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ABSTRACT 

In the last decades, neuroimaging, and particularly functional magnetic 

resonance, have lead to a high number of findings on brain organization that have 

helped the scientific community to better understand brain function. Despite these 

advances, the foundations of neural activity and connectivity are not yet understood, 

and little is known about its role in the etiology of psychiatric disorders. A vast amount 

of literature on neuroimaging demonstrates the presence of abnormal and 

dysfunctional brain patterns of activity, revealed by a wide number of different 

analytical approaches. However, the establishment of consistent relations between 

abnormal connectivity patterns and symptoms or diagnoses is still not confirmed. For 

this reason, the present project studied these relations in young individuals suffering 

from First Episode Psychosis (FEP) and healthy control participants by implementing a 

model-dependent atlas-based approach using the publicly available Seven Network 

Atlas. The statistical analysis of preprocessed images revealed various tendencies 

consistent with previous results from literature as well as new findings. Youth in 

psychosis presented hyperconnectivity in most resting-state networks when compared 

to controls, being significantly enhanced in Fronto-Parietal network (FPN) and Default 

Mode network (DMN). Also, within patients hyperconnectivity was negatively related 

to general cognitive performance and positively linked to clinical symptom severity. 

We estimate that the results of this work will eventually contribute to a better 

understanding of the early stages of psychosis in children and adolescents, critical for 

optimizing current interventions and treatments. 
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RESUMEN 

 En los últimos años, la comunidad científica ha hecho grandes avances para 

alcanzar una mejor comprensión del funcionamiento del cerebro gracias al gran 

número de descubrimientos relativos a la organización del mismo, llevados a cabo 

mediante neuroimagen y en particular por medio de resonancia magnética funcional. 

A pesar de estos avances, todavía se desconocen las bases de la actividad y 

conectividad neuronal así como su papel en la etiología de los trastornos psicóticos. 

Una gran cantidad de literatura sobre análisis de neuroimagen mediante diversos 

métodos demuestra de manera consistente la presencia de patrones de actividad 

cerebral alterados y disfuncionales; sin embargo, es imposible establecer de manera 

sólida, a través de diferentes estudios, la relación entre patrones específicos de 

conectividad funcional alterada con los diferentes síntomas y condiciones de estos 

trastornos. Por este motivo, el presente proyecto ha estudiado estos vínculos en niños 

y adolescentes que padecen un primer episodio de psicosis así como en controles 

sanos mediante un enfoque basado en un atlas público de 7 redes cerebrales. El 

análisis estadístico de las imágenes preprocesadas reveló varias tendencias coherentes 

con resultados previos extraídos de la literatura así como nuevos hallazgos. Los 

jóvenes con psicosis mostraron tener hiperconectividad en la mayoría de las redes en 

reposo en comparación con los controles, siendo dicha diferencia especialmente 

significativa en las redes Fronto-Parietal y por Defecto.  Además, se observaron 

patrones de correlación negativa entre la conectividad y los procesos cognitivos, 

mientas que la relación de la conectividad con la gravedad de los síntomas mostró ser 

positiva. Los resultados de este trabajo contribuyen a una mejor comprensión de las 

etapas iniciales de la psicosis en niños y adolescentes, fundamentales para la 

optimización de los actuales tratamientos e intervenciones.  
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1. INTRODUCTION 

1.1 MOTIVATION  

In the 20th century, the development of brain imaging techniques has made 

huge leaps forward, allowing the scientific community to understand the organization 

and topology of the human brain beyond previously established limits. Functional 

Magnetic Resonance Imaging (fMRI) is one of the most common brain imaging 

modalities to record brain activity. The analysis of the data provided by fMRI reveals 

how specific brain regions activate when implicated in certain behavioral tasks. Fairly 

recently an innovative alternative to fMRI called resting state fMRI (rs-fMRI), has made 

use of the low frequency fluctuations of neural activity (that were previously 

considered as random noise) enabling the discovery of new brain connectivity 

concepts (Biswal et al., 1995). 

The unexpected interest in these spontaneous low frequency signals relies on 

theoretical and empirical arguments. The theoretical argument is based on brain 

energy consumption, which represents 20% of total body’s metabolism. Despite this, 

the recorded activation in response to external stimuli or demanding tasks, that 

represent the fundamental of most brain studies, has shown to represent just 5% of 

this amount. At this point, it is reasonable to think that in order to better understand 

the functioning of the human brain one has to analyze the element that consumes 

most of its energy sources and this is characterized by the low-frequency neural 

fluctuations. The empirical arguments to study this signal rely on the multiple studies 

that proof that these oscillations are not random but highly organized. The 

identification of distinct regions showing strong temporal correlation in the low-

frequency fluctuations has given rise to the discovery of so called resting-state 

networks, different groups of regions that show a high degree of co-activation (Biswal 

et al., 1995). Research has shown that these networks become highly active when the 
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subject transits from rest to task engagement. For example, it has been proven that in 

the transition from rest to a motor task a specific resting-state network becomes 

highly active, termed motor network. This line of research has led to the discovery of 

multiple resting-state networks associated with various cognitive functions. The 

degree of temporal co-activation between regions during rest is measured by means of 

correlation and is named functional connectivity. 

 Based on these insights, the interest in rs-fMRI and its relationship with human 

cognitive, emotional and motor behaviors has increased considerably over the last 

years. Furthermore, the application of rs-fMRI presents great advantages. Traditional 

task-based fMRI requires the subject to perform a task while data is acquired, but this 

is not necessary for rs-fMRI. This fact has led some researchers to use rs-fMRI in 

subjects with severe cognitive, emotional, or motor pathology such as autism 

spectrum disorders, major depression or Parkinson’s disease. Studies using this 

modality have produced promising results showing that these disorders are strongly 

associated with abnormalities in single or multiple resting-state networks (Castellanos 

et al., 2013). An example of this is the lowered or enhanced functional connectivity 

when comparing diseased subjects with healthy controls. Therefore, studies using rs-

fMRI may provide new biomarkers required in the clinical field and new knowledge 

about the possible underlying mechanisms that are associated with these disorders. 

 

 Psychotic disorders are common, severely disabling, and associated with 

enormous clinical and socioeconomic impact. However, at present, it is not possible to 

predict their onset, nor their subsequent course: some patients may show a good 

recovery, others may recover and then relapse in further episodes, and a third 

subgroup may follow a chronic, unremitting course. The inability to forecast what will 

happen to a patient who has just become psychotic makes it impossible to tailor 

psychiatric treatments that fit the particular needs of each patient. 

Diagnosis of psychotic disorders needs to be based on objective, quantitative 

and clinically meaningful measures. However, despite substantial advances in our 

understanding of the neurobiological basis of psychotic disorders, the assessment of 
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patients with psychosis is still based on clinical interviews. Moreover, the 

overwhelming evidence of the pathophysiological heterogeneity of psychotic disorders 

(Kapur et al., 2012), that hinders the quest for biomarkers to aid early diagnosis, 

stratification and measurement of disease progression. Indeed, this lack of biomarkers 

is a key barrier for the industry to develop novel treatments and therapies. Stratifying 

patients in an objective and quantitative way according to clinical and functional 

outcomes may generate patient clusters that are more clinically meaningful (van Os 

and Kapur, 2009). This stratification is beneficial for clinical trials, as a new drug may 

work well just in a subgroup of patients. The absence of this patient classification may 

hide the true therapeutic effect of the medication as it is diluted across a 

heterogeneous sample. Neuroimaging techniques such as rs-fMRI may be able to 

provide such objective and quantitative measures. Research on this field has 

substantially advanced our understanding of the biological basis of psychotic disorders 

and the overall goal should be to translate these findings into clinical practice.  

Therefore, the motivation behind this TFG is driven by the need for new 

objective criteria for stratifying young patients who have just developed psychosis 

together with the promising results of previous studies using rs-fMRI in psychiatric 

disorders and the advantages of the technique for data acquisition in a complicated 

group of patients. 

 

 

1.2 HYPOTHESES AND OBJECTIVES 

The present project attempts to expand current knowledge about the 

mechanisms that characterize psychotic disorders by analyzing the aberrant patterns 

of brain functional connectivity observed in First Episode Psychosis (FEP) patients 

compared to healthy controls.  For this purpose, and considering previous literature on 

this subject, three hypotheses were examined: 

 Hypothesis 1: FEP patients have increased functional connectivity 

(hyperconnectivity) with respect to healthy controls. 
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 Hypothesis 2: Functional connectivity is differentially related to overall 

cognitive performance (Intelligence Quotient, IQ) in FEP and controls. 

 Hypothesis 3: Hyperconnectivity is positively related to clinical symptom 

severity 

 

In order to test these hypotheses, the following objectives were set: 

 Effective preprocessing of fMRI images using various software packages 

implemented using a single pipeline script. This will allow reducing noise effects 

and registration to a 7-network atlas. 

 Extraction of functional connectivity scores of interest for the study. 

 Implementation of statistical analyses to test the hypotheses using ANCOVA 

models specified in MATLAB scripts.  

 Interpretation of results to identify significant functional connectivity 

differences between patients and controls and relate it to intellectual 

performance and clinical symptom severity. 
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2. STATE OF THE ART 

2.1 INTRODUCTION TO CONVENTIONAL FMRI 

2.1.1 Magnetic Resonance Imaging 

Magnetic resonance is a radiologic imaging tool that exploits the nuclear 

magnetic resonance (NMR) of the nucleus of hydrogen atoms, quite abundant in 

human body, to generate a signal. This signal, which comes mainly from the water 

molecules in our body, is mapped to obtain high resolution images in a non invasive, 

safe manner. Due to the different properties and water content of the tissues in our 

organism, this technique provides also good contrast. The basics of the technique were 

developed in the 1940s by Bloch and Purcell, although it was in the 1970s when the 

application of gradient coils was introduced, enabling the acquisition of three-

dimensional images. 

The phenomena responsible for the acquisition of the signal starts by applying a 

strong, static, homogeneous magnetic field that tends to align the hydrogen nuclei in 

our body, whose spins (intrinsic physical property of atoms) begin to precess at a 

specific frequency (called Larmor frequency) around the direction of the field. Later, a 

radio frequency (RF) pulse at Larmor frequency is used to make these atoms resonate 

(rotate in phase) and orientate the magnetization from Z plane to XY plane. At this 

stage, nuclei absorb energy that is released when the pulse is removed and nuclei 

return to their original state of magnetization (relaxation). This energy is detected by 

coils to finally obtain the image representing the map distribution of the magnetic 

signal. The lineup of the nuclei due to the strong static field allows their extremely 

small signals to add up coherently so that it can be measured by the system. The 

received (raw) data is encoded in k-space (Fourier), as shown in figure 1, and is 

transformed to image space by Inverse Fourier Transform. The images obtained are 

three-dimensional volumes composed of several slices representing body anatomy. 
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This depiction can provide information about shape, volume, surface area or tissue 

integrity among other parameters. Furthermore, other conditions like inflammation or 

edema can be inferred from the image (Mark A. Brown, 2010). 

 

 

Figure 1. Schematic representation of MRI acquisition showing the main components of MR scanner, 
the raw data acquired in k-space and the Fourier transformation into the final image of interest. 

