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In this paper, we present a novel methodology to obtain imitative and 
innovative postural movements in a humanoid based on human 
demonstrations in a di®erent kinematic scale. We collected motion data 
from a group of human participants standing up from a chair. Modeling the 
human as an actuated 3-link kinematic chain, and by de¯ning a multi-

objective reward function of zero moment point and joint torques to 
represent the stability and e®ort, we computed reward pro¯les for each 
demonstration. Since individual reward pro¯les show vari-ability across 
demonstrating trials, the underlying state transition probabilities were 
modeled using a Markov chain. Based on the argument that the reward 
pro¯les of the robot should show the same temporal structure of those of the 
human, we used di®erential evolution to compute a trajectory that ¯ts all 
humanoid constraints and minimizes the di®erence between the robot 
reward pro¯le and the predicted pro¯le if the robot imitates the human. 
Therefore, robotic imitation involves developing a policy that results in a 
temporal reward structure, matching that of a group of human 
demonstrators across an array of demonstrations. Skill innovation was 
achieved by optimizing a signed reward error after imitation was achieved. 
Experimental results using the humanoid HOAP-3 are shown.

Keywords: Learning from demonstration; skill innovation; postural control; 
humanoid robot.
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1. Introduction

Consider a child learning motor skills based on demonstrations performed by his 
parent. In this case, the problem of relating demonstrations performed by the parent 
to the child's own kinematic scale, weight and height, known as the correspondence 
problem, would be one of the complex challenges that should be solved ¯rst. The 
correspondence problem is one of the crucial problems of imitation and can be stated 
as the mapping of action sequences between the demonstrator and the imitator.1,2 

This problem can be solved by mapping movements made in a di®erent kinematic 
scale to a common domain, such as a set of optimality criteria. From that perspec-
tive, the child could ¯nd a solution which ¯ts his own muscular strength, size, 
reachable space and kinematic characteristics which somehow matches the level of 
optimality of demonstrations performed by the parent. Moreover, if comparisons are 
made in an optimality domain, the child could even innovate solutions that can be 
more relevant to his kinematic structure, but closely follow the optimal solution 
demonstrated by the parent. This comparison is best done in a common reward 
landscape, speci¯ed by a set of reward functions rather than in the kinematic domain 
or in the muscle e®ort domain, since similar behavioral goals should give similar 
trajectories in a common reward landscape subject to a set of constraints.

This paper presents an advancement in how a humanoid robot can learn to

imitate and innovate motor skills from demonstrations of human teachers of larger

kinematic structures and di®erent actuator constraints. We present experimental

results for the task of standing up from a chair to a stable upright posture, where the

robot has to transit from one stable posture to another via a set of unstable states.

1.1. Foundations of skill innovation in humans

A wide range of work has been done in the area of observational learning from a 
psychological point of view. Thompson suggested that children learn not only by 
imitating, but also by understanding how the process works, what is known as 
emulation learning.3 For example, to understand that a doorknob twist will open a 
door, will help to learn how to leave a room. Even, the high predisposition of children 
to learn from observation suggested a more appropriate name for the human species: 
homo imitans, which means \man who imitates".4 There are also many experiments 
conducted with apes5 or more recently6 that support the argument that learning 
based on demonstrations can happen in intrinsic domains to do with the context of 
the kinematic domain.

It has been demonstrated that even animals can outperform the optimality of the 
demonstrated behavior in certain contexts. In a task of pushing a lever to obtain a 
food reward, rats ¯nally associated the amount of food to the rate of pushing the 
lever, which was not demonstrated at the beginning.7 Similar observations have been 
made in other experiments with birds8 and apes.9 Even Piaget, the father of the 
constructivist theory of knowing, hypothesized that the likelihood of matching a 
response may depend on the expected outcome for the observer.10
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The phenomenon known as goal emulation shows that the observer can repro-
duce the result of a behavior with a method slightly di®erent from that of the 
demonstrator.11,12 This is similar to what Mitchell calls fourth-level imitation, where 
an individual tends to reproduce a model understanding the consequences of 
that behavior, and performs a di®erent behavior maintaining what they called 
intentionality.13

Recent work in emulation show that apes are more suitable to emulate while 
children show more tendency to over-imitate, in the sense that children make an 
attempt to improve the optimality of the learnt skills. In that sense, skill innovation 
is an essential part of the human behavior.14

1.2. Learning from demonstration and skill innovation in robots

A humanoid robot sharing tools and space in a human society can bene¯t from a 
sound framework of learning based on demonstrations, that can vary across trials.15 

Despite the challenges to solve the correspondence problem,1,2,16–18 there has been a 
growing interest in this area due to several advantages such as the simpli¯cation of 
communicating a complex behavior through a demonstration,19 the absence of the 
need to have complex mathematical models of the dynamical system to learn an 
optimal behavior, and the fact that it does not require an expert teacher to perform 
the demonstrations, which simpli¯es the information gathering process.20

Similar to the biological world, robotic imitation is achieved under a set of 
schemes, as stated by Schaal1:

. Determine what to imitate, inferring the goal of the demonstrator.

. Establish a metric for imitation.

. Map between dissimilar bodies.

. Compute the control commands to perform the imitation behavior.

Several studies have been conducted in the area of learning from demonstration 
(LfD) using Gaussian mixture models (GMM), that encode a set of trajectories, and 
Gaussian mixture regression (GMR), to obtain a generalized version of these tra-
jectories to perform a robot movement.21

The problem of skill transfer and whole body motion transfer has been an inter-
esting area of research in recent years. Some studies addressed the problem of ma-

nipulating the angular momentum of the center of mass (COM),22 using graphs and 
Markov chains,23 de¯ning a spatio-temporal models based on movement primitives24 

or encoding and organizing learned skills.25

In the process of learning, as psychological and biological studies support for 
animals and humans, robots should be able to innovate new behavioral solutions, 
that ¯t their constraints, to behave more e±ciently.14 In this regard, reinforcement 
learning (RL) is a good framework to innovate behaviors, since we can construct a 
reward landscape such that some search mechanism could explore for better actions 
in the neighborhood of demonstrations.18,26,27
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Mixing imitation learning with RL produces a set of bene¯ts, as claimed by 
Barrios.28 It diminishes the computational time of convergence, since the search 
space is reduced. The innovation is based on actions that the robot has observed, so it 
is easier to improve this behavior. Furthermore, RL algorithms do not need to have 
the states and actions de¯ned a priori. Some works combine LfD with RL, to teach 
the humanoid robot a constrained task of placing a cylinder in a box29 or to teach a 
robot how to hit a baseball.18

