
D. Bell and J. Hong (Eds.): BNCOD 2006, LNCS 4042, pp. 36 – 46, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using UML’s Sequence Diagrams for Representing
Execution Models Associated to Triggers*

Harith T. Al-Jumaily, César de Pablo, Dolores Cuadra, and Paloma Martínez

Computer Science Department, Universidad Carlos III de Madrid
{haljumai, cdepablo, dcuadra, pmf}@inf.uc3m.es

Abstract. Using active rules or triggers to verify integrity constraints is a
serious and complex problem because these mechanisms have behaviour that
could be difficult to predict in a complex database. The situation is even worse
as there are few tools available for developing and verifying them. We believe
that automatic support for trigger development and verification would help
database developers to adopt triggers in the database design process. Therefore,
in this work we suggest a visualization add-in tool that represents and verifies
triggers execution by using UML's sequence diagrams. This tool is added in
RATIONAL ROSE and it simulates the execution sequence of a set of triggers
when a DML operation is produced. This tool uses the SQL standard to express
the triggers semantics and execution.

1 Introduction

The passive behaviour of traditional databases often causes semantic loss in database
systems. Users and applications always have the responsibility to protect these
semantics. For this reason, traditional databases have been improved by adopting
active behaviour. An active behaviour is a complex operation that is activated in an
autonomous way to perform predefined actions. Usually, this behaviour is known as
triggers or ECA rules. An ECA rule consists of three components; event, condition,
and action. The execution model of ECA rules follows a sequence of steps: event
detection, condition test, and action execution. An event in relational databases is a
DML (Data Manipulation Language) statement such as (INSERT, DELETE, and
UPDATE). Once a trigger is activated and its condition is evaluated to true, the
predefined actions are automatically executed.

Incorporating active rules enhances the functionality of database systems and
provides flexible alternatives to implement many database features, such as to enforce
integrity constraints [1]. Because of execution models of triggers, an active database
is more complicated than a passive one. For that reason we believe that automatic
support for triggers development could help to adopt active rules by database
designers and developers. The validation of active rules/triggers execution is the
major problem that makes the application development a difficult task. As rules can
act in a way that leads to conflict and undesirable problems, the developer needs

* This work is part of the project "Software Process Management Platform: modelling, reuse

and measurement". TIN2004/07083.

pcastro
Rectángulo

 Using UML’s Sequence Diagrams for Representing Execution Models 37

additional effort to control this behaviour. The objective of this validation is to
guarantee the successful execution of the triggers; that means to avoid non-
termination state in their execution.

In commercial CASE tools which support triggers development, we have detected
that developing triggers and plugging them into a given model is an insufficient task
because of the behaviour of such triggers is invisible to the developers.

Therefore, in this work we suggest a visualization tool to represent and verify
triggers execution by using UML’s sequence diagrams. This tool has three
contributions. First, we use the SQL standard [5] to express triggers semantics and
execution. Second, we use the UML sequence diagram to display interactions
between triggers. And finally, we use a commercial CASE tool (Rational Rose) to
add-in our approach. These contributions make our approach quite useful, practical
and intuitive to manage triggers using the triggering graph (TG) for checking non
termination state. TG is one of the most important tools in active rules to check the
termination execution for a set of rules and we adopt it for our approach.

The rest of this work is organised as follows. In section (2) the semantics of
triggers execution is explained according to the SQL standard. In section (3) works
related to rules behaviour analyzer tools or visualization tools are presented. In
section (4) we will explain our visualization tool design. Finally, in section (5) some
conclusions and future works are exposed.

2 Triggers Execution in SQl3

This section addresses common components according to the definition specified in
the SQL2003 standard which makes revisions to all parts of SQL99 and adds new
features [4]. A SQL standard trigger is a named event-condition-action rule that is
activated by a database state transition. Every trigger is associated with a table and is
activated whenever that table is modified. Once a trigger is activated and its condition
evaluated to true, the trigger’s action is performed. When we talk about the semantics
of triggers execution in the SQL standard, we consider the Knowledge Model and the
Execution Model.

