ = θ(F

(j)
T )− θ(F

(s)
T ) (8)

=
h

θ(F
(j,j)
T )− θ(F (j,s)T )

i

+
h

θ(F
(j,s)
T )− θ(F (s,s)T )

i

= ∆
(j,s)C
θ +∆

(j,s)S
θ ,

e.g. ∆(j,s)
µτ∗ corresponds to θ

!

F
(j,s)
T

"

= µ
(j,s)
τ∗ . A similar decomposition can be performed

using F (j,s)TAm , i.e. replace F
(j,s)
T by F (j,s)TAm in (8).

III. Estimation Under a Proportional
Hazard Specification

The sample observed consists of iid
n

Z
(j)
i , X

(j)
i , δ

(j)
i

onj

i=1
as
!

Z(j), X(j), δ(j)
"

, j = 0, 1,

where Z(j) = min
#
T (j), C(j)

$
, and δ(j) = 1{T (j)≤C(j)}. First of all, we must realize that

it is not possible to estimate F (j)T (t) for t ≥ Z
(j)
nj :nj , where Z

(j)
1:nj

≤ Z
(j)
2:nj

≤ ... ≤ Z
(j)
nj :nj

are the order statistics of
n

Z
(j)
i

onj

i=1
. Henceforth, ties within censored or uncensored

12



duration times are ordered arbitrarily and ties among uncensored and censored durations

are treated as if the former precedes the latter.

Assuming the PH specification (5), the parameter η(j) can be consistently estimated

using partial likelihood by

η̃(j)nj = argmax
d

nY

i=1

2

6
4

exp
!

dtX
(j)
i

"

P

`2
n
j:Z

(j)
i ≥Z(j)`

o exp
!

dtX
(j)
`

"

3

7
5

δj

,

and the corresponding Breslow (1974) estimator of Λ(j)b (t) is the step function, with jumps

at each observed uncensored duration time,

Λ̃
(j)
bnj
(t) =

X

i≤t

δ
(j)
i

P

`2
n
j:Z

(j)
i ≥Z(j)`

o exp
!

η̂(j)tnj
X
(j)
`

" for t < Z(j)nj :nj .

Consistency and weak convergence of these estimators have been justified in Tsiatis (1981)

under A.0. The associated estimator of F̄ (i,s)T (t) using continuous time is,

F̃
(j)
Tnj
(t) = 1−

1

ns

nsX

i=1

exp
!

−Λ̃(j)bnj(t) exp
!

η̃(j)tnj
X
(s)
i

""

, t < Z(j)nj :nj , withn = (n0, n1) .

Weak convergence of F̃ (j,s)Tn is an immediate consequence of the well developed asymp-

totic theory for
!

η̃(j)nj , Λ̃
(j)
bnj

"

and, hence, for F̃ (j,j)Tn (t) . Tsiatis (1981) showed that, under

A.0, η̃(j)nj = η
(j) + Op

!

n
−1/2
j

"

and supt2[0,τZ ]
8
8
8

!

Λ̃
(j)
bnj
− Λ(j)b

"

(t)
8
8
8 = Op

!

n
−1/2
j

"

. Thus, ap-

plying Theorem 4.1 in Chernozukov, Fernández-Val and Melly (2013), for j, s = 0, 1,

sup
t2[0,τZ ]

8
8
8

!

F̃
(j,s)
Tn − F (j,s)T

"

(t)
8
8
8 = Op

Dr
n0 + n1
n0n1

F

as n0, n1 !1 and
nj

n0 + n1
! sj 2 (0, 1) .

(9)

Asymptotic confidence intervals for F̃ (j,s)Tn (t) can be obtained as in Andersen and Gill

(1982). Bootstrap confidence intervals can also be obtained using techniques designed

for the PH model, as in Burr (1994), which can be justified in the lines of Chernozukov,

Fernández-Val and Melly (2013) Theorem 4.2.
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Consequently, the natural estimator of µ(j,s)τ∗ for τ ∗ ≤ τ (j)Z is

µ̃
(j,s)
τ∗n =

Z 1

0

min
!

Z
(j)
i:nj
, τ ∗
"

F̃ (j,s)n (dt)

=

njX

i=1

min
!

Z
(j)
i:nj
, τ ∗
" h

F̃
(j:s)
Tn

!

Z
(j)
i:nj

"

− F̃ (j:s)Tn

!

Z
(j)
i−1:nj

"i

.

Consistency of µ̃(j,s)τ∗n follows straightforwardly from (9).

λ(j,s)(λ) can be estimated by the jump function,

λ̃
(j,s)

n (t) =
F̃
(j,s)
Tn {t}

1− F̃ (j,s)Tn (t−)
, t < Z(j)nj :nj ,

and γ(j,s) by

γ̃(j,s)n (t) =
h

Λ̃
(j)
bnj
(t)− Λ̃(j)bnj(t−)

i 1

ns

nsX

i=1

exp
!

X
(s)t
i η̃nj

"

, t < Z(j)nj :nj .