 

The variation in the strength of the signal coming from hydrogen nuclei 

according to its surroundings, and thus tissues, is the key of MRI to obtain high 

resolution, static structural images of the human body. The RF pulse timing parameters 

can be manipulated to obtain different contrasts according to the properties of the 

tissues in order to meet various needs. Depending on what we want to discriminate or 

emphasize, repetition time (TR), the time between two excitation pulses, and echo 

time (TE), the period between pulse and data acquisition of atom relaxation, are 

modified. In order to distinguish clearly gray and white matter, short TR and TE are 

used; and to discriminate brain tissue and cerebrospinal fluid, long TR and TE are 

employed. 

 

2.1.2 fMRI - Blood Oxygen Level Dependent 

In the 1990s, Seiji Ogawa observed that the different magnetic behavior of 

blood between its oxygenated and deoxygenated state (previously discovered by 

Faraday, Pauling and Coryell in 1936) could be used as a contrast, with which he 
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established the basis of fMRI (Ogawa et al., 1992). The effect, called Blood Oxygen 

Level Dependent (BOLD), allowed physicians to indirectly measure neuronal activity 

with MRI during cognitive task performance by detecting the changes in blood flow 

due to oxygen metabolism derived from glucose consumption, the energy source of 

neurons.  

This innovation has significantly contributed to neurological and psychiatric 

insights and findings in the past decades due to its good spatial and temporal 

resolution while being a non-invasive, non-radiative technique that allows in vivo 

recordings. It is also being used for clinical and commercial purposes. 

fMRI relies on the same phenomena of MRI but taking advantage of the 

changes of magnetization of blood. The difference comes from hemoglobin (Hb) 

molecules in red blood cells, the ones responsible for carrying oxygen, which are more 

magnetic (paramagnetic) if deoxygenated and practically resistant to magnetism 

(diamagnetic) if oxygenated. Considering this, particular neural activity is indirectly 

measured due to the local response it generates. As neural activity increases, so does 

blood flow in the region (increased rate and blood vessel dilation) due to the oxygen 

demand (Jueptner and Weiller, 1995, Heeger and Ress, 2002). The hemodynamic 

response (HDR) (see figure 2), the change in MR signal due to neuronal activity, takes 1 

or 2 seconds to start as vascular system’s response to glucose need is not immediate.  

At this initial point, there is a momentary decrease in oxygenation and so does HDR. 

Then, blood flow increases to meet (and even overcompensate) oxygen demand 

during about 5 seconds (Fox and Raichle, 1986). Finally, if neuron activity stops, the 

HDR falls below original state, what is called post-stimulus undershoot, before 

recovering baseline level. Instead, if neuron firing remains, HDR experiences a flat 

plateau until activity ceases. Although blood flow changes are extremely sensitive to 

neural activity, oxygen metabolism is not, and this is the reason why the MR signal 

received from BOLD contrast is quite slight. 
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Figure 2. Representation of the profile of the HDR of brain neurons to a single stimulus. 

 

Furthermore, due to the lag in vascular response, the signal obtained over a 

region is not quite specific but a sum, as in the case of excitatory and inhibitory 

activity, which can be cancelled out. In addition, there is evidence of differential 

glucose consumption (and thus oxygen) with respect to incoming blood flow across 

brain regions in accordance with the quickness of the response it deals with.  All this 

adds up to several unwanted sources of noise that distort the signal under study, as it 

is shown in figure 3. These accidental signals, which can be even bigger than the one of 

interest, can come from the scanner itself but also from external factors like subject 

movement. Aiming to elucidate the signal of interest, several recordings can be done 

in order to be able to discard random noise of each trial by comparing it with the rest 

or specific processing steps can be applied to remove known artifacts. 

The spatial resolution of the technique depends on the size of the voxels, three-

dimensional box-shaped representations of the activation, which depend on slice 

thickness and area. Smaller voxels contain less signal, as fewer neurons are included 

per voxel, and take longer to be scanned. This implies longer acquisition times, that 

can be reduced by increasing the strength of the magnetic field (measured in Tesla). 

The temporal resolution of the technique is based on TR parameter although it is 

constrained to the HDR: sampling at a faster rate provides more points of the HDR 

profile, which can be obtained by interpolation. 
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Figure 3. Examples of sources of noise: (A) head motion and (B) field inhomogeneity indicated with 
white arrow. 

 

The reliability of the technique has been checked by comparing the obtained 

BOLD signal with the one coming from other methods providing direct 

electrophysiological measurements like electroencephalograms (EEG) and 

magnetoencephalograms (MEG). The similarity with MEG signal, that records the local 

field potential of the interior of neurons and post-synapses, suggests that BOLD signal 

does not represent the output firing of these cells but the integrative routine. 

 

2.1.3 Task-based fMRI  

Task-based fMRI experiments measure brain activity when a specific 

assignment is being performed. The aim is to identify which areas of the brain are used 

(active) when the task is being executed. The typical fMRI experiment uses block 

design, where the subject is instructed to perform a specific task during an 

experimental period and alternate it with a baseline period in which a different task is 

executed, usually staying at rest. This way, the HDR related to the cognitive process of 

interest is allowed to return to baseline level, what makes it easier to infer which brain 

regions are involved just in the performance of that specific task. Once the experiment 

is performed, the timecourse of the activity of image voxels, taking into account the 

A B 
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lag of the vascular response, is compared with the model of the experiment. If both 

patterns fit a positive activation score is assigned, if there is no correlation low or zero 

statistical value is given, and voxels with opposite activation obtain negative scores. 

The fit comparison in every voxel results in an activation map, where the areas with 

high scores are assumed to be activated by the stimulus. 

However, this procedure implies some drawbacks. There is an increased 

possibility of head motion while performing the task, which leads to signal artifacts. 

Also, the baseline condition may introduce high activation signals that complicate 

isolation of signal associated with the experimental condition.  In addition to this, the 

predictable character of the task performance in the block design can induce subject 

learning or boredom and alteration of the cognitive processes it generates, probably 

decreasing the amplitude of the signal. There is another type of design, called event-

related, in which stimuli are presented in a random order with different timings, 

avoiding this last problem, although the statistical power of this complex method is 

lower. A schematic representation of these two possible designs is shown in figure 4. 

 

 

Figure 4. Schematic representation of fMRI block and event-related designs. (Demonet et al., 2005). 
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Both designs, block and event-related, can be applied due to the fundamental 

assumption that states that the BOLD response of two simultaneous tasks can be 

added linearly. Therefore, the difference between both conditions of the design is 

supposed to represent the differing cognitive process. However, these models assume 

that the combination of both cognitive processes does not affect the response of each 

one separately, that in some cases may not be true. Therefore, and considering that 

any task can generate additional cognitive processes than the ones of interest, it is 

important to carefully select the activation and control tasks that will define the 

paradigm.  

fMRI is usually combined with other methods, apart from physiological 

measurements, in other to supplement the advantages and disadvantages of each 

method. A clear example of this is to merge the high temporal resolution of EEG with 

the high spatial resolution of fMRI. Also, structural MRI is often used together with 

fMRI as a reference for visualization, feature extraction or tissue integrity evaluation. 

 

2.2 INTRODUCTION TO RS-FMRI 

 Most of our current knowledge on brain function comes from task-based fMRI 

studies providing insights about the specific function of individual regions of the brain 

in response to certain tasks or stimuli. However, the neuronal activity observed during 

these experiments has proven to use only 5% of the overall brain energy consumption 

so there is a need to understand the underlying mechanisms in which brain devotes 

most of its metabolic consumption. 

In 1992 Bharat Biswal discovered that the brain is significantly active even when 

the subject is at rest, without any external stimuli or demanding task. He observed in 

an fMRI experiment that when individuals were awake but not performing any active 

goal-directed task, there were spontaneous low frequency fluctuations of the BOLD 

signal that revealed patterns of brain connectivity and organization (Biswal et al., 

1995). Biswal observed that the activated areas in primary motor networks during a 

finger tapping task correlated within and across hemispheres with the patterns of 
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connection of these areas during the resting state. These results were later 

consistently reproduced by other researchers that used this technique, called resting 

state fMRI (rs-fMRI), to identify different functional networks; such as primary visual, 

auditory and higher order cognitive networks.  

Before Biswal’s revolutionary discovery, it was thought that the little increase in 

BOLD signal in task-based experiments with respect to the baseline condition did not 

reflect the total amount of energy consumed by the brain, and the characteristic low 

frequency fluctuations (from 0.01 to 0.08 Hz) on the signal were discarded as noisy 

components. Today, the foundations of these oscillations are not yet fully understood 

but they have proved to be of critical importance for the understanding of brain 

organization, supported by the high number of findings it has facilitated while mapping 

brain at rest. 

 

2.2.1 Functional connectivity 

Functional connectivity can be defined as the temporal dependency of the 

BOLD signal in spatially distinct anatomical brain regions. Therefore, what rs-fMRI 

measures is the degree of co-activation of the neuronal activity time-series during rest 

between regions. These correlations have shown to appear between distinct regions 

responsible for a common function, and are consistent across subjects, studies and 

scanners.  Such a group of distinct but co-active regions is called a resting-state 

network. In figure 5, Posterior Cingulate Cortex (PCC) and Medial Prefrontal (MPF) 

cortex are assumed to belong to the same resting state network due to their high 

functional connectivity while intraparietal sulcus (IPS), showing a negative correlation 

with respect to this region, displays low functional connectivity and does not belong to 

the same network. 
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Figure 5. Correlation of activity of MPF (orange) and PCC (yellow) and anti-correlation of 
IPS (blue). PCC and MPF show high functional connectivity and are thus assumed to 
correspond to the same network, while IPS displays a negative correlation and thus low 
functional connectivity. (Fox et al., 2005). 

 

2.2.2 Resting state networks 

Most of these resting state networks are consistent with those inferred from 

task-based experiments, which show selectively increased activity during either motor, 

perceptive or cognitive tasks. The most consistently detected resting state networks 

are: the sensorimotor networks, the visual and auditory networks; the language 

network; two networks (dorsal ad ventral), involved in cognitive control; the Fronto-

Parietal network (FPN), responsible for decision-making processes; and the cingulo-

opercular network, which is supposed to influence in goal-directed tasks.  Figure 6 

shows a comparative evaluation of the networks obtained from MEG and fMRI 

independent analyses using Independent Component Analysis (ICA). 
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Figure 6. Comparison of brain networks obtained using ICA on independent MEG and fMRI images. (A) 
Default Mode network; (B) left FPN; (C) right FPN; (D) sensorimotor networks; (E) medial parietal 
regions; (F) visual network; (G) frontal lobes including anterior cingulate cortex; (H) cerebellum. 
(Brookes et al., 2011). 
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In 2011, Thomas Yeo and colleagues published a paper, “The organization of 

the human cerebral cortex estimated by intrinsic functional connectivity”, where they 

used rs-fMRI to divide brain in 7 resting state networks depicted in figure 7(Yeo et al., 

2011). The goal of their investigation was to understand the relation of patterns of 

functional connectivity with the organization of brain, and to provide reference maps 

representing the organization of cerebral cortex. 

With this purpose, they assessed the functional connectivity in 1000 young 

healthy adults using rs-fMRI. This sample was evenly divided in two subgroups of 500 

individuals (discovery and repetition samples) in order to test the reliability and 

reproducibility of the method and results. After preprocessing the images, they were 

registered to a common coordinate system by implementing surface-based alignment 

from FreeSurfer.  Finally, a clustering approach was applied in order to parcellate the 

brain cortex, giving rise to 7 networks (named in figure 7) that converge with previous 

descriptions and reported seed-based analyses.  

