
Universidad Carlos III de Madrid

TESIS DOCTORAL
Symbolic Search and Abstraction

Heuristics for Cost-Optimal Planning
in Automated Planning

Autor

Álvaro Torralba Arias de Reyna
Directores

Dr. D. Daniel Borrajo Millán y
Dr. D. Carlos Linares López

Departamento de Informática. Escuela Politécnica Superior

Leganés, 10 de Enero de 2015

TESIS DOCTORAL

SYMBOLIC SEARCH AND ABSTRACTION HEURISTICS FOR COST-OPTIMAL
PLANNING

Autor: Álvaro Torralba Arias de Reyna

Directores: Dr. D. Daniel Borrajo Millán y Dr. D. Carlos Linares López

Tribunal Calificador Firma

Presidente:

Vocal:

Secretario:

Calificación: ..

Leganés, de de 2014

To Rosa and my parents

iii

iv

Acknowledgements

Thanks to everyone that supported me during all these years. Doing this thesis has been a great
experience thanks to their support and all the good moments we shared.

In the first place I want to thank Rosa because her support and help were essential to finish the
thesis. It’s just impossible to express here the motivation she gave me or how much she strived to
help me to succeed. Her friendly and not so friendly (but always good) advice were always of utmost
importance to me, I probably should have follow them more often!

Of course, I want to thank my advisors, Carlos Linares López and Daniel Borrajo, because they
gave me the opportunity of doing this thesis in the first place. They introduced me into the plan-
ning world and guided me with their personal and academic advice, which I have always sincerely
appreciated. They also helped me without hesitation whenever I needed. Sharing the office with
Carlos for more than two years was a whole experience, learning a lot and bothering him with my
questions. I just hope it was as great for him as it was to me.

Also, to the other people that I have collaborated with during this time. My visit to Bremen,
where I met Stefan Edelkamp and Peter Kissmann, was a key point for the development of my
research. They did not only introduce me to one the main topic of my thesis, symbolic search, but
also helped me to start researching in these topic. Also, Vidal Alcázar because it was really fun to
work with him and always talk about planning. I really wish to have the opportunity to work with
them again in the future.

I also want to thank Peter Kissmann, Anders Johnnson and Malte Helmert for their valuable
comments that helped me out to improve my work. I’m truly grateful of all the effort they did into
their reviews.

Thanks to the people that worked with me in Universidad Carlos III de Madrid. Especially with
those in the “labo”: Isa, Jesús, Sergio, Vidal, Moisés, Nerea, JC, Pulido, Eze, Ruben, Emilio, and
our invited guest, Nacho. Because I had a great time with them and everything is easier when you
work in a friendly environment. The disinterested help of Isa made me a lot easier to finish the thesis
from the distance. Thanks also to Javier and Eloy who worked with me in the “TIMI” project. Also,
to everyone else in the Planning and Learning Group, with a special remark for Nely who always
helped me with all the administrative stuff. Even if our paths temporarilly split, I’ll always consider
myself part of the PLG group. I’ll miss those seminars about planning in which we always end up
discussing about silly details.

Por supuesto, quiero agradecer el apoyo de mi familia. A mi madre que siempre se desvive por
ayudarme en todo lo que puede. Desde luego, sin su apoyo incondicional que ya llevo recibiendo
desde hace casi 30 años, hoy no podrı́a estar escribiendo estos agradecimientos. A mi padre, al que
le agradezco todos esos discursos y consejos que me dió durante estos años. A mi abuela, Esperanza,
que siempre me da todo su cariño. A Elian, porque me apoyó en el momento que decidı́ lanzarme a
esta aventura. A mis tios, Encarna y Pedro, y mi primo Miguel. A Lucia por ser parte de mi familia.

To my lifelong friends: David, Sonia, Borja, Samer, Altieri, Acebron, Luis, Irene y Natalia

v

vi

because, although everything that they know about my research is that “a planner cannot even cut a
pizza”, we have had great times together, always laughing with funny anecdotes no matter how far
away we are. To Tomás, for all those long conversations about important and trivial stuff.

To Jörg Hoffmann for giving me the chance to continue in academia even before I finished my
PhD and giving me a warm welcome to Saarbrücken. Also to all my ping-pong friends

Finally, I’d like to thank all the people that made me possible to get here, my teachers from
Palomeras Bajas, Paco, Lourdes, etc. My teachers and mates in the university, Pablo, Rober, Lidia,
etc. I’m sorry I cannot mention you all.

Thank you all so much!

Resumen

La Planificación Automática puede ser definida como el problema de encontrar una secuencia de
acciones (un plan) para conseguir una meta, desde un punto inicial, asumiendo que las acciones
tienen efectos deterministas. La Planificación Automática es independiente de dominio porque los
planificadores toman como información inicial una descripción del problema y deben resolverlo sin
ninguna información adicional. Esta tesis trata en particular de planificación automática óptima, en
la cual las acciones tienen un coste asociado. Los planificadores óptimos deben encontrar un plan y
probar que no existe ningún otro plan de menor coste.

La mayorı́a de los planificadores óptimos están basados en la búsqueda de estados explı́cita. Sin
lugar a dudas, esta aproximación ha sido la dominante en planificación automática óptima durante
los últimos años. No obstante, la búsqueda simbólica se presenta como una aternativa interesante.
En la búsqueda simbólica, se representan conjuntos de estados como diagramas de decisión bina-
rios (binary decision diagrams, BDDs). La representación en forma de BDDs, además de reducir
la memoria necesaria para almacenar los estados de la búsqueda, también permite al planificador
realizar operaciones sobre conjuntos de estados y reducir ası́ el tiempo de búsqueda.

En esta tesis, proponemos dos mejoras ortogonales para la planificación basada en búsqueda
simbólica. En primer lugar, estudiamos diferentes métodos para mejorar la computación de la “ima-
gen”, operación que calcula el conjunto de estados sucesores a partir de un conjunto de estados. Esta
operacion es normalmente el cuello de botella de los planificadores simbólicos. Posteriormente,
analizamos cómo explotar las invariantes de estado para mejorar el rendimiento de la búsqueda
simbólica. Estas propuestas suponen una mejora significativa en el desempeño de los algoritmos
simbólicos en la mayorı́a de los dominios analizados. Además, la versión mejorada del algoritmo
simbólico de búsqueda bidireccional ciega es una de las aproximaciones más exitosas para la plani-
ficación óptima, a pesar de no estar guiada por ninguna heurı́stica.

Los planificadores basados en búsqueda de estados explı́cita utilizan normalmente una heurı́stica
admisible. Estas estiman el coste desde un estado a la meta de forma optimista. Las heurı́sticas deben
derivarse automáticamente de la descripción del problema y pueden ser clasificadas en diferentes
familias de acuerdo con las ideas fundamentales en las que se basan. Hemos analizado dos tipos
de heurı́sticas de abstracción con el objetivo de extrapolar las mejoras que se han realizado en la
búsqueda explı́cita durante los últimos años a la búsqueda simbólica. Las heurı́sticas analizadas
son: las bases de datos de patrones (pattern databases, PDBs) y una generalización de estas, merge-
and-shrink (M&S). Mientras que las PDBs se han utilizado con anterioridad en búsqueda simbólica,
hemos estudiado el uso de M&S, que es más general. En esta tesis se muestra que determinados
tipos de heurı́sticas de M&S (aquellas que son generadas mediante una estrategia de “merge” lineal)
pueden ser representadas como BDDs, con un coste computacional polinomial en el tamaño de la
abstracción y la descripción del problema; y por lo tanto, pueden ser utilizadas de forma eficiente en
la búsqueda simbólica. También proponemos una nueva heurı́stica, ”symbolic perimeter merge-and-
shrink” (SPM&S) que combina la fuerza de la búsqueda hacia atrás simbólica con la flexibilidad

vii

viii

de M&S. Los resultados experimentales muestran que SPM&S es capaz de superar, no solo las dos
técnicas que combina, sino también otras heurı́sticas del estado del arte.

Finalmente, hemos integrado las abstracciones simbólicas de perı́metro, SPM&S, en la búsqueda
simbólica bidireccional. La heurı́stica utilizada en la búsqueda bidireccional es calculada mediante
otra búsqueda simbólica bidireccional en el espacio de estados abstracto. Se muestra cómo, aunque
en general la combinación de la búsqueda bidirecional simbólica y las abstracciones tienen un com-
portamiento similar al que muestra la búsqueda simbólica ciega, este puede resolver más problemas
en dominios particulares.

En resumen, esta tesis estudia diferentes propuestas para planificación óptima basada en
búsqueda simbólica. Hemos implementado diferentes planificadores simbólicos basados en la
búsqueda bidireccional y las abstracciones de perı́metro. Los resultados experimentales muestran
cómo los planificadores presentados como resultado de este trabajo son altamente competitivos y
frecuentemente superan al resto de planificadores del estado del arte.

Abstract

Domain-independent planning is the problem of finding a sequence of actions for achieving a goal
from an initial state assuming that actions have deterministic effects. It is domain-independent be-
cause planners take as input the description of a problem and must solve it without any additional
information. In this thesis, we deal with cost-optimal planning problems, in which actions have an
associated cost and the planner must find a plan and prove that no other plan of lower cost exists.

Most cost-optimal planners are based on explicit-state search. While this has undoubtedly been
the dominant approach to cost-optimal planning in the last years, symbolic search is an interesting
alternative. In symbolic search, sets of states are succinctly represented as binary decision diagrams,
BDDs. The BDD representation does not only reduce the memory needed to store sets of states, but
also allows the planner to efficiently manipulate sets of states reducing the search time.

We propose two orthogonal enhancements for symbolic search planning. On the one hand, we
study different methods for image computation, which usually is the bottleneck of symbolic search
planners. On the other hand, we analyze how to exploit state invariants to prune symbolic search. Our
techniques significantly improve the performance of symbolic search algorithms in most benchmark
domains. Moreover, the enhanced version of symbolic bidirectional search is one of the strongest
approaches to domain-independent planning even though it does not use any heuristic.

Explicit-state search planners are commonly guided with admissible heuristics, which optimisti-
cally estimate the cost from any state to the goal. Heuristics are automatically derived from the
problem description and can be classified into different families according to their underlying ideas.
In order to bring the improvements on heuristics that have been made in explicit-state search to
symbolic search, we analyze two types of abstraction heuristics: pattern databases (PDBs) and a
generalization of them, merge-and-shrink (M&S). While PDBs had already been used in symbolic
search, we analyze the use of the more general M&S heuristics. We show that certain types of
M&S heuristics (those generated with a linear merging strategy) can be represented as BDDs with at
most a polynomial overhead and, thus, efficiently used in symbolic search. We also propose a new
heuristic, symbolic perimeter merge-and-shrink (SPM&S) that combines the strength of symbolic
regression search with the flexibility of M&S heuristics. Our experiments show that SPM&S is able
to beat, not only the two techniques it combines, but also other state-of-the-art heuristics.

Finally, we integrate our symbolic perimeter abstraction heuristics in symbolic bidirectional
search. The heuristic used by the bidirectional search is computed by means of another symbolic
bidirectional search in an abstract state space. We show how, even though the combination of sym-
bolic bidirectional search and abstraction heuristics has an overall performance similar to the simpler
symbolic bidirectional blind search, it can sometimes solve more problems in particular domains.

In summary, this thesis studies different enhancements on symbolic search. We implement dif-
ferent symbolic search planners based on bidirectional search and perimeter abstraction heuristics.
Experimental results show that the resulting planners are highly competitive and often outperform
other state-of-the-art planners.

ix

x

Contents

Acknowledgements v

Resumen vii

Abstract ix

Contents xi

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Classical Planning . 1
1.2 Planning as Heuristic Search . 5
1.3 Symbolic Search Planning . 9
1.4 Objectives of the Thesis . 10
1.5 Methods of Empirical Evaluation . 10
1.6 Thesis Outline . 14

I Symbolic Search Planning 17

2 Symbolic Search Planning 19
2.1 Symbolic Representation of Planning Tasks . 19
2.2 Binary Decision Diagrams . 20
2.3 Basics of Symbolic Search . 26
2.4 Symbolic Uniform-Cost Search . 28
2.5 Symbolic Bidirectional Uniform-Cost Search . 30
2.6 Symbolic A∗ Search . 32
2.7 Symbolic Pattern Databases . 37

3 Image Computation 39
3.1 Basics of Image Computation . 39
3.2 Image without Auxiliary Variables . 42

xii CONTENTS

3.3 Conjunction Trees . 43
3.4 Unions of Transition Relations . 45
3.5 Empirical Evaluation . 47
3.6 Summary . 54

4 State Invariants 55
4.1 State-Invariant Constraints . 56
4.2 Use of State Invariants in Partial-State Regression Search 60
4.3 Encoding State Invariants as BDDs . 60
4.4 Encoding Constraints in the TRs . 63
4.5 BDD Minimization . 68
4.6 Constrained Symbolic Abstraction Heuristics . 70
4.7 Empirical Evaluation . 72
4.8 Summary . 81

5 Symbolic versus Explicit-State Search Planning 83
5.1 Symbolic versus Explicit Unidirectional Uniform-Cost Search 83
5.2 State-of-the-art in Symbolic and Explicit Optimal Planning 86
5.3 Summary . 89

II Abstraction Heuristics in Symbolic Search Planning 91

6 Abstraction Heuristics 93
6.1 Introduction . 93
6.2 Abstractions . 94
6.3 Pattern Databases . 97
6.4 Merge-and-Shrink . 98
6.5 Summary . 103

7 Symbolic Representation of M&S Heuristics 105
7.1 Introduction . 105
7.2 Symbolic Representation of M&S . 106
7.3 Complexity of Computing Perfect Heuristics . 114
7.4 Empirical Evaluation . 117
7.5 Summary . 124

8 Symbolic Perimeter Abstraction Heuristics 127
8.1 Introduction . 127
8.2 Symbolic Merge-and-Shrink . 128
8.3 Perimeter Pattern Databases . 133
8.4 Perimeter Abstraction Heuristics Revisited . 135
8.5 Frontier Shrinking . 140
8.6 Symbolic Perimeter M&S . 141
8.7 Empirical Evaluation . 145
8.8 Summary . 152

CONTENTS xiii

9 Symbolic Bidirectional Heuristic Search 155
9.1 Introduction . 155
9.2 Related Work . 157
9.3 Notation . 160
9.4 SymBA∗: Symbolic Bidirectional A∗ . 161
9.5 Partial Bidirectional Abstractions . 163
9.6 Empirical Evaluation . 171
9.7 Summary . 175

III Conclusions and Future Work 177

10 Experimental Analysis 179
10.1 Summary Evaluation . 179
10.2 The 2014 International Planning Competition . 182
10.3 Summary . 185

11 Conclusions 187
11.1 Contributions . 187
11.2 Future Work . 189

Bibliography 191

xiv CONTENTS

List of Figures

2.1 BDD reduction rules . 22
2.2 Exponential and polynomial BDD variable orderings 23
2.3 Uniform-cost search and solution reconstruction . 29
2.4 BDDA∗ implementations . 33

3.1 Transition relation of a single operator . 41
3.2 Disjunction tree . 42
3.3 Conjunction tree . 43
3.4 Image computation time plot . 50

4.1 Mutex examples in the Trucks domain . 57
4.2 Encoding invariants as BDDs . 62
4.3 Sibling substitution . 69
4.4 Time plots of state invariant constraint approaches 75
4.5 BDD nodes plot of TRs with constraints . 77
4.6 Heuristic value of the initial state in each instance. 81

5.1 Symbolic search layers in unidirectional cost-uniform search. 86
5.2 Cumulative coverage of symbolic and heuristic search planners. 88

6.1 Cascading-tables representation of M&S abstractions 102

7.1 ADD representation of M&S abstractions . 107
7.2 Correspondence between shrinking in M&S and ADD reduction rules 108
7.3 ADD representation of M&S abstractions . 110
7.4 Comparison of bisimulation and ADD equivalence 115
7.5 Separation of bisimulation and ADD representation 117
7.6 Memory of ADD and tabular representations of M&S heuristics 119
7.7 Regression search versus M&S with bisimulation 122

8.1 Hierarchy of Symbolic M&S state spaces . 130
8.2 Symbolic M&S relaxation. 131
8.3 Perimeter PDBs diagram . 133
8.4 Perimeter abstraction heuristic . 136
8.5 Initialization of closed list in perimeter abstraction heuristics 139
8.6 SPM&S example . 144
8.7 Plot comparison of nodes expanded by SPM&S. 149

xv

xvi LIST OF FIGURES

8.8 Plot comparison of SPM&S initial state h-value. 150

9.1 Diagram of SymBA∗ algorithm. 161
9.2 Abstract bidirectional searches interaction . 165
9.3 Bound for partial heuristic abstractions . 166
9.4 Inconsistency of bidirectional partial abstractions 167

10.1 Cumulative coverage of planners. 182

List of Tables

1.1 Benchmark domains . 12

3.1 Image computation results in bidirectional uniform-cost search 49
3.2 Conjunction tree results in bidirectional uniform-cost search 51
3.3 Aggregation TR results in bidirectional uniform-cost search 52
3.4 Image computation results in unidirectional uniform-cost search 53
3.5 Image computation results in BDDA∗ search . 53

4.1 Preprocessor results . 73
4.2 State-invariant constraints results in bidirectional uniform-cost search 76
4.3 BDD-minimization results in bidirectional uniform-cost search 78
4.4 State-invariant constraints results in unidirectional uniform-cost search 79
4.5 State-invariant constraints results in BDDA∗ search 80

5.1 Coverage of symbolic vs. explicit unidirectional search 84
5.2 Coverage of symbolic vs. explicit search . 87

7.1 ADD size of M&S heuristic . 120
7.2 Symbolic regression search and M&S with bisimulation 121
7.3 Coverage of A∗ and Lazy BDDA∗ with M&S heuristics. 123

8.1 Coverage of SPM&S . 148
8.2 Coverage of SPM&S abstraction hierarchies . 151
8.3 Coverage of SPM&S without state-invariant pruning 151

9.1 Coverage of SymBA∗ . 173
9.2 Abstraction heuristics for SymBA∗ . 174

10.1 Summary of experimental results of the thesis. 181
10.2 Results of the 2014th International Planning Competition. 184

xvii

xviii LIST OF TABLES

List of Algorithms

2.1 Symbolic BFS . 27
2.2 ConstructSolution. 28
2.3 Symbolic Uniform-Cost Search. 29
2.4 Symbolic Bidirectional Uniform-Cost Search . 31
2.5 Symbolic A∗ with Matrix Representation. 35
2.6 Lazy BDDA∗. 36

3.1 CT -image: Image using the conjunction tree . 44
3.2 Aggregate transition relations . 46

4.1 Fixpoint computation of invariants. 59

6.1 Merge-and-shrink (Helmert et al., 2014) . 99

7.1 M&S Heuristic to ADD . 111

8.1 Perimeter Abstraction Heuristic . 137
8.2 Symbolic Perimeter Merge-and-Shrink . 143

9.1 SymBA∗ . 162

xix

Chapter 1

Introduction

In this chapter we set the objectives of the thesis. First, we formally describe the classical planning
problem we deal with and the SAS+ representation we will use. We then briefly review two state-
of-the-art techniques for optimal planning: heuristic search and symbolic search.

Then, we define the concrete goals of this thesis. We also describe the settings of all the experi-
ments that we will conduct throughout this research. Finally, we present a brief outline of the rest of
the document.

1.1 Classical Planning

The planning discipline follows the current trend of model-based Artificial Intelligence (AI) ap-
proaches that develop solvers for well-defined mathematical models (Geffner, 2014). Solvers are
programs that take a description of a particular model instance and automatically compute its solu-
tion. In contrast to other old approaches to AI, which addressed ill-defined problems, solvers are
general because they must deal with any problem that fits the model. Even if the models are not
tractable in the general case, the solvers must exploit the structure of the problems in order to solve
them as efficiently as possible.

Automated planning deals with problems in which an agent must achieve a set of goals by exe-
cuting a sequence of actions (Ghallab et al., 2004; Russell and Norvig, 2010). Domain-independent
planning is not only a theoretical exercise, but also has a good amount of practical applications in
which it was used to solve diverse problems such as web-service composition (Hoffmann et al.,
2009; Ordóñez et al., 2014), natural-language generation (Koller and Hoffmann, 2010), greenhouse
logistics (Helmert and Lasinger, 2010), controlling modular printers (Ruml et al., 2011), intermodal
transportation problems (Garcı́a et al., 2013), among others.

There is a variety of planning models, depending on their assumptions about the agent and the
environment. The most basic model is classical planning, characterized by having a complete control
and knowledge of the environment:

• Deterministic actions: the effect of actions taken by the agent is always the same and it is
known in advance.

• Static: the environment only changes when the agent executes an action. No feedback from
the environment is needed.

1

2 CHAPTER 1. INTRODUCTION

• Fully-observable: fully-known initial state. As the result of an action is deterministic, the
agent always knows the state.

Classical planning problems correspond to a path-finding search in a directed labeled graph
whose nodes are the states and whose edges represent the transitions made possible by each action.
In classical planning the solution is a plan, i. e., a sequence of actions that transform the initial state
into a state satisfying the goals.

To specify the problems to the planners it is necessary to have a problem specification language
in which all the characteristics of the problem are described. Some examples are STRIPS (Stan-
ford Research Institute Problem Solver) (Fikes and Nilsson, 1971) or ADL (Action Description
Language) (Pednault, 1994). The Planning Domain Description Language (PDDL) is a standard
language to define planning problems in a domain-independent way. PDDL was originally defined
in 1998 (Ghallab et al., 1998), based on STRIPS and ADL to carry out the International Planning
Competition (IPC) and has evolved along different editions of the competition. PDDL1.2, the official
language in the first edition of the IPC, separates the definition of a problem into two parts: domain
and problem instance. The domain expresses the object types and available actions and the problem
instance indicates the particular initial state and goals of the task. The distinction between domain
and problem is important because problems are commonly classified by their domain. The reason is
that problems of the same domain usually share a common structure. The benchmark domains that
we will use in the empirical evaluation are analyzed in Section 1.5.1.

All problems considered in this thesis are expressed in PDDL. PDDL describes problems in
predicate logic. However, planners are not required to reason in predicate logic. Most planners
transform the PDDL problem definitions in predicate logic to other representations more suitable
for the techniques they implement. A typical transformation is to ground the planning task, i. e.,
transform it to an equivalent propositional definition, so that states are defined by a set of Boolean
propositions. In the context of this thesis we will assume a representation based on the SAS+

representation (Bäckström and Nebel, 1995) in which states are defined by means of finite-domain
variables. The translation PDDL to SAS+ is performed automatically (Helmert, 2009). The finite-
domain representation is presented in detail in Section 1.1.2.

1.1.1 Cost-Optimal Classical Planning

Several questions may be asked about a classical planning instance, defining different types of prob-
lems: plan existence, satisficing planning and optimal planning. Plan existence is the decision prob-
lem of given a planning instance determine whether there exists a plan or not. Satisficing planning
consists of finding a plan as good as possible, i. e., those with lower cost are preferred. Finally, op-
timal planning consists of finding a plan and proving that it is optimal, i. e., that no plan with lower
cost exists.

Even though all these questions can be shown to be PSPACE-COMPLETE (Bylander, 1994), in
practice, optimal planning is much harder than satisficing planning. In most cases, proving that a
solution is optimal takes more computational resources than finding any solution.

This thesis is about computing optimal solutions to classical planning problems. In the next
sections, we give the formal definition of classical planning problems and succinctly review the
state-of-the-art techniques to solve them optimally.

1.1. CLASSICAL PLANNING 3

1.1.2 Formalization of Classical Planning: Finite-Domain Representation
A finite-domain variable planning task is defined as a tuple Π = 〈V,O, s0, s?〉. V is a set of state
variables, and every variable v ∈ V has an associated finite domain Dv . A partial state p is a
function on a subset of variables Vp ⊆ V that assigns each variable v ∈ Vp a value in its domain,
p[v]. A state s is a complete assignment to all the variables. A fluent is an assignment to a single
variable and is usually identified as a pair variable-value, 〈v, val ∈ Dv〉. Thus, a partial state p can
be defined as a set of fluents and is associated with the set of states that satisfy the partial assignment,
{s | p[v] = s[v]∀v ∈ Vp}. We denote as p|′V the projection of p over the set of variables V ′ ⊆ Vp,
i. e., as the partial assignment over V ′ having the same value as p for variables it is defined for.

s0 is the initial state and s? is the partial state that defines the goals. O is a set of operators
(also called actions), where each operator is a tuple o = (pre(o), eff (o), c(o)), where pre(o) and
eff (o) are partial assignments over Vpre(o) and Veff (o) that represent the preconditions and effects
of the operator, respectively, and c(o) 7→ R+

0 is the non-negative cost of o. The set of preconditions,
pre(o) can be split depending on whether they are affected by the operator effects or not. The prevail
conditions of the operators are the subset of preconditions that are not affected by the effects of the
operator, prev(o) = {fi | fi ∈ pre(o) and v 6∈ Veff (o)}.

An operator o ∈ O is applicable (in progression) in a state s if pre(o) ⊆ s. The state o(s)
resulting from the application of o in s is defined as o(s) = s|V\Veff (o)

∪ eff (o). While applicability
of operators in progression is defined over complete states, in order to perform regression from the
goals of the problem we define the reversed applicability over partial states. An operator o ∈ O is
applicable in a partial state s over Vs in regression if s is consistent with the operator effects and
prevails, ∀v ∈ Vs : (v 6∈ Veff (o) or s[v] = eff (o)[v]) and (v 6∈ Vprev(o) or s[v] = prev(o)[v]) and
is relevant to s, Vs ∩ Veff (o) 6= ∅. The resulting partial state s′ obtained from the application in
regression of o in s is defined as s′ = (s ∪ eff (o))|V\Vpre(o)

∪ pre(o).
A planning task defines a state space as a labeled transition system Θ(Π) = (S, L, T, s0, S?),

where S is the set of all states. L is a set of transition labels corresponding to the operators of the
planning task. T is the set of transitions, where each transition is a tuple 〈s, lo, s′〉 with s, s′ ∈ S and
lo ∈ L and 〈s, lo, s′〉 ∈ T if and only if o is applicable in s, giving s′ as result. In that case, we also

write s lo−→ s′ to denote that there is a transition from s to s′ labeled with lo. Finally, s0 is the initial
state and S? ⊂ S is the set of states satisfying s?.

A solution plan is a sequence of operators, π = (o1, . . . , on) related to a sequence of states
(s0, s1, . . . , sn) such that s0 is the initial state and s? ⊆ sn and si results from executing the operator
oi in the state si−1, ∀i = 1..n in progression. The cost of a plan is the sum of the cost of its operators,
c(π) =

∑
oi∈π c(oi). A plan is optimal if no other plan of lower cost exists.

STRIPS and SAS+ have been shown to have equivalent expressive capabilities (Bäckström and
Nebel, 1995). Still, we chose the finite-domain representation definition because of its practical
advantages. For example, finite-domain variables encoding takes implicitly into account invariants
of the problem (see Section 1.1.4). Second, it has associated the causal graph and domain transition
graphs described in the following section to capture the structure of the planning task. For a detailed
description of how the finite-domain representation can be automatically obtained from the classical
STRIPS representation, we refer the reader to the paper by Helmert (2009).

1.1.3 Causal Graph and Domain Transition Graphs
The causal graph is a directed graph that represents the interaction between variables in the planning
task. Each node is associated with a finite-domain variable and there is an edge from p to q if
the value of variable q depends on the value of p. It was first used in the context of generation of

4 CHAPTER 1. INTRODUCTION

hierarchical abstractions (Knoblock, 1994; Bacchus and Yang, 1994). Later, it was defined for unary
operator tasks (Brafman and Domshlak, 2003). We use the definition given by (Helmert, 2004) in
the context of heuristic search planning:

Definition 1.1 (Causal Graph). Let Π = 〈V,O, s0, s?〉 be a finite-domain variable planning task.
Its causal graph is a directed graph (V, A) containing an arc (u, v) if and only if u 6= v and there
exists an operator (pre(o), eff (o), c(o)) ∈ O such that v ∈ Veff (o) and u ∈ Veff (o) ∪ Vpre(o).

The causal graph of a planning task offers a global view of the interaction between variables. On
the other hand, domain transition graphs describe the transitions between values of a single variable
of the problem, and their relation with other variables (Jonsson and Bäckström, 1998).

Definition 1.2 (Domain Transition Graph). Consider a finite-domain variable planning task with
variable set V , and let υ ∈ V . The domain transition graph Gυ is the labeled directed graph with
vertex set Dυ and which contains an arc (d, o, d′) if and only if d 6= d′ and there is an operator
(pre(o), eff (o), c(o)) where (pre(υ) = d or υ 6∈ Vpre(o)) and eff (υ) = d′. For each arc (d, o, d′)
we say that there is a transition of υ from d to d′ enabled by o.

1.1.4 Invariants and Mutexes
Invariants are properties that are satisfied by all states reachable from the initial state. We are inter-
ested in two types of invariants: mutex invariants and monotonicity invariant groups.

Definition 1.3 (Mutually exclusive fluents). A set of fluents M = {p1, . . . , pm} is a set of mutually
exclusive fluents of size m (mutex of size m) if and only if any state s such that all elements of M are
true in s can be proven to be unreachable from the initial state.

Since there are exponentially many sets of fluents, usually only mutex pairs are considered (m =
2). A mutex group is a set of fluents so that every pair of the set is a mutex pair. Even restricting
ourselves to mutex pairs, the problem of finding all mutex pairs is still intractable. Hence, we rely
on sound but incomplete algorithms (all the pairs they find are guaranteed to be mutex but they do
not necessarily find all of them):

• Invariant monotonicity (Helmert, 2009): It proves the invariant by induction: checking the
initial state and proving that if the invariant holds in a state, it also holds in its successors.
Thus, mutex pairs are inferred from the operator description if every operator that adds a
fluent in the group also deletes another.

• hm (Haslum and Geffner, 2000): hm heuristics are an admissible estimation of the cost of
reaching each m-tuple of fluents. When computing the heuristic on the initial state, hm(s0),
it can be proven that some pairs cannot be reached and, consequently, they are mutex pairs.
In practice, mutex pairs are computed using h2(s0), since the cost of computing hm grows
exponentially with m.

Invariant monotonicity groups extend the mutex group invariants by requiring one element in the
mutex group to be true in every reachable state. While mutexes represent groups of fluents such that
at-most-1 can be true at the same time, invariant groups require exactly-1 fluent to be true in any
state.

Definition 1.4 (Invariant monotonicity groups). Monotonicity invariant groups are sets of fluents
such that exactly one fluent must be true in every reachable state.

1.2. PLANNING AS HEURISTIC SEARCH 5

Monotonicity invariant groups can be automatically inferred from the planning task description
by the same invariant monotonicity used to infer mutexes. For the exactly-1 invariant to hold, it is
necessary that any operator that deletes a fluent in the set, also adds another. The automatic PDDL
to SAS+ translation method mentioned above uses monotonicity invariant groups to determine the
SAS+ encoding of the task. exactly-1 invariants are variables in the SAS+ encoding and at-most-
1 invariants can be easily transformed to exactly-1 invariants by adding an auxiliary none-of-those
fluent to the SAS+ task.

Invariants are useful to prune states in the search since any state that violates an invariant can be
safely pruned. By definition, a forward search from the initial state will never find a state violating
an invariant, but this is not the case in other types of searches that will be considered in this thesis,
like regression or searches in abstract state spaces.

1.2 Planning as Heuristic Search
Most state-of-the-art cost-optimal planners employ heuristic search (Bonet and Geffner, 2001).
Search algorithms traverse the state space graph, Θ = (S, L, T, s0, S?) in order to find a path be-
tween the initial state and a state satisfying the goals. In contrast to satisficing planning, in order
to prove optimality search algorithms must exhaustively explore all the states for which it cannot
be proved that they do not belong to an optimal solution. This can be done with best-first search
algorithms among others. Best-first search algorithms maintain two lists of search nodes: the open
and the closed lists. The open list contains all the generated states that have not yet been expanded.
The closed list contains all the expanded states, whose successors have already been generated.

Uniform-cost search is a best-first search1 that expands the nodes in ascending order of g-
value (Dijkstra, 1959). The g-value of a node n, g(n), is the cost of reaching n from the initial
state, i. e., the sum of the action costs in the best path found from s0 to n. As action costs cannot
be negative, the g-values of expanded states never decrease. Thus, whenever a goal state is selected
for expansion, an optimal plan has been found. However, the algorithm may expand an exponential
number of nodes in the size of the planning task.

In order to relieve the exponential behavior of the algorithm, we introduce a heuristic that informs
the algorithm. The remaining cost of a state s, h∗(s) is defined as the cost of a cheapest path from s
to a state in S?, or∞ if there is no such path. A heuristic is a function h : S → R+

0 ∪ {∞} which
estimates the remaining cost of a state. A heuristic is perfect if it coincides with h∗. A heuristic
is admissible if it never overestimates the remaining cost, that is, ∀s : h(s) ≤ h∗(s). A heuristic
is consistent if for every transition (s, lo, s

′) ∈ T , h(s) ≤ h(s′) + c(o). Note that every consistent
heuristic is also admissible if and only if it correctly estimates a cost of 0 for goal states (as it happens
for all the heuristics we will consider). In this thesis we are interested in admissible heuristics that
prove lower bounds in the cost of solving the problem from an arbitrary state s. Once a (possibly
suboptimal) plan is known with cost C, we can prune any node n with f(n) = g(n) + h(n) ≥ C.

Algorithms that do not make use of a heuristic, such as uniform-cost search are often called
blind or uninformed. We are interested in admissible algorithms that are guaranteed to return op-
timal solutions when guided by an admissible heuristic. Some examples are A∗ (Hart et al., 1968)
and iterative-deepening A∗ (IDA∗) (Korf, 1985) that uses memory linear in the solution length. In
planning, the former is more common due to the presence of a huge number of transpositions (differ-
ent action sequences that lead to the same state) and the fact that memory is not always the scarcest
resource because the heuristics are computationally demanding.

1“Uniform-cost Search” is also known as Dijkstra’s algorithm or “Weighted Breadth-First Search”. “Uniform-cost search”
is arguably a more precise name (Felner, 2011), so we will adopt it in this thesis.

6 CHAPTER 1. INTRODUCTION

A∗ expands the nodes with lowest f(n) = g(n) + h(n) first so that no node with f(n) >
h∗(s0) is ever expanded. If the heuristic is consistent, A∗ will never re-expand a node (because
when it expands a node, it has optimal g-value). This guarantees optimality on the number of node
expansions up to tie-breaking, so that no other algorithm with the same heuristic and no additional
information can find the optimal solution with less expansions (Hart et al., 1968; Dechter and Pearl,
1985). Besides, storing all expanded states in a closed list allows A∗ to prune duplicate states,
which is mandatory given the high number of permutations in most domains. This has made A∗ the
predominant algorithm for cost-optimal planning. Note that uniform-cost search is equivalent to an
A∗ search without a heuristic (h(s) = 0 for all s ∈ S).

There is an important exchange of ideas between the planning and the heuristic search commu-
nities. The heuristic search community focuses on research on heuristics and search algorithms.
Thus, some works relevant for this thesis come from the heuristic search area. The main difference
between the two fields is that, in heuristic search, a solver is made for problems of a single domain,
with an ad-hoc heuristic and many optimizations in the implementation of the algorithm. In plan-
ning a unique solver, the planner, must be able to solve problems of different domains. Another
difference has been the focus on different types of domains. In heuristic search, the focus is made
on more combinatorial domains, i. e., permutation puzzles like the sliding-tile puzzle or the Rubik’s
Cube (Culberson and Schaeffer, 1998; Korf, 1997). In planning the benchmark domains are more
diverse and some of them are even polynomially solvable (Helmert, 2003; Helmert, 2006a). Even
those cases are interesting because it is necessary to automatically find and exploit the characteristics
that make them easy.

1.2.1 Domain-Independent Planning Heuristics
In planning, heuristics are automatically derived from the problem description. Current state-of-the-
art heuristics for planning can be classified in five different families (Helmert and Domshlak, 2009):
delete relaxation, critical paths, landmarks, abstractions and the recent flow-based heuristics (Bonet,
2013; Bonet and van den Briel, 2014a).

Delete Relaxation Heuristics The delete relaxation heuristic h+ (Hoffmann and Nebel, 2001)
estimates the cost of solving a task Π as the optimal cost of the relaxed planning task without deletes
(Π+). Π+ is derived from Π by ignoring the negative effects of all operators, i. e., considering that
they add more facts to be true but do not delete any fact that has already been achieved. Theoretical
and experimental analysis have proven that h+ is a very informative heuristic in a good number of
planning benchmarks (Hoffmann, 2005; Helmert and Mattmüller, 2008; Betz and Helmert, 2009).
Unfortunately, computing h+ in the general case is NP-HARD, so it is not feasible to use it to guide
the search. Instead, other relaxations are applied to obtain polynomial approximations of h+. In
most cases, admissibility is dropped as it happens in the additive heuristic hadd (Bonet and Geffner,
2001), the FF-heuristic hFF (Hoffmann and Nebel, 2001) and others. However, in optimal planning
we are interested in admissible estimations of h+ such as hmax (Bonet and Geffner, 2001) or the
LM-CUT heuristic, hLMcut (Helmert and Domshlak, 2009).

Critical paths The hm heuristics (Haslum and Geffner, 2000) estimate the cost of reaching a set
of atoms as the cost of the most costly subset of size m. They can be computed by a reachability
analysis considering tuples of facts of cardinality up to m. It is also possible to compute hm as
the hmax heuristic on a modified planning task Πm, whose atoms represent tuples of atoms of the
original task (Haslum, 2009). The complexity of computing hm is exponential in m but polynomial

1.2. PLANNING AS HEURISTIC SEARCH 7

of grade m in the size of the planning task for a fixed m. It can be shown that h1 ≡ hmax and
hn ≡ h∗, where n is the number of finite-domain variables. Moreover, hm ≤ hm+1 for any 1 ≤
m ≤ n − 1. Thus, the parameter m establishes a trade-off between informativeness and efficiency
to compute. In practice, h2 has been successfully used, since the heuristic is often computationally
too expensive for greater values of m.

Landmarks Landmarks are facts that must be true at some point in every plan. In satisficing
planning they have been used as sub-goals in the search (Porteous et al., 2001) or as inadmissible
heuristics (Richter et al., 2008). Some examples are hLA, a heuristic based on cost-partitioning over
landmarks (Karpas and Domshlak, 2009), and LM-CUT (Helmert and Domshlak, 2009), hLMcut .
LM-CUT is based on disjunctive action landmarks, i. e., a set of planning actions so that in every
optimal plan at least one action in the set must be executed. Even though they are inspired by
different ideas, most landmark-based heuristics are estimations of the delete-relaxation heuristic h+.
Indeed, redefining the LM-CUT heuristic as a hitting set problem over all landmarks of the relaxed
task is equivalent to h+ (Bonet and Helmert, 2010).

Abstraction Heuristics Abstraction heuristics transform the problem to a simpler problem that is
tractable and use the solution cost of the simpler problem as an estimation in the original problem.
Usually, these transformations are homomorphisms that map states in the original state space to a
smaller set of abstract states. Transitions are preserved in the abstract state space, so that admis-
sibility of the resulting heuristic is always guaranteed. Different types of abstraction functions can
be defined, such as Pattern Databases (PDBs) (Culberson and Schaeffer, 1998; Edelkamp, 2001;
Haslum et al., 2007), Merge-and-Shrink (M&S) (Helmert et al., 2014) or CounterExample-Guided
Cartesian Abstractions (Seipp and Helmert, 2013). In this thesis we will study in more detail PDBs
and M&S abstractions. A detailed review of abstractions is presented in Chapter 6.

Flow-based heuristics Flow-based heuristics are a recent new family of heuristics that map the
planning problem into an integer programming task, in which variables are associated with propo-
sitions and actions of the problem and represent the number of times that the proposition should be
achieved, or the actions are applied. Constraints forbid the application of actions if their precon-
ditions had not been achieved enough times (considering those propositions that are deleted by the
actions). In order to solve the problem, it is once again relaxed into a linear programming task which
is easily solved (van den Briel et al., 2007; Bonet, 2013). Moreover, additional constraints may be
incorporated in this linear programming encoding, such as disjunctive action landmarks, in order to
get more informed estimations (Bonet and van den Briel, 2014a).

In summary, in the last years, there has been a lot of effort in developing well-informed heuristics
that pay off the extra effort to compute. Indeed, while blind search was a state-of-the-art approach
in cost-optimal planning in 2008, in IPC-2011, several heuristics like merge-and-shrink or LM-CUT
exhibited stronger performance.

1.2.2 Combining Heuristic Estimates
Several estimates h1(s), . . . , hk(s) may be computed for a state s using different heuristics or even
different configurations of the same heuristic. When aggregating those heuristic estimations, one
must be careful to preserve admissibility. The simplest way to do so is to take the maximum of those
values h(s) = max{hi(s)}. Maximizing over multiple heuristics can be very beneficial (Holte et al.,
2006).

8 CHAPTER 1. INTRODUCTION

Even more informed estimations can be made by an additive scheme (Korf and Felner, 2002;
Felner et al., 2004), i. e., a controlled sum of the individual heuristic estimations. If the cost of
each operator is not taken into account twice by different heuristics then admissibility is preserved.
Thus, if each heuristic hi only takes into account a subset of operatorsOi (all the other operators are
considered to have a cost of 0) and those subsets are disjoint (Oi ∩ Oj = ∅,∀i 6= j) the resulting
estimate is admissible. A more general way to guarantee admissibility in an additive setting is a
cost-partitioning schema (Katz and Domshlak, 2010b). A cost-partitioning is a function that divides
the cost of the operators between the heuristics.

In the case of abstraction heuristics, the optimal cost-partitioning can be determined in polyno-
mial time with respect to the size of the abstract state spaces through a Linear Programming (LP)
encoding (Katz and Domshlak, 2010b). However, the encoding is usually too large and expensive to
solve, taking up to hours to evaluate a single state, which makes unfeasible using it as a heuristic. A
way to make it practical is to determine the optimal cost-partitioning of very simple abstractions for
some states and use the maximum of those cost-partitionings for every state in the search (Karpas
et al., 2011).

Finally, recent work has also proposed alternative linear programming encodings to aggregate
the heuristic estimations (Pommerening et al., 2013), based on which operators contribute to each
heuristic. This is less informed than the optimal cost-partitioning but the size of the LP encoding
is much more reasonable and can be solved on a per-state basis. Moreover, multiple constraints
inferred from different heuristics may be combined in a single linear programming encoding, leading
to more informed heuristics. An LP-framework can also be useful as a basis to compare different
heuristics (Pommerening et al., 2014).

1.2.3 Search Directionality: Regression and Bidirectional Search
Heuristic search can be performed in the forward or backward direction. Forward search starts from
the initial state and searches towards the goal states. Thus, forward search performs progression,
i. e., whenever a state s is expanded their successors are generated by applying the operators on s.
Backward search, on the other hand, performs regression, starting from the goal states of the problem
and advancing towards the initial state. Whenever a state is expanded the algorithm generates their
predecessors, i. e., all the states s′ such that s′ = o(s) for an operator o.

Since the first heuristic search approaches to planning, the search has been performed in both di-
rections, e. g., the HSP and HSPr planners (Bonet and Geffner, 2001). However, most of the research
has focused on forward search because it provided better empirical results and there are intrinsic dif-
ficulties for the backward search in planning. In planning, there is usually an exponential number of
goal states in the size of the planning task, so they cannot be explicitly represented. Instead, partial
states are used. This is appropriate since the goal of the planning task is defined as a partial state
even when there are exponentially many goal states. However, the partial-state representation has
problems, too. For example, duplicate detection becomes harder due to the subsumption of partial
states, a phenomenon that occurs when a partial state is a subset of another. In that case, both partial
states are not detected as duplicates by typical hash-table techniques, even though one is contained
in the other.

A second problem of backward search is that, in most domains, there is a huge number of spu-
rious states, i. e., states that are not reachable from the initial state. In those cases, most of the
search might be performed over irrelevant parts of the state space. While in forward search there are
also dead-end states from which the goals are not reachable, they are not so common as spurious
states because by definition the problem has a solution if and only if the initial state is not a dead
end, while it may have exponentially many spurious goal states. An empirical analysis in planning

1.3. SYMBOLIC SEARCH PLANNING 9

domains showed that the negative impact of spurious states is larger than that of subsumption in
regression (Alcázar et al., 2014).

In the rest of the thesis, when we use the term explicit-state backward search, we mean partial-
state backward search. We use this term in contrast with symbolic search that will be presented
next.

Despite the problems of regression in planning, there are good reasons to consider both search di-
rections. Planning state spaces are usually asymmetric, so that some problems are much easier when
searching in backward direction. This is called directionality of the domains (Massey, 1999). Re-
cent works have also considered to revisit the use of regression in planning, extrapolating advances
in forward search of the last decade to the case of regression (Alcázar et al., 2013).

Moreover, there is no need of restricting the search to one single direction. Bidirectional search
interleaves two searches: a forward search from the initial state to the goal and a regression search
from the goal states to the initial state. When both frontiers meet, a solution for the problem has
been found, though proving optimality requires continuing the search until stronger conditions hold.
The promise of bidirectional search is to reduce the search depth by half (performing two searches
of depth d

2 instead of one of depth d). As the search complexity is exponential in the search depth,
there is potentially an exponential gain.

However, the use of heuristics is not simple in bidirectional search. Bidirectional heuristic search
has been thoroughly studied in the heuristic search community (Kwa, 1989; Kaindl and Kainz, 1997;
Felner et al., 2010), concluding that in many cases it is not better than a simple A∗ search. Even
though finding a solution may be easier, the bidirectional search is not better to prove optimality.
This, together with the drawbacks of regression in planning, has been an impediment for applications
of bidirectional heuristic search for planning.

1.3 Symbolic Search Planning
Contrary to explicit search, which is the most common way of searching in planning, sym-
bolic search takes advantage of succinct data structures, such as Binary Decision Diagrams
(BDDs) (Bryant, 1986), to represent sets of states. Furthermore, the symbolic representation also
allows us to manipulate sets of states through efficient operations. Therefore, the symbolic version
of search algorithms are similar to standard explicit-state search algorithms, but expand entire sets
of states at once.

Symbolic reachability with BDDs was originally introduced in Model Checking (McMillan,
1993) and it was brought later to heuristic search with algorithms like symbolic breadth-first search
and a symbolic version of A∗, BDDA∗ (Edelkamp and Reffel, 1998). The model-checking inte-
grated planning system (MIPS) (Edelkamp and Helmert, 2001) was the first planner using symbolic
BDDA∗ for domain-independent classical planning. Some alternative implementations of BDDA∗

have been proposed. ADDA∗ (Hansen et al., 2002) uses ADDs to represent the open and closed
lists of the search. Set A∗ (Jensen et al., 2002) refined the partitioning in a matrix representation
of g- and h-values. Additionally, Symbolic Pattern Database Heuristics were proposed for domain-
independent planning (Edelkamp, 2001; Edelkamp, 2002; Edelkamp, 2005) and later extended to
Symbolic Partial PDBs (Edelkamp and Kissmann, 2008b). Finally, state-set branching (Jensen et
al., 2008) considered the partitioning of the transition relation according to the heuristic value.

Most recent advances in symbolic search planning have been promoted by the planner GAMER
(Edelkamp and Kissmann, 2009), who won the optimal track of IPC-2008. An improved version of
GAMER with a better variable ordering and PDB selection strategy (Kissmann and Edelkamp, 2011)
also participated in the IPC-2011, though with more modest results. The advances in heuristics for

10 CHAPTER 1. INTRODUCTION

explicit-state search were quite effective in a number of domains, suggesting that using good heuris-
tics may be more important than the efficient symbolic exploration of the state spaces. However,
GAMER still beats explicit-state planners in several domains (Kissmann, 2012), so that symbolic
search is still an important technique to take into account. Chapter 2 fully describes the symbolic
search approaches of symbolic search planning that we will use in the rest of the thesis.

1.4 Objectives of the Thesis
The ultimate goal of this thesis is to improve the current state-of-the-art in cost-optimal planning. To
do so, we focus on two particular techniques: symbolic search and abstraction heuristics. In spite of
all the previous efforts that successfully showed the benefits of these techniques, there are still some
opportunities to improve their performance. The particular goals that we pursue in this thesis are:

• Identify current bottlenecks of symbolic planning and improve the performance of symbolic
planners. In particular, we identified two points of improvement for symbolic planners:

1. Image computation: An analysis of the performance of symbolic search planners shows
that the main bottleneck is the successor generation performed with the image operation.
We propose and analyze different methods to optimize image computation.

2. While state invariants have been used to prune states in explicit-state regression search,
no analysis has been made about using them on symbolic search. We consider the use of
state invariants in symbolic search.

• On the other hand, recent advances on heuristics for optimal planning have only been ap-
plied to the case of explicit-state search, including M&S abstraction heuristics or LM-CUT.
Symbolic planners use symbolic PDB abstractions. As PDB abstractions were shown to be a
special case of M&S abstractions, there is an opportunity to use better heuristics in symbolic
search.

We show how M&S heuristics can be used in symbolic A∗ search, and perform an empirical
comparison with symbolic PDBs. We also study how symbolic search can be used to generate
more powerful M&S heuristics.

• Finally, the good results of bidirectional symbolic search motivate us to use heuristics in that
setting. We study how the well-known difficulties of bidirectional heuristic search are less
problematic in the case of symbolic search with perimeter abstraction heuristics.

1.5 Methods of Empirical Evaluation
The implicit goal of this thesis is to increase our understanding of planning problems and techniques
to develop more efficient domain-independent planners. In this section we describe the methods that
we will follow to perform the empirical evaluation of the planning techniques. Fortunately, there
have been many efforts in the automated planning community to develop methods and tools to de-
termine how good a planner is and compare the performance of different planners. The International
Planning Competition (IPC) is an event organized since 1998 periodically,2 with the objective of
comparing the performance of current state-of-the-art planners as fairly as possible.

2The IPC was typically organized every two years until 2008. Since then, it has been arranged every three years.

1.5. METHODS OF EMPIRICAL EVALUATION 11

IPC rules have become a de facto standard to compare planner performance and evaluate research
in planning. All the benchmarks are described in the PDDL language, which is used to provide do-
main and problem descriptions to planners. As the product of the 2008 and 2011 IPC editions, a
software that automates the experimentation was released, with the goal of improving the experi-
mentation (Linares López et al., 2013). For the thesis experiments we use a new version of the IPC
evaluation software, made by Carlos Linares López. The software automatically tracks the execu-
tion of the planners in the desired benchmarks, measuring the time and memory usage. Moreover, it
validates all the solution plans using VAL, the automatic validation tool (Howey et al., 2004).

The settings are taken from IPC-2014. All planners are executed with a time bound of 30 minutes
and a limit of 4 GB of memory usage. We used two different hardware settings for the experiments.
In Part I, the experiments are run on a single core of an Intel Xeon X3470 processor at 2.93 GHz. In
Parts II and III, all experiments were conducted on a cluster of Intel E5-2660 machines with 64 GB
of main memory and 16 cores running at 2.20 GHz.

1.5.1 Benchmark Suite

A set of diverse benchmark problems is defined in each competition to test the planners’ capabilities
of solving problems of different kinds. Planning problems are classified in domains. Problems of
the same domain are of the same type, having a common structure but varying in difficulty. As new
domains are introduced in each competition to guarantee that solvers are domain-independent, there
is a good set of domains and problems to test planner capabilities.

In this thesis, we consider a benchmark set of 44 domains from all competitions since IPC-1998
until IPC-2011, with 1396 problems in total. The selected domains only use a subset of PDDL
that uses a STRIPS description, without numerical fluents, conditional effects, derived predicates
or other ADL features that are commonly translated into them. The techniques and algorithms
used in this thesis can easily be extended to deal with more PDDL features. Indeed, support of
conditional effects in symbolic search algorithms was explicitly required to participate in the IPC-
2014. However, domains with more expressive PDDL features are not good for comparison with
other state-of-the-art optimal planners. Therefore, we stick to the standard benchmark for optimal
planning that has been used in many previous works in the literature, such as the LM-CUT (Helmert
and Domshlak, 2009) or merge-and-shrink (Helmert et al., 2014) heuristics. Since IPC-2008, there
is a specific track for optimal planners with different problem instances. For the domains of the 2008
and 2011 editions, our benchmark set contains all the problems used in the optimal track.

Table 1.1 summarizes the characteristics of the IPC domains we consider. The Source column
shows the edition of the competition in which the domain was first used. Next, the # column is the
number of problems of each domain. Action costs are a relevant characteristic important to explain
the results obtained by different techniques. The table depicts the maximum number of action costs
in a problem and the set of costs used. Domains can be classified in different categories according to
the distribution of action costs. Unit-cost domains have only actions of cost 1 and can be interpreted
as plan length minimization domains. Also, domains having zero-cost actions require a special
treatment, since the applicability of those actions does not count at all for the plan cost. Finally, we
have to distinguish domains with a large number of different costs and/or a large distance between
the minimum and maximum cost, because heuristic search approaches can be very sensitive to the
variability or ratio of action costs (Cushing et al., 2011; Wilt and Ruml, 2011).

12 CHAPTER 1. INTRODUCTION

Action Costs
Domain Source # instances # Costs

GRID IPC-98 5 1 1
GRIPPER IPC-98 20 1 1

LOGISTICS98 IPC-98 35 1 1
MPRIME IPC-98 35 1 1

MYSTERY IPC-98 30 1 1
BLOCKSWORLD IPC-2000 35 1 1

FREECELL IPC-2000 80 1 1
LOGISTICS00 IPC-2000 28 1 1

MICONIC IPC-2000 150 1 1
DEPOT IPC-2002 22 1 1

DRIVERLOG IPC-2002 20 1 1
ROVERS IPC-2002 40 1 1

SATELLITE IPC-2002 36 1 1
ZENOTRAVEL IPC-2002 20 1 1

AIRPORT IPC-2004 50 1 1
PIPESWORLD-NT IPC-2004 50 1 1

PIPESWORLD-T IPC-2004 50 1 1
PSR-SMALL IPC-2004 50 1 1

OPENSTACKS06 IPC-2006 30 1 1
PATHWAYS-NONEG IPC-2006 30 1 1

TPP IPC-2006 30 1 1
TRUCKS IPC-2006 30 1 1

ELEVATORS08 IPC-2008 30 13 {0, 6, . . . , 37}
OPENSTACKS08 IPC-2008 30 2 {0, 1}

PARCPRINTER08 IPC-2008 30 22 {0, 125, . . . , 224040}
PEG-SOLITAIRE08 IPC-2008 30 2 {0, 1}

SCANALYZER08 IPC-2008 30 2 {1, 3}
SOKOBAN08 IPC-2008 30 2 {0, 1}

TRANSPORT08 IPC-2008 30 37 {1, 10, . . . , 190}
WOODWORKING08 IPC-2008 30 6 {5, 10, 15, 20, 30, 45}

BARMAN11 IPC-2011 20 2 {1, 10}
ELEVATORS11 IPC-2011 20 13 {0, 6, . . . , 37}
FLOORTILE11 IPC-2011 20 4 {1, 2, 3, 5}

NOMYSTERY11 IPC-2011 20 1 1
OPENSTACKS11 IPC-2011 20 2 {0, 1}

PARCPRINTER11 IPC-2011 20 22 {0, 125, . . . , 224040}
PARKING11 IPC-2011 20 1 1

PEG-SOLITAIRE11 IPC-2011 20 2 {0, 1}
SCANALYZER11 IPC-2011 20 2 {1, 3}

SOKOBAN11 IPC-2011 20 2 {0, 1}
TIDYBOT11 IPC-2011 20 1 1

TRANSPORT11 IPC-2011 20 23 {1, 10, . . . , 190}
VISITALL11 IPC-2011 20 1 1

WOODWORKING11 IPC-2011 20 6 {5, 10, 15, 20, 30, 45}

Table 1.1: Table of domains in our benchmark suite, classified by the IPC edition in which they were
proposed.

1.5. METHODS OF EMPIRICAL EVALUATION 13

1.5.2 Evaluation metrics
We measure the performance of planners with two types of metrics: coverage and time score. Note
that metrics that take into account the quality of solution plans found do not apply in our case since
we are only interested in optimal plans. Thus, quality simplifies to coverage in this case.

Coverage The coverage is the total number of problems solved from the benchmark within the
time and memory bounds. It is the official metric for the optimal track of the IPC since 2008.

Time score While coverage only takes into account whether a planner solves a problem or not,
time score metrics reward planners for solving the problems as early as possible. Planners get a
score in the interval (0, 1] for each problem solved. The fastest planner is awarded one whole point,
while other planners solving the same problem in more time receive a fraction of a point. If a planner
does not solve the problem before the time limit it gets 0 points for that problem. The total score of
a planner in a domain is the sum of its score in all the problems of that domain.

Several equations may be defined to determine the score of the planners. In the context of
this thesis, we will use the time score metric used in the learning track of IPC-2011. Let t∗ be
the minimum time in seconds required by the fastest planner to solve the problem, rounding all
the times to the upper second. Then, the time score of a planner that solves the problem in t, is
computed following Equation 1.1. Any planner solving the problem in less than one second receives
the maximum score. A log10 is applied to the ratio between the time of the planner and the best time,
to diminish the impact of small differences in time, due to the exponential nature of planning tasks.

time score(t, t∗) =

{
1, if t ≤ 1s

1
1+log10(t/t∗) , if t > 1s

(1.1)

However, the time metric has two important drawbacks. On the one hand, it is not independent of
irrelevant alternatives. Since the scores depend on the planners under consideration (t∗ changes de-
pending on the planners included in the comparison), adding a new planner may change the relative
score of two planners. That means that the winner between two planners may depend on whether a
third planner is included, biasing the results. The interpretation of the results should take this into
account, using the coverage to determine which planner is stronger in general. Time score is use-
ful to complement the coverage results because it reveals differences between planners in domains
where coverage is the same.

On the other hand, the time score results on one table are incomparable to others because a
different t∗ was used to compute the score of each planner in a problem. This makes impossible a
direct comparison of results in different chapters. To address this, total coverage is reported in all
cases so that it is possible to compare approaches from different chapters. Moreover, in Chapters 5
and 10 we directly compare the most important configurations of each chapter.

Total score As we perform experiments in domains from different IPCs, the benchmarks are not
completely uniform. On the one hand, some domains have more problems than others. The extreme
cases are the domains GRID with only 5 problems and MICONIC with up to 150 problems. On the
other hand, IPC-2011 reused all IPC-2008 domains and some of the problems of those domains. In
order to report results as exact as possible, and comparable with other reportings in the literature, we
use all the available problems for all the domains and report results of benchmark sets separately for
the domain version of IPC-2008 and IPC-2011.

14 CHAPTER 1. INTRODUCTION

However, in order to perform a comparison as fair as possible, we do not use the sum of the
results in each domain as the “total” score. In the spirit of giving the same weight to every domain,
we will normalize total scores according to the number of problems of each domain. Moreover,
IPC-2008 and IPC-2011 versions are accumulated, removing all duplicate problems.3

1.5.3 Planners
In order to evaluate the results of our research, in this thesis we have worked with two different
planning systems that participated in the last editions of the IPC:

• GAMER: developed by Peter Kissmann and Stefan Edelkamp (2008); (2009); (2011); (2012).
GAMER is a symbolic search planner that uses both symbolic bidirectional uniform-cost search
and symbolic A∗ with symbolic PDBs.

• FAST DOWNWARD PLANNING SYSTEM: initially developed by Malte Helmert and Silvia
Richter (2004); (2006) and then improved and greatly extended by numerous people including
(in alphabetical order) Erez Karpas, Michael Katz, Gabi Röger, Jendrik Seipp and Matthias
Westphal. Other substantial contributions have been made by Moritz Gronbach, Silvan Siev-
ers, Raz Nissim and Manuela Ortlieb. FAST DOWNWARD is a heuristic search planner, highly
configurable to run different search algorithms and heuristics. Configurations for optimal
planning are based on A∗ search with several heuristics including PDBs (Haslum et al., 2007),
M&S (Helmert et al., 2014) and LM-CUT (Helmert and Domshlak, 2009). Also, it is remark-
able that a good amount (ten out of twelve) of the planners that were presented to the optimal
track of IPC-2011 were based on FAST DOWNWARD.

For BDD manipulation, we use the version 2.5.0 of the CUDD library, developed by Fabio
Somenzi (Somenzi, 2012).

1.6 Thesis Outline
The main body of the thesis is divided into two parts. Part I comprises Chapters 2 - 5 and studies
and develops symbolic search planning approaches. It starts by describing symbolic search planning
basics and related work in Chapter 2. Chapters 3 and 4 analyze how to improve the performance of
symbolic blind and symbolic heuristic search planning by implementing efficient image computa-
tion and using constraints derived from the problem, respectively. Part I finishes with an empirical
analysis of symbolic blind search methods, showing that the previously mentioned improvements
turn symbolic planning in a state-of-the-art optimal planning technique.

In Part II, from Chapters 6 to 9, with the goal of pushing the performance of symbolic optimal
planning even further, we consider using abstractions in symbolic search planning. Chapter 6 is a sur-
vey of abstraction heuristic methods for planning, considering works in explicit and symbolic search.
Chapter 7 presents how to carry one of the best abstraction techniques for domain-independent plan-
ning, the merge-and-shrink framework, to symbolic heuristic planning. We further develop the inte-
gration of merge-and-shrink abstractions and symbolic search in Chapter 8, where merge-and-shrink
is used in combination with perimeter abstraction heuristics to develop a new heuristic for explicit-
state planning. Finally, Chapter 9 puts all together, considering the use of symbolic bidirectional
heuristic search informed by a diverse kind of abstraction heuristics.

3This is not applied for the IPC-2006 version of OPENSTACKS because there is a substantial difference with the IPC-2008
and IPC-2011 versions in that it does not use action costs.

1.6. THESIS OUTLINE 15

The thesis concludes in Part III. Chapter 10 summarizes the empirical results of the thesis, com-
paring all the techniques proposed against other state-of-the-art planners. In Chapter 11, we gather
the main results presented in this thesis and propose several research lines that could continue our
work. Hope you enjoy ,.

16 CHAPTER 1. INTRODUCTION

Part I

Symbolic Search Planning

17

Chapter 2

Symbolic Search Planning

Symbolic search performs operations over sets of states instead of working with individual states.
These sets of states are succinctly represented as logical functions, often getting memory and time
advantages over explicit-state search. In this chapter, we explain the basics of symbolic search in
planning, as well as an in-depth explanation of symbolic search algorithms that will be important to
understand the contributions of this thesis. Moreover, we present some implementation details that
are a minor contribution of this thesis.

The chapter is organized as follows. First, we describe how to represent planning tasks as log-
ical formulæ. Then, Binary Decision Diagrams (BDDs) are proposed as the data-structure used to
represent those formulæ. Afterwards, we present the symbolic versions of the algorithms we will
work with: uniform-cost search, bidirectional uniform-cost search and A∗. Finally, we discuss some
alternative representations to BDDs and justify the selection of BDDs to perform symbolic search
planning.

2.1 Symbolic Representation of Planning Tasks
Symbolic search was originally proposed in the area of model checking (McMillan, 1993). It takes
advantage of succinct data structures to represent sets of states through their characteristic functions.
Given a set of states S, its characteristic function fS is a Boolean function fS(x1 . . . xn) : S →
{>,⊥} that represents whether a given state belongs to S, where > stands for true and ⊥ for false.
The input of the function is the bit-vector description of a state represented by binary variables xi, so
that the function signature may be written as fS : {0, 1}n → {>,⊥}. Each finite-domain variable
υ ∈ V with domain Dυ is represented with dlog2 |Dv|e binary variables.1 The function returns true
(>) if and only if the state belongs to the set of states S. To simplify the notation, we use the same
symbol, S, to denote a set of states and its characteristic function. It will be inferred from the context
whether we are referring to a set of states or its characteristic function. In terms of search, states are
usually grouped by their g- or h-value. Whenever all the states in a set have the same g- or h-value,
we will refer to the set as Sg and Sh, respectively.

The use of a characteristic function allows us not only to succinctly represent sets of states, but
also to operate with them through function transformations. For example, the union (∪) and inter-
section (∩) of sets of states are derived from the disjunction (∨) and conjunction (∧) of their char-
acteristic functions, respectively. Also, the complement set (Sc) corresponds with the negation (¬)

1Based on this transformation, in the rest of the thesis we assume SAS+ variables to be binary without loss of generality.

19

20 CHAPTER 2. SYMBOLIC SEARCH PLANNING

of the characteristic function. Quantification of variables is another type of function transformation
commonly encountered in symbolic search. The existential quantification of a variable υ ∈ V with
respect to a function f removes the dependency of f on variable υ such that ∃υ : f = f |υ=>∨f |υ=⊥,
where f |υ=> and f |υ=⊥ are the sets of assignments to variables V \ {υ} so that they make f true
whenever υ = > and υ = ⊥, respectively. Thus, the result of the existential quantification corre-
sponds to the projection of the set of states over the set of variables V \ {υ}. Similarly, the universal
quantification of a variable υ ∈ V with respect to a function f removes the dependency of f on
variable υ such that ∀υ : f = f |υ=> ∧ f |υ=⊥. This means that when a variable υ ∈ V is universally
quantified away the resulting function f ′ is satisfied only for those cases in which f is true for every
possible assignment of υ (υ = > and υ = ⊥).

The set of operators O is represented with one or more Transition Relations (TRs). A TR is
a function Tc(x, x′) that represents one or more operators with the same cost, c. TRs are defined
using two sets of variables, the source-set and the target-set of variables, here represented as x
and x′, respectively. Both sets of variables have the same cardinality as the set of variables of the
characteristic function, so that each variable in the source- and target-sets corresponds to a variable
in the characteristic function: the variables of the source-set correspond to the preconditions of the
operators of the TR and the variables of the target-set correspond to the effects. Given a set of states
Sg and a TR Ti, the image operation is used to compute the set of successor states that can be reached
from any state in Sg by applying any operator represented by the TR. The image corresponds to the
operation image(Sg,Ti) := (∃x (Sg ∧ Ti)) [x′ ↔ x]. The conjunction Sg ∧ Ti corresponds to all
pairs of states 〈s, s′〉 such that s ∈ Sg and s′ = o(s) for an operator o represented by TRi. Then, the
existential quantification ignores predecessor states and the variable swapping, [x′ ↔ x], represents
the resulting states s′ with the standard set of variables x.