A smooth version of λ̃
(j,s)

n (t) is,

λ̌
(j,s)

n (t) =
f̌
(j,s)
nh (t)

1− F̃ (j,s)Tn (t−)
, t < Z(j)nj :nj ,

with f̌ (j,s)n (t) =
R1
0
Kh (t̄− t) F̃

(j,s)
Tn (dt̄) , whereKh (·) = h−1k (·/h) , k is an even kernel and

h a suitable chosen bandwidth. The corresponding estimated decompositions are obtained

by plugging-in these estimates in (8 ), i.e. for any functional θ, ∆̃(j,s)
θn = θ(F̃

(j)
Tn)− θ(F̃

(s)
Tn )

estimates ∆(j,s)
θ and is decomposed as

∆̃
(j,s)
θn =

h

θ(F̃
(j,j)
T )− θ(F̃ (j,s)T )

i

+
h

θ(F̃
(j,s)
T )− θ(F̃ (s,s)T )

i

= ∆̃
(j,s)C
θn + ∆̃

(j,s)S
θn .

IV. Estimation under a Non-Parametric Specification

Aunder A.1, F̄ (j)T is consistently estimated by the KM estimator,

F̂
(j)
Tnj
(t) = 1−

njY

i=1

2

41−
δ
(j)
[i:nj ]

nj − i+ 1

3

5

1
{Z(j)
i:nj

≤t}

=

nX

i=1

!
(j)
nji
1n
Z
(j)
i:nj

≤t
o, τ ∗ < τ

(j)
Z ,
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where

!
(j)
nji
=

δ
(j)
[i:nj ]

nj − i+ 1

i−1Y

`=1

G
nj − `

nj − `+ 1

Hδ
(j)
[`:nj ]

, i = 1, ..., n, j = 0, 1,

are KM weights, and for any generic sequence {ξi}
n
i=1 , ξ[i:n] is the i− th ξ−concomitant

of the ordered Z − values, i.e. ξ[i:n] = ξj if Zi:n = Zj. Then, !
(j)
nji
is the mass attached to

!

Z
(j)
i:nj
, X

(j)
[i:nj ]

"

. Likewise, under A.1 and A.2, F (j) can be consistently estimated by

F̂ (j)nj (t, x) =

njX

i=1

!
(j)
nji
1n
Z
(j)
i:nj

≤t, X[i:nj ]≤x
o for t < τ (j)Z ,

which suggests estimating µ(j)τ∗ by

µ̂
(j)
τ∗nj

=

njX

i=1

!
(j)
nji
min

!

Z
(j)
i:nj
, τ ∗
"

, τ ∗ ≤ τ (j)Z , j = 0, 1.

Notice that, for j = 0, 1, µ̂
(j)
τ∗nj

= α̂
(j)
τ∗nj

+ β̂
(j)t
τ∗nj

µ̂
(j)
Xnj
, with µ̂(j)Xnj = n−1j

Pnj
i=1X

(j)
i !

(j)
nji

and
0

B
@

α̂
(j)
τ∗nj

β̂
(j)

τ∗nj

1

C
A = argmin

a,b

Z 1

0

Z

Rk
(min (t, τ ∗)− a− btx)2 F̂ (j)nj (dt, dx)

= argmin
a,b

njX

i=1

!

min
!

Z
(j)
i:nj
, τ ∗
"

− a− btX(j)
[i:nj ]

"2

!
(j)
nji

=

0

B
@

µ̂
(j)
τ∗nj

− β̂
(j)t
τ∗nj

µ̂
(j)
Xnj

h
Pnj

i=1X
(j)
[i:n]X

(j)t
[i:n]!

(j)
nji

i−1Pnj
i=1X

(j)
[i:n]min

!

Z
(j)
i:nj
, τ ∗
"

!
(j)
nji

1

C
A .

Therefore, the standardized BLP under F̂ (j,s)nj (t, x) is ˆ̀(j,s)τ∗nj
= α̂

(j)
τ∗nj

+β̂
(j)t
τ∗nj

µ̂
(s)
Xns

and ˆ̀(j,j)τ∗nj
=

µ̂
(j)
τ∗nj

.

In turn, regarding the standardization based on Kitawaga’s (1955) method, the KM

analog of (6) based on a partition Am is,

F̂
(j,s)
TAm,n (t) =

mX

k=1

q̂
(s)
Akns

q̂
(j)
Aknj

p̂
(j)
Aknj(t), j, s = 0, 1,

where p̂(j)Anj(t) =
Pnj

i=1 !
(j)
nji
1#

Z
(j)
i:nj

≤t,X(j)
[i:nj ]

2A
$ and q̂(j)Anj = p̂

(j)
Anj(1). Notice that F̂

(j)
Tn (t) =
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F̂
(j,j)
TAm,n (t) =

Pnj
i=1 !

(j)
nji
1n
Z
(j)
(i:n)

≤t
o does not depend on the partition Am.

Stute (1993) provided, under A.1 and A.2, a Glivenko-Cantelli theorem for F̂ (j)nj as

an estimator of F̄ , and showed that for any function ' : R+ × Rk ! R and S(j)' =

'
#
T (j), X(j)

$
, such that ES(j)' <1, Ŝ(j)'nj =

Pnj
i=1 '

!

Z
(j)
i:nj
, X

(j)
[i:nj ]

"

!
(j)
nj is an a.s.-consistent

estimator of S̄(j)' =
R

R+×Rk ' (t, x) F̄ (dt, dx) , which shows that
ˆ̀(j,s)
τ∗nj

and p̂(j)Aknj(t) are

a.s.-consistent estimators of `(j,s)τ∗nj
and p(j)Anj(t), respectively. This justifies that F̂

(j,s)
TAm,n is

a consistent estimator of F (j,s)TAm . Stute (1996) found the asymptotic distribution of Ŝ
'
nj
.