1.3. Overview of the proposed method

In this paper, we address the problem of imitation and innovation learning in a task

of standing up from a chair. This particular posture control task takes the human

body from one stable posture (seated) to the other (standing) through a series of

unstable postures. In this task, a robot would bene¯t from demonstrations to avoid

excessive activation of joints to reach the second stable posture. We captured data

Fig. 1. Overview of the algorithm. We collected data from a MOCAP system and model the human as an

actuated 3-link kinematic chain, where qi are the joint positions. After computing the ZMP and joint
torque � i , we de¯ne a reward function for the human rH . This is done for all 160 demonstrations of

standing up from a chair. Then, the RTPM is obtained. Using DE, we generate a new triple pendulum

articular trajectory and obtain the reward pro¯le rR. This pro¯le is compared with the predicted reward

pro¯le if the robot behaves like a human r̂ R. The optimization process ends when the di®erence is small
producing the imitation solution. Furthermore, we perturb the imitation solution �qi and compute a new

reward pro¯le r 0
R that is compared with the imitation reward (rR). The optimization process ends when the

imitation reward is higher than the innovation reward, producing the innovation solution.
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from eight human participants performing 20 consecutive demonstrations each, 
using a Qualisys motion capturing system. Modeling the humans as an actuated 
3-link kinematic chain, we computed a reward function of stability and e®ort which 
we used as a common basis of comparison with the humanoid robot. Using Markov 
chains theory, we summarized the performance of all human participants in a 
transition probability matrix of the scalar reward that de¯nes the optimality of the 
behavior. Using di®erential evolution (DE),30 we optimized the robot joint trajectory 
to minimize the di®erence between the predicted reward and the real reward 
achieved by human demonstrators, subject to the constraints of zero moment point 
(ZMP) limits, maximum and minimum torque and joint limits. Once this ¯rst stage 
of imitative learning is accomplished, we proceed to explore new solutions with better 
rewards in the neighborhood of human-like movement subject to constraints, which 
we call skill innovation. Figure 1 shows the summary of the algorithm discussed in 
this paper.

The rest of the paper is organized as follows. First, in Sec. 2, an overview of 
Markov decision process is presented. Afterwards, in Sec. 3, we discuss the imitation 
process and how it is applied to the humanoid robot. In addition, in Sec. 4, we explain 
the skill innovation process. In Sec. 5, we de¯ne the mathematical tools that will be 
used and the representation of the demonstrated behavior. Finally, in Sec. 6 the 
experimental results are presented and in Sec. 7 the whole method is discussed and 
compared with other related approaches.

2. Extracting a Stochastic Template from Human Demonstrations

This section presents the process of extracting a stochastic model of the human be-

havior, that will be transferred to the robot. This behavior is presented in the form of a

probability reward transition probabilitymatrix (RTPM) domain, that can be used to

compute an optimal robotic behavior learned based on human demonstrations.

Robot LfD, also called robot programming by demonstration or imitation

learning, is a powerful method to reduce the space of solutions and accelerate the

learning process. LfD is a natural way to interact with the robot and does not require

an expert teacher. Furthermore, in contrast to slow RL or trial-and-error learning

methods, it can easily ¯nd a good solution from the observed demonstrations (local

optima).

We address two main challenges when using human demonstrations to train a 
humanoid robot. First, the robot is of a much smaller kinematic structure compared 
to the human demonstrators, while being limited by di®erent actuator constraints, 
causing a correspondence problem.1 Second, we noticed that the demonstrations 
performed by a group of eight human participants were variable across trials of a 
given participant and across the average behaviors of individuals.

We proposed to solve the correspondence problem by ¯nding a common con-

strained reward domain for the behavior of both the humans and the robot. Once

a set of reward functions have been identi¯ed, we approach to solve the second
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problem by taking a stochastic approach to model the reward transition probability

distribution for all demonstrated trials by all participants. More speci¯cally, we

construct a Markov chain using the discretized reward pro¯les for each demonstrated

trial.

The advantage of a Markov chain to model human demonstrations in this manner

is that we can use a particular reward value, obtained by the robot at any given time

to predict the future reward it would obtain if it follows a policy similar to humans in

a qualitative sense. Errors of such predictions can be used as feedback signals to

update the policy of the robot. Another advantage of the Markov chain is that we can

¯nd a single state transition probability distribution, or a transition matrix that

summarizes the dominant intrinsic structure of demonstrations performed by many

individuals subject to variability.

2.1. Markov chains and transition matrix

A Markov chain is a random process that can de¯ne the behavior of a dynamical

system under the Markov property. This property assumes that a state has all the

required information to make a decision about the future.

A ¯rst order Markov chain is de¯ned as a series of random variables or states

s1; . . . ; sN where

PðsNþ1js1; . . . ; sN Þ ¼ PðsNþ1jsN Þ: ð1Þ

If we use a Markov chain to explain a behavior, we could predict the next state in a

sequence. The distribution of the prediction will depend only on the previous state

and will be independent of all early states. In other words, the de¯ning characteristic

of a Markov chain is that its future trajectories depend on its present and its past

only through the current value.31

For nth and ðn þ 1Þth trials, if a state sN has an outcome j (i.e., sN ¼ j) and

sNþ1 ¼ k, the transition probability associated with both trials is PðsNþ1 ¼
kjsN ¼ jÞ ¼ pjk .

We can specify a Markov chain given the initial probability distribution Pðs1Þ and
the conditional probabilities in the form of a transition probability matrix or Markov

transition matrix T , where T is a stochastic matrix, i.e., it satis¯es that every row is a

probability distribution and it is a square matrix with non-negative elements.

pjk � 0;
X
j

pjk ¼ 1 for all j: ð2Þ

This matrix may be written in the form

T ¼

p11 p12 p13 � � �
p21 p22 p23 � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

0
BB@

1
CCA: ð3Þ
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The transition probabilities and the transition matrix are de¯ned for a unit-step

transition, however, we can de¯ne a m-step transition in the future. The m-step

transition probability is de¯ned by

PðsNþM ¼ kjsN ¼ jÞ ¼ pM
jk ; ð4Þ

and the m-step transition matrix is denoted by TM .

Thus, the probability of a state with m-steps in the future can be denoted by

PðsNþM Þ ¼ PðsN ÞTM : ð5Þ

In Algorithm 1, the computation of the transition matrix is presented.

3. Imitation of the Human Behavior

In this section, we explain the process of how the robot performs a meta-stable

standing up postural movement based on human demonstrations.