Similarly, the pre-image operation computes the set of predecessor states, i. e., states
that can reach some state in Sg through some operator in the TR, pre-image(Sg,Ti) =
∃x′ ((Sg(x)[x↔ x′]) ∧ Ti(x, x

′)). A detailed description of image computation and the represen-
tation of transition relations is given in Chapter 3.

2.2 Binary Decision Diagrams
Decision Diagrams are data structures inspired by the graphical representation of a logical function.
Reduced Ordered Binary Decision Diagrams, ROBDDs for short (Bryant, 1986), are the most pop-
ular data structure to represent the logical formulæ employed in symbolic search. They consist of
(a) Binary Decision Diagrams (i. e., each internal node has only two successors), (b) a fixed variable
ordering on every path from the root to a sink, and (c) application of two reduction rules.

Definition 2.1 (Binary Decision Diagram). A BDD is a rooted labeled directed acyclic graph with
two types of terminal nodes or sinks: > and⊥. Non-terminal or inner nodes are defined by a 3-tuple
p = 〈xi, p0, p1〉, where xi is a variable and p0 and p1 are either sink or inner nodes representing
functions that do not depend on xi. For a node 〈xi, p0, p1〉, p0 corresponds to the case of assigning
variable xi the value false, thus giving the so-called low (or 0) successor; p1 corresponds to the
case of assigning variable xi the value true, giving the high (or 1) successor. For any assignment
of the variables on a path from the root to a sink, the represented function will be evaluated to the
value labeling the sink.

The tuple p that defines an inner node is in fact a function obtained from doing a Shannon
expansion (Shannon, 1938) with respect to xi. In particular, the function represented by p is (xi ∧
p1) ∨ (xi ∧ p0).

2.2. BINARY DECISION DIAGRAMS 21

Definition 2.2 (Ordered Binary Decision Diagram). An ordered binary decision diagram (OBDD) is
a BDD with the additional requirement that variables on any path from the root to the sinks always
appear in the same order.

If variables are named according to the position in the variable ordering, for any node p =
〈xi, p0, p1〉, where p0 = 〈xj , p′0, p′1〉 and p1 = 〈xk, p′′0 , p′′1〉 then j > i and k > i.

Definition 2.3 (Reduced Ordered Binary Decision Diagram). A reduced ordered binary decision
diagram (ROBDD) is an OBDD where the following two reduction rules are applied:

1. If both edges of a node p point to the same node, i. e., p0 = p1, remove the node p and redirect
all the references to p to its child p0.

2. Whenever two nodes p, p′ are duplicate, that is, p = 〈xi, p0, p1〉 and p′ = 〈xi, p0, p1〉, p and
p′ are merged into a single node.

We say that an OBDD is partially reduced if it satisfies the second reduction rule but not the first
one, i. e., it contains nodes whose edges both point to the same node.

Figure 2.1 shows an example of applying the reduction rules to an OBDD to obtain its reduced
version. This is the typical graphical representation of BDDs that we will use in the examples
throughout the thesis. The graphic representation uses squares and ellipses to depict terminal and
inner nodes, respectively. Inner nodes in the same row are labeled with the same variable vi, accord-
ing to the variable ordering v1, . . . , vn. Each inner node has two outgoing edges: a dashed edge to
the low successor (vi = 0) and a solid edge to the high successor (vi = 1). In this case, we have
named nodes with letters to refer to them unequivocally.

The OBDD in Figure 2.1a violates both reduction rules and gets reduced to the ROBDD depicted
in Figure 2.1b after applying the reduction rules. On the one hand, rule (ii) is violated by nodes (d),
(e), and (f), since they are equivalent, i. e., their edges point to the same nodes. Therefore, they are
substituted by a single node in the reduced version, (d;e;f). On the other hand, rule (i) is violated
by nodes (g) and the replacement of (b) after applying rule (ii), since they are redundant, i. e., their
two edges point to the same node. This is obvious in the case of (g), which points to the node 0.
In the case of (b), while it initially points to two different nodes, (d) and (e), they get reduced to
(d;e;f). Therefore, (b) and (g) are eliminated, redirecting all the arcs that point them to their only
child. This illustrates that the BDD reduction rules must be applied iteratively until a fixpoint is
reached. This can be done in time linear in the number of nodes in the BDD with a two-phase bucket
sort algorithm (Sieling and Wegener, 1993).

ROBDDs are often also called BDDs for short. Given that we only consider ROBDDs in the
remainder of this thesis we use BDD as a synonym of ROBDD. The definition of BDDs ensures
their canonicity (Bryant, 1986): for any Boolean function f and variable ordering, there exists a
unique BDD representing f . The application of reduction rules provides up to exponential memory
gains in the number of variables when representing some functions with respect to the nodes needed
by a non-reduced BDD. This exponential gap between a reduced and a non-reduced BDD is due to
the elimination of duplicate nodes, since a BDD may have an exponential number of different paths
to the same node — so that the non-reduced BDD has an exponential number of duplicate nodes in
the number of variables. The first reduction rule, on the other hand, can only provide up to linear
memory gain. Therefore, partially reduced BDDs have an exponential gain in the same cases as
BDDs.

Moreover, tight bounds can be proven on the complexity of BDD operations as long as all the
involved BDDs share the same variable ordering (Bryant, 1986). Equivalence comparison and nega-
tion are performed in constant time. The apply operation of two BDDs f ◦ g, used to compute

22 CHAPTER 2. SYMBOLIC SEARCH PLANNING

v1
(a)

v2
(b)

v2
(c)

v3
(d)

v3
(e)

v3
(f)

v3
(g)

� ⊥

(a) Non-reduced OBDD

v1
(a)

v2
(c)

v3
(d;e;f)

� ⊥

(b) ROBDD

Figure 2.1: Example of BDD reduction rules for the function (¬v1 ∨ (v1 ∧ v2)) ∧ ¬v3. The non-

reduced BDD shown in the left part has three equivalent nodes and two redundant nodes. The right

part shows the ROBDD representation of the same function.

the disjunction, conjunction and other binary operations over two Boolean functions, has quadratic

space and time complexity on the size of the BDDs, |f | × |g| — the conjecture that the time com-

plexity is linear on |f |+ |g|+ |f ◦ g| was recently disproved (Yoshinaka et al., 2012; Bollig, 2014).

Unfortunately, not all operations involved in symbolic search are polynomial. Disjunction or con-

junction of several BDDs has exponential complexity on the number of BDDs. Finally, existential

and universal quantification have exponential complexity on the number of quantified variables.

2.2.1 BDD Variable Ordering

The size of a BDD that describes a given function is fully determined by the variable ordering. For

certain kinds of functions there is an exponential gap between the complexity of describing them

with one variable ordering or another (Bryant, 1986; Bryant, 1992). Figure 2.2 shows the BDD

representation of a function over 2n variables that has polynomial size for the x1, y1, . . . , xn, yn
ordering and exponential size for the x1, . . . , xn, y1, . . . , yn ordering. Therefore, choosing a suitable

variable ordering is fundamental for efficient symbolic solvers. However, finding an optimal variable

ordering that minimizes the size of a BDD has been proven to be CO-NP-COMPLETE (Bryant, 1986).

Good approximations of the optimal variable ordering are not easy to obtain, either. Bollig and

Wegener proved that finding an ordering so that the resulting BDD contains at most s nodes (with s
being specified beforehand) is NP-COMPLETE (Bollig and Wegener, 1996). Sieling has proved that,

unless P = NP, there is no polynomial time algorithm that can calculate a variable ordering so that

the resulting BDD contains at most c times as many nodes as the one with optimal variable ordering

for any constant c > 1 (Sieling, 2002).

In the literature, two approaches have been considered to select variable orderings that make

BDDs as succinct as possible within the available time and memory constraints:

• Variable ordering optimization: Variable ordering optimization algorithms take as input a

function (usually represented as a BDD with an arbitrary variable ordering) and determine a

2.2. BINARY DECISION DIAGRAMS 23

x1

y1

x2

y2

x3

y3

⊥ >

(a) Polynomial size: x1, y1, x2, y2, x3, y3

x1

x2 x2

x3 x3 x3 x3

y1 y1 y1 y1

y2 y2

y3

>⊥

(b) Exponential size: x1, x2, x3, y1, y2, y3

Figure 2.2: Example of BDD variable orderings that cause the representation of a function
f(x1, . . . , xn, y1, . . . , yn) = (x1 ∧ y1) ∨ · · · ∨ (xn ∧ yn) (n = 3 in our example) to be exponential
or polynomial in n (Kissmann, 2012).

suitable variable ordering that reduces the BDD size. They are usually based on a traversal of
the space of possible variable orderings.

• Domain analysis for variable ordering: Planning problems have an inherent structure that
can be exploited to determine a good variable ordering. Based on the observation that re-
lated variables should usually be close in the variable ordering (as 〈xk, yk〉 in the example
of Figure 2.2), identifying relationships between the variables may define a good criterion to
optimize the variable ordering.

Also, one might consider a static variable ordering that is fixed throughout the whole search
process, or a dynamic variable ordering that may change at some point. Since BDDs describing
different layers of the search may benefit from different variable orderings, dynamic variable order-
ing approaches have the potential to outperform static variable ordering strategies. Indeed, it has
been empirically demonstrated that state-of-the-art strategies for deciding static orderings are bet-
ter than random orderings but they are not competitive with optimized variable orderings for each
layer (Kissmann and Hoffmann, 2013; Kissmann and Hoffmann, 2014).

Nevertheless, we follow GAMER’s strategy to select a static variable ordering through domain
analysis (Kissmann and Edelkamp, 2011). GAMER takes into account the variable dependencies cap-
tured by the causal graph as a criterion to determine the variable ordering (Kissmann and Edelkamp,
2011). The variable ordering optimization is seen as a minimization of the quadratic distance of the
variables with dependencies, which is optimized through a randomized algorithm. GAMER uses a
local search optimization procedure that tries to place related variables as close as possible. Variables

24 CHAPTER 2. SYMBOLIC SEARCH PLANNING

vi and vj are related if there exists an operator o ∈ O so that vi ∈ Vpre(o) ∪ Veff (o) and vj ∈ Veff (o)

or vice versa. Recent research has shown empirically that GAMER’s ordering is among the best
static orderings and is significantly better than a random ordering though still arbitrarily far from
optimal (Kissmann and Hoffmann, 2013).

An alternative to GAMER’s static variable ordering could be the usage of dynamic variable
reordering. This approach was recently explored in symbolic search planning by DYNAMIC-
GAMER (Kissmann et al., 2014). Empirical results show that DYNAMIC-GAMER outperforms the
basic GAMER, showing the benefits of dynamic variable reordering.

2.2.2 Limits and Possibilities of the BDD Representation
Large benefits can be obtained when sets with exponentially many states are represented with poly-
nomially sized BDDs. Thus, efficiency of BDD-based planning greatly depends on the size of BDDs
describing “interesting” sets of states. In the case of symbolic search planning some sets of interest
are the set of goal states, the set of all reachable states (from the initial state or the goal states) and
subsets of reachable states satisfying additional properties, such as the set of all states reachable with
a minimum cost exactly equal to g.

Theoretical analyses on the complexity of representing those states in some planning domains
and games have proved them to have polynomial upper bounds and exponential lower bounds on the
number of nodes needed to represent different relevant sets of states (Hung, 1997; Edelkamp and
Kissmann, 2008a; Edelkamp and Kissmann, 2011). Examples of exponential lower bounds are the
set of all reachable states in BLOCKSWORLD or in sliding tile puzzles like N-PUZZLE, or the set
of goal states in CONNECT-4 or TIC-TAC-TOE. Examples of polynomial upper bounds are the set
of all reachable states in CONNECT-4 ignoring terminal states, TIC-TAC-TOE and the goal states in
domains that have a compact SAS+ representation such as BLOCKSWORLD or sliding tile puzzles.
Remarkably, a polynomial lower bound has been proven for all the sets of states reachable with
arbitrary g in the GRIPPER domain, allowing symbolic planners to solve instances of GRIPPER in
polynomial time and memory.

2.2.3 Algebraic Decision Diagrams
Algebraic Decision Diagrams (ADDs) (Bahar et al., 1997) are an extension of BDDs to represent
functions with a different domain than {>,⊥}. They are typically used to represent numerical
functions f : S → N. The definition of an ADD resembles the definition of ROBDDs, but using an
arbitrary number of terminal nodes with different labels.

As discussed in Section 2.1, heuristic functions may be represented directly as numerical func-
tions by using ADDs or as a vector of BDDs, one per heuristic value. The former is best for explicit-
state search, since one single look-up into the ADD suffices to retrieve the heuristic value of a state.
The latter, however, is considered more appropriate for symbolic search because it eases the retrieval
of the subset of states having a particular heuristic value. Both representations are closely related,
which is not very surprising given the resemblance of the definition of BDDs and ADDs. Propo-
sition 2.1 ensures that we can always transform an ADD representation to a sequence of BDDs in
polynomial time and with at most a polynomial overhead in memory with respect to the ADD size.

Proposition 2.1. Given an ADD Af representing a function f : S → {1, . . . ,K} it can be trans-
formed to a sequence of BDDs, B1, . . . , BK , each of size |Bi| ≤ |Af | in time O (K|Af |).

Proof. Each BDD Bi has at most |Af | nodes. Consider the OBDD B′i that results from substituting
terminal nodes of Af : i by > and the rest by ⊥. Then, B′i is a non-reduced BDD with the same

2.2. BINARY DECISION DIAGRAMS 25

number of nodes as Af . Applying reduction rules can only decrease nodes so that the reduced BDD
has at most as many nodes as Af , |Bi| ≤ |B′i| = |Af |.

Regarding the time complexity, it is obtained from the complexity of BDD reduction, which can
be done in time O (|Bi|) (Sieling and Wegener, 1993).

2.2.4 Alternative Representation Schemes
Though in the context of this thesis we consider the symbolic representation in the form of BDDs and
ADDs, there are several alternatives in the literature to represent Boolean or integer functions. Here
we analyze those alternatives, discussing their advantages and disadvantages to justify the selection
of BDDs and ADDs.

Boolean-function representation is a well-studied topic in the field of Knowledge Representation.
There are a good number of alternative compilation languages and their relation has been thoroughly
studied (Darwiche and Marquis, 2002). Relevant aspects to compare different compilation languages
are succinctness, polytime queries and polytime transformations. If a language is more succinct, it
will represent the same function in less memory. Queries obtain information without changing the
represented function and transformations include operations like conjunction, disjunction, etc. In
the context of symbolic search planning, our algorithms require a representation of the sets of states
as succinct as possible, as well as efficient apply/quantification transformations.

• Zero-suppressed Decision Diagram (ZDD) (Minato, 1993) is a variant of BDDs designed
to represent subsets, so that the default value should be false. ZDDs follow the same rules
as BDDs except for the reduction rules. ZDDs do not eliminate nodes with the same left and
right children, but instead they eliminate all the nodes whose 1-edge points to ⊥. They have
similar properties as BDDs and, though most literature has focused on developing algorithms
for BDDs, most of them are also applicable to ZDDs. The main difference is the meaning of
default variables, i. e., those that do not appear in the decision diagram. While in BDDs miss-
ing variables are irrelevant, i. e., the function result does not depend on the variable, in ZDDs
they are assumed to be false (the function is automatically false if the variable is true). Thus,
the ZDD reduction rules resemble the closed-world assumption made in STRIPS propositional
planning, where it is assumed that any fact that has not been mentioned does not hold in the
state. However, since variables missing from partial states (used to define the operator effects
or the goals of the problem) are assumed to take any possible value, the BDDs reduction rule
seem to be more appropriate in this case.

• Deterministic Decomposable Negation Normal Form (d-DNNF) (Darwiche, 2001) is a
generalization of BDDs, characterized by requiring determinism and decomposability in a
Negation Normal Form (NNF). An NNF is a directed acyclic and/or graph in which the leaves
are associated to a literal or its negation. It is deterministic if the siblings of all or nodes
represent logically contradictory functions. It is decomposable if the siblings of and nodes
do not share variables. Being more general than BDDs, d-DNNF can represent functions in
less space. However, it is not known if they have a polytime equivalence checking and sen-
tential entailment and operations such as disjunction or conjunction cannot be performed in
polynomial time unless P = NP (Darwiche and Marquis, 2002). Though this has not been an
impediment to use d-DNNF in conformant planning (Palacios Verdes, 2009) or to represent
h+ in planning with penalties and rewards (Bonet and Geffner, 2008), symbolic search algo-
rithms have traditionally preferred the use of BDDs because they are considered suitable for
the efficient manipulation of sets of states involved in the search.

26 CHAPTER 2. SYMBOLIC SEARCH PLANNING

• Sentential Decision Diagrams (SDDs) (Darwiche, 2011) are another generalization of BDDs
which have been recently proposed. They branch on arbitrary sentences instead of variables.
Thus, they can be characterized by variable trees instead of variable orderings. Tighter upper
bounds are known for the size of SDDs than for BDDs and they retain important properties
such as canonicity and polytime operations. Moreover, it has been shown that for certain kinds
of functions and variable orderings in which the BDD representation has exponential size,
there exists a dissection of that variable ordering so that the resulting SDD has polynomial
size (Xue et al., 2012). It remains unproven if there are functions polynomially representable
with an SDD for which the size of any BDD (with every possible variable ordering) is expo-
nential. Thus, SDDs are a very promising option to substitute BDDs, though they are not as
mature and developed as BDDs.

For the representation of numerical functions there are also some alternatives to ADDs, like
Affine Algebraic Decision Diagrams (AADDs) (Sanner and McAllester, 2005) or Normalized Alge-
braic Decision Diagrams (NADDs) (Ossowski and Baier, 2006). However, ADDs are the alternative
closest to BDDs and search is usually performed through sets of states.

In summary, there are solid alternatives to BDDs in the literature that are able to represent the
same functions using less memory. However, BDDs have certain properties (uniqueness, efficient
apply operation) that make them more suitable to symbolic search. Therefore, in the rest of the
thesis, BDDs and ADDs will be assumed whenever we refer to a symbolic representation.

2.3 Basics of Symbolic Search
Symbolic search planning performs search in state spaces by representing sets of states as BDDs
and operating with them. In this thesis, we consider the symbolic version of different heuristic
search algorithms, such as unidirectional or bidirectional uniform-cost search and A∗ search. Before
describing in detail the symbolic version of these algorithms, we set some basics that are common
to all of them.

In symbolic search, as in heuristic search (see Section 1.2), algorithms use two lists of states: the
open and the closed list. The open list, open , stores the states reached from the initial state that have
not been expanded yet. The algorithms generate states and insert them into the open list. Expanded
states are removed from open and inserted into closed .

In symbolic search, both lists are represented as BDDs. Optimal algorithms need to consider
the cost in which the states were reached or expanded. Therefore, open is a list of BDDs where
openi represents the sets of states reached with g = i that have not been expanded yet. Similarly,
closed is a list of BDDs where closed i represents the set of states that were expanded with g = i.
Additionally, the closed BDD, closed∗, represents all states that have already been expanded, i. e.,
closed∗ =

∨
i closed i.

Next, two auxiliary procedures commonly needed for symbolic search algorithms are presented:
breadth-first search and the solution reconstruction procedure.

2.3.1 Reachability Analysis with Breadth-First Search
Symbolic search benefits of expanding sets of states with the same g-value at once. In domains
with 0-cost actions, in order to expand all states with that g-value, all the states reachable with 0-
cost actions must be collected before expanding the set of states. This reachability analysis can be
performed with breadth-first search, which computes all the reachable states from a given set of

2.3. BASICS OF SYMBOLIC SEARCH 27

Algorithm 2.1: Symbolic BFS
Input: Initial set of states: S
Input: Transition relations: T
Input: States to prune: prune
Input: Goal states: S?
Output: Set of all states reachable from S with T pruning prune

1 S ← S ∧ ¬prune
2 closed ← S
3 while S 6= ⊥ and S ∧ S? = ⊥ do
4 S ←

(∨
Ti∈T image(S, Ti)

)
∧ ¬prune ∧ ¬closed

5 closed ← closed ∨ S
6 return closed

states, S. Algorithm 2.1 performs a Symbolic Breadth First Search (SBFS) from S using a set of
transition relations T . Additionally, the algorithm takes as input a set of states, prune, to prune
the search and a set of goal states, S?, to stop the search as soon as a goal state is found. Applied
with the whole set of transition relations T , and with empty closed and S? sets, SBFS will return
the set of reachable states in the domain. However, breadth-first search does not guarantee to obtain
optimal-cost solutions if costs are not uniform, so we only use it as an auxiliary procedure. This
algorithm is used with the subset of 0-cost transitions, T0 by the other search algorithms presented
below, pruning states that have been already closed in other layers of the search.

The algorithm starts by removing states in prune from the initial states and inserting them into
closed (lines 1 and 2). Then, at each iteration, the current set of states is expanded removing dupli-
cates and states in prune and inserting the result in the closed set (line 4). Finally, when the current
set of states, S, is empty or contains a goal state (line 3), the algorithm returns all the set of states
that have been reached (line 6).

2.3.2 Solution Reconstruction

Solution reconstruction works differently than in explicit-state search, because symbolic search al-
gorithms do not keep track of the parents of generated states. The path from the initial state to a given
state is reconstructed using the closed list that contains all the expanded states classified by their g-
value. Algorithm 2.2 computes an optimal plan from the initial state, s0, to a target state arbitrarily
selected from the set of target states, Starget , whose g∗-value is known. The algorithm is a simplified
implementation of a backward A∗ search algorithm with the perfect heuristic g∗, which is stored in
the closed list closed . In the absence of 0-cost operators, the algorithm is guaranteed to run in time
linear in the plan length, the number of operators, and the number of variables, O (|π||O||V|).

To simplify the exposition, Algorithm 2.2 omits the details needed to handle 0-cost actions. In
such domains, all the algorithms perform a BFS with 0-cost actions as described by Algorithm 2.1.
In order to reconstruct the solution, the layers in the BFS are stored separately for their use in the
solution reconstruction. Then, the solution reconstruction algorithm uses a separated counter to
track in which 0-cost layer a state appears the first time. The loop over all operators in line 4 of
Algorithm 2.2 does not take into account 0-cost actions and is only performed for states in the first
0-cost layer. For other states, a similar loop is performed only with 0-cost actions, looking for a
predecessor state in the previous 0-cost layer.

28 CHAPTER 2. SYMBOLIC SEARCH PLANNING

Algorithm 2.2: ConstructSolution.
Input: Source and target states: s0

Input: Set of target states: Starget

Input: g∗-value of target states: gtarget

Input: Operators: O
Input: Closed list: closed
Output: Cost-optimal plan: π = [a1, . . . , an]

1 starget ← SelectArbitraryStateFrom(Starget)
2 π ← []
3 while starget 6= s0 do
4 foreach o ∈ O do
5 s← s s.t. o(s) = starget

6 g ← gtarget − c(o)
7 if s ∈ closedg then
8 starget ← s
9 gtarget ← g

10 π ← o ‖ π
11 break

12 return π

2.4 Symbolic Uniform-Cost Search

Uniform-cost search, also known as Dijkstra’s algorithm, is a search algorithm to find shortest paths
in graphs (Dijkstra, 1959). Uniform-cost search always expands the states with lowest g-value,
so that the best path found to any expanded state is guaranteed to be optimal. Thus, when the
algorithm selects a goal state for expansion, an optimal solution plan has been found. Uniform-
cost search may be used both in progression or in regression. The main difference is that forward
search (performing progression) starts at the initial state, s0, and advances towards the goal states,
S?, while backward search (performing regression) starts at S? and advances towards s0 by means
of the inverted operators.

Algorithm 2.3 details a symbolic version of uniform-cost search for the case of forward search.
In addition to the planning task, the algorithm takes as input the set of transition relations, T , which
is a set of BDDs Tc for each action cost c.

Starting at the initial state, the algorithm iterates over all values that g may take during the search.
If at some point the open list is empty (i. e., it does not contain any state), it means that the entire
state space has been expanded without ever reaching a goal state, so that the algorithm has proven
that the problem is unsolvable (line 12).

At each step, symbolic uniform-cost search expands the set of states with minimum g-value,
gmin (line 4). Before fully expanding the current set of states, opengmin

, first of all a breadth-first
search is performed using only the zero-cost operators, in T0. The BFS algorithm removes duplicates
(pruning all states that were already expanded in previous iterations, closed∗) and returns all states
that have the same distance, gmin , from the initial state (line 5). Then, newly generated states are
inserted into closedgmin (line 6). If at this point a goal state is contained in the set opengmin

, the
algorithm reconstructs a solution plan and returns it (line 7). Otherwise, opengmin

is expanded. For
every action cost, c, it applies the image with Tc, the TR representing the operators with cost c, and

2.4. SYMBOLIC UNIFORM-COST SEARCH 29

Algorithm 2.3: Symbolic Uniform-Cost Search.
Input: Planning problem: Π = 〈V,O, s0, s?〉
Input: Transition relations: T
Output: Cost-optimal plan or “no plan”

1 open0 ← {s0}
2 closed ← ∅
3 while open is not empty do
4 gmin ← min{g : openg 6= ⊥}
5 opengmin

← BFS(opengmin
, T0, closed∗, S?)

6 closedgmin
← opengmin

7 if opengmin
∧ S? 6= ⊥ then

8 return ConstructSolution(s0, opengmin
∧ S?, gmin ,O, closed)

9 for all Tc ∈ T , c > 0 do
10 opengmin+c ← opengmin+c ∨ image

(
opengmin

, Tc
)

11 opengmin
← ⊥

12 return “no plan”

g

s0

0

Sg
1

1

Sg
2

2

Sg
3

3

Sg
4

4

Sg
5

5

S?st

s0

Figure 2.3: Uniform-cost search and solution reconstruction example. Sets of states involved in the
search are drawn as ellipses. The crosses represent the solution reconstruction path from the target
goal state st to the initial state s0.

adding the result to the corresponding successor bucket opengmin+c (line 10). Finally, the expanded
states are removed from opengmin

(line 11).

Figure 2.3 depicts a diagram representing uniform-cost search. Throughout the thesis, we will
use similar diagrams to illustrate examples of how different algorithms work. These examples pro-
vide a schematic view of the sets of states involved in the search, both in the open and closed lists.
BDDs that represent sets of states are drawn as ellipses over an axis that represents the g-values of
the search. The leftmost BDD corresponds to s0. The successor generation is represented through
arrows from the predecessor state sets to the state sets where successors are inserted. To keep the
examples as simple as possible, we will usually assume unit-cost domains, so that each set of states
only inserts states on the next g-bucket. In this example, we scale the ellipses to indicate that the
set of states and the BDDs representing them are usually larger when g increases. As soon as the
intersection between a set of states and the set of goal states is not empty, the solution reconstruction
procedure may be initiated with any of the goal states found.

30 CHAPTER 2. SYMBOLIC SEARCH PLANNING

2.5 Symbolic Bidirectional Uniform-Cost Search
Bidirectional uniform-cost search performs two searches in the two possible directions in an in-
terleaved manner, i. e., at each step, it automatically decides whether to continue the backward or
forward search, taking advantage of the direction in which it performs best in each domain. Newly
generated states are compared with the set of expanded states from the other search direction. In
case of a match, a solution plan has been found, though it is not necessarily optimal. Rather, it is
necessary to continue until the last plan is proven to be optimal (Nicholson, 1966; Torralba et al.,
2013a).

The symbolic version of bidirectional uniform-cost search is detailed in Algorithm 2.4. In large
parts its working is the same as that of standard uniform-cost search, since at each iteration the Step
procedure expands a set of states in a similar way in either the forward or backward direction. The
Step procedure, as any step in uniform-cost search, takes the set of states with minimum g and calls
the BFS procedure to remove duplicate states in closed∗ and get all states reachable with 0-cost
actions (line 14). Then, all the states with a g-value of gmin are inserted into the closed list (line 15)
and expanded, generating the successor states with the image operation (line 19) and inserting them
into open (line 21).

The UpdatePlan procedure checks whether a new better plan has been found over an expanded
state (line 16) or a newly generated state (line 20). The check for generated states is not strictly
needed, but it is an optimization that allows the algorithm to increase wtotal as soon as possible.
This reduces the number of image computations by skipping those that cannot possibly lead to a
better plan (line 18). Also, after checking whether a plan exists, states in closed∗’ can be removed
from Succ since they have already been expanded in the opposite direction so that their optimal
distance to the goal is known. Since the check ignores states in the open list of the opposite frontier,
UpdatePlan must be called again when states are expanded in order to ensure that no plan is missed.

To check if a new plan has been found, UpdatePlan compares the newly expanded/generated
states with the closed list of the opposite search. In case of a match, a new plan has been found. The
cost of the new plan is the sum of the g-values of the intersected states in both searches (line 31).
If this cost is smaller than the smallest cost found so far (wtotal), then wtotal is updated and the
corresponding solution path π can be created. The plan can be retrieved with two calls to the Con-
structSolution algorithm that finds the forward path from s0 to one state in the intersection of both
frontiers (line 32) and the backward path, using the reversed operators, from s? to the state resulting
of applying πf to the initial state, πf (s0) (line 33). The plan is the concatenation of the forward path
and the reversed backward path (line 34).

The algorithm may stop when the sum of the minimum g values of generated states for the
forward and backward searches is at least wtotal , the total of the cheapest solution path found so far.
In previous work, it was shown that this stopping condition guarantees that an optimal solution has
been found (Nicholson, 1966; Goldberg and Werneck, 2005). Since the g-value for each search is
monotonically increasing in time, so is their sum. After the condition is met, every state s removed
from a priority queue will be such that the costs of the solution paths from s0 to s and from s to s?
will be at least wtotal , which implies that no solution path of cost less than wtotal exists.

At each step, the algorithm may decide whether to perform a forward or backward step (line 8).
A typical criterion to decide the direction of the search is Ira Pohl’s cardinality principle that picks at
each step the direction with fewer frontier states (Pohl, 1969). In symbolic search, however, expand-
ing fewer states does not necessarily imply that the search is easier. Therefore, in the same spirit
as the cardinality principle, GAMER bases the decision on which direction is more promising, i. e.,
easier to expand. The algorithm estimates the time needed for the following step in each direction
as explained below and the direction with lower estimated time is the one selected for expansion.

2.5. SYMBOLIC BIDIRECTIONAL UNIFORM-COST SEARCH 31

Algorithm 2.4: Symbolic Bidirectional Uniform-Cost Search
Input: Planning problem: Π = 〈V,O, s0, s?〉
Input: Transition relations: T
Output: Cost-optimal plan or “no plan”

1 fOpen0 ← {s0}
2 bOpen0 ← S?
3 fClosed ← bClosed ← ⊥
4 gf ← gb ← 0
5 wtotal ←∞
6 π ← “no plan”
7 while gf + gb < wtotal and not fOpen is empty and not bOpen is empty do
8 if NextStepDirection(fOpen, bOpen) = Forward then
9 fOpen, fClosed , gf , π, wtotal ← Step(fOpen, fClosed , gf , bClosed , T , π, wtotal)

10 else
11 bOpen, bClosed , gb, π, wtotal ← Step(bOpen, bClosed , gb, fClosed , T −1, π, wtotal)

12 return π

13 Procedure Step(open, closed , gmin , closed ′, T , π, wtotal)
14 opengmin

← BFS(opengmin
, T0, closed∗, ∅)

15 closedgmin
← opengmin

16 π,wtotal ← UpdatePlan(π,wtotal , opengmin
, gmin , closed ′)

17 for all Tc ∈ T , c > 0 do
18 if gmin + c < w then
19 Succ ← image(opengmin

, Tc) ∧ ¬closed∗
20 π,wtotal ← UpdatePlan(π,wtotal ,Succ, gmin + c, closed ′)
21 opengmin+c ← opengmin+c ∨ (Succ ∧ ¬closed ′∗)

22 opengmin
← ⊥

23 gmin ← min{g | openg 6= ⊥}
24 return open, closed , gmin , π, wtotal

25 Procedure UpdatePlan(π,wtotal , Sg, g, closed ′)
26 if Sg ∧ closed ′ 6= ⊥ then
27 for all i ∈ {0 · · · | closed ′i 6= ⊥} do
28 if g + i ≥ wtotal then
29 break
30 if Sg ∧ closed ′i 6= ⊥ then
31 wtotal ← g + i
32 πf ←ConstructSolution(s0, Sg ∧ closed ′i,O, fClosed)
33 πb ←ConstructSolution(s?, πf (s0),O−1, bClosed)

34 π ← πf ‖ π−1
b

35 return π,wtotal

32 CHAPTER 2. SYMBOLIC SEARCH PLANNING

This greedy policy works well under the assumption that, as the search progresses, sets of states are
usually harder to represent.

In this thesis, we slightly changed the way in which GAMER estimates the time needed to perform
the next step. GAMER only considers the time taken by the previous step, choosing the direction that
was faster in its last step. Also, in order to avoid an immediate failure in domains where backward
search is unfeasible, GAMER does not allow the first backward step to take more than 30 seconds and
later steps to take more than 2.5 times the slowest forward step. If any of these limits are exceeded,
the backward search is disabled and the planner reverts to simple forward uniform-cost search (while
still retaining the already generated backward layers). We slightly change the strategy of GAMER in
two ways:

1. We consider interrupting any step in case it takes too much time. This makes the planner
slightly more robust, because a bad decision, such as taking a step that takes too much time,
does not necessarily halt the planner. The time needed to perform the interrupted step is re-
estimated and it will be attempted again if the opposite frontier is harder.

2. We take into account the size of the current frontier in order to get more accurate estimations.

To compute the estimated time for step k, tk, we take into account the time spent on the previous
step, tk−1, and the BDD sizes for the state set to be expanded and the state set expanded in the pre-
vious step, sk and sk−1, respectively. In general, we assume a linear relation between BDD size and
image computation time. However, this might not work well at the beginning of the search, where
tk is too low and the BDD size ratio is too large. Thus, we estimate tk as shown in Equation 2.1,
using the time of the previous layer whenever it was below one second and the linear estimation for
all the other cases.

tk =


0, if k = 0

tk−1, if k > 0 ∧ tk−1 ≤ 1s

tk−1
sk
sk−1

, if k > 0 ∧ tk−1 > 1s

(2.1)

This estimation, though not perfect, is often accurate enough to determine the best direction.
However, the time needed to complete a single step may grow exponentially in the frontier size,
invalidating our assumption of a linear ratio. In most cases this is not a problem because the esti-
mations are updated after every step, but sometimes it may lead to exhausting the available memory
or time. For example, in some domains, the first backward step takes much longer than a forward
step. Therefore, each step is given a maximum allotted time and is truncated when exceeding it. The
allotted time to perform a step is the double of the time estimated for the opposite direction. When
a step is truncated, its estimation must be updated to a higher value, to avoid selecting the same step
indefinitely. Therefore, we assign as estimation the double of the time spent until failure.

2.6 Symbolic A∗ Search
A∗ (Hart et al., 1968) is a best-first search algorithm. As such, it makes use of a priority queue
and expands the node with the minimal value according to some criterion. While in uniform-cost
search this criterion is only the g-value, A∗ makes use of a heuristic function h that estimates the
distance to the goal. A∗ expands the node n with smallest f(n) = g(n) + h(n) value. Thus, if
the heuristic is admissible, when a goal state is expanded, all the states with f < f∗ (the cost of
an optimal solution) have been expanded and the plan is guaranteed to be optimal. In this thesis,
we focus on abstraction heuristics that are not only admissible but also consistent. Consistency is

2.6. SYMBOLIC A∗ SEARCH 33

an important property because A∗ with a consistent heuristic does not re-expand any state and the
g-value of any expanded state is equal to the real cost, g∗. As no state is re-expanded, the number of
state expansions in A∗ is optimal (up to tie-breaking criteria as discussed below) among algorithms
using the same heuristic without additional information (Hart et al., 1968; Dechter and Pearl, 1985).

A∗ is not a unique algorithm, but a family of algorithms because its criterion is not fully specified.
Since there may be many nodes with minimum f -value, different versions of A∗ may be defined
depending on the tie-breaking criterion used to select which node will be expanded next among
those with minimum f -value. In explicit-state search, the tie-breaking criterion is to expand nodes
with larger g-value (and therefore smaller h-value) first because they are estimated to be closer to
the goal and this attempts to expand goal states as soon as possible, terminating the algorithm. In
case that more than one state is best according to this criterion, tie-breaking is usually based on FIFO
order.

Symbolic A∗ (alias BDDA∗) was first introduced by Edelkamp and Reffel (1998) and integrated
in the planning context by Edelkamp and Helmert (2001) in the model checking integrated planning
system MIPS. As usual with A∗, BDDA∗ expands states in ascending order of f = g + h. The
difference is that BDDA∗ groups sets of states with the same g and h-value, called g, h-buckets,
being able to expand all of them at once. The heuristic function in symbolic search is precomputed
prior to the search and represented as a list of BDDs, heur , one per possible heuristic value. The
heuristic evaluation is done with a conjunction: given a set of states S and the heur i BDD, S∧heur i
corresponds to the subset of states that have a heuristic value equal to i. As the heuristic is assumed
to be consistent, the f -value monotonically increases, since states with a given f -value are expanded
before states with larger f and successor states will never have smaller f -values than their parents.
We say that A∗ explores f -diagonals, where the term f -diagonal refers to all states with a given
f -value, making reference to the matrix representation used by the algorithm (see Figure 2.4 as
example).

h

g

s0
1

2 3

4

5

6

7

8

9

s?
10

(a) Matrix BDDA∗

h

g

s0
1

2 3

4

5

6

7

8

9

s?
10

(b) Lazy BDDA∗

Figure 2.4: Example of BDDA∗ implementations. The greyed cells are expanded in the order speci-
fied by the numbers. Arrows denote successor buckets.

As in explicit-state search, multiple tie-breaking criteria may be used to decide which g, h-bucket

34 CHAPTER 2. SYMBOLIC SEARCH PLANNING

to expand next. However, in practice, buckets with minimum g-value are preferred, i. e., the opposite
criterion to that used in explicit-state search. This expansion order may be detrimental on the last
f -diagonal because all the states with f = f∗ are expanded. However, in symbolic search the
drawback is compensated because it avoids the re-expansion of buckets. When buckets with lower g-
value are expanded, new states may be inserted in buckets with larger values. Thus, when expanding
the buckets in ascending order of g, once a g, h-bucket has been expanded, no new states will be
inserted into it afterwards, i. e., the algorithm does not need to re-expand any bucket. Preferring
to expand first buckets with maximum g-value, as in explicit-search, may regenerate an already
expanded bucket up to an exponential number of times in the number of different g-values on the
same f -diagonal, losing the advantages of symbolic search.

Multiple variants of BDDA∗ exist across the literature, varying the representation of state sets
involved in the search. ADDA∗ (Hansen et al., 2002) is an alternative implementation with ADDs,
while Set A∗ (Jensen et al., 2002) refines the partitioning in a matrix representation of g- and h-
buckets in the open list. Next, we will describe the two implementations we consider in this thesis,
which we call Matrix BDDA∗ and Lazy BDDA∗. GAMER uses the Matrix BDDA∗ implementation.
We propose a variant, Lazy BDDA∗, that slightly defers the heuristic evaluation. Our new variant is
relevant not only for efficiency reasons, but also because it will be helpful for techniques developed
later in the thesis.

2.6.1 Symbolic A∗ Using a Matrix Representation
Algorithm 2.5 details the workings of BDDA∗, using a matrix representation for the open list. open
is a (two-dimensional) matrix of BDDs, where the first dimension corresponds to the g-value and
the second one to the h-value. The closed list, closed , stores the states that are already expanded as
in the previous algorithms. Each element of this list is a BDD and corresponds to states sharing the
same h-value.

The algorithm initializes open with the initial state, s0, inserted into the 0, h(s0)-bucket (line 1).
Since the heuristic is represented as a list of BDDs, heur , h(s0) is computed by performing a
conjunction of s0 with each BDD heur i and returning the value for which the conjunction is not
empty, {s0} ∧ heur i 6= ⊥. The search iterates over f -diagonals, and along each diagonal in the
order of increasing g-values (as illustrated in Figure 2.4). Thus, at each step we select the minimum
f -value and then the minimum g-value possible for the selected f (lines 4 and 5). Of course the
h-value is set to f − g so that the equation f = g + h holds.

In order to expand the current g, h-bucket, the algorithm performs a breadth-first search with the
0-cost actions to get all reachable states with the same g-value, Succ (line 7). The BFS procedure
uses closed∗ to remove all duplicate states that have already been expanded. This is admissible since
the heuristic is consistent, so states are always closed with their optimal g-value and they do not need
to be re-expanded. Then, the heuristic is applied to the successor states, Succ, and they are inserted
in the open list (line 9). Again, we assume consistency of the heuristic so there is no need to check
any h′ smaller than h. The heuristic evaluation of the successor states can be interleaved with the
BFS algorithm in order to avoid expanding states with h′ greater than h but we ommit the details in
the pseudocode for the sake of clarity.

Next, the algorithm proceeds to expand the bucket openg,h. When a bucket with h-value 0 is
selected for expansion the algorithm checks whether it contains a goal state (the heuristic is admis-
sible and, therefore, it is goal-aware). If it does, the algorithm has successfully found an optimal
solution plan (line 12). Other than that, the actual expansion is similar to that used in Algorithm 2.3,
with the exception that we have to determine the h-values of all the successor states. For this we
use again a conjunction with the BDDs of heur (line 16). All states returned by the conjunction

2.6. SYMBOLIC A∗ SEARCH 35

Algorithm 2.5: Symbolic A∗ with Matrix Representation.
Input: Planning problem: Π = 〈V,O, s0, s?〉
Input: Consistent heuristic function h(s) represented as BDDs: heur
Output: Cost-optimal plan or “no plan’

1 open0,h(s0) ← {s0}
2 closed ← ⊥
3 while open is not empty do
4 f ← min{f ′ | ∃g′, h′ : f ′ = g′ + h′, openg′,h′ 6= ⊥}
5 g ← min{g′ | ∃h′ : g′ = f − h′, openg′,h′ 6= ⊥}
6 h← f − g
7 Succ ← BFS(openg,h, T0, closed∗, S?)
8 for all heurh′ ∈ heur , h ≤ h′ <∞ do
9 openg,h′ ← openg,h′ ∨ (Succ ∧ heurh′)

10 closedg ← closedg ∨ openg,h
11 if h = 0 and openg,h ∧ S? 6= ⊥ then
12 return ConstructSolution(s0, openg,h ∧ S?,O, closed)

13 for all Tc ∈ T , c > 0 do
14 Succ ← image(openg,h, Tc)

15 for all heurh′ ∈ heur , h− c ≤ h′ <∞ do
16 openg+c,h′ ← openg+c,h′ ∨ (Succ ∧ heurh′)

17 return “no plan”

have the corresponding h′-value and are thus inserted into the specified bucket in the matrix. Again,
consistency of the heuristic is assumed so that heuristic values h′ smaller than h+ c can be skipped.

In case the action costs are very diverse the matrix can become rather sparse. For such cases,
Kissmann and Edelkamp proposed to use a sparse matrix representation that does not store the entire
matrix but only the buckets that actually contain some states (Kissmann and Edelkamp, 2011).

2.6.2 Lazy BDDA∗

The heuristic computation is in many cases one important bottleneck for the A∗ algorithm, espe-
cially for some domain-independent heuristics. One possible way to deal with this problem is to
avoid evaluating all the states inmediately upon generation. In explicit-state search, deferred eval-
uation (Richter and Helmert, 2009) is a known technique to optimize the number of heuristic eval-
uations by delaying the heuristic evaluation of nodes until they are expanded. Nodes in the open
list are assigned the heuristic value of their parent. These are inadmissible estimates so they have
been used in non-optimal planning, but they could easily be adapted for the optimal case by re-
ducing each estimation by the cost of the transition from the parent to that node, like in pathmax
propagation (Méro, 1984). Another approach that avoids evaluating all heuristic estimates is Lazy
A∗ (Tolpin et al., 2013). Lazy A∗ combines different heuristics, some of which are more computa-
tionally expensive than others, in a lazy way. The expensive heuristic estimates are only computed
whenever the computationally “cheap” estimates have not already pruned the states.

In order to alleviate the effort made in heuristic computation, we propose a variation of the Matrix
implementation of BDDA∗. Lazy BDDA∗, or List BDDA∗, as it was originally called (Edelkamp

36 CHAPTER 2. SYMBOLIC SEARCH PLANNING

Algorithm 2.6: Lazy BDDA∗.
Input: Planning problem: Π = 〈V,O, s0, s?〉
Input: Consistent heuristic function h(s) represented as BDDs: heur
Output: Cost-optimal plan or “no plan”

1 open0 ← {s0}
2 closed ← ⊥
3 f ← h(s0)
4 g ← −1
5 while open is not empty do
6 curr = ⊥
7 while curr = ⊥ do
8 if ∃g′ > g | openg′ 6= ⊥, heurf−g′ 6= ⊥ then
9 g ← min{g′ > g | openg′ 6= ⊥, heurf−g′ 6= ⊥}

10 else
11 f ← min{f ′ > f | ∃g′openg′ 6= ⊥,∃h′heurh′ 6= ⊥, f ′ = g′ + h′}
12 g ← min{g′ | openg′ 6= ⊥, heurf−g′ 6= ⊥}
13 h← f − g
14 curr ← openg ∧ heurh

15 curr ← BFS(curr , T0, closed∗, S?)
16 openg ← curr ∧ ¬heurh
17 curr ← curr ∧ heurh
18 closedg ← closedg ∨ curr
19 if h = 0 and curr ∧ S? 6= ⊥ then
20 return ConstructSolution(s0, curr ∧ S?,O, closed)

21 for all Tc ∈ T , c > 0 do
22 Succ ← image(curr , Tc)
23 openg+c ← openg+c ∨ Succ

24 return “no plan”

et al., 2012), is a variation of BDDA∗ in which the open list buckets are only distinguished by their
g-value. We say that it is lazy because instead of computing the heuristic value when states are
generated before their insertion into the open list, it delays the heuristic computation until the states
are going to be expanded, reminding of Lazy A∗ (Tolpin et al., 2013).

Algorithm 2.6 shows the pseudo-code of Lazy BDDA∗. The open list, open , organizes the
generated states in a list according to their g-value and computes the conjunction with the heuristic
only on demand. Instead of classifying all the successors upon generation according to their h-value,
Lazy BDDA∗ inserts all into the same bucket identified only by their g-value. At each iteration, the
next bucket to be expanded, curr , is extracted from open . First, the algorithm seeks the next valid
pair of f and g values, i. e., the bucket with minimum f and minimum g so that there is a bucket
openg and a h-value satisfying f = g + h.

As in other algorithms, the BFS procedure removes duplicates in closed∗ from curr and gets
all states reachable from curr by 0-cost actions. As explained for the matrix version of BDDA∗,
duplicate pruning with respect to all closed states, closed∗, is admissible when the heuristics are
consistent. States without the current h-value should not be expanded yet so they are removed from

2.7. SYMBOLIC PATTERN DATABASES 37

curr and inserted into openg . The rest of the algorithm is similar to Matrix BDDA∗, though states
are not evaluated upon generation but just inserted into openg+c (line 23).

Lazy BDDA∗ defers heuristic evaluation until a set of states is going to be expanded (line 14).
The reasoning behind this strategy is to defer the heuristic calculation by computing the conjunction
of the sets of states with the heuristic only when it is needed for expansion in the currently traversed
f diagonal. This has the potential to save time in the final f diagonals, as the h values of the
states that will never be expanded are irrelevant and thus will not be calculated in Lazy BDDA∗

(as opposed to the matrix-based implementation). Moreover, just like in the explicit-state Lazy A∗,
when computing the maximum of multiple heuristics, if a heuristic proves some states to have an
f -value of f ′, larger than the current f -value, we may skip the computation of other heuristics over
those states until exploring the f ′-diagonal.

Finally, the representation of the open list as g-buckets instead of the g, h-buckets used by
BDDA∗ requires additional disjunctions. There are no theoretical guarantees about the size of BDDs
representing those buckets, since the additional disjunctions could cause an exponential blow-up or
an exponential gain with respect to the BDD size, depending on the structure of the state space being
traversed.

2.7 Symbolic Pattern Databases
Abstraction heuristics use a mapping from the original state space to a smaller abstract state space
and use the optimal solution cost in the abstract state space as an estimation for the original problem.
Pattern databases are a type of abstraction heuristics that, in the planning literature, is usually asso-
ciated with the projection of the planning task over a subset of variables. A PDB is characterized by
memorizing an abstract state space, storing the shortest path distance from each abstract state to the
set of abstract goal states (Culberson and Schaeffer, 1998; Edelkamp and Schrödl, 2012). A formal
description of abstraction heuristics and pattern databases in particular can be found in Chapter 6.
Here, we present the method used by GAMER to generate heuristics that we will use to evaluate our
techniques with Symbolic A∗ search.

GAMER uses symbolic partial pattern databases. A partial pattern database (Anderson et al.,
2007) is a PDB that is not fully computed, but rather its calculation is stopped after either a pre-
defined distance to the nearest goal or a pre-defined time-out has been reached. If all abstract states
with a distance of d have been generated, then all the other abstract states can safely be assigned a
value equal to d + 1. Symbolic PDBs (Edelkamp, 2002) are PDBs that have been constructed sym-
bolically, using symbolic backward uniform-cost search. In contrast to the posterior compression of
the state set (Ball and Holte, 2008), the construction by Edelkamp (2005) works on the compressed
representation, allowing larger databases to be constructed.

GAMER uses an automatic pattern selection procedure (Kissmann and Edelkamp, 2011) to gen-
erate a well-informed PDB, similar to the one proposed for explicit-search planners (Haslum et al.,
2007). Though GAMER automatically decides whether to use abstraction or to perform regression on
the original problem, we only consider the automatic pattern selection procedure, since partial PDBs
on the original state space are similar to bidirectional uniform-cost search, with the disadvantage
that the better search direction is not automatically chosen.

38 CHAPTER 2. SYMBOLIC SEARCH PLANNING

Chapter 3

Image Computation

As introduced in Section 2.1 (see page 19), the image operation is used to compute the set of reach-
able states in a single step from a given set of states with the same g-value, Sg , and a transition
relation Ti. The image operation is often the most time-consuming process in symbolic search, so it
is important to perform it as efficiently as possible.

In this chapter we study different approaches to perform the image computation. Image compu-
tation is closely related to the representation of transition relations, i. e., the BDD representation of
planning operators. As baseline we take the state-of-the-art planner GAMER that uses a separate TR
to represent each operator of the planning task.

We propose three different improvements over the previous image computation methods: split-
ting TRs of single operators into two different BDDs to avoid the use of auxiliary variables; using
a decision tree to filter away TRs whose preconditions are not satisfied by at least one state in the
expanded set; and aggregating several TRs minimizing the size of the intermediate BDDs generated
when computing the union of successors.

The chapter is organized as follows. First, in Section 3.1 we explain how the image is computed
in GAMER. Sections 3.2, 3.3, and 3.4 present three methods to compute the image that are the
main contribution of this chapter. We empirically evaluate the performance of these methods in
Section 3.5 and conclude with a summary of the chapter in Section 3.6.

3.1 Basics of Image Computation
In symbolic search planning, planning operators are described in the transition relations (TRs). As
seen in Section 2.1, a TR is a relation between predecessor and successor states, i. e., it represents all
the pairs of states 〈s, s′〉 such that s′ = o(s) for an operator o represented by the TR. Thus, if sets of
states are described as logical functions over some set of variables x, TRs also use a set of auxiliary
variables, x′, to represent successor states.

Also, in planning both x and x′ have a direct correspondence with the set of variables V: |x| =
|x′| = |V| and each vi has an associated xi and x′i. The variable ordering is usually optimized to
efficiently represent sets of states, i. e., it orders variables x that represent sets of states as explained
in Section 2.2.1 on page 22. To represent the TRs, we also must take into account the auxiliary
variables from x′. Arguably, xi and x′i are closely related, since for any operator o with vi 6∈ Veff (o),
x′i is assigned the value of xi. As the auxiliary variables only appear in the TRs, the most logical
order is alternating the variables from x and x′ (x1, x

′
1, x2, x

′
2, . . . xn, x

′
n) as proposed, e. g. by

39

40 CHAPTER 3. IMAGE COMPUTATION

Burch et al. (1994).
The image operation of a set of states with respect to a given transition relation can be decom-

posed into basic logical operations over BDDs as shown by Equation 3.1.

image(Sg,Ti) := ∃x ((Sg ∧ Ti)) [x′ ↔ x] (3.1)

Thus, the operation is carried out in three steps:

1. I1 := Sg ∧ Ti: The conjunction filters preconditions on x, removing all states in which the
precondition does not hold, and applies effects on x′. The result is a BDD storing all the pairs
of predecessor and successor states.

2. I2 := ∃x I1: The existential quantification of the predecessor variables x removes the vari-
ables that belong to the predecessor states. The result is the set of successor states.

3. image(Sg,Ti) := I2[x′ ↔ x]: denotes the swap of the two sets of variables, setting the value
of the successor states in terms of the variables in x.

In practice, steps 1 and 2 (conjunction and existential quantification) are performed in a single
BDD operation, the so-called relational product, which is often implemented in a more efficient way
than the sequential application of conjunction and quantification (Burch et al., 1994).

The related preimage operation, used to perform regression, is decomposed into similar op-
erations. In this case, variables are swapped first and the existential quantification is performed
over x′ instead of x. The formal definition of the preimage operator is pre-image(Sg,Ti) =
∃x′ ((Sg[x↔ x′]) ∧ Ti). Even though we are focusing our discussion in this chapter on image
computation, the same conclusions can be obtained about preimage computation for all purposes.

Efficient image computation is key to perform a symbolic reachability analysis, useful for
both symbolic search planning and symbolic model checking. A major challenge is the repre-
sentation of the TRs, as having a single TR per group of operators that have the same cost c (a
so-called monolithic TR) is often unfeasible because, in the worst case, a TR uses exponential
memory in the number of operators that it represents. A traditional solution is to use a conjunc-
tive or disjunctive partitioning of the transition relations (Burch et al., 1991b). This way, a list
of TRs {Tc,0, . . . ,Tc,n} whose images (or preimages in regression) are combined by conjunction
(Sg+c =

∧n
i=0 image(Sg,Tc,i)) or disjunction (Sg+c =

∨n
i=0 image(Sg,Tc,i)) are used instead of

the theoretical Sg+c = image(Sg,Tc).
Whether it is better to use a conjunctive or a disjunctive partitioning depends on the characteris-

tics of the problem being modeled. In symbolic model checking, a conjunctive partitioning is often
better suited because most studied systems are synchronous, in which the transitions from predeces-
sor to successor states are expressed as a set of rules that are all applied in parallel. For this reason,
research has generally been focused on the problem of scheduling the conjunction and quantification
operations during image computation (Burch et al., 1991a; Chauhan et al., 2001), with a few works
combining both types of partitioning (Moon et al., 2000). In planning, though, disjunctive parti-
tioning is more natural, since planning operators are applied sequentially. Jensen et al. (2008) first
proposed the partitioning of TRs so that each partition contains operators that change the f value
of the states by the same amount. The precomputation of ∆f was obtained from the cost of the
operators of the problem and the increase or decrease of the heuristic value. This limits their method
to problems and heuristics where ∆h can be automatically derived from the problem description.

Due to the inadequateness of using a single Tc in some domains, GAMER uses a TR per operator.
We now describe how TRs that represent a single operator o ∈ O are computed. Given an operator
o = (pre(o), eff (o), c(o)), its associated transition relation To is obtained as the conjunction of

3.1. BASICS OF IMAGE COMPUTATION 41

its literals, describing the preconditions with variables from x and the effects with variables from
x′. Any variable not modified by o must also be explicitly encoded so that it keeps its value after
the application of o. This is encoded in the TR as a bi-implication of the form biimp (xi, x

′
i) =

(xi ∧ x′i) ∨ (xi ∧ x′i). Thus, if we assume that the function fBDD(v, val , x) returns the BDD that
corresponds to the fluent 〈v, val〉 represented with the set of variables x, the TR of a single operator
is computed as follows:

To =
∧

〈v,val〉∈pre(o)

fBDD(v, val , x) ∧
∧

〈v,val〉∈eff (o)

fBDD(v, val , x′) ∧
∧

k∈V\Veff (o)

biimp(xk, x
′
k)

v1

v3

v3’

> ⊥

(a) υ1 ∧ ¬υ3 ∧ υ′3

v2

v′2 v′2

> ⊥

(b) biimp(υ2, υ′2)

v1

v′1

v2

v′2 v′2

v3

v3’

> ⊥

(c) TR(o)

Figure 3.1: Transition Relation that represents a single operator o, pre(o) = {x1,¬x3}, eff (o) = x3.

The TR of a single operator is efficiently representable, as exemplified in Figure 3.1. First, the
preconditions and effects are simple conjunctions of facts, which requires a BDD whose size is
linear in the number of relevant variables (see Figure 3.1a). Second, the bi-implications are trivially
representable as long as the variables from x and x′ that correspond to the same variable v ∈ V are
adjacent in the variable ordering, as they are in our ordering scheme. If this is the case, every pair of
related variables will be represented by a BDD with three nodes which lead to the same node when
the bi-implication function evaluates to true, as in Figure 3.1b. Finally, as all the bi-implication,
precondition and effect BDDs are independent of each other, the TR relative to the operator (see
Figure 3.1c) is just a concatenation of the BDDs.

When multiple TRs are used, the successors are sorted by their g value and aggregated in the
same Sg . Even if there are several BDDs that represent sets of states with the same g, BDDs are
always merged two at a time. Since the computational cost of most BDD operations depends on their
size, it is important to keep the intermediate BDDs as small as possible. Therefore, even though the
result will always be the same, the order in which disjunctions are applied has an impact on the
performance of image computation. To model the order in which disjunctions are applied, GAMER

42 CHAPTER 3. IMAGE COMPUTATION

represents them in a binary tree, called disjunction tree (see Figure 3.2).1 Each internal node applies
the disjunction of the result of its left and right branches. Each leaf node is associated with an
operator, so that it represents the image result with respect to that operator’s TR. GAMER constructs
a balanced disjunctive tree by arbitrarily splitting the operators in each internal node into two almost
equally sized partitions.

∨

∨

o5o4

∨

∨

o3o2

o1

Figure 3.2: Example of disjunction tree. Leaf nodes are associated with an operator. Internal nodes
correspond to the disjunction of the result of its left and right branches.

Next, we propose different ways to compute the image for symbolic search, taking advantage
of the characteristics of planning benchmarks. First, we consider how the set of auxiliary variables
x′ may be avoided when using a TR per operator. Then, we present a conjunction tree whose goal
is to improve how the operator preconditions are matched. Finally, we discuss other disjunctive
partitioning criteria to represent the TRs.

3.2 Image without Auxiliary Variables
As previously mentioned, TRs are usually represented as functions over two sets of variables: the
predecessor set x and the successor set x′. However, the semantics of a planning operator establishes
that the effect does not depend on the preconditions, i. e., preconditions and effects can be described
independently. It is possible to take advantage of this fact in two different ways. First, all the
variables not appearing in the effects must retain their values. When computing the image using To,
the existential quantification and variable swapping only need to be applied over variables modified
by eff (o). Therefore, the bi-implication term may be omitted from To, using instead T̃o, which is
defined as: T̃o =

∧
〈v,val〉∈pre(o) fBDD(v, val , x) ∧ ∧〈v,val〉∈eff (o) fBDD(v, val , x′). Then, if we

assume that xo ⊆ x is the set of variables modified by o and x′o ⊆ x′ is the corresponding set of
variables from x′, the image is computed as follows:

image(Sg,To) = (∃xo (Sg ∧ To)) [x′o ↔ xo]

Avoiding the explicit representation of the bi-implication term allows to divide To into a precon-
dition T pre

o over x and an effect T eff
o over x′ such that To = T pre

o ∧T eff
o . In fact, once preconditions

and effects are encoded separately there is no need to relate the sets x and x′ anymore, which allows
us to represent the TRs using only the set of predecessor variables x, which is equivalent to using
V with no further modification. This way the variables representing the successor states x′ as well
as the swap operation are no longer needed, which means that the intermediate BDDs during image

1The original version of GAMER did not explicitly model the disjunction tree, though used an equivalent iterative algorithm
to apply the disjunctions in a balanced way.

3.3. CONJUNCTION TREES 43

computation will be more succinct and hopefully the image operation will be slightly faster. The
new image operation is defined as follows:

image(S,To) = (∃xo (Sg ∧ T pre
o)) ∧ T eff

o

3.3 Conjunction Trees

When considering multiple TRs it is advisable to avoid checking their applicability individually.
This is especially important when a TR per operator is used instead of a partitioning scheme, as the
number of grounded operators can become very large in some planning problems. Some explicit-
state planners employ speed-up techniques to filter non-applicable operators efficiently, such as the
successor generator used by Fast Downward (Helmert, 2006b). In Fast Downward the operators are
organized in a decision tree (see Figure 3.3) similar to the structures used by RETE networks to
detect the triggering of a rule (Forgy, 1982). In these decision trees each leaf node contains a set of
operators that have the same preconditions. Every internal node is associated with a variable v ∈ V
and has an edge for every value i of v and an additional “don’t care” edge. An operator o ∈ O
is propagated down the i edge if and only if v = i ∈ pre(o) and down the “don’t care” edge if
v 6∈ Vpre(o). To compute the successors of a state s, the tree is traversed, omitting branches labeled
with unsatisfied preconditions and always following “don’t care” edges. An operator is applicable
in s if and only if it is in a leaf reached by that traversal.

>⊥ ?

⊥ > ? ⊥ > ? ⊥ > ?

v1

v2

O∅Ov2Ov2

v2

Ov1Ov1,v2Ov1,v2

v2

Ov1Ov1,v2Ov1,v2

Figure 3.3: Conjunction tree for applying an operator’s precondition on a set of states. Each internal
node corresponds to one binary variable, vi, classifying the operators depending on whether they
have precondition vi = >, vi = ⊥, or no precondition on vi (vi = ∗).

This approach carries over to BDDs as follows. As all the variables are binary, each internal node
only has three children c0, c1 and c?, dividing the operators into three sets: those that require v as a
precondition, those that require v as a precondition and those whose applicability does not depend
on v at all. Applicability of operators is different for progression and regression search, so different
conjunction trees are needed. Conjunction trees for forward search take into account the precondi-
tions of operators. Conjunction trees for backward search take into account the preconditions of the
inverted actions, i. e., their effects and prevail conditions. In the presence of zero-cost operators, all
algorithms studied in Chapter 2 apply breadth-first search using only the subset of zero-cost opera-
tors until a fix-point is reached. Since regular and zero-cost operators are applied over different sets
of states, two different conjunction trees are needed: one with the zero-cost operators and another
one with the rest. Also, as the applicability of operators is defined differently in progression than
in regression, in order to apply bidirectional search in domains with zero-cost operators up to four
different conjunction trees are needed: fw-zero, fw-cost, bw-zero, and bw-cost.

44 CHAPTER 3. IMAGE COMPUTATION

Algorithm 3.1: CT -image: Image using the conjunction tree
Input: node: Root of the CT subtree.
Input: Sg: BDD of states for which the applicable actions are calculated.
Output: Set of pairs 〈c, Sc〉 where Sc is a set of successor states generated with an operator

of cost c.
1 if Sg = ⊥ then return ∅
2 if node is leaf then
3 return

⋃
o∈node.O

{〈c(o), image(Sg,To)〉}

4 v ← node.variable
5 r0 ← CT -image(node.c0, Sg ∧ ¬v)
6 r1 ← CT -image(node.c1, Sg ∧ v)
7 r? ← CT -image(node.c?, Sg)
8 return r0 ∪ r1 ∪ r?

In symbolic search the operators are not applied over a single state but rather over sets of states.
Nevertheless, operators only need to be applied over states that satisfy the corresponding conditions.
We take advantage of this by precomputing the subset of states relevant to a given TR prior to the
image operation. This is done by splitting the original set of states into subsets as the successor tree
is traversed. This way, the subset on which a TR is applied once a leaf node is reached is the subset
of states that satisfy the preconditions of the TR. We call this method conjunction tree (CT).

Algorithm 3.1 shows how to compute the image of a BDD using the CT . It takes as input a set
of states Sg and the root node of the CT and returns the sets of successor states, associated with the
cost of the operators that generated them. At every inner node one recursive call is made for each
child node, applying the corresponding conjunction between the set of states Sg and the precondition
v ∈ V associated with the node. Moreover, if there are no states satisfying the preconditions of a
branch, it is not traversed. When a leaf node is reached, image(S′g,To) is computed. Since S′g
at the leaves is already the result of computing the conjunction of the original Sg and the operator
preconditions, here we should only account for the effects. Thus, in the leaf nodes the image is
computed as image(S′g,To) = (∃xoS′g) ∧ T eff

o .
The CT has several advantages over the regular approach: first, if Sg does not contain any state

matching the conditions of a branch of the tree, all the operators regarding that branch are ignored,
which reduces the number of individual image operations that are needed. Second, if several opera-
tors share the same preconditions, the conjunction of Sg with that set of preconditions is computed
only once. Finally, the conjunction with the preconditions is done with BDDs whose size usually
decreases as we go deeper in the CT , so the time required to do the individual conjunctions will be
shorter.

An overhead may occur due to the computation and storage of intermediate BDDs in memory,
though. The conjunction with a precondition should only be used when the benefits are estimated to
compensate the overhead, as when a precondition is shared between many operators. Thus, the CT
can be parametrized with a parameter min operators conjunction, so that the intermediate conjunc-
tion with a partial precondition is only computed when needed for at least that number of operators.
If the number of operators that should go down some edge is less than min operators conjunction,
they are propagated down the don’t care branch c? instead, and marked so that we know that not
all their preconditions have been checked. When computing the image of marked operators, the
conjunction with their preconditions is needed. When min operators conjunction is set to 1 we have

3.4. UNIONS OF TRANSITION RELATIONS 45

the full tree strategy and when it is set to ∞ the CT consists of only one leaf node containing all
the operators, which is equivalent to not having a tree at all. Setting the parameter to intermediate
values produces intermediate strategies.

The performance of the CT depends on the order in which it checks the conditions. We tried two
different heuristic criteria to generate the CT . The first one, the level criterion, is to use the same
variable ordering as in the BDD representation. This aims at making the conjunctions as simple
as possible, since a conjunction with the first variable of a BDD is trivial. Our second criterion,
dynamic, is to use the variable that appears most often in the preconditions of the operators down
that branch. This is a greedy strategy, aiming to reuse the computation of the conjunction for as
many operators as possible.