Bootstrap confidence intervals can be obtained as in Stute, González-Manteiga and Sellero

(2000). Based on F̂ (j,j)TAm,n, we can estimate µ
(j,s)
τ∗ , when E

#
min

#
τ ∗, T (j)

$8
8X(j)

$
is nonpara-

metric, by

µ̂
(j,s)
τ∗Amn =

Z

R+
t · F̂ (j,s)TAm,n (dt) =

mX

k=1

q̂
(s)
Ans

q̂
(j)
Anj

njX

i=1

min
!

Z
(j)
i:nj
, τ ∗
"

1n
X
(j)
[i:n]

≤Ak
o!

(j)
n,i,

with µ̂(j,j)τ∗Amn = µ̂
(j)
τ∗n. The corresponding λ

(j,s)
Am (t) estimator is

λ̂
(j,s)

Amn(t) =
F̂
(j,s)
TAm,n {t}

1− F̂ (j,s)TAm,n (t−)
,

and its smooth version is

λ̆
(j,s)

Amn(t) =
f̆
(j,s)
TAm,n (t)

1− F̂ (j,s)TAm,n (t−)
,

f̆
(j,s)
TAm,n (t) =

R1
0
Kh (t̄− t) F̂

(j,s)
TAm,n (dt̄) .

Regarding the decompositions, we estimate ∆(j,s)(t) =
!

F
(j)
T − F (s)T

"

(t) by ∆̂(j,s)
n (t) =

F̂
(j)
Tn (t)− F̂

(s)
Tn (t) and the corresponding decomposition is

∆̂(j,s)
n (t) =

h

F̂
(j,j)
TAm,n(t)− F̂

(j,s)
TAm,n(t)

i

+
h

F̂
(j,s)
TAm,n(t)− F̂

(s,s)
TAm,n(t)

i

= ∆̂
(i,s)C
Amn (t) + ∆̂

(i,s)S
Amn (t).

Also (8) can also be estimated nonparametrically substituting F (j,s)T by F̂ (j,s)TAm,n. For in-

stance both θ
!

F̂
(j,s)
TAm,n(t)

"

= ˆ̀
(j,s)
TAmn and θ

!

F̂
(j,s)
TAm,n(t)

"

= µ̂
(j,s)
Amτ∗,n result in decompositions
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of ∆̂(j,s)
µτ∗n(t) = µ̂

(j)
τ∗n − µ̂

(s)
τ∗n, and θ

!

F̂
(j,s)
TAm,n(t)

"

= λ̂
(j,s)

TAmn(t) results in a decomposition of

∆
(j,s)
λAmn

(t) = λ̂
(j)

n (t)− λ̂
(s)

n (t).

V. Monte Carlo Simulations

This section provides evidence on the finite sample performance of the alternative

standardization methods, and the resulting counterfactual decompositions, for the RMST.

Henceforth, PML stands for the partial maximum likelihood estimator based on the PH

specification, OB-KM refers to the estimation method based on the classical OB de-

composition using KM weights, and NP(m) refers to the nonparametric method with m

partitions; we use m = 3 and 10. We also consider the OB-KM method using the OLS fit

of a polynomial of order 3, rather than a linear model, named OB-KM-Pol3. By simpli-

city, we only consider a single covariate as component. In the case of NP(m), partitions

are defined according to classes of equal size.

We consider three designs described in Table 1. In the data generating process (DGP)

DGP1, T (j) are generated using a linear regression model with independent Gaussian

errors. In DGP2, T (j) is distributed as a Weibull random variable, i.e. the specification

corresponds to the Cox’s PH model. Finally, in DGP3, T (j) are generated according

to a nonlinear regression model with independent Gaussian errors. Parameter values of

distributions in the di§erent designs were chosen to produce a censoring level of 30%.

TABLE 1 ABOUT HERE

In all simulations we consider sample sizes of 200, 800 and 3,200 and Monte Carlo

experiments based on 1,000 replications. We make comparisons of the alternative stand-

ardization methods are based on the mean absolute error (MAB) and the root mean

squared error (RMSE). Since C(j) and T (j) are unbounded, we can consistently estimate

the means µ(j) and the corresponding counterfactual decomposition of their di§erence.
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However, simulations are performed using µ(j)τZ as target parameter, without exploiting

the fact that T (j) and C(j) are unbounded and, hence, τZ = 1 and µ(j)τZ = µ(j). The

parameter τZ is consistently estimated by τ̂Zn = min
!

Z
(0)
n0:n0 , Z

(1)
n1:n1

"

and the RMST is

calculated with τ ∗ = τ̂Zn.

Table 2 presents results under DGP1 design. Since the PH specification is incorrect,

the PML is inconsistent for µ(j,s), j, s = 0, 1, which explains the large biases observed. The

regression function is linear and, hence, both OB-KM and OB-KM-Pol3 are consistent.

As expected, OB-KM, which is asymptotically the most e¢cient, performs best in finite

samples, but there are no significant loses using the over-parameterized OB-KM-Pol3. Of

course, the nonparametric NP(3) and NP(10), which does not use any information on the

DGP, perform worse.

TABLE 2 ABOUT HERE

Table 3 reports results under DGP2 specification. The OB-KM and OB-KM-Pol 3 are

still consistent estimators of µ(j) = µ(j,j), but are inconsistent estimators of µ(j,s) for j 6= s.