Since a human and a humanoid robot are morphologically similar, the optimality

criteria guiding the behavioral policies should be comparable. In this paper, we use

this premise to make a humanoid robot learn from an array of demonstrations

performed by a group of eight human participants, in the task of standing up from a

seated posture to an upright posture. In the case of the robot, both postures were

manually selected. The initial posture was achieved by manually placing the robot on

a small chair. The height of the chair was selected to make sure that the robot does

not exceed the maximum torques and the seated posture is such that the ZMP is a

little outside the sole of the feet. The ¯nal posture was a stable upright stand-up

position. These postures can be changed as long as the initial posture do not surpass

the maximum torque and the ¯nal posture is stable.
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Postural control can be de¯ned as controlling the body's position in space for 
the purpose of stability and orientation for the robot to move from one static 
posture to another.32 In that sense, we can de¯ne a set of static posture primitives, 
such as to be sitting down, to be standing up, to be lying down, etc. We also can 
de¯ne a set of dynamic postures as the transitions between static postures. An 
example of these can be the actions of standing up, sitting down, walking, running, 
jumping, etc.

3.1. Behavior prediction through reward transition probability matrix

Using the transition matrix, we can predict the probability of the future reward of

the human.

Phumanðk þ nÞ ¼ PhumanðkÞT n
human; ð6Þ

where PhumanðkÞ is the probability in step k, Phumanðk þ nÞ is the probability in N

steps in the future and Thuman is the transition matrix.

If the robot is going to behave like the human, we can suppose that their tran-

sition matrices are the same:

Thuman ¼ Trobot ¼ T : ð7Þ

So if we know the reward probability in step k, we can predict the future probability

in step k þ n.

Probotðk þ nÞ ¼ ProbotðkÞT n
robot ¼ ProbotðkÞT n: ð8Þ

We de¯ned the ¯tness function as the di®erence between the predicted reward of

the robot if it behaves like a human and the actual reward, under some constraints.

The predicted reward is obtained as the expected value of the probability in (6), and

it is given by

r̂ RðkÞ ¼ E½ProbotðkÞT n�: ð9Þ

Furthermore, we added as a constraint the ZMP limits, torque limits and joint

limits.

We de¯ned the ¯tness function as

min f ¼
XN�1

k¼1

ðr̂ Rðk þ 1Þ � rRðk þ 1ÞÞ2; ð10Þ

�min � � � �max; ð11Þ

where � represents ZMP, torque or joint position.

In Algorithm 2, an outline of the imitation process is presented. This algorithm 
can be easily implemented minimizing the ¯tness function (10) using DE.
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4. Innovation of the Human Behavior

Similar to how a child would try to improve learned behaviors based on demon-

strations, often known as over-imitation, a robot could use heuristic search 
algorithms to explore the reward landscape for better behavioral policies in the 
neighborhood if the policies acquired are based on demonstrations.14 In this section, 
we will discuss how we achieved this, based on the demonstrations of the eight 
human participants.

4.1. Innovative solution to stand up process

We can compute a new desired joint trajectory as a perturbation of the imitation

trajectory qinnovation ¼ qimitation þ�q and maximize the di®erence between the in-

novation reward and imitation reward, while ¯tting the constraints.

The new ¯tness function maximizes the positive di®erence between the innovation

reward r 0
R and imitation reward rR. It is given by

min f ¼
XN
k¼1

e��ðr 0
RðkÞ�rRðkÞÞ; ð12Þ

ð13Þ�min � � � �max;

where � represents ZMP, torque or joint position. 
Algorithm 3 presents the innovation behavior.

9



4.2. Imitative and innovative learning
Imitation and innovation process during learning is a complex process that can be 
formulated together using a simple variation of (10) and (12).

min f ¼ ð1� �Þ
XN�1

k¼1

ðr̂Rðk þ 1Þ � rRðk þ 1ÞÞ2 þ �
XN
k¼1

1

rRðkÞ
; ð14Þ

�min � � � �max; ð15Þ

where � represents ZMP, torque or joint position.

The ¯rst term of (14) represents the imitation part, the second part represents the 
innovation, tuned by the term � 2 ð 0; 1Þ. The third term corresponds to the ZMP, 
torque and joint limits constraints. If we are looking for more innovation, we just need 
to adjust the term �.

5. Model and Behavior Representation in the Reward Domain

In this section, we develop the mathematical tools that allow to transfer the behavior

from the human to the robot. We modeled both human and robot as an actuated

3-link kinematic chain. Next, we obtain the ZMP and torque of every link trajectory

to compute a common basis of comparison, the reward domain.

5.1. Kinematic model

We approximated both the humans and the robot using an actuated 3-link kinematic 
chain in the sagittal plane, to represent the third scheme of robotic imitation, the 
mapping between dissimilar bodies,1 since the human standing up movement occurs
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in that plane without relative movement of legs. It should be noted that this does not

account for the role of the swing of hands during standing up.

Figure 2 (left) shows a snapshot of the high frequency camera of the MOCAP 
system, where a human is seated on a chair with all the markers on his body. An 
actuated 3-link kinematic chain is overlaid. In Fig. 2 (right), we show the position of 
the 3-link actuated kinematic chain over the humanoid robot. The COM of each link 
in the kinematic chain is located at its tip. The ¯rst joint of the kinematic chain 
corresponds to the ankle joint in both human and humanoid, the second joint of the 
kinematic chain corresponds to the knee and the third one corresponds to the hip.

It is clear that a 3-link kinematic chain does not completely represent the behavior 
of a humanoid robot in every situation, however the model has some advantages that 
make it suitable for the task of standing up from a chair. We chose a 3-link kinematic 
chain with continuous boundary conditions (starting from static torques needed to 
keep balance soon after lift-o® from the chair) to represent a human and robot 
standing up due to the model suitability for this task. It is a simple model with easy 
to solve equations, with low computational cost, which is an advantage to use an 
optimization process like in our case. The task involves relatively low velocity and 
acceleration pro¯les. Motor tasks like standing up in healthy adults is a sub-
conscious process with minimum cognitive inhibition. Furthermore, the movement is 
symmetric (legs do not move relative to each other). Therefore, a kinematic chain in 
the sagittal plane is suitable to represent the movement. In a previous work, we 
discussed the advantages and limitations of using a reduced model and how the 
performance can be improved using a robust control technique like Fractional 
Calculus.33 It should be noted that, using a more complete model like in the work of 
Dr. Sentis34 would reduce real-time feedback control e®ort, it would not a®ect the 
application or results of our method. A complete model would require a more com-

plex formulation with higher computational cost and room for errors due to wrong 
estimation of an increased number of parameters. But most important of all, it does

Fig. 2. Snapshot of the high frequency camera of the MOCAP system with a subject seated on a chair and

markers on his body. Actuated 3-link kinematic chain is overlaid (left). A simulation of the humanoid

HOAP-3 seated on a chair and the 3-link kinematic chain (right).
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not improve the method we propose in any way. It is clear that a 3-link kinematic

chain does not represent completely the behavior of a humanoid robot in every

situation, however the model has some advantages that make it suitable for the task

of standing up form a chair.