A knowledge model supports the description of the active functionality; it is
considered to have three principal components; an event, a condition, and an action
[1]. The SQL3 syntax of triggers is shown in Fig.1.

In database systems, the triggers execution model specifies how a set of triggers is
treated and executed at runtime. Although triggers are available in most DBMS,
unfortunately their execution models change from one DBMS to another. Despite this
fact, a common execution strategy is shared among systems according to the two
main requirements for the SQL triggers execution. These requirements are [1]; (1) the
execution model must ensure consistency in the database, and (2) all Before-triggers
and After-triggers must be execute before or after the associated table will be
modified, respectively. Before-triggers are especially useful for maintaining a
constraint at the time that the data changes, while After-triggers are useful for
invoking functions and stored procedures which execute modification operations
inside and outside the database.

pcastro
Rectángulo

38 H.T. Al-Jumaily et al.

CREATE TRIGGER <trigger name>

[BEFORE | AFTER]

[INSERT | DELETE | UPDATE [OF <trigger column name>]]

ON <table name>

[REFERENCING <Old | New [Row | Table]>]

[FOR EACH {ROW | STATEMENT}]

[WHEN < condition >]

BEGIN ATOMIC

{< SQL procedure statement…… >}...

END;

Fig. 1. The SQL standard triggers syntax

The SQL standard allows the definition of multiple triggers associated to the same
table, same event, and same activation time. Multiple triggers can simultaneously be
selected for the execution. When multiple triggers are activated at the same time,
priorities are used to resolve triggers executions. A trigger with the highest priority is
executed first [5].

3 Related Work

As many works have been done in the area of static analysis [17] [18], we use in our
analyzer the concept of Triggering Graph (TG) to detect non-termination states. TG is
a straightforward graph where each node Ti corresponds to a rule and a direct arc
between T1 and T2 is the event which belongs to T1‘s action and causes the activation
of T2. A cycle is produced in TG when a rule Ti may trigger itself or when Ti triggers
the same initial subset. In the figure (2), the subset of active rules S={T1, T2, T3} is a
cycle when the rule T1 is fired again by the event e3. The termination analysis itself
focuses on identifying and eliminating arcs that could introduce cycles into the TG
[19]. Redefining the rule T3 and reconstructing again the graph TG is a good solution
to verify the termination state of the subset S.

Fig. 2. The TG of the rules execution

T3

T2

T1

e1

e3

e

pcastro
Rectángulo

 Using UML’s Sequence Diagrams for Representing Execution Models 39

Rules behaviour analyzer tools or visualization tools have been received strong
interest from active database community where various works have been mentioned
in the literature on using these tools in the verification of triggers execution. Arachne
[10] is one of such tools; it is used in the context of object oriented (OO) active
database systems. It accepts as input a set of Chimera active rules, and it uses
triggering graph analysis to detect non-termination behaviour at compile-time. Active
rules terminate if the triggering graph is acyclic. Once a cycle is detected, the user is
responsible for assuring the termination. VITAL [11] is another set of development
tools; it includes a tool for static analysis. This tool uses the triggering graph for
detecting cycles in a set of active rules. TriGS [12] is a graphical development tool of
active OO database application, it has been specifically designed for Trigger system
for GemSione. DEAR [13] tool has been implemented on an active OO database
system. It mainly focuses on a display form to rules interaction and sends information
to users to help them to detect errors.

On the other hand, multiple efforts have been devoted to face database modelling
problems. One of these problems is the automatization of database design process
using CASE tools. Frequently, these tools do not completely support all phases of
analysis and design methodology of databases. Triggers development is supported by
some of these CASE tools such as Rational Rose [14], ERwin [15], Designer2000
[16]. These tools provide editors to allow users define different types of triggers.
Furthermore, ERwin allows users generate triggers which enforce integrity
constraints. The drawback of these CASE tools is that the termination of triggers
execution is not guaranteed. Until now, there is no way to allow users of these tools to
verify the developed triggers without need to execute them in a real database.