3.4 Unions of Transition Relations
Even though having a monolithic TR per action cost is often unfeasible due to its size, computing
the union of TRs of only a subset of operators may be beneficial. The union of a set of TRs T is a
new TR, Union(T), such that the image with respect to Union(T) is equivalent to the disjunction
of the images of the individual TRs in T , image(Sg,Union(T)) =

∨
T∈T image(Sg, T).

Union(T) cannot be represented with separated preconditions and effects as described in Sec-
tion 3.2 though, as the bi-implications are needed to ensure that the generated successors are correct.
However, not all the bi-implications need to be explicitly included: a To ∈ T must include a bi-
implication related to some variables xi only if xi is modified by some other T ′o ∈ T (and not by
To). Thus, Union(T) may be computed as shown in Equation 3.2, where XT and XT are the sets
of variables in the effects of operators represented by the transition relation T and any transition
relation in the set T , respectively.

Union(T) =
∨
T∈T

(
T ∧ biimpxi∈XT \XT (xi, x

′
i)
)

(3.2)

A critical decision is which operators should be joined together in a single TR while ensuring that
the resulting Union(T) is tractable. Algorithm 3.2 is a simple algorithm for creating a disjunctive
partitioning starting from the set of one TR per each operator. Recall that, as the cost of reaching a
state must be preserved, only operators with the same cost c may be aggregated. Therefore, we call
the algorithm once per different cost, i, with Ti = {To | o ∈ O, c(o) = i}.

Given a set of TRs, the algorithm iteratively aggregates them until only one element in the set
of candidates T is left or the maximum allotted time is exceeded, represented by the parameter
maxTime. The parameter maxNodes is a limit on the number of nodes that the transition relation
BDDs may have. Tres is the set of TRs that cannot be aggregated anymore. If maxNodes is exceeded
during the computation of the union, the TRs whose union was attempted are added to Tres instead
to the candidate set T . This means that, even if the disjunction of a TR with some other T ’ could be
possible, once they are in Tres they are not considered for aggregation anymore and are returned at
the end in the resulting set of TRs.

The most important aspect of the algorithm is the selection of the TRs to be aggregated in line
3. This is important, not only because it may impact the algorithm performance, but also because,
if a single Union(Tc) cannot be computed for some cost c, it is important to have a set of TRs as
balanced in size as possible. As we impose a limit on the maximum size of a TR, balancing the
size of the TRs will often lead to a better partitioning with a lower number of TRs. We define three
strategies, based on different criteria, to select which TRs should be unified:

46 CHAPTER 3. IMAGE COMPUTATION

Algorithm 3.2: Aggregate
Input: T : Set of elements to aggregate.
Input: maxTime, maxNodes: Time and node bounds.
Output: Set of elements aggregated.

1 Tres = ∅
2 while |T | > 1 and currentTime < maxTime do
3 Select Ti, Tj ∈ T
4 T ← T \ {Ti, Tj}
5 T ′ ← Union({Ti, Tj},maxTime− currentTime,maxNodes)
6 if Union suceeded then
7 T ← T ∪ {T ′}
8 else
9 Tres ← Tres ∪ {Ti, Tj}

10 return Tres ∪ T

Disjunction Tree (TDT) This criterion employs the balanced disjunction tree shown in Figure 3.2.
Instead of computing the union of the successors generated with the TRs that appear at the leaf nodes,
the actual TRs are merged. TRs that share the same parent node are merged in a bottom-up fashion
until maxNodes is exceeded in that branch or the algorithm runs out of time.

The strategy TDT uses an arbitrary order of operators, which means that the resulting set of TRs
may end up being imbalanced. For example, if a small TR is merged with another TR whose size
is close to maxNodes and the union of both TRs is bigger than maxNodes, then the first TR will not
be considered for merging anymore. If this occurs, it may happen that the set of final TRs contains
individual TRs that could have been merged without exceeding maxNodes.

Smaller TRs (TSM) is a simple criterion to obtain TRs as balanced as possible in size. TSM

aggregates the two smallest TRs at every step.

Conjunction Tree (TCT) The previous strategies have the disadvantage of not exploiting the syn-
ergy between operators — the union of two TRs whose operators have similar preconditions and
effects tends to be more succinct —, which may result in bigger intermediate BDDs. To exploit
the similarity between operators, the CT described in Section 3.3 can also be used as the policy
employed to aggregate TRs. The new policy TCT aggregates TRs of operators present in the same
branch of the CT just like TDT does. This ensures that there will be some degree of similarity
between the TRs because at least one subset of the preconditions will be shared between all the
operators. Also, this allows us to use the CT in combination with a disjunctive partitioning in a
seamless way: TRs are merged up the tree from the leaves until Algorithm 3.2 finishes, in which
case the merged TRs will be the new leaf nodes of the CT . This keeps the property of the CT that
only states that can be expanded by some operator are propagated down the tree even if the TRs of
the individual operators are merged.

3.5. EMPIRICAL EVALUATION 47

3.5 Empirical Evaluation
In this section, we empirically evaluate the different techniques proposed in this chapter and test
the impact of the different parameters defined. We use these image computation methods within
the symbolic search algorithms implemented in GAMER: forward/backward uniform-cost (see Sec-
tion 2.4 on page 28), bidirectional uniform-cost (see Section 2.5 on page 30) and A∗ search (see
Section 2.6 on page 32). All the settings of our experiments, including the benchmarks and metrics
used, were described in Section 1.5 on page 10. The main goal of our evaluation is to measure the
impact that the different methods of image computation have on the performance of the algorithms.
We consider the following configurations:

• TR1: GAMER’s original image computation. TR1 uses a TR for each single operator. This is
the baseline against which we compare the rest of the image computation techniques proposed
in this chapter.

• TR1+: Uses a TR for each single operator, but it separately represents the preconditions and
effects of the operator avoiding the use of auxiliary variables. See Section 3.2 on page 42.

• CT : uses the conjunction tree to match the action preconditions. As explained in Section 3.3
on page 43, it has two different parameters that configure how the conjunction tree is con-
structed:

1. Variable ordering in the CT , i. e., the order in which the variables are checked for the
operator preconditions. We contemplated two criteria: level (CT L) and dynamic (CT D)
and compared them against the reversed level (CT RL) and random selection (CT R).

2. min operators conjunction: the minimum number of operators in each leaf of the CT .
Apart from the “standard” version with value 1, we perform experiments with 5, 10 and
20: CT 5, CT 10 and CT 20.

• Union of TRs (TDT , TSM and TCT): Represents multiple operators with a single TR, in-
stead of using a TR for each operator. The aggregation algorithm proposed in Section 3.4 on
page 45 combines as many operators as possible, while guaranteeing that the final TRs fit in
the available memory. It uses three parameters:

1. Aggregation strategy: the criteria used to select which TRs are aggregated at each step
in the algorithm: disjunction tree (TDT), smallest (TSM), and conjunction tree (TCT).

2. Maximum TR size: Limit on the number of nodes that the BDDs describing TRs may
have. In our experiments, we used values ranging from 1000 (T1k) to one million (T1M).

3. Maximum time: Fixed to 60 seconds. We did not perform a deep analysis of this param-
eter since the maximum BDD size is more relevant to control the resources invested to
aggregate the TRs (memory is the most scarce resource in this case).

Given the large amount of configurations and algorithms, reporting all the combinations is not
feasible. Instead, we divide our evaluation into several steps:

1. First, in Section 3.5.1, we evaluate the performance of bidirectional uniform-cost search with
the different image computation methods. We perform a detailed analysis of different param-
eter configurations of the methods we have proposed in this chapter and compare them to the
previous approach in GAMER. We chose bidirectional uniform-cost search for our detailed

48 CHAPTER 3. IMAGE COMPUTATION

analysis because it already contemplates the case of forward and backward search. More-
over, it is less biased than Symbolic A∗, because it does not rely on any abstraction selection
mechanism that may alter our conclusions.

2. Once all the image computation methods have been evaluated, we check whether the main
conclusions obtained from the bidirectional uniform-cost case can be extrapolated to unidi-
rectional uniform-cost and Symbolic A∗, in Sections 3.5.2 and 3.5.3, respectively. Addition-
ally, we perform a comparison of forward and backward search and see whether there are
differences in our conclusions between image and preimage computation.

3.5.1 Image Computation on Bidirectional Uniform-Cost Search
In this section, we analyze the performance of bidirectional uniform-cost search when using different
image computation methods, comparing the original image computation of GAMER, TR1, against
the new approaches proposed in this chapter. We first present an overview of the different methods
and, afterwards, a detailed analysis of the configuration parameters.

Table 3.1 shows the time score results of our different approaches to image computation. As
the results highlight, the new image computation methods outperform the previous image approach
of GAMER, not only in terms of total coverage and score, but also on a domain per domain basis.
The time score results show that the new image computation methods provide an improvement in
almost all domains (except in PSR-SMALL, where all the problems are solved, and PARKING, where
no configuration solves any problem). This means that the new image computation methods make
symbolic search more efficient, being able to solve problems in less time. Moreover, this increase in
efficiency allows the planner to solve more problems in 21 out of 44 domains. Given the exponential
growth in problem complexity in most domains this reveals significant performance gains.

However, not all the new approaches have the same results. The first new approach, TR1+,
that divides each TR into a precondition and an effect BDD already dominates the results of the old
GAMER approach, having equal or better performance in all domains except TIDYBOT and the two
versions of PIPESWORLD. In total, it solves 36 more problems than TR1 across 17 domains so the
improvement can be relevant in practice.

Another interesting comparison is that of TR1+, CT L and CT L
20. CT L is an extension of TR1+

that uses a complete conjunction tree. CT L
20 is a mix of both that aims to reduce the overhead of the

conjunction tree by avoiding using it whenever a precondition is shared among less than 20 operators.
At first glance, we observe that the results of CT L seem to be a bit worse than those of TR1+, though
it proves to be quite useful in a few domains like FREECELL and, especially, TIDYBOT where it is
the best method. Unsurprisingly, in these domains the problem instances have lots of operators
with many preconditions. However, in several domains such as BLOCKSWORLD, SOKOBAN, or
TRANSPORT the coverage of the planner decreases when using CT L instead of TR1+. This result
confirms our intuition that, while the conjunction tree successfully takes advantage of checking the
same precondition for several operators, there is an overhead that can be harmful in some domains.
Fortunately, the overhead can be limited by setting the min operators conjunction parameter to 20
operators, CT L

20. In most domains, the time score of CT L
20 is just the maximum of TR1+ and

CT L, so the parameter is successfully able to control when it is useful to use the conjunction tree
approach. Moreover, there are some cases in which CT L

20 is better than both TR1+ and CT L. For
example, in FREECELL and GRIPPER the use of the complete conjunction tree is already beneficial,
but considering a reduced conjunction tree is even better.

Even though all the new image approaches improve the results of our base planner, GAMER,
the clear winners among our image computation variants are the approaches that aggregate TRs.

3.5. EMPIRICAL EVALUATION 49

TR1 TR1+ CT L CT L
20 TDT

100k

AIRPORT (50) 20.82 20.96 18.80 21.24 *23.97
BARMAN (20) 5.80 5.92 5.65 5.98 8.00

BLOCKSWORLD (35) 19.83 *22.60 19.01 *22.77 20.10
DEPOT (22) 4.08 *5.71 4.13 *5.68 4.70

DRIVERLOG (20) 9.42 11.11 9.98 11.22 *14.00
ELEVATORS08 (30) 16.85 *20.39 *20.02 *20.84 *25.00
ELEVATORS11 (20) 12.79 15.34 15.04 15.52 19.00
FLOORTILE11 (20) 7.39 9.39 8.13 9.37 *12.00

FREECELL (80) 9.52 9.70 10.78 12.93 *20.00
GRID (5) 1.57 1.57 1.63 1.67 2.00

GRIPPER (20) 15.91 17.38 17.55 19.54 18.21
LOGISTICS 00 (28) 16.44 18.37 17.34 18.42 19.96
LOGISTICS 98 (35) 3.23 4.00 3.44 3.76 5.00

MICONIC (150) 61.79 82.40 81.71 82.51 *113.00
MPRIME (35) 16.25 17.61 18.43 *20.27 20.36

MYSTERY (30) *12.56 *12.65 12.08 12.56 *13.33
NOMYSTERY11 (20) 10.67 13.63 13.25 13.89 *15.68
OPENSTACKS08 (30) 21.95 23.70 23.74 24.49 30.00
OPENSTACKS11 (20) 13.69 14.88 14.47 15.01 20.00
OPENSTACKS06 (30) 9.40 9.81 9.19 10.05 *19.98

PARCPRINTER08 (30) 17.91 19.69 17.67 18.85 *23.62
PARCPRINTER11 (20) 12.73 14.54 12.67 14.40 *17.32

PARKING11 (20) 0.00 0.00 0.00 0.00 0.00
PATHWAYS-NONEG (30) 4.77 4.82 4.50 4.88 5.00
PEG-SOLITAIRE08 (30) 25.09 *29.43 *28.01 *29.88 *29.70
PEG-SOLITAIRE11 (20) 15.52 *19.33 *17.68 *19.89 *19.70

PIPESWORLD-NT (50) *12.90 *12.36 *13.69 *12.86 13.85
PIPESWORLD-T (50) 11.64 10.69 10.82 11.97 *17.00

PSR-SMALL (50) 49.56 49.45 49.45 49.51 49.74
ROVERS (40) 10.84 11.87 11.68 11.91 14.00

SATELLITE (36) 5.99 *7.66 *7.62 *7.65 *9.00
SCANALYZER08 (30) 8.87 10.02 10.50 10.54 11.68
SCANALYZER11 (20) 5.96 7.05 7.67 7.71 8.94

SOKOBAN08 (30) *21.40 *21.70 19.19 *21.71 *27.97
SOKOBAN11 (20) 15.01 15.38 14.07 15.38 19.97
TIDYBOT11 (20) *10.76 7.83 *11.41 *11.31 10.95

TPP (30) 7.18 7.62 7.28 7.62 8.00
TRANSPORT08 (30) 10.10 *12.19 11.60 *12.72 *14.00
TRANSPORT11 (20) 5.74 *7.96 5.84 *8.54 *10.00

TRUCKS (30) 8.32 9.18 8.79 9.16 *11.00
VISITALL (20) 10.42 11.65 11.34 11.66 11.94

WOODWORKING08 (30) 17.15 18.90 17.83 18.91 22.00
WOODWORKING11 (20) 11.45 13.10 12.04 13.01 16.00

ZENOTRAVEL (20) 7.31 *9.81 9.04 *9.58 *11.00
TOTAL (1396) 596.58 669.35 644.76 687.37 806.67

SCORE (36) 14.95 16.47 15.92 17.00 19.36
TOTAL COV (1396) 748 784 770 792 814

SCORE COV (36) 18.38 18.92 18.63 19.14 19.61

Table 3.1: Time score of bidirectional uniform-cost search with different configurations of image
computation: the original image of GAMER, TR1, against TR1+ and different configurations of
the conjunction tree, CT . The best configurations per domain and those deviating in only 1% are
highlighted in bold and, in domains where there are differences in coverage, the configurations with
best coverage are marked with *.

50 CHAPTER 3. IMAGE COMPUTATION

The total time score of TDT
100k is 806.67, very close to the total coverage of 814. This means that

TDT
100k is reliably the fastest image computation method in almost every domain. In the few domains

where it is not the fastest one, its performance is close to the fastest. Moreover, TDT
100k obtains the

best coverage in many domains, solving 66 more problems than the original image computation of
GAMER (27 of those are in MICONIC). Other image computation methods outperform TDT

100k only
in a few domains and in those cases by a small margin.

The performance gain of the best new method for image computation, TDT
100k, with respect the

old GAMER approach is depicted in the plot of Figure 3.4. The plot reflects the overwhelming
superiority of the approach that aggregates multiple TRs. TDT

100k is better in the vast majority of
problems, solving problems up to two orders of magnitude faster than the baseline and being only
clearly worse on four problems of the whole benchmark set.

100 101 102 103

100

101

102

103

Solving time of TDT
100 (seconds)

So
lv

in
g

tim
e

of
T
R

1
(s

ec
on

ds
)

Figure 3.4: Comparison of solving time of the new TDT
100k image computation versus the old GAMER

image computation. Unsolved problems are assigned a time of 2000 seconds.

Parameter Configuration of the Conjunction Tree

We take a closer look at the impact that the different parameters have on the performance of the
conjunction tree, defined in Section 3.3. We compare the criteria to select the variables that split
the operators in each internal node of the conjunction tree, as well as the min operators conjunction
parameter.

We consider four different heuristic criteria to select the variables that split the operators in each
node of the conjunction tree. We compare the two criteria introduced in Section 3.3 on page 43,
level and dynamic, against two baseline approaches, reversed level and random. The level criterion
selects the variables in the same ordering used to represent the BDDs. The dynamic criterion selects
the variable that appears in more operator preconditions. Reversed level selects the variables in the
reverse order than the level criterion. Finally, the random criterion just selects variables at random.

Table 3.2 shows the total time score of each configuration, normalized according to the number
of problems in each domain. The first trend observed is that configurations using the conjunction
tree with a min operators conjunction value greater than one (the full conjunction tree) but distinct

3.5. EMPIRICAL EVALUATION 51

from ∞ (no conjunction tree at all) are better than both extremes. Using the conjunction tree is a
good idea, but only when the same precondition is shared between several operators. However, the
exact value of min operators conjunction does not seem to matter that much. Any value around 10
or 20 is a reasonable choice and the results are quite similar even with a value of 5. This means that,
as soon as there are 5 or more operators with the same precondition, applying the conjunction tree
will speed up the image computation.

On the other hand, comparing the variable selection strategies, for low values of min operators
conjunction, the level and dynamic criteria are better than reversed level or random. Increasing the
min operators conjunction parameter reduces the number of variables that can be selected, so that all
tie-breaking strategies converge to similar performance with min operators conjunction equal to 20.
While none of the strategies is worse than not using the conjunction tree (∞) when using an adequate
value of the min operators conjunction parameter, the dynamic and level strategies are more stable
than reversed level or random, obtaining good results with any values of min operators conjunction
greater or equal to 5. The configuration with best coverage is reversed level (CT RL), which makes
the most of the conjunction tree being able to solve 11 more problems than TR1+ (∞). The dynamic
and level (CT L) strategies get slightly worse results, though the difference is not very significant.

1 5 10 20 ∞
CT L 17.31 (770) 18.61 (792) 18.74 (790) 18.73 (792) 18.13 (784)
CTD 17.67 (778) 18.72 (791) 18.84 (793) 18.79 (793) 18.13 (784)
CTRL 16.61 (761) 18.27 (784) 18.51 (787) 18.80 (795) 18.13 (784)
CTR 16.48 (759) 18.17 (782) 18.53 (787) 18.75 (792) 18.13 (784)

Table 3.2: Total time score and coverage of bidirectional uniform-cost search with different con-
figurations of the conjunction tree, CT . Each row represents a selection criterion: level (CT L),
dynamic (CT D), reversed level (CT RL) and random (CT R). Each column represents a value of the
min operators conjunction parameter, where 1 corresponds to using the complete conjunction tree
and ∞ stands for the configuration without conjunction tree (TR1+) for all the selection criteria.
The best configurations and time scores deviating in only 1% from the best are highlighted in bold.

As a conclusion, using a conjunction tree may speed up the image computation whenever the
planning operators are represented in isolation and enough operators share some preconditions. In
order to avoid the overhead of checking each precondition separately, it is necessary to introduce
a parameter min operators conjunction. Moreover, the results are not highly sensitive to the exact
value of the parameter if it is set to a reasonable value.

Parameter Configuration of TR Aggregation

As we have seen in the results of Table 3.1 on page 49, representing several operators with a single
TR produces a significant increase in the performance of symbolic search. However, since represent-
ing all the operators with a single TR may be unfeasible, one must decide which operators should be
represented together. Our aggregation algorithm (see Algorithm 3.2), which automatically derives a
disjunctive partitioning of the TR, takes two different parameters to control the resulting partition-
ing: the aggregation strategy and the maximum TR size. In Section 3.4 on page 45 we defined three
criteria to select which TRs to merge in each algorithm iteration. The disjunction tree (TDT) aims to
obtain TRs balanced in the number of operators. The smaller TRs strategy (TSM) always selects the
two smaller TRs. On the other hand, the maximum TR size controls the memory used to represent
the TRs. The conjunction tree strategy (TCT) aggregates TRs with the same preconditions so that
the conjunction tree can be used whenever more than one TR is needed to describe all the operators.

52 CHAPTER 3. IMAGE COMPUTATION

If the maximum TR size is set to 1, no TRs are aggregated and the algorithm behaves as the original
TR1. If the maximum TR size is set to∞, the planner will use a monolithic TR for each action cost,
but may exceed the available memory in the initialization. Given the memory limit of 4GB, we set
the parameter to different values ranging from 1000 nodes (1k) to one million (1M).

1 1k 10k 100k 1M ∞
TDT

14.73 (748)

18.16 (807) 18.62 (809) 18.90 (814) 18.70 (814) 18.19 (804)
TSM 16.17 (778) 17.26 (780) 18.02 (798) 18.04 (798) 17.77 (790)
TCTl 18.28 (817) 18.54 (814) 18.53 (812) 18.29 (809) 17.73 (796)
TCTl

20 18.25 (817) 18.67 (821) 18.53 (813) 18.35 (808) 17.83 (792)
TCTd 18.23 (818) 18.46 (815) 18.23 (811) 18.13 (809) 17.61 (791)
TCTd

20 18.14 (815) 18.49 (813) 18.34 (813) 18.09 (805) 17.80 (793)

Table 3.3: Total time score and coverage of bidirectional uniform-cost search with different con-
figurations of TR aggregation. Each row represents a selection criterion: disjunction tree (TDT),
smaller transitions (TSM) and conjunction tree (TCT , TCT20). Each column represents a value
of the maximum TR size parameter that controls the memory used to represent the TR. A value of
1 corresponds to the original GAMER image computation (TR1) and a value of ∞ represents the
monolithic TR approach.

Table 3.3 shows the time score and total coverage of each parameter configuration. The re-
sults show that, while aggregating TRs has an important impact on the planners’ performance, the
parameters that control how to aggregate have limited relevance.

We have tried different values for the maximum size of the TRs. The configuration without any
TR aggregation only solves 748 instances, 73 less than the best configuration in terms of coverage.
However, when aggregating a few TRs, up to a maximum of 1000 nodes is enough to get a coverage
of 818, only three problems behind the maximum coverage achieved. The fastest configurations are
reliably those setting the maximum size of TRs in 10000 or 100000. For larger TRs, the cover-
age slightly decreases, mainly because the TRs use too much memory or the process cannot even
terminate.

Regarding the criteria to select the order in which the TRs are aggregated, TSM performs clearly
worse than the other criteria, both in coverage and time score, but the differences between the rest of
the versions are not large enough to consider them significant. Thus, we conclude that any of these
strategies which attempt to aggregate “similar” TRs with respect to different definitions are all valid
strategies to decide which TRs should be aggregated. In the rest of the thesis we will use the TDT

100k

criterion. Even though there are other configurations with slightly better coverage, it is the fastest
approach according to our time score measure. Also, given that all the methods are close to each
other, we selected the simpler approach that does not use any conjunction tree.

3.5.2 Image Computation in Unidirectional Uniform-Cost Search

In the previous subsection, we analyzed the impact that the new image computation methods have
on the performance of bidirectional symbolic uniform-cost search. In this section, we compare the
results in unidirectional search and examine whether the new image techniques have more impact in
forward or backward search. Table 3.4 shows the summary scores of the image computation meth-
ods on unidirectional uniform-cost search, both in forward and backward directions. For both the
disjunction-based image and the conjunction tree approaches, we selected the same configurations
as in the bidirectional search table.

3.5. EMPIRICAL EVALUATION 53

The main conclusions are similar to those in the bidirectional search case, with TDT
100k being the

best configuration for image computation in almost every domain and the new image computation
approaches outperforming the base symbolic planner, TR1.

fw bw

TR1 TR1+ CT L
20 TDT

100k TR1 TR1+ CT L
20 TDT

100k

TOTAL (1396) 595.05 618.50 645.25 740.36 306.73 390.25 396.19 467.42
SCORE (36) 14.79 15.22 15.98 18.09 7.39 9.12 9.22 10.43

TOTAL COV (1396) 722 734 749 768 453 534 538 541
SCORE COV (36) 17.63 17.73 18.13 18.58 10.71 12.22 12.29 12.34

Table 3.4: Summary time and coverage scores of symbolic forward and backward uniform-cost
search using different image computation techniques. Best results in each direction are highlighted
in bold.

Finally, the comparison between forward and backward search depicts a clear advantage for the
forward case. Regression search outperforms forward search only in five domains — two if we take
coverage into account. The results of Table 3.4 are not the definitive comparison of forward and
backward blind search in this thesis. Instead, they are a motivation for Chapter 4, where we will
analyze the usage of state invariants in symbolic search and how they affect the search performance.
For a detailed comparison of blind search methods we refer the reader to Section 4.7.4 on page 78.

3.5.3 Image Computation in Symbolic A∗ Search

In this section we evaluate the image computation techniques in symbolic A∗ search with symbolic
PDBs. We use the Lazy BDDA∗ implementation described in Section 2.6.2 on page 35. The sym-
bolic PDBs are generated with GAMER’s hill climbing method (Kissmann and Edelkamp, 2011) in a
precomputation phase that is terminated after 15 minutes. The image computation methods are used
both in the symbolic PDB generation and in the symbolic A∗ algorithm. Table 3.5 shows the summa-
rized coverage results of the main image approaches proposed in this chapter. Time score metrics are
omitted because they are not representative of A∗ performance, given that all the algorithms spend a
maximum of 15 minutes in the PDB generation before starting the search.

TR1 TR1+ CT L CT L
20 TDT

100k

TOTAL COV (1396) 730 744 711 753 792
SCORE COV (36) 18.38 18.43 17.89 18.72 19.64

Table 3.5: Summary total coverage and score of symbolic A∗ search using different image compu-
tation techniques.

Once again, the conclusions regarding the comparison of image computation techniques are
similar to those obtained with bidirectional symbolic uniform-cost search. This reveals that the
advantage of the new image computation methods is not limited to a particular algorithm, but they
improve the performance of symbolic search planning algorithms in general. Comparing the results
in Table 3.5 with those of symbolic bidirectional uniform-cost search (see Table 3.1) we can observe
that the performance of A∗ is similar to bidirectional uniform-cost search. They have almost the
same score, although the latter solves 22 problems more in total. A more detailed comparison of
symbolic A∗ and symbolic bidirectional uniform-cost search is delayed until Section 5.2 on page 86,
where all our improvements to symbolic search have been presented.

54 CHAPTER 3. IMAGE COMPUTATION

3.6 Summary
In this chapter we have presented and analyzed image computation methods for symbolic search
planning. Our starting point was the state-of-the-art symbolic search planner GAMER that com-
putes the image using a transition relation for each planning operator. We proposed three different
alternatives for image computation:

1. Instead of representing each planning operator by means of a single BDD, represent the pre-
conditions and effects independently. That way, no auxiliary set of variables is needed in order
to represent the successor states.

2. Apply the preconditions of operators at the same time using the conjunction tree, an approach
similar to the one used in explicit-state search planning.

3. Aggregate several operators in a single transition relation, controlling the memory used and
avoiding to exceed a given memory limit.

Our analysis has shown that the three approaches improve the previous image computation of
GAMER in terms of coverage and time score. Moreover, the experimental results show a dominance
across most domains, so that the new image computation methods can replace the previous image
computation of GAMER.

The best technique to compute the image, in terms of time-efficiency, is using a single monolithic
transition relation to describe all the operators, whenever it can be represented with a reasonable
amount of memory. However, as already noticed by previous works, the TR that describes all the
planning operators can easily exceed the available memory (that was the main reason to split it into
a different TR per planning operator). Thus, one of the main conclusions of our analysis is that
for efficient image computation, it is best to represent the planning operators with as few TRs as
possible. Whenever possible, all the operators of the task with a given cost should be represented by
a single TR.

When constructing a monolithic TR within a reasonable memory limit is impossible, a disjunc-
tive partitioning of the TR is necessary. Previous work in model checking had already suggested
similar partitionings. In this chapter, we have proposed an algorithm to derive the disjunctive parti-
tioning automatically, according to several heuristic criteria. Our analysis shows the importance of
keeping the size of the TRs as balanced as possible. Of the different parameter configurations that
we proposed, TDT

100k was among the ones with best performance. Therefore, all the experiments in
the rest of the thesis will use TDT

100k to perform image computation.
On the other hand, we observed that it is better to avoid the usage of an auxiliary set of variables,

representing conditions and effects separately. Unfortunately, this cannot be done when representing
more than one operator with the same transition relation since, in general, the operators have differ-
ent preconditions. Therefore, the best image computation techniques still need the auxiliary set of
variables to represent the relation between the precondition and the effect of the operators.

This chapter is an extended version of a previously published work (Torralba et al., 2013a), a
collaboration with Stefan Edelkamp and Peter Kissmann.

Chapter 4

State Invariants

The most successful uses of symbolic search in planning so far have been regular bidirectional search
and the generation of abstraction heuristics (Edelkamp and Reffel, 1998; Torralba et al., 2013b) for
use in both symbolic and explicit search algorithms. A common point of these methods is that they
require performing regression on the goals of the problem.

Regression in planning is considered to be less robust than progression, mainly due to the gen-
eration of numerous spurious states in regression. Spurious states are defined as states that are not
reachable from s0 (Bonet and Geffner, 2001), although other definitions exist (Zilles and Holte,
2010). The other main drawback of regression is subsumption of states, i. e., when a partial state s′

is a superset of another already generated state s′′ and g(s′) ≥ g(s′′) (in which case we say that s′ is
subsumed by s′′). If this occurs, s′ can be safely pruned, as a solution path that goes through s′ must
be at least as costly as a solution path that goes through s′′. Subsumption of states is an important
problem in explicit-state search because a hash table, the usual method of duplicate detection, cannot
recognize it (Eyerich and Helmert, 2013; Alcázar et al., 2013); however BDDs automatically detect
subsumption addressing this problem in symbolic search.

One common way to decrease the negative impact of spurious states is the use of state invariants,
i. e., constraints that must hold in every non-spurious state. State invariants are precomputed before
starting the search and, during the search, every state that violates a constraint is pruned. In this
chapter we describe the most relevant state invariants in planning, mutexes and invariant groups that
have been typically used to improve regression search (Bonet and Geffner, 2001) and abstraction
heuristics (Haslum et al., 2005). Moreover, state invariants are not necessarily limited to pruning
spurious states in regression. Considering state invariant constraints that must hold in any valid state
that can be part of a plan, constraints can also be used to prune irrelevant states that cannot possibly
reach the goal, commonly known as dead ends.

In our case, we use state invariants in a symbolic setting, for symbolic forward and backward
search and symbolic PDBs. Our main contribution in this chapter is to analyze how to encode these
constraints symbolically and use them to prune states in symbolic search.

The chapter is organized as follows. The two types of state invariants that we consider, mutexes
and invariant groups, are presented in Sections 4.1.1 and 4.1.2, respectively. In Section 4.1.3 we
explain related work that uses state invariants to prune operators and detail the algorithm that we
use to automatically derive state invariants. Related work that uses state invariants in partial-state
regression search is reviewed in Section 4.2. Our main contribution is to study three methods to
encode and use invariants in symbolic search. First, we present the symbolic encoding of state
invariant constraints as BDDs in Section 4.3. Section 4.4 proposes to encode the constraints in the

55

56 CHAPTER 4. STATE INVARIANTS

transition relations, i. e., the symbolic representation of planning operators. Section 4.5 considers
other uses of state invariants that do not require to prune all invalid states. Finally, we discuss the
distinctive properties of abstractions with respect to state invariants in Section 4.6. The chapter
concludes with the empirical evaluation (Section 4.7) and a summary of conclusions (Section 4.8).

4.1 State-Invariant Constraints
To alleviate the impact of spurious states, constraints obtained from state invariants of the prob-
lem have been employed in explicit-state planners (Bonet and Geffner, 2001; Haslum et al., 2005;
Alcázar et al., 2013). A state-invariant constraint is a logical formula that must hold in every state
that can be part of a plan. We say that a state is valid if and only if satisfies all the constraints.
Constraints are useful because invalid states that violate a state-invariant constraint can be pruned
during the search since they cannot be part of the solution, i. e., they are either unreachable or dead
ends.

We may divide state-invariant constraints depending on whether they detect unreachable or ir-
relevant states. A forward constraint must hold in every state that is reachable from the initial state
and a backward constraint must hold in every state from which the goal can be reached. Forward
constraints cannot possibly prune any state in forward search, since no unreachable state can be gen-
erated by forward search in the first place. Backward constraints are not useful in regression search
by similar reasons. Thus, forward and backward constraints are used to prune backward and forward
search, respectively.

We obtain a set of constraints in a preprocessing step and then use them to prune the search.
In this section, we introduce the two types of state invariants that we consider and then present the
algorithm that we use to discover them.

4.1.1 Mutexes
The most common state invariants used to prune spurious states are pairs of mutually exclusive
fluents, more generally called mutexes.1

Definition 4.1. (Mutex pair) A pair of fluents M = 〈f1, f2〉 are mutually exclusive fluents if there is
no state s that may belong to a solution path such that M ⊆ s.

The standard definition of mutex refers to tuples of facts that cannot be reached from the initial
state. Definition 4.1 is more general since it also considers states that cannot reach the goal. More-
over, our general definition may include pairs of facts that can be proven not to be part of any plan,
even if we do not know for sure whether states are unreachable or dead-ends.

Thus, we distinguish two different types of mutexes, depending whether they were discovered
in forward or backward direction. Intuitively, a forward mutex is a pair of fluents that cannot si-
multaneously be true in any reachable state. A backward mutex is a pair of fluents that cannot
simultaneously be true in any state that can reach the goal, i. e., any state which is not a dead end.
Therefore, while forward mutexes are useful to prune backward search (because they cannot be
reached from the initial state), backward mutexes detect dead ends in forward search.

For example, consider a task of a simplified variant of the Trucks domain, a typical logistics
domain with time constraints in which packages must be delivered with trucks before a given time.

1Previous works have also considered not only pairs but sets of m ≥ 2 fluents that cannot simultaneously appear in the
same state (Alcázar, 2014), even though experimental results are usually restricted to m = 2. In this thesis, for simplicity,
we consider mutex pairs even though our results could be extended to the general case.

4.1. STATE-INVARIANT CONSTRAINTS 57

A B C

T Package: vp = 〈A,B,C, T 〉
Truck: vT = 〈A,B,C〉
Time: vt = 〈0, 1, 2, 3, 4〉

Figure 4.1: Mutex examples in the Trucks domain. Initially, the truck and the package are at location
A and the goal is to deliver the package at C before time expires.

Our task, shown in Figure 4.1, has a package, a truck and three locations. The variables are the
position of the package vp, the position of the truck, vT , and the current time vt. The goal is to
deliver the package (vp = C) before a given time t ≤ 4. The operators are load or unload a package
and move the truck. All actions take a time step.

In this domain, we can find forward and backward mutexes. An example of forward mutex is
that at time 1 the truck cannot be at location C. It is impossible since the truck is at location A at
time 0 so at location 1 it can only be at A or B. Similarly, an example of backward mutex is that, at
time 3, the package cannot be at B, since there would be no remaining time to deliver the package.

The most common method to find mutexes is the h2 heuristic (Haslum and Geffner, 2000).
h2 performs a reachability analysis in P 2 (Haslum, 2009), a semi-relaxed version of the original
problem in which the atoms are actually pairs of fluents. For each pair of fluents, a lower bound of
the cost of reaching that tuple is computed. Pairs with an infinite h2 value are unreachable in P 2

and, therefore, are mutexes.
Another method for finding mutexes is the monotonicity analysis generally employed to generate

a finite-domain representation of the problem (Helmert, 2009). This monotonicity analysis ensures
that the number of fluents true at the same time that belong to a setMa = {f0, f1, . . . , fn} can never
increase. Hence, if the number of fluents ofMa true in the initial state is 1 (formally, |Ma∩s0| = 1),
then all pairs of fluents ofMa are mutexes (∀pm = {fi, fj | fi, fj ∈Ma∧fi 6= fj} : pm is a mutex).

In terms of efficiency, computing the monotonicity analysis is in most cases much more efficient
that computing h2, as it works exclusively with the domain definition and the initial state. However,
the set of mutexes found by the monotonicity analysis is a strict subset of the set of mutexes found
by h2 (Alcázar, 2014). For this reason, in this thesis we will use h2 to compute mutexes.

h2 can be computed backwards too in order to find backward mutexes (Haslum, 2008). This is
done by reversing the domain as proposed by (Massey, 1999) and performing a backwards reachabil-
ity analysis in P 2 after disambiguating the goal to deduce which fluents are false in s? with mutexes
computed forward.

4.1.2 Invariant Groups

Mutexes are not the only state invariants that have been used to prune spurious states (Alcázar et al.,
2013). Invariant groups are sets of fluents related to some invariant of the problem. The afore-
mentioned monotonicity analysis was devised to find “at-most-1” invariant groups to use them as
variables of a finite-domain representation (Helmert, 2009). These “at-most-1” invariant groups
can be derived from any binary mutex computation method: any set Ma = {f0, f1, . . . , fn} such
that ∀pm ∈ {fi, fj | fi, fj ∈Ma ∧ fi 6= fj} pm is mutex is an “at-most-1” invariant group. Thus,
a priori these invariant groups do not offer more information than taking into account individual
binary mutexes.

Nevertheless, “at-most-1” invariant groups can also be used to derive stronger constraints. In
particular, by performing a reachability analysis considering the negation of all facts in the group,

58 CHAPTER 4. STATE INVARIANTS

one can automatically infer that an “at-most-1” invariant group is in fact an “exactly-1” invariant
group. “exactly-1” invariant groups are strictly more constrained than “at-most-1” invariant groups
as one can infer an additional logical constraint from them: ifMa = {f0, f1, . . . , fn} is an “exactly-
1” invariant group then (f0 ∨ f1 ∨ . . . ∨ fn) is a state invariant of the problem. This constraint
represents the lower bound of 1 that defines the “at-least-1” property of the invariant group.

Note that all the variables v ∈ V of finite-domain representations of problems are “exactly-1”
invariant groups, but not all the “exactly-1” invariant groups of the problem need to be variables. As
an example consider Blocksworld, where there are invariant groups stating that each block can only
rest on one other block or the table at any given time, and others stating that only one other block
can rest on a given block (or it is empty). However, usually only one of these sets is represented as
a variable, as otherwise two variables would have a value corresponding to the same fluent. Also
note that in some problems there may be no “exactly-1” invariant groups or they may not be useful
for their usage as variables; if this is the case regular “at-most-1” invariant groups can be completed
with an additional fluent representing that none of the facts in the group is true to turn them into
“exactly-1” invariant groups (Helmert, 2006b). From this point on whenever the term “invariant
group” is used, we will mean “exactly-1” invariant group unless otherwise specified.

4.1.3 Pruning Invalid Operators

The use of state invariants is not limited to prune states in the search. Any partial state (e. g., precon-
ditions of operators) can be detected as invalid, i. e., contradictory with the state invariant constraints.
The disambiguation of a partial state consists of determining whether there is a valid assignment for
variables with undefined value that is compatible with all the state invariants (Alcázar et al., 2013).
Disambiguation is performed by solving a CSP using the facts that have undefined value as variables
and the state invariants as constraints. If there is no valid assignment then the partial state is not
valid. When only one possible assignment is valid for some variable, then the partial state may be
“completed” adding an additional fluent (Alcázar, 2014).

We say that an operator is invalid if it contradicts the state-invariants constraints. Invalid oper-
ators are never applicable in reachable states or the result is a dead-end state. When grounding a
planning instance, invalid operators may be instantiated if done naı̈vely. Most planners prune in-
stantiated operators with unreachable fluents in their preconditions, but no additional method is used
to detect them. Even if these operators do not generate spurious states in progression because they
are never applicable, they may have a negative impact when combined with other techniques, like
regression, abstractions and delete-relaxation heuristics.

The forward computation of h2 used to discover mutexes can also find that an operator is invalid
if its preconditions are unreachable by the heuristic. Similarly, the backward computation of h2 can
discover other invalid operators that necessarily lead to dead-end states. Thus, as a side effect of the
computation of h2, we remove invalid operators from the planning task. Moreover, we disambiguate
the preconditions of all the instantiated operators and remove those that are invalid.

4.1.4 Preprocess Algorithm to Discover State Invariants

Before starting the search, we use a preprocessing algorithm to compute state invariants and simplify
the task. The problem is simplified by removing all operators detected as invalid as well as any
invalid fluent that is unreachable or irrelevant. Moreover, it performs a fixpoint computation, where
state invariants discovered in one iteration are used to strength the reasoning of the algorithm in
subsequent iterations. Our preprocessing phase is described in Algorithm 4.1.

4.1. STATE-INVARIANT CONSTRAINTS 59

Algorithm 4.1: Fixpoint computation of invariants.
Input: Planning problem: Π = 〈V,O, s0, s?〉
Output: Updated planning problem: Π′

Output: Sets of state invariants: Mfw , Mbw , Ex 1

1 Ex 1,Mfw ← MonotonicityAnalysis(Π)
2 Mbw ← ∅
3 fw ← >
4 updatefw ← >
5 updatebw ← >
6 O′ ← O
7 while updatefw ∨ updatebw do
8 if fw ∧ updatefw then
9 M ′fw ,O ← ComputeForwardH2(Π,Mbw ,O′)

10 if M ′fw 6= Mfw then
11 Mfw ←M ′fw
12 updatebw ← >
13 else if ¬fw ∧ updatebw then
14 M ′bw,O ← ComputeBackwardH2(Π,Mfw ,O′)
15 if M ′bw 6= Mbw then
16 Mbw ←M ′bw

17 updatefw ← >
18 updatefw , updatebw ,O′ ← DisambiguateActions(O,Mfw ,Mbw)

19 fw ← ¬fw

20 V ← SimplifyVariables(V,Mfw ,Mbw ,Ex 1)
21 return 〈V,O, s0, s?〉,Mfw ,Mbw ,Ex 1

First the algorithm computes the monotonicity analysis commonly used to define the finite-
domain representation of the planning task (Helmert, 2009). This analysis infers an initial set
of forward mutex and “exactly-1” invariant groups (line 1). Then, the algorithm performs
several iterations alternating the forward and backward computation of h2 (lines 9 and 14).
ComputeForwardH2 and ComputeBackwardH2 compute the set of mutexes according to the
h2 heuristic in progression and regression. This computation is strengthened with the invariants
computed by previous iterations in two different ways:

1. Mutexes from the opposite direction are pruned in the reachability analysis performed by h2.

2. Instead of considering the original set of operators, h2 uses the set of disambiguated operators,
O’, that include additional preconditions inferred from the state invariants.

As mentioned in Section 4.1.3 on page 58, as a side effect h2 removes invalid operators, returning
the subset of operators that remain valid. The DisambiguateActions function disambiguates
the preconditions and effects of the operators, deducing additional preconditions. The operators
with additional preconditions (O′) are used in the following computations of h2 to infer additional
constraints. However, the additional preconditions are not introduced in the operators of the planning
task, O.

60 CHAPTER 4. STATE INVARIANTS

Whenever new mutexes are found in the opposite direction or the operator disambiguation mod-
ifies the operators, h2 is recomputed in order to find new mutexes with the additional constraints.
Thus, the main loop is repeated until a fixpoint is reached. At the end, SimplifyVariables
removes the variable values that cannot occur in any valid state and removes any variable having a
single value afterwards.

4.2 Use of State Invariants in Partial-State Regression Search

State invariants have been used in partial-state heuristic regression search since the very begin-
nings (Bonet and Geffner, 2001). Every generated state that violates a constraint is pruned from
the search. State invariants allow pruning spurious states after they are generated. However, more
efficient alternatives that avoid the generation of spurious states exist. For instance, the use of e-
deletion (Vidal and Geffner, 2005), another invariant of the problem, avoids the generation of spuri-
ous states in explicit-state search by modifying the definition of applicability in regression (Alcázar
et al., 2013).

An operator o e-deletes a fluent f if f must be false in every state resulting from the execution
of a sequence of operators whose last operator is o. Hence, an operator o e-deletes a fluent f if f is
mutex with eff (o) or prev(o).

For example, in the Blocksworld domain the action (stack b c) e-deletes (on a b) because it adds
(clear b), which is mutex with (on a b). This can be inferred even if (on a b) is not mentioned
by (stack b c). In multi-valued representations, deleting a fluent f means changing the value of the
variable v ∈ V it corresponds to, which is equivalent to adding a fluent mutex with f. Hence, the first
case is a particular instance of the third case in multi-valued representations.

To avoid the generation of spurious states from a given state s in regression, one must make sure
not to use an operator that e-deletes some fluent f ∈ s to generate a successor state. Formally, if
e-del(o) is the set of fluents e-deleted by an operator o ∈ O, o is not applicable in regression in
a partial state s if e-del(o) ∩ s 6= ∅. An intuitive way of understanding the concept of e-deletion
in explicit-state regression is to consider the set of fluents e-del(o) as negative preconditions of o
in regression. e-deletion can also be used in abstract state spaces, as will be commented later in
Section 4.6, after presenting how the concept of e-deletion can be adapted for symbolic search in
Section 4.4.

4.3 Encoding State Invariants as BDDs

Pruning spurious states has been considered essential in heuristic backward search since long
ago (Bonet and Geffner, 2001). Binary mutexes allow pruning invalid states that otherwise would be
considered for expansion during search. Expanding such states may lead to an exponential decrease
in performance, as none of the successors of a invalid state may lead to a plan. The use of mutexes
in explicit-state search is straightforward: simply prune every state s such that fluents fi, fj ∈ s are
mutex.

Despite the impact that the use of state invariants has in explicit-state regression, this technique
has not been employed in symbolic search. Although it is obvious that a per state application of
mutexes in symbolic search is not practical, there are alternatives. In particular, we propose creating
a BDD that represents in a succinct way all the states that would be pruned if state invariants were
used. This BDD, that we call the constraint BDD (cBDD), can be used to discard all the invalid

4.3. ENCODING STATE INVARIANTS AS BDDS 61

states that have been generated during the search in a similar way as it is done with the closed list
for duplicate detection purposes.

The cBDD is created in the following way. Every binary mutex is a conjunction of fluents fi, fj
(fi 6= fj) such that, if fi, fj ∈ s, then state s is invalid. Hence, the set of states that can be pruned
using mutexes consists of those in which at least one such conjunction of fluents is true. This way,
the logical expression represented by cBDD is the disjunction of all the mutexes found with h2

(represented by the conjunction of both fluents).
Constraints derived from “exactly-1” invariant groups are encoded in a similar way. Given an

“exactly-1” invariant group θ = f1, . . . , fk, two types of constraints may be deduced: first, the set
of all the mutexes of the form fi ∧ fj if fi 6= fj ; second, the fact that at least one fluent fi ∈ θ must
be true in every valid state. The first constraint overlaps with the mutexes computed with h2, so it is
not necessary to consider it again. The latter however can be encoded as an additional “at-least-1”
constraint of the form ¬(f1 ∨ f2 ∨ . . . ∨ fk) for every “exactly-1” invariant group.

Formally, if M is the set of binary mutexes found by h2 and Ig the set “exactly-1” invariant
groups:

cBDD =

 ∨
〈fi,fj〉∈M

fi ∧ fj

 ∨
 ∨
〈f1,...,fk〉∈Ig

¬f1 ∧ · · · ∧ ¬fk


Even though each mutex and “at-least-1” constraint is efficiently representable with only one

node per fluent, the size of cBDD is exponential in the number of encoded constraints in the worst
case. This follows from the results provided by Edelkamp and Kissmann (2011) on the complexity
of the representation of partial states in BDDs. To ensure that we can represent cBDD , we use a
disjunctive partitioning, dividing cBDD into k BDDs: cBDD = cBDD1∨cBDD2∨· · ·∨cBDDk.

To obtain an efficient partitioning, we follow Algorithm 3.2, Aggregate, described on page 46
that computes a disjunctive partitioning of a set of BDDs. The algorithm is initialized with the BDDs
of individual constraints, and they are aggregated until they are larger than a given threshold. The
order in which these disjunctions are applied affects the efficiency of the procedure and the number
of BDDs used to represent cBDD . First, for each variable vi ∈ V we compute a BDD describing
all binary mutexes of fluents relative to both vi and vj with j > i. Then, we iteratively merge the
BDDs of mutex constraints related to each variable, plus the “at-least-1” constraints.

Invalid states determined by state invariants are pruned by computing the difference Sg \ cBDD
of a newly generated set of states Sg with the constraint BDD cBDD . In terms of BDD manipulation
this is done by computing the logical conjunction of Sg with the negation of cBDD : Sg ∧ ¬cBDD .
This operation is the same as the one done in symbolic search with the BDD that represents the set
of closed states, used to prune duplicates. Extending the operation to the case where we have more
than one cBDD is straightforward: Sg ∧ ¬cBDD1 ∧ · · · ∧ ¬cBDDk. In the rest of the section we
assume that cBDD is represented in a single BDD, without loss of generality.

An important remark about the usefulness of pruning states with cBDD is necessary, though.
In general, the size of a BDD is not proportional to the number of states it represents. This means
that there is no guarantee that pruning invalid states will help in symbolic search, as opposed to the
explicit-state case. Figure 4.2 exemplifies this with two cases: one positive in which an arbitrarily
large part of the BDD is pruned, and one negative in which most of the BDD gets duplicated.

Figure 4.2b shows a BDD Sg that contains invalid states that violate the mutex (v1 ∧ v2), rep-
resented by the BDD in Figure 4.2a. In this case, every state represented by any path that satisfies
v1 ∧ v2 could be safely pruned. In practice, this means that the subgraph whose root is the node that
corresponds to v3 down the path v1 ∧ v2 can be removed, with a significant potential to reduce the

62 CHAPTER 4. STATE INVARIANTS

v1

v2

> ⊥

(a) cBDD

v1

v2 v2

v3 v3

> ⊥

(b) Sg

v1

v2 v2

v3 v3

> ⊥

(c) Sg \ cBDD

v1

vn

> ⊥

(d) cBDD’

v1

v2 v2

v3

> ⊥

(e) S′g

v1

v2 v2

v3 v3

vn

> ⊥

(f) S′g \ cBDD ′

Figure 4.2: Example of applying a mutex constraint to a BDD that represents a set of states. The
upper row corresponds to a positive example, in which Sg \ cBDD is smaller than Sg . The lower
row corresponds to a negative example, in which S′g \ cBDD ′ is bigger than S′g . Following the solid
edge corresponds to reaching the high successor; following the dashed one corresponds to reaching
the low successor.

4.4. ENCODING CONSTRAINTS IN THE TRS 63

size of Sg . If we look at Figure 4.2c, we can see that computing the difference Sg \ cBDD has this
precise effect, as evaluating v2 after following the path that satisfies v1∧v2 leads directly to the false
sink node.

Again, there is no guarantee that the resulting Sg \ cBDD will be smaller: first, computing
Sg \ cBDD may increase the size of the BDD if the added constraints make reference to variables in
V that did not appear initially in Sg; second, as the “removed” subgraph is not necessarily isolated
—in the sense that it may overlap with other subgraphs of Sg— the gain in compactness obtained
from merging nodes of the “removed” subgraph with other nodes of Sg may be lost.

Another factor that might have negative impact is the variable ordering, when the variables of
cBDD are not close together, like in Figure 4.2d. In this case the subgraph in S′g whose root corre-
sponds to v3 must be split in two to represent that it actually matters whether it is reached by a path
containing v1 or ¬v1, as there is a constraint relevant to v1.

Of course, when multiple constraints are involved, estimating the increase in compactness ob-
tained by using cBDD is more complex. For example, it may happen that cBDD is not representable
within the available memory. In that case, if all the constraints are relative to non-goal variables, it
is not feasible to remove all invalid states from the goal description, because the result would be
at least as large as cBDD . The negative impact of computing the conjunction of S? with cBDD
would be such that the backward search would not even start. Alternatives to the computation of the
difference Sg \ cBDD will be analyzed in Section 4.5.

Finally, a clarification about the source of the binary mutexes is needed. As described in Sec-
tion 4.1.1, mutexes can be computed in forward and backward direction. Forward mutexes may be
violated only by backward search, and backward mutexes may be violated only by forward search.
Consequently, it is not useful to encode both types of mutexes in the same BDD, as they should be
exploited only in the appropriate direction. For this reason we will use two constraint BDDs, one
for forward search and another one for backward search. Analogously, the constraints derived from
the “exactly-1” invariant groups are obtained from a forward reachability method, the monotonicity
analysis. Hence, such constraints should be encoded only in the cBDD used by the backward search.
For simplicity, throughout this work we will use cBDD to refer to either constraint BDD and we
will assume that the corresponding BDD is used in the appropriate cases.

4.4 Encoding Constraints in the TRs
Encoding the state invariants in the cBDD allows the search to prune invalid states after they are
generated. However, as mentioned in Section 4.2, in explicit-state regression e-deletion can be used
to avoid the generation of spurious states (rather than pruning them after their generation). Inspired
by e-deletion, in this section we consider whether constraints can be directly encoded in the TRs to
avoid the generation of invalid states.

Note however, that the conditions of e-deletion are not directly applicable in our case due to
differences in the representation. e-deletion constraints are applied as negative preconditions of the
operators in regression because partial states in explicit-state regression search leave the value of
some variables undefined. Therefore a partial state implicitly considers states that violate invariants
related to undefined variables and the additional preconditions avoid applying operators to those
states. In symbolic search, however, we want to prune as many invalid states as possible, so that
BDDs involved in the search do not contain any state detected as invalid. Given that the set of states
being expanded does not contain invalid states, encoding the additional e-deletion constraints as
preconditions in the regression search is redundant. Furthermore, e-deletion does not guarantee that
the resulting set of states does not contain invalid states.

64 CHAPTER 4. STATE INVARIANTS

Our encoding takes as input an operator and a set of forward and backward constraints (i. e.,
logical formulas such as mutexes or “at-least-1” constraints that hold in every valid state) and define
a modified operator so that it does not generate any invalid state. However, not all constraints are
encoded in every operator. We first identify which constraints must be encoded in each operator
o ∈ O. This comes from the fact that, although replicating all the constraints in the TRs is possible,
this may lead to a great degree of redundancy. We show that, by assuming that the set of states to be
expanded does not contain invalid states, we can safely consider only a subset of constraints in each
TR while avoiding the generation of invalid states. Therefore, we denote a constraint as relevant for
an operator if it may become violated after the application of the operator.

Definition 4.2. (Relevant Constraint) A backward constraint c is relevant in progression for an
operator o if and only if a state s exists such that s |= c and o(s) 6|= c.

A forward constraint c is relevant in regression for an operator o if and only if a state s exists
such that o(s) |= c and s 6|= c.

This definition of relevant constraints allows us to define the constrained version of an operator.
To avoid the generation of invalid states, the relevant constraints for progression must be encoded
as negative effects and the relevant constraints for regression must be encoded as negative precon-
ditions. This ensures that the encoded constraints are not violated after the image and pre-image
computation respectively, so that no state that violates the constraints is generated during the sym-
bolic exploration.

As an example, consider Figure 4.1 on page 57. Consider the operator that moves the truck
from A to B at time step 0, move(A,B, 0). A relevant “at-most-1” constraint in progression for
this operator is ¬(vt = 1 ∧ vp = A). This mutex constraint holds because there would be no time
to deliver the package before time 4. It is relevant because there exists at least one state such that
we make the constraint false by applying the operator. For example, if we apply the operator in the
initial state, with both the package and the truck in location A, we reach a state in which the package
is at A and vt = 1. A constraint that is irrelevant for the operator is ¬(vt = 2 ∧ vp = A) which is
also a constraint of the problem by the same argument. However, our move operator is not directly
related either to vt = 2 or vp = A so it cannot produce a state that violates that mutex constraint
unless the constraint already holds in the predecessor state.

We identify the conditions for a constraint to be relevant for an operator below in Proposi-
tions 4.2, 4.3, and 4.5, but first, we define how relevant constraints are used to avoid the generation
of invalid states during the search. Forward constraints are encoded in the preconditions of the oper-
ator to avoid the generation of invalid states when the operator is applied in regression. This slightly
abuses the notation because forward constraints are arbitrary logical formulas and we defined pre(o)
as a set of fluents. However, the meaning in both cases is that they must hold in any state in which
the operator is applicable, and hence, any state generated by the operator in regression. Adding
the forward constraints as preconditions does not affect the semantics of the operator in forward
search, since any state reachable from the initial state necessarily satisfies the constraints. Moreover,
since the the operator is represented as a logical formula (the TRs, see page 41) in symbolic search,
encoding additional formulas in the preconditions is straightforward.

Backward constraints are encoded in a similar way. To do so, we define the notion of postcondi-
tions of an operator. The postconditions of an operator o, post(o), are conditions that must hold in
any generated state after the execution of the operator. By definition, all the prevails and effects of
the operator are postconditions, prev(o) ∪ eff (o) ⊆ post(o). This conditions can indeed be trans-
formed into prevail conditions by subtracting the effects. For example, if ¬(p∧ q) is a postcondition
of o, p ∈ eff (o), and q 6∈ delo then we may deduce ¬q ∈ prev(o). Expressing the constraints

4.4. ENCODING CONSTRAINTS IN THE TRS 65

over the operators in terms of postconditions simplifies the exposition. Definition 4.3 states how to
encode forward and backward constraints in the operators.

Definition 4.3. (Constrained Operator) Let o ∈ O be an operator and let Cfw
o and Cbw

o be the sets
of constraints relevant with respect to o in progression and regression respectively.

Then the constrained operator oc derived from o becomes o with extra preconditions pre(oc) =
pre(o) ∧∧ci∈Cbw

o
ci and postconditions post(oc) = post(o) ∧∧ci∈Cfw

o
ci.

Using oc for all o ∈ O suffices to guarantee that the successor set does not contain invalid
states as long as the source set of states does not contain invalid states. We divide our statement in
Theorems 4.4 and 4.1, that prove it for the case of progression and regression, respectively.

4.4.1 Relevant Constraints in Regression
Theorem 4.1. Let S ⊆ ¬cBDD be a state set that does not contain states detected as invalid and
oc the constrained version of an operator o ∈ O. Let S′ be the resulting state set from applying oc in
regression to S. Then S′ ⊆ ¬cBDD , i. e., it does not contain states that can be detected as invalid.

Proof. Proof by contradiction. Suppose there is a state s′ ∈ S′ that violates some constraint c. As
c was satisfied by every state in S, by definition c is a relevant constraint for o in regression. Then
c ∈ pre(oc), so o is not applicable on s′.

Next, Propositions 4.2 and 4.3 show the sufficient and necessary conditions for mutexes and
“at-least-1” groups to be relevant in regression. Essentially the relevant constraints are those that
contain fluents that may be added or removed when o is applied in regression.

Proposition 4.2. (Relevant forward mutex in regression) Let M be a mutex of size m, M = ¬(f1 ∧
f2 ∧ · · · ∧ fm). Let o ∈ O be a valid operator and its set of undefined preconditions Vu(o) =
Veff (o) \ Vpre(o).

Then M is relevant in regression for operator o if and only if:

1. M is not implied by the preconditions of the operator pre(o).

2. For some fluent fi = 〈υi, x〉 ∈M , either (2a) fi ∈ pre(o)\prev(o) or (2b) υi ∈ Vu(o)∧fi 6∈
post(o).

Proof. To prove the if part of the statement, we show that if the conditions (1) and (2) hold then,
there exists a state s such that (i) s 6|= M and (ii) o is applicable in s and (iii) o(s) |= M . We define
s as any state such that fk ∈ s for all fk ∈ M and the rest of fluents compatible with pre(o) (such
an assignment exists when the operator is valid and condition (1) holds). Then s satisfies the three
statements:

i s 6|= M : By definition s 6|= M , since all fk ∈M are true in s.

ii o is applicable in s: By the construction of s, the operator preconditions are not contradictory
with the value of variables other than vk for fk ∈ M . If any fluent fj ∈ M contradicts the
preconditions of o, then condition (1) leads to contradiction.

iii o(s) |= M : Necessarily, due to rule (2), f ′i = 〈vi, y〉 is true in o(s), where fi = 〈vi, x〉 and
x 6= y. We have two cases (2a) or (2b). If (2b) holds, this is automatic, since fi 6∈ post(o)
and vi ∈ Veff (o). If (2a) holds, fi ∈ pre(o) implies that o deletes fi (because fi would be in
prev(o) instead). Therefore, fi is false in o(s) and o(s) |= M .

66 CHAPTER 4. STATE INVARIANTS

To prove the only if case, note that if (1) does not hold, then there does not exist s such that
s 6|= M and o is applicable in s, so M is not relevant for o. We may deduce condition (2) assuming
that M is relevant for o in regression, i. e., there exists a state s such that M |= o(s) and M 6|= s.
Then, for some fluent fi = 〈υi, x〉, fi 6∈ o(s), fi ∈ s. Therefore, s[υi] 6= o(s)[υi], which implies
vi ∈ Veff (o) ∧ fi 6∈ eff (o)[vi]. Two cases are possible with respect to the preconditions of o, that
correspond to conditions (2a) and (2b):

(a) υi ∈ Vpre(o). As o must be applicable in s, fi ∈ pre(o).

(b) υi 6∈ Vpre(o) and υi ∈ Vu(o) immediately follows.

Note that condition (1) of proposition 4.2 only means that the constraint is redundant because it
is already required by the pre- (in regression), post- (in progression) or prevail-conditions (in both)
of the operator. If a mutex constraint that violates condition (1) is encoded in the operator, it does
not modify the operator since it is a redundant constraint. This is not the case for condition (2) that
identifies constraints that are not needed when assuming that the predecessor set of states does not
contain invalid states but they are not redundant and could change the semantics of the operator if
they were encoded in it.

Proposition 4.3. (Relevant “at-least-1” invariant in regression) Let Minv be an “at-least-1” invari-
ant, Minv = f1 ∨ f2 ∨ · · · ∨ fk, and let o ∈ O be a valid operator.

Then Minv is relevant in regression for o if and only if:

1. Minv is not implied by the preconditions of the operator pre(o).

2. For some fluent fi = 〈υi, x〉 ∈Minv , fi ∈ eff (o).

Proof. To prove the if part of the statement, we show that if the conditions (1) and (2) hold then,
there exists a state s such that (i) s 6|= Minv and (ii) o is applicable in s and (iii) o(s) |= Minv . We
define s as any state such that fk 6∈ s for all fk ∈ Minv and the rest of fluents compatible with
pre(o) (such an assignment exists when the operator is valid). Then s satisfies the three statements:

i s 6|= Minv : By definition s 6|= Minv , since all fk ∈Minv are false in s.

ii o is applicable in s: By the construction of s, the operator preconditions are not contradictory
with the value of variables other than vk for fk ∈ Minv . Finally if any fluent fj ∈ Minv

contradicts the preconditions of o, then condition (1) leads to contradiction.

iii o(s) |= Minv : Necessarily fi ∈ o(s) since fi ∈ eff (o) due to rule (2).

To prove the only if case, note that if (1) does not hold, then there does not exist s such that
s 6|= Minv and o is applicable in s, so M is not relevant for o. We may deduce condition (2) from
Minv being relevant in regression for o, i. e., is satisfied in o(s) but not in s. Then, for some fluent
fi = 〈υi, x〉 ∈Minv , fi 6∈ s, fi ∈ o(s). Therefore, s[υi] 6= s′[υi] = x, which implies eff (o)[vi] = x
and, therefore, fi ∈ eff (o).

4.4. ENCODING CONSTRAINTS IN THE TRS 67

4.4.2 Relevant Constraints in Progression
Theorem 4.4. Let S ⊆ ¬cBDD be a state set that does not contain invalid states and oc the
constrained version of an operator o. Let S′ be the resulting state set from applying oc in progression
to S. Then S′ ⊆ ¬cBDD , i. e., it does not contain invalid states.

Proof. Proof by contradiction. Suppose there is a state s′ ∈ S′ that violates some constraint c. As
c was satisfied by every state in S, by definition c is a relevant constraint for o in progression. Then
c ∈ post(oc), so s′ cannot be the result of applying operator o to any state.

Next, Proposition 4.5 shows the sufficient and necessary conditions for mutexes to be relevant
in progression. “at-least-1” groups cannot possibly be relevant in progression, since we only infer
them with a forward reachability analysis.

Proposition 4.5. (Relevant backward mutex in progression) Let M be a backward mutex of size m,
M = ¬(f1 ∧ f2 ∧ · · · ∧ fm). Let o ∈ O be a valid operator.

Then M is relevant for operator o in progression if and only if:

1. M is not implied by the postconditions of the operator, post(o).

2. For some fluent fi = 〈υi, x〉 ∈M , fi ∈ eff (o).

Proof. To prove the if part of the statement, we show that if the conditions (1) and (2) hold then,
there exists a state s such that (i) s |= M and (ii) o is applicable in s and (iii) o(s) 6|= M .

We define s as any state such that fi 6∈ s and fk ∈ s for all k 6= i s.t. fk ∈ M and fk 6∈ post(o)
and the rest of fluents are compatible with pre(o) (such an assignment exists when the operator is
valid and condition (1) holds). Then s satisfies the three statements:

i s |= M : By definition s |= M , since the fluent fi ∈M is false in s.

ii o is applicable in s: By the construction of s, the operator preconditions are not contradictory
with the value of variables other than vk for fk ∈ M . As fi ∈ eff (o), the precondition of
o accepts a value for vi not equal to fi. The same holds for any fj such that fj ∈ eff (o).
Finally, for fk ∈ M,fk 6∈ eff (o), fk is compatible with prev(o) by condition (1) since
prev(o) ⊆ post(o).

iii o(s) 6|= M : Necessarily, due to rule (2), fi is true in o(s). Every other fk ∈M is true in o(s)
because either it belongs to eff (o) or it was already in s. Condition (1) ensures that no fluent
fk already in s is deleted by o.

To prove the only if case, note that if (1) does not hold, then there does not exist s such that o(s) 6|=
M , so M is not relevant for o in progression. We may deduce condition (2) assuming that M is
relevant for o in progression, that is, M is satisfied in s but not in o(s). Then, for some fluent
fi = 〈υi, x〉, fi 6∈ s, fi ∈ o(s). Therefore, s[υi] 6= o(s)[υi], which implies vi ∈ Veff (o). As o(s) is
the result of applying o in s, eff (o)[vi] = x and fi ∈ eff (o).