Our motion data shows that there is no slip between the foot and the ground in

the human demonstrations, therefore we assume that the friction coe±cient was high

enough for the reaction force vector to stay within the friction cone with no slip.

Furthermore, for simplicity we did not model the contact with the chair when the

human is seated.

5.1.1. Human kinematic model and simpli¯cations

To calculate the masses of the actuated 3-link kinematic chain for the human, we 
took into account the total weight of the subject and an estimate of the mean 
distribution of human body parts presented by NASA.35 The mass of the ¯rst link 
is composed by the mass from the feet to the knee, the mass of the second link is 
composed by the mass from the knee to the hip and the mass of the third link is 
composed by the mass from the rest of the body.

The length of the links is estimated using the distance between the markers (see 
Fig. 10). For the ¯rst link, the length is the distance between ankle and knee, for the 
second one, the distance between knee and hip and for the third one, the distance 
between the hip and the middle of the chest.

5.1.2. Robot kinematics identi¯cation

To identify the actuated 3-link kinematic chain parameters of the Fujitsu HOAP-3 
humanoid robot, i.e., the length and mass of every link, we used DE30 and data of the 
robot sensors. This method is based on the work of Tang.36

We manually planned several stand up trajectories for the robot and obtained the 
ZMP measurement of the force sensors in the feet. Later, we used the ZMP multi-

body equation (16) to obtain the theoretical ZMP trajectory in the saggital plane.

xZMP ¼
P

mixið€zi þ gÞ �
P

mi€x izi �
P

Iiy�iyP
mið€zi þ gÞ ; ð16Þ

where xZMP is the ZMP in the sagittal plane, mi is the link mass, xi and zi are the

positions of the link tip, €x i and €zi are the accelerations, Iiy is the inertia, �iy is the

angular velocity and g is the gravity acceleration.

To identify the system, we optimized the kinematic chain parameters minimizing

the di®erence between the theoretical ZMP and the real ZMP. The results are shown

in Table 1.

The trajectories to identify the system were planned performing a stand up 
movement starting from seated (Fig. 3). At ¯rst, the robot seems unstable because its 
ZMP is slightly outside the limits. Actually it is not, the robot is seated on a small 
chair. Since we do not take into account the contacts with this chair, both theoretical
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and real ZMP are outside the limits. However, the robot at this moment has three

contacts, the chair and both feet. When the movement starts, the robot rapidly

reaches stability.

5.2. Equations of motion

To derive the equation of motion for the 3-link kinematic chain (see Fig. 3), we used

the Lagrange theory. mi is the link mass, li is the link length, qi is the joint position,

and � i is the joint torque.

d

dt

@L
@ _qi

� �
� @L

@qi
¼ � i ; ð17Þ

where q
:
i is the joint velocity and the Lagrangian L is the di®erence between kinetic T

and potential energy V.
L ¼ T � V: ð18Þ

Let us de¯ne the potential energy

V ¼ m1gz1 þm2gz2 þm3gz3: ð19Þ

Let us de¯ne the kinetic energy

T ¼ 1

2
m1v

2
1 þ

1

2
m2v

2
2 þ

1

2
m3v

2
3 ; ð20Þ

where v1, v2 and v3 are the speed of the centers of mass of the 3-link kinematic chain, 
vi
2 ¼ x_ i2 þ z_ i2. Substituting (19) and (20) into (18), we obtain the equation of 

motion

Table 1. Parameter identi¯ca-

tion of the 3-link kinematic chain

for the robot.

Mass (g) Length (m)

Link 1 505 0.167
Link 2 500 0.260

Link 3 3900 0.264

τ

τ

τ

Fig. 3. An actuated 3-link kinematic chain in the sagittal plane.
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of the 3-link kinematic chain, whose compact form is stated as follows:

� ¼ HðqÞq:: þCðq;q: Þq: þGðqÞ; ð21Þ

where H 2 R3�3 is the inertia matrix, C 2 R3�3 is the matrix of centrifugal and

Coriolis forces, G 2 R3�1 is the gravity matrix, � is the vector of joint torques, q;q
:

and q
::
are the vectors for joint position, velocity and acceleration.

5.3. State space representation of the 3-link kinematic chain

The 3-link kinematic chain can be expressed as a dynamical system in the standard

form

x
: ¼ Axþ Bu; ð22Þ

y ¼ Cx; ð23Þ

where x is the state vector, u is the control vector and y is the output vector.

To obtain the representation of the triple pendulum system, let us de¯ne the

following state variables: x ¼ ½q1; q
:
1; q2; q

:
2; q3; q

:
3�T .

Taking this into account, and reordering Eq. (21), the matrices A, B and C can be 
obtained knowing that

x
:
1 ¼ x2; x

:
3 ¼ x4; x

:
5 ¼ x6; ð24Þ

x
:
2

x
:
4

x
:
6

0
B@

1
CA ¼ f̂ ðx1;x2;x3;x4;x5;x6Þ; ð25Þ

where f̂ contains nonlinear terms of the state variables.

0 0.5 1 1.5 2 2.5 3
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time (s)

Z
M

P
 (

m
)

ZMP
TP

ZMP
real

Fig. 4. An example of a theoretical versus real ZMP trajectory used in the parameter identi¯cation. The

limits of the ZMP are showed in dotted red.
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To get rid of the nonlinear terms, we linearized over the point of maximum

acceleration, xi0 and ui0, using a Taylor expansion.

~x
:
¼ A~x þB~u; ð26Þ

where

A ¼ @f

@x

���� x¼x0

u¼u0

; B ¼ @f

@u

���� x¼x0

u¼u0

ð27Þ

and ~xi ¼ xi � xi0, ~ui ¼ ui � ui0.

5.4. Trajectory generation

To perform the imitation, we de¯ned a desired joint trajectory for the robot, com-

puted as a cubic spline with one via point with an initial, middle and ¯nal point. The 
initial and ¯nal points correspond to the static postures of being seated and being 
standing up and are known. The middle point is optimized using DE to obtain the 
imitative and innovative behavior, using (10) and (12), respectively.

It is important to highlight that there is no dynamic control. We use the data

obtained via the MOCAP system to compute a stochastic model of the human

behavior. The model is transferred to the humanoid robot by computing an optimal

trajectory, which imitates the human ¯tting all humanoid constraints.

The trajectory optimization is computed o®line at the moment, because the robot

has to learn the average behavior demonstrated by a group of humans. However, DE

can use individual demonstrations in a pool of references in an online learning

framework.