4 Visualization Tool Design

For explaining our approach, let us consider the example shown in figure 3 (a). It is a
simple database schema using UML class diagram. It has three persistent classes
(Student, Professor, and Department). The mapping of each class and association into
Rational Rose Data model [20] [21] is shown in figure 3(b), and the data model
transformation into relational model is shown in figure 3(a).

The main objective of our tool is to display triggers execution scenarios and to
send messages to users for indicating whether these scenarios terminate or it is
necessary the users’ intervention to resolve a non termination execution. In this
proposal, we show triggers and integrity constraints interaction in a display form as
well as the non termination problem.

On the other hand, the UML’s sequence diagram is used to show the interactions
between objects and events in a sequential order according to the time. It is a two-
dimension diagram, the vertical dimension is the time axis, and the horizontal
dimension shows objects roles in their interactions.

In the context of triggers execution, it is very helpful to employ a tool to show the
behaviour and the interactions of triggers that belong to a model. Therefore, we will
use the sequence diagram elements to interpret the execution of triggers associated to

pcastro
Rectángulo

40 H.T. Al-Jumaily et al.

PROFESSOR

PK_PRF : INTEGER

DEPARTMENT

PK_DPT : INTEGER
1..n 1..n1..n 1..n

Tech_In STUDENT

PK_STD : INTEGER
1 1..n1 1..n

Fig. 3(a). Class diagram

TAB_PROF

PK_PRF : INTEGER

<<PK>> PK_PROF()

TAB_STUD

PK_STD : INTEGER
PK_DPT : INTEGER

<<PK>> PK_STUD()
<<FK>> DC_TAB_DEPT()
T3() : Trigger
T4() : Trigger

TAB_TECH
PK_PRF : INTEGER
PK_DPT : INTEGER

<<PK>> PK_TAB_TECH()
<<FK>> DC_TAB_PROF()
<<FK>> DC_TAB_DEPT()
T1() : Trigger
T2() : Trigger

1..*

1

1..*

1

<<Identi fying>>

TAB_DEPT

PK_DPT : INTEGER

<<PK>> PK_DEPT()

1..*1 1..*1

<<Non-Identifying>>

1..*

1

1..*

1

<<Identifying>>

Fig. 3(b). Transformation of (a) into Rational Rose Data model

Create Table TAB_DEPT (PK_DPT Primary Key …);

Create Table TAB_STUD (PK_STD Primary Key, PK_DPT,

Constraint DC_TAB_DEPT References TAB_DEPT(PK_DPT)

On Delete Cascade);

Create Table TAB_PROF (PK_PRF Primary Key …);

Create Table TAB_TECH (PK_PRF, PK_DPT,

Constraint DC_TAB_PROF FOREIGN KEY (PK_PRF)

References TAB_PROF(PK_PRF) On Delete Cascade,

Constraint DC_TAB_DEPT FOREIGN KEY (PK_DPT)

References TAB_DEPT(PK_DPT) On Delete Cascade);

Fig. 3(c). Transformation of (b) into relational model

a relational schema. We use Rational Rose CASE tool to implement our approach
because it is able to easily add-in software tools. It can be accessed from the
Tools menu.

4.1 Used UML Notation

In this section, we will explain how we use the UML notation [22] to represent
triggers execution and how we apply sequence diagrams to detect the non termination
problem. The figure (4) shows an example of a sequence diagram.

• Scenario Diagram: A scenario is an instance of a use case that describes the
sequential occurrences of events during the system execution. Sequence diagrams

pcastro
Rectángulo

 Using UML’s Sequence Diagrams for Representing Execution Models 41

Fig. 4. A Scenario Diagram (Rational Rose)

 allow users to create a display form of a scenario. In our approach, we create a
scenario diagram for each event that may be generated on a table and the sequence
of events and operations that follow after that event. Therefore, for each object
table in the model, we need to create three scenario diagrams, one for each DML
statement (INSERT, DELETE, and UPDATE).