In turn, since the specification corresponds to the Cox’s model, the PML is consistent

and more e¢cient than NP(m). This is confirmed by the simulations. Interestingly, OB-

KM-Pol3 seems to be a fairly robust alternative to OB-KM and performs similarly to

NP(m).

TABLE 3 ABOUT HERE

Table 4 reports results under DGP3 specification. In this case, all µ(j,s) estimators

for j 6= s, but NP(m), are inconsistent, though OB-KM and OB-KM-Pol3 are consistent

for µ(j) = µ(j,j). NP(m) performs much better than both PML and OB-KM in this case,

particularly for the larger sample sizes. However, there is sensitivity with respect to the

number of classes choices, i.e. NP(3) versus NP(10). OB-KM-Pol3 shows to be a robust

alternative to OB-KM that captures fairly well the underlying regression nonlinearity.

TABLE 4 ABOUT HERE
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We also study the e§ect of ignoring the presence of censoring. First, assessing the

e§ect on the estimates when a correction of censoring is not taken into account and,

second, analyzing the e§ect of trying to estimate the mean when C(j) is bounded. Table

5 provides the mean absolute bias and RMSE, using DGP1 design, for the decomposition

e§ects based on the OLS fits using all observations but ignoring the presence of censoring,

i.e. assuming that Z(j) is the actual duration. And also, an OLS fits dropping out the

censored observations. These biased estimates are compared with the corresponding OB-

KM estimator. Simulation results show serious biases when ignoring censoring.

TABLE 5 ABOUT HERE

Table 6 illustrates the e§ect of neglecting the fact that τ (j)T > τ
(j)
C when estimating

the duration mean. In this case, FT cannot be consistently estimated beyond τ
(j)
Z and,

unlike previous experiments where τT = τC = 1, it is not possible estimating µ(j,s) or

µ
(j,s)
τ∗ for τ ∗ > τ (j)Z . We compare PML estimators of µ

(j,s)
τZ under design DGP2, i.e. PML

is e¢cient, when C(j) is censored, using eC(j) = min
#
C(j), 6.5

$
as censored variable, i.e.

τ
(0)
C = τ

(1)
C = 6.5 < τ

(0)
T = τ

(1)
T = 1. Table 6 confirms high biases for estimating the

mean when τ (j)T > τ
(j)
C , but the PML estimator still performs well as an µ

(j,s)
τZ estimator.

This shows the importance of focusing the statistical inference in truncated or restricted

parameters as the RMST.

TABLE 6 ABOUT HERE

VI. Unemployment Duration Gender Gaps in Spain

This section investigates the causes of unemployment durations gender gaps using

counterfactual decompositions of HF and RMST di§erences in Spain. We also provide a

comparison between ACHF and HF estimates using the alternative specifications. The

Spanish case is particularly interesting because it has experienced one of the highest

unemployment rates among OECD countries in recent decades. According to o¢cial
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statistics (see OECD 2013), for the period 1995-2005, the average unemployment rate

was around 6.8% in OECD countries and 5% in the US, while it was 14% in Spain.

Moreover, the di§erence in unemployment rates by gender has also been important. For

the same period, women exhibited on average an unemployment rate 9 percentage points

(p.p.) higher, while in the US this gap was around 0.04 p.p.

The existing literature has mainly paid attention to gender gaps in the aggregated

unemployment rate, e.g. Niemi, (1974), Johnson (1983), Azmat et al. (2006), or Queneau

(2007), but gender gaps in other unemployment features, like spells of unemployment

duration have received less attention. Research devoted to study unemployment duration

gender gaps has almost exclusively focused in explaining the gender di§erences in the

ACHF, e.g. Ham (1999) for the Czech and Slovak Republic, Gonzalo (2000) for Finland,

Du (2009) for China, Tansel (2010) for Turkey, Baussola (2014) for Italy and UK, and De la

Rica and Robledo-Saenz (2017) for Spain. As we have discussed, the ACHF and HF shapes

are generally unrelated and may lead to misleading analyses of spells of unemployment

durations.

We implement the proposed methodologies to perform counterfactual decompositions

of the HF and RMST di§erences using data from the Survey of Income and Living Condi-

tions (SILC) for the period 2004-2007. This survey, carried out by the European Commis-

sion, is a rotative household panel that collects information on socioeconomic character-

istics, including the occupational status (monthly) for a period of 4 years. Our population

consists of unemployed workers older than 25 starting an spell of unemployment during

the period 2004-2007. We measure unemployment duration as the number of months that

a worker is not employed, which is usually referred as non-employment duration.

We consider as composition variables those commonly used in unemployment duration

analysis such as age, educational level, tenure, marital status, whether the individual is

head of the household, the number of unemployed in the household, city size (according

to three levels of urbanization in the SILC as big city, medium size city and small city)
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and region, see e.g., Addison (2003), Kuhn (2004), or Tansel (2010). The first three

variables control by human capital characteristics, while the others are related to the

opportunity cost of being unemployed and the reservation wage. Table 7 provides the

means and standard deviations for these variables and Figure 1 the corresponding QQ

plots for the continuous variables, i.e. age and tenure. Composition variables are similar

in the two populations, except in the case of tenure, which implies that the composition

e§ect should not be particularly important explaining gender gaps. We observe censoring

levels of 21.4% for women and 16.2% for men.