5.5. Definition of reward profile

Through human demonstrations, the humanoid robot learns how to imitate the

human performance, taking into account the robot constraints. Furthermore, it is

able to improve the imitation, obtaining a better solution than the one demonstrated

by the human.

For this purpose, we de¯ned a reward function of stability and e®ort for all human

participants, which are modeled as 3-link kinematic chains. To check the stability,

we used the ZMP and to check the e®ort, the torques of the three joints.

To compute the inverse dynamics, we used (21). To compute the ZMP for the 
3-link kinematic chain, we used the equation of multibody ZMP in the sagittal 
plane (16).

In Fig. 5, the ZMP pro¯le for all 20 demonstrations of one human participant is 
plotted, whose weight is 68.3 kg and height is 179.6 cm. As it can be observed, at the 
beginning, the ZMP is outside the limits because we do not model the contact with 
the chair. The ZMP limits are obtained by measuring the feet size of all subjects with 
the data provided in the MOCAP system. We took as the stable zone the mean of the
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feet measurements in every demonstration. As it can be seen, not all trajectories have

the same duration, since not all demonstrations are equal. To solve this problem, we

took the slowest movement as the basis and stretch the other trajectories as if the

human is still.

Figure 6 shows the joint torques for the same participant. Since we cannot 
measure the maximum torque that the muscles support, for simplicity, we took the 
maximum torque of the 20 demonstrations as the maximum value. This value will be 
used in the de¯nition of the reward function.

5.6. Selection of the reward function

We used two di®erent functions to evaluate the human behavior in the reward space:

a polynomial and a Gaussian-like function. Every function is used to obtain the ZMP

reward pro¯le and the torque reward pro¯le. �j represents the ZMP minimum,

medium and maximum in the case of the ZMP reward function and similarly with the

torque reward function. The torque reward function is the normalized mean of the

3-link kinematic chain's joint torques.

The polynomial reward function has order four and is centered in �med. Values

outside the limits have zero reward. It is given by

f1ðxÞ ¼ ax 4 þ bx 3 þ cx 2 þ dx þ e; ð28Þ

where x can be ZMP or joint torque trajectory and the coe±cients a; b; c; d; e; are

obtained solving

f ð�minÞ ¼ 0; f ð�maxÞ ¼ 0; f ð�medÞ ¼ 1; f ð�med=2Þ ¼ 0:8; f ð3�med=4Þ ¼ 0:8:

ð29Þ
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Fig. 5. Actuated 3-link kinematic chain's ZMP pro¯le for the 20 demonstrations of one of the subjects
standing up. The mean and standard deviation are in red. The ZMP limits are in dotted red.
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The Gaussian-like function follows the next equation:

f2ðxÞ ¼ exp
�36ðx � �medÞ2
2ð�max � �minÞ2

: ð30Þ

These functions allow the mapping from the ZMP or torque space to the reward 
space (Fig. 7).

The total reward pro¯le for the human is the sum of stability and e®ort functions

rH ðtÞ ¼
wZMPðtÞrZMPðtÞ þ w� ðtÞr� ðtÞ

2
; ð31Þ

where wZMP and w� are weights of ZMP and torque respectively, that can vary from

0 to 1, rZMP is the reward of the zmp and r� is the reward of the torque, which is the

sum of the reward of every joint torque divided by three.

Figure 8 shows the mean reward of the 20 demonstrations of every participant

standing up (in blue). The mean of all 160 demonstrations and the standard devi-

ation are plotted in red. For this pro¯le, we chose the following weights:

wzmpðtÞ ¼ at 3 þ bt 2 þ c; ð32Þ
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Fig. 6. Actuated 3-link kinematic chain's torques of the 20 demonstrations of one of the subjects standing

up. The ¯rst joint of the 3-link kinematic chain corresponds to the human ankle, the second one to the knee
and the third one to the hip. The mean and standard deviation are in red.
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a ¼ �2ð�1 � �0Þ
T 3

; b ¼ 3ð�1 � �0Þ
T 2

; c ¼ �0; ð33Þ

where �1 ¼ 1, �0 ¼ 0 and T ¼ tmax

w� ðtÞ ¼ 1: ð34Þ

Equations (32) and (33) represent a third order polynomial, that starts in 0 and 
¯nishes in 1, which means that at the beginning of the stand up motion, we do not 
care if the ZMP is outside the limits, but we care about the torques (34).
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Fig. 7. Two reward functions. The blue one is a polynomial function of 4th degree, the green one is a

Gaussian-like function whose maximum is one. The parameter � represent the ZMP or the torque of the
actuated 3-link kinematic chain.
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Analyzing Fig. 8, the predominantly subconscious operation of motor programs to 
execute standing up show some stereotypical pattern across all subjects irrespective 
of their variability in terms of weight and height. A detailed discussion of this can be 
found in Appendix A.

5.7. Generalization and discussion of the reward profile

The shape of the reward functions are selected in accordance to the task. The ¯nal 
posture or goal posture of standing up has the feature of being stable and of minimum 
e®ort, as we showed in a previous work.37 In that case, the ZMP is almost in the 
middle of the feet and the torque is minimum. Therefore, the reward function is 
selected to be an attractor to these conditions. That is why the middle point of the 
reward function is the mean ZMP in the case of stability function and zero in the case 
of e®ort function (Fig. 7).

The selection of a suitable reward function has been discussed extensively. Some-

times, it is the observer who will manually set the reward value2; it can be de¯ned as a 
mathematical function that maps from states and actions to rewards17,38,39,29 or the 
reward function can be learned from the demonstration set, what is called inverse RL.40

We used stability as a criterion because this task involves moving from a statically

stable posture (seated) to an unstable ¯xed point (upright posture) through a process

of dynamic stabilizing. This can be achieved by humanoid robots with regulator type

feedback control, that leads to high peak torques at the start of the movement. In our

experiments, we show that humans do not use such a regulator type feedback con-

trol. In contrast, humans use an optimum strategy in terms of e®ort minimization.

Therefore, it is more meaningful to combine the intention to maintain stability while

minimizing e®ort in a learning based on demonstration framework.

Our method needs to de¯ne a reward function for each task. In a complete dif-

ferent task, as for example opening a door, the reward function will have to account

for a complete di®erent shape. This has all the sense since the goal is completely

di®erent. In the case of opening the door, the goal is grabbing the knob successfully

and pulling the door until it is open, then the reward function has to be selected to

take that into account. The goal and reward function are completely di®erent in the

case of standing up from a chair where it is important to maintain stability and

minimize the e®ort.

6. Experimental Results

We used the humanoid HOAP-3 to show the robustness of our method and present

the experimental results.