Propositions 4.2, 4.3, and 4.5 identify under which conditions the constraints are relevant for
an operator in progression and regression. They complete Definition 4.3 of a constrained operator.
Recall that according to Theorems 4.1 and 4.4 constrained operators ensure that no invalid states
are generated in the forward or backward search. As mentioned before, for this property to hold
we must ensure that the parent BDD does not contain invalid states. In progression this is always

68 CHAPTER 4. STATE INVARIANTS

the case, as in any solvable instance s0 represents a single valid state. On the other hand, s? may
contain spurious states, as s? is in most cases partially defined. In this case, to guarantee that s?
does not contain invalid states, we compute the difference s? \ cBDD to remove them from the goal
description. When constraints are encoded in the TRs, this difference must be computed only once,
before starting the search. This means that there will be no further overhead in using cBDD , with
the additional advantage that cBDD can be discarded afterwards to free memory.

4.5 BDD Minimization
In symbolic search, the performance of the logical operations is often heavily linked to the size of
the BDDs they operate with. Both memory and time (in terms of BDD manipulation) benefit from
working with BDDs that succinctly represent a given Boolean function. The main motivation for
using a constraint BDD is to remove invalid states so the BDDs that represent sets of states are
smaller. However, computing the difference with the cBDD does not guarantee that the resulting
BDD will be smaller, as analyzed in Section 4.3.

In the literature, mainly in works published by the Model Checking community, several “don’t
care” minimization algorithms have been proposed (Coudert and Madre, 1990; McMillan, 1996;
Hong et al., 1997). “Don’t care” minimization aims to succinctly represent a given function when
only part of it is relevant. They receive a function BDD f and an additional constraint BDD c (also
called restrict or care BDD), and aim to find a BDD g of minimum size that represents f ’s function
in an incompletely specified way, such that g(s) = f(s) for all s ∈ c.

A plausible way of exploiting “don’t care” minimization is to assume that f corresponds to
BDDs that represent sets of states and that c may be any BDD that imposes some kind of restriction
over f (Edelkamp and Helmert, 2001). In our case, both the complement (that is, the negation) of
the closed list BDD and cBDD can correspond to the definition of c. Hence, using minimization
algorithms instead of the conjunction may prove useful, as it may be possible to obtain smaller
BDDs. The intuition behind the use of minimization algorithms is to allow representing invalid states
if this means that the BDDs will be smaller. These operations are more expensive to compute than
the conjunction but, if g is smaller, the computation of a subsequent image and pre-image operation
(which are the most expensive symbolic operations in most planning instances) may require less
time.

Most BDD minimization algorithms are based on the concept of sibling substitution. Sibling
substitution consist of replacing a node by its sibling, so that both become identical and their parent
may be removed from the BDD, as illustrated in Figure 4.3. Sibling substitution requires identifying
which nodes in f are “don’t care” nodes, i. e., nodes in f such that the path that leads to them
evaluates to false in c. In the example, the node A is a “don’t care” node because the path from
the BDD root to A evaluates to ⊥ in cBDD . As we “don’t care” about those values, node A can be
substituted by anything we want. In the case of a typical conjunction, A is replaced by ⊥. Sibling
substitution replaces A by B instead, so that node P is not necessary anymore and the total number
of nodes in the BDD decreases.

The following are the minimization algorithms considered in this work:

• constrain (Coudert and Madre, 1990): it performs sibling-substitution recursively, replacing
nodes that correspond to don’t care values. If g is larger than f , f is returned instead. A gener-
alization of constrain was also proposed under the name of generalized-cofactor (McMillan,
1996).

• restrict (Coudert and Madre, 1990): refinement of constrain that ensures that, whenever a

4.5. BDD MINIMIZATION 69

C

⊥ >

(a) Care BDD

P

A B

(1) A = ⊥

P

⊥ B

(2) A = B
P

B

B

(b) Conjunction P ∧ ¬C (1) versus sibling substitution (2)

Figure 4.3: Example of sibling substitution. Consider an arbitrary path from the root node that leads
to node C of the care BDD and node P of the other BDD. Then, node A belongs to the don’t care
set, so A can be substituted by B and their parent P is removed by BDD reduction rules.

node did not originally appear in f , both branches of c that stem from that node are merged.
This guarantees that nodes that did not originally appear in f will not appear in g, although g
may still be bigger.

• leaf-identifying compaction (Hong et al., 2000): it has two phases. First, it marks edges that
can be redirected to a leaf node and edges whose pointed nodes are to be preserved from
sibling substitution. Then, the result is obtained by redirecting edges to leaf nodes whenever
possible and applying sibling substitution on non-marked edges. Thanks to the edge-marking
phase, it ensures that g is smaller than f , as opposed to restrict and constrain.

• non-polluting-and: hybrid between regular conjunction and restrict. It performs a conjunction
but, like in the restrict operation, whenever a node did not originally appear in f , both branches
of c that stem from that node are merged.

In most algorithms, using “don’t care” minimization instead of conjunction is straightforward.
However, one must be careful to avoid introducing spurious paths in the state space, since some states
are being expanded even if they have not really been reached. Introducing states from the closed list
never supposes a problem, because these states were already expanded with lower cost so any new
spurious path is not optimal. States in cBDD , however, are introduced in the search space even if
they cannot be reached with that cost. In order to guarantee that these invalid states do not form part
of any plan, we rely on the definition of forward and backward mutexes, which guarantees that any
state violating them will not have a path to any goal and initial state, respectively. Thus, using “don’t
care” minimization in unidirectional search algorithms instead of conjunction cannot introduce any
spurious path. However, in bidirectional search spurious paths may be introduced when “don’t care”
minimization is used in both search directions. This can happen when there exists a path between
two invalid states each added in a different search direction. To avoid this scenario, we only use
“don’t care” minimization in the backward direction, which is the one with more mutexes available
to prune the search. In the forward direction, we use the standard conjunction to remove all invalid
states, avoiding the generation of spurious paths.

70 CHAPTER 4. STATE INVARIANTS

4.6 Constrained Symbolic Abstraction Heuristics
The use of regression is not limited to backward search in the original state space. For instance,
PDBs (Culberson and Schaeffer, 1998) perform regression over the goals in an abstraction, α, of the
original problem to create a lookup table that is used as an estimation of the optimal distance in the
original problem. A detailed description of abstraction heuristics is provided in Chapter 6. PDBs
in explicit-search that make use of mutexes are known as constrained PDBs (Haslum et al., 2005),
cPDBs for short. cPDBs perform two types of pruning in the regression search over the abstract state
space:

1. Prune all the abstract states that violate a state invariant of the problem.

2. Prune transitions sα o−→ tα when the abstract states, sα and tα, are incompatible with the
semantics of the operator,2 i. e., when the operator can only be applied over invalid states in
sα or can only generate invalid states in tα.

The use of pruning in cPDBs may simplify the regression search by reducing the size of the
abstract state space. More importantly, cPDBs may potentially prune spurious paths, i. e., solution
plans in the abstract state space that do not have a corresponding plan in the original problem. Thus,
cPDBs are able to derive heuristics more informed than standard PDBs and are always as good as
them.

As mentioned in Section 2.7, GAMER uses a symbolic version of PDBs for their use in symbolic
search (Edelkamp, 2002; Kissmann and Edelkamp, 2011). In this work, we propose symbolic con-
strained PDBs, a constrained version of symbolic PDBs. In symbolic cPDBs, we exploit constraints
in regression as studied in previous sections, either by encoding them in a cBDD or by using con-
strained TRs. However, there are some subtleties related to the usage of constraints in an abstract
search space that make it different from backward search in the original problem. Our contribution
here is to analyze how the considerations that we made in the previous sections about the encoding
of constraints in symbolic search apply in the case of PDBs.

The difference is that some variables of the problem are ignored in the abstract state space.
Hence, we classify constraints into three classes depending if their variables are abstracted or not.
Full constraints are entirely in the pattern, partial constraints have some fluents in the pattern and
some abstracted away and null constraints are those without fluents in the pattern. These constraint
types are related with the pruning methods mentioned before:

1. Full constraints can be used to prune invalid abstract states. Partial or null constraints cannot
be used for these purposes because some of their fluents are abstracted so that they are never
violated. As an example, take a mutex constraint m = ¬(f1 ∧ f2). If we ignore the variable
related to f2, then we do not know whether it is true so that no abstract state will violate the
constraint m.

2. Partial constraints can be used to prune transitions in which the semantics of the operator
are incompatible with the abstract states. This corresponds to the second pruning method
mentioned before.

3. Finally, null constraints are never useful for pruning the search. They could help to infer
other constraints, but here we are assuming that the set of all constraints inferred is provided
as input. Thus, in the following, we ignore this type of constraints and assume that all the
constraints are either full or partial.

2The original work of (Haslum et al., 2005) considered only the case where o cannot be applied in regression on tα. We
extend here the definition to consider incompatibilities with sα too.

4.6. CONSTRAINED SYMBOLIC ABSTRACTION HEURISTICS 71

Another remarkable difference (applicable to explicit-search too) is that, while mutexes dis-
covered by backward h2 are redundant in regression and do not provide additional pruning during
backward search, in the abstract space those mutexes may be violated. Therefore, when working
with abstractions all constraints must be used independently of the method used to infer them.

Encoding constraints as BDDs As in the case of symbolic backward search, the simplest method
to use the constraints in symbolic search is to encode them in a BDD, cBDD . As explained in
Section 4.3, cBDD corresponds to the disjunction of all the constraints and represents the set of
states that violate any of them. A similar cBDD can be used in an abstract state space to prune
invalid abstract states during the search. The only difference is that, as explained before, constraints
that refer to a fluent outside the pattern should be ignored, because they are never violated by abstract
states.

Using a cBDD , we accomplish the first pruning method proposed by Haslum et al. in explicit
cPDBs. The second one, however, depends on the operator that is being applied, so that one has to
individually check the operators that only support that transition for invalid states. However, as we
explained in Section 3.4, operators in symbolic search may be merged, which makes it unfeasible to
check them individually. Therefore, unlike the case of search in the original state space, the cBDD
method does not perform all the pruning possible.

Encoding constraints in the TRs Our second pruning method consists of encoding the constraints
in the TRs to avoid the generation of invalid states (see Section 4.4). We identified which subset of
constraints is necessary to encode in the TR of each operator to guarantee that no invalid state is
generated. For this, we assumed that the predecessor set of states does not contain invalid states.
Full constraints are treated as in the case of the original search, getting the same guarantees of not
generating any invalid abstract states. This suffices to perform the first type of pruning, as with the
cBDD approach.

However, our assumption does not hold anymore for partial constraints in the abstract search.
In PDB abstractions the value of abstracted variables is undefined, so abstract states correspond to
partial states. Consider the set of states associated to an abstract state, Sαi , that corresponds to all
the possible assignments that the abstracted variables may take. Partial constraints may be violated
for some states in Sαi but not for others. Sαi cannot be pruned without loss of admissibility because
there exist valid states associated to it. As an example, take the constraint of our trucks example,
¬(vt = 1 ∧ vp = A). If we ignore the time, an abstract state is composed of the position of the
package and the position of the truck. Consider the abstract state sα0 〈vp = A, vT = A〉. Obviously
we cannot prune s since it is the abstracted initial state. And still, for some values of the time variable
vt, the state would be invalid. This is what enables the second type of pruning: identifying in which
cases an operator can only be applied over or produce invalid states inside an abstract state.

This is related to the aforementioned use of e-deletion to modify the applicability of operators
in partial-state regression (Alcázar et al., 2013). e-deletion avoids the generation of some invalid
states even when a subset of the variables has been abstracted away. Unfortunately, once again
e-deletion does not perform all the pruning that is possible with exactly-one constraints. A counter-
example is easily constructed with four fluents a, b, c and d subject to two constraints: ¬(a ∧ b)
and b ∨ c ∨ d. Consider an operator o such that post(o) = a. Then, a is a precondition for the
operator in regression, or. The constraints allow us to immediately infer that a ∈ pre(or) =⇒
¬b ∈ pre(or) =⇒ (c ∨ d) ∈ pre(or). If we abstract away variables a and b, or is not applicable in
any state having ¬c ∧ ¬d, even though it does not e-delete any of them.

A simple way to consider all the possible inferences is to encode all the constraints in the TR

72 CHAPTER 4. STATE INVARIANTS

representing the original operator and then abstract away the variables not in the pattern. Variables
are abstracted away with existential quantification: there is a transition between two abstract states
sα, tα if and only if a transition s o−→ t exists in the original state space such that α(s) = sα and
α(t) = tα.

This encoding ensures that all the possible pruning is performed. The original TR represents all
the pairs of states s, t such that there exists a transition s o−→ t in the original state space. Including
all the constraints, we remove all the pairs related to invalid states. The result of the existential
quantification is just the transitions between abstract states sα, tα such that a valid pair of states s, t
supports the transition.

4.7 Empirical Evaluation
In this section, we empirically evaluate the different techniques proposed in this chapter and test the
impact of the different parameters we defined. The main goal of our evaluation is to measure the
impact that the state invariants have in symbolic search algorithms and find the best way to encode
and use them.

We implement our new invariant methods on top of our version of GAMER, with the improved
image computation of Chapter 3. To differentiate it from GAMER, we call our planner Constrained
GAMER or CGAMER for short. The h2 preprocessor that removes invalid operators as described in
Section 4.1.3 on page 58 is implemented on top of the FAST DOWNWARD preprocessor. All the
symbolic search algorithms use the TDT

100 image computation method, that aggregates TRs based
on the disjunction tree criterion, as described in Section 3.4 on page 45. All the settings of our
experiments, including the benchmarks and metrics used, were described in Section 1.5.

Our evaluation proceeds in several steps:

1. First, in Section 4.7.1, we study the state invariants found by the preprocessor in each domain.
Clearly, the relevance of state invariant pruning will depend on how many invariants are found,
so reporting the preprocessor data is important to understand the results presented next.

2. Our analysis of state invariant pruning on symbolic bidirectional uniform-cost search is re-
ported in Section 4.7.2. Again, bidirectional uniform-cost search is suitable for our analysis
because it does not depend on any heuristic and the time score is representative of the planner
performance.

3. In Section 4.7.3, we consider the BDD minimization methods as an alternative to state invari-
ant pruning. Again, our evaluation is performed under symbolic bidirectional search because
of the same reasons.

4. After evaluating the methods proposed in this chapter under bidirectional search, we consider
unidirectional uniform-cost and Symbolic A∗, in Sections 4.7.4 and 4.7.5, respectively.

4.7.1 State Invariants in Benchmark Domains
Before analyzing the impact of using state invariant constraints to prune search algorithms, we re-
port exactly which constraints are found by our preprocessor. Table 4.1 show a summary of the
constraints found in each domain by FAST DOWNWARD preprocessor with and without the h2 in-
ference and operator disambiguation described in Section 4.1.3 on page 58.

The first columns show data relative to the largest problem in the domain, P , the one with
most operators among those with most facts. Facts and O show the number of facts and grounded

4.7. EMPIRICAL EVALUATION 73

P D
P Facts O Oh2 Mfw Mbw ex1 %O− %fw

h2 %bw
h2

AIRPORT (50) 049 22338 13100 13100 967703 0 11 74 67 100
BARMAN (20) 019 343 1016 908 995 0 10 13 95 –

BLOCKSWORLD (35) 016 342 578 578 2890 0 18 0 7 –
DEPOT (22) 014 1602 22252 16712 54880 0 55 17 13 –

DRIVERLOG (20) 012 1302 15456 15456 216 0 6 0 0 –
ELEVATORS08 (30) 029 172 1152 1152 0 0 0 0 – –
ELEVATORS11 (20) 010 154 1008 1008 0 0 0 0 – –
FLOORTILE11 (20) 017 288 1104 684 3120 525 4 37 0 100

FREECELL (80) 039 484 25380 25362 8900 0 4 0 73 100
GRID (5) 004 1189 15186 15182 611 0 1 0 79 –

GRIPPER (20) 019 214 338 338 252 0 42 0 0 –
LOGISTICS 00 (28) 011 275 650 650 0 0 0 0 – –
LOGISTICS 98 (35) 027 19487 115136 115136 0 0 0 0 – –

MICONIC (150) 119 180 3600 3600 0 0 0 0 – –
MPRIME (35) 013 1671 60906 57210 990 0 0 9 100 –

MYSTERY (30) 013 1601 45872 41196 1837 30 0 46 100 100
NOMYSTERY11 (20) 008 407 8890 7954 2493 0 0 34 100 100
OPENSTACKS08 (30) 029 205 2380 2380 184 0 0 0 100 –
OPENSTACKS11 (20) 019 175 1740 1740 176 0 0 0 100 –
OPENSTACKS06 (30) 029 1104 40300 40300 15025 0 100 3 100 –

PARCPRINTER08 (30) 019 820 1051 275 5875 661 141 65 100 100
PARCPRINTER11 (20) 015 768 461 89 2868 586 134 67 100 100

PARKING11 (20) 019 826 23958 23232 22275 0 22 4 48 –
PATHWAYS-NONEG (30) 029 1014 2232 2232 1465 9 0 0 100 100
PEG-SOLITAIRE08 (30) 029 100 185 177 49 0 0 18 100 100
PEG-SOLITAIRE11 (20) 019 100 185 177 49 0 0 5 100 –

PIPESWORLD-NT (50) 049 2436 13696 13153 42426 0 0 7 100 –
PIPESWORLD-T (50) 049 1534 93316 92510 21705 0 5 2 77 100

PSR-SMALL (50) 049 121 49 45 102 0 22 2 100 –
ROVERS (40) 039 3411 26371 26371 48 0 0 0 100 –

SATELLITE (36) 031 5275 629383 629383 53 0 4 0 100 –
SCANALYZER08 (30) 020 360 25092 25092 2754 0 18 21 27 –
SCANALYZER11 (20) 018 360 27540 27540 2754 0 18 18 21 –

SOKOBAN08 (30) 028 696 1496 1256 9120 0 13 22 8 100
SOKOBAN11 (20) 017 490 1176 648 2126 0 12 22 7 100
TIDYBOT11 (20) 019 765 30488 2758 9347 0 67 74 99 –

TPP (30) 029 2032 43440 14928 144 0 0 41 100 –
TRANSPORT08 (30) 019 608 10980 10980 0 0 0 0 – –
TRANSPORT11 (20) 015 222 3408 3408 0 0 0 0 – –

TRUCKS (30) 029 8709 59696 44002 3765 3514 0 38 29 100
VISITALL (20) 019 361 440 440 57 0 0 0 100 –

WOODWORKING08 (30) 019 377 1962 949 878 0 51 50 89 100
WOODWORKING11 (20) 019 343 1823 897 853 0 36 50 89 100

ZENOTRAVEL (20) 012 820 32780 32780 0 0 0 0 – –

Table 4.1: Preprocessor results. P selects a representative problem of the domain: number of facts
(Facts), operators before and after h2 disambiguation (O andOh2), forward and backward mutexes
(Mfw andMbw) and exactly one invariants (ex1). D shows the average for all the instances of the
percentage of removed invalid operators (%O−) and percentage of mutexes found by h2 (%fw

h2 and
%bw
h2).

operators of P . Oh2 is the number of operators after applying disambiguation with respect to the h2

constraints. This gives an idea of the maximum magnitude of the problems in each domain, before
and after applying the h2 preprocessor. The next columns show the number of state invariants found
in the problem, including forward and backward mutexes,Mfw andMbw, and exactly-1 invariant
groups, ex1 . We do not count the state invariants that are part of the finite-domain encoding of the
task, i. e., the mutexes or exactly-1 invariants groups that affect to values of the same variable. The
last three columns show statistics of the constraints across all the problems in the domain. %O− is the
average percentage of operators removed from the problem thanks to operator disambiguation using
all the constraints. %fw

h2 and %fw
h2 are the average of the percentage of mutexes that were found

74 CHAPTER 4. STATE INVARIANTS

by the h2 inference in the preprocessor in contrast to the monotonicity invariant analysis already
present in FAST DOWNWARD preprocessor. Note that the percentages are not null in some domains
where no constraints were found in the largest problem, indicating that some invariants were found
for some smaller problems in those domains.

Noticeably, there are only a few domains where no constraints can be found: ELEVATORS, LO-
GISTICS, MICONIC, TRANSPORT and ZENOTRAVEL, all of them being transportation domains. In
all other domains there are forward mutexes that can be used to prune a backward search, for exam-
ple. Backward mutexes, which are useful to prune forward search, are much less abundant, being
present in just 15 domains and not in all problems in many cases.

The use of disambiguation removes operators that cannot be part of an optimal path. Whenever
there are only forward mutexes, the removed operators are not applicable for any state in the forward
search anyway. Nevertheless, removing the operators may benefit the performance since invalid
operators may decrease heuristic performance or, in the case of symbolic search, complicate the
representation of the TRs. As shown by the column %O− , the percentage of invalid operators is not
negligible, representing more than half of the operators in some domains like TIDYBOT, AIRPORT,
PARCPRINTER or WOODWORKING.

In summary, our preprocessor infers a good number of h2 constraints in most domains and they
help to significantly simplify the problem by removing invalid operators in many cases. In the next
sections we evaluate the impact that using these constraints for pruning has in the symbolic search
performance.

4.7.2 State Invariants in Bidirectional Uniform-Cost Search
In this section we analyze the impact of using state invariant constraints to prune symbolic bidirec-
tional uniform-cost search. Our base planner is the original GAMER planner, that only uses state
invariants to derive the SAS+ encoding. We call this configuration O, to denote that it uses the
original sets of operators. Our first configuration, Oh2 , does not use state invariants to prune the
search, but removes the invalid operators from the task before starting the search. The rest of the
configurations prune all the states that violate any invariant found by the preprocessor and they only
differ on how the constraints are encoded.M1k andM100k use the BDD encoding proposed in Sec-
tion 4.3 with a maximum number of nodes of 1,000 and 100,000, respectively. In e-del , constraints
are encoded directly in the TRs with the method explained in Section 4.4.

Table 4.2 shows the results of the state invariant configurations. We also show a direct compari-
son of the runtimes of these configurations for each problem instance in the four plots of Figure 4.4.
The main conclusion that can be drawn from these results is that the usage of state invariants in-
creases performance dramatically in all the domains where some invariants are actually found. In
total, the best configuration solves up to 862 problems, 75 more than the version that ignores state in-
variants. Given that the difficulty of the problem instances increases exponentially in many domains,
such increase in performance is very significant.

Just using the state invariants to remove invalid operators from the problem already produces a
great speed up, as well as an increase in coverage of 27 problems. The domains where a good number
of invalid operators were detected, such as PARCPRINTER, TIDYBOT, TPP or WOODWORKING, are
greatly simplified. Figure 4.4a compares the runtimes in all solved problems with and without h2

operator pruning, highlighting the great advantage of pruning operators. It can be concluded that the
time spent by the preprocessor analysis is usually negligible with respect to the total time invested
by the planner, even in those cases where no invariants are found.

Using mutexes to prune the search has even a bigger impact in performance, both in coverage
and solution time. Even though there is no theoretical guarantee that pruning states increases the

4.7. EMPIRICAL EVALUATION 75

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Solving time of Oh2 (seconds)

So
lv

in
g

tim
e

of
O

(s
ec

on
ds

)

(a) Oh2 versus O.

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Solving time of M100k (seconds)

So
lv

in
g

tim
e

of
O

h
2

(s
ec

on
ds

)

(b)M100k versus Oh2 .

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Solving time of e-del (seconds)

So
lv

in
g

tim
e

of
O

h
2

(s
ec

on
ds

)

(c) Edeletion versus Oh2 .

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Solving time of e-del (seconds)

So
lv

in
g

tim
e

of
M

1
0
0
k

(s
ec

on
ds

)

(d) Edeletion versus mutex BDDs.

Figure 4.4: Comparison of time to solve problems with approaches using state-invariant constraints.
Unsolved problems are assigned a time of 2000 seconds.

76 CHAPTER 4. STATE INVARIANTS

O Oh2 M1k M100k e-del e-del+

AIRPORT (50) 15.26 23.56 24.00 24.51 *25.67 19.75
BARMAN (20) 5.37 5.26 8.31 9.75 *12.00 7.06

BLOCKSWORLD (35) 16.64 16.87 30.34 29.99 *31.83 15.13
DEPOT (22) 4.24 3.60 *7.36 *7.49 *7.84 3.47

DRIVERLOG (20) 13.30 13.38 13.76 14.00 13.77 13.75
ELEVATORS08 (30) 25.00 25.00 24.88 24.91 24.91 24.95
ELEVATORS11 (20) 19.00 18.97 18.97 18.92 18.92 18.81
FLOORTILE11 (20) 6.01 8.11 *13.69 *13.72 *14.00 *13.41

FREECELL (80) 16.10 15.98 23.63 24.12 *26.07 10.04
GRID (5) 2.00 2.00 1.68 1.67 1.52 0.95

GRIPPER (20) 17.38 17.47 17.26 17.21 19.68 19.93
LOGISTICS 00 (28) 19.87 19.98 19.93 19.94 19.95 19.96
LOGISTICS 98 (35) 5.00 4.99 5.00 5.00 5.00 5.00

MICONIC (150) 112.70 112.81 112.87 112.90 112.52 112.97
MPRIME (35) *21.25 20.64 *21.14 *21.12 20.08 18.69

MYSTERY (30) *12.20 *12.88 *13.39 *13.37 11.52 9.16
NOMYSTERY11 (20) 15.17 15.62 15.70 15.69 15.46 15.19
OPENSTACKS08 (30) 29.13 29.13 29.41 29.45 29.97 29.76
OPENSTACKS11 (20) 19.38 19.31 19.54 19.54 20.00 19.76
OPENSTACKS06 (30) *18.33 *18.14 *18.13 *19.21 *18.56 11.70

PARCPRINTER08 (30) 10.03 *23.35 21.25 21.58 19.59 20.78
PARCPRINTER11 (20) 5.99 *17.12 *16.65 *16.42 *16.10 14.85

PARKING11 (20) 0.00 0.00 *0.98 *1.00 *0.98 0.00
PATHWAYS-NONEG (30) 4.69 4.69 4.96 5.00 4.68 4.80
PEG-SOLITAIRE08 (30) 29.44 29.98 30.00 30.00 29.77 24.34
PEG-SOLITAIRE11 (20) 19.90 19.98 19.99 20.00 19.65 15.17

PIPESWORLD-NT (50) 13.66 13.01 14.42 14.05 *15.76 6.46
PIPESWORLD-T (50) *15.68 *15.76 *16.07 *15.70 *16.38 9.66

PSR-SMALL (50) 49.67 49.59 49.51 49.77 49.36 49.22
ROVERS (40) 13.59 13.61 13.67 13.68 13.59 *14.45

SATELLITE (36) 8.09 8.09 10.81 10.80 10.64 *12.70
SCANALYZER08 (30) 10.75 11.26 10.72 10.77 11.38 11.20
SCANALYZER11 (20) 7.97 8.27 7.95 8.00 8.61 8.44

SOKOBAN08 (30) 16.19 *22.48 *26.85 *27.32 *27.73 22.37
SOKOBAN11 (20) *12.58 *16.50 *19.36 *19.45 *19.73 15.70
TIDYBOT11 (20) 6.68 9.73 *15.77 *15.80 *16.95 10.29

TPP (30) 8.00 8.00 8.00 8.00 8.00 7.66
TRANSPORT08 (30) 13.99 14.00 13.97 14.00 14.00 14.00
TRANSPORT11 (20) 9.99 9.99 9.99 9.67 10.00 9.89

TRUCKS (30) 9.17 9.46 *12.54 *12.53 11.02 *12.85
VISITALL (20) 12.00 12.00 11.74 11.97 11.74 11.75

WOODWORKING08 (30) 15.97 19.02 *24.68 *24.58 *25.93 *25.69
WOODWORKING11 (20) 10.51 13.27 *17.64 *17.65 *18.93 *18.65

ZENOTRAVEL (20) 10.98 10.92 10.97 *11.97 10.99 *12.00
TOTAL (1396) 708.85 763.78 827.48 832.22 840.78 742.36

SCORE (36) 16.95 18.15 20.06 20.26 20.47 17.82
TOTAL COV (1396) 787 814 856 858 862 799

SCORE COV (36) 19.01 19.61 20.94 21.04 21.08 19.38

Table 4.2: Time score of bidirectional uniform-cost search with different methods to exploit state
invariants. The best configurations per domain and those deviating in only 1% are highlighted in
bold and, in domains where there are differences in coverage, the configurations with best coverage
are marked with *.

performance of BDD-based search, this seems to be the case for the set of benchmarks considered
in our experiments. The only cases where the search performance slightly decreases when pruning
invalid states are GRID, PARCPRINTER and VISITALL. On the other hand, performance increases
dramatically in many cases, such as BARMAN, FLOORTILE, FREECELL, etc. As shown by Fig-
ures 4.4b and 4.4c the use of state invariants is almost always better than the configuration without
invalid operators and the speed up is of up to an order of magnitude.

Comparing the different encodings of the mutexes also yields interesting conclusions. Whenever
we use the encoding of constraints in separated BDDs of different sizes, M1k and M100k, we

4.7. EMPIRICAL EVALUATION 77

obtain similar results, though slightly favoring the version with a larger limit of 100,000 nodes. As
concluded in the experiments regarding the TR representation (see Section 3.5.1 on page 51), using
larger bounds on the BDD size leads to faster computation at the expense of using more memory.
Encoding constraints in the TRs, e-del , is a more efficient way to use the constraints in the search,
though there are some domains where the performance decreases like MYSTERY or ZENOTRAVEL.
The advantage of e-deletion is especially noticeable in BARMAN, FREECELL or PIPESWORLD, in
which there are a great number of mutexes. The plot of Figure 4.4d shows that the advantage of
e-del overM100k is more moderate than our other comparisons. In this case, the BDDs involved
in the search are not affected, but e-del reduces the overhead in pruning the invalid states and even
gets speed ups in the image computation.

e-del encodes the necessary constraints, according to our theoretical results in Section 4.4. In
order to show the relevance of identifying which constraints are relevant, we compare the results
with e-del+, which encodes all the constraints in the TRs. Even though in ROVERS and SATELLITE
encoding all the constraints simplifies the search, in most cases it is unfeasible to do so, such that
the overall results are worse than the configuration not performing pruning at all. This highlights the
importance of not including constraints in the operators where they are completely unrelated to the
variables affected by the operator.

In order to understand the effect of state-invariants in the image computation, we analyze how
the constraints affect the size of the TRs. Figure 4.5 plots the relative number of BDD nodes used
to represent each transition relation. We only consider the cases were a monolithic TR has been
generated, since other cases are not really comparable. Removing invalid operators significantly
decreases the size of the TRs, with very few cases in which the size increases. On the other hand,
the size of the TRs is expected to increase when encoding state invariant constraints and, indeed,
that is the general trend. However, there are a number of cases where the constraints simplify the
TRs. This explains how e-del is able to provide an advantage over representing the constraints in
separated BDDs.

101 102 103 104 105

101

102

103

104

105

TR size of Oh2 (nodes)

T
R

si
ze

of
O

(n
od

es
)

(a) Oh2 versus O.

101 102 103 104 105

101

102

103

104

105

TR size of e-del (nodes)

T
R

si
ze

of
O

h
2

(n
od

es
)

(b) e-del versus Oh2 .

Figure 4.5: Number of BDD nodes employed in representing the transition relation of different
configurations. Only those cases where a single TR could be created under 100,000 nodes were
taken into account.

78 CHAPTER 4. STATE INVARIANTS

4.7.3 BDD Minimization Approaches

The results in the previous section show that the performance of symbolic bidirectional uniform-
cost search is better whenever we use state invariants. However, as previously explained, there are
no guarantees regarding how the constraints affect the performance of BDD-based search. Pruning
states could arbitrarily increase the size of the BDDs used in the search. In order to ensure that
the size of the BDDs is reduced we proposed the use of BDD-minimization methods that, instead
of removing all invalid states from the BDD, add or remove invalid states in order to minimize the
BDD size.

M∅ M100k Mres Mcon Mnp& Mlic

TOTAL (1396) 767.12 841.51 779.74 780.98 822.06 780.04
SCORE (36) 18.30 20.60 18.75 18.83 19.96 18.79

TOTAL COV (1396) 814 858 821 819 841 823
SCORE COV (36) 19.61 21.04 19.84 19.83 20.46 19.95

Table 4.3: Time score and coverage of bidirectional uniform-cost search without pruning (M∅),
pruning all invalid states (M&) and different BDD-minimization methods: restrict (Mres), constrain
(Mcon), non-polluting and (Mnp&) and leaf-identifying compaction (Mlic).

Table 4.3 shows the result of symbolic bidirectional uniform-cost search when using BDD-
minimization methods to take advantage of state-invariant constraints. The results depict a clear
advantage of pruning all invalid states over the configurations using BDD-minimization. Some of
those methods are even worse than not using the state-invariant constraints at all. Among BDD-
minimization methodsMnp& is the one closest toM100k. This is not surprising sinceMnp& is the
most conservative of all the BDD-minimization methods. If considering the results in each domain
separately, BDD-minimization methods do not improve the coverage in any domain with respect to
M100k.

The results of our experiment show that using BDD-minimization to reduce the size of the BDDs
involved in the search by including invalid states is not a good idea. This is somehow surprising since
most of our analysis depicts a huge correlation between the size of the search BDDs and overall
performance of the algorithms. However, even if the BDDs after the minimization are smaller,
the result after the image computation contains more states and requires more BDD nodes to be
represented.

4.7.4 State Invariants in Unidirectional Uniform-Cost Search

Our previous results show that state invariant pruning greatly enhances the performance of bidirec-
tional search. However, according to the data of Table 4.1 on page 73, there are certainly more
forward than backward mutexes. Thus, invariant constraints can be expected to have a greater im-
pact in backward search than forward search. Table 4.4 reports the results of different configurations
in forward and backward search.

As in the bidirectional case, computing h2 in order to remove invalid operators always pays
off. Even in those cases where no operators are removed the time spent computing h2 is negligible
compared to the total search time. When invalid-state pruning is disabled, the benefits of removing
invalid operators are larger for forward search because the performance of regression search is still
significantly reduced by the presence of spurious states.

The impact of pruning invalid states during the search is much larger in backward search than in
forward search. While invariant pruning increases the coverage of forward search in 8 problems, it

4.7. EMPIRICAL EVALUATION 79

fw bw

O Oh2 M100k e-del O Oh2 M100k e-del
AIRPORT (50) 15.75 *23.58 *23.18 *22.80 2.72 9.29 21.90 21.73
BARMAN (20) 7.04 6.76 6.76 6.88 0.00 0.00 6.48 *9.96

BLOCKSWORLD (35) 19.08 19.02 18.93 20.05 10.34 10.34 19.43 *22.75
DEPOT (22) *4.56 3.79 3.79 *5.00 1.43 1.51 1.45 2.91

DRIVERLOG (20) *10.77 *10.95 *10.73 *10.77 7.24 7.24 7.45 7.48
ELEVATORS08 (30) *19.00 *18.98 *19.00 *19.00 4.95 4.95 4.95 4.95
ELEVATORS11 (20) *15.91 *15.99 *16.00 *15.99 3.51 3.51 3.51 3.51
FLOORTILE11 (20) 0.86 5.48 *13.58 *14.00 5.19 5.64 *13.03 *13.11

FREECELL (80) *19.33 *18.75 *18.49 *18.85 4.89 4.86 16.46 *19.19
GRID (5) *2.00 *2.00 *2.00 *1.99 0.85 0.32 0.45 0.41

GRIPPER (20) *16.99 *16.92 *16.94 *20.00 8.72 8.72 10.95 *18.44
LOGISTICS 00 (28) 16.00 16.00 16.00 16.00 13.82 13.80 13.80 13.80
LOGISTICS 98 (35) *5.00 *3.09 *4.64 *5.00 2.57 2.57 2.57 2.57

MICONIC (150) 79.58 79.54 79.40 79.62 *113.99 *113.61 *113.34 *113.43
MPRIME (35) *25.24 *25.49 *25.52 *24.92 8.16 8.13 8.86 8.82

MYSTERY (30) *14.11 *14.98 *14.87 *14.41 6.08 6.08 6.73 6.58
NOMYSTERY11 (20) 10.36 10.07 10.08 10.10 10.02 11.21 10.85 11.66
OPENSTACKS08 (30) *29.68 *29.45 *29.68 *29.70 25.39 25.16 *26.21 *27.09
OPENSTACKS11 (20) 19.91 19.91 19.91 20.00 17.87 17.88 18.38 18.98
OPENSTACKS06 (30) *19.49 *19.47 *19.37 *19.82 6.75 6.70 10.47 13.22

PARCPRINTER08 (30) 9.22 *23.73 19.66 *23.27 8.56 10.96 18.67 19.47
PARCPRINTER11 (20) 5.45 *17.80 14.45 *17.72 4.79 7.18 14.61 *15.18

PARKING11 (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PATHWAYS-NONEG (30) *5.00 *5.00 *5.00 *4.89 3.40 3.39 3.65 3.72
PEG-SOLITAIRE08 (30) *28.34 *28.99 *28.81 *28.34 9.41 10.93 13.83 13.56
PEG-SOLITAIRE11 (20) *18.78 *18.98 *18.65 *18.38 2.82 2.83 5.55 5.50

PIPESWORLD-NT (50) 14.21 14.20 13.94 *16.10 2.06 1.75 5.80 6.63
PIPESWORLD-T (50) *16.46 *16.45 *16.44 *16.76 3.82 3.86 4.74 4.83

PSR-SMALL (50) 49.39 49.74 49.13 49.05 47.18 47.41 48.77 48.21
ROVERS (40) *12.77 *12.82 *12.82 *12.82 10.92 10.92 10.93 10.94

SATELLITE (36) 6.57 6.57 6.34 6.57 7.22 7.22 *9.68 *10.00
SCANALYZER08 (30) 10.62 11.34 10.56 10.94 10.96 11.52 11.63 11.25
SCANALYZER11 (20) 8.12 8.31 8.06 8.41 8.43 8.52 8.49 8.71

SOKOBAN08 (30) 18.19 *26.16 *26.85 *27.12 2.00 3.67 22.83 23.65
SOKOBAN11 (20) *13.78 *19.11 *19.44 *19.51 0.30 0.82 16.50 16.93
TIDYBOT11 (20) 9.09 *14.89 *14.81 *15.92 0.00 1.00 6.70 7.06

TPP (30) 7.85 8.00 8.00 8.00 6.68 6.75 6.83 6.88
TRANSPORT08 (30) *12.00 *11.90 *11.76 *11.90 7.03 7.04 6.99 6.99
TRANSPORT11 (20) *6.90 *7.00 *6.89 *6.90 2.04 2.04 2.04 2.04

TRUCKS (30) 8.79 *9.74 *10.75 *10.74 6.31 6.84 8.77 9.50
VISITALL (20) 9.00 9.00 9.00 9.00 8.73 8.73 8.74 8.79

WOODWORKING08 (30) 11.88 16.37 16.41 15.98 12.59 15.08 22.08 *25.00
WOODWORKING11 (20) 6.90 10.96 10.94 10.67 7.21 9.71 16.38 *19.00

ZENOTRAVEL (20) *9.00 *8.89 *8.88 *9.00 7.24 7.24 7.23 7.23
TOTAL (1396) 648.97 716.17 716.46 732.89 434.19 456.93 598.71 631.66

SCORE (36) 15.81 17.38 17.67 18.17 9.68 10.14 13.64 14.73
TOTAL COV (1396) 725 768 771 776 518 541 687 706

SCORE COV (36) 17.48 18.58 18.79 18.92 11.86 12.34 15.96 16.63

Table 4.4: Time score of unidirectional uniform-cost search with different configurations of con-
straints encoding. The best configurations per domain and those deviating in only 1% are high-
lighted in bold and, in domains where there are differences in coverage, the configurations with best
coverage are marked with *.

80 CHAPTER 4. STATE INVARIANTS

allows backward search to solve 165 more instances. This is mainly due to the number of mutexes
found in each direction.

In forward search, not enough mutexes are found to improve the performance. Mutexes are
reliably found for all the problem instances only in FLOORTILE, MYSTERY, PARCPRINTER and
TRUCKS. The results in these domains vary a lot. Mutex pruning helps greatly in FLOORTILE,
moderately in TRUCKS, does not have an impact in MYSTERY and decreases performance in PAR-
CPRINTER. The case of PARCPRINTER is an exception caused by the structure of the domain, since
the search performs many cheap steps and the overhead of mutex pruning might decrease perfor-
mance. This overhead is almost completely eliminated with e-deletion, though. On the other hand,
it is remarkable that e-deletion may increase the performance of forward search, even in domains
where constraints provide no pruning such as BLOCKSWORLD, DEPOT, PIPESWORLD or TIDYBOT.
In those domains, encoding the constraints in the TRs helps to simplify image computation and to
moderately speed up search.

In backward search, however, there are many available constraints in most domains and they can
be successfully exploited to improve performance in most of them. In several domains where regres-
sion without pruning fails completely such as BARMAN or BLOCKSWORLD, using the constraints
allows the planner to solve more problems.

Another interesting conclusion is that state invariants may affect the directionality of the do-
mains, i. e., whether it is easier to perform forward or backward search. In general, the results
depict a great advantage of forward over backward search. However, the use of state-invariant con-
straints helps to reduce the gap. Without the use of invariants, backward search is only clearly better
in MICONIC, where as using state-invariants, it is also better in BARMAN, BLOCKSWORLD, NO-
MYSTERY, SATELLITE, and WOODWORKING. Closing the gap between forward and backward
search also helps to increase the performance of the bidirectional search, as we have analyzed in
Section 4.7.2.

4.7.5 State Invariants in Symbolic A∗ Search
Table 4.5 shows the results of symbolic A∗ search with symbolic PDBs. Our different constraint
encoding methods are not only used in the A∗ search, but also in the abstract searches to precompute
the PDBs. The overall results again show that the use of state invariants helps to improve results of
A∗ as well. However, the benefits are not as stable as in the case of uniform-cost search. Even though
pruning invalid states (M100k) increases total coverage, it decreases the coverage in 9 domains
with respect to the version without invalid state pruning (Oh2). In order to find out whether the
performance loss is caused by the abstract searches that generate the heuristic or the A∗ search, we
analyze the quality of the heuristic used. One typical way to measure such quality is the heuristic
value of the initial state.

O Oh2 M1k M100k

TOTAL COV (1396) 765 792 807 810
SCORE COV (36) 19.06 19.64 20.12 20.16

Table 4.5: Time score of A∗ search with different methods to exploit state invariants. The best
configurations and those deviating in only 1% are highlighted in bold.

Figure 4.6 plots the heuristic value of the initial state for different instances. For clarity purposes,
we show only values lower or equal than 100 since there are few domains with larger heuristic
values. The trend is slightly favorable to the variants with state-invariant constraints, but without a
strict dominance. Unlike in our evaluation of state-invariant constraints in blind search, here the use

4.8. SUMMARY 81

of constraints decreases performance in many cases, obtaining worse symbolic PDBs. Obviously,
using state invariants cannot decrease the values of a given abstraction so the reason is that different
abstractions are being explored.

0 20 40 60 80 100
0

20

40

60

80

100

Initial h value of O

In
iti

al
h

va
lu

e
of

O
h
2

(a) O versus Oh2

0 20 40 60 80 100
0

20

40

60

80

100

Initial h value of Oh2

In
iti

al
h

va
lu

e
of

M
1
0
0
k

(b) Oh2 versusM100k

Figure 4.6: Heuristic value of the initial state in each instance.

In some domains, the difference can be due to alterations in the evaluation function of patterns,
misleading the hill-climbing search in the space of possible patterns. This is certainly the case when
O works better than Oh2 . With Oh2 pruning some operators or fluents, the patterns selected are
different and, in some cases, they obtain lower heuristic estimates.

However, among the cases where the heuristic value ofM100k is worse than that of Oh2 , there
are cases where the difference is not in the patterns being searched but in the performance of the
abstract search itself. While the abstract search without invariant pruning is trivial, pruning makes
the search much harder.

We argued before that there were no theoretical guarantees of the search being simpler by pruning
constraints. However, it may be surprising that this happens only in the abstract state spaces and not
in the whole search space. The reason is that the abstract symbolic search may have lower complexity
than the original search, especially if the abstract problem consists of independent subproblems,
i. e., the causal graph of the abstract task has separated components. Then, the symbolic abstract
search complexity depends on the size of the components instead of the number of variables in the
abstraction. Introducing the mutex constraints of the original state space breaks the independence of
the variables, increasing the complexity of the abstract search.

4.8 Summary

State-invariants are properties that hold in every reachable state. Any state violating the invariants is
an spurious state, i. e., a dead end in regression search. Thus, state-invariant constraints can be used
to prune the search. However, even though the importance of state-invariant pruning for regression
search in planning is well-known, state-of-the-art symbolic search planners like GAMER do not use
them.

In this chapter we used state invariant constraints in order to prune symbolic search. We interpret
state invariants as properties that must hold in any state that is part of a plan for the task, so that they
can be used to prune forward and backward search. In order to generate state-invariants, we used

82 CHAPTER 4. STATE INVARIANTS

mutexes computed with h2 in progression and regression enhanced with operator disambiguation
and “exactly-1” invariants derived with monotonicity analysis.

The main contribution of this chapter is to study different methods to use the state-invariant
constraints to prune the symbolic search. Our methods require encoding the constraints as BDDs
and can be divided into three methods:

• Constraint BDDs: Encode the constraints as BDDs and prune the states in the search using a
conjunction to select the subset of states that do not violate the constraints.

• E-deletion: Encode the constraints as additional conditions in the operators, i. e., in the tran-
sition relation. We proved which subset of constraints must be encoded in each operator in
order to ensure that no invalid states are generated during the search.

• BDD minimization: Constraints are encoded as BDDs, as in the constraint BDD method.
However, the aim is to reduce the size of the BDDs representing the sets of states, keeping
some spurious states instead of pruning them all.

The overall results show that state-invariant pruning is tremendously effective in symbolic
search, especially in regression. Our enhanced version of GAMER, CGAMER, outperforms GAMER
in most domains with the exception of the few domains where no state-invariants are found.
CGAMER also beats other state-of-the-art planners, as we analyze in more detail in the next chapter.
According to our empirical evaluation, e-deletion is the more efficient way to take advantage of con-
straints in symbolic search. On the other hand, BDD minimization successfully reduces the size of
the BDDs involved in the search, but keeping spurious operators makes image computation harder
anyway. We also considered the use of constraints in abstraction heuristics that ignore a subset of
variables, such as Pattern Databases.

This chapter is an extended version of a previously published work in collaboration with Vidal
Alcázar (Torralba and Alcázar, 2013).

Chapter 5

Symbolic versus Explicit-State
Search Planning

In the previous chapters we analyzed two aspects of symbolic search, image computation and state-
invariant pruning, with the aim of improving the performance of symbolic planners. We conclude
with an empirical evaluation of symbolic search techniques, comparing them to explicit-state search.

5.1 Symbolic versus Explicit Unidirectional Uniform-Cost
Search

In this section, we compare symbolic against explicit unidirectional uniform-cost search both in pro-
gression and regression. Even though neither of these techniques is part of the state of the art, com-
paring symbolic and explicit search without any heuristic is interesting because it provides a view
on the inherent advantages of the symbolic representation. In this comparison, we emphasize the
relevance of the improvements for symbolic search techniques that we presented in Chapters 3 and
4. For symbolic search we use the GAMER planner (Kissmann, 2012), which we denote CGAMER
when using our improvements.

As the explicit counterpart, we compare against explicit-state forward uniform-cost search and
partial-state regression search. For forward search, we used the implementation of A∗ of the Fast
Downward planning system (Helmert, 2006b) using the blind heuristic (FD), which assigns a value
of 0 to goal states and the minimum action cost to other states. For backward search, we used the
FDR planner (Alcázar et al., 2013), implemented on top of Fast Downward. FDR implements
partial-state regression using state-invariant pruning as well as other improvements originally made
for forward search planners such as successor generators. All planners use the preprocessor de-
scribed in Section 4.1.3 on page 58 to remove invalid operators and simplify the task.

Table 5.1 shows the comparison of symbolic and explicit uniform-cost search both in forward and
backward directions. The results show the benefits of the symbolic representation, especially when
using our improvements. In the forward search case, symbolic representation beats explicit state
search in most domains, getting a total coverage of +154 problems even without our improvements.
With CGAMER, the advantage gets increased to +208 problems, making symbolic search at least as
good as the explicit version in all domains.

In backward search the performance of symbolic search without our improvements, GAMER, is

83

84 CHAPTER 5. SYMBOLIC VERSUS EXPLICIT-STATE SEARCH PLANNING

FORWARD BACKWARD
FD GAMER CGAMER FDR GAMER CGAMER

AIRPORT (50) 23 23 24 22 11 23
BARMAN (20) 4 8 8 4 0 10

BLOCKSWORLD (35) 18 21 21 18 12 23
DEPOT (22) 4 4 5 2 2 4

DRIVERLOG (20) 7 11 11 6 7 9
ELEVATORS08 (30) 13 19 19 4 6 10
ELEVATORS11 (20) 11 16 16 2 4 8
FLOORTILE11 (20) 8 9 14 14 8 14

FREECELL (80) 16 14 20 8 6 20
GRID (5) 1 2 2 0 1 1

GRIPPER (20) 8 20 20 8 11 20
LOGISTICS 00 (28) 10 16 16 10 16 16
LOGISTICS 98 (35) 2 5 5 2 2 3

MICONIC (150) 50 82 96 65 85 114
MPRIME (35) 19 23 26 10 9 10

MYSTERY (30) 15 15 15 11 7 8
NOMYSTERY11 (20) 8 13 12 9 9 12
OPENSTACKS08 (30) 21 30 30 8 20 30
OPENSTACKS11 (20) 16 20 20 3 15 20
OPENSTACKS06 (30) 7 11 20 7 7 16

PARCPRINTER08 (30) 20 22 24 20 15 23
PARCPRINTER11 (20) 15 17 18 15 11 18

PARKING11 (20) 0 0 0 0 0 0
PATHWAYS-NONEG (30) 4 5 5 4 4 4
PEG-SOLITAIRE08 (30) 27 29 29 11 12 24
PEG-SOLITAIRE11 (20) 17 19 19 3 2 14

PIPESWORLD-NT (50) 14 15 17 8 4 9
PIPESWORLD-T (50) 11 15 17 2 4 6

PSR-SMALL (50) 49 50 50 46 49 50
ROVERS (40) 5 14 13 6 11 12

SATELLITE (36) 5 7 7 6 7 10
SCANALYZER08 (30) 12 12 12 12 9 12
SCANALYZER11 (20) 9 9 9 9 6 9

SOKOBAN08 (30) 27 28 28 17 4 25
SOKOBAN11 (20) 20 20 20 14 1 18
TIDYBOT11 (20) 12 12 16 3 1 9

TPP (30) 6 8 8 5 8 8
TRANSPORT08 (30) 11 11 12 8 8 9
TRANSPORT11 (20) 6 6 7 3 3 4

TRUCKS (30) 7 10 11 9 6 10
VISITALL (20) 9 9 9 9 9 9

WOODWORKING08 (30) 9 20 21 9 20 25
WOODWORKING11 (20) 4 14 15 4 14 19

ZENOTRAVEL (20) 8 8 9 7 7 8
TOTAL COV (1396) 568 722 776 443 453 706

SCORE COV (36) 13.73 17.63 18.92 10.89 10.71 16.63

Table 5.1: Coverage of symbolic (GAMER and CGAMER) vs. explicit unidirectional uniform-cost
search (FD and FDR). GAMER is the baseline symbolic planner and CGAMER uses the improve-
ments proposed in this thesis.

5.1. SYMBOLIC VERSUS EXPLICIT UNIDIRECTIONAL UNIFORM-COST SEARCH 85

similar to that of partial-state regression, FDR. GAMER has better total coverage but the explicit
variant has better coverage score. Moreover FDR solves problems faster when the solving times
are considered. Nonetheless, note that FDR already uses state-invariant constraints to prune the
search. Thus, when symbolic search is enhanced with our state-invariant and image-computation
improvements, it consistently dominates explicit search again in all domains except MYSTERY.

In total, the advantage of the symbolic search is notable, obtaining better results than explicit
search in all but 6 domains in which they are tied. Forward search is usually better than backward
search both in the explicit and symbolic versions. However, backward search should not be aban-
doned since it obtains good results in a number of domains.

The empirical dominance of symbolic uniform-cost search over the explicit-state variant is sup-
ported by theoretical results regarding the size of BDDs involved in the search. The number of
BDD nodes required to represent a given set of states is at most linear in the number of states and
the number of variables of the task. On the other hand, the symbolic representation can sometimes
represent exponentially many states in the size of the planning task with only a polynomial number
of nodes. However, symbolic search is not guaranteed to dominate explicit-state search since image
computation may be of exponential complexity in the size of BDDs. Moreover, in backward search
the number of BDD nodes can be exponentially large in the number of partial states represented.

In order to obtain a better picture of the behavior of symbolic uniform-cost search, Figure 5.1
shows data relative to the layers expanded by symbolic forward and backward search. We exclude
data from PARCPRINTER since the large action costs in that domain difficult the visualization. For
each step in the search (i. e., the expansion of a set of states with a given g-value) we measure the
number of states in the set, the number of BDD nodes used to represent the states and the time spent
in the step, including image/pre-image computation, duplicate elimination and invalid state pruning.

Figure 5.1a shows the relation between the number of nodes in a BDD and the number of states
it represents in each layer of cost-uniform search. Even though there are some cases where the
number of BDD nodes is orders of magnitude smaller than the number of states represented and in
the majority of cases they follow a linear relation, especially in forward search. To compare symbolic
and explicit search, the relation between states and BDD nodes is more significant in forward search,
since backward search uses a partial-state representation.

Figure 5.1b compares the time spent in one step of the algorithm with the number of nodes in the
BDD that represents the set of expanded states. There is a strong linear relation between the number
of nodes of a BDD and the time it takes to expand it. However, for a given BDD size, the time can
vary in around two orders of magnitude. In this case, there is no significant difference between the
time taken by forward and backward search with respect to the BDD size.

In Figures 5.1c and 5.1d, we show the number of nodes and time required for every g layer,
respectively. Even though the number of nodes and time usually grows with the number of steps,
this is not obvious when visualizing many problems of different domains at the same time. In this
case, we can appreciate the advantage of forward over backward search, since there are some cases
where backward search requires more nodes for a given g-layer. This can be observed in the first
layers whereas in later layers there are more points associated with forward search due to earlier
failures of backward search.

The comparison of forward and backward search shows that the difference between both algo-
rithms is not very remarkable in the time needed for image/pre-image computation on a BDD of a
given size, although there is a small difference in the number of BDD nodes needed to represent the
sets of states of each g-layer. This confirms that the gap between forward and backward search is
not large when using invalid state pruning.

86 CHAPTER 5. SYMBOLIC VERSUS EXPLICIT-STATE SEARCH PLANNING

101 102 103 104 105 106 107 108
10−1

103

107

1011

1015

Number of BDD nodes

N
um

be
ro

fs
ta

te
s

fw
bw

(a) States vs. BDD nodes.

100 101 102 103 104 105 106 107 108

10−3

10−2

10−1

100

101

102

103

Number of BDD nodes

Ti
m

e
st

ep
(s

ec
on

ds
)

fw
bw

(b) Time spent vs. BDD nodes.

100 101 102 103

101

103

105

107

g-value

B
D

D
no

de
s

fw
bw

(c) BDD nodes in each g-layer.

100 101 102 103

10−3

10−2

10−1

100

101

102

103

g-value

Ti
m

e
(s

ec
on

ds
)

fw
bw

(d) Time spent in each g-layer.

Figure 5.1: Symbolic search layers in unidirectional cost-uniform search.

5.2 State-of-the-art in Symbolic and Explicit Optimal Planning

In the previous section, we have compared symbolic and explicit-state search in cost-uniform search,
without using any heuristic. However, state-of-the-art optimal planners use heuristics and other prun-
ing techniques in order to enhance search performance. In this section we compare the performance
of symbolic search against heuristic search planners. As characteristics planners, we take the plan-
ners that performed best in the IPC-2011: LM-CUT and two configurations of the M&S heuristic.
All planners use the preprocessor described in Section 4.1.3 on page 58 to remove spurious operators
and simplify the task. FAST DOWNWARD STONE SOUP, the winner of IPC-2011, was a portfolio
running these three planners by a fixed amount of time. In order to compare against the best possi-
ble results obtained by such portfolio, we compare against the maximum possible coverage where
we consider a problem solved if it was solved by any of the individual planners. Thus, best is an
optimistic approximation of the best possible results using the three planners. We use two sym-
bolic algorithms, bidirectional cost-uniform search and BDDA∗ with symbolic PDBs, as they were
implemented in GAMER and the CGAMER planner that uses our improvements.

Table 5.2 compares the coverage of heuristic search and symbolic planners with time and mem-
ory limits of 30 minutes and 4GB. The results show that symbolic algorithms outperform heuristic
search planners across a variety of domains. Regarding total performance, heuristic search planners
beat both variants of GAMER, mainly due to the accuracy of the LM-CUT heuristic. However, the
total performance of CGAMER is superior to heuristic search planners in this set of benchmarks. The

5.2. STATE-OF-THE-ART IN SYMBOLIC AND EXPLICIT OPTIMAL PLANNING 87

A∗ GAMER CGAMER

M&Sb M&Sg LM- best bd A∗ bd A∗

cut
AIRPORT (50) 23 23 29 29 23 20 27 21
BARMAN (20) 4 4 4 4 8 4 12 8

BLOCKSWORLD (35) 20 28 28 28 21 27 33 26
DEPOT (22) 6 6 7 7 5 7 8 8

DRIVERLOG (20) 13 12 13 13 12 14 14 14
ELEVATORS08 (30) 14 1 22 22 24 20 25 18
ELEVATORS11 (20) 12 0 18 18 19 17 19 15
FLOORTILE11 (20) 8 4 14 14 10 12 14 14

FREECELL (80) 4 19 15 19 14 20 27 25
GRID (5) 3 2 2 3 2 2 2 3

GRIPPER (20) 20 8 7 20 20 20 20 18
LOGISTICS 00 (28) 20 16 20 20 20 18 20 22
LOGISTICS 98 (35) 5 4 6 6 5 6 5 6

MICONIC (150) 77 53 141 141 86 79 113 108
MPRIME (35) 12 23 23 24 19 25 21 28

MYSTERY (30) 8 17 17 17 14 17 13 17
NOMYSTERY11 (20) 19 14 14 19 14 14 16 15
OPENSTACKS08 (30) 21 9 21 21 30 29 30 26
OPENSTACKS11 (20) 16 4 16 16 20 19 20 19
OPENSTACKS06 (30) 7 7 7 7 11 7 20 15

PARCPRINTER08 (30) 20 20 22 23 21 13 22 19
PARCPRINTER11 (20) 15 15 17 18 16 9 18 15

PARKING11 (20) 0 0 3 3 0 1 1 0
PATHWAYS-NONEG (30) 4 4 5 5 5 5 5 5
PEG-SOLITAIRE08 (30) 29 6 29 29 29 28 30 29
PEG-SOLITAIRE11 (20) 19 0 19 19 19 18 20 19

PIPESWORLD-NT (50) 9 16 18 18 15 15 17 16
PIPESWORLD-T (50) 8 17 12 17 16 16 17 18

PSR-SMALL (50) 50 50 49 50 50 50 50 50
ROVERS (40) 8 6 7 8 14 13 14 13

SATELLITE (36) 7 6 7 7 7 7 11 10
SCANALYZER08 (30) 14 9 15 17 12 10 12 12
SCANALYZER11 (20) 11 6 12 14 9 7 9 9

SOKOBAN08 (30) 29 3 30 30 28 30 28 30
SOKOBAN11 (20) 20 1 20 20 20 20 20 19
TIDYBOT11 (20) 1 13 17 17 12 15 17 17

TPP (30) 7 6 7 7 8 8 8 8
TRANSPORT08 (30) 11 11 11 11 12 11 14 11
TRANSPORT11 (20) 7 6 6 7 8 6 10 6

TRUCKS (30) 8 8 10 10 10 11 12 12
VISITALL (20) 9 16 10 16 12 11 12 11

WOODWORKING08 (30) 13 14 22 22 22 22 26 25
WOODWORKING11 (20) 8 9 15 15 16 16 19 18

ZENOTRAVEL (20) 12 10 13 13 10 11 11 12
TOTAL COV (1396) 631 506 800 844 748 730 862 810

SCORE COV (36) 15.86 13.65 18.65 20.42 18.38 18.38 21.08 20.16

Table 5.2: Coverage of symbolic versus explicit search. Explicit A∗ planners use M&S with full
(M&Sb) and greedy (M&Sg) bisimulation and LM-CUT. best gets the best results of the three
planners in each problem. GAMER and CGAMER use symbolic bidirectional uniform-cost search
(bd) and BDDA∗ with symbolic PDBs.

88 CHAPTER 5. SYMBOLIC VERSUS EXPLICIT-STATE SEARCH PLANNING

100 101 102 103

200

400

600

800

Time (seconds)

C
ov

er
ag

e

CGAMER-bd
CGAMER-BDDA∗

LM-CUT

CGAMER-FW

CGAMER-BD

M&Sb

Blind

Figure 5.2: Cumulative coverage of symbolic and heuristic search planners. Total coverage of each
planner at each time in logscale.

case of bidirectional cost-uniform search is clear, beating even the portfolio approaches. BDDA∗ is
also superior when considering standalone planners, but it is still behind the optimistic results of the
heuristic search portfolio.

The results highlight the importance of symbolic planners not only in terms of average perfor-
mance but also in a per-domain basis. Symbolic planners are required to obtain the best results in
23 domains. Comparatively, heuristic planners only get better results than symbolic search algo-
rithms in 11 cases: AIRPORT, MICONIC, NOMYSTERY, PARCPRINTER (08 and 11), PARKING,
PIPESWORLD-NT, SCANALYZER (08 and 11), VISITALL and ZENOTRAVEL.

Figure 5.2 shows the evolution of the coverage of different planners over time. We plot the
cumulative number of instances solved by every planner at every second, in logarithmic scale. In
general, the final score of the planners after 30 minutes is representative of the results with other time
limits. However, there are some remarkable conclusions related to the behavior of these planners.

Blind search starts faster than other planners, but it converges quickly because the memory limit
is exceeded after approximately 5 minutes. On the other hand, configurations that depend on a
preprocessing step, such as M&Sb and BDDA∗ start solving less problems and only outperform
blind search if enough time is spent in the search. M&Sb has a similar convergence to that of blind
search because the heuristic is fast to compute and the memory limit is reached as well.

In the case of BDDA∗, some problems are solved during the first 15 minutes employed by the
preprocessing step in case that the original state space is completely traversed by symbolic regres-
sion. Afterwards, forward search is performed using the precomputed heuristic, which explains the

5.3. SUMMARY 89

increase of the coverage at that time.
The comparison of explicit-state and symbolic blind forward search complements our results of

Section 5.1. Symbolic search is not only faster than explicit-state search (solving more problems in
the first seconds), but also has a much better convergence rate due to the memory savings of BDDs.

Our symbolic search enhancements from Chapters 3 and 4, increase the score of GAMER uni-
formly over time. This speedup makes CGAMER-FW faster than GAMER, even though it does not
perform bidirectional search. However, the lack of regression search causes a faster convergence and
it is not clear whether CGAMER-FW would beat GAMER for larger timeouts.

Well-informed heuristics, such as LM-CUT, increase the performance of explicit-state search and
the total performance is slightly better to that of symbolic forward search and similar to symbolic
BDDA∗ with PDB heuristics. However, symbolic bidirectional search with our improvements is able
to beat LM-CUT except for very short timeouts, probably due to the time spent in BDD initialization
and the problem instances for which LM-CUT is perfectly informed.

5.3 Summary
In this chapter, we have empirically compared symbolic planners against explicit-state search plan-
ners. Our results show that the advantages of the symbolic representation are clear both in forward
and backward search, especially when using the symbolic search improvements we proposed in pre-
vious chapters of this thesis. This advantages are then combined in a bidirectional symbolic planner,
CGAMER.

The main conclusion is that CGAMER currently is one of the best state-of-the-art cost-optimal
planners, beating by a large margin heuristic search planners such as LM-CUT or M&S and even
portfolio approaches. Nevertheless, there remain domains where heuristic approaches are better than
CGAMER.

90 CHAPTER 5. SYMBOLIC VERSUS EXPLICIT-STATE SEARCH PLANNING

Part II

Abstraction Heuristics in Symbolic
Search Planning

91

Chapter 6

Abstraction Heuristics

Abstraction heuristics transform the problem state space to a smaller one and use the cost of the
optimal solution as a heuristic estimation for the original problem. In order for an abstraction to be
useful, the abstract instance should be easier to solve and the total time spent should be less than
without using the abstraction. This is a reasonable requirement, yet it has turned out very difficult to
achieve in practice. The key is how to derive “good” abstractions for a given problem in a domain-
independent way.

In this chapter, we review the state of the art in abstraction heuristics for domain-independent
planning. We explain the definition of abstraction and abstraction heuristics that we adopt, as well
as the two methods to automatically derive abstractions in planning that we shall use in the rest of
the thesis: Pattern Databases (PDBs) and Merge-and-Shrink (M&S).

6.1 Introduction

According to the empirical evaluation performed in Chapter 5, symbolic blind search outperforms
explicit-state blind search. However, while the dominance of symbolic blind search was almost
total over explicit-state blind search, heuristic explicit-state search is better in some domains. This
suggests that the increased quality of search heuristics sometimes exceeds the structural savings for
representing and exploring large state sets in advanced data structures. Therefore, it is natural to
question whether heuristics may be used to improve performance in the symbolic setting as well.

The second part of this thesis attempts to address that question. The simplest approach to use
heuristics in symbolic search is to use standard state-of-the-art heuristics like LM-CUT (Helmert and
Domshlak, 2009) to evaluate each state independently. Unfortunately, that approach does not seem
very promising since computing the heuristic is usually the bottleneck in heuristic search. While
BDD-based search demonstrated that it may efficiently represent sets of states and compute their
successors, the benefit would be negligible if the heuristic has to be computed for each state in the
set. Thus, in order to obtain benefits over heuristic search it is necessary to take advantage of the
BDD representation of state sets in the computation of the heuristic as well.