• Tables: Tables are represented in Rational Rose as a stereotype of an object
instance. The scenario diagram contains one or more object instances which have
behaviour to be shown in the diagram. A table has three basic behaviours relevant
for static analysis of the termination which are the three DML operations
(INSERT, UPDATE, and DELETE). An object instance has a lifeline which
represents the existence of the object over a period of time.

• Message: Messages in a sequence diagram are methods or operations which are
used to illustrate the object behaviour. A message is the communication carried
between two objects to define the interaction between them. A message is
represented in the sequence diagram by using the message icon connecting two
lifelines together. The message icons appear as solid arrows with a sequence
number and a message label. The first message always starts at the top of the
diagram and others messages follow it. When theSender=theReceiver, this means
that the object theSender is sending a message to itself, MessageToSelf. Each
message is associated with an integer number that shows the relative position of
the message in the diagram. For example, if theSequence=3, the message is the
third message in the diagram.

Object instance
Tables

MessageToSelf
(Triggers)

DML Operation
issued by user

Operation
On Delete Cascade

Verification Note

pcastro
Rectángulo

42 H.T. Al-Jumaily et al.

• Note: We use notes to warn users about the results of the verification. Our tool
represents two types of notes to the users. The first is "Termination state was
correctly verified" which is sent when the execution of a given scenario is correctly
terminated. The second note is "Non termination state was detected. Please, solve
the problem and try again". This note is sent when the verification of the scenario
detects a non termination state in the execution of triggers.

4.2 Applying Sequence Diagrams

In general, triggers which are associated to a table are activated when that table is
modified. In this context, when a trigger is fired it must examine the associated table
and all other tables that can be modified by it. When an activated trigger examines its
associated table, this is exactly like when an object sends a message to itself
theSender=theReceiver. Therefore, a trigger instance is represented in sequence
diagrams as MessageToSelf (figure 4). The trigger name is included into the message
icon. BEFORE-triggers and AFTER-triggers are represented by using the same
notation MessageToSelf. Trigger conditions are not considered because we use the
static analysis approach to detect non termination state.

On the other hand, we used the notation Message for the other operations related to
the behaviour. Such operations are shown below:

• The first operation that starts the scenario diagram. This message represents the
operation which is sent from the user to a given object to start the scenario.

• DML statements (INSERT, DELETE, and UPDATE) included in a trigger’s action
and modify other object table theSender≠theReceiver.

• Referential constraint actions, CASCADE, SET DEFULT, and SET NULL are
considered. We represent these actions in the sequence diagrams as messages from
the parent object to the child object. The name and the type of the operation are
indicated on the message icon.

The message icon used to represent these operations is a solid horizontal arrow
with a sequence number and a message label.

The most important aspects that distinguish the SQL standard trigger execution
model from others models such as, (Ariel [6], HiPac [7], and Starburst [8]) are the
interactions between the triggers and the referential constraint actions [9]. In
relational databases, the tables are represented by sets of rows and connections
between tables are represented by defining foreign keys. Referential integrity
constraints are predicates on a database state that must be evaluated, if these
restrictions are violated the database is in an inconsistent state. In order to maintain
the referential integrity of the database, the SQL standard uses actions such as NO
ACTION, RESTRICT, CASCADE, SET DEFAULT, and SET NULL. In this work,
we consider the last three actions because they produce interactions among triggers.

We will present in this section two scenarios to illustrate the usefulness of our tool.