TABLE 7 and FIGURE 1 ABOUT HERE

Henceforth, population 0 corresponds to women and population 1 to men. First we

analyze the HF di§erences between the two populations. Figure 2 provides KM estimates

of the marginal HF, λ(j), and the corresponding nonparametric estimates of λ(0,1)Am based

on a partition Am, as well as the HF di§erence, ∆
(0,1)
λ , into counterfactural e§ects. The

partition is based on m = 8 classes and λA8 is estimated using kernel smoothing, λ̆
(0,1)

Amn,

with an Epanechnikov’s kernel and the bandwidth chosen by the classical plug-in method.

The number of classes in the partition was established according to the structure of the

composition variables using some natural thresholds for the continuous ones. For instance,

we grouped workers between 25 and 40 years old (prime-age workers) and workers with less

than 10 years tenure. Some might have very few observations due to the high number of

possible partitions and the correlation between covariates, e.g. there are few observations

in a partition class with young workers of more than 10 years tenure, married and with

high education level. Therefore, by using age, labor market size and marital status, we

construct 8 classes. This method has the advantage that the classes in a partition can

be chosen in a natural way accounting by the observed relation between duration and

covariates.

The nonparametric KM estimates of the HF show a clear acceleration of women’s HF
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after 24 months of unemployment, which is consistent with the unemployment compens-

ation normative in Spain during the analyzed period. Unemployment benefits expired

after 24 months and workers received 70% of their salary during the first 6 months and

60% up to 24 months. Figure 2 suggests that, on average, women exhaust all unemploy-

ment benefits producing a spike in the HF starting around the expiration rate. That is,

women and men exhibit di§erent optimal delays in job acceptance. This phenomenon

has also been documented by Roed and Zhang (2003) and Boone and Ours (2012) using

Norwegian and Slovenian data, respectively. We observe that the estimated composition

e§ect is very small at any period. That is, HF di§erences between women and men do

not seem to be explained by socioeconomic characteristics, which are almost identical,

but by anything else, like circumstances of the labor market tightness and discrimination

related to institutional factors, labor circumstances or behavioral aspects (Bachmann and

Sinning 2016).

FIGURE 2 ABOUT HERE

We have checked Cox’s model specification for the two populations using the popular

Schoenfeld’s (1982) residual based goodness-of-fit test, which result in p-values of 0.031

and 0.654 for women and men, respectively. Therefore, Cox’s specification is rejected

for women, but no for men, at 5% of significance. Figure 3 shows the smooth version of

PML HF estimates, λ̌
(0,1)

n , with the same kernel and bandwidths used in the nonparametric

case. The estimates are quantitatively very di§erent to the nonparametric ones in Figure 2,

possibly because of misspecification, though it also shows a composition e§ect close to zero

at any period and an acceleration of the HF for women after 24 months of unemployment.

FIGURE 3 ABOUT HERE

Figure 4 and 5 provide ACHF estimates using NP(8) and PML, respectively. HF

and ACHF shapes are very di§erent for each estimator. However, the counterfactual

composition e§ect is also close to zero. The PLM’s ACHF estimates of the counterfactual
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decomposition is particularly hard to interpret.

FIGURE 4 and 5 ABOUT HERE

Next, we analyze µ(j)τ∗ and µ
(0,1)
τ∗ estimates for τ ∗ = τ̂Zn = 42 using the OB-KM,

PML and NP(8), which produces estimates of the duration means when τ (j)C ≥ τ
(j)
T ,

and also for τ ∗ = 24, 36, which are of interest when studying short and medium term

unemployment di§erences. Estimates of RMST and the corresponding counterfactual

decompositions can be found in tables 8 and 9, respectively. The estimate of the non

standardized RMST during the first 42 months is around 10.8 months for women and 7.9

months for men. The estimate of the standardized RMST, which is interpreted as the

average unemployment duration during the first 42 months if women would had the same

component distribution than men, is around 10.3 months, close to the corresponding

non standardized value. Results across methods are qualitatively similar and reveal a

reduction in the corresponding standardized RMST.

TABLE 8 and 9 ABOUT HERE

The counterfactual decompositions of RMST using the OB-KM and PML estimates

for τ ∗ = τ̂Zn = 42 (see Table 9) are fairly di§erent to the NP(8), which may indicate a

misspecification of the underlying structures assumed. For instance, the OB-KM estimator

might be biased because E
#
min(τ ∗, Z(j))

8
8X(j)

$
is non-linear and the PML is also biassed

because the underlying CCDF does not follow a PH specification, which was confirmed

by Schoenfeld’s test.

The counterfactural composition e§ect for any τ ∗ is close to zero for any of the three

methods. This indicates that the di§erence in workers’ characteristics slightly increases

the severity of women unemployment duration with respect to men, which might be driven

mainly through tenure, as suggested in previous descriptive analysis. Notice that the

counterfactual e§ects using OB-KM and PML methods are similar, but the composition
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e§ect using NP(8) is much smaller, as we have already seen for the HF in Figures 2 and

3. Similar results are obtained for τ ∗ = 24 and τ ∗ = 36. However, based on NP(8)

and OB-KM, it seems that the composition e§ect is more important when explaining

unemployment duration gender gaps in the first stages of unemployment, but is always

much smaller than the structure e§ect.
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VII. Conclusions

We have provided a methodological approach for standardizing lifetime distributions

when durations are observed under right censoring. Our research is motivated from the

analysis of unemployment gender gaps, which has been carried out in previous research

using ACHF comparisons. We have shown that ACHF is not necessarily related to HF

and can produce misleading conclusions. Since estimation of duration means is not pos-

sible because of censoring, we have focussed on the RMST. This has allowed examining

counterfactual decompositions of mean unemployment duration time di§erences during

di§erent time periods. We have also discussed the standardization of the HF, under a

semiparametric PH and nonparametric specifications, which has been compared with the

corresponding ACHF.