The findings of Yeo et al. can be summed in two types of networks; local 

networks on topographically adjacent areas devoted to sensory and motor regions, 

and widely distributed networks corresponding to association areas following more 

abrupt boundary transitions. Yeo and colleagues have made this resting state 7-

network map publicly available to the scientific community (see 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011) and this is 

the one that have been used in this study analyses (see Areas analyzed).  

The reason of the continuous activity of resting state networks during rest is 

hypothesized to be a more efficient organization and coordination of brain processing 

in order to provide successful neural responses. The resting activity of the brain is 

assumed to be organized as a “predictive dynamic system”, an optimized association 

based on previous activation responses to certain stimuli.  This way, the discovered 

resting functional networks have emerged due to repeated implication of distinct 

regions in a certain task and remain active in case they are not involved in any task. 

This theory agrees with the subject variability of the baseline signal coming from these 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
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networks, which differs depending on experience or efficiency of task performance. 

Thus, most resting-state networks increase in functional connectivity when the brain 

transits from resting-state to active task engagement.  

 

 

 

Figure 7. Yeo et al. 7 resting state networks. Adapted (Yeo et al., 2011). 
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2.2.3 Default Mode network 

There is one resting-state network that does not increase its activity in 

response to task or stimuli but instead decreases it progressively as the external 

cognitive demand increases. This is the Default Mode network (DMN), which was first 

coined by Raichle (Raichle et al., 2001). This network is associated with internal self-

referential modes of cognition including remembering, thinking about the future, mind 

wandering and even judging a moral situation or others perspectives. The negative 

correlation of this network with the others (Fox et al., 2005) suggests a competing 

organization of internal and external brain processing. The DMN, probably the most 

investigated resting state network, is defined anatomically by the following 

subsystems: PCC and precuneus (PCu), medial prefrontal cortex (MPFC) and inferior 

parietal cortex.  

Almost 70% of total brain energy consumption is due to the cited resting state 

networks that can be classified according to their response to stimuli. DMN is the only 

one that deactivates due to external task while the others activate, and that is why 

they can be defined as task positive networks. These arrangements are consistent 

across different techniques, analytic procedures, subjects and resting and cognitive 

states. However, the relationship between the functional connectivity of resting-state 

networks and the structural connections is not yet defined nor understood. White 

matter tracts are considered as the paths for functional connection between remote 

regions; however, not all functionally connected networks have been proved to have 

direct anatomical link. One must note that, although functional connectivity implies 

the existence of some degree of structural connectivity, it does not mean that both 

areas have direct anatomical connection (de la Iglesia-Vaya et al., 2011).  

 

2.2.4 Strengths 

As stated at the beginning of this section, task-based fMRI has provided the 

scientific community knowledge about brain function. However, fMRI has been 

criticized due to the low power of the statistical inferences carried on studies with low 

number of individuals. Rs-fMRI has the benefit of smaller acquisition times (around 5 
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to 10 minutes) compared to task-based experiments as there is no specific paradigm to 

follow. This allows not only sampling larger populations but also sharing information 

across other resting studies as expected patterns of activation do not differ among 

resting subjects (Vanderwal et al., 2013). The absence of a paradigm also eliminates 

the limitations and considerations involved in its design and analysis.   

 

2.2.5 Limitations 

On the contrary, there are also issues about rs-fMRI that have concerned the 

scientific community since the technique was introduced. There is not yet any proof to 

ensure that the resting signal analyzed is not corrupted by non-neural fluctuations that 

can lead to confounds. Rs-fMRI and fMRI in general include several sources of 

ambiguities like noise, giving rise to false connectivity patterns (Satterthwaite et al., 

2012) or the lack of complete understanding of the physiological basis underlying 

BOLD signal. Also, the wide number of possible analytical approaches increases the risk 

of inferring different results from the same study, what presses researchers to 

explicitly state the exact preprocessing pipelines and findings, aiming to be able to 

develop universal standard methods. Finally, it is important to note that the lack of 

constraint derived from the resting state is often considered an advantage; however, 

one needs to be aware of behavioral, clinical and cognitive condition of each subject, 

circumstances that are often not taken into account. 

 

2.2.6 Reliability 

As a result of the previously cited limitations, there have been multiple studies 

merely focused on proving the reliability and validity of resting state experiments 

(Castellanos et al., 2013). The reproducibility of the measures has been tested by 

repeating the trials over time and locations as well as across scanners. However, there 

are still concerns that can affect the consistency of the results; these are mainly 

dependant on subject circumstances such as eyes closing or opening. The validity is 

mainly checked by comparing the resulting images with the brain information provided 
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via other techniques like task-based fMRI, intracranial recordings and even histological 

studies or dissections. Specificity and sensitivity are also critical values of resting state 

measures for the recognition of biomarkers of specific mental disorders, a common 

application of rs-fMRI. Rs-fMRI, just as task-based fMRI, can be combined with other 

imaging techniques such as EEG or positron emission tomography (PET) to prove the 

reliability of the method. 

The development of rs-fMRI has allowed the scientific community to achieve 

new insights about higher order cognitive processes in brain that could not be 

addressed in task-based experiments or other imaging modalities. However, there is 

still a lot of research needed to elucidate the complete organization of brain in a 

consistent manner. In order to attain this goal, reliable processing and analytical 

methods to determine the network connectivity of rs-fMRI signals must be developed.  

 

2.2.7 Preprocessing 

Before data analysis, a series of preprocessing steps must be performed in 

order to remove any source of noise or artifact (e.g. heat, physiology, arbitrary neural 

activity, scanning hardware or differences across subjects) distorting the weak BOLD 

signal of interest. These confounding factors must be carefully considered by 

investigators in order to avoid wrong inferences. There exist several programs and 

software packages that provide multiple tools to preprocess and analyze fMRI data, 

common examples are FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), SPM 

(http://www.fil.ion.ucl.ac.uk/spm/) or AFNI (http://afni.nimh.nih.gov/afni/). Most 

preprocessing steps carried out on resting state images are common to task-based 

fMRI. 

Motion correction 

Probably the most frequent problem distorting data analysis is subject 

movements, especially head motion. If this occurs, the timecourse in a voxel will not 

be representing the same neuron activity as in previous scanned slices. These 

movements can be erroneously correlated to the task or stimulus and give serious 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.fil.ion.ucl.ac.uk/spm/
http://afni.nimh.nih.gov/afni/
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confounds, increasing the variance and reducing the sensitivity of the analysis. Motion 

correction applies a rigid-body transformation including six parameters (3 translations 

and 3 rotations) to account for all the possible directions of movement with respect to 

a reference volume (usually the first or an average). 

Despiking 

There is a method that is said to likely improve motion correction by affecting 

its parameter estimates: despiking. It consists of adjusting intensity spikes on each 

voxel, which are mainly derived from sudden scanner noise. 

Slice timing correction 

Another commonly implemented step is slice timing correction. The fMRI 

scanning system acquires brain volume in the form of slices that are usually sampled 

one by one sequentially or interleaved. This means that the complete set of slices 

representing a 3D volume does not contain the signal from a single time point. In order 

to solve this issue, a single slice is taken as a reference and the phases of the rest are 

shifted and interpolated for it to represent the same time point as the fixed slice. Slice 

timing is more critical in task-based studies due to the alternating conditions affecting 

brain activity. 

Field map correction and detrending 

 There are other problems derived from the scanning system such as field 

inhomogeneities and drifts of fMRI data. The most used method to correct field 

distortion is to acquire a field map in order to account for the non-uniformities in the 

analyzed volumes. On the other side, detrending on each voxel is used to correct 

trends originated by the scanner by applying different order polynomials (linear, 

quadratic or cubic). 

 Registration 

 Rs-fMRI can be combined and related to other modalities like T1-weighted 

images, but a registration step is needed in order to correctly align both image 

volumes. It is common to register functional images to structural ones, which usually 
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have higher spatial resolution, with two purposes: optimizing spatial normalization 

(see next paragraph) and identification of regions of interest (ROI) for network 

analyses. Both processes are more effectively performed if high resolution T1-

weigthed images are used, which are spacially related to functional images thanks to 

registration. Again, a linear transformation is performed to align both images but 

generally using 12 parameters to account 3 translations, 3 rotations, 3 scalings and 3 

shears. As intensity values of different techniques cannot be straightforwardly 

compared, the algorithm seeks for shared information like entropy distribution to 

select the best alignment.  

 Registration is also necessary when comparing different subjects in a study. 

With this aim, all the individuals’ images are normalized to a common coordinate 

space. There are several widely used templates available to use as standard space, the 

most common ones are Tailarach and Montreal National Institute (MNI). The second 

brain atlas cited is the most representative of human population as it was designed by 

averaging the brain of 152 individuals, while Tailarach, the first created, took the brain 

of a single elderly woman as a reference. Normalization also uses affine transformation 

with 12 parameters, although non-linear transformations may be also required in 

order to account for varying head shapes.  

Image segmentation may be required prior to registration in order to remove 

unrelated tissue like bone. Segmentation can also be used to separate gray and white 

matter by iteratively addressing the probability of each voxel to belong to certain 

tissue. 

 Temporal filtering 

 Temporal filtering is a critical step of data preprocessing designed to remove 

the frequencies that do not represent the signal of interest. The methodology is the 

following: Fourier transform is applied to generate the power spectrum of the 

timecourse of the voxels, the undesired frequencies are removed and inverse Fourier 

transform is applied again to generate the modified timecourses. The removal of the 

frequencies is done via a band pass filter in order to keep just the frequencies inside 

the range of signal significance. Due to the low-frequency character of resting state 
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BOLD signal, the cut of frequency of the high pass filter must be carefully considered. 

Temporal filter aims to remove physiological signals like respiratory or cardiac in order 

to improve the quality of the data obtained from the scanner.  

 Spatial filtering 

 Filtering can also be done in the spatial domain, and it is commonly called 

smoothing. The idea is to average the signal intensities of neighboring voxels in order 

to have an even spatial map and reduce variability across subjects. It is generally done 

by convolving the data with a 3D Gaussian (low pass) kernel. For the filtering process 

to be effective, the size of the kernel must be at least twice the one of the voxels (full 

width half maximum, FWHM). The filter works on each voxel by assigning to it a 

weighted average considering the intensity of adjacent voxels covered by the kernel. 

Smoothing is considered to improve signal-to-noise ratio, blur registration errors and 

increase normal distribution. 

 Grand mean scaling 

 Finally, another important procedure to preprocess Rs-fMRI data is grand mean 

scaling (GMS), which divides voxel values by the average mean intensity of the 4D 

volume consisting on all the 3D volumes of the session. GMS can be done at first 

(within-subject) or second (between-subject) level, and it is aimed to facilitate 

interpretation of the data by having a common scale. 

 The order of implementation and the parameters used in these steps differ 

across studies and researchers. The decisions about these issues taken in this study as 

well as a more detailed description of the steps applied will be presented in “Materials 

and methods”. 

 

2.2.8 Post-processing 

Several methods have been developed to analyze fMRI data and resting state 

specifically. Although they rely on different assumptions, they can be classified in the 

following groups: model-based methods, model-free methods and graph theory.  
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Model-based methods: seed-based 

Model-based methods rely on hypotheses to determine the functional 

connectivity. They are based on a priori selection of ROIs that are called seeds. The 

signal from these seeds (depicted in red in figure 8), which can be formed by one or 

several voxels, is used then as a model to compute the degree of connectivity of it with 

the other regions of the brain. This bivariate measurement between time-series, called 

seed-based analysis, has the drawback of strong dependence on the initial selection of 

ROIs. There are algorithms that predict the optimal number of groups to start with, 

although there is no single optimal solution to this issue. Meta-analysis can also be 

used to determine the seeds by considering the results of several neuroimaging 

studies. The method provides a more consistent way to locate the regions of activation 

that will define functional connectivity. A threshold value selected by the researcher is 

always used to determine the necessary significance of a voxel correlation with the 

seed for the small region to be considered as functionally connected. 