6.1. Experimental setup

We collected data from eight human participants of age between 20 to 40 years,

weights between 60 and 99 kg and heights between 1.68 and 1.88m. For this task, we
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recruited healthy adult participants with no known history of motor dysfunction.

The experimental protocol was approved by the ethics committee on using human

participants in experiments of Kingston University of London. The height and

weight of all human participants are presented in Appendix A.

Every participant performed 20 consecutive demonstrations of standing up from a

chair. There were no special training for the participants, since it is a simple task,

only a few instructions like do not stand up very fast or put your feet straight.

A 6-camera Oqus motion capturing system made by Qualisys, Sweden, collected

position data of 21 markers attached to the subject's body at 240Hz sampling rate.

In Fig. 9, the experimental procedure is shown. The participant is seated on a 
chair and performs the movement of standing up.

The markers were distributed as follows: ¯rst and ¯fth metatarsi, lateral malleolus

(ankle), lateral epicondyle of the femur (knee), greater trochanter (hip), anterior

superior iliac spine (ASIS), posterior superior iliac spine (PSIS), seventh cervical

vertebra (top of spine), acromion process (shoulder), lateral epicondyle of the hu-

merus (elbow) and lateral styloid process (wrist). All markers are bilateral, they were

located on both sides of the body, except the seventh cervical vertebra. In Fig. 10, the

position of the markers is shown.

6.2. Extraction of human behavior

After computing the reward function for every trial of every human participant, and 
assuming that the reward ¯ts the Markov property, we computed the RTPM.41 This 
matrix summarizes, in one singular metric, the behavior of several human partici-
pants doing the action of standing up from a chair. Its computation is presented in 
Algorithm 1.

This matrix changes with the reward function we select. Therefore, we computed 
several RTPM depending on the reward function selected, if it is the polynomial or 
the Gaussian, and depending of the weights selected in Eq. (31).

Figure 11(a) represents the RTPM using the polynomial function and the weights 
(32) and (34). Figure 11(b) represents the RTPM using the Gaussian-like function 
(30) and wzmp ¼ w� ¼ 1. These matrices, Fig. 11, represent the behavior of the human 
standing up taking into consideration the stability and the torques, and of course, it 
strongly depends on the selection of the reward function.

Fig. 9. Snapshots of one of the human participants standing up from a chair in the MOCAP
environment.
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6.3. Stand up experiments

Figures 12(a) and 12(b) shows the theoretical ZMP, calculated using (16) and the 
ZMP measured from the robot sensors for both imitation and innovation. This 
measurement is the mean of the ZMP trajectory of both feet. As it can be seen, 
initially the ZMP is outside the stability region. This happens because at that time
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Fig. 11. (a) Normalized RTPM for all human participants using the polynomial function (28).

(b) Normalized RTPM for all human participants using the Gaussian-like function (30).

Fig. 10. Distribution of the 21markers in a humanbody.R stands for right and L stands for left. 1 and 5MT
stands for ¯rst and ¯fth metatarsi, respectively.
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the robot is slightly leaned on the chair. The ZMP in the innovation motion goes

straighter to the middle, which is translated in a higher reward. The imitation ZMP

pro¯le also stays near the middle value, but not as much as the innovation pro¯le.

The explanation is simple, in the case of the imitation, the solution minimizes the

di®erence between the predicted reward if the robot behaves like a human and

the actual reward, instead, in the case of the innovation, the solution maximizes the

reward, always ¯tting the constraints. Furthermore, as it can be noted in Fig. 5, the

ZMP of the human and those of the robot is not the same, which is obvious as their

sizes and kinematic structure are di®erent.

Figures 13(a) and 13(b) plots the 3-link kinematic chain torques. As it can be 
seen, they are between the limits. It is remarkable that the second joint has the 
higher value, because it supports the heaviest part of the robot. Again, if we analyze
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Fig. 12. Computed ZMP of the actuated 3-link kinematic chain approximation and that for the real robot
for the imitation behavior (a) and for the innovation behavior (b).
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Fig. 13. 3-link kinematic chain torques in the imitation trajectory (a) and in the skill innovation

trajectory (b).
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the imitation and innovation torque pro¯les, we observe that in the imitation

movement, the knee joint stays near the limit almost until the second one. However,

in the innovation movement, the reward is higher, and the torque decrease faster to a

comfortable posture.

In the movement of standing up to an upright posture, the torque limits play an

important role. They de¯ne the initial posture. It is the same when a human stands

up. If the torque that our legs have to create is too much high, we help ourselves with

our hands, ¯nding another contact or a di®erent stand up strategy. Therefore, our

method as we presented it, can cope with postural movements starting from a safe

and feasible initial posture.

In Fig. 14, the computed reward pro¯les for imitation and innovation behavior are 
plotted. Blue line represents the imitation reward, and red dots represent the pre-
dicted reward if the robot behaves like a human and the green line represents the 
innovation reward. Comparing the robot reward with the human participants re-
ward in Fig. 8, we observe that they are very similar, since the predicted robot 
reward is related to human reward. However, it is not the same, because the vari-
ability of the di®erent demonstrator performances is encoded in the RTPM, which is 
the key element to transfer a behavior.

The results presented in this section were obtained using the polynomial function 
that maps from ZMP and torque space to reward space. The results using the 
Gaussian-like function (30) were not showed here, for reasons of space and that they 
would be very similar to the results of the polynomial function.

In the imitation approach (see snapshots in Fig. 15(a)), the kinematic chain lean 
forward producing a movement very similar to that of the human demonstrations. In 
that case, the optimizer minimize the di®erence between the actual reward and the 
predicted reward if the robot behaves like a human.
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Fig. 14. Reward pro¯les for imitation and innovation robot behaviors. The imitation reward in blue, the
predicted reward imitating a human in red and the innovation reward in green.
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In the innovation approach (see snapshots in Fig. 15(b)), we obtained a new

reward which is greater than the imitation reward, ¯tting all the constraints. In that

case, the movement of the 3-link kinematic chain is straighter, and it is more ade-

quate to the robot structure. The ratio between the sole of human's foot and human's

height is around 0.14. The ratio for the robot is 0.18. Then, the robot's feet are

greater in relation with its height than the human's feet. As the robot has a wider

surface, its ZMP is wider, in relation with its height. Therefore, the robot does not

need to lean forward so much as when it is imitating the human performance,

instead, it can go straighter, obtaining a better reward for the movement.

6.4. Hypothesis testing and generality

As it can be seen in Fig. 15, the robot is not seated with the second joint at 90� as a 
human would do. Due to the torque limitation in the robot motors, it is impossible to 
generate a trajectory with that initial posture, robot servos could be damaged. The 
initial posture is selected to obey the maximum torque limits. This phenomenon is 
equal in humans. It is common to use our hands to help us to stand up if our legs 
cannot generate enough torque. Furthermore, we use our hands to generate an easier 
and safer movement.