In this thesis we will focus our attention on abstraction heuristics. Abstraction heuristics trans-
form the problem state space to a smaller one and use the cost of the optimal solution as a heuristic
estimation for the original problem. Abstraction heuristics are a good fit for symbolic search be-
cause:

93

94 CHAPTER 6. ABSTRACTION HEURISTICS

1. Abstraction heuristics can be used to inform symbolic search. Abstraction heuristics usu-
ally perform a precomputation phase before starting the search. In this phase, the heuristic
value for every abstract state is computed and stored for its posterior use in the search. If
the heuristic values are represented with BDDs, it is possible to efficiently perform heuristic
evaluations in symbolic search, as explained in Chapter 2.

2. Symbolic search can be used to derive stronger abstraction heuristics. The use of sym-
bolic search has benefits both in terms of memory and time. Using decision diagrams to rep-
resent the heuristic has additional benefits in terms of memory (Ball and Holte, 2008). More-
over, symbolic search can be used to traverse abstract state spaces more efficiently (Edelkamp,
2002).

Hence, it is not surprising that state-of-the-art symbolic planners, like GAMER, use symbolic
pattern databases as admissible heuristics. In the following chapters, we shall consider new combi-
nations of abstraction heuristics and symbolic search. In this chapter we review the state-of-the-art
in abstraction heuristics. In Section 6.2, we explain which definition of abstraction we adopt and
describe some useful properties of abstractions. Then, we review state-of-the-art methods to derive
abstractions in a domain-independent way that shall be used in the following chapters, like pattern
databases (Section 6.3) and merge-and-shrink (Section 6.4). Finally, Section 6.5 concludes with a
summary of the most relevant points for the rest of the thesis.

6.2 Abstractions
Abstractions are simplifications of the problem, transforming the state space into a smaller abstract
state space. The abstract instance is optimally solved and the cost of the solution is used to guide the
search in the original instance. Multiple abstraction-based algorithms can be defined depending on
two aspects: (a) what transformations we apply to the original problem and (b) how we take advan-
tage of the abstract problem solution to solve the original problem. Regarding the way abstractions
are used to solve the original problem, the abstract solution plan can be used as a guideline to solve
the original problem. For example, abstraction hierarchies can be used to generate an abstract so-
lution plan and refine it until it is valid for the original task (Knoblock, 1994). However, for most
problems it is not trivial to automatically generate abstractions suitable for these purposes (Bäck-
ström and Jonsson, 1995; Domshlak et al., 2009). We focus instead on abstraction heuristics, that
use the cost of the optimal solution of the abstract problem as an admissible estimation of the optimal
cost in the original problem. In this regard, we may freely discard all the information about plans in
the abstract state space but their cost.

The question is reduced to what transformations should be applied to the problem. Different def-
initions of abstractions enable different transformations with diverse properties (Bäckström and Jon-
sson, 2012). In this thesis, we adopt the definition of homomorphism abstractions used by (Helmert
et al., 2014) to define merge-and-shrink abstractions and that have been typically considered for
abstractions in planning.

Definition 6.1 (Abstraction (Helmert et al., 2014)). Let Π be a planning task with state space Θ =
(S, L, T, s0, S?). An abstraction of Θ is a surjective function α : S → Sα mapping S to a set of
abstract states, Sα.

The abstraction defines an abstract state space Θα from the state space Θ as a homomorphism,
i. e., a structure preserving mapping. A transformation Θ → Θα is a homomorphism if for all
s, t ∈ S, (s, l, t) ∈ Θ, implies (α(s), l, α(t)) ∈ Θα.

6.2. ABSTRACTIONS 95

The abstract state space of α is defined as a tuple Θα = 〈Sα, L, Tα, sα0 ,Sα? 〉 where Sα is the
set of abstract states, L is a set of labels, Tα = {(α(s), l, α(t)) | (s, l, t) ∈ T}, sα0 = α(s0) and
Sα? = {sα | ∃s ∈ S?, sα = α(s)}. The size of α, written |α|, is the number of abstract states, |Sα|.

Other definitions generalize the one we have adopted in that they allow us to perform more types
of problem transformation other than homomorphisms. For example the abstractions considered
by Bäckström and Jonsson (2012) or multi-mapping abstractions (Pang and Holte, 2012) that use
non-surjective functions in which a state is mapped to more than one abstract state. We chose to
stick with Definition 6.1 because restricting ourselves to homomorphism abstractions allows us to
rely on their useful properties. Each abstraction function α is mapped to a unique abstract state
space, Θα. Thus, given any mapping function α, the corresponding heuristic hα is automatically
defined, as in Definition 6.2.

Definition 6.2 (Abstraction heuristic (Helmert et al., 2014)). Let α be an abstraction with an associ-
ated abstract state space Θα. The induced abstraction heuristic hα uses the cost of the cheapest path
from α(s) to Sα? in the abstract state space, h∗(α(s),Sα?) as an estimation of the cost of the original
problem, h∗(s,S?). The heuristic is admissible and consistent, since Θα is a homomorphism and
paths in the original state space are preserved in the abstract state space.

The transformation induced by an abstraction may be interpreted in several ways. On the one
hand, every abstraction α induces an equivalence relation on S, ∼α, defined as s ∼α t if and only
if α(s) = α(t), i. e., they are mapped to the same abstract state. If s ∼α t, s and t are considered
equivalent by the abstract state space. Hence, each abstract state sαi may be interpreted as a set of
states Sαi such that it contains every state mapped to sαi , i. e., Sαi = {s | α(s) = sαi }. Therefore,
we will freely refer to an abstract state as an equivalence class or a set of states of the original state
space.

Another useful definition is that of relevant variables of an abstraction:

Definition 6.3 (Relevant variables of an abstraction (Helmert et al., 2007; Helmert et al., 2014)). Let
Π be a planning task with variable set V , and let α be an abstraction of Θ. We say that α depends
on variable v ∈ V if and only if there exist states s and t such that α(s) 6= α(t) and s[v′] = t[v′] for
all v′ ∈ V \ {v}. The set of relevant variables for α, written V(α), is the set of variables in V on
which α depends, i. e., variables needed to describe its abstract states.

Note that abstraction is transitive: if α is an abstraction of a transition graph, Θ, and α’ is an
abstraction of Θα, then their composition, α′ ◦ α, is also an abstraction of Θ. Let α1 and α2 be two
abstractions of a given state space Θ. We say that α2 is an abstraction of Θα1 if and only if for every
pair of states s, t ∈ S, α1(s) = α1(t) =⇒ α2(s) = α2(t).

Definition 6.4 (Abstraction Hierarchy). An abstraction hierarchy is a directed acyclic graph in
which each node corresponds to an abstraction. There is an arc from node αi to node αj if and only
if αj is an abstraction of Θαi .

We will mostly use hierarchies in which each node has only one child, i. e., lists of an arbitrary
number of abstractions, α0, α1, . . . , αk such that each αi is an abstraction of Θαi−1 for all i > 0.
Note that the original problem, Θ, may be the root of a hierarchy if we set α0 to be an injective
function (in that case Θα0 is isomorphic to Θ).

The previous definitions allow us to define an enormous number of different abstractions to
compute heuristic estimates. However, for a heuristic to be useful, it has to be efficiently computable.
From a practical point of view, this means that the benefits in terms of node expansions have to

96 CHAPTER 6. ABSTRACTION HEURISTICS

compensate the time spent in computing the heuristic for every node. Settling this theoretically
is way too complicated, even for particular cases, given that the answer depends on many factors
and even implementation details. Nevertheless, a common requirement for domain-independent
abstractions is that they can be computed and solved in polynomial time in the size of the planning
task (and preferably in at most quadratic time). Abstractions may be classified according to how we
guarantee that the optimal costs in the abstract state space are computable in polynomial time for
each state s. We identify three methods in the literature: explicit, implicit and symbolic abstraction
heuristics.

Explicit-abstraction heuristics Explicit-abstraction heuristics construct a small state space that
can be completely traversed. Before starting the search they perform a precomputation phase in
which the optimal cost to reach an abstract goal state from every abstract state is computed and stored
in a lookup table. The optimal costs are usually computed by traversing the state space with a best-
first search, such as uniform-cost search, that traverses the entire abstract state space in polynomial
time in the number of abstract states. The resulting lookup table has one entry per abstract state, so
that the corresponding cost can be retrieved with minimum overhead. During the search, to evaluate
the heuristic value hα(s) of any state s, we follow two steps: (1) get the corresponding abstract state,
α(s), and (2) perform a lookup in the table where all the abstract distances have been stored.

Explicit abstraction heuristics are tractable whenever they keep the number of abstract states,
|Sα|, polynomially bounded in the problem size and given an abstraction function that can be com-
puted in polynomial time. In practice, the number of states is bounded from above by a constant C,
|Sα| < C. Also, the abstraction methods we study in the following sections, pattern databases and
merge-and-shrink, have mappings computable in polynomial time.

Implicit-abstraction heuristics The main drawback of explicit-abstraction heuristics is that they
have to keep the abstract state space small. Implicit abstraction heuristics, on the other hand, do
not explicitly represent nor traverse the abstract state space, allowing us to use arbitrarily large
abstract state spaces. Implicit-abstraction heuristics generate abstractions in a way that they belong
to tractable fragments of planning problems (Katz and Domshlak, 2010a). For problems in these
tractable fragments, one can take advantage of their structure (usually identified by special properties
of the causal graph) to solve them in polynomial time. Some examples are forks and inverted forks.

Symbolic-abstraction heuristics Symbolic-abstraction heuristics proceed in a similar way to
explicit-abstraction heuristics, precomputing the heuristic values of every state in the state space.
The difference is that symbolic uniform-cost search is used to traverse the abstract state space more
efficiently and the heuristic values are stored in decision diagrams. Symbolic search may lead to ex-
ponential gains in both time and memory, enabling the use of larger state spaces. Ideally, we should
choose abstractions as informed as possible while keeping the search tractable. Unfortunately, prov-
ing that a symbolic search exploration of a given problem is tractable is not a trivial task. Kissmann
and Hoffmann (2013); (2014), analyze in which cases it is possible to prove that a given SAS+ prob-
lem has efficient BDD explorations under some variable orderings, by looking at its causal graph.
The answer is mostly negative: even for simple causal graphs one cannot prove the existence of vari-
able orderings that make the symbolic search tractable. According to Kissmann and Hoffmann, “the
evidence speaks against a strong connection between causal graph dependencies, and dependencies
as relevant for BDD size”.

Therefore, symbolic abstraction heuristics rely, as their explicit counterpart, on “small enough”
abstract state spaces to guarantee that they can be completely traversed. Symbolic search is still

6.3. PATTERN DATABASES 97

useful to search larger state spaces than explicit abstractions.

6.3 Pattern Databases
Pattern Databases (PDBs) were originally defined as a selection of tiles in the sliding-tiles puz-
zle (Culberson and Schaeffer, 1998) and later extended to other domains. More general definitions
have been applied, shifting the focus from the mere selection of care variables to different state-space
abstractions (Holte et al., 2004). In automated planning, the pattern is usually defined as a selection
of state variables, while the value of other variables is ignored (Edelkamp, 2001). A distinction
must be made between the meaning of the term pattern database in the heuristic search and plan-
ning communities. While in the heuristic search community the term PDB is usually applied to any
kind of abstraction heuristic whose values are precomputed and stored in a lookup table, in planning
those are considered explicit-abstraction heuristics. Thus, in the planning community, the term is
more specific regarding the type of abstractions considered. Other types of abstractions in planning
like Cartesian abstractions (Seipp and Helmert, 2013) or merge-and-shrink abstractions could be
considered more complex patterns for PDBs in the heuristic search community. In this thesis, we
consider the definition of PDB commonly adapted in the planning community, that is, a projection
of the original planning task over a subset of variables.

Definition 6.5 (Projection (Helmert et al., 2007; Helmert et al., 2014)). A projection of the planning
task, Π, over a subset of variables V ∈ V is defined by restricting the initial state, goals and
preconditions/effects of the operators to V . In other words, a projection is an abstraction, α, so that
two states s and t are equivalent if and only if they agree on the value of variables in V , i. e., s ∼α t
if and only if s[v] = t[v] for all v ∈ V .

Different extensions to improve the performance of PDBs have been proposed, such as PDB
compression (Felner et al., 2007; Ball and Holte, 2008). Other extensions relevant for this thesis that
can also be used with other types of abstraction are:

• Constrained Pattern Databases (Haslum et al., 2005) enhance PDBs by using problem in-
variants. Since some invariants might be lost in the abstracted state space, we can safely
prune abstract states in which the invariants do not hold. Admissibility is still preserved, since
pruned states are also unreachable in the original state space. In particular, mutex and mono-
tonicity invariant groups forbid two mutually exclusive propositions to hold in the same state.
Thus, abstract states in which two mutex propositions appear are automatically pruned.

• Partial Pattern Databases (Anderson et al., 2007) aim at searching larger abstract state
spaces at the expense of not fully traversing these abstract spaces. The backward search is
truncated at goal distance d so that the distance of any expanded abstract state is known. States
that were not expanded are assigned the next value larger than d. If the partial PDB takes into
account all the problem variables, it searches a perimeter around the goal (Dillenburg and
Nelson, 1994; Manzini, 1995).

• Perimeter Pattern Databases (Felner and Ofek, 2007) combine perimeter search and PDBs
by storing the distance to states in the perimeter instead of the distance to the goal, though
they were reported not to be better than the maximum between the PDB and the perimeter
heuristic. More recently, perimeter PDBs have been applied in the context of automated plan-
ning (Eyerich and Helmert, 2013) showing that perimeter search can enhance the performance
of standard PDBs contradicting the impressions of Felner and Ofek. A complete explanation

98 CHAPTER 6. ABSTRACTION HEURISTICS

of Perimeter PDBs is given in Chapter 8. Another extension considered storing different en-
tries in the PDB for the distance to each state in the perimeter (Linares López, 2008) which
was also shown to be beneficial.

6.3.1 Pattern Selection

The performance of PDBs greatly depends on the patterns chosen to make the abstractions. How to
select PDB patterns has been an open question for a long time, though some progress has been made.
For example, there have been studies of which patterns are best for particular combinatorial domains
like sliding-tiles puzzle (Felner et al., 2004). The intuition is that the PDBs must select variables that
are coupled. In the sliding-tiles puzzle this means to choose tiles that are close together in the goal
state and preferably near to a corner.

In domain-independent planning, the pattern selection must be done for each problem without
domain-specific knowledge. As we only consider projection abstractions, this is simplified to select-
ing a subset of SAS+ variables. State-of-the-art methods for selecting patterns are based on a search
in the space of possible patterns. Different types of search can be used like hill climbing (Haslum
et al., 2007) or genetic algorithms (Edelkamp, 2006).

Some patterns may be skipped if they do not fit the following conditions:

• All patterns must include at least one goal variable, or else the heuristic value of every abstract
state is zero.

• Every variable in the pattern is relevant. A variable v is relevant if and only if v is a goal
variable or there exist another relevant variable in the pattern, v′, and operator in the planning
task, o = (pre(o), eff (o), c(o)), such that v ∈ Vpre(o) and v′ ∈ Veff (o). If a variable is not
relevant, it enlarges the size of the abstract state space for no reason and can be removed.

To select which patterns are better, they are evaluated by searching the abstract state space and
comparing which patterns derive larger heuristic estimates.

6.3.2 Limitations of Pattern Databases

Even assuming an oracle that is able to predict the best patterns for a given problem, the capabilities
of PDBs have been proved to be quite restricted for some typical benchmarks (Helmert et al., 2007;
Helmert et al., 2014). As an example, take a logistics task with m trucks, where one or more
packages have to be picked up in location A and transported to location B. The plan consists of
moving a truck to location A, loading the packages, moving the truck to location B and unloading
the packages. If one single truck location is not included in the PDB, the truck is considered to
be anywhere. In that case, the omitted truck may tele-transport all the packages without making a
single move action. Therefore, in a domain like the one presented, some actions cannot be captured
by PDBs unless they consider every truck — which means having an exponentially sized abstract
state space in the number of truck variables.

6.4 Merge-and-Shrink
Merge-and-shrink (M&S) is an algorithm that derives abstractions that take into account all the
problem variables, thus overcoming the major limitation of PDB abstractions. M&S was originally

6.4. MERGE-AND-SHRINK 99

Algorithm 6.1: Merge-and-shrink (Helmert et al., 2014)
Input: Planning task Π, size bound M
Output: M&S abstraction α

1 A := {πv | v ∈ V}
2 while |A| > 1 do
3 Select α1, α2 ∈ A
4 Shrink α1 and/or α2 until |α1| · |α2| < M
5 α′ := α1 ⊗ α2

6 Shrink α′

7 A := (A \ {α1, α2}) ∪ {α′}
8 return the only abstraction in A

proposed in the context of directed model checking (Dräger et al., 2006; Dräger et al., 2009) and
later adapted to planning (Helmert et al., 2007; Helmert et al., 2014).

Formally, M&S abstractions are constructed using the following rules:

(A) Atomic projections: For v ∈ V , the atomic projection πv of the task over a single variable v is
an M&S abstraction over {v}.

(S) Shrinking: If β is an M&S abstraction over a set of variables W ⊆ V and γ is a function on
Sβ , then γ ◦ β is an M&S abstraction over W .

(M) Merging: If α1 and α2 are M&S abstractions over disjoint sets of variablesW1,W2 ⊂ V,W1∩
W2 = ∅, then α1 ⊗ α2 is an M&S abstraction over W1 ∪W2.

Rule (A) allows the algorithm to start from atomic projections, one for each variable. Rule (S)
further abstracts an abstraction β by aggregating an arbitrary number of abstract states into the same
abstract state. This reduces the total number of abstract states in the abstraction. Formally, this
simply means to apply an additional abstraction γ to Θβ . In rule (M), the merging step, the merged
abstraction α1⊗α2 is defined by (α1⊗α2)(s) := (α1(s), α2(s)). In other words, the new abstraction
has |α1| × |α2| states, one per each pair sα1

∈ Θα1 , sα2
∈ Θα2 . The state space i n rule (M) is

obtained with the synchronized product Θα1 ⊗Θα2 .
The synchronized product of two abstractions α1 and α2 is a standard operation deriving a new

state space Θα1⊗α2 = (S ′, L, T ′, s′0,S ′?) where S ′ = Sα1 × Sα2 , T ′ = {((s1, s2), l, (s′1, s
′
2)) |

(s1, l, s
′
1) ∈ Tα1 ∧ (s2, l, s

′
2) ∈ Tα2}, s′0 = (sα1

0 , sα2
0) and S ′? = {(s1, s2) | s1 ∈ Sα1

? ∧ s2 ∈ Sα2
? }.

The constraint W1 ∩W2 = ∅ ensures that this is correct, i. e., that Θα1 ⊗Θα2 = Θα1⊗α2 .
Algorithm 6.1 shows the pseudocode of the M&S algorithm. It takes as input a planning task and

a parameter M that imposes a bound on the abstraction size, i. e., no abstraction in the process will
have more than M abstract states. The algorithm initializes a pool of abstractions with the atomic
projection with respect to every variable v ∈ V . While there is more than one abstraction left in the
pool, the algorithm selects two abstractions and merges them, replacing them by their combination.
Prior to every merging step, a shrinking step is applied to both selected abstractions, if necessary for
the merged abstraction to satisfy the size bound M . Also, the resulting abstraction may be shrunk
with an exact strategy such as the bisimulation strategy that we describe in detail in Section 6.4.2.
This shrinking step aims to reduce the abstraction size without losing any information about the
original problem.

M&S is a generalization of PDBs, since for any PDB we can construct an equivalent M&S ab-
straction just by merging the atomic abstractions that correspond to variables in the pattern. Variables

100 CHAPTER 6. ABSTRACTION HEURISTICS

not in the pattern are shrunk to a single abstract state, so that the abstraction does not distinguish their
value, just as PDBs. However, using different shrink strategies M&S can derive abstract state spaces
that PDBs cannot, e. g., considering all the variables of the problem while keeping the abstract state
space small enough.

To implement M&S in practice, we need a merging strategy deciding which abstractions to merge
in rule (M), and a shrinking strategy deciding which (and how many) states to aggregate in rule (S).
The performance of M&S greatly depends on the policies chosen for these steps.

6.4.1 Merge Policies

A merge policy decides which two abstractions to merge next. We say it is a linear merging strategy
if, at each merge step, at least one of the two abstractions to be merged is an atomic abstraction
(single variable abstraction). The rough idea is that SAS+ variables are greedily chosen to construct
a larger state space by computing the (synchronized) product of the existing state space and the one
induced by the next SAS+ variable. In this case, the merge policy is characterized by the order
by which the variables are merged, v1, . . . , vn (hence “linear”). Even though the original work of
Dräger et al. in Model Checking used a non-linear strategy, in planning, non-linear merge strategies
have been introduced only recently (Sievers et al., 2014). Hence, all the merging strategies we will
consider are linear.

Merging strategies usually determine the variable ordering a priori, selecting variables according
to different criteria. The criteria used to select the variable ordering are based on the causal graph
relationships.

• cg: prefer variables that are causally connected in the causal graph with the already merged
variables. This criterion selects variables that are relevant for previously selected variables.

• goal: prefer goal variables over non-goal variables. This criterion attempts to consider the
goals of the problem as soon as possible.

Ties are broken either randomly or according to level and reverse-level, i. e., the internal variable
order of the Fast Downward planning system (Helmert, 2006b) or the reverse order. The best results
reported with M&S used a reverse level strategy (Nissim et al., 2011; Helmert et al., 2014).

6.4.2 Shrink Policies

A shrinking policy takes as input a transition system (an abstract state space) and decides which
abstract states must be aggregated in order to reduce the number of abstract states. All aggregated
states are considered equivalent by the resulting abstraction. Thus, the output of the shrinking policy
is an equivalence relation∼ on abstract states. Optionally, the shrinking policy may take a parameter,
M , that determines the maximum number of abstract states after the shrinking.

Several properties may be defined depending on which abstract states are aggregated. A shrink-
ing policy is locally h-preserving with respect to a state space if it only aggregates states with the
same goal distance in the abstract state space, Θα, i. e., s ∼ t only if hα(s) = hα(t). A shrink-
ing policy is globally h-preserving if it only aggregates states that have the same goal distance in
the original state space, Θ, i. e., for every pair of abstract states s, t and assignment to non-relevant
variables dV\Vα , s ∼ t if and only if hα⊗ΠV\Vα (s ∪ dV\Vα) = hα⊗ΠV\Vα (t ∪ dV\Vα). When using
a globally h-preserving strategy M&S always derives the perfect heuristic, h∗, since the shrinking
keeps all the information that is relevant for the heuristic.

6.4. MERGE-AND-SHRINK 101

Similar properties of locally/globally g-preserving can be defined with respect to the g-value of
abstract states. Furthermore, we say that a policy is locally/globally f -preserving if and only if it is
both locally/globally g-preserving and locally/globally h-preserving.

The first shrinking strategy for planning, fh-shrinking, was based on these properties (Helmert
et al., 2007). fh-shrinking aggregates states having the same g and h values in the abstract state
space until only M abstract states are left. It prefers aggregating states far away from the initial or
goal states, i. e., those with highest f value, breaking ties in favor of states far away from the goal
(with highest h value). Thus, fh-shrinking is a locally f -preserving strategy. However, it was clearly
outperformed by bisimulation-based shrinking (Nissim et al., 2011; Helmert et al., 2014).

Definition 6.6 (Bisimulation). Let Θ = 〈S,L, T, s0, S?〉 be a labeled transition system. An equiva-
lence relation ∼ on S is a bisimulation for Θ if, whenever s ∼ t (in words: s and t are bisimilar), a
transition s l−→ s′ exists if and only if there exists another transition t l−→ t′ such that s′ ∼ t′. We say
that ∼ is goal-respecting for Θ if ∼⊆∼G, where s ∼G t if and only if either s, t ∈ S? or s, t 6∈ S?.
We say that ∼ is a coarsest goal-respecting bisimulation if, for every goal-respecting bisimulation
∼′, we have ∼′⊆∼.

In words, two (abstract) states s and t are bisimilar if they agree on whether or not the goal is
true and every planning operator applied on s and t leads to states that are bisimilar. Even though
the definition is recursive, a coarsest goal-respecting bisimulation always exists and can be com-
puted in time polynomial in the size of the problem. The bisimulation shrinking strategy computes
the coarsest bisimulation, i. e., it aggregates all states that are bisimilar. Moreover, bisimulation is
globally h-preserving, so if only bisimilar states are aggregated, then M&S is guaranteed to derive
the perfect heuristic.

Furthermore, label reduction may be applied to consider some operators equivalent, preserving
the heuristic global optimality while potentially reducing the size of the abstraction. This reduction
can be exponential in the problem size, allowing M&S to derive perfect heuristics in polynomial time
in more cases. In this thesis we consider the non-exact label reduction (Nissim et al., 2011; Helmert
et al., 2014) though a stronger exact label reduction was later proposed (Sievers et al., 2014).

In most benchmark domains, however, coarsest bisimulations are still large even under label
reduction. In those cases it is possible to further reduce the size by applying another shrinking
policy or to relax the bisimulation property. Relaxed variants of bisimulation only take into account
a subset of transitions. Greedy bisimulation ignores all the transitions going to states further from the
goal (i. e., (s, l, s′) such that hα(s) < hα(s′) + c(l)). Since all abstract optimal paths are preserved,
greedy bisimulation is locally h-preserving. Label-catching bisimulation only takes into account
transitions labeled with a previously selected set of relevant labels (Katz et al., 2012). Even though
it has been shown that for some label subsets label-catching bisimulation is globally h-preserving, in
general, it is intractable to compute such sets of labels. Instead, heuristics criteria approximate sets
of label, without guarantees of being locally or globally preserving.

6.4.3 Cascading-Tables Representation of M&S
The cascading-tables representation is the data structure commonly used to represent M&S abstrac-
tions. It was first used by (Dräger et al., 2006) and presented in detail by (Helmert et al., 2014).
It provides efficient operations to perform any of the three M&S abstraction rules defined in Sec-
tion 6.4.

The cascading tables represent every intermediate M&S abstraction by means of a table, as
shown in the example of Figure 6.1. This example shows a logistics task in which there are two

102 CHAPTER 6. ABSTRACTION HEURISTICS

locations: the left location, L, and the right one, R. A number of packages are initially located at
L and must be delivered to R, by using the truck T . Thus, the task has one variable per package to
identify its position (L, T , or R) and a variable identifying the location of the truck (L or R).

L R

T

(a) Task of the example. Packages must be transported from location L to location R with the truck T .

vi
L 0
T 1
R 2

(A) πi

HH
HHHπ1

π2 0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

(M) π1 ⊗ π2

HH
HHHπ1

π2 0 1 2

0 0 1 3
1 1 2 4
2 3 4 5

(S) α1 := γ1 ◦ (π1 ⊗ π2)

Figure 6.1: Example of cascading-tables M&S representation. Subfigure (a) shows the task for
our example while subfigures (A), (M) and (S) correspond to the application of M&S rules in the
cascading-tables representation.

Each table represents an intermediate abstraction with relevant variables W ⊆ V . These ta-
bles recursively define the mapping between states in ΘW to abstract states. Each abstract state is
identified with a number, from 0 to |α|−1, where |α| the number of abstract states in the abstraction.

Atomic abstraction tables (rule A) associate every possible value of the variable with an abstract
state. The algorithm always starts with the atomic abstractions respective to each variable (rule A),
πi. In our example, we just consider two abstractions describing the position of two packages: π1

and π2. The atomic abstraction maps each value of the variable (L, R, and T) to an abstract state. In
our example, each value is mapped to a different abstract state, without any shrinking. For example,
abstract state 1 of π1 corresponds to having package-1 in the truck.

In each iteration, the M&S algorithm merges two abstractions (rule M). The resulting abstraction
is the synchronized product (⊗) of both abstractions, i. e., it has an abstract state for each pair of states
of the input abstractions. Non-atomic abstractions are represented with a two-dimensional table, in
which rows and columns correspond to abstract states of the merged abstractions. In our example,
table (M) shows the product of atomic abstractions π1 and π2. This table associates each pair of
abstract states in π1 and π2,

〈
sπ1
i , s

π2
j

〉
, to the ID of an abstract state. The synchronized product

just needs to set a different id for each cell in the table, so that all the pairs
〈
sπ1
i , s

π2
j

〉
correspond to

different abstract states. For example, abstract state 1 of π1⊗π2 represents states in which package-2
is in the truck and package-1 is at L.

The abstraction in Figure 6.1M can be merged again with a new atomic abstraction π3. The
result would be a new table with one column for each abstract state in π3 and one row for each
abstract state in π1⊗π2, for a total of 27 cells. As the number of abstract states grows exponentially
with the number of merge steps, the size of the abstractions must be reduced at some point. This is
done with the shrinking operation (rule S). The shrinking operation reduces the number of abstract
states by applying a function γ that maps the abstract states to a new set of abstract states, producing
a new abstraction, α1. In our example, the mapping γ1 corresponds to consider that packages are
interchangeable. It is equivalent to have package-1 at L and package-2 at R or vice versa. Thus,

6.5. SUMMARY 103

γ1(2) = γ1(6) = 3 and abstract state sα1
3 correspond to states in which (v1 = L∧ v2 = R)∨ (v1 =

R ∧ v2 = L). Applying a mapping γ in the cascading tables is again immediate, changing the value
of each cell in the table accordingly.

An additional lookup table stores the precomputed optimal cost for each abstract state in the final
M&S abstraction α. During the search, the heuristic value of a particular state s is retrieved in two
steps. The first step gets the abstract state α(s) from the cascading-tables representation and step
2 gets the heuristic value from the lookup table. To retrieve the abstract state associated with any
state s, we recursively look up the tables, returning the abstract state ID associated with the values
of s. For example, consider the partial state 〈L,R〉 in which package-1 is at L and package-2 is at
R. The retrieval algorithm first checks the tables related to π1 and π2, obtaining abstract states 0 and
2, respectively. Then, these values are used to perform a lookup in the α1 table, to retrieve the value
3. An additional lookup on a table of heuristic values, which is not shown in our example, is needed
in order to retrieve the heuristic value of abstract state number 3.

6.5 Summary
In this chapter we have reviewed state-of-the-art abstraction heuristics for domain-independent plan-
ning: pattern databases (PDBs) and merge-and-shrink (M&S). While PDBs have had successful
results in the past, they only use a subset of variables, which is an important limitation for some
planning domains. M&S is a generalization of PDBs that derives flexible heuristics, addressing the
main limitation of PDBs. In the following chapters we will make use of PDBs and M&S abstractions
in combination with symbolic search.

104 CHAPTER 6. ABSTRACTION HEURISTICS

Chapter 7

Symbolic Representation of
Merge-and-Shrink Heuristics

Recent advances in heuristics for explicit-state search planning have not been extrapolated to the
case of symbolic search. While symbolic search planners use symbolic PDBs, explicit-state search
planners have benefited from alternatives such as M&S abstractions, a generalization of PDBs.

In this chapter, we consider the use of M&S heuristics in symbolic search planning. M&S
heuristics precompute and store the heuristic values in a data structure called cascading tables. In
order to evaluate sets of states at once, we represent the heuristic by means of decision diagrams. For
these purposes, we study how the cascading-tables representation can be automatically transformed
to a symbolic representation and prove that this is tractable for the M&S heuristics that use a linear
merging strategy.

7.1 Introduction
According to the results of the IPC-2011, the most successful heuristics for cost-optimal planning
are LM-CUT (Helmert and Domshlak, 2009) and M&S (Helmert et al., 2014). However, none
of these heuristics have been used in symbolic heuristic search. Current state-of-the-art symbolic
planners like GAMER make use of Symbolic PDB heuristics. As introduced in Chapter 6, using a
heuristic in symbolic search is not straightforward since sets of states must be evaluated at once.
An evaluation per state is possible, though the benefits of the symbolic search may be hindered.
Abstraction heuristics are a good fit for symbolic search because they can precompute the heuristic
value of every state and encode them in a symbolic representation, as a list of BDDs. In this chapter,
we consider using M&S heuristics in symbolic search. The potential of M&S abstractions is clear not
only because they achieved impressive results, but also because they are a generalization of the PDB
heuristics currently used in symbolic search planning (Kissmann and Edelkamp, 2011; Kissmann,
2012).

In order to use M&S heuristics in symbolic search, we have to symbolically represent them with
decision diagrams. We consider two symbolic representations for M&S heuristics: using an Alge-
braic Decision Diagram (ADD) or a list of BDDs. Both representations have equivalent complexity
and there are polynomial transformations between them (see Proposition 2.1 on page 24). As we in-
troduced in Chapter 2, symbolic A∗ uses the representation with a list of BDDs because it eases the
evaluation of sets of states. On the other hand, ADDs are more appropriate for explicit A∗, because

105

106 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

only one lookup is necessary to evaluate a single state. Thus, using a symbolic representation of
M&S heuristics is not only useful for symbolic search, but may also have advantages in the explicit-
search case. The advantages of using a symbolic representation in explicit-state search have already
been studied in the case of Pattern Database abstractions. Ball and Holte showed that ADDs may be
used to compress PDBs in different planning domains with very good compression ratios up to four
orders of magnitude, being only worse than a hash-table approach in a few cases (Ball and Holte,
2008).

However, the potential of the symbolic representation has not been studied in the case of M&S
abstractions yet.1 In this chapter we perform several contributions on this topic, divided into several
sections:

• In Section 7.2, we present an algorithm to automatically transform the cascading-tables rep-
resentation explained in Section 6.4.3 into a symbolic representation. We analyze under
which circumstances we can ensure that the symbolic representation of M&S abstractions
is tractable.

• In Section 7.3, we theoretically compare the ability to generate perfect heuristics of M&S
heuristics and symbolic regression search.

• In Section 7.4, we empirically evaluate the symbolic representation of M&S abstractions. We
also use M&S heuristics in symbolic heuristic planning and compare their performance to that
of symbolic PDBs.

7.2 Symbolic Representation of M&S
The cascading-tables representation of M&S is a data structure that represents the M&S abstraction
heuristics. As explained in Section 6.4.3, the representation involves two mappings, the abstraction
function α : S → Sα mapping states in S to abstract states in Sα and the precomputed cost for the
abstract states h∗α : Sα → R+

0 ∪ {∞}. Combining both mappings results in the desired heuristic
function, h : S → R+

0 ∪ {∞}.
The key observation is that, when a linear merging strategy is used, the cascading-tables repre-

sentation of an M&S abstraction can be cast as an ADD. This means that it is possible to construct an
ADD that represents the same function as the cascading-tables representation in polynomial time.
We first develop the intuition behind this correspondence with two different examples. Then, we
present a simple algorithm that computes the ADD representation of any given M&S heuristic, as-
suming a linear merging strategy. We conclude this section with our main result that the size of the
resulting ADD is polynomially bounded with respect to the size of the cascading-tables representa-
tion and that our transformation algorithm runs in polynomial time.

Figure 7.1 illustrates the correspondence between the cascading-tables representation of a linear
M&S heuristic and the ADD representation with a simple example: a simplified VISITALL task
that ignores the location of the robot. In our example, there are five independent Boolean variables,
υ1 to υ5. The goal is to make all variables true and each operator oi makes variable vi true. The
initial state is not relevant for us, since we want to obtain a heuristic function that estimates the
distance to the goal from any state in the state space. We run M&S with a linear merging strategy
and bisimulation shrinking. M&S with bisimulation derives the perfect heuristic, which consists of
counting the number of variables that remain false in the state.

1In an independent research, Helmert et al. (2014) also considered the relationship between the cascading-tables and the
ADD representation.

7.2. SYMBOLIC REPRESENTATION OF M&S 107

sα5
0 sα5

1 sα5
2 sα5

3 sα5
4 sα5

5

h 5 4 3 2 1 0

υ5 sα4
0 sα4

1 sα4
2 sα4

3 sα4
4

⊥ 0 1 2 3 4
> 1 2 3 4 5

α5

υ4 sα3
0 sα3

1 sα3
2 sα3

3

⊥ 0 1 2 3
> 1 2 3 4

α4

υ3 sα2
0 sα2

1 sα2
2

⊥ 0 1 2
> 1 2 3

α3

υ2 sα1
0 sα1

1

⊥ 0 1
> 1 2

α2

υ1

⊥ 0
> 1

α1

(a) Cascading tables M&S

5 4 3 2 1 0

υ5 sα4
0 sα4

1 sα4
2 sα4

3 sα4
4

υ4 sα3
0 sα3

1 sα3
2 sα3

3

υ3 sα2
0 sα2

1 sα2
2

υ2 sα1
0 sα1

1

υ1

(b) ADD M&S

Figure 7.1: Relation between cascading-tables and ADD representation for M&S with a linear merg-
ing strategy. Each ADD layer corresponds to one cascading table and each ADD node corresponds
to a column of the table associated with its layer.

Figure 7.1a depicts the cascading-tables representation of the M&S heuristic. As we are consid-
ering a linear merge ordering, at each step we add a new variable vi. Each table corresponds to an
abstraction αi that considers i variables. Rows of the table directly correspond to different values of
vi, > and ⊥ (note that for simplicity we are omitting the tables related to atomic abstractions). Each
column of a table corresponds to abstract states of previous abstractions. For example, the value 1
in the table that represents α2 corresponds to the column sα3

1 of the table that represents the next
abstraction, α3.

The table that represents each αi, encodes equivalences between pairs
〈
sαi−1, vi

〉
. For example,

in α2, 〈sα1
1 , v2 = ⊥〉 ≡ 〈sα1

0 , v2 = >〉 ≡ sα2
1 . Thus, both combinations are considered equivalent.

In our example, each state sαji corresponds to having i variables true and the remaining j−i variables
false. In the last layer, the heuristic values of each abstract state sα5

i correspond to counting the
number of variables that remain false: 5− i.

Figure 7.1b depicts the corresponding ADD representing the heuristic hα5 . The figure is orga-
nized to highlight the similarity between both representations. Every level in the ADD corresponds

108 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

to an intermediate abstraction αi. Each abstract state of the intermediate abstraction is represented
with an ADD node on the corresponding ADD level. To highlight this correspondence, ADD nodes
are labeled in the figure with the abstract state they correspond to. In the last level, terminal ADD
nodes correspond to the heuristic value of abstract states of the final M&S abstraction, sα5

i . The
tables in the cascading-tables representation are just an alternative to represent the ADD edges, i. e.,
the mapping from ADD nodes in one layer to the next one. sα2

1 has two incoming edges: a 1-edge
from sα1

0 and a 0-edge from sα1
1 . These two edges correspond to the two cells with value 1 in the

table representing α2, since 0-edges correspond to vi = ⊥ and 1-edges to vi = >.
To build the analogy between the M&S construction process and an ADD, we can relate the two

operations in M&S, merge and shrink, with the modifications that they imply in the ADD repre-
sentation. As reflected in Figure 7.1, merging a new variable to a M&S abstraction corresponds to
adding a new layer to the ADD. The shrinking operation that aggregates several abstract states into
one, corresponds to the application of ADD reduction rules. Figure 7.2 shows an example where two
abstract states, AA and AB, are shrunk. After the shrinking both AA and AB become equivalent in
the abstract state space, so that they will get assigned the same heuristic value. In the corresponding
ADD representation, this means that the nodes that represented AA and AB will become equivalent
according to the reduction rules, because they represent exactly the same function. In Figure 7.2b
the assignments TA ∧PB and ¬TA ∧PB that correspond to the package being at B point both to the
same node.

AA BA

AT BT

AB BB

moveA,B

moveB,A

moveA,B

moveB,A

moveA,B

moveB,A

load/unloadA

load/unloadB

(a) Shrinking in M&S.

TA

PB

PT

AA AT AB+BB BA BT

(b) Reduction rule in ADD.

Figure 7.2: Correspondence between shrinking in M&S and ADD reduction rules. A task with a
package, a truck, and two locations, A and B. The two abstract states in which the package is at B,
AB and BB, are shrunk and get represented by the same ADD node, AB +BB.

The example of Figure 7.1b is very convenient to highlight the correspondence between
columns/cells of each cascading table and ADD nodes/edges. Thanks to the simplicity of our ex-
ample, there is a total correspondence between abstract states and ADD nodes. However, in a more
general case, the correspondence may be slightly more complicated because other aspects must be
contemplated:

1. SAS+ variables may have more than two values. As explained in Chapter 2, a logarithmic
number of BDD variables is used to represent each SAS+ variable in those cases.

2. M&S may prune some abstract states if they are detected as unreachable or dead-ends in the
abstract state space.

7.2. SYMBOLIC REPRESENTATION OF M&S 109

3. In the example of Figure 7.1b, bisimulation shrinking finds all the equivalences between ab-
stract states, and there is a one-to-one correspondence between abstract states and ADD nodes.
In a more general case, there may be more abstract states than ADD nodes. In those cases,
ADD reduction rules determine that two or more abstract states are equivalent even though
they were not shrunk. We will analyze the impact of ADD reduction rules in shrinking poli-
cies in Section 7.3.

Figure 7.3 shows a more general example of the mapping between the cascading-tables repre-
sentation and an ADD. Our second example, based on one by Helmert et al. (2014), is a logistics
task with two packages and a truck. There are two locations, left L and right R. The task has three
different variables: p1 and p2 represent the location of the two packages, which can be at left L, at
right R or in the truck T . The variable t represents the position of the truck, which can be placed
at left L or at right R. Initially, the packages and the truck are at L and the goal is to carry both
packages to the right.

The entire state space of the task is shown in Figure 7.3a and highlights the mapping induced
by the M&S abstraction. In this case, we have chosen the abstraction mapping by hand to make an
informative example. The abstract state spaces of the intermediate M&S abstractions are shown in
Figure 7.3b.

The cascading-tables representation of the M&S heuristic shown in Figure 7.3c represents the
mapping from states in the original state space to abstract states through three tables, α1, α2, and
α3. Figure 7.3c depicts the ADD representation of this M&S heuristic, following the same variable
ordering as the linear merging strategy used by M&S. As before, each cascading table corresponds
to an ADD layer, and each abstract state in the abstractions is represented through an ADD node.
However, the picture is not as clear as in our first example due to the aforementioned aspects.

First, there are ADD nodes that are not associated with any abstract state. Those nodes are
auxiliary nodes specifically created to cope with SAS+ variables with more than two values. The
root node needs to differentiate among values L, T and R, but ADD nodes only have two edges.
Therefore, an auxiliary node is added in order to represent three outgoing edges from the root node.

Secondly, even though each abstract state is associated with an ADD node, some of them may
be removed or aggregated by the ADD reduction rules. In our example, sα2

0 , sα2
1 , sα2

2 and sα2
5 are

not necessary because, according to the cascading table, both edges point to the same result. Also,
several abstract states are represented by a single ADD node, whenever they represent the same
function. This is the case of sα2

3 and sα2
4 , which are equivalent in the cascading tables. In summary,

the ADD may be in a more compressed form because it takes advantage of knowing the full diagram,
while M&S abstractions are constructed incrementally.

Finally, our example does not show any unreachable or dead end abstract state, but they can
easily be managed as well. Every abstract state pruned by the M&S heuristic is associated with a
terminal ADD node that corresponds to the value∞.

7.2.1 M&S to ADD Algorithm
Given the one-to-one correspondence between M&S abstract states and ADD nodes, the algorithm
to obtain the ADD representation of an M&S heuristic with linear merge is straightforward. Algo-
rithm 7.1 computes the ADD from the cascading-tables representation of an M&S heuristic. The
algorithm computes an ADD node for each abstract state of all intermediate abstractions in a bottom-
up approach (as decision diagrams are usually built). ADD nodes are built with two functions:
ADD-constant and ADD-value. ADD-constant generates a terminal node associated with
an integer constant. ADD-value receives a variable υi and a value in the domain of the variable

110 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

LLR

LLLstart

TLR

TLL

LTL

LTR

RLR

TTL

LRR

RLL

TTR

LRL

RTL

RTR

TRR

TRL

RRR

RRL

sα0

sα1

sα2

sα2

sα3

sα3

sα4

sα5

(a) Original state space, partitioned according to α3.

s
α1
0start s

α1
1 s

α1
2

s
α2
0start

s
α2
1

s
α2
2

s
α2
3

s
α2
4

s
α2
5

s
α3
0start s

α3
1

s
α3
2 s

α3
3

s
α3
4 s

α3
5

(b) Abstract state spaces for α1, α2,
and α3.

υ1
L 0
T 1
R 2

α1

υ2 sα1
0 sα1

1 sα1
2

L 0 0 2
T 0 1 3
R 2 4 5

α2

υ3 sα2
0 sα2

1 sα2
2 sα2

3 sα2
4 sα2

5

L 0 1 2 4 4 5
R 0 1 2 3 3 5

α3

sα3
0 sα3

1 sα3
2 sα3

3 sα3
4 sα3

5

h 3 2 3 2 1 0

(c) Cascading tables M&S.

p1

sα1
0 sα1

1 sα1
2

p2

sα2
3 , sα2

4t

0123

p1 = L p1 = T
p1 = R

T,L R

L T

R

L

T

R

L R

(d) ADD M&S.

Figure 7.3: Relation between cascading-tables and ADD representation for M&S. The linear merg-
ing strategy corresponds to the ordering p1, p2, and t.

7.2. SYMBOLIC REPRESENTATION OF M&S 111

Algorithm 7.1: M&S Heuristic to ADD
Input: A list of cascading tables T1, . . . , Tn and heuristic values of αn, h∗αn
Output: The root node of an ADD that represents h∗αn

1 for abstract state sαni ∈ αn do
2 ADDn,i ← ADD-constant(h∗αn(sαni))

3 for layer l ∈ [n− 1 . . . 0] do
4 for abstract state si ∈ αl do
5 if Tl[si] = pruned then
6 ADDl,i ← ADD-constant(∞)
7 else
8 ADDl,i ←

∑
d∈υl

(
ADD-value(υl, d)× ADDl+1,Tl[i,d]

)
9 return ADD0,0

d ∈ Dυi and returns an ADD that represents a function f such that f(d) = 1 and f(d′) = 0 for all
d′ ∈ Dυi , d

′ 6= d.
The algorithm maintains a matrix named ADD with one entry per abstract state in every interme-

diate abstraction. Let ADDi,j denote the ADD node that corresponds to the abstract state sαij . Note
that we do not explicitly check the ADD reduction rules, since the CUDD BDD library (Somenzi,
2012) automatically applies them (e. g., all the calls to ADD-constant(∞) will always return a
reference to the same node). Since several abstract states may be represented with the same node,
the ADD matrix stores only a reference to the nodes.

First, the algorithm generates one terminal ADD node per abstract state in the last layer, with
their heuristic value (line 2). Again, the same node will be used for states with the same heuristic
value (their entries in the ADD matrix reference to the same ADD node).

Then, nodes in the previous layer can be constructed pointing to nodes in layers already com-
puted. A loop iterates over all layers in a bottom-up fashion (line 3). To construct the next layer
of the ADD, the algorithm iterates over all abstract states in the corresponding abstraction (line 4).
For every abstract state in the current layer, the cascading table is used to know which nodes must
be pointed to from the newly generated node. Nodes corresponding to states pruned by M&S are
directly assigned a constant heuristic value of ∞. Otherwise, the node representing the state cor-
responds to the function

∑
d∈υl ADD-value(υl, d)× ADDl+1,Tl[i,d]. This function just returns a

node that points to the node indicated by the cascading table (Tl[i, d]) for every value d of variable
vl.

As an intuition to understand how this expression works, sum (+) and multiplication (×) opera-
tions over ADDs that represents 0-1 functions are equivalent to disjunction (∨) and conjunction (∧)
over BDDs, respectively. Thus, the multiplication ADD-value(υl, d) × ADDl+1,Tl[i,d] sets the
node that represent the abstract state indicated by the cascading table, Tl[i, d] as the value assigned
to value d. The sum can be interpreted as a disjunction over all values of the variable. The simpler
example is when υl is a binary variable, since the result of ADD-node is a node whose 1-edge points
to ADDl+1,Tl[i,>] and whose 0-edge points to ADDl+1,Tl[i,⊥]. When υl has more than two possible
variables intermediate auxiliary nodes are needed, as shown in Figure 7.3.When all layers have been
constructed, the algorithm ends returning the reference to the root node of the ADD, ADD0,0.

Adapting algorithm 7.1 to compute the ADD representation of the M&S abstraction function
(that maps states in S to abstract states in Sαn) is straightforward, just assigning terminal nodes the

112 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

ID of each abstract state instead of their heuristic value.

7.2.2 Computational Complexity Analysis
After presenting an algorithm to automatically compute the ADD representation of any M&S heuris-
tic constructed with a linear merging strategy, we analyze the theoretical computational complexity
of the representation and the algorithm to compute it. First, we compare the size of both representa-
tions

First, Theorem 7.1 bounds the size of the ADD representation with respect to the cascading-
tables representation, proving that it has, in the worst case, a linear overhead. Later, in Section 7.3
we prove that the ADD representation might be exponentially smaller than the cascading-tables
representation generated by M&S with bisimulation.

Theorem 7.1. Let α1, . . . , αn be a list of M&S abstractions generated with a linear merging strategy
v1, . . . , vn such that αi+1 = γ(αi ⊗ πi+1). Then, the symbolic ADD representation of the function
hαn : S → R+

0 ∪{∞} under variable ordering v1, . . . , vn has at most
∑n−1
i=0 |αi|(|dom(vi+1)|−1)

nodes.

Proof. Our bound comes from the sum of the nodes of each layer l, which is bounded by
|αl|(|dom(vl+1)|−1). Layer l has at most one node for each abstract state in |αl|, plus intermediate
nodes to connect with layer l + 1, if the variable vl+1 has more than two values.

To discern between all the values of a variable vi, we need to build a binary tree with at
most |dom(vi)| − 1 nodes, so in the worst case the number of nodes employed in layer l is
|αl|(|dom(vl+1)| − 1).

Theorem 7.1 is our main result in this section because it bounds the size of the ADD that repre-
sents the M&S heuristic with respect to the size of the abstractions involved. In the following, we
extend this result with several corollaries that simply extend the bound to other related cases. Corol-
lary 7.3 ensures that the ADD representation of an M&S heuristic can be computed in polynomial
time. Note that all these bounds are only guaranteed if the variable ordering of the ordered decision
diagrams corresponds to the M&S linear merging strategy. Indeed, since the variable ordering may
have exponential impact on the size of the representation, if the variable orders differ no bound is
established at all by Theorem 7.1.

Corollary 7.2. Let α1, . . . , αn be a list of M&S abstractions generated with a linear merging strat-
egy v1, . . . , vn such that αi+1 = γ(αi ⊗ πi+1). Let B be the bound on the number of ADD nodes
established by Theorem 7.1, B =

∑n−1
i=0 |αi|(|dom(vi+1)| − 1). Then Algorithm 7.1 computes the

ADD representation of the M&S heuristic, hαn , in time O (B log(B)).

Proof. Algorithm 7.1 computes the ADD representation of the M&S heuristic by creating the nodes
iteratively, so that it suffices to sum the time in generating each node. Every ADD node is constructed
with a call to ADD-constant (which is performed in constant time) or with the standard ADD sum
and product operations in the expression

∑
d∈υl

(
ADD-value(υl, d)× ADDl+1,Tl[i,d]

)
. Since the

ADDs describing values d of a variable, ADD-value(υl, d), are all disjoint, this operations can
be performed in time proportional to the number of created nodes. Thus, a constant number of
operations is needed for each node, plus a lookup in the table of nodes to ensure the ADD reduction
rules. Therefore, at most B nodes have to be constructed and each node takes O (log(B)) time.

In order to guarantee the correct termination of M&S, shrinking strategies usually take a param-
eter M , which forces the abstractions to be small enough so that |αi||dom(vi+1)| ≤ M . In those

7.2. SYMBOLIC REPRESENTATION OF M&S 113

cases, the size of the ADD can be bounded by Mn, where n is the number of variables and M is the
pre-defined maximum number of states.

Corollary 7.3. Let α1, . . . , αn be a list of M&S abstractions generated with a linear merging strat-
egy v1, . . . , vn such that αi+1 = γ(αi⊗πi+1). Then, the symbolic ADD representation of αn under
variable ordering v1, . . . , vn has at most nM nodes.

Proof. The statement is directly derived from Theorem 7.1 and the definition of M .

Corollary 7.3 ensures that we can use the ADD representation in practice, fixing a predefined
constant to keep the complexity of generating the heuristic under a linear factor.

Corollary 7.4. The size of the ADD representation of an M&S heuristic has, at most, a linear
overhead with respect to its cascading-tables representation.

Proof. This is directly derived from Theorem 7.1. The cascading-tables representation has one table
for each layer with |αl||dom(vl+1)| entries. The ADD representation uses |αl|(|dom(vl+1)| − 1)
nodes. The linear overhead comes from the memory needed for each ADD node with respect to each
table entry.

Corollary 7.4 is an important result because it guarantees that substituting the cascading-tables
representation with an ADD has, at most, a linear overhead. In Section 7.3 we will see that the ADD
reduction rules might exponentially reduce the size of the cascading-tables representation obtained
with state-of-the-art shrinking strategies. In this case, the reduction rules can be applied over the
cascading-tables representation as well, but only after the whole heuristic has been generated — as
opposed to symbolic search, which generates BDDs in compact form.

Corollary 7.5. Let α1, . . . , αn be a list of M&S abstractions generated with a linear merging strat-
egy v1, . . . , vn such that αi+1 = γ(αi ⊗ πi+1).

Then, the symbolic ADD representation of the function αn : S → Sαn under variable ordering
v1, . . . , vn has at most

∑n−1
i=0 |αi|(|dom(vi+1)| − 1) nodes.

Proof. The proof of Theorem 7.1 applies in this case as well, since the cascading-tables representa-
tion represents the mapping from states to abstract states.

Corollary 7.5 implies that M&S heuristics and M&S abstraction mappings can be efficiently
represented with ADDs. This fact will be exploited later in Chapter 8.

Corollary 7.6. Let an M&S heuristic run with a bound M on the maximum size of an abstraction,
|αi ⊗ πi+1| ≤M . The representation of an M&S heuristic, hαn , as a sequence of BDDs associated
with heuristic valuesH = 〈h0, . . . , hmax〉 can be computed in time and space O (|H|nM log(nM)).

Proof. It immediately follows from Corollary 7.3 and the linear transformation from an ADD a to a
sequence of k BDDs in time and space O (k|a|) (see Proposition 2.1 in Section 2.7).

Finally, Corollary 7.6 proves that there exists an efficient transformation of the M&S heuristic to
a sequence of BDDs. This is a suitable encoding for heuristics in symbolic A∗ search, so we have
enabled the use of M&S heuristics in symbolic A∗ search.

114 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

7.3 Complexity of Computing Perfect Heuristics
As we introduced in Chapter 6, running M&S with any merging strategy and bisimulation shrinking
is a domain-independent method to obtain the perfect heuristic for every state in the domain. One
of the major theoretical strengths of M&S abstractions is that they are capable of computing perfect
heuristics in polynomial time for some domains where PDBs or other planning heuristics cannot. A
distinguishing example is the GRIPPER domain, where one robot has to carry balls from one room to
another. The state space of the task is exponential in the number of balls the robot must carry, since
all balls can be used interchangeably. Bisimulation is able to exploit these symmetries to construct
the perfect heuristic for the domain (Nissim et al., 2011).

Another method to derive the perfect heuristic for a planning task is symbolic regression search.
Again, previous work proved that the perfect heuristic for the GRIPPER domain can be derived in
polynomial time and space using symbolic search (Edelkamp and Kissmann, 2008a).

In the previous section, we have shown that symbolic representations can represent M&S heuris-
tics with at most a linear overhead with respect to the cascading-tables representation. The fact
that any M&S heuristic can be represented as a sequence of BDDs of polynomial size triggers the
question of whether symbolic search can be used instead. In this section, with the aim of improv-
ing our understanding of the relationship between both techniques, we compare the ability of both
approaches to represent and compute perfect heuristics.

7.3.1 Representation of Perfect Heuristics
In this section, we compare the size of the symbolic representation with that of M&S abstractions
derived with bisimulation shrinking. While the overhead to symbolically representing any M&S
heuristic is at most linear in the size of the planning task, we show that the opposite does not hold,
i. e., there exist planning tasks in which the abstraction derived by M&S with bisimulation shrinking
is exponentially larger than the corresponding symbolic representation.

First, we observe that for any (e.g., the perfect) heuristic —no matter how it is computed— the
ADD representation under a given variable ordering has to be the same by the uniqueness property
of reduced ordered decision diagrams. Given the one-to-one correspondence between intermediate
M&S abstractions and ADD layers that we established in the previous section, we can focus on one
intermediate abstraction and compare the abstraction size after applying bisimulation shrinking with
the number of ADD nodes in that layer.

To ease the comparison, we may define the ADD shrinking strategy as: aggregate every state
that will be represented by the same ADD node. Of course, this strategy is not practical because we
would need to construct the ADD that represents the perfect heuristic first. Nevertheless, the ADD
shrinking strategy guarantees to derive the coarsest abstraction that preserves the perfect heuristic of
the original problem. Now, our question has been reduced to compare the size of an abstract state
space after performing bisimulation or ADD shrinking.

To determine whether some abstract states will be aggregated by ADD shrinking (i. e., repre-
sented by the same ADD node), we rely on the definition of equivalent states (Definition 7.1). Infor-
mally, we say that two abstract states are equivalent, if for all their completions, the resulting states
have the same heuristic value.

Definition 7.1 (Equivalent abstract states). Let α be an abstraction with relevant variables Vα.
Let sα and tα be two abstract states of α. We say that sα and tα are equivalent, sα ≡ tα, if
and only if for every assignment d to non-relevant variables V \ Vα the goal distance is the same:
h∗(sα ∪ d) = h∗(tα ∪ d).

7.3. COMPLEXITY OF COMPUTING PERFECT HEURISTICS 115

The shrinking strategy obtaining the coarsest abstraction that preserves the solution costs to
derive the perfect heuristic is just to shrink all equivalent abstract states. Aggregating a pair of non-
equivalent states would induce some error in the heuristic. The exponential gap depends on whether
the shrinking strategy can predict without error if two abstract states will become ADD equivalent
after merging all the remaining variables and apply the corresponding shrinking.

Next, we construct a couple of intuitive examples where bisimulation shrinking is not able to
compute the most reduced form of the heuristic. Figure 7.4 shows two examples that highlight the
limitations of bisimulation shrinking. Both examples contain abstract states that are equivalent but
not bisimilar. The transition labels have already been reduced so that they refer to variables that have
not yet been merged. In the example of Figure 7.4a, these labels correspond to preconditions over
a binary variable p and all the transitions have unit costs. In Figure 7.4b actions can be performed
independently of other parts of the problem but have different action costs.

A

B D

C

G

p

¬p

p

¬p

p p¬p

(a) Irrelevant transitions. A andB are equivalent but
not bisimilar due to the irrelevant transitionA→ C.

A

B C G

2

(b) Alternative paths. A and B are equivalent but
not bisimilar because their paths to the goal differ.

Figure 7.4: Examples of bisimulation versus ADD equivalence. A, B, C, D, and G are abstract
states in intermediate M&S abstractions. In (a), p and ¬p are variable assignments that serve as
precondition of the operators that support the transitions. In (b), the transition A→ G has cost 2.

If two abstract states are equivalent, their corresponding ADD nodes can be unified according to
the ADD reduction rule (2) (see the definition of ROBDD on page 21). It is easy to see that states
A and B in the example are equivalent because in case that p holds both have a cost of 1, while
if ¬p holds both have a cost of two. However, they are not bisimilar because B does not have any
transition toC. Obviously, statesC andD are not bisimilar, given that their transitions have different
labels. Hence, no pair of states is reduced by bisimulation.

Bisimulation cannot detect all pairs of equivalent abstract states because of two reasons:

• Irrelevant transitions: when the abstract state incorporates transitions that are not in the opti-
mal plan of any concrete state. Since in the end only the distance to the goal matters, those
transitions that are not part of an optimal path should not be taken into account by bisimulation.
In the example of Figure 7.4a, A and B are equivalent but not bisimilar due to the irrelevant
transition A → C. Checking if a transition is necessary in any optimal path (e. g., with path
relevance analysis (Scholz, 2004; Haslum et al., 2013)) is not known to be tractable as it needs
to consider the exponential number of combinations of values of the variables that have not
been merged. Some approaches try to consider only a subset of transitions when computing
the bisimulation (Katz et al., 2012) but either they do not guarantee perfect heuristics or do
not reduce all the equivalent states.

• Alternative paths: when two abstract states have solutions of the same cost but through dif-

116 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

ferent states. In this case, the real costs are unknown to bisimulation, so that it is not able to
prove the states to be equivalent. Label reduction improves on this by considering more tran-
sitions as being equivalent, but it is unable to reason about complete paths. In the example of
Figure 7.4b, abstract states A and B are equivalent but not bisimilar. In this case all the tran-
sitions are relevant (i. e., used in the optimal plan from a concrete state). What bisimulation
does ignore in this case is that the paths A 2−→ G and B 1−→ C

1−→ G have the same cost.

Finally, we show that for a given task whose perfect heuristic may be represented in a polynomial
ADD, the M&S heuristic with bisimulation shrinking requires exponential memory. It is possible
to extend the example by adding an exponential number of equivalent states that are not bisimilar
because they have different transitions that are not needed by any of their optimal paths. Therefore,
this may cause an exponential gap between the size of the intermediate abstraction and the final
reduced heuristic.

Theorem 7.7. There exist families of planning tasks {Πn}, merging strategies, and variable sub-
sets {Vn}, so that the ADD representation of the perfect heuristic is exponentially smaller than the
cascading-tables representation of the M&S heuristic with bisimulation with exact label reduction.

Proof. Consider the family of planning tasks with variables {v1, . . . , vn, g}, where v1, . . . , vn are
Boolean ({0, 1}) and g has domain {1, . . . , n + 1}. The initial state sets all variables to 0, the goal
is vi = 1 for all i ∈ {1, . . . , n}, g = n+ 1 and the actions are:

• ai: empty precondition; effect {vi = 1}.

• ag,i: precondition {vi = 1, g = i}; effect {g = i+ 1}.

Say our variable order is v1, . . . , vn, g.
We first show that bisimulation shrinking with exact label reduction must yield exponential-size

abstractions at some point during the abstraction process. Consider the set of states SVk after k
merging steps, i. e., over variables Vk := {v1, . . . , vk}. Figure 7.5 depicts an example of the abstract
state space after merging the first three variables, v1, v2, and v3 and applying exact label reduction.
Labels a1, a2, and a3 have been reduced into label a, since they do not depend on other variables.
However, labels ag,i cannot be reduced by exact label reduction because they are not equivalent in
two different abstract state spaces and do not subsume each other (Sievers et al., 2014).

Running bisimulation, any two states differ on the subset of vi with value 1. As each vi with
value 1 yields an outgoing (self-loop) label of the form ({g = i}, {g = i+1}), and as all these labels
are different, no two states are bisimilar. Therefore, no pair of states is aggregated by bisimulation
even with label reduction and the size of the abstract state space is exponential in k, 2k.

Now, we show that the ADD representation of the heuristic under the same variable ordering is of
polynomial size. The key here is that the optimal plan from any state has to make all variables vi true
because they are part of the goal. The order in which the variables vi are made true does not matter
and they do not have any interaction with variable g. Thus, any valid plan from an arbitrary state
with g = i requires to perform exactly one move for every vi variable that remains false. Therefore,
at any given point with k variables, there are only k + 1 different abstract states, which correspond
to the number of variables that are true in the state.

7.3.2 Computing Perfect Heuristics
The results of Theorems 7.1 and 7.7 imply that the symbolic representation of perfect heuristics
dominates the cascading-tables representation derived with M&S and bisimulation, i. e., it may be

7.4. EMPIRICAL EVALUATION 117

000

001

010

100

011

101

110

111

a

a

a

a

a

a

a

a

a

a

a

a

ag,1 ag,1, ag,2

ag,3 ag,2, ag,3

ag,2 ag,1, ag,3 ag,1, ag,2, ag,3

(a) Projection over v1 ⊗ v2 ⊗ v3.

1 2 3 4 . . . n+ 1
ag,1 ag,2 ag,3 ag,4 ag,n

(b) Atomic projection over g.

Figure 7.5: Example of planning task with exponential bisimulation and polynomial ADD represen-
tation. Bisimulation does not shrink any pair of states, even though states with the same number of
1 could be aggregated without any loss.

exponentially more succinct in some cases and, in the worst case, there is at most a linear overhead.
Therefore, for any task in which M&S can derive the perfect heuristic in polynomial time, all the
BDDs in the symbolic regression search are of polynomial size.

However, this argument does not guarantee that they can be derived in polynomial time and space
in the same cases as M&S. Symbolic regression search iteratively constructs the reduced BDDs for
every heuristic value through image operations. Even if all the BDDs are polynomial, the image
operation that generates a BDD from another could take exponential time or memory. In conclusion,
no technique dominates the other, though the advantages in the symbolic representation suggest that
symbolic regression search could be stronger in practice.

7.4 Empirical Evaluation

Despite the theoretical results about the symbolic representation of the M&S heuristic, several ques-
tions remain unanswered about the practical usefulness of such a representation and the potential
of the M&S framework compared to symbolic PDBs. This section provides experimental results of
these techniques in benchmark domains in order to shed some light on these questions. We divided
our evaluation in three different parts:

118 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

1. An evaluation of the memory used by the ADD representation of M&S compared to the
cascading-tables representation obtained with different typical merging and shrinking strate-
gies. We compare the memory used by both representations, as well as the time needed to
perform the conversion.

2. An evaluation of the power of M&S with bisimulation and symbolic regression search to
derive the perfect heuristics in our benchmark domains.

3. An evaluation of the performance of M&S and symbolic PDB heuristics to inform explicit and
symbolic versions of A∗ search.

In our experiments we considered different parameters for the merge and shrink strategies. We
used the default merge strategies in the FAST DOWNWARD repository.2 These strategies correspond
to a variable ordering that might also be used in symbolic search:

• Level (lev): Selects variables in FAST DOWNWARD or GAMER ordering. In combination with
FAST DOWNWARD ordering, this means that goal variables are selected first.

• Reverse level (rev): Level ordering reversed.

• Random: random ordering as baseline for comparison.

• Cggoal-lev (cgl): Skips variables that are not connected in the causal graph to previously
selected variables. If none exists, a goal variable is selected. Ties are broken by the level
criterion.