 

 

Figure 8. Seed-based analysis of 
brain functional connectivity. 
The points in light green 
present co-activation with the 
established seed (in red). 
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Model-free analysis: Independent Component Analysis 

Model-free methods do not need such a priori assumptions, what makes them 

especially useful if the regions involved in the study are unknown. The most used 

technique in this field is ICA, a data-driven mathematical method that decomposes the 

fMRI data into a set of statistically non-overlapping spatial or temporal sets (as 

depicted in figure 9). There are multiple possible algorithms implemented on ICA, all of 

them allowing simultaneous grouping of the regions of the brain that follow common 

patterns of activation and even identifying and extracting noisy components such as 

motion or scanner drifts. The iterative nature of ICA algorithm potentially increases the 

variability of the results, which can be reduced if strict criteria of convergence are 

applied. Nevertheless, studies in similar populations using ICA have reported different 

number of components from resting state data across investigators and algorithms. 

Regardless of the differences found between seed-based analysis and ICA, there are 

studies that have obtained similar results from both analyses. 

 

 

Figure 9. 15 independent components estimated with ICA. (Ma et al., 2011) 

 

 

Graph theoretical methods 

Finally, graph theory is used to infer the topological organization of the brain at 

local and global level. The model is defined by nodes graphically represented as dots 

and edges plotted as lines, that represent brain regions and connections between 

them, respectively. The obtained networks are characterized by several parameters 
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describing different features that help classifying the networks in regular, random or 

small-world, which is the one that best describes brain connectivity (Sporns, 2006). 

Brain connections are organized in regions that are highly linked as hubs and other 

distant connections among these central clusters that work as highways for 

information. This model, that resembles social networks, enables the efficient 

functional communication between brain networks responsible for different functions. 

These networks are characterized by a high clustering coefficient and small path 

lengths. Other parameters that help classifying networks are: modularity, efficiency, 

centrality, degree distribution or hierarchy. Furthermore, the graphs can be identified 

by the order, defined by the number of nodes it has, or by the labeling of their links, 

being weighted if present or binary otherwise (see figure 10). 

 

 

Figure 10. Examples of undirected(a), directed(b), and weighted(c)networks computed with graph 
analysis. (Onias et al., 2014). 

 

 

2.3 PSYCHOTIC DISORDERS 

Psychosis is neurodevelopmental disorder characterized by a set of symptoms 

involving abnormal perception and interpretation of reality that affects behavior and 

emotions. FEP appears before the age of 18 years and it can derive into several 

relapses as shown in figure 11. Some people only experience a psychotic episode while 

others can develop into various disorders such as schizophrenia, schizophreniform 

disorder, brief psychotic disorder and bipolar disorder or major depression with 
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psychotic symptoms. These are serious mental disabling health problems associated 

with a poorer quality of life (Saarni et al., 2010) and significantly decreased life 

expectancy (up to 20 years) (Suvisaari et al., 2013). In fact, schizophrenia, the most 

common type of psychosis, is said to be the third most disabling condition after 

quadriplegia or dementia, implying high human and economic costs. This brain 

disorder develops in 2-3 percent of the population (Perala et al., 2007) although its 

consequences are devastating not only for patients but also for those around them, 

like family members (Millier et al., 2014). Anyhow, there exist several possible 

treatments, including drugs and therapy, to help managing the different symptoms 

and improve quality of life. 

 Psychosis is characterized by the following symptoms that can appear in 

different rates and severities: 

 Positive symptoms: These are conditions that are not commonly experienced 

by the general population and are characterized by delusions (false, irrational, 

personal beliefs that are not based in evidence or reality), hallucinations (false 

sensory perceptions that have no real source and only exist on person’s mind) 

or abnormal, disorganized movements. 

 Negative symptoms: These differ from healthy population in the absence of 

normal (emotional) behaviors. Lack of motivation or avolition are common 

manifestations. 

 Affective dysregulation: Some examples are depression or mania. 

 Severe cognitive impairments: These cognitive deficits negatively affect 

executive functioning, concentration and working memory. 

Particularly in subjects between 13-18 years old, positive symptoms are present 

in around 7% of them (Kelleher et al., 2012) while 10% manifest sub-threshold 

symptoms like abnormal thinking or reality confusion (Calkins et al., 2014). The 

presence of these symptoms in teenagers indicates their susceptibility of developing 

another type of mental disorders in the future (Carrion et al., 2013) even when 

psychotic disorder does not develop in the mid-term.  
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Figure 11. Usual course of FEP. Adapted. (Robinson et al., 1999). 

 

 

2.4 USEFULNESS OF RS-FMRI IN PSYCHOTIC DISORDERS 

2.4.1 Why doing neuroimaging in psychiatry? 

The unequivocal identification of a psychiatric disorder is complicated due to 

several factors such as overlapping symptoms between different diseases, the reliance 

and objectivity of self-reported abnormalities and the lack of a direct relationship 

found between genetic biomarkers and a disease. Characterization of the underlying 

pathology of FEP is likely to require an integrative platform that enables researchers to 

combine findings across various scientific disciplines. For example, observations from 

human neuroimaging studies could be linked with findings obtained using 

experimental techniques (such as cellular assays, histology or animal models) that can 

characterize pathological processes at a high level of information, specificity and 

resolution. Neuroimaging remains one of the few techniques that can be used to 

investigate brain pathology in vivo, offering a unique opportunity to provide 

information that could facilitate the diagnosis and treatment of FEP in the clinical 
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setting. This technique is thus a promising tool to shed light on the relation of genetic 

alterations with structural and functional brain abnormalities assessing disease 

diagnosis.  For this reason, growing efforts are now devoted to developing 

neuroimaging into a translational tool—that is, a tool that forms part of a chain of 

multidisciplinary inputs and outputs that provides results that can be translated into 

medical practice and can be used as a measure of health outcomes. In the future, 

integration of neuroimaging into the translational research cycle (see figure 12) will be 

crucial in order to facilitate translation of findings from bench to bedside. 

 

Figure 12. Integration of neuroimaging in the translational research cycle. (Ecker and Murphy, 2014). 

 

Thus far, no psychiatric disorder has yet been diagnosed by using neuroimaging 

alone, and the uses at clinical level are limited mainly to structural modalities such as 

computed tomography (CT) or MRI. Otherwise, functional imaging modalities like PET, 

single-photon emission tomography (SPECT), fMRI or diffusion tensor tractography 

(DTI) characterize the foundations of most research studies on psychiatry. However, 

functional modalities are proving to be a very useful tool not only to assess disease 

diagnosis and progression by studying brain circuits but also to observe the effects of 

treatments on the brain.  
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FEP comprises a group of conditions with a large degree of etiological and 

phenotypic heterogeneity. Probably for this reason, the diagnosis of psychosis 

continues to be based on symptoms rather than etiology, and individuals with 

suspected psychosis are conventionally assessed via behavioral observations and/or 

clinical interviews. Although the behavioral diagnosis of psychosis has clear advantages 

in the clinical setting, it is less beneficial for the classification of disorders and the 

development of new treatments. This is significantly evident in clinical trial cohorts, 

which typically exhibit a high degree of clinical and/or phenotypic heterogeneity. 

These studies can potentially include individuals belonging to different biological 

subgroups within FEP, who are unlikely to be treatable using a 'one size fits all' 

approach. Consequently, strong effects of a given treatment within a biologically 

homogeneous subgroup of patients with FEP might be masked by a small effect of the 

treatment across the whole cohort. Neuroimaging techniques might enable 

stratification of patients into homogeneous subgroups of individuals who are more 

likely to respond to a given treatment (See figure 13). 

 

FEP biomarkers 

Figure 13. Stratification of FEP 
patients according to biomarkers 
enables more efficient treatment 
development and planning. 
Adapted. . (Ecker and Murphy, 
2014) 
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2.4.2 Advantages of rs-fMRI for the study of psychosis 

Rs-fMRI is one of the imaging modalities that has provided great valuable 

information about brain connectivity alterations in psychotic disorders. This technique 

has certain properties that make it particularly advantageous for the study of 

psychosis. The individuals suffering this kind of disorders often present symptoms that 

hamper the performance of certain tasks and thus, the limited behavioral demand of 

the resting conditions make it easier to perform optimal recordings. Second, rs-MRI 

provides extremely rich data regarding functional brain networks, which may be a 

particularly informative unit of analysis for psychotic disorders, and are amenable to 

many complementary analytic strategies. The task independence also favors the 

sharing of data across different studies, as cited previously. Despite these advantages, 

the psychotic condition is also particularly compromising in rs-fMRI. This technique is 

quite sensitive to motion, which is significantly more likely to occur in the presence of 

psychotic symptoms and can give meaningful group differences when analyzing the 

data of patients and controls. 

Numerous findings suggest the low-frequency BOLD signal from rs-fMRI as a 

potential biomarker for neuropsychiatric diseases, its prognosis and therapy evaluation 

(Castellanos et al., 2013, Satterthwaite et al., 2015) These biological indicators have 

helped to improve the differential diagnosis of these disorders, what has always been 

a critical challenge for psychiatrists and clinicians. Despite all these promising findings, 

work is still needed to enable the use of rs-fMRI in clinical context. 

 

2.4.3 State of the art of rs-fMRI in psychotic disorders 

Over the last decades, research has been devoted to the study of functional 

connectivity of the brain as a potential biomarker for neuropsychiatric diseases. People 

suffering psychotic disorders have shown alterations in brain patterns of connectivity 

when performing resting state studies that have shown to be correlated to cognitive 

impairments. 

The majority of these disruptions have been found in the DMN, the one 

responsible for the integration of cognitive and emotional processing. This is 
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consistent with the disturbed thoughts and emotional flatness characteristic of 

psychotic disorders. Studies on first episodes of psychosis have revealed 

hyperconnectivity of this network not only during resting state (Satterthwaite et al., 

2015) but also during working memory tasks (Fryer et al., 2013), what agrees with the 

idea of a deficient suppression of DMN activity during task performance at the early 

overt stages of the disease. This proposal is supported by the loss of anti-correlation 

found by Wotruba et al. (Wotruba et al., 2014) between task positive networks and 

DMN.  

FEP is however a non-specific disorder that can be precursor of various clinical 

conditions and prognosis. For this reason, research is needed in order to find a robust 

relation between symptom severity or cognitive impairment and network disruptions. 

This characterization of the psychosis continuum will allow the dissection of the 

disease in different stages. FEP often derives into schizophrenia, a dysconnectivity 

disease showing increased activity and connectivity on its first stages, as in FEP. 

Schizophrenia is said to be derived from aberrant maturation of brain specially 

affecting association cortex. The hyperactivity and connectivity on the DMN has been 

related to positive symptoms of early-onset schizophrenia by Whitfield-Gabrieli 

(Whitfield-Gabrieli et al., 2009), although Bluhm et al. (Bluhm et al., 2007) associate 

them to hypoconnectivity. Lui (Lui et al., 2010) has also negatively related temporo-

PCu connectivity to Positive and Negative Syndrome Scale (PANSS) scores, although 

there are other researchers as Alonso-Solís and colleagues (Alonso-Solis et al., 2012) 

that have not found any relation between DMN functional connectivity and symptoms. 