Furthermore, the surface of contact between the robot and the chair is smaller

than in the case of a human seated. Again, this is due to the robot morphology which

is di®erent to the human's in structure, not only in height and weight.

Fig. 15. (a) Snapshots of the robot standingup in the imitationprocess. (b) Snapshots of the robot standing
up in the innovation process. In the imitation process, the robot lean forward too much, trying to follow the

strategy of the human. However, in the innovation process the robot stands up more straightly, since it is

maximizing its reward.This behavior is logical because the feet size in the case of the robot is larger in relation

with the feet size of the human. Therefore, the robot does not really have to lean forward so much.
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To prove the generality of our method, we generate up to 35 experimental tra-

jectories of the robots standing up behavior. This trajectories have di®erent initial

and ¯nal postures. Our method allows to robustly transit from a seated posture to a

stand up posture. The initial posture is selected to not surpass the maximum torque

and the ¯nal posture is stable.

We used all these trajectories to compute the RTPM for the robot as shown in 
Fig. 16. This matrix represents the real behavior of the humanoid when it imitates 
the repertoire of human demonstrations. The human and the robot are morpho-

logically similar though the exact scales are di®erent. Therefore, we hypothesized 
that their stand up strategies should be similar. In order to test this, we can compare 
the human RTPM (Fig. 16(a)) with the robot RTPM (Fig. 16(b)) as similar strat-
egies should result in similar probability transitions in the reward space (see (7)).

To compare the matrices, we compute the mean square error, e, given by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðThumanði; jÞ � Trobotði; jÞÞ2

q
¼ 0:0395; ð35Þ

and then obtain the average probability error of a cell, Pe, given by

Pe ¼ ePðs ¼ siÞ ¼ 0:1128%; ð36Þ

where Pðs ¼ siÞ is the probability of staying in state si, which in the case of this 
RTPM is 1=35. For a more detailed discussion of the human demonstration consis-
tency, please refer to Appendix A.

7. Discussion

In this paper, we presented an original method to obtain imitative and innovative

postural behaviors in a humanoid robot through human demonstrations.
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Fig. 16. (a) Normalized transition matrix of the reward for the human using the polynomial function (28).

(b) Normalized transition matrix of the reward for the robot using the polynomial function (28) and the

experimental solutions.
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We collected data from a group of eight human participants standing up from a

chair. We modeled both human and humanoid using an actuated 3-link kinematic

chain approximation and computed a reward pro¯le in terms of ZMP and inverse

dynamics. We used 20 demonstrations each from eight participants to obtain the

Markov probability transition matrix of the compound reward for the human

demonstrations.

Provided the humanoid robot should follow the same optimality criteria and

pro¯le as the human if it were to imitate the human in a qualitative sense, we can use

the Markov chain obtained for human demonstrations to predict the future hu-

manoid reward starting from any state of the humanoid robot. We then optimized a

joint trajectory to obtain imitation, where the robot reward is equal to the predicted

human-like reward along the whole posture control period. Having achieved imita-

tion, we proceeded to achieve robotic skill innovation where the average reward

pro¯le of the humanoid is higher than that of the average human demonstrations.

The approach discussed in this paper emphasizes the fact that intelligent behavior 
of an embodied agent is in the eyes of the observer.42 Therefore, di®erent observers 
can use di®erent criteria to compare two embodied agents trying to achieve a given 
goal. Here, we propose that the observer can compare a behavior enacted by two 
di®erent embodiments in a common reward space. This paper considers the case 
where one multimodal reward function is used throughout the standing up behavior. 
However, it should be noted that there can exist state dependent heterogeneous 
reward functions in more complex cases. An example is to consider acceleration and 
joint torque optimization at the start and ZMP variability minimization in the 
neighborhood of the standing posture. Well established techniques of GMM can be a 
good technique to model such reward landscapes.

The developed algorithm produces a dynamic posture (standing up), which is the

transition between the static posture of being seated and the static posture of being

standing up. Both initial and ¯nal static postures are calculated in advance.

The main features of our method are discussed here:

. Our method allows to transfer a stand up behavior from a human teacher to a

robot learner, even if there is a wide mismatch in their kinematic structures.

. The robot learns to perform smooth and stable standing up movements based on

human demonstrations.

. The robot does not simply imitate the human movement, rather learns an optimal

behavior subject to a set of internal constraints.

. It takes into account the ZMP, torque, and joint limits of the robot, so the tra-

jectory is always executable.

. We de¯ned a multi-objective reward pro¯le of ZMP and joint torques and encoded

the demonstrating trials of the human in a RTPM.

. Based on neuroscienti¯c theories that suggest that human skill transfer is achieved

by imitating the goal of the action, we suppose that the reward transition proba-

bilities of the robot show the same structure as that in the human demonstrations.
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Thus, we computed a constrained policy that minimizes the predicted error in the

reward pro¯le.11

. After the imitation is achieved so that the robots RTPM is statistically signi¯-
cantly equal to that of the human demonstrations, we moved on to ¯nd a new

policy that improves the robot reward pro¯le leading to skill innovation.

7.1. Key contributions

The key contributions of this paper are summarized as follows.

We have presented a new skill transfer method of stand up behavior from human

demonstrators to humanoid robots, that involves comparing temporal transition in a

common multi-objective reward landscape. The main advantage is that we could

accommodate the behavior even if the human and the robot have a mismatch in their

kinematic structures, weights and heights. The transfer is obtained using a Markov

transition matrix that summarizes the state transition probabilities in the reward

space. This generic method can be extended to other movements like sitting down,

crouching or grasping an object subject to a set of robot constraints.

We achieve imitation learning by ¯nding a policy that minimizes the error

between the predicted robot reward pro¯le, if it behaves like a human, and the actual

reward pro¯le. The consequence is a trajectory that ¯ts stability, torque and joint

limit constraints while producing a stand up movement that imitates the human

behavior.

Finally, we re¯ne the robot behavior by maximizing the positive di®erence

between the new reward and the imitation reward, producing skill innovation that is

translated in a more suitable behavior of the humanoid robot.

7.2. Comparison with related work

We perform the same task as Mistry but in a completely di®erent way.43 In their 
work, a full-size humanoid robot stand up from a chair using di®erent strategies, 
imitating a young and an elder person. Their approach is based on mimicking, they 
adapt the human trajectories to the robot structure. By contrast, our approach is 
more general. We are able to transfer the stand up behavior to a robot much smaller 
than the human with a kinematic structure, weight and height completely di®erent. 