Scenario 1
Let us consider that the table TAB_TECH has two triggers (figure 3(b)). The
descriptions of these triggers are shown as follows:

pcastro
Rectángulo

 Using UML’s Sequence Diagrams for Representing Execution Models 43

The scenario 1 (figure 4) starts when the user Actor carries out the operation (1:
DELETE) in the table TAB_PROF. This table does not have any associated trigger,
but when this operation is carried out, the referential action On Delete Cascade
(2:DC_TAB_PROF) in TAB_TECH is executed; then the two triggers (3: T1) and (4:
T2) are executed as well. As figure (4) shows, when the execution of T2 is finished
the transaction is ended, so termination state is reached. The execution sequence of
this scenario is shown below:

1: When DELETE FROM TAB_PROF is carried out ⇒
2: The DC_TAB_PROF is executed (section 2.3) ⇒
3: T1 (X=1) is executed ⇒
4: T2 (Y=X) is executed ⇒ END. "Termination state was correctly verified"

Scenario 2
The new scenario illustrates the non termination state (figure 5). We will redefine the
body of the trigger T2 incorporating in its action a delete operation from TAB_PROF.
As is shown below:

CREATE TRIGGER T2

AFTER DELETE ON TAB_TECH

WHEN C2

BEGIN ATOMIC

DELETE FROM TAB_PROF WHERE ……..;

END;

Now, if we examine this scenario, the operations sequence is similar to the

previous scenario until the execution reaches the message (4: T2). In this time, the
new statement incorporated into T2 is carried out after its execution. This operation
(5: DELETE) generates the referential action execution (6:DC_TAB_PROF). As
consequence, the last trigger operation (7: T1) is fired again. When a trigger is fired
twice in the same scenario this means that the non termination state is detected.
Therefore, the scenario is stopped and a message is sent to the developer which must
resolve the problem and repeat the scenario again. The execution sequence of this
scenario is shown below:

CREATE TRIGGER T1

AFTER DELETE ON TAB_TECH

WHEN C1

BEGIN ATOMIC

X:=1;

END;

CREATE TRIGGER T2

AFTER DELETE ON TAB_TECH

WHEN C2

BEGIN ATOMIC

Y:=X;

END;

pcastro
Rectángulo

44 H.T. Al-Jumaily et al.

1: When DELETE FROM TAB_PROF is carried out ⇒

2: The DC_TAB_PROF is executed (section 2.3) ⇒

3: T1 (X=1) is executed ⇒

4: T2 is executed ⇒

5: DELETE FROM TAB_PROF is executed ⇒

6: Again 2 ⇒

7: Again 3 ⇒ ; STOP; “Non termination state was detected. Please, solve the
problem and try again”

 : User : TAB_PROF : TAB_TECH
1. DELETE

2. DC_TAB_PROF

3. T1

4. T2

5. DELETE

6. DC_TAB_PROF

7. T1

No Termination state was detected. Please, solve
the problem and try again.

Fig. 3. Scenario 2, non termination state

5 Conclusions

Active rules/triggers systems are exposed in many studies and some challenges and
issues are addressed to control the execution of these systems. One of these
challenges is to encourage commercial CASE tools will cover all analysis phases with
extended conceptual models.

Using triggers means additional effort in database development because the
triggers execution model adds more complexity. We use UML’s sequence diagrams
to represent the triggers execution flow in order to verify the triggers behaviour and to

Non termination
state

pcastro
Rectángulo

 Using UML’s Sequence Diagrams for Representing Execution Models 45

guarantee the correct execution in Rational Rose Tool. Our principal objective in this
work is to motivate database designers to use triggers for completing semantic
specifications gathered in a conceptual schema through a CASE tool which shows
triggers execution associated to a relational schema in an intuitive way.

As future work, we will extend our approach to include the confluence problem of
triggers execution, and we will aggregate this tool into our toolbox in order to get to
transform integrity constraints of a given schema into triggers. Furthermore, we are
going to design some experiments to validate our tool and the efficiency use
according to our contributions: to make easy the complex problem of triggers
implementation and to check triggers execution.