We have proposed a natural extension of the OB type decomposition of the RMST

to the censored data case using KM weights. Monte Carlo studies show that under non-

linearity, the OB method may produce serious biases. Nonparametric estimates of the

CCDF based on partitions of the components support forms a basis for standardizing the

CDFs, or any feature of interest, without imposing more restrictions than those needed for

the identification of the underlying nonparametric joint CDF of duration and components.

The number and size of the classes in the partition are fixed and does not need to shrink

as the sample size increases for consistency of the corresponding estimates.

The proposed methodology has been applied to investigate the causes of unemployment

duration gender gaps in Spain. Findings indicate that the composition of men and women

populations is not relevant explaining HF and RMST gender gaps, which are mainly

explained by the structure e§ect related to market and workers, or employers, behaviors.
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Tables
Table 1 DGPs

Population 0 Population 1

T (0) = 5 +X(0) + "
(0)
Y "

(0)
T ∼ N (0, 1) T (1) = 5 +X(1) + "

(1)
T "

(1)
Y ∼ N (0, 1)

DGP1 X(0) ∼ N (1.5, 0.5) X(1) ∼ N (1, 0.5)

C(0) = 7.5 + "
(0)
C "

(0)
C ∼ N (υ0, 1.5) C(1) = 7 + "

(1)
C "

(1)
C ∼ N (υ1, 1.5)

T (0)|X(0) ∼WB
#
e2−x0 , 5

$
T (1)|X(1) ∼WB

#
e2−x1 , 5

$

DGP2 C(0) ∼WB
#
e2+υ0 , 4

$
, υ0 = −0.26 C(1) ∼WB

#
e2+υ1 , 4

$
, υ1 = −0.22

X(0) ∼ U (0, 1) X(1) ∼
P3

i=1 U (0, 1/3)

T (0) = 5 + 2|X(0)|+ "(0)T , "
(0)
T ∼ N (0, 1) T (1) = 5 + 2|X(1)|+ "(1)T , "

(1)
T ∼ N (0, 1)

DGP3 C(0) = 9.5 + "
(0)
C "

(0)
C ∼ N (0, 2) C(1) = 7.7 + "

(1)
C "

(1)
C ∼ N (0, 1.5)

X(0) ∼ U (−3, 3) X(1) ∼ N (0, 1)

Data generating process as for two populations. Parameters in the distributions are chosen to produce

30% of censoring.
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Table 2 Comparison of alternative procedures under DGP1

MAE
Method Sample size ∆

(0,1)C
µ ∆

(0,1)S
µ µ(0) µ(1) µ(0,1)

200 0.481 0.444 0.064 0.069 0.469
PML 800 0.492 0.488 0.034 0.034 0.490

3200 0.497 0.492 0.017 0.018 0.494
200 0.244 0.240 0.065 0.067 0.240

NP(3) 800 0.146 0.149 0.035 0.034 0.146
3200 0.109 0.108 0.017 0.018 0.109
200 0.249 0.254 0.065 0.067 0.250

NP(10) 800 0.133 0.139 0.035 0.034 0.135
3200 0.066 0.067 0.017 0.018 0.066
200 0.079 0.113 0.070 0.069 0.100

OB-KM 800 0.045 0.066 0.037 0.035 0.057
3200 0.022 0.032 0.018 0.018 0.027
200 0.090 0.117 0.070 0.067 0.107

OB-KM-Pol3 800 0.050 0.069 0.037 0.035 0.060
3200 0.024 0.033 0.018 0.018 0.028

RMSE
Method Sample size ∆

(0,1)C
µ ∆

(0,1)S
µ µ(0) µ(1) µ(0,1)

200 0.481 0.457 0.080 0.087 0.476
PML 800 0.492 0.492 0.042 0.044 0.492

3200 0.497 0.493 0.022 0.022 0.495
200 0.313 0.315 0.081 0.084 0.312

NP(3) 800 0.184 0.189 0.043 0.042 0.186
3200 0.128 0.128 0.022 0.022 0.128
200 0.321 0.327 0.081 0.084 0.320

NP(10) 800 0.169 0.174 0.043 0.042 0.170
3200 0.084 0.086 0.022 0.022 0.084
200 0.099 0.142 0.088 0.087 0.127

OB-KM 800 0.057 0.082 0.046 0.044 0.072
3200 0.029 0.040 0.023 0.023 0.035
200 0.114 0.148 0.087 0.085 0.136

OB-KM-Pol3 800 0.064 0.087 0.046 0.044 0.077
3200 0.030 0.041 0.023 0.023 0.036

MAB and RMSE for the standardization and decomposition components of the RMST under DGP1 in

Table 1.
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Table 3 Comparison of alternative procedures under DGP2

MAE
Method Sample size ∆

(0,1)C
µ ∆

(0,1)S
µ µ(0) µ(1) µ(0,1)