• Goalcg-lev (gcl): Selects all the goal variables first, then variables connected in the causal
graph to previously selected variables. Ties are broken by the level criterion.

• Cggoal-rnd (cgr): Skips variables that are not connected in the causal graph to previously
selected variables. If none exists, a goal variable is selected. Ties are broken randomly.

All the merging strategies except random can be used with the FAST DOWNWARD and GAMER
orderings, which amounts to a total of 11 merging strategies. Both orderings are usually contra-
dictory, since FAST DOWNWARD places the goal variables at the end of the ordering and GAMER
pretends to place close together the variables that are highly related, so that goal variables are usually
placed in the middle of the ordering. o Regarding the shrinking strategies, we considered three dif-
ferent strategies, fh-shrinking (fhs), bisimulation (bop) and greedy-bisimulation (Nissim et al., 2011)
(gop), presented in detail in Section 6.4.2 on page 100. We use different bounds on the maximum
number of abstract states in any intermediate abstraction, M . The M&S planner that participated
in IPC-2011 used a limit of M =200,000 with bop and gop without any limit, M = ∞. We de-
note these strategies as bop200k and gop, respectively, assuming no limit on M whenever it is not
specified.

7.4.1 Empirical ADD Size of M&S Heuristics
First, we analyze the size of the ADD representation of different M&S heuristics. Table 7.1 shows
the results of the two M&S configurations that took part in the IPC-2011, bop200k and gop with the
FD-rev and GAMER orderings. For each domain, we report the number of instances in which the

2FAST DOWNWARD version 3288 of December 2013. Later versions include non-linear merging strategies (Sievers et al.,
2014).

7.4. EMPIRICAL EVALUATION 119

M&S heuristic was successfully generated as well as the size of the largest ADD for each domain.
Surprisingly the ADDs are small, especially for the gop shrinking strategy, showing that not much
memory is spent once the ADD has been computed. Unsurprisingly, the variable ordering also plays
an important role in the ADD size.

In order to measure the benefits of using an ADD to represent the heuristic, Figure 7.6 compares
the memory used by the ADDs against the cascading-tables representation of M&S heuristics. The
results show an advantage for the ADD representation, which in some cases is up to four orders of
magnitude more succinct than the cascading-tables representation. This difference is not due to the
data-structure being used, but due to the application of ADD reduction rules, which could be applied
as well in the cascading-tables representation. Thus, the main conclusions of this comparison are not
about the relation between a tabular and a decision diagram representation, but about the precision
of the shrinking strategies. In the cases where the ADD representation uses much less memory than
the tabular representation it means that more shrinking could have been applied without any loss in
the heuristic accuracy.

Nevertheless, as M&S abstract state spaces are explicitly represented, all successfully generated
M&S abstractions are quite small and can be represented by any of the two representations in less
than 10 MB. Even though the ADD compression does not have practical advantages, the fact that
the ADD representation is several orders of magnitude smaller implies that bisimulation shrinking is
too conservative for computing M&S heuristics even with label-reduction techniques. This suggests
that there might still be opportunities for designing better shrinking strategies. Finally, comparing
the variable orderings, GAMER ordering allows ADDs to obtain more compression, especially in
combination with greedy bisimulation.

101 102 103 104 105 106 107 108
101

103

105

107

ADD memory (bytes)

Ta
bu

la
rm

em
or

y
(b

yt
es

)

fd-bop200k fd-gop
gam-bop200k gam-gop

Figure 7.6: Memory spent in bytes by the ADD and tabular representations of M&S heuristics.

7.4.2 Computing Perfect Heuristics: Comparing M&S with Bisimulation and
Symbolic Regression

As argued in Section 7.3.2, there are theoretical reasons that support the hypothesis that symbolic re-
gression dominates M&S with bisimulation and label reduction to generate perfect heuristics. Gen-

120 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

FD-rev Gam-lev
bop200k gop bop200k gop
i n i n i n i n

AIRPORT (50) 22 706432 50 806 21 715013 49 10576
BARMAN (20) 20 143080 20 55 19 75275 20 95

BLOCKSWORLD (35) 35 164671 35 2766 35 57569 24 899
DEPOT (22) 10 217734 13 6476 11 215447 11 6237

DRIVERLOG (20) 17 303660 15 2174 19 245025 11 18125
ELEVATORS08 (30) 30 41372 1 60326 30 91342 6 232059
ELEVATORS11 (20) 20 41372 0 – 20 91342 4 232059
FLOORTILE11 (20) 20 552901 4 6815 20 1292520 6 64185

FREECELL (80) 4 338281 80 270 13 194784 80 1152
GRID (5) 5 145870 3 305 0 – 2 511

GRIPPER (20) 20 962803 20 1860 20 113384 18 1760
LOGISTICS 00 (28) 28 821417 28 7337 28 350206 21 3914
LOGISTICS 98 (35) 9 438357 28 54939 12 85431 5 1488

MICONIC (150) 150 836742 150 500 150 373233 150 560
MYSTERY (30) 8 168185 19 275 12 173622 19 754

NOMYSTERY11 (20) 20 216066 20 1270 9 113875 14 862
OPENSTACKS08 (30) 30 182310 9 152647 30 19428 10 1684
OPENSTACKS11 (20) 20 182310 4 152647 20 14506 5 1684
OPENSTACKS06 (30) 12 556673 30 30201 16 847680 20 2761

PARCPRINTER08 (30) 26 2966769 30 74321 0 – 30 94558
PARCPRINTER11 (20) 19 2966769 20 9929 0 – 20 11128

PARKING11 (20) 0 – 0 – 6 112835 0 –
PATHWAYS-NONEG (30) 30 1025527 30 864 23 119140 30 981
PEG-SOLITAIRE08 (30) 30 46974 6 949 30 147271 6 1129
PEG-SOLITAIRE11 (20) 20 36491 0 – 20 197746 0 –

PIPESWORLD-NT (50) 9 95772 50 53 13 29905 50 92
PIPESWORLD-T (50) 9 54466 32 213080 15 174846 20 20109

PSR-SMALL (50) 50 40124 50 20791 50 108614 50 2118
ROVERS (40) 30 264481 40 9187 26 114840 33 5991

SATELLITE (40) 27 1609421 35 17918 25 185108 18 12326
SCANALYZER08 (30) 19 326022 9 29400 15 101179 6 6046
SCANALYZER11 (20) 14 326022 6 29400 9 101179 3 6046

SOKOBAN08 (30) 30 3749 3 4802 29 66898 2 13440
SOKOBAN11 (20) 20 3749 1 4802 20 66898 1 13440
TIDYBOT11 (20) 1 250 20 18 7 15097 20 27

TPP (30) 16 420898 30 20028 16 213965 26 14965
TRANSPORT08 (30) 27 196439 30 1752 27 59763 17 781
TRANSPORT11 (20) 20 295059 20 944 20 72647 20 1111

TRUCKS (30) 24 266430 30 277 23 319845 30 731
VISITALL (20) 20 3276750 20 7388 20 1137626 12 738

WOODWORKING08 (20) 30 630795 27 533038 30 174217 26 10846
WOODWORKING11 (20) 20 407281 20 533038 20 153405 18 8201

ZENOTRAVEL (40) 15 231883 20 8636 15 196317 13 1595

Table 7.1: Number i of instances with M&S heuristic and maximum number n of ADD nodes over
all instances for each domain.

7.4. EMPIRICAL EVALUATION 121

erating the perfect heuristic is at least as hard as solving the problem in domains without 0-cost
actions and often much harder. Nevertheless, even if this is not the most efficient way to solve
cost-optimal planning problems, the comparison is interesting to evaluate the strengths of symbolic
search and M&S.

In this section, we directly compare both approaches experimentally. We ran M&S with bisimu-
lation and non-exact label reduction (Helmert et al., 2014) (M&Sb) and symbolic regression (symbw)
on the complete set of benchmarks and measured the coverage and time spent in solving each prob-
lem. The comparison is not completely fair for M&S for two reasons. On the one hand, M&S
computes the perfect heuristic value, h∗(s), for every reachable state from s0 and symbolic regres-
sion stops as soon as the initial state has been found. In practice, however, both solve the problem
with no additional search effort in domains without zero cost actions. On the other hand, M&S does
not take advantage of state invariants, while we use the state invariant constraints in symbolic regres-
sion as described in Chapter 4. For a fairer comparison, we included a restrained version of symbolic
regression (sym−bw) that does not make use of state-invariant constraints to prune the search nor stops
when finding the initial state. In this case, the comparison is advantageous for M&S because it can
avoid computing the heuristic for some unreachable states.

Table 7.2 shows the total coverage of the three approaches under different variable orderings.
Experimentally, symbolic regression outperforms M&Sb in most domains, even when considering
the restricted version sym−bw . While M&Sb runs out of memory in most cases, the performance of
symbw is not too far away from state-of-the-art cost-optimal planners.

Even though the advantage of symbw over M&Sb is very stable across all the variable orderings,
both techniques disagree in which are the best orderings. In general, the best orderings for symbw

are GAMER variants, Gam-lev and Gam-rev. GAMER ordering optimization does not distinguish
between top and bottom variables, so Gam-lev and Gam-rev are very similar except for a random
tie-breaking. GAMER orderings work well with M&Sb , but they are worse than FD-lev.

sym−bw M&Sb symbw

Random 9.56 (394) 6.96 (278) 12.85 (521)
FD-cggoal-lev 10.87 (498) 8.77 (381) 13.74 (611)

FD-cggoal-rnd 10.24 (469) 7.85 (325) 13.71 (609)
FD-goalcg-lev 9.95 (420) 8.23 (350) 12.83 (531)

FD-lev 10.03 (425) 7.55 (322) 13.15 (542)
FD-rev 10.65 (454) 8.30 (328) 13.81 (593)

Gam-cggoal-lev 11.56 (525) 8.41 (354) 15.51 (675)
Gam-cggoal-rnd 10.48 (472) 7.36 (297) 13.86 (601)
Gam-goalcg-lev 10.00 (426) 7.35 (305) 14.06 (569)

Gam-lev 11.60 (517) 7.45 (300) 15.53 (667)
Gam-rev 11.57 (512) 7.23 (290) 15.71 (669)

Table 7.2: Total coverage of symbolic regression search and M&S with bisimulation. rbw disables
state invariant pruning and explores the entire state space, i. e., does not stop when finding the initial
state.

In order to measure the relative solving time of both techniques, Figure 7.7 compares the time
spent by both techniques to generate the perfect heuristic for each of the instances. As mentioned
before, M&Sb runs out of memory long before reaching the time limit, so beyond 100 seconds it
solves very few instances.

The plot shows that there are a few domains where M&S with bisimulation outperforms sym-

122 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

100 101 102 103

100

101

102

103

Solving time of symbolic regression (s)

So
lv

in
g

tim
e

of
M

&
S

+
bi

si
m

ul
at

io
n

(s
)

FD-lev ordering

Pegsol Transport
Elevators Others

100 101 102 103

100

101

102

103

Solving time of symbolic regression (s)

Gam-lev ordering

Pegsol Transport
Elevators Others

Figure 7.7: Solving time of symbolic regression search versus M&S with bisimulation in the IPC-11
benchmarks using FD-lev and Gam-lev variable orderings. Timeouts are assigned a value of 2000.

bolic regression search under certain variable orderings. For example, with FD-lev variable ordering,
M&S generates perfect heuristics in PEG-SOLITAIRE in less than 100 seconds while symbolic re-
gression is unable to solve most instances. However symbolic regression outperforms M&S in most
domains, except PEG-SOLITAIRE, TRANSPORT and ELEVATORS. On the other hand, the dominance
of symbw over M&Sb is almost total when using Gam-lev ordering, including those domains. This
reinforces the idea that variable ordering has a huge impact on the performance of both techniques.

7.4.3 Symbolic and Explicit-State Search with M&S Heuristics
One important contribution of this chapter is that using the BDD representation of M&S heuristics
with a linear merging strategy enables an efficient evaluation in symbolic search. In this section,
we evaluate the performance when using M&S heuristics in symbolic search compared to blind
symbolic search and explicit-search.

In order to guarantee a compact symbolic representation, M&S always uses a linear merging
strategy with the same variable ordering as the symbolic search. We use three different variable
ordering strategies: Gam-lev and FD-rev and cgr. For the shrinking strategies we use the two
configurations used in IPC-2011: bisimulation with a limit of 200,000 abstract states and greedy
bisimulation without any limit.

The results are shown in Table 7.3. When both use the same heuristic BDDA∗ beats A∗ in
most domains, though there are a few counter-examples. A remarkable case is VISITALL with gop
strategies, where the explicit-state A∗ consistently solves more problems than BDDA∗ due to the
difference in tie-breaking criteria (the heuristic is perfect for the initial state but there is an exponen-
tial number of states with the same f -value, explaining the huge importance of tie-breaking in that
case). The other few cases where A∗ outperforms BDDA∗ can be explained by the various over-
heads in symbolic search, such as transforming the M&S heuristic to the symbolic representation.
Nevertheless, symbolic search configurations obtain better total coverage and obtain the best results
in most domains.

While the M&S heuristic significantly improves the coverage of explicit-state search, in symbolic
search it is less useful. In fact, with all the variable orderings, the best coverage of symbolic search
is obtained without any heuristic, including the total best coverage with the GAMER ordering. The

7.4. EMPIRICAL EVALUATION 123

L
az

y
B

D
D

A
∗

A
∗

G
A

M
E

R
F

D
-r

ev
F

D
-c

gg
oa

l-
rn

d
∅

G
A

M
E

R
F

D
-r

ev
F

D
-c

gg
oa

l-
rn

d
∅

bo
p

go
p

∅
bo

p
go

p
∅

bo
p

go
p

bo
p

go
p

bo
p

go
p

bo
p

go
p

10
0k

20
0k

10
0k
∞

10
0k

20
0k

10
0k
∞

10
0k

20
0k

10
0k
∞

10
0k

20
0k

10
0k
∞

10
0k

20
0k

10
0k
∞

10
0k

20
0k

10
0k
∞

A
IR

P
O

R
T

(5
0)

24
22

16
23

24
21

21
17

22
22

21
11

10
11

21
23

21
20

23
23

22
21

23
23

21
18

21
24

B
A

R
M

A
N

(2
0)

8
4

5
4

8
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

B
L

O
C

K
S

W
O

R
L

D
(3

5)
21

25
21

23
26

20
25

22
28

28
21

25
23

28
28

18
19

19
28

26
22

20
28

28
21

21
21

24
D

E
P

O
T

(2
2)

4
7

6
7

7
4

6
6

6
6

4
6

5
4

6
4

7
7

6
6

6
6

6
6

6
6

6
6

D
R

IV
E

R
L

O
G

(2
0)

11
13

13
14

14
11

13
13

14
14

11
13

13
14

14
7

13
13

13
13

13
13

12
12

13
13

13
13

E
L

E
V

A
T

O
R

S0
8

(3
0)

19
20

21
20

5
19

19
19

19
1

19
19

19
19

1
13

15
16

17
6

14
14

14
1

18
18

18
4

E
L

E
V

A
T

O
R

S1
1

(2
0)

16
17

18
17

3
16

16
16

16
0

16
16

16
16

0
11

13
14

14
4

12
12

12
0

15
15

15
2

F
L

O
O

R
T

IL
E

11
(2

0)
14

14
14

14
8

14
14

14
14

4
14

10
10

8
4

8
9

10
8

6
8

8
8

4
8

8
8

4
F

R
E

E
C

E
L

L
(8

0)
16

15
14

20
20

15
9

4
9

20
14

7
3

9
14

16
15

14
19

19
8

4
19

19
19

16
20

19
G

R
ID

(5
)

1
3

3
1

2
1

3
3

1
2

1
3

3
1

2
1

2
3

2
2

3
3

2
2

3
3

2
2

G
R

IP
P

E
R

(2
0)

20
20

20
20

18
20

20
20

20
20

15
15

15
12

15
8

8
8

8
8

20
20

8
8

8
8

8
8

L
O

G
IS

T
IC

S
00

(2
8)

16
21

21
20

19
21

22
22

22
21

16
21

19
21

20
10

19
19

16
16

20
20

16
16

20
20

17
16

L
O

G
IS

T
IC

S
98

(3
5)

4
5

6
6

5
3

5
5

5
5

2
5

5
5

5
2

5
5

4
3

5
5

4
4

5
5

5
4

M
IC

O
N

IC
(1

50
)

96
79

80
82

81
10

8
86

88
81

88
10

8
83

84
80

85
50

65
67

52
52

74
77

52
52

77
77

61
52

M
P

R
IM

E
(3

5)
22

20
16

20
26

23
15

12
12

27
21

15
12

12
27

19
18

16
23

23
15

12
23

23
16

16
19

23
M

Y
S

T
E

R
Y

(3
0)

15
12

11
13

16
15

9
8

11
16

15
9

8
11

16
15

12
11

17
17

10
8

17
17

10
10

12
17

N
O

M
Y

S
T

E
R

Y
11

(2
0)

11
20

18
20

14
12

20
20

18
16

11
19

20
18

14
8

16
16

14
14

18
18

14
14

20
20

15
14

O
P

E
N

S
TA

C
K

S0
8

(3
0)

30
30

30
30

9
24

25
23

25
9

27
29

24
28

9
21

21
21

21
9

21
21

21
9

21
21

21
9

O
P

E
N

S
TA

C
K

S1
1

(2
0)

20
20

20
20

4
19

19
18

19
4

19
20

17
20

4
16

16
16

16
4

16
16

16
4

16
16

16
4

O
P

E
N

S
TA

C
K

S0
6

(3
0)

20
16

10
13

13
9

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

PA
R

C
P

R
IN

T
E

R
08

(3
0)

23
16

16
16

20
23

17
16

20
20

23
15

15
18

20
20

19
19

20
19

20
20

20
19

19
19

20
19

PA
R

C
P

R
IN

T
E

R
11

(2
0)

18
12

12
12

15
18

12
11

15
15

18
11

11
14

15
15

14
14

15
14

15
15

15
14

14
14

15
14

PA
R

K
IN

G
11

(2
0)

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
0

1
0

1
0

1
0

1
0

0
0

PA
T

H
W

A
Y

S
-N

O
N

E
G

(3
0)

5
5

5
5

5
5

5
5

5
5

5
4

4
5

5
4

4
4

4
4

4
4

4
4

4
4

4
4

P
E

G
-S

O
L

IT
A

IR
E

08
(3

0)
28

29
29

29
6

28
29

29
29

6
27

29
29

29
6

27
29

29
29

6
29

29
29

6
28

27
28

6
P

E
G

- S
O

L
IT

A
IR

E
11

(2
0)

18
19

19
19

0
18

19
19

19
0

17
19

19
19

0
17

19
19

19
0

19
19

19
0

18
17

18
0

P
IP

E
S

W
O

R
L

D
-N

T
(5

0)
15

15
11

14
15

13
13

9
14

14
12

8
4

11
12

14
16

12
15

15
14

9
15

15
13

7
11

15
P

IP
E

S
W

O
R

L
D

-T
(5

0)
17

15
13

14
16

16
14

8
15

15
10

10
8

13
13

11
13

12
17

16
16

8
17

17
10

8
9

17
P

S
R

-S
M

A
L

L
(5

0)
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

49
50

50
50

50
50

50
50

50
50

50
50

50
R

O
V

E
R

S
(4

0)
12

11
11

12
13

11
10

9
10

10
10

10
10

11
11

5
8

8
6

6
8

8
6

6
8

8
7

6
S

A
T

E
L

L
IT

E
(3

6)
7

9
8

8
8

6
7

7
7

7
6

7
8

7
7

5
6

6
6

6
6

7
6

6
7

6
6

6
S

C
A

N
A

LY
Z

E
R

08
(3

0)
12

12
11

12
6

12
13

13
13

9
12

13
12

13
9

12
12

12
12

6
13

14
13

9
12

12
13

9
S

C
A

N
A

LY
Z

E
R

11
(2

0)
9

9
8

9
3

9
10

10
10

6
9

10
9

10
6

9
9

9
9

3
10

11
10

6
9

9
10

6
S

O
K

O
B

A
N

08
(3

0)
28

28
27

28
2

28
28

28
28

3
27

27
27

27
3

27
29

28
29

3
29

29
29

3
29

27
27

2
S

O
K

O
B

A
N

11
(2

0)
20

20
19

20
1

20
20

20
20

1
20

20
20

20
1

20
20

20
20

1
20

20
20

1
20

20
20

1
T

ID
Y

B
O

T
11

(2
0)

14
9

3
11

11
12

8
1

8
13

11
8

1
8

9
12

6
5

13
13

8
1

13
13

8
3

8
13

T
P

P
(3

0)
9

8
8

8
8

11
8

8
10

9
10

8
8

10
8

6
6

6
6

6
7

7
6

6
7

7
8

6
T

R
A

N
S

P
O

R
T

08
(3

0)
11

11
11

11
11

12
11

11
11

11
12

11
11

11
11

11
11

11
11

11
11

11
11

11
12

12
11

11
T

R
A

N
S

P
O

R
T

11
(2

0)
6

6
6

6
6

8
7

7
7

6
7

7
7

6
6

6
6

6
6

6
7

7
6

6
7

7
6

6
T

R
U

C
K

S
(3

0)
10

10
10

12
11

10
10

10
10

10
10

10
10

10
10

7
8

9
8

8
8

8
8

8
8

8
8

8
V

IS
IT

A
L

L
(2

0)
10

11
11

11
12

12
12

12
12

13
9

10
10

10
11

9
9

9
16

11
9

9
16

16
10

10
10

16
W

O
O

D
W

O
R

K
IN

G
08

(3
0)

22
22

20
25

23
13

18
17

22
22

14
15

15
17

16
9

16
16

14
14

12
13

14
14

14
14

16
14

W
O

O
D

W
O

R
K

IN
G

11
(2

0)
16

16
15

18
17

7
12

12
16

16
9

9
9

11
10

4
11

11
9

9
7

8
9

9
9

9
11

9
Z

E
N

O
T

R
A

V
E

L
(2

0)
8

12
12

12
12

8
12

12
11

11
8

12
12

11
11

8
11

11
10

10
12

12
10

10
12

12
11

10
T

O
TA

L
C

O
V

(1
39

6)
75

6
73

9
69

8
74

9
59

3
72

9
70

4
66

5
71

5
58

6
70

2
66

0
62

6
66

9
54

6
56

8
63

8
63

2
65

7
49

9
65

3
62

8
65

3
50

2
65

7
63

2
63

6
50

4
S

C
O

R
E

C
O

V
(3

6)
18

.2
2

18
.8

3
17

.5
8

18
.6

4
15

.7
1

17
.3

7
17

.8
4

16
.7

3
17

.6
7

15
.3

5
16

.4
0

16
.6

2
15

.6
7

16
.2

7
14

.2
6

13
.7

3
15

.6
8

15
.6

6
16

.6
3

13
.4

4
16

.5
9

15
.7

7
16

.5
1

13
.5

7
16

.2
6

15
.5

8
15

.6
3

13
.6

0

Ta
bl

e
7.

3:
C

ov
er

ag
e

of
A
∗

an
d

L
az

y
B

D
D

A
∗

w
ith

M
&

S
he

ur
is

tic
s,

co
m

pa
re

d
ag

ai
ns

t
sy

m
bo

lic
bl

in
d

se
ar

ch
(∅

).
Sh

ri
nk

in
g

st
ra

te
gi

es
ar

e
bi

si
m

ul
at

io
n

(b
op

)a
nd

gr
ee

dy
bi

si
m

ul
at

io
n

(g
op

),
w

ith
lim

its
of

10
0,

00
0,

20
0,

00
0

an
d
∞

ab
st

ra
ct

st
at

es
.

124 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

results are slightly biased because of the MICONIC domain, and the coverage scores show that the
M&S heuristic can help in some cases in symbolic search as well. More importantly, in some
domains such as DRIVERLOG, LOGISTICS98, and TRUCKS the combination of M&S heuristics and
symbolic search solves more problems than symbolic blind search and A∗ with M&S. This shows
that the combination of M&S heuristics and symbolic search may be useful in combination with
other planners in portfolio approaches.

The results are highly influenced by the choice of the variable ordering. Overall the FAST
DOWNWARD ordering is better for the M&S heuristic, while GAMER’s ordering helps the sym-
bolic exploration. Due to this, the integration of symbolic search and the M&S heuristic is difficult
because both must use the same ordering in order to guarantee a compact representation of the
heuristic.

7.5 Summary
Current state-of-the-art symbolic planners like GAMER use symbolic PDBs that ignore a subset of
variables of the problem. However, in recent years more elaborate approaches have been developed
for explicit-state search, like merge-and-shrink abstractions. Merge-and-shrink abstractions are a
generalization of PDBs that have been shown to be very competitive with the state-of-the-art. For
example, in the 2011 edition of the IPC, M&S was the runner-up and part of the portfolio winner
of the competition. In this chapter, we have addressed the question of whether is it possible to use
M&S in symbolic heuristic planners.

The M&S heuristic is precomputed and stored in a cascading tables representation that provides
efficient operations to build the abstraction and retrieve the precomputed heuristic value. However,
in order to efficiently use a heuristic in symbolic search, it must be encoded in form of BDDs. In
this chapter we provide an algorithm to construct the ADD representation of an M&S heuristic from
its cascading-tables representation. Then, the ADD representation can be converted to a vector
of BDDs and plugged into an optimal symbolic heuristic search planner to exploit this expressive
estimate.

We prove that the resulting ADD can be computed in polynomial time and has at most poly-
nomial overhead with respect to the cascading-tables under the assumption of a linear merging
strategy and keeping the same variable ordering in the merging strategy and the ADD. Therefore,
our approach exactly matches the quality of the explicit-search variants and is general to all M&S
variants using a linear merge strategy. Moreover, we show that ADD reduction can yield smaller
structures, also providing advantages to its use in explicit A∗ search.

Empirical results also yield interesting observations:

• The variable ordering for the M&S heuristic influences both the quality of the estimate and the
symbolic exploration. The heuristic choice applied in FD pleases the M&S heuristic, while
the optimization applied in GAMER pleases symbolic exploration. Future work is needed to
combine the two for a competitive BDDA∗ exploration with the M&S heuristic.

• The small ADD sizes for the M&S heuristic suggest that there is sufficient memory for com-
puting the maximum of more than one heuristic (in ADD representation). This results in a
consistent, strictly more informed heuristic for the (BDD)A∗ exploration and provides a way
of combining the accuracy of PDBs and M&S heuristics.

• Our comparison of symbolic regression and M&S with bisimulation for computing perfect
heuristics shows that M&S is not a competitive approach for that matter, even though it can

7.5. SUMMARY 125

compute the perfect heuristic of some domains in time polynomial in the task size. We have
shown that whenever M&S derives the perfect heuristic in polynomial time, the set of states in-
volved in symbolic regression is of polynomial size. However, the opposite does not hold, i. e.,
the cascading tables as generated by M&S with bisimulation can be exponentially larger than
the corresponding ADD. Even though the structure can be compressed after the heuristic is
computed, memory can be exceeded before M&S terminates. Moreover, no known shrinking
strategy guarantees a polynomial overhead with respect to the optimal compression achieved
by ADD reduction rules. The dominance of regression search over M&S is also reflected in
practice, since symbolic search yields the perfect heuristic in more instances than M&S.

• We have evaluated the empirical performance of M&S heuristics to guide explicit-state and
symbolic BDDA∗ search. Surprisingly, our analysis shows that, though M&S heuristics can
be useful for some domains, they do not always pay off in symbolic search.

126 CHAPTER 7. SYMBOLIC REPRESENTATION OF M&S HEURISTICS

Chapter 8

Symbolic Perimeter Abstraction
Heuristics

Symbolic PDBs and M&S are two abstraction-based approaches to derive admissible heuristics for
optimal planning. Symbolic PDBs use symbolic search to traverse PDB abstract state spaces. The
use of symbolic search reduces the memory overhead and speeds up the search, enabling the use of
more informed PDB abstractions. On the other hand, M&S abstractions are a generalization of PDBs
and have been shown to overcome some of their limitations. In the previous chapter we proved that
M&S abstractions can be represented symbolically with at most a linear overhead. In this chapter,
we question whether symbolic search can be used to search the state space of M&S abstractions.

On the other hand, perimeter PDBs (PPDBs) are another improvement of PDBs to obtain better
heuristics. Instead of starting the abstract state space search from the goals, they create a perimeter
around the goals in the original state space and initialize the abstract search with the perimeter.

In this chapter, we present a new algorithm to derive admissible heuristics for cost optimal plan-
ning: Symbolic Perimeter Merge-and-Shrink (SPM&S). SPM&S is a perimeter abstraction heuristic
that uses symbolic search to traverse the state space of several M&S abstractions. Empirical evalu-
ation shows that SPM&S has the strengths of both symbolic search and M&S abstractions, deriving
heuristics at least as good as the best of them for most domains.

8.1 Introduction
Symbolic PDBs use symbolic search to traverse the abstract state space and precompute the state
space. Previous work on Symbolic PDBs has shown their ability to search larger state spaces than
their explicit counterpart and, consequently, derive stronger heuristics. On the other hand, M&S
abstractions generalize PDB abstractions, opening new ways to relax the problem and overcoming
some limitations of PDBs. In Chapter 7 we analyzed the symbolic representation of M&S heuris-
tics, concluding that M&S heuristics are efficiently representable with decision diagrams. Thus, in
this chapter, we discern whether symbolic search can be used to obtain better M&S heuristics as
Symbolic PDBs do with respect to PDBs.

Perimeter PDBs are another orthogonal improvement over PDBs. Perimeter PDBs were initially
proposed in the context of heuristic search for combinatorial puzzles (Felner and Ofek, 2007) and
later adapted to automated planning in a work parallel with ours (Eyerich and Helmert, 2013).

As a summary, in this chapter we make several separate contributions:

127

128 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

1. We define a hierarchy of M&S abstractions, which we call Symbolic M&S (SM&S). We take
advantage of our results in Chapter 7 to consider how to apply symbolic search over SM&S
state spaces. We will show that, under certain circumstances, our BDD representation of
SM&S is guaranteed to be tractable.

2. We present a definition of perimeter abstraction heuristics. Our definition generalizes previous
definitions of Perimeter PDBs. While previous work was restricted to unit-cost domains and
only performs two phases, our definition can be used in domains with non-uniform costs and
considers an arbitrary number of abstract state spaces. Moreover, we analyze how the closed
lists of abstract searches should be populated in order to obtain more informed heuristics.

3. Our main contribution is a new algorithm to derive admissible heuristics for cost-optimal
planning: Symbolic Perimeter M&S (SPM&S).1 SPM&S combines our contributions by using
our definition of perimeter abstraction heuristics on the SM&S hierarchy. Empirical evaluation
shows that SPM&S successfully combines symbolic search and M&S abstractions to derive
more accurate heuristics.

This chapter is structured as follows. First, in Section 8.2, we define the hierarchy of SM&S ab-
stract state spaces and analyze its properties. Then, we define in detail perimeter abstraction heuris-
tics: we summarize related work on perimeter PDBs in Section 8.3 and present our own definition of
perimeter abstraction heuristics in Section 8.4. Then, Section 8.5 describes how to perform the map-
ping between states in different state spaces. The overall SPM&S algorithm that puts together the
different parts described in previous sections is presented in Section 8.6. The new SPM&S heuristic
is evaluated in Section 8.7, where we compare its performance against other state-of-the-art abstrac-
tion heuristics such as M&S and symbolic PDBs. As usual, the chapter concludes in Section 8.8
with a summary of the main contributions and conclusions.

8.2 Symbolic Merge-and-Shrink
In this section we propose Symbolic M&S, an improvement of M&S based on Symbolic
PDBs (Edelkamp, 2002). Just as Symbolic PDBs, Symbolic M&S uses symbolic search to tra-
verse the abstract state spaces. The difference is that, in our case, the abstract state space is defined
as M&S abstractions. Using symbolic search, we aim to derive more accurate heuristics than M&S
by searching larger abstract state spaces that do not need to be explicitly represented.

However, these larger state spaces cannot be directly obtained with the M&S framework, be-
cause the size of M&S abstract state spaces must remain small enough to explicitly represent them.
Instead, our SM&S state spaces are derived from M&S abstractions without requiring their explicit
representation. SM&S abstractions result of merging several intermediate M&S abstractions. In par-
ticular, we focus on linear merging strategies, where at any point during the M&S procedure there is
a single non-atomic M&S abstraction plus the atomic-abstractions of the remaining variables.

Definition 8.1 (SM&S abstraction). Let α be an abstraction with relevant variables Vα ⊆ V . Its
associated SM&S abstraction αSM&S is defined as the synchronized product of α and the projection of
the planning task over its non-relevant variables, V \ Vα: αSM&S = α⊗ΠV\Vα .

Intuitively, M&S abstractions partially consider a subset of variables (the relevant variables)
and completely ignore the rest. The SM&S abstraction derived from an M&S abstraction considers

1We originally called our technique Symbolic M&S (Torralba et al., 2013b). We rename it to Symbolic Perimeter M&S
to highlight that it is a perimeter abstraction heuristic.

8.2. SYMBOLIC MERGE-AND-SHRINK 129

the same information about the relevant variables, but instead of ignoring all the other variables,
they are fully considered (no abstraction is made over those variables). For example, consider a
typical logistics task with several packages and trucks. an M&S abstraction, α, that considers only
two packages may reduce the abstraction size by considering some combinations equivalent (for
example, p1 = G ∧ p2 = T ≡ p1 = T ∧ p2 = G or p1 = A ≡ p1 = B). However, α completely
ignores all the information regarding the location of the trucks or other packages. αSM&S, on the other
hand, fully considers the location of all the trucks. αSM&S is still an abstraction of the original problem
since it also applies the same equivalences than α for packages p1 and p2.

Definition 8.1 can be applied for any intermediate abstraction in the M&S algorithm. Next,
we consider the abstraction hierarchy that results from computing the SM&S abstraction of every
intermediate M&S abstraction.

Definition 8.2 (SM&S abstraction hierarchy). Let α0, . . . , αn−1 be all the intermediate abstrac-
tions generated by the M&S procedure, where α0 is the empty abstraction without any variable and
αn−1 is the final result of M&S. We define the corresponding SM&S hierarchy as the list of SM&S
abstractions: αSM&S

0 , . . . , αSM&S
n−1.

Figure 8.1 shows an example of how the SM&S hierarchy is obtained from an M&S procedure.
The left part shows the intermediate abstractions generated during the M&S algorithm. The M&S
algorithm is initialized with the atomic abstraction of each variable, πi. In our example, there are five
variables and, consequently, there are five atomic abstractions, π1, . . . , π5. The M&S algorithm iter-
atively merges two abstractions by computing their synchronized product and, if necessary, applies
shrinking. In our example, a linear merging strategy is used, so that variables are iteratively merged
into the main abstraction. It starts merging variables π1 and π2 into α1 and iteratively includes more
variables into each intermediate abstraction αi. The induced SM&S abstractions always consider all
the variables, and are the result of merging all variables into each αi without applying any additional
shrinking.

The SM&S hierarchy defines n state spaces, producing a trade-off between the size of the ab-
stract state space and heuristic accuracy. αSM&S

0 corresponds to the original non-abstracted state space,
which has exponential size and is intractable to represent but produces the perfect heuristic. On the
other hand, αSM&S

n−1 corresponds to the final M&S abstract state space, αSM&S
n−1 ≡ αn−1, whose state

space can be explicitly represented (assuming a suitable value of the maximum number of M&S
abstract states) but with a possible great loss of information. This is reflected in the example of Fig-
ure 8.1 since αSM&S

0 is the merge of all the variables and αSM&S
4 is α4. All the rest of SM&S abstractions

in the hierarchy, αSM&S
i , 0 < i < n − 1, enable the desired trade-off between αSM&S

0 and αSM&S
n−1. Each

αSM&S
i is strictly more relaxed than the previous αSM&S

i−1 , so that the size of the abstract state spaces
decreases at expense of producing less informed heuristics hα

SM&S
i−1 (s) ≥ hαSM&S

i (s).
Even though similar hierarchies could be defined for PDB abstractions, all the advantages of

M&S abstractions over PDBs carry over to the SM&S hierarchies. M&S abstractions are a general-
ization of PDBs, so every PDB hierarchy can be derived with SM&S as well. The main advantage
of SM&S hierarchies is that every abstraction in the hierarchy takes into account all the variables in
the problem, overcoming the theoretical limitations of PDBs.

Note that the size of SM&S abstract state spaces may be of exponential size, so that they cannot
be explicitly represented. This is not a problem, since we will directly traverse those state spaces
using symbolic search. In order to perform symbolic search over the abstract state spaces, we need
to represent sets of abstract states and to be able to perform the successor generation. Below, we
describe the encoding that we use and analyze its theoretical properties.

130 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

π1 π2 π3 π4 π5

α1

α2

α3

α4

αSM&S
0

αSM&S
1

αSM&S
2

αSM&S
3

αSM&S
4

Figure 8.1: Hierarchy of Symbolic M&S state spaces. Atomic abstractions (πi) are merged in a
linear ordering to derive different M&S heuristics (αi). Dotted lines show the combination of several
abstractions that result in each αSM&S

i .

8.2.1 SM&S Abstract State Representation

In this section we study the symbolic representation of SM&S abstractions, i. e., how to represent
sets of abstract states by means of BDDs. As explained in Chapter 2, sets of states in the original
state space are represented as functions f : S → {>,⊥}, where states are described in terms of
binary variables x = x1, . . . , xn. In the same way, sets of abstract states in αSM&S

i = αi⊗Πυi+1,...,υn

are represented as characteristic functions f : SαSM&S
i → {>,⊥}. An important decision is what

variables (and variable ordering) should be used to represent sets of abstract states in SαSM&S
i . We

decided to use the same set of variables x that is used to represent the original state space. An
alternative could be to design a new set of auxiliary variables y, optimized to represent abstract
states, replacing variables v1, . . . , vi for another set of variables y1, . . . , yk specifically designed
to represent the abstraction. While this alternative could help to perform the abstract search more
efficiently, encoding abstract states with the same variables lets us use the same representation for
searches in any state space. Thus, using the same set of variables for all the abstract states makes
the conversion between original states and abstract states easier. Moreover, the same BDD can be
interpreted as a set of abstract states or a set of complete states. This means that sets of abstract states
can be interpreted as a set of total states, i. e., the set of all states mapped to some abstract state in
the set. This has some practical implications. For example, the BDDs describing the abstract search
to precompute the heuristic are directly the heuristic BDDs used to guide the symbolic A∗ search.

Figure 8.2 shows an example of the symbolic M&S relaxation of a search and how a BDD can be
interpreted both as a set of states and a set of abstract states. Given a set of states in the original state
space, depicted in Figure 8.2a, and an intermediate M&S abstraction α2, depicted in Figure 8.2b,
we derive the corresponding set of states αSM&S

2 (S). S is a set of four states, namely 00000, 01100,
10110 and 11010. α2 is an M&S abstraction over variables υ1 and υ2 with two abstract states e0

and e1. In a general case, our M&S abstractions will have a larger (but bounded) number of abstract
states. The ADD depicted in Figure 8.2b represents the mapping from partial states 〈v1, v2〉 to one of
the abstract states, e0 or e1. Each abstract state corresponds to an equivalence relation over variables
υ1 and υ2. e0 makes starting with 00 equivalent to starting with 11, so that if a set of abstract states
contains state 00abc, it automatically contains 11abc as well. Whenever any state starting with 00 is
reached in the abstract search, the corresponding state starting with 11 will be automatically reached

8.2. SYMBOLIC MERGE-AND-SHRINK 131

υ1

υ2 υ2

υ3 υ3 υ3 υ3

υ4 υ4

υ5

> ⊥

(a) Original BDD S

υ1

υ2 υ2

e0 e1

(b) Abstraction α2 ADD

υ1

υ2 υ2

υ3 υ3

υ5

> ⊥

(c) αSM&S
2 (S) BDD

Figure 8.2: Symbolic M&S relaxation that takes an input BDD, S, and an ADD that represents
a M&S heuristic and computes the BDD that represents the abstract states in S. The top part of
αSM&S

2 (S) BDD coincides with α2 ADD.

and vice versa. e1 makes 10 and 01 equivalent in a similar way.
Figure 8.2c shows the BDD that represents the set of abstract states αSM&S

2 (S), containing four
abstract states or eight complete states, depending on our interpretation. An important point is that
BDD nodes pointed to by the paths 00 and 11 are equivalent. A similar reasoning can be made for
every abstract state ei making the top part of any BDD describing abstract states at most as large as
the ADD representation of the M&S abstraction.

The example shown in Figure 8.2 is an ideal case, where not only the layers corresponding to
α2 are reduced, but also other layers get simplified. Opposite examples can be defined where the
number of BDD nodes required to represent αSM&S

i (S) is even exponentially larger than the number
of nodes to describe S. However, the correspondence between the ADD that describes the M&S
abstraction α2 and the upper levels of any BDD describing a set of abstract states lets us prove some
bounds on the size of BDDs describing any set of abstract states.

Proposition 8.1. Let αk be an M&S abstraction over relevant variables v1, . . . , vk with M abstract
states. Let Sα

SM&S
k be a set of abstract states in ΘαSM&S

k . Then, the layer k+1 of the BDD representation
of Sα

SM&S
k , under variable ordering starting by υ1, υ2, . . . , υk, has at most M BDD nodes.

Proof. Each node in layer k + 1 corresponds to one or more abstract states in αk. Suppose that
there is a node, n′ that does not correspond to any abstract state. Let d1, . . . dk be an assignment to
variables v1, . . . , vk such that leads from the root of the BDD to n′. By definition, all assignments
are related to a unique abstract state, so let sα

SM&S
k be the abstract state corresponding to partial state

d1, . . . dk.
By definition of the abstract state space, d1, . . . dk is indistinguishable of all the other assign-

ments mapped to sα
SM&S
k . Therefore, node n′ represents not only d1, . . . dk but also all the other

assignments of sα
SM&S
k and, hence, sα

SM&S
k itself is associated with n′.

132 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

Proposition 8.1 bounds the size of a single layer of the BDD describing a set of abstract states
in ΘαSM&S

k . However, this result can easily be extended to all the upper layers in the BDD. As we
are assuming a linear merging strategy, all the M&S abstractions are built as the merge of an M&S
abstraction and the atomic abstraction of another variable. Therefore, the bound of Proposition 8.1
is valid for all the upper levels of the BDD.

Theorem 8.2. Let M1, . . . ,Mk be the number of abstract states of k intermediate abstractions
α1, . . . , αk of an M&S algorithm with a linear merging strategy, such that αi = γi(̇αi−1 ⊗ πi). Let
Sα

SM&S
k be a set of abstract states in ΘαSM&S

k . Then, the BDD representation of Sα
SM&S
k , under variable

ordering starting by υ1, υ2, . . . , υk+1, is represented with at most (
∑
i∈[1,...,k]Mi) + Mk2n−k+1

BDD nodes.

Proof. The BDD that represents Sα
SM&S
k may be divided in its top and bottom parts. The top part

includes layers 1 to k and the bottom part the remaining (n − k) layers. From Proposition 8.1,
we can bound the size of each top layer to Mi nodes, so that the top part of the BDD uses, at
most,

∑
i∈[1,...,k]Mi nodes. The bottom layers correspond to functions over the remaining (n− k)

variables. Each of these functions is described as a BDD with n − k levels. In the worst case, they
do not share any node, and thus each one has 2n−k+1 nodes. Since there are Mk different functions,
the size of the bottom part of SB is bounded by Mk2n−k+1.

8.2.2 SM&S Transition Representation
Once we have defined the symbolic representation of sets of abstract states, in order to perform a
symbolic search, we need a reliable way to perform successor generation. In Chapter 3 we studied in
detail how to perform successor generation on the original state space on PDB abstract state spaces.
In summary, planning operators are represented by means of one or more transition relations (TRs).
Then, the image and pre-image operations use the TRs to compute the set of successor or predecessor
states. One of the conclusions we came to is that how TRs are represented may have a huge impact
on the search performance.

As a brief recap, each TR is a function f : S, S′ → {>,⊥} that relates predecessor to successor
states, i. e., f(s, s′) is true if and only if there is a transition from s to s′. Predecessor states are
represented with the standard set of variables x, and an auxiliary set of variables x′ represents the
successor states. The variable ordering is also very important. Usually, variables in x and x′ are
interleaved in the following manner: x1, x

′
1, x2, x

′
2, . . . xn, x

′
n. This variable ordering exploits the

fact that operators usually affect a few variables so that most variables preserve their previous value.
In SM&S abstract state spaces, however, the transitions are different than in the original state

space. Moreover, in a given αSM&S
i , variables υ1, . . . , υi are highly related and the TR representation

can be very complex. Therefore, contrary to our state representation, it is not possible to preserve
the same variable ordering as for the TRs of the original state space.

We avoid the problem of representing SM&S TRs by using the TRs of the original state space.
This is possible since the set of abstract states may be interpreted as a set of non-abstracted states. Of
course, the result of the image operation is a set of states of the original state space. Fortunately, we
can apply the abstraction function to obtain the set of abstract states associated with them. The image
and pre-image operations are applied as image(Sα

SM&S
i , TRα

SM&S
i) = αSM&S

i (image(Sα
SM&S
i ,T)). The

details of this operation are described in Section 8.5.
Thus, we do not need to compute a new set of TRs for every abstract state space we traverse.

However, using the original TRs also has relevant drawbacks. In particular, the intermediate BDDs
may induce a large overhead. Even in the case where the sets of abstract states are guaranteed to

8.3. PERIMETER PATTERN DATABASES 133

be efficiently representable, the intermediate set of original states does not have any guarantee with
respect to its size.

8.3 Perimeter Pattern Databases
Perimeter search is a form of bidirectional search independently devised by Manzini (1995) and
Dillenburg and Nelson (1994) that operates in two phases: the backward phase and the forward
phase, as represented in Figure 8.3. The backward phase generates a perimeter of radius r around the
goal with a uniform-cost search,2 so that the perfect heuristic value from each state in the perimeter
to the goal is known and for any other state outside the perimeter its distance to the goal is strictly
greater than r. Then, the forward phase performs a forward search from the initial state to the
perimeter using any algorithm like A∗ or IDA∗. Since the goal of the forward search is any state in
the perimeter P , the heuristic evaluation estimates the distance to the closest state in the perimeter
so that h(s) = mins′∈P h(s, s′).

s0 s?

r
h

Figure 8.3: High-level diagram of Perimeter PDBs. First, the perimeter around the goal of radius r
contains every state that can reach the goal with cost r or less. Then, the forward search is performed
guided with heuristics that estimate the cost to reach the closest state in the perimeter frontier.

The major drawback of perimeter search is that heuristic evaluation may become too expensive
when the perimeter is large. In practice, some optimizations avoid to evaluate h(s, s′) for every state
in the perimeter (Manzini, 1995), but it is often not enough to deal with large perimeters. Using
a model to predict the optimal radius r beforehand may be useful to avoid large overheads with
respect to unidirectional search (Linares López and Junghanns, 2002). There are other ways to use
the perimeter while avoiding a large number of heuristics evaluations, such as taking the estimation
to the goal and correct it by considering the error made in the perimeter nodes (Kaindl and Kainz,
1997).

Abstraction heuristics are a candidate to overcome this problem, because they precompute the
heuristic value of every abstract state. Perimeter Pattern Databases (PPDBs) were first studied by
Felner and Ofek in (2007). PPDBs store for each abstract state the minimum distance towards any
abstract state in the perimeter. Then, a single PDB lookup suffices to perform the heuristic evaluation
independently of the number of states in the perimeter.

A perimeter PDB is constructed in two phases that perform a backward search:

1. As in perimeter search, use a backward search to build a perimeter P of radius r around the
goal states in the original search space.

2. Perform a second backward search in the abstract state space seeded with abstract states cor-
responding to states in the perimeter {α(p) : p ∈ P} with initial cost r. As noted by Felner

2Other works in the literature consider breadth-first search because they deal with unit-cost domains. In our case we
always consider domains with diverse action costs.

134 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

and Ofek, seeding the abstract search with cost r is equivalent to add r to each heuristic esti-
mation. This means that the heuristic value of a state is an admissible estimation to the closest
state in the perimeter plus the perimeter radius. 3

The PPDB is used as a heuristic for a forward search. The heuristic is only admissible for nodes
outside the perimeter. This is not inconvenient, though, because the search halts whenever a state
in the perimeter is chosen for expansion. The potential of PPDBs is easily recognizable. They
easily evaluate states during the search, which is the main drawback of perimeter search. Moreover,
compared to standard PDBs, PPDBs produce heuristics at least as informed as PDBs. However, after
performing a theoretical and empirical analysis, Felner and Ofek report that PPDBs are not better
than just taking the maximum between the PDB and the perimeter heuristic (correcting values in the
PDB under r + 1 to take r + 1).

Linares López (2008) proposed multi-valued PPDBs that store different entries in the PDB for
the distance to each state in the perimeter. When a single PPDB is used, the heuristic value of a state
to the minimum of all such entries minp∈P h(α(s), α(p)), so there is no advantage with respect to
PPDBs. Nevertheless, when maximizing over multiple PPDBs it is possible to reason about which
perimeter state is producing the estimates to get more informed estimations.

More recently, in a parallel work with ours (Torralba et al., 2013b), Eyerich and Helmert ap-
plied perimeter PDBs in the context of automated planning (Eyerich and Helmert, 2013). They
show that perimeter search can enhance the performance of standard PDBs contradicting the con-
clusions reached by Felner and Ofek and suggest that perimeter PDBs should be revisited. Indeed,
the analysis of Felner and Ofek only considered permutation domains with no spurious paths in the
abstract state space, which is not a common case in planning domains. Eyerich and Helmert used
a breadth-first implementation so that it only works in unit-cost domains, though, it could be ex-
tended to handle non-uniform action costs. They identify three challenges to extrapolate perimeter
databases from heuristic search combinatorial domains to planning (C1 to C3), plus one additional
challenge related to the collision of frontiers (C4):

C1 Perimeter search had been previously applied to domains with one goal state and invertible
operators. In that case, the backward search to generate the perimeter is no harder than the
forward search. In planning, one has to deal with the complexity of regression, i. e., an ex-
ponential number of goal states and operators that generate more than one state in backward
search.

C2 In the heuristic search literature, PDBs are usually constructed offline. Their construction
time is irrelevant since the same PDB is used to solve many different problems. In planning,
however, the time spent in generating the abstraction heuristic is part of the total time. This
applies to all kind of abstraction heuristics, but in the case of perimeter abstractions may be
aggravated by the time spent in matching states in the perimeter to abstract states.

C3 The perimeter radius must be automatically set by the planner, without instance-specific pa-
rameter tuning.

C4 In order to terminate the forward search as soon as a state in the perimeter is expanded, mem-
bership in the perimeter must be efficiently performed. This can be challenging, especially for
large perimeters.

3This initialization assumes unit-cost domains. For domains with multiple action costs, each abstract state is initialized
with the g-value of the corresponding state in the perimeter. The general initialization of abstract searches is described in
Definition 8.5 on page 138.

8.4. PERIMETER ABSTRACTION HEURISTICS REVISITED 135

They successfully overcome these challenges. To address challenge 1, they propose the use of
regression search using partial states as studied in Section1.2.3. This involves a number of optimiza-
tions, like using a match tree to detect (most) duplicate states. In order to ease Challenge 2, they
propose an optimization to efficiently seed the abstract frontier with the abstract states associated
to the perimeter. They iterate over states in the perimeter and get the corresponding abstract state
by means of a hash function, avoiding the iteration over all abstract states. Challenge 3 requires to
ensure that the perimeter is constructed without manually deciding the radius. To ensure the termina-
tion of their procedure, they set different parameters that limit the time and memory of the algorithm,
like maximal radius, runtime limit and memory bound. Finally, Challenge 4 is addressed by check-
ing membership in the perimeter only for those states with heuristic value equal to the perimeter
radius, avoiding the computation overhead for most states in the search.

In this chapter, we address PPDB challenges in a different way, through the use of sym-
bolic search in Symbolic Perimeter PDBs (SP-PDBs) and Symbolic Perimeter M&S (SPM&S).
As pointed out by Kissmann, the extrapolation of perimeter pattern databases to the symbolic case
is straightforward (Kissmann, 2012). Indeed, the use of symbolic search is a possible answer to the
challenges identified by Eyerich and Helmert:

C1 Symbolic search is an effective method to perform regression. Applicability of actions in
regression is performed with the pre-image operation, which is symmetric to the image op-
eration used in forward search. Subsumption of partial states is not a problem for duplicate
detection in symbolic search, because all partial states are represented as a single state set in
symbolic representation. Moreover, the empirical evaluation in Section 5.1 on page 83 shows
a clear advantage over partial-state based regression.

C2 In symbolic search, the states in the perimeter frontier are mapped into abstract states (to seed
the open list of abstract searches) through symbolic operations. The particular operations for
PDBs and SM&S abstractions are presented on Section 8.6.

C3 As Eyerich and Helmert (2013), we also rely on parameters that bound the time and memory
resources invested in constructing the PPDBs. As in the symbolic bidirectional blind search,
we use the number of BDD nodes in the search frontier to limit the memory and estimate the
time needed for the next step.

C4 In symbolic search, if the perimeter is encoded as a BDD, a conjunction suffices to detect
the collision with the perimeter. A single conjunction has quadratic complexity in the size
of the BDDs — as opposed to quadratic in the number of states. In practice, this is efficient
when the size of the perimeter BDD is succinct with respect to the list of partial-states it
represents. Even though there are no theoretical guarantees, the good empirical results of
regression search shown in Section 5.1 on page 83 suggest that this is often the case.

8.4 Perimeter Abstraction Heuristics Revisited
In this section, we present several contributions to current state-of-the-art PPDBs previously ana-
lyzed. We redefine PPDBs to generalize the definition previously given in several ways:

• We take into account action-costs, so that our definition is valid and admissible for domains
with non-uniform costs.

• Previous work on perimeter abstraction heuristics have considered only two different state-
spaces: first a search is conducted in the original state space to define the perimeter. In a

136 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

second step, the search is completed in an abstract state space. We generalize the two-phases
of PPDBs to an arbitrary number of searches in different state spaces. Our definition is based
on abstraction hierarchies and can handle more than one abstract state space.

Moreover, while previous definitions always initialize the relaxed search with an empty closed list,
we consider the inclusion of some abstract states in the closed list to obtain more accurate heuristics
(see Definition 8.5 on page 138).

Perimeter abstractions (PA) are defined over an abstraction hierarchy α0, . . . , αk so that they
perform k + 1 phases, one for each abstract state space Θα

i . Previous definitions of PPDBs were
limited to two phases, one in the original state space and another in an abstract state space. Instead,
PAs perform a phase for each αi in the hierarchy. Note that, even though our definition specifies that
all the phases are performed over abstract state spaces, it can also search the original state space. To
conduct a perimeter search in the original state space it suffices to define α0 as the identity function,
s = α0(s), so that Θα0 ≡ Θ.

Figure 8.4 illustrates the idea of perimeter abstraction heuristics. After constructing a perimeter
around the goal of radius r, the search frontier is relaxed into an abstract state space. Abstract
searches are used to explore the state space outside the perimeter, though the information is not
perfect anymore, as reflected in Figure 8.4 by the irregular form of the perimeters. Besides, not
only one perimeter PDB is built, whenever the abstract search becomes intractable, it is relaxed into
another abstract state space. In the end, all the abstract perimeters are used as heuristics, to estimate
the distance from states in the forward search to the perimeter.

S?s0

r
h

Figure 8.4: Example of a perimeter abstraction heuristic. Several abstract searches, each one more
relaxed, provide the distance estimations to states in the goal perimeter.

Algorithm 8.1 shows the precomputation phases of a PA heuristic. The first phase performs a
search in Θα0 (that usually corresponds to the original problem) initialized with the problem goals.
Then, each phase i consists of a search in the abstract state space Θαi initialized with the perimeter
frontier of search i− 1.

In order to obtain the heuristic values in a given state space with non-uniform action costs, we
perform a backward uniform-cost search, DS .4 We characterize the current status of a uniform-cost

4In our experiments we use symbolic uniform-cost search but all the results of this section are valid for the explicit-state
search case as well.

8.4. PERIMETER ABSTRACTION HEURISTICS REVISITED 137

Algorithm 8.1: Perimeter Abstraction Heuristic
Input: Planning problem Π = 〈V,O, s0, s?〉.
Input: Abstraction Hierarchy α0, . . . , αk.
Output: List of heuristics hPA = hDS0, . . . , hDSk.

1 open0 ← α0(s?)
2 closed ← ⊥
3 r ← 0
4 foreach αi ∈ {α0, . . . , αk} do /* for each precomputation phase */
5 Uniform-Cost-Search (open, closed , r, αi) /* perform uniform-cost search */
6 hDSi ← get-h(closed , open, r) /* gather heuristic */
7 if open = ∅ then /* if the search has sucessfully finished */
8 return hPA

9 if i < k then /* if there are more abstractions left */
10 open, closed ← re-seed(open, closed , αi+1)

11 return hPA

search as a tuple DS = 〈open, closed , r〉. open represents the states generated but not expanded.
closed represents the states that have already been expanded. Both open and closed can be split into
buckets openg and closedg that represent the states generated with cost g and expanded with cost g
or less, respectively. r is the current radius of the perimeter, i. e., the current g-value of DS . In this
chapter, we do not describe in detail how uniform-cost search is performed (details about uniform-
cost algorithm and our implementation of symbolic uniform-cost search can be found in Section 2.4).
Here, we only care about the status in which we initialize each search and after the search has been
stopped. A search is stopped either when the state space has been completely traversed or the search
was truncated at some radius r.

The algorithm initializes the first search in Θα0 with the goal of the problem at cost 0. The loop
in line 4 iterates over all the precomputing phases, each associated with a different abstraction αi.
Each phase performs a uniform-cost search and gathers the related heuristic (lines 5 and 6). If there
are more state spaces to explore, we re-seed open and closed with abstract states relative to the next
abstraction (line 10). The algorithm terminates returning the heuristic when all the phases have been
completed or if at some point there are no states left in open .

Before describing in detail how to re-seed the abstract searches, we define the heuristic that
results from the PA algorithm. Each uniform-cost search performed in the algorithm produces an
estimate hDSi . If the search DS i on Θαi was initialized with the tuple 〈open, closed , r〉, the cor-
responding heuristic, hDSi(s), estimates the cost of reaching the goal from a state s passing by the
perimeter open . r is an admissible estimation of the cost of reaching the goal from any node in the
perimeter. Therefore, the estimation corresponds to hDSi(s) = r+ minsp∈open h

α(s, sp). Since the
searches are not always finished, the heuristic estimates follow the definition of partial abstraction
heuristics (Anderson et al., 2007) detailed in Definition 8.3.

Definition 8.3 (Partial abstraction heuristic). Given a uniform-cost search DS = 〈open, closed , r〉
over the state space Θα. Let g′ > r be the cost of the next bucket in open , g′ = arg mini openi 6=
∅ ∧ i > r. We define the next frontier cost r′ as the minimum between the cost of the next bucket
in the open list and the current frontier plus the cost of the cheapest operator. r′ = min(g′, r +

138 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

mino∈O c(o)). 5

We define the partial abstraction heuristic of DS , hDS as shown in Equation 8.1. States expanded
by DS take the value with which they were expanded. Unexpanded states take either r′ or ∞,
depending on whether the exploration successfully finished or not:

hDS (s) =


c α(s) ∈ closedc

r′ α(s) /∈ closed and open 6= ∅
∞ α(s) /∈ closed and open = ∅

(8.1)

During the search, the perimeter abstraction heuristic, hPA, combines the estimations of each
search, hDSi . One must be careful to preserve admissibility when combining the heuristic estimates
coming from searches initialized with different perimeters. The usual method to combine estimations
of the same problem is just taking the maximum. However, in this case the maximum of all the
estimates is not an admissible heuristic, because each estimate hDSi may be inadmissible in the inner
part of the perimeter that was used to initialize DS i. The previous definitions of PPDBs reviewed
in Section 8.3 avoided the problem by considering only one abstract state space and stopping the
forward search when colliding with the perimeter. The heuristic is admissible because states in the
inner part of the perimeter are never evaluated.

Since we have several heuristics whose searches are initialized with different perimeters, the
evaluation of states in the inner part of some perimeter cannot be avoided. In order to combine the
individual estimations in an admissible way, we take the maximum of the subset of estimations that
are ensured to be admissible. Following Definition 8.4 we rule out all the estimations coming from
searches initialized with a perimeter in which the evaluated state had been expanded.

Definition 8.4 (Perimeter abstraction heuristic). Given the perimeter abstraction phases
DS 0, . . . ,DSn performed over an abstraction hierarchy α0 to αn. Let s be a state, and DSk be
the first exploration in which αk(s) was expanded, i. e., k = min {i | αi(s) ∈ closedDSi}. Then, we
define the perimeter abstraction heuristic as:

hPA(s) = max
i=[0,...,k]

hDSi(s)

Before proving that hPA is an admissible heuristic, we define how abstract searches are initialized
with the open and closed lists of the previous search. Each search i continues from the perimeter
generated by search i− 1. Definition 8.5 describes how each search is initialized.

Definition 8.5 (Perimeter search initialization). Let a search DS i =
〈
open ′, closed ′, r′

〉
on αi

initialized with perimeter of search DS i−1 = 〈open, closed , r〉. For every abstract state on αi, sαij ,
we denote Sj to the set of all states mapped to sαij , i. e., Sj = {s : αi(s) = sαij }. We initialize
search DS i as:

open ′g = {sαj : ∃s∈Sjs ∈ openg}
closed ′g = {sαj : ∀s∈Sjs ∈ closedg}

r′ = r

5Other works consider r′ = r+1, which is the special case for unit-cost domains. Our definition of r′ takes into account
generic action costs. For example, in domains with operators of cost 0, our definition takes the right value, r′ = r.

8.4. PERIMETER ABSTRACTION HEURISTICS REVISITED 139

. . .

A B C G

F E D

(a) Original state space.

. . .

A B

C, D G

F E

(b) Abstract state space.

Figure 8.5: Example of initialization of the closed list. B was already expanded by the perimeter
search, so there is no need to reopen it, pruning the spurious path in the abstract state space between
A and D or E.

The open list is seeded with the abstract states of all the states in the perimeter, as in the case
of common PPDBs. On the other hand, our initialization of the closed list differs from definitions
used by previous work. In these previous works, the closed list is initialized as the empty list. Our
proof of Theorem 8.3 shows that, in order to prove perimeter abstraction heuristics to be consistent
and admissible, it is strictly forbidden to remove states from open or add new states into closed . In
other words, if we consider the sets of states associated with all open , open’, closed and closed ’
(by interpreting the abstract states as sets of states), they must meet the following constraints in the
initialization of DS i: openi−1 ⊆ openi and closed i ⊆ closed i−1.

Both the initialization of closed to the empty list and the one used in Definition 8.5 are valid.
The advantage of our initialization of closed is that it includes more states into the closed lists. This
allows us to detect as duplicates all the states that were included into closed . Hence, the number
of states to be expanded (and therefore the search effort) is reduced. Moreover, pruning these states
may also prune spurious paths that do not exist in the original state space, making the heuristics
more informed. Thus, our initialization of the closed list derives more informed heuristics and still
guarantees them to be admissible.

It may not be clear from the previous explanation in which cases the initialization of the closed
list may help to prune spurious paths, improving the heuristic estimates. Figure 8.5 shows an exam-
ple that shows how preserving some states in the closed list may produce a more informed heuristic
than leaving it empty. Consider the part of the original state space depicted in Figure 8.5a. There are
seven states, including the goal state G, three states that form a path to the goal, A, B and C, and
another three states that are in another part of the state space D, E and F . From our figure, one can
infer the distance to the goal of A, B, C and G, but nothing can be said about the distance to the
goal of D, E and F : they are arbitrarily far from the goal state and even may lead to dead-ends.

A perimeter of depth 3 is constructed in the original state space, in which case states G, C and
B are expanded — assuming unitary costs. The search frontier only contains state A. This frontier
is used to initialize an abstract search in the abstract state space of Figure 8.5b. In this abstract state,
states C and D are mapped to the same abstract state. On the other hand, all the other states stay as
in the original state space (they have been mapped to themselves). If the closed list of the search in
the abstract state space is initialized empty, there is a path from A to D of cost 2 and the heuristic
value of D will be 5 = 2 + 3. However, if the closed list is initialized with states expanded by
the perimeter search, states B and G are detected as duplicates (note that the state C,D cannot be
included in closed because D was not expanded). As B is not expanded in the abstract search, the
spurious path between A and D is pruned and the heuristic value of D, E, F and other states will be
higher.

140 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

Theorem 8.3. Perimeter abstraction heuristics are admissible and consistent.

Proof. A heuristic h is consistent if and only if h(s) ≤ h(s′) + c(l) ∀(s, l, s′). Given the definition
of hPA, we divide the proof in two cases, depending on whether s′ was expanded by a search DS i
(case 2) or not (case 1).

In case 1, if s′ was not expanded in any search, then its h-value equals∞ or the larger frontier
cost (depending on whether the last search was finished or truncated). In either case, the heuristic
value for s′ is the maximum and the inequality holds, hPA(s) ≤ hSM&S(s′) ∀s.

In case 2, let DS i be the first search in which s′ was expanded, and doing so with cost c. Then
hDSi(s

′) = c. As no previous search expanded s′, hPA(s′) = max0,...,i hDSi(s
′) ≥ c. Thus,

we need to prove the inequality h(s) ≤ c + c(l). As s′ was expanded in regression search DS i,
necessarily s was inserted in openc+c(l). Again, we divide the proof in two cases, depending on
whether some search DS j , j > i expanded the bucket openc+c(l) (case 2.1) or not (case 2.2).

In case 2.1, s was first expanded by a search DS j , j ≥ i. As s was inserted in openc+c(l), the
value with which s was expanded is at most c+ c(l), since s remains in openc+c(l) and either is not
in closed or has been expanded with a lower cost. Note the relevance of Definition 8.5, where open ′

preserves all the states in the open list and closed ′ prevents states from being closed if they are not
expanded. Therefore hPA(s) ≤ c+ c(l) = h(s′) + c(l).

In case 2.2, SPM&S finishes before reaching c + c(l) (the search is truncated), h(s) will be the
next frontier cost d′ ≤ c+ c(l) = h(s′) + c(l).

Admissibility is derived from consistency, given that the heuristic is perfect for goal states: ∀s? ∈
s?, h(s?) = 0.