References

1. Paton W. N., “Active Rules in Database Systems”, Springer-Verlag, New York, 1998.
2. Norman W. P., Diaz O., “Active Database Systems”, ACM Computing Surveys, Vol.31,

No.1, 1999.
3. Ceri S., Cochrane R. J., Widom J., “Practical Applications of Triggers and Constraints:

Successes and Lingering Issues”. Proc. of the 26th VLDB Conf., Cairo, Egypt, 2000.
4. A. Eisenberg, J. Melton, K. Kulkarni, J. Michels, F. Zemke, “SQL:2003 has been

published”, ACM SIGMOD Record, Volume 33 , Issue 1, March 2004.
5. Melton J., Simon A. R.. “SQL: 1999 Understanding Relational Language Components",

Morgan Kaufmann Publishers, 2002.
6. Hanson E. N., "The Design and Implementations of Ariel Active Database Rule System",

IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No.1, February 1996.
7. Dayal U., Buchmann A. P., Chakravarthy S., “The HiPAC Project” in Active database

systems: triggers and rules for advanced database processing, Widom J., Ceri S., Eds. San
Francisco, CA.: Morgan Kaufmann Publishers, 1996, pp. 177-205.

8. Widom J., Cochrane R. J., Lindsay B. G. "Implementing set-oriented production rules as
an extension to Starburst". Proc. 7th International Conference on VLDB, September 1991.

9. Kulkarni K., Mattos N., Cochrane R., "Active Database Features in SQL3", Active Rules
in Database Systems", Springer-Verlag, New York, 1998. pp 197-218.

10. Ceri S., Fraternalli, P., ”Designing database applications with objects and rules:the IDEA
Methodology”. Addsion-Wesley”.1997.

11. E. Benazet, H. Guehl, and M. Bouzeghoub. “VITAL a visual tool for analysis of rules
behaviour in active databases”, Proc of the 2nd Int. Workshop on Rules in Database
Systems. Pages 182-196, Greece 1995.

12. 12. G. Kappel, G. Kramler, W. Retschitzegger. “TriGS Debugger A Tool for Debugging
Active Database Behavior”, Proceedings of the 12th International Conference on Database
and Expert Systems Applications, Springer-Verlag London, UK , 2001

13. O. Díaz, A. Jaime, N. Paton. “DEAR a DEbugger for Active Rules in an object-oriented
context”. In M. Williams, N. Paton. Rules In Database Systems. Pages 180-193, LNCS
Springer Verlag 1993.

14. Rational Web site http://www.rational.com/support/documentation/
15. AllFusion® ERwin® Data Modeler site http://www3.ca.com/Solutions/
16. ORACLE Web site http://www.oracle.com/technology/products/
17. Alexander A., Jennifer W., “Behavior of Database Production Rules: Termination,

Confluence, and Observable Determinism”, Proc. ACM-SIGMOD Conf. 1992.

pcastro
Rectángulo

46 H.T. Al-Jumaily et al.

18. Paton N., Díaz O., "Active Database Systems", ACM Computing Surveys, Vol.31, No.1,
1999.

19. Hickey T., “Constraint-Based Termination Analysis for Cyclic Active Database Rules”.
Proc. DOOD'2000: 6th. International Conference on Rules and Objects in Databases,
Springer LNAI vol. 1861, July 2000, pp. 1121-1136.

20. Vadaparty, Kumar, “ODBMS - Bridging the Gap Between Objects and Tables: Object and
Data Models”, volume 12 - issue 2, 1999.

21. Timo Salo, Justin hill, “Mapping Objects to Relational Databases”, Journal of Object
Oriented Programming, volume 13 - issue 1, 2000.

22. UML 2 Sequence Diagram Overview http://www.agilemodeling.com/artifacts/
sequenceDiagram.htm

pcastro
Rectángulo

	Introduction
	Triggers Execution in SQl3
	Related Work
	Visualization Tool Design
	Used UML Notation
	Applying Sequence Diagrams

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