This group has instead detected decreased connectivity of the MPFC with PCu and PCC 

in the DMN, consistent with other investigators’ findings (Bluhm et al., 2007, Whitfield-

Gabrieli et al., 2009). 

The connection between frontal regions and the DMN has also been assessed. 

Dysfunctional interactions are present between FPN and DMN in FEP (Buckner, 2013, 

Satterthwaite et al., 2015). FPN anatomically overlaps with DMN and is related to 

initiation and modulation of cognitive control tasks and external attention. The 

decoupling of this network with DMN is thus consistent with the disordered thoughts 

in psychosis, as executive control systems and cognitive processing are disrupted. FPN 

shows also less modular organization in psychotic disorders, what decreases the 
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effective connectivity among external control systems. This is consistent with 

outcomes reporting impaired FPN in cognitive control tasks (Fornito et al., 2011). 

Furthermore, there have been different findings about activity of the network itself; 

while Lui and colleagues (Lui et al., 2010) have found increased overall activity, others 

have reported hypoactivity (Zhou et al., 2007). 

Association between structural abnormalities and aberrant functional 

connectivity has also been found across several studies that mostly report decreased 

gray matter (GM) in frontal and parietal regions of FEP (Arango et al., 2012, Schmidt et 

al., 2014). However there is no clear evidence linking reduced gray matter and 

psychotic symptoms. 

Cognitive impairment is a hallmark characteristic of FEP (van Os and Kapur, 

2009), with prior literature demonstrating that rs-fMRI may be associated with 

cognitive function/dysfunction. Previous studies have found that higher IQ scores are 

associated with greater functional connectivity within a FPN in healthy individuals, 

suggesting that the coordination of these regions is an important neural basis of 

individual intelligence (Song et al., 2008). A region-specific analysis of the lateral 

prefrontal cortex, part of the FPN, found that its global connectivity predicted 

cognitive performance (Cole et al., 2012). Two studies have also reported an 

association between efficiency of global communication and intellectual performance, 

suggesting that individuals with higher intelligence have a more organized brain 

network overall (van den Heuvel et al., 2008).  

 

At this point, it has been described the usefulness of rs-fMRI as a powerful tool 

to understand and analyze brain organization in healthy and diseased individuals. 

Currently, it is widely used as a promising technique to identify biomarkers of 

psychiatric diseases based on patterns of brain connectivity. For this reason, this 

project analyzes fMRI images of FEP individuals looking for quantifying abnormalities in 

the brain functional connectivity of these patients compared to healthy individuals and 

relate them with cognitive performance and symptom severity. According to the 

previously cited literature, we expect to find hyperconnectivity in FEP with respect to 

controls, and a negative relation of this connectivity with intellectual performance. 
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Also, it is expected that symptom severity is higher as connectivity increases in 

patients. 

At the beginning of this document, the motivation, objectives and hypotheses 

of the project have been specified. Next, the state of the art of the technique and its 

relation to psychotic disorders have been detailed such that the reader can understand 

the context of the study. Hereafter, the materials and methods used in this study will 

be described, starting from the patient recruitment and subsequent image acquisition 

and finishing with image statistical analysis after preprocessing tools and steps have 

been specified. Further on, the results of these analyses are presented and a final 

discussion will compare our findings to other studies, determine the limitations of our 

approach and suggest future lines of work. Every source of information used to 

develop this project is alphabetically compiled at the end of the current document. 
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3. MATERIALS AND METHODS 

3.1 SAMPLE (SUBJECT SELECTION CRITERIA)   

For this study, developed in the Child and Adolescent Psychiatry Department at 

the Hospital General Universitario Gregorio Marañón (Madrid, Spain), 30 patients with 

FEP and 18 age-matched healthy controls were recruited. Patients were recruited at 

the inpatient or outpatient clinic at the time of their first episode of psychosis, and 

healthy controls were recruited from the community, at publicly-funded schools with 

characteristics similar to those attended by patients and located in the same 

geographic area. 

The inclusion criteria for all patients were being aged 7 to 18 years at the time 

of first assessment, speaking Spanish correctly, and having a DSM-IV-TR diagnosis of 

either a first episode of psychotic disorder. The inclusion criteria for healthy controls 

were the same as for patients, except for no current or previous psychiatric disorder. 

Exclusion criteria included mental retardation per DSM-IV-TR criteria, neurological 

disorders, history of head trauma with loss of consciousness and pregnancy.  

The study protocol and informed consent form were approved by the 

Institutional Review Board of Hospital General Universitario Gregorio Marañón in 

Madrid. All parents or legal guardians gave written informed consent after receiving 

complete information about the study, and patients and controls agreed to participate. 

 

3.1.1 Diagnostic assessment 

All diagnostic assessments were conducted by child and adolescent 

psychiatrists with extensive experience in the diagnosis of psychosis, after directly 

assessing the young patient and the family and after reviewing all available medical 
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and educational reports. The Spanish adaptation of the Schedule for Affective 

Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-

SADS-PL) (Kaufman et al., 1997) was administered to both patients and healthy 

controls to obtain diagnosis in patients with FEP and to rule out concomitant 

psychiatric disorders in both groups. Also parents were administered K-SADS-PL in 

individually separated interviews, being the final diagnosis based on best clinical 

judgment taking into account all the available information. Patients were included in 

the FEP group if they fulfilled any DSM-IV-TR diagnosis of psychotic disorder (other 

than drug-induced psychosis) after the assessment described. 

 

3.1.2 Clinical and cognitive assessment 

Socioeconomic status was estimated as parental years of education, and 

handedness was assessed with item 5 of the Neurological Evaluation Scale (NES) for 

both groups. Estimated intelligence quotient (IQ) was computed using vocabulary and 

block-design tests of Wechsler Intelligence Scale for Children (WISC-R) in subjects 

under 16 years of age, and the Wechsler Adult Intelligence Scale (WAIS-III) in subjects 

16 years of age or older.  

PANSS scores were also administered to patients by child psychiatrist trained in 

the use of this scale, and PANSS positive, negative, general and total subscores were 

computed. Intraclass correlation coefficients for PANSS inter-rater reliability were 

above 0.8.  

In table 1, the sample is concisely described. 

 FEP Controls Statistics 

Age      [Mean (sd)]  15.17 (2.276) 14.06 (2.940) t=1.466, p=0.161 
IQ         [Mean (sd)] 88.96 (23.289) 108.00 (16.400) t=-2.760, p=0.096 
Gender   [%males] 43.3% 22.2% Χ2=2.192, p=0.214 
Panss   [Mean (sd)]    
      Positive 19.80   
      Negative 16.80   
      General 36.80   
      Total 73.40   
Table 1. 48-subjects sample description. 
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3.2 IMAGE ACQUISITION  

The image acquisition followed a specific MRI protocol performed in a 1.5 Tesla 

Philips Intera with software version 11.1.4.6 2006-03-10. The protocol included the 

following anatomical sequences, that are depicted in figures 14, 15 and 16: 

 Sagittal anatomical sequence with T1 enhancement:  

Echo gradient (fast field echo, FFE) 3D 

175 slices 

Voxel size: 1x0.94x0.94 mm3 

Matrix size: 256x256 

TR=25 ms 

TE=9.2 ms 

Acquisition time: 6 minutes 

 

Figure 14. Coronal, sagittal and axial planes of T1-weithed image of a subject of the study. 

 

 Axial anatomical sequence with T2 enhancement: 

Turbo spin-echo (TSE) sequence 

45 slices 

Voxel size: 1x1x3 mm3 

Matrix size: 256x256 

TR=5809 ms 

TE=120 ms 

Acquisition time: 8 minutes 
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Figure 15. Coronal, sagittal and axial planes of T2-weithed image of a subject of the study. 

 

 Resting state functional image (rs-fMRI): 

Echo-planar sequence (EPI) 

16 slices 

256 volumes 

Voxel size: 4x4x7 mm3 

Matrix size: 64x64 

TR=2000 ms 

TE=20 ms 

Acquisition time: 10 minutes 

 

Figure 16. Coronal, sagittal and axial planes of rs-fMRI image of a subject of the study. 

 

3.3 AREAS ANALYZED 

 The purpose of this study relies on the functional connectivity between brain 

regions during resting state. A model-driven approach assuming the existence of the 7 
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networks postulated by Yeo et al. was used in the dataset. From the networks and the 

regions that make them up, a number of networks and ROIs were selected. Due to the 

rather coarse resolution of the rs-fMRI scans of this study, some of the smaller regions 

postulated by Yeo et al. could not be assessed. The size of the voxels of the images 

from the experiment (see Image acquisition) is relatively large, limiting the possibility 

to select quite small regions in order to perform a reliable analysis. 

In table 2 and figure 17, the networks selected, as well as the ROIs inside them 

are exposed. 

Network name Number 

assigned 

ROIs 

Dorsal Attention 3 1, 2 and 3 

Ventral Attention 4 1, 2, 3 and 4 

Limbic 5 1 and 2 

Fronto-Parietal 6 1, 2, 3, 4, 5 and 6 

Default Mode 7 1, 2, 3, 4 and 5 

Table 2. Enumeration of the networks used and the ROIs inside them. 

 

Figure 17. Location of ROIs described by Yeo. (Yeo et al., 2011). 

 

 

3.4 IMAGE ANALYSIS (PROCESSING PIPELINE) 

In order to obtain the connectivity between ROIs, that is represented in 

correlation matrices, previous processing must be applied to the images. The steps 

required to preprocess the volumes and analyze the correlation among regions are 
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detailed in configuration files. These files are loaded on a tool developed in MATLAB 

which is currently used to perform neuroimage functional analysis at LIM. This tool 

reads the configuration files and implements the processes indicated on them, 

considering the packages and parameters specified by the user.  This way, the user 

needs to launch the processes using the files in order to obtain the matrices of 

correlation for every subject. The software packages versions used in this study are: 

Freesurfer 5.3.0, FSL 5.0, AFNI_2011_12_21_1014, SPM8 and MATLAB 7.12.0.635 

(2011a). The preprocessing steps described in these files, represented in figure 18, can 

be divided in two parts: structural and functional. 

 

Figure 18. Schematic representation of the steps implemented in the configuration files for 
preprocessing and analysis of functional connectivity. 
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3.4.1 Structural preprocessing 

 FreeSurfer: FreeSurfer is a multifunctional tool that is mainly used to identify 

functional regions in brain cortex. The first step implemented in structural 

preprocessing was to register the T1-weigthed structural image into Freesurfer 

space, resulting in a particular 265x265x265 image with isometric voxels of 

1mm3.  

 Segmentation: The next step is to segment this cubic image using SPM. The aim 

is to separate (in FreeSurfer space) gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF) components of the image, as depicted in figure 19. 

 

 

Figure 19. Segmentation of GM, WM and CSF of a raw brain image. Taken from Chang et al.2012. 

 

 Atlas: Finally, FreeSurfer is again used to register the cortical ROIs to the 

segmented image. Identified gray matter tissue is aligned with the atlas of 7 

Yeo regions (available in FreeSurfer). An example of the atlas registration to an 

image of the study is shown in figure 20. 

 

 

Figure 20. Registered Yeo 7-network  atlas to a segmented T1-wegthed image of the study. 
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3.4.2 Functional preprocessing  

Despiking: This tool was implemented in AFNI and the aim is to 

detect and eliminate short-term outliers in voxel time series 

replacing it by reasonable values fitting a smooth curve whose order 

can be selected by the user. It is also possible to select the threshold 

value defining the spikes. There are multiple studies proving that 

despiking improves alignment as well as motion correction due to 

less variable motion parameters. 