8.5 Frontier Shrinking
One key aspect of perimeter abstraction heuristics is that, instead of restarting abstract searches from
scratch, they restart the search from the current frontier by relaxing the open and closed lists. Thus,
in order to initialize the abstract search, they have to perform the mapping from states in the original
state space to abstract states, according to Definition 8.5. In this section, we consider how to initialize
abstract searches efficiently when using a symbolic representation of the sets of states involved in
the searches. We call this operation “shrinking the frontier” because we expect the frontier of the
abstract state space to be more compact according to Theorem 8.2.

According with Definition 8.5, there are two different types of frontier shrinking operations.
Existential shrinking is used to shrink the open list and universal shrinking is the operation applied
to the closed list. Both take as input a set of states SB and an abstraction function α and compute the
set of abstract states that will be used to initialize the open and closed list, S∃αB and S∀αB , respectively.
Next, we describe how to implement both shrinking operations when the sets of states are described
with BDDs and our abstraction is a PDB or a SM&S abstraction.

8.5.1 Frontier Shrinking in PDBs
PDB abstractions are characterized by a set of variables Vα, so that the value of the remaining
variables is completely ignored. Implementing the existential and universal shrinking operations in
this setting, reduces to applying the standard existential/universal quantification over variables that
are not in Vα, as formulated in Equations 8.2 and 8.3.

S∃αB = ∃V\VαSB (8.2)

S∀αB = ∀V\VαSB (8.3)

8.6. SYMBOLIC PERIMETER M&S 141

8.5.2 Frontier Shrinking in SM&S

In SM&S abstractions, like in PDBs, we can distinguish between relaxed and non-relaxed variables.
However, instead of completely ignoring the relaxed variables, an M&S abstraction is used to keep
some information about the relaxed variables. Therefore, we describe the SM&S abstraction in
terms of the set of relaxed variables Vα (the relevant variables of the M&S abstraction) and the set
of equivalences induced by the M&S abstraction, ∼α. Recall that each abstract state sα is a set of
states such that every pair of states s1, s2 ∈ sα are equivalent, s1 ∼α s2. Equations 8.4 and 8.5
show how to compute the existential and universal shrinking of a set of states, SB , given a BDD
representation of SB and each sα:

S∃αB =
∨

sα∈Sα
(∃Vα ((SB ∧ sα) ∧ sα)) (8.4)

S∀αB =
∨

sα∈Sα
(∀Vα ((SB ∧ sα ∨ ¬sα) ∧ sα)) (8.5)

As in the case of PDBs, both operations use the existential/universal BDD quantification of the
abstracted variables. However, in this case, we must iterate over all the abstract states in Sα to
keep their information. For each abstract state, sα, we compute its existential shrinking in three
consecutive steps:

1. SB ∧ sα is the subset of SB which corresponds to any state in sα. However, in our final result
all partial states mapped to sα must be indistinguishable.

2. Existential quantification of Vα gets all the assignments to variables V \ Vα that have been
reached for any s ∈ sα. That way, we keep the values of other variables while ignoring the
relaxed variables, just like in the existential shrinking of PDB abstractions.

3. Finally, we compute the conjunction with sα to reset the value of Vα to only states in sα.

As an example, take Figure 8.2 on page 131. Abstract state e0, represents the partial states 00
and 11. Our first step, gets all the states in SB that fit that description: 00000 and 11011. Then, the
existential quantification forgets about the value of the relaxed variables, obtaining the set of states
xx000 and xx011. Finally, those assignments are valid for e0, so we end with four states after our
relaxation: 00000, 00011, 11000 and 11011.

The case of universal shrinking is similar, though in this case the second step uses a universal
quantification to get only those assignments to non-relaxed variables that are true for all partial
assignments mapped to sα. Moreover, a disjunction with ¬sα is necessary to ignore the values
reached with other abstract states in the universal quantification.

8.6 Symbolic Perimeter M&S

In the previous sections, we have presented an abstraction hierarchy based on M&S abstractions and
a new model of perimeter abstraction heuristics that can exploit it. In this section, we mix those
ingredients up and propose the Symbolic Perimeter M&S heuristic, SPM&S. The main purpose of
this section is to describe the design and implementation decisions that remain unsettled and are
needed in order to have a practical implementation of the theoretical results of previous sections.

142 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

8.6.1 SPM&S Algorithm

First, we present a high-level description of the SPM&S procedure. SPM&S is a perimeter ab-
straction heuristic using symbolic search to explore SM&S abstractions. Thus, SPM&S performs
symbolic regression and uses M&S abstraction to gradually relax the search whenever it becomes
unfeasible. Figure 8.6 depicts a high level view of the interaction between symbolic search and M&S
abstractions in the SPM&S algorithm. The diagram is divided into four parts: the upper part depicts
the M&S abstractions that are used to relax the search; the middle part depicts the BDDs involved
in the search; the x-axis represents the search progress with the different layers labeled with their
g-value; and below the axis we show the resulting heuristics of each search.

SPM&S starts computing a symbolic perimeter, Exp(α0). This perimeter corresponds to a re-
gression search in the original state space, so that no M&S abstraction is being used to relax the
search. The first BDD with g = 0 contains the goal states and by successive pre-image operations
SPM&S generates the sets of states with g = 1, g = 2, etc. This search proceeds as a standard
symbolic regression search. As symbolic regression is intractable for general planning domains, the
search will surpass in most instances the predetermined memory or time bounds given for the pre-
computation of the heuristic. Then, the search is truncated (at g = 2 in Figure 8.6). The minimum
distance to the goal of the expanded state sets is stored, transforming the list of BDDs representing
the search to an ADD representing the heuristic, hExp(α0). Up to this point, we have just generated
a symbolic perimeter with symbolic regression search, and no abstractions have been used yet.

Then, M&S is used to derive an abstraction, α1. M&S merges variables, applying shrinking if
needed to fit the maximum number of abstract states (in Figure 8.6, with a limit of six abstract states,
α1 must have at most three abstract states before merging the next variable). SPM&S initializes
Exp(α1) by relaxing the open and closed lists of the previous search, using the existential and
universal shrinking operations described in Section 8.5. The top levels of the BDDs in the open
or closed list of the new relaxed search, Exp(α1), are at most as large as the ADD that represents
the M&S abstraction, α1, depicted in the upper part of the Figure. This is due to the fact that
all partial states related to the same abstract state are considered equivalent so that when one is
reached, all of them are, as explained in Section 8.2.1. For example, in Figure 8.6, abstract state
e1 represents partial states 00 and 10. During the exploration, if state 10010. . . is reached, then
state 00010. . . is also reached and vice versa. Hence, BDD nodes pointed to by 00 and 10 are
equivalent, making the top part of any BDD in the exploration equal to the ADD representation of
α1. Also, M&S abstractions are accumulative, so the top levels of α2 coincide with those of α1.
With the relaxation induced by the M&S abstraction the search continues, but, after some steps, it
may become unfeasible again (according with the time/memory bounds set as parameters). SPM&S
continues interleaving symbolic explorations and M&S iterations until an exploration is completed
or time/memory bounds are violated. When finished, it returns the list of ADDs representing the
heuristic.

Algorithm 8.2 shows the SPM&S algorithm. It receives as input a planning task Π and some
parameters to bound the memory and time resources. The output is a heuristic H represented as a
list of ADDs. Each ADD is the result of a backward symbolic exploration over an M&S abstraction
α. If SPM&S exceeds the time limit TSPM&S a last ADD is included (line 16). This last ADD is
the standard M&S heuristic, computed as usual with an explicit traversal of the abstract state space.
SPM&S starts initializing the symbolic backward search as usual to (open = S?, closed = ∅, d = 0)
and α is empty. Symbolic search progresses following the relaxation imposed by α (line 7).

The Explore procedure performs a symbolic search of αSM&S, updating the open and closed
lists and the frontier cost, d. It works as symbolic uniform-cost search presented in Section 2.4,
with additional parameters that affect the stop condition. At each step, the current frontier Se is

8.6. SYMBOLIC PERIMETER M&S 143

Algorithm 8.2: Symbolic Perimeter Merge-and-Shrink
Input: Planning problem: Π = 〈V,O, s0, s?〉
Input: Memory bounds: N , NF
Input: Time bounds: TSM&S , TSym , TExp , TI
Output: List of ADDs: H

1 H ← ∅
2 abs ← {πυ | υ ∈ V}
3 α← ∅
4 (open, closed , d)← (S?, ∅, 0)
5 while open 6= ∅ and ts < TSM&S do
6 if |opend| ≤ NF and ts < TSym then
7 Explore(α, open, closed , d,NF , TExp , TI) /* Search abstract state space */
8 H ← H ∪ ADD(closed , d) /* Insert heuristic ADD in H */

9 Select(πυ ∈ abs) /* Select next atomic abstraction */
10 abs ← abs \ πυ /* Remove atomic abstraction from abs */
11 E ← Shrink(α, N

size(πυ)) /* Get shrinking equivalence */
12 open ← open∃E /* Shrink search frontier */
13 closed ← closed∀E /* Shrink closed list */
14 α← αE ⊗ πυ /* Merge next variable */

15 if open 6= ∅ then
16 H ← H ∪ Explicit-Search(α)

17 return H

18 Procedure Explore(α, open, closed , d,NF , TExp , TI)
19 while open 6= ∅ and texp < TExp do
20 Se ← opend ∧ ¬closed /* Expand opend */
21 opend ← ∅
22 closedd ← Se
23 while Se 6= ∅ and |Se| < NF and t < TExp do /* BFS with 0-cost operators */
24 Se ← pre-image0(Se, α, TI) ∧ ¬closed
25 closedd ← closedd ∨ Se
26 if |closedd| < NF and texp < TExp then /* Apply cost operators */
27 for all i > 0 | ∃o ∈ O, c(o) = i do
28 opend+i ← opend+i∨ pre-imagei(closedd, α, TI)

29 d← minc openc 6= ∅

144 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

g

υ0
υ1
υ2
υ3...

Vα0 = ∅
M&S

Vα1
υ0
υ1

e0 e1 e2

υ0
υ1
υ2M&S

Vα2

e0 e1 e2

Exp(α0) Exp(α1) Exp(α2)

S?

0

S1

1

S2

2

S2

α1

2

S3

α1

3

S3

α2

3

S4

α2

4

S5

α2

5

S6

α2

6

∅

hExp(α0) hExp(α1) hExp(α2)

truncated truncated

Figure 8.6: SPM&S example with binary variables, unary cost operators and a limit of six abstract
states for M&S. Ellipses represent sets of states in the symbolic regression searches. In abstract
searches, the top part of each BDD corresponds to the ADD that represents the M&S used to relax
the search.

extracted from opend, removing already expanded states (line 20). Before applying non-zero cost
operators, a breadth-first search applying only 0-cost operators is performed in order to obtain all
states reachable with cost d (lines 23 - 25). Those states are stored in the closed list and their
successors are generated and inserted in the corresponding bucket of the open list. pre-imagec
computes the set of predecessor states in the state space α ⊗ ΠV\Vα with operators of cost c. The
exploration finishes when the open list is empty or the search is truncated. The heuristic derived
from its closed list is stored in H as an ADD (line 8).

Several parameters bound the memory and time used by the algorithm. Memory is controlled
by the maximum number of M&S abstract states N and the maximum number of nodes NF to
represent the search frontier. Four different parameters limit the time employed by the algorithm
ts or by the exploration texp . TM&S aborts the heuristic generation to guarantee termination. TSym

prevents SPM&S from performing more symbolic explorations to focus on completing the M&S
abstraction. TExp fixes a maximum time for each individual exploration to avoid consuming all the
time in one single exploration. Finally, TI limits the maximum time employed in one pre-image.
If TI is exceeded, not only the image but the whole exploration is halted. In order to avoid starting
another image as hard as the halted one, the maximum number of nodes in the frontier search is
reduced to NF = |Se|

2 . All these parameters are set independently of the domain and only depend
upon the memory and time resources available to the planner.

When the search is truncated because one of the bounds was reached, the current abstraction is
substituted, merging a new variable and shrinking if needed. After shrinking the abstraction, we also
shrink the search frontier, open and closed , in order to continue the search. Note that, after shrinking
the search frontier with the new abstraction, the search only continues if the relaxed frontier has an
acceptable size. SPM&S keeps including variables into the abstraction until the search is small
enough, i. e., the relaxed frontier is smaller than the parameter NF . The use of perimeter search
prevents SPM&S from starting a new exploration per each merged variable, which could cause
redundant work in case that most searches were truncated at the same frontier cost.

Once the heuristic is computed as a list of ADDs, it can be used in the search to solve the

8.7. EMPIRICAL EVALUATION 145

planning problem. The heuristic of SPM&S is computed just as any other perimeter abstraction
heuristic, following Definition 8.4.

8.6.2 Theoretical Properties
We conclude with a recapitulation of the theoretical results that can be applied to the hSM&S heuristic.

Corollary 8.4. hSM&S heuristic is admissible and consistent.

Proof sketch. It follows from Theorem 8.3, since hSM&S is a particular instance of perimeter abstrac-
tion heuristic.

One of the advantages of M&S is that it is possible to control its time and memory usage by
appropriately setting the maximum number of abstract states, M . Assuming that M is polynomially
bounded, computing the abstraction has polynomial complexity (Helmert et al., 2007). SPM&S
does not ensure that the full symbolic exploration over an abstraction has a more concise BDD
representation than the original problem. Also, relaxing the search frontier with existential shrinking
could actually enlarge it. Fortunately, Theorem 8.2 in Section 8.2.1 derived a bound on the maximum
number of BDD nodes needed to represent any set of states in the exploration.

Corollary 8.5. Let α be an M&S abstraction with relevant variables Vα, generated with a maximum
number of abstract states M . Let SB be a BDD describing a set of states on Θα ⊗ ΠV\Vα using a
variable order whose first/top variables correspond to Vα. Then, the size of SB is bounded by:

|SB | ≤M
(
|Vα|+ 2|V\Vα|+1

)

Proof. It follows from Theorem 8.2, just assigning the bound M to the number of abstract states in
every intermediate M&S abstraction.

Corollary 8.5 ensures that, as variables are merged into the abstraction, the complexity of its full
symbolic exploration decreases. The bound on the top part of the BDD grows linearly on M , while
the bound on its bottom part is exponentially reduced. Thus, eventually the full symbolic exploration
of the abstraction will be tractable. In the limit, the exploration is performed over a linear sized state
space and can be explicitly explored, just as the original M&S algorithm does. Theorem 8.5 requires
relevant variables for the abstraction to be placed in the top levels of exploration BDDs. For this
to hold in every symbolic exploration, the symbolic search must use the same variable ordering as
the M&S merging strategy. Since changing the variable ordering of a BDD may cause an exponen-
tial blow-up, we use the same variable ordering in order to guarantee an efficient computation of
SPM&S.

8.7 Empirical Evaluation
In this section, we evaluate the empirical performance of our new heuristic, SPM&S, and compare
it against the two methods it combines: M&S and a symbolic perimeter, as well as to other state-of-
the-art heuristics for cost-optimal planning. We also evaluate the influence of different parameters
of our heuristic, in particular the combination of SPM&S with several PDB and SM&S abstraction
hierarchies.

146 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

SPM&S has been integrated in the FAST DOWNWARD planning system (Helmert, 2006b). All
the symbolic searches, for the construction of the perimeter and the exploration of the abstract state
spaces, use the enhancements for image computation and invalid-state pruning presented in Part I of
this thesis.

8.7.1 SPM&S Parameters
The SPM&S algorithm takes as input different parameters that can be classified into three categories:

Memory and time bounds SPM&S heuristics, as other abstraction heuristics like PDBs or M&S,
rely on a heavy precomputation phase in order to efficiently compute the heuristic value for each
state in the search. We defined parameters that limit the time and memory invested in the prepro-
cessing phase in order to guarantee that it successfully terminates. Larger bounds will likely result in
more informed heuristics at expenses of investing more preprocessing time. Of course, the optimal
value of these parameters directly depends on the total resources that are available to the planner.
SPM&S parameters were manually set to fit the competition setting: the maximum number of nodes
to represent the state set to expand is NF = 10,000,000. A maximum time is set to each individual
image (TI = 30s), exploration (TExp = 300s) and symbolic search (TSym = 900s). Finally, the
heuristic preprocessing is interrupted after TSPM&S = 1200s seconds to ensure that the search is
always started.

Variable ordering All the symbolic searches use a static variable ordering. We consider two
different variable orderings: GAMER and FAST DOWNWARD orderings. As we previously analyzed
in Section 7.4 on page 117, the variable ordering used by GAMER is optimized for symbolic search
and the one used in FAST DOWNWARD is suitable for the merging strategy of M&S. However, we
always use the same ordering for the symbolic search and merging variables in M&S since otherwise
there is no guarantee about the BDD sizes.

Abstraction hierarchy SPM&S can be used in combination with different abstraction strategies
that select the abstract state spaces that will be traversed in order to compute the heuristic estimates.
In our experiments we used two different types of abstraction hierarchies: the SM&S hierarchies we
presented in Section 8.2 on page 128 and PDB hierarchies.

We define PDB hierarchies by starting with the pattern that contains all the variables (equivalent
to the original problem) and abstracting one variable at a time. Thus, the PDB hierarchies are defined
in terms of a variable ordering. In order to select variable orderings for the construction of the PDB
hierarchies, we use the preexisting merge linear strategies for M&S:

• Level (lev): Follows the BDD variable ordering, so it is the same abstraction layers than
SM&S.

• Reverse level (rev): Reversed version of level. When used in combination with GAMER or-
dering, level and reverse level are equivalent up to the arbitrary tie-breaking, though lev ab-
stracts variables from the top of the BDD and rev from the bottom. In combination with FAST
DOWNWARD ordering, however, the difference might be more relevant.

• Cggoal-lev (cgl): Always selects a variable related in the causal graph to an already selected
variable. If there is none, it selects a goal variable. Ties are broken according to the level
criterion.

8.7. EMPIRICAL EVALUATION 147

• Cggoal-rnd (cgr): As CGGoalLevel but breaking ties randomly.

• Goalcg-lev (gcl): First it selects all goal variables and then variables related to them in the
causal graph, breaking ties according to the level criterion.

• Random (rnd): selects a random variable ordering. Useful as a baseline approach.

SM&S abstraction hierarchies are defined with the merge and shrink strategies. The merging
strategy is always set to exactly the same linear ordering than the one used for the BDDs. Only
this ordering guarantees that the resulting BDDs will eventually be tractable after abstracting away
enough variables, as explained in Section 8.2.1 on page 130. Regarding shrinking strategies, we
use again the ones that have been previously defined in the literature explained in Section 6.4.2 on
page 100: bisimulation (b), greedy bisimulation (g) and f-preserving shrinking (fh). By default, all
the shrinking strategies reduce the abstract state space enough to ensure that no M&S abstraction
has more than 10,000 abstract states.

8.7.2 Coverage of A∗ Search with SPM&S

Table 8.1 shows the coverage of different configurations of SPM&S against the two combined ap-
proaches: symbolic perimeter and M&S. Additionally, we report the coverage of LM-CUT for com-
parison.

As we anticipated, M&S results are better with the FAST DOWNWARD ordering while the sym-
bolic search (SP) benefits from the GAMER ordering. In total, SPM&S performs better with the
GAMER ordering, though it may vary depending on the domain (e. g. FREECELL, LOGISTICS, NO-
MYSTERY, etc.).

The dominance of SPM&S over SP and M&S is quite clear. Even though there are a few cases
where SPM&S preprocessing does not terminate and is outperformed by the symbolic perimeter
alone, this is compensated by combining the strengths of both algorithms. Moreover, in some cases
SPM&S obtains better results than any of the two techniques as in GRID or ROVERS, for example.

The use of M&S abstractions does not payoff in general over using simpler abstractions such as
PDBs. There are some domains, however, were the M&S heuristics help to improve performance
over PDBs. This contradicts previously published results (Torralba et al., 2013b) that presented
SM&S hierarchies as superior candidates than PDBs. The main reason for this difference is the
usage of state-invariants as we will analyze in Section 8.7.5. The impact of using different abstraction
hierarchies is analyzed in depth in Section 8.7.4.

Regarding the comparison with LM-CUT, both heuristics exhibit complementary strengths. In
total, a symbolic perimeter with GAMER ordering is sufficient to obtain similar coverage results
than LM-CUT, especially considering the coverage score that adjusts the weight given to MICONIC.
Using abstraction strategies on top of symbolic perimeter further improves the results of SPM&S
allowing it to outperform LM-CUT in general. Nevertheless, there are some domains were LM-CUT
clearly performs best, such as AIRPORT, MICONIC or SCANALYZER.

8.7.3 Informativeness of SPM&S Heuristics

Our coverage comparisons show that SPM&S is a state-of-the-art heuristic, outperforming M&S and
being competitive with LM-CUT heuristics. However, there are two main factors that influence the
performance of heuristics: informativeness and computational effort. In this subsection we analyze
how well informed the SPM&S heuristics are with respect to the two combined techniques and other

148 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

GAMER ORDERING FD ORDERING
SP SPM&S M&S SP SPM&S M&S LM-

– PDB b10k g10k b10k g10k – PDB b10k g10k b10k g10k cut
AIRPORT (50) 25 25 25 25 23 23 25 26 25 25 23 23 29
BARMAN (20) 8 8 8 8 4 4 8 8 8 8 4 4 4

BLOCKSWORLD (35) 30 32 30 30 25 28 30 31 30 30 26 28 28
DEPOT (22) 7 7 7 7 7 6 7 7 7 7 7 6 7

DRIVERLOG (20) 12 12 13 13 13 13 12 12 13 13 13 12 13
ELEVATORS08 (30) 23 24 23 23 14 15 21 24 21 21 13 13 22
ELEVATORS11 (20) 18 19 18 18 12 13 18 19 18 18 11 11 18
FLOORTILE11 (20) 14 14 14 14 8 8 14 14 14 14 8 8 14

FREECELL (80) 22 30 21 21 19 19 22 35 23 23 19 19 15
GRID (5) 2 3 3 3 2 2 2 2 2 2 2 2 2

GRIPPER (20) 20 20 20 20 8 8 20 20 20 20 11 8 7
LOGISTICS 00 (28) 16 16 16 18 16 16 16 17 20 17 20 16 20
LOGISTICS 98 (35) 4 4 5 5 5 4 3 4 5 5 4 4 6

MICONIC (150) 107 107 107 107 60 52 117 117 117 117 64 52 141
MPRIME (35) 22 22 22 22 22 23 23 22 20 20 21 23 23

MYSTERY (30) 15 15 15 15 17 17 15 15 15 15 14 17 17
NOMYSTERY11 (20) 13 14 14 14 16 14 13 16 18 16 18 14 14
OPENSTACKS08 (30) 30 30 30 30 21 21 20 20 20 20 21 21 21
OPENSTACKS11 (20) 20 20 20 20 16 16 15 15 15 15 16 16 16
OPENSTACKS06 (30) 11 11 10 11 7 7 7 7 7 7 7 7 7

PARCPRINTER08 (30) 23 23 23 23 20 20 22 22 22 22 20 20 22
PARCPRINTER11 (20) 18 18 18 18 15 15 17 17 17 17 15 15 17

PARKING11 (20) 1 1 1 1 1 1 1 1 1 1 1 1 2
PATHWAYS-NONEG (30) 4 4 4 4 4 4 4 4 4 4 4 4 5
PEG-SOLITAIRE08 (30) 29 29 29 29 27 27 29 30 29 29 29 29 28
PEG-SOLITAIRE11 (20) 19 19 19 19 17 17 19 20 19 19 19 19 18

PIPESWORLD-NT (50) 15 16 14 15 16 15 15 15 15 15 19 15 17
PIPESWORLD-T (50) 12 14 13 13 14 17 12 11 13 15 14 17 12

PSR-SMALL (50) 50 50 50 50 50 50 50 50 50 50 49 50 49
ROVERS (40) 12 13 13 13 8 6 11 11 11 11 7 6 7

SATELLITE (36) 9 9 9 9 6 6 7 7 7 7 6 6 7
SCANALYZER08 (30) 12 12 12 12 12 12 12 12 13 13 12 13 15
SCANALYZER11 (20) 9 9 9 9 9 9 9 9 10 10 9 10 12

SOKOBAN08 (30) 28 28 28 28 29 29 28 28 28 28 29 29 30
SOKOBAN11 (20) 20 20 20 20 20 20 20 20 20 20 20 20 20
TIDYBOT11 (20) 14 14 15 16 12 13 9 9 9 9 12 13 17

TPP (30) 8 8 8 8 6 6 8 8 8 8 6 6 7
TRANSPORT08 (30) 12 13 12 12 11 11 12 13 12 12 11 11 11
TRANSPORT11 (20) 7 9 8 8 6 6 8 8 8 8 6 6 6

TRUCKS (30) 10 10 10 10 8 8 10 10 10 10 8 8 10
VISITALL (20) 11 12 12 10 10 16 12 12 12 11 9 16 10

WOODWORKING08 (30) 28 28 28 27 14 14 15 16 16 16 13 14 22
WOODWORKING11 (20) 20 20 20 20 9 9 9 10 10 10 8 9 15

ZENOTRAVEL (20) 10 10 10 11 10 10 9 9 12 11 12 10 13
TOTAL COV (1396) 800 822 806 809 649 650 756 783 774 769 660 651 796

SCORE COV (36) 19.32 19.93 19.74 19.83 16.25 16.51 18.08 18.63 18.74 18.48 16.59 16.48 18.56

Table 8.1: Coverage of SPM&S against other approaches. M&S heuristic, symbolic perimeter (SP),
symbolic perimeter PDBs (SPPDB) and SPM&S with bisimulation and greedy bisimulation and a
limit of 10,000 abstract states.

8.7. EMPIRICAL EVALUATION 149

state-of-the-art heuristics. From the heuristics in the literature, LM-CUT is a good choice because it
is known to be an expensive but very well-informed heuristic (Helmert and Domshlak, 2009).

In order to compare the informativeness of the heuristics, we report two different metrics: ex-
panded nodes and initial h-value. The initial h-value is a direct comparison of the value of each
heuristic for particular states, while the number of expansions measure the ability of the heuristic to
reduce the overall search effort. Figures 8.7 and 8.8 show the comparisons in both metrics of SPM&S
against different competitors in all commonly solved problems. For the heuristic value comparison,
we omit PARCPRINTER since the large heuristic values of that domain difficult the visualization.

100 101 102 103 104 105 106 107
100

102

104

106

108

(a) M&S

100 101 102 103 104 105 106 107 108
100

102

104

106

108

(b) SP

100 101 102 103 104 105 106 107 108
100

102

104

106

(c) SPPDB

100 101 102 103 104 105 106 107
100

102

104

106

108

(d) LM-CUT

Figure 8.7: Number of expanded nodes by SPM&S (x-axis) against other heuristics (y-axis) in
commonly solved instances. Points above the main diagonal are problems solved faster by SPM&S.

The comparison of SPM&S against SP and SPPDB reveals that the main strength of the heuristic
is due to the perimeter search. Using abstraction heuristics to extend the information of the perimeter
derives strictly more informed heuristics. Therefore, both SPPDB and SPM&S obtain more accurate
heuristics than SP and, in some cases, significantly reduce the number of expanded nodes by several
orders of magnitude. However, in most cases, SPM&S and SPPDB obtain the same heuristic value
than SP, showing that the construction of a symbolic perimeter is already a strong heuristic.

Perhaps more surprisingly, the comparison with LM-CUT shows that SPM&S is a well-informed
heuristic compared to the current state of the art in cost-optimal planning. It does not only derive
the perfect heuristic for many problems (for most of the problems that were solved with less than
1,000 expansions), but also derives a heuristic competitive with LM-CUT in harder instances. The
difference in heuristic value of the initial state shows that SPM&S is more precise in many tasks,
showing that it is a well-informed heuristic across the entire state space and not only close to the
goal.

150 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

100 101 102 103

100

101

102

(a) M&S

100 101 102 103

100

101

102

103

(b) SP

100 101 102 103

100

101

102

103

(c) SPPDB

100 101 102 103

100

101

102

(d) LM-CUT

Figure 8.8: Initial state heuristic value of SPM&S (x-axis) against other heuristics (y-axis) in com-
monly solved instances of all domains except PARCPRINTER. Points below the main diagonal are
problems in which SPM&S is more informed.

8.7.4 Analysis of Abstraction Hierarchies

Our analysis in the previous sections have used only the default configuration of SPPDB. However,
there is a wide variety of strategies that result in different heuristics. Moreover, the initialization of
the abstract searches with the perimeter can be disabled, in order to compare with standard symbolic
PDB approaches.

Table 8.2 shows the results of the different abstraction hierarchies. The first observation is that
most abstraction strategies help to improve the symbolic perimeter, SP. The only strategy that does
not produce better results than a simple perimeter is the SM&S abstractions with fh shrinking. Of
course, the bad performance is not due to having a less informed heuristic, but because of exceeding
memory in the M&S heuristic for some domains.

Overall, the best strategy is PDBs with gcl, with a total coverage of 828. Other PDB strategies
such as lev or rev have a similar performance and the difference is not significant. Interestingly,
the performance of PDBs with a random selection of variables is a very competitive approach, even
obtaining better results than SM&S approaches or other PDB strategies. This shows the lack of good
abstraction strategies for our setting, where finding good abstractions is not straightforward.

Perimeter abstractions are useful in combination with some strategies, though ¬P in combina-
tion with gcl obtains the same results as the best version using perimeter abstractions. In combination
with SM&S hierarchies, the results with and without perimeter are similar, so SPM&S is not tak-
ing advantage of the perimeter initialization in those cases. Note, however, that even though ¬P
ignores the perimeter for the initialization of abstract searches, it uses the perimeter for other pur-
poses such as selecting one abstraction from the hierarchy (the one in which the perimeter is reduced
enough) and to return the maximum between the heuristics derived from all the searches (including

8.7. EMPIRICAL EVALUATION 151

GAMER ORDERING FD ORDERING
P ¬P P ¬P

SP 19.32 (800) 0.00 (0) 18.08 (756) 0.00 (0)
PDB-rev 20.04 (825) 19.78 (812) 18.69 (784) 18.50 (769)
PDB-lev 20.21 (826) 19.99 (818) 18.91 (783) 18.81 (779)

PDB-cggoal-lev 20.03 (823) 19.76 (813) 18.60 (775) 18.37 (765)
PDB-cggoal-rnd 19.77 (813) 19.77 (810) 18.53 (772) 18.69 (770)
PDB-goalcg-lev 20.28 (828) 20.23 (828) 19.09 (785) 19.15 (785)

PDB-rnd 19.74 (814) 19.60 (812) 18.61 (775) 18.48 (768)
SM&Sbop10k 19.74 (806) 19.85 (810) 18.74 (774) 18.90 (773)
SM&Sgop10k 19.83 (809) 19.88 (812) 18.48 (769) 18.36 (766)
SM&Sfh10k 18.75 (762) 18.81 (764) 17.34 (710) 17.34 (709)

Table 8.2: Coverage score and total coverage of SPM&S with different abstraction hierarchies.
The symbolic perimeter, SP, that does not make use of any abstraction, is compared against PDB
and SM&S hierarchies. All the versions are ran with perimeter abstractions (P) and with standard
abstraction heuristics (¬P). The best configurations and those deviating in only 1% are highlighted
in bold.

the perimeter and one or more abstract searches).
Interestingly, using the perimeter to initialize abstract searches is especially useful in combina-

tion with strategies that do not distinguish goal from non-goal variables such as lev or rev. In those
cases the perimeter derives information from the goal variables, so that they can be abstracted away
without a huge information loss. Similarly, if all the goal variables are included in the abstraction
(gcl), using the perimeter is not important.

8.7.5 Removing Spurious States

The results shown in Table 8.1 on page 148 contradict previously published results, which reported
SPM&S being better with SM&S hierarchies than when using only PDBs (Torralba et al., 2013b).
One important difference in the experimental setting is that in this thesis we are using the improve-
ments presented in Chapter 4: removing invalid operators and using the state-invariant constraints
with e-deletion to enhance symbolic search. As we analyzed in Section 4.7.4 on page 78, the use
of mutexes greatly improves the performance of symbolic regression search. This is no different in
SPM&S, were symbolic regression is used both in the original and the abstract state spaces. In the
following, we take a closer look to the use of state-invariant constraints in SPM&S.

GAMER ORDERING FD ORDERING
M∅ M M∅ M

SP 16.68 (715) 19.32 (800) 16.24 (689) 18.08 (756)
pdbs 17.08 (730) 19.93 (822) 16.82 (708) 18.63 (783)
b10k 17.48 (735) 19.74 (806) 17.35 (717) 18.74 (774)
g10k 17.41 (732) 19.83 (809) 17.02 (719) 18.48 (769)

Table 8.3: Coverage of different configurations of SPM&S without state-invariant pruning (M∅)
and using it (M). The best configurations and those deviating in only 1% are highlighted in bold.

152 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

Table 8.3 compares the performance of our approaches when disabling the removal of spurious
states during the search. When spurious states are not removed from the search (M∅), the perfor-
mance of all our symbolic perimeter approaches decreases significantly. However, the benefits of
removing spurious states are greater in the case of SP and SPPDB than for any SPM&S version.
Interestingly, M&S abstractions obtain better results than PDBs to relax a symbolic perimeter only
when the symbolic search performs worse. This can be partially explained by the ability of M&S
heuristics to prune spurious states, whose impact is heavily reduced when those states are being
removed anyway thanks to the state-invariants.

8.8 Summary
In this chapter we have presented SPM&S, a novel admissible heuristic for cost-optimal planning
that combines symbolic search, M&S abstractions and perimeter abstraction heuristics. A prelimi-
nary version of this chapter was previously published (Torralba et al., 2013b). SPM&S has several
contributions with respect to other state-of-the-art heuristics:

1. Using symbolic search to search M&S abstract state spaces. M&S represents abstract state
spaces explicitly. For that reason, explicit search is an efficient method to search the abstract
state spaces. Thus, at a first glance, symbolic search cannot enhance M&S. However, we
defined SM&S abstractions as larger M&S abstractions based on the smaller explicitly repre-
sented abstractions. SM&S abstractions can be searched with symbolic search, in an attempt
to combine the strengths of symbolic PDBs and the flexibility of M&S abstractions.

2. A more general schema of perimeter abstraction heuristics than the one used by previous
works. The main difference is that our perimeter abstraction heuristics consider multiple
perimeters in different abstract state spaces, instead of only one. Moreover, we considered
action costs and improved the initialization of the closed list to derive better heuristics.

3. We proposed the use of symbolic search in a perimeter abstraction setting. We analyzed how
to symbolically represent sets of abstract states and how to efficiently perform the mapping
between states in different state spaces.

In summary, SPM&S uses M&S abstractions to relax a symbolic backward search, keeping only
partial information about some variables of the problem. The SM&S hierarchy leaves the choice of
different abstract state spaces to search, ranging from the original non-abstracted state space to the
one explored by the M&S heuristic. Every SM&S abstraction reduces the abstract state space size,
so that there is a trade-off between the abstract search complexity and the heuristic informativeness.
However, searching all these abstractions is clearly redundant work, since heuristics of less relaxed
abstractions are strictly more informed than more relaxed ones. Predicting which SM&S abstraction
has the best benefit/effort relation is a complex task. SPM&S solves this problem using perimeter
abstraction heuristics, that search in the less relaxed state spaces while it is feasible and use more
abstracted state spaces to continue the search afterwards.

Experimental results show that SPM&S successfully obtains results at least as good as the best
of either one of the two techniques it combines: symbolic search and M&S. Even though M&S
abstractions are highly dependent of the shrinking policy, SPM&S improves the performance of
a symbolic perimeter even with a simple shrinking strategy, SPM&S-all. Moreover, it improves
M&S results for all shrinking policies used. On the other hand, bisimulation shrinking derives
good abstractions for SPM&S on some domains but not in others. This suggests there is still room
for improvement with new shrinking policies specific for SPM&S (i. e., taking into account the

8.8. SUMMARY 153

symbolic search frontier and not preserving information about states already expanded by previous
explorations).

154 CHAPTER 8. SYMBOLIC PERIMETER ABSTRACTION HEURISTICS

Chapter 9

Symbolic Bidirectional Heuristic
Search

While symbolic bidirectional cost-uniform search has a remarkable performance without using any
heuristic, heuristics still play a central role in cost-optimal planning. Thus, it is of major interest to
combine both approaches by using heuristics in a symbolic bidirectional search.

In this chapter, we propose to use of perimeter abstraction heuristics in symbolic bidirectional
search. Perimeter abstractions are a good fit for our setting because they take advantage of the
ability of symbolic cost-uniform search to efficiently generate perimeters. We analyze how symbolic
bidirectional searches can be used to explore abstract state spaces in order to compute heuristic
estimates.

Our empirical evaluation shows that, while diverse abstraction strategies may improve the per-
formance of symbolic bidirectional search, none of the abstraction strategies we used provides good
performance across different domains.

9.1 Introduction

The results of Part I of this thesis have shown that symbolic bidirectional blind search has become
one of the best alternatives for cost-optimal planning, outperforming not only A∗-based planners but
also BDDA∗, the symbolic search variant of A∗. Nevertheless, most cost-optimal planners are still
based on A∗ guided with an admissible heuristic. Different kinds of heuristics have been proven
very useful to lessen the search effort in forward search.

In this Chapter, our aim is to combine heuristics and symbolic bidirectional search into a sym-
bolic bidirectional heuristic planner. Although bidirectional heuristic search (BHS) has a long his-
tory (Pohl, 1969; Champeaux and Sint, 1977), it has not been extensively explored for domain-
independent optimal planning. This can be attributed to two different types of reasons. On the
one hand, backward search in planning has not been widely used in the last years due to the inher-
ent difficulties of regression in planning and the computational cost of detecting collision between
frontiers (Alcázar et al., 2014). On the other hand, the hardness of proving optimality of bidirec-
tional A∗ considerably reduces the advantages that it has over regular A∗ (Kaindl and Kainz, 1997).
Due to these difficulties, BHS has fallen out of favor, with the majority of the search and planning
community working mostly with regular A∗ and similar techniques.

155

156 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

Nevertheless, a successful application might be possible in our setting. On the one hand, sym-
bolic search has already helped us to overcome the problems related to regression and frontier-
collision detection in domain-independent planning, as described in detail in Section 5.1 on page 83.
On the other hand, the fact that bidirectional blind search already outperforms A∗ suggests that con-
sidering heuristics cannot be too harmful if done carefully. As the use of heuristics can reduce the
effectiveness of bidirectional brute-force search, we will use heuristics only in cases where bidirec-
tional brute-force search is unfeasible.

The challenge that we face is to introduce heuristics in the symbolic bidirectional search, taking
advantage of them whenever they are informative and avoiding a huge performance loss whenever
the heuristics are less useful.

Our approach consists of starting a bidirectional blind search and introduce heuristics afterwards,
only when the search without heuristics has failed to solve the problem in a reasonable amount of
time. Thus, our algorithm will mimic the behavior of bidirectional blind search in domains where
it performs best. This approach may look unfeasible from an explicit-search perspective, where it
is better to use heuristics in the first place, since changing the heuristic requires to evaluate all the
states in the current frontier and there might be too many at that point. If the heuristic is useful, it
would be best to use it in the first place. However, as we will detail in Section 9.4, our symbolic
Lazy-A∗ implementation presented in Section 2.6.2 on page 35 is able to reevaluate the entire search
frontier in a reasonable time.

Referring to heuristics, we use SPM&S, the symbolic perimeter abstraction heuristics proposed
in Chapter 8. They are adequate for our purposes, since they can be used in our symbolic setting.
Moreover, there is a good synergy between bidirectional search and perimeter-based abstraction
heuristics. Whenever blind search does not completely solve the problem, our perimeter heuristic
takes advantage of the effort made by the blind search by using the current search perimeter. This
synergy somehow alleviates some of the problems associated with other previous BHS approaches,
as we will study in Section 9.2.1.

Nevertheless, in order to use SPM&S in a BHS, we have to extend it to the bidirectional case,
where heuristics must provide estimates to both search frontiers. In order to generate estimations in
both search directions, we perform a bidirectional search in the abstract state space, instead of the
common unidirectional search — usually in the backwards direction. This is a novel approach since,
up to our knowledge, there is not any literature referring to bidirectional search in abstract state
spaces. On the other hand, if the abstract search is completed, the effort is doubled for performing
it in both search directions. To address that, we will consider partial abstractions, where the abstract
search can provide useful heuristic estimates even if it has not been completed.

We call our algorithm SymBA∗, an acronym of symbolic bidirectional A∗. SymBA∗ performs
bidirectional searches on different state spaces. It starts in the original search space and, when the
search becomes too hard, it derives an abstraction heuristic enhanced by the frontier of the opposite
direction. The planner decides at any point whether to advance the search in the original state space,
enlarging the perimeter, or search in an abstract state to provide better heuristic estimations for the
original state space search. In this case the novelty lies on the dynamism of the approach, in the sense
that SymBA∗ computes and refines heuristics when needed and can advance in either direction, using
the frontier of one direction to enhance the heuristic for the opposite direction.

In summary, the main contributions of this Chapter are:

• Present SymBA∗, a bidirectional heuristic search algorithm for domain-independent optimal
planning.

• Introduce bidirectional perimeter abstraction heuristics, that perform bidirectional search in

9.2. RELATED WORK 157

the abstract state spaces in order to provide heuristic distance estimations to the initial state
and the goal.

• A theoretical analysis of how to perform partial and perimeter abstraction heuristics when
heuristics are used in the abstract state space searches.

• A comparison of our approach and other related works in the literature, such as hierarchical
heuristic search.

• An empirical analysis of SymBA∗’s performance with respect to our base algorithms, sym-
bolic bidirectional blind search and A∗ with SPM&S, as well as other state-of-the-art planners.

The remainder of this chapter is organized as follows. First, we analyze the literature regarding
BHS and hierarchical heuristic search in Section 9.2. We introduce our notation in Section 9.3.
Then, we present our BHS algorithm, SymBA∗, in Section 9.4. In Section 9.5 we describe in detail
how heuristic values are computed and prove that the overall algorithm is optimal. In Section 9.6
we report our extensive empirical evaluation of SymBA∗ performance. The chapter concludes with
a brief summary of the main conclusions in Section 9.7.

9.2 Related Work
In this section we review the related work in the literature, that was not already covered by our
analysis of the state-of-the-art symbolic search algorithms in Chapter 2 and abstraction heuristics
in Chapter 6. In particular, we review works of two different areas. On the one hand, we describe
algorithms that use heuristics in a bidirectional search. On the other hand, we analyze hierarchical
heuristic search algorithms that use abstraction heuristics for a single problem. These hierarchi-
cal heuristic search algorithms skip the expensive precomputation phase of abstraction heuristics
and compute the abstract distances lazily, avoiding searching unnecessary parts of the abstract state
space. Both areas are relevant for our work because they have not only served as inspiration, but
also form a theoretical basis to build our algorithm.

9.2.1 Bidirectional Heuristic Search
In bidirectional search, two different searches are performed in opposite directions, i. e., from the
initial state to the goal and vice-versa. The promise is to reduce the search depth by a factor of
two, potentially reducing the search effort by an exponential factor with respect to unidirectional
search. Bidirectional search has been able to live up to its promises in the blind case, with the
bidirectional version of breadth-first search obtaining exponential speed ups with respect to the uni-
directional one. Thus, it is not surprising that bidirectional heuristic search is a well-studied topic,
with different approaches that attempt to take advantage of heuristics in the bidirectional setting.
However, empirical results have never been too favorable whenever combining bidirectional search
and heuristic estimates. A good general overview of BHS approaches is presented in the heuristic
search book (Edelkamp and Schrödl, 2012). Bidirectional heuristics algorithms can be broadly split
into three categories (Kaindl and Kainz, 1997): front-to-end, front-to-front and perimeter search.

Front-to-end Bidirectional Heuristic Search

Front-to-end algorithms were the first approaches to BHS. In front-to-end BHS, algorithms make
use of two consistent heuristics, hfw (s) and hbw (s), which estimate the distance from a state s to the

158 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

goal and initial state, respectively. The first approach to introduce heuristics in bidirectional search
was the Bidirectional Heuristic Path Algorithm (BHPA) (Pohl, 1969; Pohl, 1971). BHPA performs
two opposite A∗ searches, one forward search from the initial state to the goal making use of hfw (s)
and one backward search from the goal towards the initial state guided with hbw (s). Whenever the
two frontiers meet, a solution plan has been found. However, in order for proving optimality the
searches must continue until one of them proves optimality, by searching all nodes with an f -value
lower than the optimal solution. Unfortunately, in the worst case, the search effort is the same than
performing two A∗ searches independently, so that the performance is worse than unidirectional A∗.

BS∗ (Kwa, 1989) is an improved version of BHPA that applies several enhancements to prune
the searches by interchanging information between them:

• Trimming: Discard any state s in open whose f∗(s) is larger than c(π), the cost of the current
best plan.

• Screening: Avoid inserting into the open list any state s whose f∗(s) is larger than c(π), the
cost of the current best plan.

• Nipping: Avoid expanding any state that has already been expanded by the search in the
opposite direction.

• Pruning: Whenever a node is closed by nipping, its descendants can be removed from the
open list of the opposite search.

Trimming and screening are general optimizations that are usually used with unidirectional A∗

too. Nipping and pruning are specific to the bidirectional case since they take advantage of one fron-
tier to prune the opposite. However, even though all these improvements enhance the performance
of BS∗ with respect to BHPA, BS∗ was never shown to be more efficient than A∗.

The reasons why front-to-end BHS was not better than standard A∗ were well studied (Kaindl
and Kainz, 1997). They disproved the long-believed hypothesis that the two frontiers were passing
each other in BHPA. They provided evidence that even though the frontiers collision in a reasonable
time and BHPA is able to find a solution quickly, most effort of BHPA is spent on proving the solu-
tion to be optimal. Further improvements of front-to-end search consist of using the real-cost values
of states to determine the heuristic error and improve the heuristic values of other states accord-
ingly (Kaindl and Kainz, 1997). Nevertheless, these algorithms never outperformed unidirectional
A∗ search.

Front-to-front Bidirectional Heuristic Search

Due to the difficulties in outperforming A∗ by using front-to-end BHS, researchers considered other
ways to introduce heuristics in the bidirectional setting. Even though it was later shown that the
frontiers passing each other was not really the cause for the limitation of front-to-end BHS, some
algorithms were developed with the goal of redirecting both frontiers towards each other. These
algorithms are usually called wave-shaping or front-to-front algorithms.

Front-to-front algorithm require a heuristic, h(s, s′), that is able to estimate the distance be-
tween any two nodes in the state space, s and s′. The bidirectional heuristic front-to-front algo-
rithm (BHFFA) (Champeaux and Sint, 1977; Champeaux, 1983) is the first front-to-front approach.
BHFFA computes the heuristic of a node as the minimum distance to any state in the opposite
frontier. Even though the increased heuristic accuracy significantly decreases the number of node
expansions, the time spent on computing the heuristic value from the state to every state in the op-
posite frontier is simply too large. It is possible to reduce the number of evaluations by using d-node

9.2. RELATED WORK 159

retargeting (Politowski and Pohl, 1984) that avoids to consider irrelevant parts of the opposite fron-
tier. However, even with such optimizations, the cost of computing the distance of each node with
respect to the opposite frontier is too large.

Other Approaches

Other alternative approaches to traditional bidirectional search include:

• Perimeter search (Dillenburg and Nelson, 1994; Manzini, 1995), that we already covered
in Section 8.3 on page 133. A relevant extension for our work is the heuristic perimeter
search (Linares López, 2005). Heuristic perimeter search is a variant of perimeter search that
constructs a perimeter biased towards the initial state, according to a given heuristic. The
perimeter search is performed with an IDA∗ search, instead of the usual uniform-cost search,
generating a non-uniform perimeter.

• Single-frontier bidirectional search (Felner et al., 2010; Lippi et al., 2012) performs a sin-
gle search where every node is qualified with a pair of states s and t which stand for states
reached in the forward and backward directions respectively. When expanding a node, SFBS
determines what state to expand or, in other words, in what direction to continue the search.
By deciding locally the direction of the search the algorithm actually performs bidirectional
search.

• Approaches that combine bidirectional with unidirectional search by considering several
phases (Kaindl et al., 1999; Pulido et al., 2012).

9.2.2 Hierarchical Heuristic Search

Abstraction heuristics use the optimal distance in an abstract state space as an estimation for the
original problem. These optimal distances are usually precomputed before starting the search, by
traversing the entire abstract state space. This approach is valid in heuristic search problems such
as the N -puzzle or Rubik’s cube because the precomputed heuristic is reused to solve an arbitrarily
large number of problem instances. However, traversing the entire abstract state space might be
prohibitive for solving a single task.

Hierarchical heuristic search focuses on using abstraction heuristics in cases where the abstrac-
tion is generated for a particular problem, so that the computational cost of computing the abstrac-
tion should be amortized. In order to do so, hierarchical heuristic search explores the abstract state
space lazily avoiding searching parts that are irrelevant for the problem at hand. Whenever a state
is evaluated, a search in the abstract state space is conducted to retrieve the optimal distance from
the corresponding abstract state. These techniques are called “hierarchical” because searches in the
abstract state space may use an abstraction heuristic as well, leading to a well-defined hierarchy
of abstractions, α0, α1, Different hierarchical heuristic search algorithms differ on how they
compute the optimal cost for abstract states.

Hierarchical A∗ (Holte et al., 1996) conducts an A∗ search in the abstract state space, whereas
Hierarchical IDA∗ (Holte et al., 2005) uses IDA∗ (Korf, 1985) to reduce the memory used by the
algorithm. In both cases, the abstract state search may be guided with another heuristic, which can
be another hierarchical heuristic. However, these algorithms have an important drawback, a lot of
search effort is made to compute the cost of a few abstract states so that many abstract states are
re-expanded.

160 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

Several caching techniques can be used in order to avoid recomputing the same distances again
and again (Holte et al., 1996):

• h∗-caching: When computing the optimal distance h(α(s), α(s?)) store the known optimal
abstract distances of α(s) and all the abstract states lying in the optimal abstract plan from
α(s) to α(s?). This causes the resulting heuristic to be inconsistent, though there is no need to
reopen nodes since the properties of the heuristic guarantee that all nodes prematurely closed
with a wrong g-value do not lie on an optimal plan from s0 to s?.

• Optimal-path caching: Whenever there is a state for which h∗(s) is already known, include a
goal with an additional cost of h∗(s) instead of expanding s.

• P-g caching: After computing the optimal distance h(α(s), α(s?)), assign each state in the
search s′ a heuristic value equal to h(α(s), α(s?))− g(s′). P-g caching subsumes h∗-caching
but can only be used with consistent heuristics and in domains where operators have inverses.

Despite the use of these caching techniques, both hierarchical A∗ and hierarchical IDA∗ must
generate the same abstract nodes several times, because thanks to h∗-caching and optimal-path
caching we can avoid reexpanding those nodes in the optimal path from α(s) to α(g) but all other
nodes in the abstract searches must be expanded again if they appear in future abstract searches.

Switchback (Larsen et al., 2010) (or its version with enhanced stop criterion, Short-
Circuit (Leighton et al., 2011)) proposes to use an abstract search in the opposite direction to de-
termine the value of abstract states. This is the same method used by approaches that precompute
the heuristic values, though in this case the search is stopped when the abstract state is found. Again,
the search can be guided with a heuristic, which in this case will be an estimation of the cost to reach
the abstract initial state. The advantage with respect to other hierarchical heuristic search algorithms
is immediate: each abstract state is expanded only once. In order to prove optimality of the algo-
rithm, Switchback relies on the fact that the g-value of any expanded node in A∗ with a consistent
and admissible heuristic is guaranteed to be optimal (Nilsson, 1982).

In automated planning, problems in a domain may differ in the number of objects or even in
the goals of the problem. Thus, using the same abstraction heuristics in multiple instances is not
possible. This makes hierarchical heuristic search a perfect fit for planning, since a new abstraction
heuristic is generated for every problem. However, state-of-the-art planners do not use hierarchical
heuristic search. Despite the fact that hierarchical heuristic search was specifically designed for
this case, planners that use abstraction heuristics always precompute the entire abstract state space
distances before starting the A∗ search.

9.3 Notation
In the following sections, we describe SymBA∗, a BHS algorithm that performs searches on different
state spaces. We denote a bidirectional search tree on a state space, Θi, as T Θi . A bidirectional
search is composed of two unidirectional searches in opposite directions: a forward search, T Θi

fw ,
and a backward search, T Θi

bw . We will use T Θi
u to denote a unidirectional search in an unspecified

direction and T Θi¬u to denote the search in the opposite direction.
Each search tree Tu consists of an open list, open(Tu), and a closed list, closed(Tu). The g-

value of a search state s is denoted as g(s) in cases where there is a single search and gfw (s) or
gbw (s) whenever we want to differentiate between the forward and the backward search. As usual,
we denote the optimal g-value of s, g∗(s). Also, we will write g(α(s)) or g(sα) to denote the g-value
of an abstract state. We follow similar notation for the h and f values.

9.4. SYMBA∗: SYMBOLIC BIDIRECTIONAL A∗ 161

We denote by g(T) and f(T) the minimum g and f -values of any state in the open list of the
search T .

9.4 SymBA∗: Symbolic Bidirectional A∗

SymBA∗ performs several symbolic bidirectional A∗ searches on different state spaces. First,
SymBA∗ starts a bidirectional search in the original state space. Since no abstraction heuristic has
been derived yet, it behaves like symbolic bidirectional blind search. At each iteration, the algorithm
performs a step in a selected direction, i. e., expands the set of states with minimum g value in that
frontier. This search continues until the next step in both directions is deemed as not searchable, be-
cause SymBA∗ estimates that it will take too much time or memory. Only then, a new bidirectional
search is initialized in an abstract state space. Both the forward and backward abstract searches are
initialized with the frontiers of the current original search. The abstract searches provide heuristic
estimations for the original search, increasing the f -value of states in the search frontier. Eventu-
ally, the search in the original state space will be simplified (as the number of states with minimum
f -value will be smaller)1 and SymBA∗ will continue expanding states in the original search space.

Figure 9.1 shows a diagram of the bidirectional searches performed by an execution of SymBA∗.
After generating a perimeter around s0 and s?, a new search is started in an abstract state space,
starting from the perimeter frontier. The abstract state space is explored in a bidirectional uniform-
cost fashion, exploiting the strengths of symbolic bidirectional search. After both abstract frontiers
meet, the algorithm continues expanding only the intersection of both frontiers, until it reaches one of
the perimeters (the forward perimeter in the example of Figure 9.1). These abstract states correspond
to real states in the perimeter frontier, which are selected for expansion. Other states in the perimeter
have a larger f -value, so that they do not need to be immediately expanded. After generating the
next successor states (the ellipse in the inferior part of the figure), no additional search is required to
compute the abstract distances. The states that must be expanded correspond to the abstract states in
the next abstract bucket.

s0 s?

Figure 9.1: Diagram of SymBA∗ algorithm that shows how the algorithm computes the heuristic to
decide which states in the perimeter frontier should be expanded. Dashed ellipses represent sets of
states in an abstract symbolic bidirectional search.

One important feature of the algorithm is the lazy evaluation of the heuristics. The search in
abstract state spaces is delayed until strictly needed to simplify the original search. We model this
by considering a pool of active searches and letting the algorithm decide which search should be
advanced at any step.

1This is not entirely true in the symbolic case, as having fewer states does not mean that the BDD that represents them is
smaller, but in most cases there is a positive correlation.

162 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

Algorithm 9.1: SymBA∗

Input: Planning problem: Π = 〈V,O, s0, s?〉
Output: Cost-optimal plan or “no plan”

1 T Θ
fw ← 〈s0,Θ〉

2 T Θ
bw ← 〈s?,Θ〉

3 SearchPool ← {T Θ
fw ,T

Θ
bw}

4 π ← “noplan′′

5 while max(f(T Θ
fw), f(T Θ

bw)) < Cost(π) do
6 if ∃T ∈ SearchPool s.t. Is-Candidate(T) then
7 T Θi

u ← Select-Search(SearchPool)
8 π′ ← Expand-frontier(T Θi

u)
9 if Θi = Θ ∧ π′ 6= ∅ ∧ Cost(π′) < Cost(π) then

10 π ← π′

11 Notify-h(SΘi , SΘ)
12 else
13 α←Select-abstraction(T Θ

fw , T Θ
bw)

14
〈

T Θα
fw ,T Θα

bw

〉
←Apply(α, T Θ

fw , T Θ
bw)

15 SearchPool ← SearchPool ∪ {T Θα
fw ,T Θα

bw }
16 return π

Algorithm 9.1 shows the pseudocode of SymBA∗, which decides whether to advance the search
in the original state space or in one of the abstract state spaces. SymBA∗ maintains a pool of all the
current active searches. The pool is initialized with a bidirectional search in the original state space.
The algorithm proceeds while the current best solution so far has not been proven optimal (line 5).
The current plan, π, is optimal if it has a cost smaller or equal than the current f -value of any of the
searches in the original state space, f(T Θ

fw) or f(T Θ
bw). At each iteration, the algorithm filters the

searches that are valid candidates from the pool and selects the most promising ones.
A search is a valid candidate if and only if it is both useful and searchable. The search in the

original search space is always useful. A search in an abstract search space is useful if and only if
there are still states from the opposite frontier that do not correspond to a state already expanded
in the abstract space. The main intuition behind this is that non-useful searches cannot possibly
simplify the next step in the original search space. A search is searchable if the estimated time and
number of nodes needed to perform the next step does not surpass the bounds imposed as parameters:
maximum step time and number of nodes. Among all the searches that are valid candidates, we
select those that have a greater minimum f -value, because they are closer to proving that the current
solution is optimal. If more than one search has the same minimum f -value, we select the one whose
next step is estimated to take less time.

Once a search has been selected, the procedure ExpandFrontier expands the set of states
that have a minimum g-value among those that have a minimum f -value, like in the standard imple-
mentation of BDDA∗. If this was in the original state space, a new plan may be found and if the new
plan has a lower cost, it is stored as the best plan found so far. If this was in an abstract state space,
we update the heuristic value of the other searches in the opposite direction in the pool, both abstract
and original.

9.5. PARTIAL BIDIRECTIONAL ABSTRACTIONS 163

If there are no valid search candidates (line 12), a new bidirectional search is added to the pool
(which amounts to two new searches). First, we select a new abstraction strategy (line 13). Using
the strategy, we relax the current frontiers of the original state space search, until the frontier size is
small enough to continue the search and there is no previous equivalent search (line 14). Finally, the
new search is included in the pool to be selected in subsequent iterations.

9.4.1 Implementation with Symbolic Lazy BDDA∗

Even though our SymBA∗ algorithm could in principle be implemented with explicit search, using
symbolic search has several advantages that can affect the performance dramatically. This is hardly
a surprise, because across this Thesis we have already highlighted the advantages of symbolic search
when performing bidirectional search and perimeter abstractions. But the role of symbolic search in
SymBA∗ goes even further.

One of the main characteristics of SymBA∗ is that the heuristics change dynamically during the
search procedure. Not only the algorithm may decide to initialize a new abstract search at any point,
but also every time that an abstract search performs a step, the heuristic value of states in the original
search may increase. Re-evaluating the entire search frontier repeatedly may be too costly if done
naı̈vely, becoming a bottleneck and making the entire algorithm unfeasible.

In our case, we use our Lazy implementation of symbolic A∗ presented in Section 2.6.2 on
page 35. Lazy BDDA∗ keeps the states organized by g-value and only evaluates them before an
expansion to obtain the subset of states with an f -value lower or equal than the current f -value. Since
the states are not organized by their h-value, changing the heuristic in the middle of the search does
only require to re-evaluate the set of states currently selected for expansion, without any additional
computation in the open list. Therefore, only when the heuristic values of all the states selected for
expansion have been raised, the algorithm evaluates other states in the open list in order to select the
ones with minimum f -value.

Removing a heuristic is also possible, though one must be careful to preserve consistency since
the heuristic value of all the states in the search frontier may decrease. Instead of re-evaluating
every state in the open list, it suffices to keep track of the previous minimum f -value, which can
be interpreted as applying pathmax propagation (Méro, 1984). However, the set of states previously
selected for expansion are not necessarily the best ones according to the heuristic. To preserve
consistency, we re-evaluate the states in ascending order of g, i. e., breaking ties in favor of those
states with lower g-value as usual in symbolic BDDA∗. Again, the advantage of Lazy BDDA∗ is that
any evaluated state whose bound is lower or equal than the current f -value can be expanded before
evaluating other states in the search.

9.5 Partial Bidirectional Abstractions
In SymBA∗, abstract searches are used to compute heuristic estimations that can be used in the
original state space, just as in many other heuristic search algorithms. However, the algorithm has
some particular characteristics, such as being bidirectional or interleaving the search in the original
and abstract state spaces. Our aim is to obtain heuristic estimations as much informed as possible
while proving that our algorithm is admissible. In particular, we will consider three different aspects
of our abstract searches:

• Bidirectional: In bidirectional A∗ search, in order to inform both search frontiers, the heuristic
has to estimate goal and initial state distances. To obtain those distances in the abstract state

164 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

space, two searches must be performed: the abstract forward search computes the initial-
state distances to inform the backward search in the original state space, while the abstract
backward search computes goal-distance estimations to inform the forward search. Moreover,
since these two searches are performed in the same state space they can exchange information
to improve their performance.

• Partial: Partial abstractions do not search the entire abstract state space completely, but stop
the search at some point. For every abstract state that has not been expanded, the heuristic
establishes a lower bound of the optimal cost in the abstract state space.

• Non-uniform perimeter: Instead of starting the abstract regression search from the goal,
perimeter abstractions initialize abstract searches with a search frontier. Usually the search
frontier is just a perimeter around the goal state, in which all states in the frontier have the
same goal-distance. In our case, however, a heuristic search is used to initialize the perimeter
so the goal-distance of states in the perimeter can be much wider. This does not affect the
admissibility of the approach, though. As we will prove later, any search which only closes
states with their optimal g-value may be used as a perimeter to seed an abstract search. On
the other hand, having two perimeters to initialize the abstract bidirectional search provides
additional information that can be used to enhance the initialization of the abstract search.

Perimeter and partial abstraction heuristics are not new and the conditions for consistency and
admissibility are well-known for them. As an example, the SPM&S heuristic presented in Chap-
ter 8 uses partial perimeter abstractions. More detailed definitions of partial and perimeter abstrac-
tions were already presented in Section 8.4 on page 135. However, the use of bidirectional abstract
searches requires us to reconsider partial and perimeter abstractions, in order to understand the inter-
actions between these techniques and prove that our algorithm is admissible. Next, we describe our
abstraction heuristics in depth, explaining the relationship between the different techniques applied
and providing the reasons that make them necessary. We extend the definition of partial and perime-
ter abstractions to the case when the abstract state spaces are explored by A∗ instead of uniform-cost.

9.5.1 Bidirectional Abstractions

As SymBA∗ requires to derive heuristics in both directions, it has to perform forward and backward
searches in the abstract state space. However, it is dubious that performing both searches indepen-
dently is worth it, since the effort to generate the heuristic is doubled without clear compensation.
In order to really take advantage of the bidirectional nature of searches in SymBA∗, one has to con-
sider the relations between these two searches. Therefore, a bidirectional search is performed in the
abstract state space in which the forward search represents a “perfect” heuristic for the backward
search and vice-versa.

A distinction must be made between bidirectional search in the original state space and the ones
performed in abstract state spaces. The first type of search aims to find a plan, so whenever the two
frontiers meet a plan is retrieved and techniques like nipping and pruning (Kwa, 1989) should remain
activated to prune both search frontiers avoiding redundant work. On the other hand, searches on
abstract state spaces are used to derive heuristic estimates for the original search. In this case, we
cannot apply all pruning techniques that work in the original state space. Pruning techniques like
trimming and screening, that are based on the length of the best current plan found, can still be
applied. However, pruning based on the intersection of both frontiers, such as nipping and pruning
must be disabled in order for the estimations to be admissible.

9.5. PARTIAL BIDIRECTIONAL ABSTRACTIONS 165

Thus, the interaction between both searches is reduced to use each other as a heuristic, but oth-

erwise they do not directly interact to detect the collision of their frontiers. Nevertheless, using each

search as heuristic for the opposite is enough to reduce the search effort of both directions. Fig-

ure 9.2 reflects the interaction between both searches by drawing in different colors parts performed

by different searches.

While the original search performs nipping, avoiding the searches to explore the space already

traversed in the opposite direction, abstract searches continue after the collision of both frontiers

(highlighted in green). They must redundantly explore the space in order to provide admissible

estimations to the original search. However, as soon as the intersection of both frontiers is not

empty, only the states in the intersection need to be expanded, greatly reducing the search effort in

both directions. This can be interpreted as retrieving the optimal abstract plans and checking whether

there exists a corresponding “real plan”. In the worst case, if the abstract searches are completed and

they traverse the entire abstract state space, the search effort is doubled plus an overhead for using

heuristics.

sα0 sα�

Figure 9.2: Interaction of abstract bidirectional searches. The intersection of both searches is colored

green. The continuation of forward and backward search after the frontier collision is colored blue

and yellow, respectively.

However, making the abstract searches bidirectional may reduce the search effort invested in the

abstract state space. Intuitively, what our algorithm does is to compute all optimal abstract paths in

the abstract state space by means of a bidirectional search. Once those paths have been identified,

we may expand the corresponding paths in the original state space that correspond to those optimal

abstract paths of cost f∗(α(s0)). If we succeed in finding a plan of cost equal to the optimal abstract

cost, the plan must be optimal since the cost in the original state space cannot be smaller than in the

abstract state space.

In case that no corresponding plan with that cost exists in the original state space, the search in

the abstract state space can be continued, to retrieve all paths of cost f∗(α(s0)) + 1. This process

continues until an optimal solution is found in the original state space.

166 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

9.5.2 Partial Abstractions
Partial abstractions are needed in SymBA∗ because we aim to search large abstract state spaces that
cannot be entirely explored. If we try to continue the search until all the states in the opposite frontier
are expanded, we will likely need to expand most parts of the abstract state space. For example, in
Switchback (Larsen et al., 2010), the abstract search continues until the optimal abstract distance is
known for every state in the current frontier of the original search. This means that, if one single
state is a dead-end both in the original and the abstract state space, the abstract state space must be
completely traversed before continuing the search. Most parts of that computation are irrelevant,
since the termination criterion of an A∗ search to guarantee that the solution π is optimal is that,
for every not expanded state s, f∗(s) ≥ c(π). In other words, the heuristic value of a state does
not matter as long as it is large enough to guarantee that its f -value is not the minimum among the
current f -value of other states in our search. Thus, the advantage of partial abstractions in SymBA∗

is double: when the abstract searches are intractable it helps the algorithm to avoid getting stuck in
an abstract search and when the abstract searches are tractable it reduces the amount of abstract state
space that needs to be searched in order to prove that the solution is optimal.