200 0.014 0.105 0.080 0.070 0.084
PML 800 0.009 0.057 0.046 0.035 0.046

3200 0.006 0.029 0.024 0.017 0.023
200 0.163 0.154 0.083 0.070 0.154

NP(3) 800 0.091 0.089 0.048 0.035 0.087
3200 0.063 0.059 0.025 0.018 0.059
200 0.266 0.259 0.083 0.070 0.257

NP(10) 800 0.141 0.136 0.048 0.035 0.132
3200 0.070 0.067 0.025 0.018 0.065
200 0.082 0.122 0.097 0.070 0.116

OB-KM 800 0.085 0.106 0.056 0.035 0.107
3200 0.099 0.109 0.029 0.018 0.110
200 0.098 0.121 0.091 0.070 0.110

OB-KM-Pol3 800 0.060 0.065 0.055 0.035 0.061
3200 0.032 0.035 0.029 0.018 0.032

RMSE
Method Sample size ∆

(0,1)C
µ ∆

(0,1)S
µ µ(0) µ(1) µ(0,1)

200 0.017 0.132 0.101 0.088 0.106
PML 800 0.011 0.072 0.058 0.043 0.058

3200 0.007 0.036 0.030 0.022 0.029
200 0.207 0.196 0.106 0.088 0.198

NP(3) 800 0.116 0.114 0.060 0.044 0.110
3200 0.075 0.073 0.031 0.023 0.072
200 0.353 0.339 0.106 0.088 0.340

NP(10) 800 0.177 0.172 0.060 0.044 0.168
3200 0.089 0.086 0.031 0.023 0.084
200 0.102 0.150 0.125 0.088 0.143

OB-KM 800 0.097 0.120 0.071 0.044 0.120
3200 0.102 0.114 0.036 0.022 0.114
200 0.123 0.150 0.118 0.088 0.138

OB-KM-Pol3 800 0.076 0.083 0.070 0.044 0.077
3200 0.040 0.045 0.036 0.022 0.041

MAB and RMSE for the standardization and decomposition components of the RMST under DGP2 in

Table 1.
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Table 4 Comparison of alternative procedures under DGP3

MAE
Method Sample size ∆

(0,1)C
µ ∆

(0,1)S
µ µ(0) µ(1) µ(0,1)

200 1.221 1.112 0.104 0.102 1.174
PML 800 1.297 1.285 0.056 0.050 1.297

3200 1.347 1.342 0.029 0.027 1.349
200 0.565 0.465 0.106 0.096 0.511

NP(3) 800 0.569 0.562 0.056 0.049 0.568
3200 0.599 0.596 0.029 0.026 0.600
200 0.212 0.176 0.106 0.096 0.180

NP(10) 800 0.111 0.099 0.056 0.049 0.097
3200 0.062 0.058 0.029 0.026 0.059
200 1.214 1.323 0.166 0.092 1.322

OB-KM 800 1.295 1.422 0.125 0.052 1.406
3200 1.347 1.416 0.068 0.027 1.410
200 0.225 0.208 0.108 0.092 0.188

OB-KM-Pol3 800 0.145 0.173 0.059 0.055 0.156
3200 0.140 0.164 0.033 0.030 0.155

RMSE
Method Sample size ∆

(0,1)C
µ ∆

(0,1)S
µ µ(0) µ(1) µ(0,1)

200 1.224 1.125 0.131 0.128 1.183
PML 800 1.298 1.289 0.070 0.063 1.300

3200 1.348 1.343 0.036 0.033 1.350
200 0.590 0.496 0.134 0.120 0.536

NP(3) 800 0.576 0.568 0.070 0.062 0.574
3200 0.601 0.598 0.036 0.033 0.601
200 0.262 0.221 0.134 0.120 0.228

NP(10) 800 0.139 0.124 0.070 0.062 0.121
3200 0.077 0.071 0.036 0.033 0.072
200 1.217 1.336 0.206 0.115 1.332

OB-KM 800 1.296 1.426 0.151 0.065 1.409
3200 1.347 1.417 0.081 0.034 1.411
200 0.247 0.244 0.138 0.114 0.219

OB-KM-Pol3 800 0.158 0.190 0.072 0.069 0.168
3200 0.144 0.169 0.041 0.037 0.158

MAB and RMSE for the standardization and decomposition components of the RMST under DGP3 in

Table 1.
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Table 5 E§ect of ignoring censoring

MAE
No censoring Censoring

Sample size 200 800 3200 200 800 3200
Ignoring censoring 0.071 0.035 0.017 0.152 0.147 0.147

∆
(j,s)C
`τ̂Zn

Dropping censored obs. 0.071 0.035 0.017 0.101 0.077 0.074
OB-KM 0.071 0.035 0.017 0.086 0.047 0.023
Ignoring censoring 0.097 0.049 0.023 0.162 0.149 0.149

∆
(j,s)S
`τ̂Zn

Dropping censored obs. 0.097 0.049 0.023 0.130 0.085 0.075
OB-KM 0.097 0.049 0.023 0.122 0.063 0.032

RMSE
No censoring Censoring

Sample size 200 800 3200 200 800 3200
Ignoring censoring 0.090 0.044 0.022 0.169 0.153 0.149

∆
(j,s)C
`τ̂Zn

Dropping censored obs. 0.090 0.044 0.022 0.123 0.088 0.077
OB-KM 0.090 0.044 0.022 0.108 0.058 0.028
Ignoring censoring 0.121 0.062 0.029 0.191 0.160 0.152

∆
(j,s)S
`τ̂Zn

Dropping censored obs. 0.121 0.062 0.029 0.158 0.103 0.082
OB-KM 0.121 0.062 0.029 0.153 0.078 0.040

MAB and RMSE for the decomposition components of the RMST under DGP1 in Table 1.