 

Motion correction: Implemented in SPM, this method allows fixing 

artifacts derived from (preferably small) subject movement within a 

session. With this purpose, a reference volume is used as 

benchmark to compare it with the small differences in head position 

during the sequence. In this study a mean of the whole 4D 

acquisition of the session was used, that is preferred to the 

employment of the first 3D volume of the session as it contains 

more information about the performance although it must be noted 

that it is built from unaligned volumes. For this study, a linear rigid-

body transformation of 6 degrees of freedom (DOF) was used. 

 

Linear registration: It is used to merge T1 structural image to the 

functional one (EPI) of each subject. This step was implemented on 

FSL using Boundary-Based Registration (BBR) cost function, which 

exploits intensity differences in white matter boundaries of both 

images to realign them. This technique, that includes built in 

fieldmap-based distortion-correction even in the absence of 

fieldmaps, provides more accurate results and robustness to 

artifacts in EPI. 

 

 

 

Despiking 

(AFNI) 

 

Motion 

correction 

(SPM) 

 

 

Linear 

Registration 

(FSL) 
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Smoothing: This tool is implemented in order minimize spatial 

differences across subjects. For this purpose, SPM was used to filter 

the images with an isotropic kernel of 12 mm. The size of the filter is 

selected considering the dimensions of the image voxels such that 

small ROIs are not cleared away. The method consists on averaging 

the signal of the neighboring voxels falling within the filter in order 

to minimize the possibility of the signal of voxels corresponding to a 

specific region to fall outside it in the analysis.  

 

Grand mean scaling: The scaling of the images was applied using 

“fslmaths” tool of FSL. This procedure is performed with the aim of 

removing intersession variability such that the signal of every 

timeseries is at the same scale. This method allows to easily 

compare the data across subjects. 

 

Detrending: It is used to remove temporal drifts on each voxel 

derived from scanner overuse. The trend was removed considering a 

linear polynomial with AFNI package. 

 

Band-pass filter: This step aims to eliminate the artifactual signals. 

The tool was implemented using «3Dbandpass» in AFNI such that 

frequencies between 0.009 and 0.08 HZ were conserved, which are 

the ones corresponding to our signal of interest, BOLD. 

 

Residual calculation: Finally, the motion parameters estimated 

initially during motion correction are used as regressors in SPM to 

perform a general linear model (GLM) analysis for residual 

calculation. 
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Once the images are preprocessed, the functional connectivity among regions 

is computed using seed-based analysis. The results are provided as a symmetric 

connectivity matrix of 76x76 components (see figure 22) representing the connectivity 

of each single ROI analyzed with each of the other ROIs and the mean connectivity 

between each one and the rest of the regions of its network at each hemisphere. This 

concept is more clearly depicted in figure 21. In this example, dorsal attention network 

contains 3 regions; thus, the connectivity matrix will contain the scores of each of the 3 

individual regions and also the mean connectivity of region 1 with 2 and 3 (in white), 

the mean connectivity of region 2 with 1 and 3 (in red), and the mean connectivity of 

region 3 with areas 1 and 2 (in black).  

Before performing any analysis on this data, quality control must be done. For 

this reason, visual inspection of the final processed images is necessary to check that 

the registration of the functional image with the Yeo atlas has been correctly 

implemented (as shown in figure 20). Otherwise, the values of the correlation matrix 

would correspond to different ROIs. 

 

 

 

 

 A MATLAB script was finally implemented in order to extract just the values of 

interest from the correlation matrix:  the connections between ROIs of the same 

network (per hemisphere) but not the activity values of each single region.  

Figure 21. Example of the computation of 
connectivity scores of the correlation 
matrix containing the scores of each of 
the 3 individual regions of dorsal 
attention network (green) and also the 
mean connectivity of region 1 with 2 and 
3 (in white), the mean connectivity of 
region 2 with 1 and 3 (in red), and the 
mean connectivity of region 3 with areas 
1 and 2 (in black).  
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3.5 COMPUTATIONAL FACILITIES  

The image processing steps were implemented using configuration files for 

every subject, specifying all the parameters and file paths required to perform every 

process. However, completing each individual configuration file requires almost a day; 

thus, a cluster of up to 60 virtual machines (VM) available in the Laboratorio de Imagen 

Médica (LIM, Medical Image Laboratory) at the Hospital General Universitario Gregorio 

Marañón was used to accelerate the process.   

The specifications of these VMs are the following: 

 30VMs of 1 core of 2 GHz, 6 GB RAM, 50 GB of storage capacity.  

Operating system: Debian 6.0.7, 64 bits. 

 30VMs of 1 core of 2.6 GHz, 6 GB RAM, 50 GB of storage capacity.  

Operating system: Debian 6.0.7, 64 bits. 

Figure 22. Symmetric correlation matrix displaying the connectivity of each ROI with each of 
the others and its mean connectivity with the rest of the ROIs belonging to its network. For 
example, as the first network analyzed is number 3, which contain 3 ROIs, the first row of the 
matrix represents the connectivity of ROI 3-1 with the rest of the regions and means of 
regions, the second one corresponds to 3-2, the third to 3-3, the forth to the mean of  3-2 and 
3-3, the fifth to the mean of 3-1 and 3-3 and so on. Thus, the point [4,1] of the matrix has the 
value of the mean connectivity of region 1 with ROIs 2 and 3 of network 3. 
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The local computer and the remote machines of the cluster are connected 

using SSH (Secure Shell) protocol. Each user of the platform has access to the cluster 

via its own personal computer at the hospital using a Graphical User Interface (GUI). 

Using this interface, the user can remotely select the processes to run and the VMs 

needed (and available). In this project, several VMs were selected and the 

configuration files of each subject were automatically divided in these remote 

machines in order to run the processes in parallel.  

The data required for the procedure is located in a common server that has 

direct connection with the cluster in order to enhance the efficiency of the data 

transfer. The users can access this server from their local computers. Once the 

procedure has finished, the results are stored back in the server and the unnecessary 

data is eliminated. 

 The overall scheme of the computational facilities described is depicted in the 

following figure. 

 

 

Figure 23. General 
scheme depicting the 
computational facilities 
used for the project at 
LIM in Hospital General 
Universitario Gregorio 
Marañón.  
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3.6 STATISTICAL ANALYSIS 

An ANCOVA model was used in order to test the main hypothesis. Analysis of 

covariance (ANCOVA) allows testing the effects of both, categorical predictors (often 

called grouping variables or factors) and continuous predictors (typically called 

covariates) in the same model. Furthermore, ANCOVA is a useful model if the main 

interest relies on the effects of the categorical variable (i.e. between group 

differences) but there are also several variables that need to be controlled for. 

This analysis was implemented using MANCOVA Toolbox for MATLAB 

(http://www.mathworks.com/matlabcentral/fileexchange/27014-

mancovan/content/mancovan.m). The tool allows testing the effects of the covariates 

and the possible groups or interactions over the dependent variable (Y). The 

identification of sources of significance is done by analyzing the computed F-statictics 

and associated p-values of each independent variable in the model (covariates, groups 

and interaction, if present) for each column of the dependent variable. Regression 

coefficients, also computed in the function for each model, are standardized in order 

to ease comparisons and identify the direction of the correlations. 

Four statistical models were implemented in order to test relation of functional 

connectivity with diagnosis, intellectual performance and symptoms. First of all, 

diagnostic differences in functional connectivity after controlling for age and sex were 

assessed. For this purpose, an Analysis of Covariance (ANCOVA) model with diagnosis 

as a between-group factor, age and sex as covariates and connectivity as the 

dependent variable was applied.  

Next, the influence of functional connectivity alterations on the cognitive 

performance was studied. For this purpose, diagnosis, connectivity and the interaction 

diagnosis-by-connectivity were set as independent variables in an ANCOVA model for 

predicting IQ after controlling for age and sex.  

To examine within-group IQ-connectivity associations, an additional ANCOVA 

model was tested on each group separately, including as independent variable of 

interest connectivity and age and sex as covariates.  

http://www.mathworks.com/matlabcentral/fileexchange/27014-mancovan/content/mancovan.m
http://www.mathworks.com/matlabcentral/fileexchange/27014-mancovan/content/mancovan.m
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Finally, the relationship between functional connectivity and symptom severity 

(as measured by PANSS) was assessed in the FEP group. In this model, the independent 

variable of interest was connectivity, age and sex were included as covariates, and the 

dependent variable was the PANSS score. 
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4. RESULTS 

Hypothesis 1: Patients with early-onset psychosis will have increased 

functional connectivity (‘hyperconnectivity’) with respect to healthy controls.  

Figure 24 shows the mean connectivity values per group after controlling for 

the effect of age and sex. As observed, in the FEP group the functional connectivity 

between the target ROIs and the remaining network regions is in general increased 

when compared to healthy controls. These increases were statistically significant 

differences for five regions that were part of the FPN and DMN. 

 

*Significant between group differences at alpha 0.10 
** Significant between group differences at alpha 0.05 
 

Figure 24. Mean connectivity values per group after controlling the effect of age and sex.  



65 
 

Specifically, the functional connectivity of the left cingulate-medial frontal (6-5), 

right insula (6-3) and right posterior middle/inferior temporal (6-4) within the FPN 

were higher in FEP. The same pattern was exhibited in the left medial prefrontal (7-1) 

and right temporal (7-5) ROIs within the DMN regions (see Annex, Table S1). Figure 25 

displays F, p and standardized beta values for the effect of diagnosis on functional 

connectivity in these regions, as well as the dispersion of the connectivity values within 

each group. The increased functional connectivity of the right temporal region in 

patients is particularly evident.  

 

 

 

Figure 25. F, p and standardized beta values for the effect of diagnosis on connectivity in those regions 
were a significant effect was observed. In the ANCOVA model connectivity was the dependent variable, 
diagnosis was the independent variable, and age and sex the covariates. Plots display individual and mean 
connectivity values after controlling the effect of age and sex. 
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Hypothesis 2: Functional connectivity is differentially related to overall 

cognitive performance in FEP and controls. 

After controlling for age and sex, there were significant diagnosis-by-

connectivity interactions for the five regions studied with respect to intellectual 

performance (IQ), although there were no main effects of connectivity in none of them 

(see Annex, Table S2). As shown in Figure 26, functional connectivity of healthy 

controls tended to be insignificantly or positively related with IQ, that is, subjects with 

higher functional connectivity had higher IQ scores. In contrast, a higher functional 

connectivity in patients was associated with a poorer intellectual performance.  

 

 
 
Figure 26. Dispersion plots for the connectivity-IQ relationships in FEP and controls after controlling for 
age and sex. F and p values for the interaction diagnosis-by-connectivity effect in the five regions 
considered are also displayed.  
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Table 3 includes the F, p and beta values denoting the main effect of 

connectivity on IQ in the five considered ROIs for patients and controls (see Annex, 

Table S3 for the whole set of regions). The five regions considered showed significant 

results in the control group, following a positive tendency except for the right posterior 

middle/inferior temporal (6-4) within the FPN, where negative relationships were 

found in both groups. In the case of patients, the highest effect was found for this 

latter region, while the lowest (and not significant) effect was observed in right insula 

(6-3).  Taken together, the hyperconnectivity observed in the FEP group for these 

regions had a significant impact on intellectual performance: the higher the functional 

connectivity the lower the IQ. 