Our work is somewhat similar to Billard that used HMM to recognize and gen-
erate motion patterns.44 They address the question of what to imitate and how to 
imitate. First, they encode the demonstration in a HMM that are treated with 
Bayesian information criterion (BIC) to optimize the number of model states. They 
de¯ned a metric in the form of a cost function to evaluate the robot's performance. 
Finally, they optimized the reproduction of the task in another context. The key 
di®erences between Billard and our work are that they used kinesthetic information, 
instead of transferring the behavior from several humans to a small robot. Moreover, 
the behavior is more complex in our case, since it has the problem of handling 
stability. However, the clearest di®erence is the selection of the cost function. They
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used a cost function that takes into account the joint trajectories, which is not a

generic method to transfer the skill to a di®erent robot. On the contrary, we con-

struct our reward function taking into account the stability and the e®ort, so that the

robot and the human have di®erent joint trajectories in their successful standing up

behaviors.

An interesting approach that have synergies with our work is the concept of goal 
oriented behavior understanding.1,17,45 This ¯eld studies the recognition and poste-
rior imitation of other agent's behavior. Aksoy present a method of understanding a 
manipulation behavior using graphs.46 Similar to us, they de¯ne a transition matrix 
of semantic events that allows to understand a behavior and reproduce it under 
di®erent conditions. Takahashi presents a multi-agent behavior imitation procedure 
based on RL.38 Their method can be divided into two phases. First, they recognize an 
observed behavior through the estimation of the state and action reward, encoding it 
as a state value function. Afterwards, the imitator develops a similar behavior 
optimizing a reward function which is a weighted combination of the imitator reward 
and the teacher reward. This work is similar to ours in the sense that they used a 
reward pro¯le as a basis of behavior comparison.

Argall presents a combination of LfD and teacher advice is used to improve the 
policy in the continuous space.47 Similarly, Bentivegna makes a humanoid robot to 
learn from observation a set of task that using a library of manually prede¯ned 
primitives.48 The performance of the robot is improved through practice based on 
observations of the teacher's outcomes.

A number of other approaches use a framework based on ask for help to speed up 
and enhance learning. Here, an agent request advice for other similar agents which 
are combined with information of the environment.49,50

Our work is partially inspired by a framework to perform imitation by solving the 
correspondence problem.2,51,52 They de¯ne three metrics for imitation: end-point 
level, where it is only considered the overall goal, trajectory level, where the imitator 
considers a set of subgoals that are sequentially reached, and ¯nally path level, where 
the imitator tries to replicate the teacher's trajectory as closely as possible. Trajec-
tory level and path level metric is similar to program level and action level of Byrne.16 

The method for imitation we present in this paper is based on the trajectory level of 
Alissandrakis.2 Instead of using a set of sub-states as the metric of the imitation, we 
used the reward of the state, which is our basis of evaluation. Furthermore, our 
method not only imitates but innovates new behaviors, which are evaluated pro-
ducing an improvement of the demonstrator behavior.

Another solution to the problem of what to imitate is presented by Billard.17 

Similar to our approach, they establish a metric to evaluate the performance of the 
imitation process, paying attention to the manipulation task of writing the letters 
A, B, C and D. This metric is divided into three levels of imitation of Alissandrakis 
and a mimic metric which reproduces the exact trajectory of the robot. They opti-
mized the robot control signal to minimize this four metrics which are expressed as 
costs functions.2
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A recent approach addresses how to obtain a model of the locomotion behavior 
that can be transferred form a human demonstrator to a robot, which is called 
inverse optimal control.53 The authors select an objective function which is a linear 
combination of position, velocity and other features of the movement as the metric. 
Parameters for linear combination are obtained thought optimization. This model 
can be transferred to the robot to produce a similar behavior. The di®erences with 
our approach are: First, the selection of the metric to optimize, that in our case is a 
combination of a reward function of stability and e®ort, which is more intuitive, and 
second, they used the model of the human to compute the humanoid locomotion, 
which produce a similar movement, whereas in our case, we use two 3-link kinematic 
chain models of di®erent dimensions which perform drastically di®erent trajectories 
to render in similar optimality of standing up behaviors.

In our previous works, a policy improvement method is used over a large number 
of machine operators to improve their expertise and enhance their skills in a global 
way.41,39 We demonstrated that individuals innovate better skills while mixing their 
behavior with that of an elite individual, producing new elite members with better 
skills. Furthermore, this paper is an improvement of another previous work, where 
we compared the behavior of a human and a robot in a common reward space for the 
same task, standing up from a chair.37

7.3. Future directions

Several open lines will be addressed in the future. The ¯rst one is to try our method in 
a more complex model of human and robot. The second one is, instead of de¯ning a 
reward pro¯le, learn the optimal reward pro¯le of the human through, for example, 
inverse RL.40

Finally, we will extend our method to more complex behaviors like opening a door

and walk to leave a room. In that case, the reward function will be completely

di®erent as the goal is completely di®erent.
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Appendix A. Consistency of Human Demonstrations

Our participants varied in physical characteristics in terms of their weight, height 
and limb kinematics (see Table 2). We wanted to test the consistency of the 
demonstrations and therefore the reward pro¯le among di®erent groups of humans. 
For that purpose, we divided the demonstrators in two groups. Group number 1 is
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composed of people with greater height and weight, they are the participants number

3, 5, 6 and 7. The group number 2 is composed of people with lower height and low

weight, they are the participants number 1, 2, 4 and 8.

We computed the RTPM for both groups obtaining Fig. 17. To see the di®erence 
between them, we compute the mean square error (35) which is e ¼ 0:0264 and the 

average probability error of a cell (36) which is Pe ¼ 0:0694%.
Observing the results, we can conclude that there is no signi¯cant di®erence in the 

reward pro¯les between the two groups. Therefore, there seems to be a reward pro¯le 
that is independent of the human body size and can de¯ne the behavior of standing 
up. Furthermore, this is equivalent to say that all humans, no matter what the size 
and weight share the same strategy to accomplish a task, which can be de¯ned as a 
reward pro¯le and transmitted to a robot. Our results are in accordance to 
those saying that what should be imitated is the goal of the action, not just the 
movements.3,11,12,14

Table 2. Weight and height of the human

participants.

Weight (Kg) Height (m)

Participant 1 68.3 1.79

Participant 2 60.9 1.68
Participant 3 78.1 1.82

Participant 4 75.2 1.75

Participant 5 83.4 1.84

Participant 6 99.0 1.88
Participant 7 81.0 1.85

Participant 8 67.8 1.71
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Fig. 17. (a) Normalized RTPM for the ¯rst group of human participants using the polynomial func-
tion (28). (b) Normalized RTPM for the second group of human participants using the polynomial 
function (28).
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