Table 6 Estimation of the RMST and the mean with τ (j)C fixed, τ (j)C < τ
(j)
T

MAE
µ µτ∗

Sample size 200 800 3200 200 800 3200
∆
(0,1)C
µτ∗ 0.081 0.076 0.076 0.013 0.007 0.003

∆
(0,1)S
µτ∗ 0.101 0.052 0.026 0.095 0.052 0.025

µ
(0,0)
τ∗ 0.072 0.038 0.024 0.067 0.035 0.017
µ
(1,1)
τ∗ 0.112 0.094 0.094 0.077 0.041 0.020
µ
(0,1)
τ∗ 0.104 0.094 0.095 0.063 0.033 0.016

RMSE
µ µτ∗

Sample size 200 800 3200 200 800 3200
∆
(0,1)C
µτ∗ 0.084 0.076 0.076 0.016 0.008 0.004

∆
(0,1)S
µτ∗ 0.127 0.065 0.032 0.118 0.065 0.031

µ
(0,0)
τ∗ 0.089 0.048 0.029 0.084 0.044 0.022
µ
(1,1)
τ∗ 0.137 0.106 0.098 0.097 0.051 0.025
µ
(0,1)
τ∗ 0.126 0.102 0.097 0.078 0.041 0.020

Mean absolute bias and RMSE for the decomposition components of the mean and the RMST, with

τ∗ = τ
(0)
C = τ

(1)
C = 6.5 and τ (0)T = τ

(1)
T =1, using PML method. Simulations under DGP2 in Table 1.
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Table 7 Descriptive statistics composition variables

Variable Total Women Men p-value
21.5inAge 39.727 40.014 39.218 2.4in0.236

(0.322) (0.381) (0.585)
21.5inHoushold head 0.323 0.237 0.476 2.4in0.000

(0.012) (0.014) (0.022)
21.5inTenure 13.466 11.003 17.834 2.4in0.000

(0.32) (0.334) (0.615)
21.5inMarital Status 0.640 0.680 0.569 2.4in0.000

(0.013) (0.015) (0.022)
21.5inHigh education (Dummy) 0.182 0.193 0.162 2.4in0.000

(0.01) (0.013) (0.016)
21.5inNo. Unemployed 1.129 1.120 1.145 2.4in0.212

(0.01) (0.012) (0.016)
21.5inBig city 0.330 0.316 0.354 2.4in0.136

(0.012) (0.015) (0.021)
21.5inMedium size city 0.244 0.236 0.260 2.4in0.140

(0.011) (0.014) (0.019)
No. Obs 1,473 942 531

Standard erros in parenthesis.

Table 8 Standardized RMST

τ̂Zn = 42 τ∗ = 36 τ∗ = 24

Method Women Men µ
(0,1)
τ̂Zn

Women Men µ
(0,1)
τ∗ Women Men µ

(0,1)
τ∗

PML 10.721 8.090 10.275 10.398 7.886 10.016 9.463 7.258 9.220
NP(8) 10.864 7.804 10.831 10.594 7.596 10.476 9.726 7.043 9.545
OB-KM 10.864 7.804 10.427 10.594 7.596 10.094 9.726 7.043 9.193
RMST estimates for women and men for di§erent τ∗. Women is Population 0 and men refers to

Population 1.

Table 9 Decomposition Components RMST

τ̂Zn = 42 τ∗ = 36 τ∗ = 24

Method ∆
(0,1)
µτ̂Zn

∆
(0,1)C
µτ̂Zn

∆
(0,1)S
µτ̂Zn

∆
(0,1)
µτ∗ ∆

(0,1)C
µτ∗ ∆

(0,1)S
µτ∗ ∆

(0,1)
µτ∗ ∆

(0,1)C
µτ∗ ∆

(0,1)S
µτ∗

PML 2.631 0.446 2.185 2.512 0.382 2.130 2.204 0.242 1.962
NP(8) 3.060 0.033 3.027 2.997 0.118 2.880 2.683 0.180 2.502
OB-KM 3.060 0.438 2.622 2.997 0.499 2.498 2.683 0.533 2.150

Decomposition components of the RMST for di§erent τ∗. Women is Population 0 and men refers to

Population 1.
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Figures

Figure 1. QQ plots for Age and Tenure by Gender

Age Tenure

Figure 2. Standardization and Decomposition of the Averaged Hazard Function
based on a Nonparametric Specification -NP(8)-

Averaged Conditional Hazard Counterfactual Components

Figure 3. Standardization and Decomposition of the Marginal Hazard Function
based on a Nonparametric Specification -NP(8)-

Marginal Hazard Counterfactual Components
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Figure 4. Standardization and Decomposition of the Averaged Hazard Function
based on the PH Specification

Averaged Conditional Hazard Counterfactual Components

Figure 5. Standardization and Decomposition of the Marginal Hazard Function
based on the PH Specification

Marginal Hazard Counterfactual Components
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