 

Network: Target ROI 6-3 6-4 6-5 7-1 7-5 

Right 

Controls 

Connectivity 

F 2.654 2.126   .253 

P .120 .161   .620 

Beta .355 -.365   .118 

FEP 

Connectivity 

F 1.353 16.234**   4.653** 

P .255 .000   .040 

Beta -.238 -.625   -.433 

Left 

Controls 

Connectivity 

F   1.971 .817  

P   .176 .378  

Beta   .311 .208  

FEP 

Connectivity 

F   4.898** 4.641**  

P   .036 .040  

Beta   -.419 -.458  

** Significant main effect of connectivity at alpha 0.05 

 
Table 3. F, p and beta values for the effect of connectivity in the five overconnected regions on IQ.  The 
ANCOVA model included as dependent variable IQ, and sex and age as covariates. Columns show these 
effects per Network and ROI. This ANOVA model was computed on Controls and FEP separately.  
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Hypothesis 3: Hyperconnectivity is positively related to symptom severity 

Figure 27 shows that symptom severity (assessed with PANSS total scores) 

tended to be positively related to functional connectivity in the five regions. These 

associations were significant in the left cingulate-medial frontal (6-5) (within the FPN) 

and right temporal (7-5) (within the DMN). Annex (Table S4) includes the main effect 

of connectivity on PANSS total scores for the whole set of ROIs. As observed, higher 

functional connectivity was predictive of increased symptom severity, especially for 

the right hemisphere. 

 

 

Figure 27. Dispersion plots for the connectivity-symptoms relationships in FEP after controlling for age 
and sex. F, p values and standarized beta values  are also displayed.  
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5. DISCUSSION 

5.1 RESULTS DISCUSSION 

This study aims to use rs-fMRI to assess whether functional connectivity 

patterns are abnormal in youth suffering from FEP. After reviewing the literature three 

hypotheses were posed. First of all, patients were hypothesized to have increased 

functional connectivity with respect to healthy controls, a concept that was 

corroborated in most networks. After statistical inference, it was demonstrated that 

the FPN and DMN showed strong abnormal hyperconnectivity in particular. The 

second hypothesis stated that functional connectivity would be related to the 

cognitive impairments of FEP. A negative relationship was found between IQ and 

functional connectivity, i.e. patients with increased functional connectivity had more 

general cognitive impairment (lower IQ). Finally, the third hypothesis assumed altered 

brain connectivity to be linked to symptom severity. The results agreed with this idea, 

showing a positive relation between hyperconnectivity and symptoms. 

 

5.1.1 Abnormal functional connectivity in FEP 

 The increased functional connectivity found in most networks among FEP with 

respect to healthy controls is consistent with previous findings in this field. Only in the 

Dorsal Attention network did the FEP group have decreased functional connectivity as 

was reported previously (Woodward et al., 2011). In contrast, left cingulate-medial 

frontal, right insula and right posterior middle/inferior temporal within the FPN as well 

as left the medial prefrontal and right temporal ROIs within the DMN showed 

hyperconnectivity in FEP patients when compared to healthy individuals. Other studies 

have also reported increased functional connectivity in the FPN in psychosis (Lui et al., 

2011) although there are also findings showing decreased activity (Zhou et al., 2007). 
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Fornito et al. have analyzed the activity of this network during cognitive control tasks 

using graph analysis, corroborating the impaired connectivity patterns in the FPN 

reported in the current study (Fornito et al., 2011).  

 

5.1.2 Functional connectivity of the DMN in FEP 

On the other hand, much research has been devoted to DMN, due to its role on 

internal processing, its anti-correlation with task-positive networks and the evident 

stability it presents in rs-fMRI studies since it was first described in the 1990s. The 

hyperactivity of the DMN in FEP is robustly supported by a wide number of studies 

(Fryer et al., 2013, Satterthwaite et al., 2015), and dysfunction of the MPFC may be 

critical for the disorder (REF). Whitfield-Gabrielli and colleagues (Whitfield-Gabrieli et 

al., 2009) have reported decreased suppression of this region during a task, being 

more evident as severity of symptoms increases, together with increased general 

Default Mode connectivity. Furthermore, MPFC, ROI 7-1 in this study, often shows 

aberrant reduced connectivity with precuneous and posterior cingulated cortex, which 

also belong to DMN. On the contrary, our data reveals increased functional 

connectivity of this ROI with the rest of the regions in the network if compared to 

control subjects. Woodward et al. has instead shown increased connectivity of 

posterior cinculate cortex, key hub in DMN, with other regions like left inferior, middle 

frontal and middle temporal gyri.  

 

5.1.3 Functional connectivity and cognitive impairment 

 The evaluation of cognitive performance with respect to functional connectivity 

revealed a negative correlation in FEP meaning that as connectivity increases in 

patients, IQ decreases. This is consistent with the hyperconnectivity found in patients 

and the typically reduced cognitive performance found in psychosis. Few studies have 

related IQ with functional connectivity in FEP. Empirical evidences suggests that the 

efficiency of networks predicts the intellectual performance, as shown by Song and 

colleagues (Song et al., 2009), that observed increases DMN efficiency in individuals 
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with higher IQ scores. The abnormal patterns of connectivity, the network segregation 

and the loss of modularization in and between FPN and DMN in FEP (Buckner, 2013, 

Baker et al., 2014) can be translated into a decreased network efficiency that would 

explain the lowered IQ scores of the patients.  

 

5.1.4 Functional connectivity and symptom severity 

 Finally, the relation of clinical symptoms with connectivity was assessed for our 

dataset, revealing a coupling between increased PANSS scores and hyperconnectivity. 

This result is consistent with findings from Whitfield-Gabrielli (Whitfield-Gabrieli et al., 

2009), showing a positive relation of hyperactivity and connectivity of the DMN with 

positive symptoms of early-onset schizophrenia. Contrasting findings are also reported 

by Alonso-Solís and colleagues (Alonso-Solis et al., 2012), which did not confirm any 

correlation with the connectivity of this network and symptom severity, or Bluhm 

(Bluhm et al., 2007), who related decreased DMN connectivity with positive 

symptoms. On the other hand, Lui and colleagues (Lui et al., 2010) reported increased 

PANSS scores associated with increasing temporo-putamen connectivity and 

decreasing temporo-precuneous connectivity; while positive correlation of negative 

PANSS scores with meso/paralimbic regions in schizophrenia was reported by Khadka 

(Khadka et al., 2013).  

 

5.1.5 Functional hyperconnectivity in FEP 

 Despite the few number of studies investigating functional connectivity in 

youth with FEP, there is a general concept of globally increased connectivity of brain 

networks at the early stages of the disorder, particularly in the DMN. When the disease 

progresses, hyperconnectivity may change to hypoconnectivity. For example Anticevic 

et al. (Anticevic et al., 2015) found evidence for hypoconnectivity in chronic patients 

among prefrontal-thalamic regions, which show increased connectivity in FEP. How 

hyper- and hypoconnectivity relate to the disease is still far from understood. The 

working hypothesis is that hyperconnectivity results from an early life disease-related 
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insult that turns into hypoconnectivity as the brain worsens in later phases of the 

disorder (Satterthwaite et al., 2015). 

5.2 LIMITATIONS 

 Apart from the cited general limitations involved in rs-fMRI, such as motion 

confounds, variability of analytical approaches and uncertainties of resting condition, 

there are also other restrictions that have constrained the efficiency and reliability of 

the result of this study. 

 The first issue to consider is the anisotropic voxel resolution of the acquired 

echo planar images with a particular large sized dimension in the z plane. This 

characteristic complicates, if not precludes, the assessment of small sized brain 

regions. In the z plane each voxel will contain information sampled over a large space, 

thus possibly including multiple smaller sized regions. Big voxels also disturb the 

accurate registration of smaller sized regions from atlases to the functional image as 

one single voxel can contain information of more than one smaller sized region from 

an atlas. As such, a smaller sized region cannot be meaningfully registered over the 

large sized voxel in the echo planar image. 

 The sample available for this study has also limitations. First of all, a large 

number of subjects is crucial to perform a powerful statistical analysis, which 

unfortunately was not the case. In order to obtain reliable results it is also important to 

reduce the potential heterogeneity of the sample. This way, age, sex, symptoms and 

even ethnicity or education level can be more precisely controlled for as to reduce 

confounding effects of these variables (that were later considered in the statistical 

models). Most of these features were considered by administering clinical, diagnostic 

and cognitive assessments, although the homogeneity of the sample can be still 

considered affected by factors like the 11-years age difference among individuals. It is 

important to note, however, that these patients are hard to recruit, e.g. undergoing an 

MRI scan can be a formidable test of endurance for a young patient with psychosis and 

many opt not to participate.  
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5.3 FUTURE WORK AND ALTERNATIVE APPROACHES 

 Given the cited limitations, the implementation of other approaches in order to 

analyze the images is a very recommendable future effort to consider. ICA seems to be 

a valid alternative to the top-down atlas-based approach applied in this project if more 

time is available in order to develop a good algorithm and enable student training.  

Another useful consideration to implement in upcoming work is the assessment 

of longitudinal changes. For this purpose, the clinical and neurobiological progress of 

the subjects will be studied by acquiring new functional and structural images of the 

subjects at certain time intervals. These time differences must also be homogeneous 

across the sample, and clinical, diagnostic and behavioral assessment at these stages 

must be also performed. This way, it will be possible to evaluate the brain changes 

after FEP as well as the effect that changes in connectivity have in intellectual 

performance or symptoms.  
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6. CONCLUSIONS 

The current project has analyzed the relation of functional connectivity in FEP 

patients with respect to healthy individuals, cognitive performance and symptom 

severity. For this objective, literature on technical aspects of rs-fMRI as well as the 

relationship between rs-fMRI and FEP was assessed. Combining knowledge from 

literature and practice, an analytic atlas-based approach to process rs-fMRI data of FEP 

and healthy controls was designed and implemented. This was the first analysis of rs-

fMRI data performed at the Hospital General Universitation Gregorio Marañón, and 

the results show that it may be a useful technique to connectivity alterations in FEP. 

Following the proposed workflow, the student started acquiring knowledge 

about rs-fMRI from the literature. Simultaneously, the student obtained handed on 

knowledge about processing of rs-fMRI data by practicing with an example data set in 

the processing environment at LIM. 

 After these training tasks, MRI scans were processed using the LIM processing 

environment, specifically designed for processing of functional data. For this stage of 

the project, configuration files were specifically designed for our subjects and launched 

on the cluster for fully-automated parallel preprocessing of all the images. When these 

steps were completed, the student performed quality control and validation of the 

preprocessing pipeline by checking the resulting images. Once validity of the steps was 

ensured, the derived correlation matrices could be used for subsequent statistical 

analyses. For this purpose, MATLAB scripts were designed by the student to 

successfully extract the values of interest for the statistical analyses, which were the 

mean connectivities among ROIs of resting state networks.  

 Next, four statistical models were developed to test the previously established 

hypotheses, selected according to previous literature. These models were 
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implemented in MATLAB using the MANCOVAN toolbox, for which the student created 

specific scripts. 

 Finally, the student interpreted the results in collaboration with psychologists, 

and specific figures were designed to clearly represent the findings. FEP patients 

showed hyperconnectivity with respect to healthy controls, and this was related to 

lower cognitive performance and increased symptom severity. 
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7. SOCIAL IMPACT 

Mental health problems affect more than one third of the European 

population, being about 165 million people experiencing psychiatric disorders in a 

given year. Given the high number of affected individuals together with care costs and 

loss of productivity in workplace, this disorder places a huge economic burden on 

society and health care systems. In fact, Mental Health Economic European Network 

(MHEEN) has estimated that 2.000€ per year is the cost this disabling problem implies 

of every European household per year.  

One of the main causes of this expensive management of mental disorders is 

due to the lack of proper stratification of patient conditions, such that treatment can 

be personalized in order to achieve optimal results. Consequently, much effort is now 

devoted to reduce the gap between clinical interventions and neuroscience pursuing 

translational research among these disciplines to ensure better patient classification. 

For this reason, neuroimaging is shaping up as a potentially useful technique to 

understand the basis of these severe disorders, enabling the identification and 

categorization of different conditions and the development and testing of beneficial 

treatments and therapies. In the last decades, novel findings on psychotic disorder 

foundations using rs-fMRI have proven the value of this technique in the 

comprehension of brain organization and the roots of these health problems; 

discoveries that, incorporated to clinical settings, will be beneficial for patients, 

families, workers and government. 
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8. BUDGET  

Human resources costs 

Description Number Salary (€/h) Hours Cost (€) 

Student 1 25 640 16,000.00 
Internal supervisor 1 35 20 700.00 
External supervisor 1 35 90 3,150.00 
Engineers and psychologists 2 35 110 3,850.00 

Total    23,700.00 

 

Material costs 

Description Initial cost (€) Cost per year (€) Dedication Total (€) 

Personal computer 1000 200 8 months 133.00 
MATLAB license 
(academic use) 

500 100 6 months 50.00 

Total    183.00 

 

Total costs 

Description Cost (€) 

Human resources 23,700.00 
Material costs 183.00 
Indirect costs 4,776.60 
General costs 29.28 
Industrial benefit 10.98 

Total (without IVA) 28,699.86 
IVA (21%) 6,026.97 

Estimated total 34,726.83 
 

Note: The cost of subject recruitment and assessment as well as image acquisition (technician an 
scanner costs) are not included in budget calculation as patient and control information were loaned 
from a previous study at the Hospital General Universitario Gregorio Marañón. The facilities (workplace, 
cluster), office supplies, Microsoft office pack or internet costs are neither considered for budget 
calculation as they are part of LIM services. 
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9. ANNEX  

Network 
Target ROI 3

_1
 

3
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6
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6
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6
_4

 

6
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6
_6

 

7
_1

 

7
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7
_3

 

7
_4

 

7
_5

 

Right 
 

F  
.080 .022 .108 1.643 1.183 1.274 .287 .018 .058 1.047 3.488* 3.546* .733 .396 .825 .889 1.280 .352 8.901* 

p  
.778 .883 .744 .205 .281 .264 .594 .894 .810 .310 .067 .065 .395 .532 .367 .350 .262 .555 .004 

Beta 
-.036 -.019 -.042 .165 .139 .146 -.069 -.018 -.031 -.134 .234 .241 -.111 .082 .118 .123 .147 .078 .364 

Left 

F  
.183 .181 .106 .234 .380 1.092 .264 .001 .152 .419 1.997 .415 4.002* .306 4.014* .454 2.017 1.167 .742 

p  
.670 .672 .746 .631 .540 .300 .609 .972 .698 .520 .163 .522 .050 .582 .050 .503 .161 .284 .393 

Beta 
-.054 -.055 -.042 .064 .081 .136 .066 .005 .051 -.085 .181 .084 .254 -.073 .254 .087 .181 .140 .112 

* Significant at alpha 0.10  * Significant at alpha 0.05 

Table S1. F, p and standardized beta values for the effect of diagnosis in the ANCOVA model including as dependent variable the connectivity, and sex and age as covariates. 
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Network 
Target-ROI 3
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Right 
 

D
ia
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o
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s 

F  .318 .870 .004 1.150 .641 1.061 .575 .478 .098 .005 .071 .984 .668 1.384 .016 .089 .013 .006 1.153 

p  .575 .356 .948 .289 .427 .308 .452 .493 .756 .941 .790 .326 .418 .245 .901 .766 .908 .938 .288 

Beta -.393 -.596 .044 -.273 -.306 -.233 -.319 -.266 -.215 -.046 .093 .288 -.616 -.541 -.094 -.114 .063 .041 .586 

C
o

n
n

ec
ti

vi
ty

 F  .339 1.012 .009 .696 .014 .355 .247 .285 .040 .063 1.274 .610 .382 .890 .058 .028 .371 .410 .237 

p  .563 .319 .925 .408 .907 .554 .622 .596 .843 .803 .265 .438 .539 .350 .810 .867 .545 .525 .629 

Beta -.131 -.230 .022 -.163 -.025 -.110 -.121 .127 .040 .059 .196 -.126 -.157 -.241 -.054 .033 -.107 -.135 .087 

D
ia

gn
o

si
s 

-b
y-

 

C
o

n
n

ec
ti

vi
ty

 F  .015 .045 .610 .395 .156 1.008 .154 .272 .131 .508 2.892* 5.938* .036 .046 .219 .862 .868 .837 3.545* 

p  .904 .833 .439 .533 .695 .320 .696 .604 .719 .479 .096 .019 .851 .831 .642 .358 .356 .365 .066 

Beta -.085 .140 -.530 -.197 -.172 -.277 -.178 -.216 -.253 -.429 -.664 -.806 .142 .113 -.373 -.390 -.531 -.519 -1.115 

Left 

D
ia

gn
o

si
s 

F  .046 .327 1.845 7.275* .760 5.662* 3.671* 2.283 .010 .050 .055 1.462 1.097 .672 .966 .471 .022 .170 11.551* 

p  .832 .570 .181 .010 .388 .021 .061 .137 .922 .824 .815 .233 .300 .416 .331 .496 .884 .682 .001 

Beta -.151 .414 -.636 -.551 -.291 -.526 -.722 -.653 -.075 .187 -.119 -.517 .361 -.462 .509 .582 .090 .210 -.593 

C
o

n
n

ec
ti

vi
ty

 F  .338 .684 .082 1.844 .307 1.853 .702 .024 .222 .103 .028 1.893 .955 .026 .657 .261 .541 .068 .910 

p  .564 .412 .775 .181 .582 .180 .406 .877 .640 .750 .867 .175 .333 .872 .422 .612 .466 .795 .345 

Beta .116 .179 -.052 -.263 -.113 -.270 -.204 -.032 .095 .080 -.037 -.291 .147 .042 .174 .122 -.131 -.047 -.168 

D
ia

gn
o

si
s 

-b
y-

 

C
o

n
n

ec
ti

vi
ty

 F  .184 1.517 .157 .406 .240 .247 .567 .237 .263 .635 .434 .033 6.270* .001 3.443* 1.512 .730 1.765 1.345 

p  .670 .224 .694 .527 .627 .621 .455 .628 .610 .430 .513 .857 .016 .981 .070 .225 .397 .190 .252 

Beta -.304 -.887 .192 .165 -.188 .140 .332 .216 -.400 -.663 -.363 .085 -.917 .013 -1.071 -1.083 -.548 -.705 .253 

* Significant at alpha 0.10  * Significant at alpha 0.05 

Table S2. F, p and standardized beta values for the effect of diagnosis, connectivity, and diagnosis-by-connectivity, in the ANCOVA model including as dependent variable 
IQ, and sex and age as covariates. Columns include these effects per Network and ROI. 
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Network 
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Right 
 

C
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C
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n
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y F  

.574 1.802 .033 1.623 .031 .763 .502 .539 .043 .048 2.654 2.126 .715 1.904 .214 .008 .877 .786 .253 

p  
.458 .195 .857 .218 .863 .393 .487 .472 .838 .830 .120 .161 .408 .184 .649 .929 .361 .387 .620 

Beta 
-.177 -.313 .042 -.292 -.041 -.201 -.165 .172 .049 .053 .355 -.365 -.191 -.307 -.113 .022 -.214 -.205 .118 

FE
P

 
C

o
n

n
e

ct
iv

it
y F  

.931 .998 1.576 3.601* .646 4.404 2.185 .013 .103 .693 1.353 16.234* .405 1.431 1.381 1.307 3.908* 5.844* 4.653* 

p  
.343 .327 .220 .068 .428 .045 .151 .909 .751 .412 .255 .000 .530 .242 .250 .263 .058 .023 .040 

Beta 
-.208 -.201 -.278 -.372 -.180 -.414 -.300 -.022 -.068 -.162 -.238 -.625 -.131 -.254 -.248 -.225 -.414 -.457 -.433 

Left 

C
o

n
tr

o
ls

  
C

o
n

n
e

ct
iv

it
y F  

.518 .935 .198 4.078* .678 4.336* 1.977 .041 .375 .161 .052 4.393* 1.971 .031 .817 .459 .802 .187 1.729 

p  
.480 .346 .661 .058 .421 .050 .176 .841 .548 .692 .821 .050 .176 .863 .378 .506 .382 .670 .204 

Beta 
.178 .246 -.103 -.425 -.189 -.442 -.345 -.047 .140 .094 -.054 -.448 .311 .041 .208 .156 -.202 -.101 -.288 

FE
P

 
C

o
n

n
e

ct
iv

it
y F  

.000 .884 .050 .389 2.113 .712 .001 .243 .058 .914 1.493 2.168 4.898* .070 4.641* 2.266 3.960* 4.921* .316 

p  
.983 .355 .825 .538 .158 .406 .980 .626 .812 .347 .232 .152 .036 .793 .040 .144 .057 .035 .579 

Beta 
-.005 -.206 .048 -.135 -.303 -.177 .006 .096 -.051 -.196 -.236 -.288 -.419 .052 -.458 -.315 -.417 -.437 .109 

* Significant at alpha 0.10  * Significant at alpha 0.05 

Table 3. F, p  and standardized beta values for the effect of connectivity in the ANCOVA model including as dependent variable IQ, and sex and age as covariates. Columns 
include these effects per Network and ROI. This ANOVA model was computed on Controls and FEP separately.  
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Network 
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Right 

P
A
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SS

 
To
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F  4.327* 4.338* 3.342* 2.091 3.385* 1.342 3.897* .016 3.584* 6.723* 2.294 2.196 1.817 4.873* 4.014* 4.938* 6.805* 1.274 3.677* 

p  .046 .045 .077 .158 .075 .255 .057 .901 .067 .014 .140 .148 .187 .035 .054 .033 .014 .267 .064 

Beta .367 .353 .327 .265 .344 .218 .345 -.022 .339 .418 .268 .260 .239 .400 .372 .380 .443 .208 .343 

Left 

P
A

N
SS

 
To

ta
l 

F  5.849* 5.831* 1.781 .116 .946 .000 1.157 .000 1.583 .525 4.260 .005 2.982* 2.569 .479 .674 .241 2.551 1.714 

p  .021 .022 .191 .736 .338 .991 .290 .992 .217 .474 .047 .944 .094 .119 .494 .418 .627 .120 .200 

Beta .426 .408 .248 -.063 .180 .002 .200 -.002 .230 .131 .346 -.013 .293 .273 .136 .157 -.092 .281 .230 

* Significant at alpha 0.10  * Significant at alpha 0.05 

Table S4. F, p and standardized beta values for the effect of connectivity in the ANCOVA model including as dependent variable symptoms (PANSS), and sex and age as 

covariates. Columns include these effects per Network and ROI. This ANOVA model was computed only in FEP.  
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