In partial abstractions, abstract states can be classified depending on whether they have been
expanded or not. For those abstract states that have been already expanded, their optimal distance
is already known and can be used as a heuristic estimate. The question is which heuristic value can
we assign to abstract states that have not been expanded yet. The usual answer in unidirectional
search is to use the minimum g-value in the open list of the search (see Definition 8.3 on page 138).
In that case, the next minimum g-value in the search is a satisfactory lower bound on the cost of
non-expanded states because the abstract state space is explored with a uniform-cost search and the
g-value is regularly increased. However, if the abstract state space is explored with an A∗ search, this
bound is no longer useful because as the search continues the bound may remain constant. Consider
the example of Figure 9.3, in which we explore the abstract state space with uniform-cost or A∗

search and want to evaluate a non-expanded state, s. In uniform-cost search, the explored part of the
state space is represented as a circle because nodes are expanded in ascending order of gbw . In that
case, h(s) = r. If the abstract exploration uses a heuristic in A∗, the exploration is biased towards
the goal, i. e., sα0 . While the lower bound h(s) = r may still be used as heuristic, we say that it is not
satisfactory because all the effort wasted in expanding nodes closer to sα0 does not help to increase
r.

sα0 sα?

α(s)
r

(a) Uniform-cost search

sα0 sα?

α(s)

r

α(s′)
g∗bw (α(s

′))hbw (α(s
′))

(b) A∗

Figure 9.3: Bound for partial heuristic abstractions. The bound is usually h(s) ≥ r. In A∗ we use
f(s) ≥ min

α(s′)
fα(s′) ≥ min

α(s′)
g∗bw (α(s′)) + hbw (α(s′)).

Therefore, when the abstract state space is traversed using A∗, the estimation for not expanded
states must be based on the minimum f -value of the search, instead of the g-value. Thus, instead of
setting a bound on the h-value of the states, we use a bound on their f -value, based on the following

9.5. PARTIAL BIDIRECTIONAL ABSTRACTIONS 167

inequality: f(Tα) ≤ f∗(α(s)) ≤ f∗(s). As f(s) = g(s) + h(s), we can translate the bound on
f(s) to a heuristic value h(s) = f(Tα)− g(s).

Proposition 9.1. Let Tα be an admissible abstract search and s be a state such that α(s) has not
been expanded by Tα. Then f(Tα)− g(s) is an admissible estimation.

Proof. By definition g(s) ≥ g∗(s). Moreover, f(Tα) ≤ f∗(α(s)) ≤ f∗(s) = g∗(s) + h∗(s).
Therefore, the inequality holds: h∗(s) = f∗(s)− g∗(s) ≥ f∗(s)− g(s) ≥ f(Tα)− g(s).

The problem is that such heuristic may be inconsistent and expand states with suboptimal g-
value, as shown in the example of Figure 9.4. In the example, only the initial state has been expanded
so there are two states in the open list: s with g(s) = 3 and s′ with g(s′) = 5. In the abstract
state space, a shortcut has been introduced in the path through α(s) such that g(Tα)(s) = 1 and
hα(s) = 4. If the abstract search has been explored until f(Tα) = 6, clearly α (s) will have
been expanded with a cost of hα(s) = 4 but α(s′) will have not been expanded. In this case,
f(s) = 5 + 5 = 10 > f(Tα) = 6. However, f(s′) = f(Tα). Thus, s′ gets expanded before s with
a suboptimal value of g(s′) = 3 > g∗(s′) = 2.

s0 s

s′

s?
3

1
5

10

12

(a) Original state space

sα0 sα?

α(s′)

α(s)
1

1
5

4

10

(b) Abstract state space

Figure 9.4: Example of inconsistency of bidirectional partial abstraction. Dashed edges represent
paths of a given cost.

Inconsistency of heuristics is not necessarily a problem and, in some domains, it is possible
to take advantage of such inconsistencies to improve the heuristic estimates (Felner et al., 2011).
However, inconsistent estimates are undesirable in SymBA∗ because A∗ may close some states with
a suboptimal value, requiring their later re-expansion. The problem is that SymBA∗ relies on the
optimality of the values in the closed lists in order to use perimeter abstractions, so closing a state
with a suboptimal g-value must be avoided at any cost. In the following, we define how to use the
f -value of the A∗ search in the abstract state space of a partial abstraction heuristic and, at the same
time, guarantee that all closed states will have the optimal g-value. To further improve the heuristic
estimates, we rely on the fact that our symbolic BDDA∗ algorithm breaks ties in favor of states with
smaller g-values.

The key is not to close any state with an unknown abstract optimal cost. The abstraction heuristic
is still partial because there is no need to compute the exact h-value of those states that can be proven
to have a higher f -value than the current minimum f in the original search. However, the abstract
search cannot be stopped just at any point, but it should explore all the values with f(α(s)) ≤ f .

Definition 9.1 (Partial abstraction heuristic). Let Tα = 〈open, closed〉 be an A∗ search over the
state space Θα informed with an admissible and consistent heuristic h and let f(Tα) be the mini-
mum f -value of any state in open minsα∈open g(sα) + h(sα), or∞ if open(Tα) is empty.

168 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

Let gT (s) be the optimal g-value for those states closed by Tα and ∞ for other states whose
optimal g-value is still unknown:

gT (s) =

{
c if α(s) ∈ closedbw

c

∞ otherwise

We define the partial abstraction heuristic of T as:

hT (s) = min
{

max {f(Tα)− g(s), g(Tα) + 1} , gT (s)
}

(9.1)

Intuitively, the bidirectional partial abstraction heuristic sets the f -value of every state in the
search whose corresponding abstract state has not yet been expanded to the current f -value in the
abstract search. For expanded states, it returns their real-value, but only when the abstract search has
an f -value large enough. This suffices to guarantee that the heuristic is consistent.

Lemma 9.2. Let T = 〈open, closed〉 be an A∗ search that always expands the state with lower
g-value among those with lower f -value, informed with a partial abstraction heuristic. Then, for
any state s such that s ∈ closed(T), g(s) = g∗(s).

Proof. Suppose that g(s) > g∗(s). By Lemma 1 in (Hart et al., 1968), there exists a state r ∈
open(T), r 6= s, which is in the optimal path from s0 to s such that g(r) = g∗(r). Since r lies on
the optimal path from s0, g∗(r) = g(r) ≤ g∗(s) < g(s). On the other hand, since s was selected
for expansion by T , f(s) < f(r). We prove that this leads to contradiction for the possible heuristic
values of r and s. There are four cases, depending on the part that dominates the minimum of
Equation 9.1 for states r and s:

i, ii) h(s) = hα(s). Since h(r) takes the minimum with hα(r) and hα is a consistent heuristic, we
have a consistent estimation: h(r) ≤ hα(r) ≤ h(s) + c(r, s). We get a contradiction as in
Lemma 2 in (Hart et al., 1968).

iii) h(s) = max {g(Tα) + 1, f(Tα)− g(s)} and h(r) = hα(r).

From the value of h(s), we get that f(s) should be at least as f(Tα). On the other hand,
since the dominant part in the minimum expression is hα(r), f(r) ≤ f(s). Therefore, f(s) ≥
f(Tα) ≥ f(r). We get a contradiction because f(r) should be strictly greater than f(s) due
to the tie-breaking in favor of lower g-values.

iv) h(s) = max {g(Tα) + 1, f(Tα)− g(s)} and h(r) = max {g(Tα) + 1, f(Tα)− g(r)}.
Again, we consider which part dominates the maximum expression in h(r):

– If h(r) = g(Tα) + 1, h(s) > h(r) and the estimate is consistent.

– If h(r) = f(Tα)− g(r), f(r) = f(Tα) ≤ f(s), contradiction because f(r) should be
strictly greater than f(s) due to the tie-breaking in favor of lower g-values.

As a side note, the requirement of the tie-breaking criterion in favor of lower g-values is only
required whenever a state with minimum f could raise the heuristic value in case the search is
continued. The same heuristic could work for different tie-breaking criteria, if the abstract search is
always continued until f(Tα) > f .

9.5. PARTIAL BIDIRECTIONAL ABSTRACTIONS 169

9.5.3 Perimeter Bidirectional Abstractions
Perimeter abstractions, that initialize the abstract search with another search frontier, are useful to
obtain better heuristic estimations. The main drawback is that computing the perimeter may be
expensive and could not be worth the effort. However, as SymBA∗ performs bidirectional search in
the original state space, it does not need to perform any additional effort to compute the forward and
backward perimeters. Moreover, in Chapter 8 we analyzed the synergy between symbolic search
and perimeter abstractions. Operations such as mapping states in the frontier to a new abstract state
space can be done symbolically without iterating over all the states in the search frontier. Thus, the
use of the perimeter to initialize the abstract searches improves the heuristics without imposing a
large overhead.

However, as in the case of partial abstractions, perimeter abstractions need to be redefined in
order to handle bidirectional and heuristic searches. There are two main differences with respect to
the definition of perimeter abstractions used in Chapter 8.

First, the perimeter search is carried out with an A∗ search instead of a uniform-cost search.
Using uniform-cost search guarantees the perimeter to be uniform, such that all non-expanded states
have a minimum distance of r, the radius of the perimeter. However, abstraction heuristics do not
require a perimeter of a fixed radius to obtain admissible estimates — any frontier in the original
space can be used as a seed to improve the heuristic as long as the g-value of the expanded states is
optimal. Because of this, we propose the use of the frontier in one direction in a bidirectional search
algorithm to enhance an abstraction heuristic used by the search in the opposite direction.

The second difference is that in the bidirectional case we have two different perimeters: the for-
ward and the backward one. Thus, when initializing the abstract search, it is possible to use the
additional information of the opposite perimeter to improve the heuristic estimates. In our definition
of the initialization of perimeter abstraction searches (see Definition 8.5 on page 138), we con-
templated including in the closed list all abstract states that had already been completely expanded
by the perimeter search. In this case, we can take advantage of the bidirectional perimeter by ig-
noring all those abstract states that were completely explored by both searches, as summarized in
Definition 9.2.

Definition 9.2 (Bidirectional perimeter search initialization). Let Tα =〈〈
open ′fw , closed ′fw

〉
,
〈

open ′bw , closed ′bw
〉〉

be a bidirectional heuristic
search in Θα initialized with the perimeter of a bidirectional search T =〈〈

openfw , closed fw
〉
,
〈

openbw , closedbw
〉〉

. For every abstract state on α, sαi , we denote

Si to the set of all states mapped to sαi , i. e., Si = {s : α(s) = sαi }. We initialize search A∗α as:

open ′fwg =
{
sαj : ∃s∈Sjs ∈ openfw

g

}
open ′bw

g =
{
sαj : ∃s∈Sjs ∈ openbw

g

}
closed ′fwg = closed ′bw

g =
{
sαj : ∀s∈Sjs ∈ closed fw

g ∪ closedbw
g

}

States closed by any of the two frontiers can be ignored in the abstract search since their heuris-
tic value will never be computed again in any direction — due to nipping, states expanded in the
opposite direction are never considered. Lemma 9.3 proves that the heuristic estimations are still
admissible and consistent for all relevant states, i. e., those that have not yet been expanded in any of
the perimeter searches.

170 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

Lemma 9.3. Let h be a bidirectional perimeter abstraction heuristic explored with a backward
search in Θα initialized with perimeters

〈
openfw , closed fw

〉
and

〈
openbw , closedbw

〉
. Then, h is

admissible and consistent for any state s 6∈ closed fw .

Proof. A heuristic h is consistent if and only if h(s) ≤ h(s′) + c(l) ∀(s, l, s′). In our case, we
only contemplate states s, s′ 6∈ closed fw , so α(s) or α(s′) will not be introduced in closedα when
initializing the abstract search unless s or s′ have already been expanded in the perimeter search.

We divide the proof in two cases, depending on whether s′ was expanded by the backward
perimeter, by the abstract search or by none of them:

i) If s′ ∈ closedbw , then s was inserted in openbw with value h(s′) + c(l). s will be expanded in
the perimeter search or in the abstract search with a cost lower or equal than h(s′) + c(l). Thus,
h(s) ≤ h(s′) + c(l) and the estimations are consistent.

ii) If s′ 6∈ closedbw , then α(s′) may be generated in A∗α or not. If it is not, h(s′) = ∞ and
consistency follows. If α(s′) is expanded in α, α(s) will be generated and inserted in openα

with value h(s′) + c(l). Therefore, h(s) ≤ h(s′) + c(l).

Theorem 9.4. Bidirectional A∗ guided with perimeter abstraction heuristics is admissible and closes
states with their optimal g-value.

Proof. Let s be a state selected from openfw for expansion. If s belongs to closedbw it is pruned
due to nipping, so we may assume that s 6∈ closedbw .

Suppose that s has suboptimal g-value, g(s) > g∗(s), then by Lemma 1 in (Hart et al., 1968)
there exist a r ∈ openfw such that g(r) = g∗(r) and r is in the optimal path from s0 to s. Now, r
may have been closed by the backward perimeter or not:

1. Suppose that r was closed in the backward perimeter, r ∈ closedbw . In this case, nipping
prunes r and its children must be skipped.

2. Suppose that r was not closed in the backward perimeter. Then, neither r and s were in
closedbw when the perimeter was initialized and, by Lemma 9.3, h(r) ≤ h(s) + c(r, s). As
the heuristic is consistent, we reach a contradiction.

9.5.4 Useful Searches
After defining how our heuristic estimates are computed, we may define what makes an abstract
search useful. Intuitively, an abstract search is useful if it has the potential of simplifying the original
search, i. e., if it may change the set of states that are going to be selected for expansion.

Definition 9.3 (Useful abstract search). Let Tu be a best-first search over a state space Θ from s0 to
s?. Let α be an abstraction and Tα

¬u be an abstract search over Θα in the opposite direction, from
sα? to sα0 .

Let S be the set of states currently selected for expansion in Tu, i. e., a subset of those that
minimize the f -value according to any given tie-breaking criteria.

We say that Tα
¬u is useful for Tu if and only if f(Tα

¬u) ≤ f(Tu) or S ∧ closed(Tα
¬u) is not

empty.

9.6. EMPIRICAL EVALUATION 171

Lemma 9.5. Let Tu be an A∗ search informed with a heuristic generated by an abstract search
Tα
¬u. Let S be the set of states selected for expansion in Tu, i. e., those with minimum f -value in

open(Tu) with any tie-breaking criterion. Then, if Tα
¬u is not useful for Tu continuing the abstract

search cannot possible alter the set of states selected for expansion, S.

Proof. Continuing the abstract search can only raise the h-value of the states. To show that, consider
the definition of h(s). On one hand, f(Tα

¬u) and g(Tα
¬u) monotonically increase as the search is

performed. On the other hand, gTα
¬u(s) does decrease as the search advances: first it takes the

value∞ until α(s) is expanded and then it takes the value of g∗bw (α(s)). However, just before the
expansion of α(s), f(Tα

¬u)− g(s) cannot be greater than g∗bw (α(s)):

f(Tα
¬u)− g(s) > g∗bw (α(s))

g∗bw (α(s)) + hbw (α(s))− g(s) > g∗bw (α(s))

g∗(s) ≤ g(s) < hbw (α(s)) ≤ h∗bw (α(s)) ≤ g∗(s)
Contradiction.

As the heuristic value of the states can only be increased, the only way to change the states
selected for expansion is to increase the heuristic value of the currently selected states in S. Suppose
that the heuristic value of a state s ∈ S is raised by advancing a non-useful search. According to
Definition 9.1 h(s) = min

{
max {f(Tα)− g(s), g((Tα) + 1} , gT (s)

}
Thus, to raise h(s), we have to raise the minimum between gT (s) and either f(Tα) or g(Tα).

As the search is not useful, α(s) has already been expanded, so the value of gT (s) is fixed. The only
way to increase h(s) is to increase f(Tα) or g(Tα).

Therefore, h(s) can only be increased whenever α(s) has not been expanded yet or
max {f(Tα)− g(s), g(Tα)} < gT (s). The latter condition can be simplified because if α(s)
was expanded, g(Tα) > gT (s).

Thus, in order to prove optimality, it is enough to expand abstract searches until every abstract
state has an f -value greater or equal than the optimal solution cost. All the states whose abstract
counterparts have not been expanded do not need to be explored because their f -value is not optimal.

9.6 Empirical Evaluation
In this section we evaluate the SymBA∗ algorithm and the impact that different abstraction hierar-
chies have in the overall performance of the algorithm. As a baseline we take the implementation
of symbolic bidirectional cost-uniform search. All the symbolic searches use the enhancements for
image computation and invalid-state pruning presented in Part I of this thesis.

9.6.1 SymBA∗ Configuration
SymBA∗ performs a blind search until both search frontiers surpass the default limit of 10,000,000
nodes or 45 seconds for image computation. At that point, the algorithm initiates a bidirectional
perimeter abstraction heuristic to inform the search. We use the same abstraction hierarchies than in
Chapter 8, described in detail in Section 8.7.1 on page 146.

The algorithm relies on the assumption that the effort for images computation is proportional to
the frontier BDD size. This assumption is already made by the bidirectional blind search in order to
decide which search direction is preferred and is well supported by empirical data (see Figure 5.1

172 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

in page 86). In this algorithm, image computation is truncated after 60 seconds. In case that image
computation gets truncated or takes more than 45 seconds, the maximum number of nodes, NF ,
which is initially set to 10,000,000, is updated to the current frontier linearly scaled by the difference
in time. Therefore, the maximum number of nodes is a good bound not only of the memory spent
by the algorithm but also for the time needed to perform the next step.

The search frontier is relaxed according to each abstraction in the hierarchy until the size of
the search frontier is “small enough” for the algorithm to estimate that performing some steps in
the abstract state space is feasible. A new parameter controls the maximum size that the frontier
is allowed to have in order to start the search in the abstract state space. The ratio after relax is
rα = 0.8, so that the new frontier must have at most rα ·NF nodes.

One common problem of abstraction heuristics is that they have expensive precomputation
phases. Usually, this precomputation is allotted a fixed amount of memory and time in order to
ensure that the search is initiated. Even though SymBA∗ does not perform the abstract state space
search at the beginning, we impose several conditions under which the planner completely stops
using abstractions in order to continue the search in an attempt to leverage the heuristic that has been
generated. No more abstract searches are selected when:

1. A limit of 1,500 seconds is surpassed.

2. The algorithm has used more than 3GB of memory.

3. 500 seconds have been spent in selecting the abstraction, i. e., generating of the abstraction
and relaxing the frontier.

Also, the planner might fail the attempt to abstract the frontier, in case that the operation exceeds
trelax = 10 seconds or Nrelax = 10,000,000 nodes.

9.6.2 Coverage of SymBA∗

In order to evaluate the SymBA∗ algorithm, we compare its performance against symbolic cost-
uniform bidirectional search (symbd). A careful reader may notice that the results of symbd do not
match the ones that were presented in Chapter 4. This is no strange since, as detailed in Section 1.5
on page 10, we are using a different hardware to run the experiments as well as another implemen-
tation of the algorithm, integrated in FAST DOWNWARD instead of CGAMER. More importantly,
all the experiments reported here are based in the same implementation for a comparison as fair as
possible. We evaluate the performance of SymBA∗ with four different abstraction hierarchies: two
PDB strategies and two SM&S with different shrinking. A detailed description can be found in Sec-
tion 8.7.1 on page 146. All the configurations are ran under two different variable orderings: FAST
DOWNWARD and GAMER.

The results in Table 9.1 show that all configurations are close in terms of coverage, which is not
surprising given that all of them start running bidirectional blind search with a limited amount of
resources. The use of abstraction heuristics do not completely pays off in terms of total coverage,
with the bidirectional blind search with GAMER ordering having the overall best coverage. However,
it is remarkable that abstraction heuristics help to improve bidirectional blind search in 12 different
domains with GAMER ordering and 14 domains with FAST DOWNWARD ordering, being necessary
to obtain the best results in 15 different domains. The main conclusion is that, as already observed in
the SPM&S heuristic presented in Chapter 8, none of the abstraction strategies is capable of selecting
good abstractions in a domain-independent way.

9.6. EMPIRICAL EVALUATION 173

GAMER ORDERING FD ORDERING
∅ PDB SM&S ∅ PDB SM&S

rev lev bop 10k gop 10k rev lev bop 10k gop 10k
AIRPORT (50) 27 27 27 27 27 22 22 22 22 22
BARMAN (20) 11 9 9 9 9 8 8 8 8 8

BLOCKSWORLD (35) 31 33 31 31 31 30 32 31 30 30
DEPOT (22) 7 8 7 7 7 7 7 7 7 7

DRIVERLOG (20) 12 13 12 13 13 13 14 13 14 14
ELEVATORS08 (30) 25 25 25 25 25 24 25 23 24 24
ELEVATORS11 (20) 19 19 19 19 19 19 19 19 19 19
FLOORTILE11 (20) 14 14 14 14 14 14 14 14 14 14

FREECELL (80) 23 24 26 22 22 21 26 23 21 20
GRID (5) 3 3 3 3 3 2 2 2 2 2

GRIPPER (20) 20 20 20 20 20 20 20 20 20 20
LOGISTICS 00 (28) 20 20 20 19 20 22 20 21 22 21
LOGISTICS 98 (35) 5 5 6 5 5 5 5 6 5 5

MICONIC (150) 111 107 107 108 109 122 120 121 122 120
MPRIME (35) 24 23 24 23 23 24 25 26 25 25

MYSTERY (30) 15 15 15 15 15 15 15 15 15 15
NOMYSTERY11 (20) 14 15 16 15 14 14 16 14 16 15
OPENSTACKS08 (30) 30 30 30 30 30 26 26 27 26 26
OPENSTACKS11 (20) 20 20 20 20 20 18 18 18 18 18
OPENSTACKS06 (30) 20 20 20 20 20 11 9 9 9 9

PARCPRINTER08 (30) 21 21 22 22 21 21 21 21 21 21
PARCPRINTER11 (20) 16 16 17 17 17 16 16 16 16 16

PARKING11 (20) 1 1 1 1 1 1 1 1 1 1
PATHWAYS-NONEG (30) 5 5 5 5 5 5 5 5 5 5
PEG-SOLITAIRE08 (30) 29 29 29 29 29 29 29 29 29 29
PEG-SOLITAIRE11 (20) 19 19 19 19 19 19 19 19 19 19

PIPESWORLD-NT (50) 15 15 15 15 15 13 13 13 14 14
PIPESWORLD-T (50) 16 16 16 16 16 15 15 15 15 15

PSR-SMALL (50) 50 50 50 50 50 50 50 50 50 50
ROVERS (40) 14 14 13 14 14 11 12 12 11 11

SATELLITE (36) 9 9 9 9 9 7 7 7 7 7
SCANALYZER08 (30) 12 12 12 12 12 12 12 13 12 13
SCANALYZER11 (20) 9 9 9 9 9 9 9 10 9 10

SOKOBAN08 (30) 28 28 28 28 28 28 28 28 28 28
SOKOBAN11 (20) 20 20 20 20 20 20 20 20 20 20
TIDYBOT11 (20) 15 13 13 17 17 12 9 9 9 9

TPP (30) 9 8 8 8 8 11 11 11 11 11
TRANSPORT08 (30) 14 13 13 13 13 14 14 13 14 14
TRANSPORT11 (20) 10 9 9 9 9 10 9 9 10 10

TRUCKS (30) 12 12 12 12 12 10 11 10 10 10
VISITALL (20) 12 12 12 12 12 12 12 12 12 12

WOODWORKING08 (30) 26 27 28 28 28 19 16 16 17 17
WOODWORKING11 (20) 19 20 20 20 19 13 10 10 11 11

ZENOTRAVEL (20) 10 12 11 10 11 9 10 11 9 11
TOTAL COV (1396) 842 840 842 840 840 803 802 799 799 798

SCORE COV (36) 20.71 20.75 20.71 20.75 20.76 19.31 19.34 19.21 19.23 19.25

Table 9.1: Coverage of SymBA∗ in combination with different abstraction heuristics.

174 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

9.6.3 Abstraction Hierarchies
The results from Table 9.1 suggest that different abstraction hierarchies obtain good results in dif-
ferent cases. In order to evaluate the impact of abstraction hierarchies in the overall performance,
we used the different strategies to generate PDB and SM&S hierarchies that we already presented in
Chapter 8 (see page 146). In order to evaluate the impact of perimeter and bidirectional abstractions
we perform an ablation analysis, where we disable those features one at a time. Table 9.2 shows the
result of the full SymBA∗ algorithm against a version using non-perimeter abstractions (¬P) and
another one using only backward search in the abstract state spaces (rbw).

Moreover, we include some hypothetical configurations that combine the best results of several
configurations, considering a problem solved if any of the individual planners solved it. best-PDB
combines all the PDB based planners. best-abs considers the same planners as best-PDB plus the
configurations using SM&S hierarchies. Finally, best includes the configuration without any heuris-
tic as well. While the results of this configurations is not “real”, they provide an optimistic estimation
of the maximum capabilities of SymBA∗ when a good strategy for the problem at hand is selected.

GAMER ORDERING FD ORDERING
full ¬P rbw full ¬P rbw

SP 20.71 (842) 20.71 (842) 20.71 (842) 19.31 (803) 19.31 (803) 19.31 (803)
PDB-rev 20.75 (840) 20.54 (833) 20.80 (846) 19.34 (802) 19.16 (797) 19.52 (809)
PDB-lev 20.71 (842) 20.72 (839) 20.64 (838) 19.21 (799) 19.35 (801) 19.39 (804)
PDB-rnd 20.91 (844) 20.67 (836) 20.72 (840) 19.08 (791) 19.36 (794) 19.58 (804)

PDB-cggoal-lev 20.61 (837) 20.58 (835) 20.66 (838) 19.32 (802) 19.07 (795) 19.36 (802)
PDB-cggoal-rnd 20.68 (840) 20.65 (838) 20.50 (838) 19.29 (798) 19.01 (790) 19.39 (801)
PDB-goalcg-lev 20.82 (843) 20.82 (844) 20.65 (837) 19.32 (803) 19.35 (801) 19.55 (810)
SM&Sbop10k 20.75 (840) 20.81 (840) 20.83 (839) 19.23 (799) 19.34 (801) 19.55 (808)
SM&Sgop10k 20.76 (840) 20.78 (842) 20.88 (842) 19.25 (798) 19.37 (801) 19.39 (806)
SM&Sfh10k 20.51 (837) 20.69 (836) 20.63 (837) 19.20 (792) 19.28 (795) 19.40 (802)

SM&S + PDBs 20.82 (838) 20.71 (839) 20.71 (835) 19.48 (801) 19.46 (796) 19.40 (805)
best-PDB 21.15 (855) 21.14 (854) 21.14 (856) 19.84 (822) 19.85 (816) 20.10 (825)
best-abs 21.41 (864) 21.43 (863) 21.43 (866) 20.06 (828) 20.20 (826) 20.31 (831)

best 21.62 (873) 21.62 (870) 21.45 (868) 20.33 (837) 20.47 (835) 20.34 (832)

Table 9.2: Coverage of SymBA∗ in combination with different abstraction heuristics. SM&S +
PDBs uses a combination of different strategies. The best configurations are not real planners,
but a selection of the best results obtained with any abstraction hierarchy for each problem. Three
different configurations: full (full), disabling perimeter abstractions (¬P) and disabling bidirectional
abstractions (rbw)

The results of Table 9.2 suggest that abstraction heuristics have limited impact in symbolic bidi-
rectional search. There are no large differences between the different abstraction hierarchies and
most of them obtain a coverage similar to the cost-uniform approach, SP. However, this can be at-
tributed to the fact that the abstraction strategies do not reliably select useful abstractions. Indeed,
the PDB-rnd strategy that abstracts variables at random is mostly indistinguishable from other strate-
gies. The results of best suggest that the SymBA∗ algorithm has potential to combine abstraction
heuristics and symbolic bidirectional search if good abstraction strategies are used. However, the
comparison of the full algorithm against the versions disabling perimeter and bidirectional abstrac-
tions suggests that none of this features is needed, at least with the abstraction heuristics being used.

The SM&S + PDBs configuration uses a combination of SM&Sbop10k, PDB-cggoal-rnd, PDB-
goalcg-lev, and PDB-rev, trying to get closer to the best configuration. Whenever one of the ab-
straction strategies does not generate useful abstractions it attempts a different abstraction strategy.
However, the overhead is not negligible and in the end it has the same performance than other config-
urations. Thus, for SymBA∗ to be a useful algorithm, new domain-independent abstraction strategies
are required.

9.7. SUMMARY 175

9.7 Summary
Symbolic bidirectional uniform-cost search is a state-of-the-art method for cost-optimal planning.
The question remains whether is it possible to use heuristic estimates to further improve its results.
However, introducing heuristics in a bidirectional setting is not a simple task. Not in vain, multiple
bidirectional heuristic search algorithms have been proposed in the past failing to outperform good-
old A∗ search.

In this chapter we have introduced a new algorithm, SymBA∗, that uses abstraction heuristics to
inform a bidirectional heuristic search. SymBA∗ takes advantage of symbolic bidirectional uniform-
cost search by deferring the use of heuristics until a blind search seems unfeasible. However, instead
of discarding the previous search, the current frontier is used as input to construct perimeter abstrac-
tion heuristics, similar to the ones used in Chapter 8.

In order to generate heuristics for both search frontiers, a bidirectional search is carried out in
an abstract state space. This requires extending the definition of partial and perimeter abstraction
heuristics to the bidirectional case, in order to produce more informed estimates while ensuring
optimality of the solutions.

Our experimental results show that this is a promising idea, though finding the right abstraction
strategies in a domain-independent way is not a trivial task.

176 CHAPTER 9. SYMBOLIC BIDIRECTIONAL HEURISTIC SEARCH

Part III

Conclusions and Future Work

177

Chapter 10

Experimental Analysis

In this chapter, we summarize the experimental results of this thesis, comparing the overall perfor-
mance of the symbolic search planners we developed with other state-of-the-art optimal planners.
While in other chapters the empirical evaluation was focused in the comparison of the proposed
techniques against the closest baseline approach in each case, the goal of this chapter is to describe
the big picture: how the improvements made in this thesis affect to the state of the art in optimal
planning. We conclude the chapter with a brief summary of the IPC-14, where our planners were
prominent participants.

10.1 Summary Evaluation
In this section, we perform a final comparison between the different techniques presented in this
thesis and some relevant competitors. Table 10.1 shows the coverage results of the following con-
figurations:

• FAST DOWNWARD A∗: explicit-state search using different state-of-the-art heuristics, includ-
ing LM-CUT and M&S. FAST DOWNWARD STONE SOUP, the winner of IPC-2011, was a
portfolio running these three planners by a fixed amount of time. In order to compare against
the best possible results obtained by such portfolio, we compare against the maximum pos-
sible coverage where we consider a problem solved if it was solved by any of the individual
planners. Thus, best is an optimistic approximation of the best possible results using the three
planners.

• GAMER: symbolic search planner using bidirectional uniform-cost search and BDDA∗ with
symbolic PDBs. This is our symbolic planner baseline to compare against our symbolic search
improvements of Part I of this thesis.

• CGAMER: Version of GAMER with the improvements presented in Part I of this thesis.

• BDDA∗ with M&S: Symbolic A∗ search with the M&S heuristic. The symbolic representation
of M&S abstractions with linear merge strategies enables an efficient evaluation for symbolic
search, as shown in Chapter 7.

• A∗-SPM&S: heuristic search planner using our SPM&S heuristic presented in Chapter 8.
This heuristic is based on a symbolic perimeter and perimeter abstraction heuristics: PDBs

179

180 CHAPTER 10. EXPERIMENTAL ANALYSIS

and M&S. We ran different configurations. SP uses only a symbolic perimeter around the
goal. The other configurations extend the perimeter using different abstraction hierarchies,
including PDBs, SM&S, and multiple PDB strategies (SPM&S-k) with or without SM&S.

• SymBA∗: Symbolic bidirectional A∗ search. The bd configuration is similar to CGAMER-BD
though there are some differences in the implementation details. The version with SPPDB and
SM&S uses the bidirectional abstraction heuristics described in Chapter 9.

All planners use the preprocessor described in Section 4.1.3 on page 58 to remove invalid op-
erators and simplify the task. For other details about configuration parameters, check the default
parameters used in the empirical evaluation of the chapter where each technique was presented.

Table 10.1 shows the coverage of all approaches, summarizing the empirical contributions of
this thesis. In Part I of this thesis, we proposed some improvements for the symbolic search plan-
ner GAMER and we called the resulting configuration CGAMER. CGAMER does not only consis-
tently beat GAMER, but also is a state-of-the-art planner that outperforms even heuristic portfolio
approaches, as studied in Section 5.2 on page 86. The comparison in this case is less favorable to
CGAMER mainly due to hardware settings. The experiments in Part I were ran in a cluster using a
single processor per machine, while the experiments of the rest of the thesis were ran in parallel,
using 16 processors per machine. Executing several processes in the same computer can decrease
the performance because the increased time in memory accesses. Since the BDD manipulation
in symbolic search requires an extensive number of memory accesses, it is not surprising that the
performance of symbolic search planners is significantly reduced with respect to heuristic search
planners.

In Chapter 7 we considered the use of M&S heuristics in BDDA∗. While it outperforms explicit-
state search with the same heuristics, it is not a competitive approach in general. Nevertheless, it was
a step towards the development of new symbolic heuristics. In Chapter 8 we proposed the SPM&S
heuristic, which combined M&S abstractions and symbolic perimeter search. The SPM&S heuristic
does not only beat the simple perimeter (SP) and M&S heuristics, but also is a highly competitive
heuristic outperforming even the state-of-the-art heuristic LM-CUT. Results are even better when
multiple abstraction hierarchies are used, taking the maximum estimation from each of their results
(SPM&S-k).

Finally, in Chapter 9 we developed the SymBA∗ algorithm that aims to increase the performance
of symbolic bidirectional cost-uniform search with perimeter abstraction heuristics. The different
configurations of SymBA∗ obtain quite similar results to the bidirectional blind search. Nevertheless,
of all the planners considered in this thesis, SymBA∗ has the best overall coverage score.

Figure 10.1 shows the cumulative coverage of several planners over time. As expected, SP
and SPPDB are closely related. Both planners start constructing a symbolic perimeter, so their
performance is indistinguishable during the first 100 seconds. Afterwards, SP starts the search and
starts solving more problems. SPPDB continues precomputing perimeter abstraction heuristics and
starts the A∗ search later, but in the end outperforms SP. A similar observation can be made in the
case of SPPDBmulti, which performs an even longer precomputation phase to obtain better results
at the end.

As we analyzed in Chapter 8, using a symbolic perimeter as heuristic is competitive against
state-of-the-art heuristics such as LM-CUT. Even though SP solves less problems than LM-CUT at
the beginning, due to the precomputation phase of the heuristic, the performance after 1800 seconds
is the same and even better when the perimeter is extended with abstraction heuristics (SPPDB).

Regarding bidirectional search, as we already analyzed in more detail in Chapter 5 the improve-
ments we made in Part I of the thesis to the bidirectional uniform-cost search of GAMER, help to

10.1. SUMMARY EVALUATION 181

A
∗

G
A

M
E

R
C

G
A

M
E

R
B

D
D

A
∗

+
M

&
S

A
∗

+
SP

M
&

S
Sy

m
B

A
∗

M
&

S
L

M
-

be
st

bd
B

D
D

A
∗

bd
(*

)
B

D
D

A
∗

G
A

M
E

R
O

R
D

E
R

IN
G

F
D

O
R

D
E

R
IN

G
SP

SP
PD

B
SM

&
S

SP
M

&
S-

k
bd

SP
PD

B
(*

)
SM

&
S

(*
)

bo
p

go
p

cu
t

bo
p

bo
p

go
p

bo
p

bo
p

+
PD

B
(*

)
PD

B
A

IR
P

O
R

T
(5

0)
21

23
29

29
23

22
25

20
22

17
22

25
27

25
26

25
27

27
27

B
A

R
M

A
N

(2
0)

4
4

4
4

6
4

8
4

4
4

4
8

8
8

9
9

11
10

11
B

L
O

C
K

S
W

O
R

L
D

(3
5)

20
28

28
28

21
27

31
25

25
22

28
30

32
23

31
33

31
30

30
D

E
P

O
T

(2
2)

6
6

7
7

5
6

5
8

7
6

6
7

8
3

7
7

7
7

7
D

R
IV

E
R

L
O

G
(2

0)
13

12
13

13
12

14
14

14
13

13
14

12
13

13
14

13
12

14
14

E
L

E
V

A
T

O
R

S0
8

(3
0)

14
1

22
22

24
20

25
22

20
19

1
23

23
23

24
24

25
24

24
E

L
E

V
A

T
O

R
S1

1
(2

0)
12

0
18

18
19

17
19

16
17

16
0

18
18

18
19

19
19

19
19

F
L

O
O

R
T

IL
E

11
(2

0)
8

4
14

14
9

12
14

14
14

14
4

14
14

14
14

14
14

14
14

F
R

E
E

C
E

L
L

(8
0)

4
19

15
19

14
17

20
23

15
4

20
22

31
17

34
37

23
24

23
G

R
ID

(5
)

3
2

2
3

2
2

2
2

3
3

2
2

3
3

3
3

3
2

3
G

R
IP

P
E

R
(2

0)
20

8
7

20
20

20
20

17
20

20
20

20
20

20
20

20
20

20
20

L
O

G
IS

T
IC

S
00

(2
8)

20
16

20
20

18
18

20
22

21
22

21
16

17
16

19
19

20
20

20
L

O
G

IS
T

IC
S

98
(3

5)
5

4
6

6
5

5
5

6
5

5
5

4
5

5
5

5
5

5
5

M
IC

O
N

IC
(1

50
)

77
54

14
1

14
1

84
0

11
0

10
6

79
88

88
10

7
10

7
10

7
10

8
10

8
11

1
10

8
10

7
M

P
R

IM
E

(3
5)

12
23

23
24

22
24

22
26

20
12

27
22

22
19

23
23

24
25

25
M

Y
S

T
E

R
Y

(3
0)

8
17

17
17

14
16

14
15

12
8

16
15

15
15

15
15

15
15

15
N

O
M

Y
S

T
E

R
Y

11
(2

0)
19

14
14

19
13

14
16

13
20

20
16

13
16

16
17

18
14

14
14

O
P

E
N

S
TA

C
K

S0
8

(3
0)

21
9

21
21

30
28

30
24

30
23

9
30

30
30

30
30

30
30

30
O

P
E

N
S

TA
C

K
S1

1
(2

0)
16

4
16

16
20

18
20

18
20

18
4

20
20

20
20

20
20

20
20

O
P

E
N

S
TA

C
K

S0
6

(3
0)

7
7

7
7

10
7

20
12

16
7

7
11

10
11

10
10

20
20

20
PA

R
C

P
R

IN
T

E
R

08
(3

0)
20

20
22

23
19

13
22

18
16

16
20

23
23

23
23

23
21

21
21

PA
R

C
P

R
IN

T
E

R
11

(2
0)

15
15

17
18

15
9

17
14

12
11

15
18

18
18

18
18

16
16

16
PA

R
K

IN
G

11
(2

0)
0

0
2

2
0

1
1

1
1

0
0

1
4

0
4

4
1

1
1

PA
T

H
W

A
Y

S
-N

O
N

E
G

(3
0)

4
4

5
5

5
5

5
5

5
5

5
4

4
4

4
4

5
5

5
P

E
G

-S
O

L
IT

A
IR

E
08

(3
0)

29
6

28
29

29
28

30
28

29
29

6
29

29
29

30
30

29
29

29
P

E
G

-S
O

L
IT

A
IR

E
11

(2
0)

19
0

18
19

19
18

20
18

19
19

0
19

19
19

20
20

19
19

19
P

IP
E

S
W

O
R

L
D

-N
T

(5
0)

9
16

17
17

14
12

15
14

15
9

14
15

15
15

14
14

15
15

15
P

IP
E

S
W

O
R

L
D

-T
(5

0)
8

17
12

17
13

14
16

19
15

8
15

12
16

8
12

15
16

16
16

P
S

R
-S

M
A

L
L

(5
0)

50
50

49
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
R

O
V

E
R

S
(4

0)
8

6
7

8
14

12
14

13
11

9
10

12
13

12
13

12
14

13
13

S
A

T
E

L
L

IT
E

(3
6)

7
6

7
7

7
7

9
9

9
7

7
9

9
9

9
9

9
9

9
S

C
A

N
A

LY
Z

E
R

08
(3

0)
14

9
15

17
11

11
12

12
12

13
9

12
12

12
12

12
12

12
12

S
C

A
N

A
LY

Z
E

R
11

(2
0)

11
6

12
14

8
8

9
9

9
10

6
9

9
9

9
9

9
9

9
S

O
K

O
B

A
N

08
(3

0)
29

3
30

30
27

29
28

28
28

28
3

28
29

25
28

28
28

28
28

S
O

K
O

B
A

N
11

(2
0)

20
1

20
20

20
20

20
20

20
20

1
20

20
19

20
20

20
20

20
T

ID
Y

B
O

T
11

(2
0)

1
13

17
17

11
10

10
17

9
1

13
14

12
10

15
11

15
12

17
T

P
P

(3
0)

7
6

7
7

8
8

8
8

8
8

9
8

8
8

8
8

9
8

9
T

R
A

N
S

P
O

R
T

08
(3

0)
11

11
11

11
11

11
13

11
11

11
11

12
12

12
13

12
14

14
13

T
R

A
N

S
P

O
R

T
11

(2
0)

7
6

6
7

7
6

9
6

6
7

6
7

8
8

9
9

10
9

9
T

R
U

C
K

S
(3

0)
8

8
10

10
9

10
12

12
10

10
10

10
10

10
11

13
12

12
12

V
IS

IT
A

L
L

(2
0)

9
16

10
16

12
10

12
10

11
12

13
11

12
11

12
12

12
12

12
W

O
O

D
W

O
R

K
IN

G
08

(3
0)

13
14

22
22

22
22

23
26

22
17

22
28

25
28

25
25

26
25

25
W

O
O

D
W

O
R

K
IN

G
11

(2
0)

8
9

15
15

16
15

17
15

16
12

16
20

20
20

19
19

19
19

19
Z

E
N

O
T

R
A

V
E

L
(2

0)
12

10
13

13
10

11
11

11
12

12
11

10
12

11
12

12
10

11
11

T
O

TA
L

C
O

V
(1

39
6)

62
9

50
7

79
6

84
2

72
8

63
1

82
3

78
1

73
9

66
5

58
6

80
0

82
8

77
6

83
8

84
1

84
2

83
3

83
8

S
C

O
R

E
C

O
V

(3
6)

15
.8

2
13

.6
6

18
.5

6
20

.3
5

17
.8

6
17

.2
1

19
.9

9
19

.1
2

18
.8

3
16

.7
3

15
.3

5
19

.3
2

20
.2

8
18

.8
7

20
.5

9
20

.5
6

20
.7

1
20

.3
2

20
.8

2

Ta
bl

e
10

.1
:S

um
m

ar
y

of
ex

pe
ri

m
en

ta
lr

es
ul

ts
of

th
e

th
es

is
.P

la
nn

er
s

m
ar

ke
d

w
ith

(*
)d

en
ot

e
th

at
th

ey
pa

rt
ic

ip
at

ed
in

IP
C

-2
01

4,
as

m
en

tio
ne

d
in

Se
ct

io
n

10
.2

.

182 CHAPTER 10. EXPERIMENTAL ANALYSIS

100 101 102 103

100

200

300

400

500

600

700

800

900

Time (seconds)

C
ov

er
ag

e

SymBA∗

symbd

SPPDBmulti
SPPDB

SP
LM-CUT

M&Sb

GAMER-bd

Figure 10.1: Cumulative coverage of planners. Total coverage of each planner at each time in
logscale.

make a stronger planner whose performance is remarkable in our set of benchmarks. After few
seconds, symbolic bidirectional search outperforms the other competitors. The SymBA∗ planner
introduces heuristics but, as analyzed in Chapter 9, its performance is close to symbd . Abstraction
heuristics are useful in some domains but the overhead reduces the performance in others and, in
total, both algorithms tie in total coverage.

10.2 The 2014 International Planning Competition

We report the results of IPC-14, where our planners competed against other state-of-the-art plan-
ners. IPC results are not completely adequate for the evaluation of techniques, since results can be
biased due to bugs and execution errors present in most planners. Nevertheless, some trends may be
observed when comparing the results of different planners.

We submitted three different planners to the competition:

• CGAMER-BD (Torralba et al., 2014b): Our planner using symbolic bidirectional uniform-cost
search with the enhancements of Part I of this thesis.

• SPM&S (Torralba et al., 2014c): Uses A∗ with the symbolic perimeter M&S heuristic that we
presented in Chapter 8 of this thesis. It uses multiple SM&S and PDB abstraction hierarchies.

10.2. THE 2014 INTERNATIONAL PLANNING COMPETITION 183

• SymBA∗ (Torralba et al., 2014a): The symbolic bidirectional search informed with bidirec-
tional abstraction heuristics proposed in Chapter 9. We submitted two different parameter
configurations that differ on the abstraction hierarchies used: SYMBA-1and SYMBA-2. They
both use PDB abstractions, based on the variable orderings cgr, gcl and rev. SYMBA-2, ad-
ditionally, uses SM&S abstraction hierarchies using bisimulation shrinking with a maximum
number of 10,000 abstract states.

All the planners use the improvements on image computation from Chapter 3 and h2 constraints
for symbolic search described in Chapter 4. These planners correspond to the configurations in-
cluded in Table 10.1 that are marked with (*). Some differences can be found due to some bugfixes
or small optimizations. Also, our planners were adapted for the IPC to support conditional effects,
who were not considered in the empirical evaluation of this thesis.

Other participants in the IPC were:

• GAMER and DYNAMIC-GAMER (Kissmann et al., 2014): The vanilla version of GAMER uses
symbolic bidirectional uniform-cost search without the enhancements proposed in this thesis.
DYNAMIC-GAMER is an extended version using dynamic variable reordering (Kissmann and
Hoffmann, 2014), an enhancement of symbolic search that is orthogonal to the work in this
thesis.

• NUCELAR (Núñez et al., 2014b), MIPLAN, DPMPLAN (Núñez et al., 2014a),
CEDALION (Seipp et al., 2014), ALLPACA (Malitsky et al., 2014) are portfolio approaches
that use several planners. MIPLAN, DPMPLAN and CEDALION are sequential static portfo-
lios that execute a given set of planners for a fixed amount of time. The former two use a
mixed-integer programming approach to divide the available time among a set of candidate
planners (Núñez et al., 2012). The latter focuses on optimizing the parameter configuration of
the FAST DOWNWARD planner for different domains to construct the set of candidate planners.
NUCELAR and ALLPACA decide which planner/s to use for each instance using a machine
learning approach, with features automatically extracted from the problem description (Cen-
amor et al., 2013). For more details about the planners considered by the portfolios and the
methods to decide which planners execute, we refer the reader to the original articles.

• RIDA (Franco et al., 2014), RLAZYA∗ (Karpas et al., 2014): Combine different heuristics
during a single search process, deciding which heuristics to use in a state-per-state basis (Bar-
ley et al., 2014; Tolpin et al., 2013).

• METIS (Alkhazraji et al., 2014): Combine the incremental version of the LM-CUT heuris-
tic (Pommerening and Helmert, 2013) with symmetry and partial order reduction prun-
ing (Domshlak et al., 2012; Wehrle and Helmert, 2012).

• HFLOW (Bonet and van den Briel, 2014b) uses the flow heuristics.

• h++ (Haslum, 2014): An incremental lower bound procedure that iteratively introduces con-
straints into the delete-relaxation heuristic until the relaxed plan is executable in the original
problem.

The IPC-2014 featured 14 different domains, with 20 problem instances each though some were
unsolvable. The domains selected for the IPC can be classified in several categories:

• Domains from previous IPCs. Including BARMAN, FLOORTILE, OPENSTACKS, TIDYBOT,
TRANSPORT and VISITALL. All this domains have been used in the empirical evaluation
thorough this thesis, though new problem instances were used in IPC-14.

184 CHAPTER 10. EXPERIMENTAL ANALYSIS

B
A

R
M

A
N

C
A

V
E

C
H

I L
D

S
N

A
C

K

C
IT

Y
C

A
R

F
L

O
O

R
T

IL
E

G
E

D

H
IK

IN
G

M
A

I N
T

E
N

A
N

C
E

O
P

E
N

S
TA

C
K

S

PA
R

K
IN

G

T
E

T
R

IS

T
ID

Y
B

O
T

T
R

A
N

S
P

O
R

T

V
IS

IT
A

L
L

T
O

TA
L

SYMBA-2 6 3 4 18 20 20 20 4 20 0 10 10 9 7 151
SYMBA-1 6 3 4 18 20 19 20 4 20 0 10 4 9 6 143

CGAMER-BD 6 0 1 18 20 0 15 0 19 3 11 13 8 6 120
SPMAS 5 3 2 1 20 18 12 4 14 4 7 8 9 7 114

RIDA 0 3 0 16 5 19 17 5 3 6 8 8 8 15 113
DYNAM-GAMER 3 3 10 15 14 0 17 3 19 0 2 0 7 6 99

ALL-PACA 0 7 0 17 6 15 13 5 8 6 3 1 5 12 98
CEDALION 0 7 0 14 5 15 13 5 1 2 5 7 6 13 93

METIS 3 7 6 0 8 15 13 5 3 4 8 7 6 6 91
NUCELAR 0 7 0 13 0 15 13 5 3 5 9 0 7 13 90

RLAZYA 0 7 0 17 5 15 9 5 2 4 6 7 6 5 88
GAMER 3 3 2 18 13 0 14 0 16 0 3 0 6 5 83
HFLOW 0 3 0 0 3 7 4 5 1 0 10 0 5 15 53

MIPLAN 0 7 0 11 0 0 10 5 0 1 0 0 0 13 47
DPMPLAN 0 7 0 8 0 0 0 5 0 5 0 0 6 12 43

HPP-CE 0 0 0 7 0 3 0 5 0 0 0 0 0 0 15
HPP 0 0 0 6 0 3 0 5 0 0 0 0 0 0 14

Table 10.2: Results of the 2014th International Planning Competition. The results of our planners
are highlighted in gray.

• New domains without conditional effects. Including CHILDSNACK, GED, HIKING and
TETRIS.

• New domains with conditional effects. Including CAVE, CITYCAR and MAINTENANCE.

Table 10.2 shows the results of IPC-2014, with planners sorted according to their total coverage.
The results of our four submissions were remarkable, getting the first places of the competition.
SymBA∗ was the IPC winner, solving more problems than other participants and being the best
planner in 7 out of 14 domains.

CGAMER-BD was the runner up of the competition. A direct comparison of SymBA∗ and
CGAMER-BD shows advantages for the former, contradicting the results from Section 9.6 on
page 171. However, the advantage of SymBA∗ over the symbolic bidirectional uniform-cost search
used by CGAMER-BD is not only due to the use of abstraction heuristics. CGAMER-BD PDDL
parser and conditional-effect support had some errors that caused the planner to fail in three do-
mains: MAINTENANCE, GED and CAVE. Ignoring those domains, CGAMER-BD performance is
similar to the versions of SymBA∗.

Our last planner, SPM&S finished in third position, not only on top of other heuristic search
planners, but also outperforming portfolios that use multiple heuristics. This remarks the potential
of symbolic search, and symbolic regression in particular, for deriving admissible heuristics.

The other symbolic planners in the competition also obtained good results. GAMER, the baseline
approach that we have compared against in this thesis, solved 83 problems. DYNAMIC-GAMER was
ranked the fifth position being the best planner in CHILDSNACK.

Regarding the comparison of symbolic versus explicit search, symbolic planners outperformed
explicit-search planners in 10 out of 14 domains. The results in domains from previous competitions
are not very surprising. Symbolic search planners are better in BARMAN, FLOORTILE, OPEN-
STACKS, TIDYBOT and TRANSPORT and explicit-search planners in PARKING and VISITALL. In
the new domains, we see a similar trend with symbolic planners being better in 5 out of 7 domains.

10.3. SUMMARY 185

10.3 Summary
In this chapter we have highlighted the performance of the planners we developed in this thesis.
We performed an empirical comparison of all the approaches we considered and highlighted our
contributions to the state of the art in cost-optimal planning and, in particular, to symbolic planning.

The results of the 2014 International Planning Competition confirm what we showed in our
evaluation: symbolic bidirectional search performs incredibly well, beating all other planners in
around half of the domains.

186 CHAPTER 10. EXPERIMENTAL ANALYSIS

Chapter 11

Conclusions

In this chapter, we summarize the contributions of the dissertation, discuss the main conclusions we
drew and possible future work.

11.1 Contributions
The main contributions of this thesis are:

Advances on symbolic search planning The use of symbolic search planning has been a promis-
ing avenue for a long time. We analyzed the state-of-the-art symbolic planner, GAMER, and imple-
mented two orthogonal improvements:

1. Analysis of the image computation in symbolic search planning. The image computation,
used to perform the successor generation, is probably the main bottleneck in symbolic search.
We studied in detail different methods to perform the image computation and empirically
compared them. Our new methods increase the performance of GAMER. This work is part of
a collaboration with Stefan Edelkamp and Peter Kissmann (Torralba et al., 2013a) and it was
presented in Chapter 3.

2. State-invariant constraints for symbolic search planning. State-invariants are properties that
hold in every reachable state and it is well-known that they are very useful to prune regression
search. However, they were not used by symbolic search state-of-the-art planners. We studied
how to efficiently encode state-invariant constraints as BDDs for their use to prune symbolic
bidirectional search. This work is part of a collaboration with Vidal Alcázar (Torralba and
Alcázar, 2013) and it was presented in Chapter 4.

Both contributions helped to raise the performance of symbolic search planning, making sym-
bolic bidirectional uniform-cost search one of the best state-of-the-art algorithms for cost-optimal
planning. This is reflected by the performance of our planner, CGAMER, runner-up in the 2014
edition of the International Planning Competition.

Symbolic abstraction heuristics Abstraction heuristics are a promising avenue to generate
domain-independent heuristics. Starting from the more classical Pattern Databases, in the last decade
numerous domain-independent methods to generate abstractions have been developed for planning,

187

188 CHAPTER 11. CONCLUSIONS

such as merge-and-shrink or counter-example guided abstractions. While symbolic search had been
previously used in combination with PDBs, in this thesis we have further explored the relationship
of symbolic search and abstraction heuristics:

1. Symbolic representation of merge-and-shrink heuristics. We theoretically and empirically
studied the representation of linear merge-and-shrink heuristics in the form of Algebraic and
Binary Decision Diagrams. We proved that the resulting data-structures are guaranteed to have
a polynomial size under a certain BDD variable orderings. This enables the use of merge-and-
shrink heuristics in symbolic BDDA∗. However, our comparison with Symbolic PDBs shows
that the restrictions with respect to the variable ordering limit the performance of merge-and-
shrink in symbolic search. This work is part of a collaboration with Stefan Edelkamp and
Peter Kissmann (Edelkamp et al., 2012) and it was presented in Chapter 7.

2. We presented symbolic perimeter merge-and-shrink, a new heuristic that uses symbolic re-
gression search and merge-and-shrink abstractions in a similar way to perimeter abstraction
heuristics. Empirical results show that the resulting heuristic is competitive with state-of-the-
art planning. This work was presented in Chapter 4 and (Torralba et al., 2013b).

Bidirectional search with abstraction heuristics The final part of the thesis attempts to join the
results of symbolic bidirectional uniform-cost search achieved in Part I of the thesis and the symbolic
abstraction heuristics studied in Part II. We present the SymBA∗ algorithm that uses abstraction
heuristics lazily, only computing them when needed. We extend the definition of perimeter and
partial abstraction heuristics to a bidirectional heuristic setting and use the resulting estimates in a
symbolic bidirectional search. This work was presented in Chapter 9.

Overall results The outcome of the empirical evaluation performed in this thesis is very posi-
tive. Our enhancements help symbolic search to consistently outperform explicit-state uniform-cost
search, and make symbolic bidirectional uniform-cost search one of the best approaches to cost-
optimal planning, as shown in Chapter 5. SPM&S, our heuristic produced as part of the research
on the relation of symbolic search and M&S abstractions, is also one state-of-the-art heuristic for
cost-optimal planning. Finally, the combination of bidirectional search and perimeter abstraction
heuristics is still a promising approach, despite the results show that new abstractions strategies
are required for such setting. Our final comparison in Chapter 10 highlights the relevance of the
techniques developed during this thesis for the current state of the art.

11.1.1 Publications
List of publications related to this thesis:

• Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba (2012). “Symbolic A∗ Search with
Pattern Databases and the Merge-and-Shrink Abstraction”. In: European Conference on Ar-
tificial Intelligence (ECAI). ed. by Luc De Raedt, Christian Bessière, Didier Dubois, Patrick
Doherty, Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas. Vol. 242. Frontiers in Artificial
Intelligence and Applications. IOS Press, pp. 306–311

• Álvaro Torralba, Stefan Edelkamp, and Peter Kissmann (2013a). “Transition Trees for Cost-
Optimal Symbolic Planning”. In: International Conference on Automated Planning and
Scheduling (ICAPS). ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Si-
mone Fratini. AAAI Conference on Artificial Intelligence (AAAI), pp. 206–214

11.2. FUTURE WORK 189

• Álvaro Torralba, Carlos Linares López, and Daniel Borrajo (2013b). “Symbolic Merge-and-
Shrink for Cost-Optimal Planning”. In: International Joint Conference on Artificial Intelli-
gence (IJCAI). ed. by Francesca Rossi. IJCAI/AAAI, pp. 2394–2400

• Álvaro Torralba and Vidal Alcázar (2013). “Constrained Symbolic Search: On Mutexes, BDD
Minimization and More”. In: Symposium on Combinatorial Search (SoCS). ed. by Malte
Helmert and Gabriele Röger. AAAI Press, pp. 175–183

• Javier Garcı́a, José E. Flórez, Álvaro Torralba Arias de Reyna, Daniel Borrajo, Carlos Linares
López, Angel Garcı́a Olaya, and Juan Sáenz (2013). “Combining linear programming and
automated planning to solve intermodal transportation problems”. In: European Journal of
Operational Research 227.1, pp. 216–226

11.2 Future Work
In this thesis, we have developed techniques based on symbolic search for cost-optimal planning.
Below we list some of the directions in which our work could be further developed.

11.2.1 Strategies for Abstraction Heuristics
In this thesis, we have explored the relation of abstraction heuristics and symbolic search. However,
in this thesis, we have limited ourselves to reuse abstraction strategies that were developed in previ-
ous works. Both, the pattern selection in PDBs and the merge or shrinking strategies in M&S have
a huge influence in the performance of all the techniques explored in the second part of this thesis.
However, those strategies were not specifically designed to be used in our setting. An interesting
question is whether is it possible to develop strategies better suited for the combination with the
symbolic searches. In particular:

• Combined strategies to optimize the abstraction selection and the BDD variable ordering si-
multaneously.

• Perimeter abstraction strategies that take into account the current perimeter frontier in order
to obtain more succinct or informed abstractions.

11.2.2 Other Heuristics in Symbolic Search
From our experiments, it is clear that symbolic search provides significant advantages over explicit-
state search. The main limitation of symbolic search is the difficulty of combining it with most
domain-independent heuristics. In this thesis, we have restricted our analysis to merge-and-shrink
abstractions and, to a lesser degree, pattern databases. However, we were limited to use a few
heuristics, combining them by taking the maximum of such heuristics.

The current trend in explicit-search cost-optimal planning goes in a very different direction,
though. Most heuristics are based on an additive cost-partitioning among a relatively large amount
of heuristics. Recently, some promising approaches based on determining the cost-partitioning in
a per-state basis have emerged. This detailed per-state analysis seems a bit contrary to the spirit
of symbolic search, based on looking at whole sets of states at once. Thus, despite the efforts
that we made in this thesis, the gap between symbolic search and heuristics continues increasing.
Understanding that gap and proposing new ways to reduce it seems a very promising line of research
for the future of cost-optimal planning.

190 CHAPTER 11. CONCLUSIONS

Bibliography

Vidal Alcázar (2014). “Generation and Exploitation of Intermediate Goals in Automated Planning”.
PhD thesis. Universidad Carlos III de Madrid (pages 56–58).

Vidal Alcázar, Daniel Borrajo, Susana Fernández, and Raquel Fuentetaja (2013). “Revisiting Re-
gression in Planning”. In: International Joint Conference on Artificial Intelligence (IJCAI). Ed.
by Francesca Rossi. IJCAI/AAAI, pp. 2254–2260 (pages 9, 55–58, 60, 71, 83).

Vidal Alcázar, Susana Fernández, and Daniel Borrajo (2014). “Analyzing the Impact of Partial States
on Duplicate Detection and Collision of Frontiers.” In: International Conference on Automated
Planning and Scheduling (ICAPS). Ed. by Steve Chien, Minh Binh Do, Alan Fern, and Wheeler
Ruml. AAAI, pp. 350–354 (pages 9, 155).

Yusra Alkhazraji, Michael Katz, Robert Matmüller, Florian Pommerening, Alexander Shleyfman,
and Martin Wehrle (2014). “Metis: Arming Fast Downward with Pruning and Incremental Com-
putation”. In: International Planning Competition (IPC), pp. 88–92 (page 183).

Kenneth Anderson, Robert Holte, and Jonathan Schaeffer (2007). “Partial Pattern Databases”. In:
Symposium on Abstraction, Reformulation and Approximation (SARA). Ed. by Ian Miguel and
Wheeler Ruml. Vol. 4612. Lecture Notes in Computer Science. Springer, pp. 20–34 (pages 37,
97, 137).

Fahiem Bacchus and Qiang Yang (1994). “Downward Refinement and the Efficiency of Hierarchical
Problem Solving”. In: Artificial Intelligence Journal 71.1, pp. 43–100 (page 4).

Christer Bäckström and Peter Jonsson (1995). “Planning with Abstraction Hierarchies can be Ex-
ponentially Less Efficient”. In: International Joint Conference on Artificial Intelligence (IJCAI).
Morgan Kaufmann, pp. 1599–1605 (page 94).

Christer Bäckström and Peter Jonsson (2012). “Abstracting Abstraction in Search with Applications
to Planning”. In: KR. Ed. by Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith. AAAI
Press, pp. 446–456 (pages 94, 95).

Christer Bäckström and Bernhard Nebel (1995). “Complexity Results for SAS+ Planning”. In: Com-
putational Intelligence 11, pp. 625–656 (pages 2, 3).

191

192 BIBLIOGRAPHY

R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo,
and Fabio Somenzi (1997). “Algebraic Decision Diagrams and Their Applications”. In: Formal
Methods in System Design 10.2/3, pp. 171–206 (page 24).

Marcel Ball and Robert C. Holte (2008). “The Compression Power of Symbolic Pattern Databases”.
In: International Conference on Automated Planning and Scheduling (ICAPS). Ed. by Jussi Rin-
tanen, Bernhard Nebel, J. Christopher Beck, and Eric A. Hansen. AAAI Conference on Artificial
Intelligence (AAAI), pp. 2–11 (pages 37, 94, 97, 106).

Michael W. Barley, Santiago Franco, and Patricia J. Riddle (2014). “Overcoming the Utility Problem
in Heuristic Generation: Why Time Matters”. In: Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire,
USA, June 21-26, 2014. Ed. by Steve Chien, Minh Binh Do, Alan Fern, and Wheeler Ruml.
AAAI, pp. 38–46 (page 183).

Christoph Betz and Malte Helmert (2009). “Planning with h + in Theory and Practice”. In: Ger-
man Conference on Artificial Intelligence (KI). Ed. by Bärbel Mertsching, Marcus Hund, and
Muhammad Zaheer Aziz. Vol. 5803. Lecture Notes in Computer Science. Springer, pp. 9–16
(page 6).

Beate Bollig (2014). “A simpler counterexample to a long-standing conjecture on the complexity of
Bryant’s apply algorithm”. In: Inf. Process. Lett. 114.3, pp. 124–129 (page 22).

Beate Bollig and Ingo Wegener (1996). “Improving the Variable Ordering of OBDDs Is NP-Com-
plete”. In: IEEE Transactions on Computers 45.9, pp. 993–1002 (page 22).

Blai Bonet (2013). “An Admissible Heuristic for SAS+ Planning Obtained from the State Equation”.
In: International Joint Conference on Artificial Intelligence (IJCAI). Ed. by Francesca Rossi.
IJCAI/AAAI, pp. 2268–2274 (pages 6, 7).

Blai Bonet and Hector Geffner (2001). “Planning as heuristic search”. In: Artificial Intelligence
Journal 129.1-2, pp. 5–33 (pages 5, 6, 8, 55, 56, 60).

Blai Bonet and Hector Geffner (2008). “Heuristics for planning with penalties and rewards for-
mulated in logic and computed through circuits”. In: Artificial Intelligence Journal 172.12-13,
pp. 1579–1604 (page 25).

Blai Bonet and Malte Helmert (2010). “Strengthening Landmark Heuristics via Hitting Sets”. In:
European Conference on Artificial Intelligence (ECAI). Ed. by Helder Coelho, Rudi Studer, and
Michael Wooldridge. Vol. 215. Frontiers in Artificial Intelligence and Applications. IOS Press,
pp. 329–334 (page 7).

Blai Bonet and Menkes van den Briel (2014a). “Flow-Based Heuristics for Optimal Planning: Land-
marks and Merges”. In: Proceedings of the Twenty-Fourth International Conference on Auto-
mated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26,
2014. Ed. by Steve Chien, Minh Binh Do, Alan Fern, and Wheeler Ruml. AAAI, pp. 47–55
(pages 6, 7).

BIBLIOGRAPHY 193

Blai Bonet and Menkes van den Briel (2014b). “Optimal Planning using Flow-Based Heuristics”.
In: International Planning Competition (IPC), pp. 85–86 (page 183).

Ronen I. Brafman and Carmel Domshlak (2003). “Structure and Complexity in Planning with Unary
Operators”. In: Journal of Artificial Intelligence Research (JAIR) 18, pp. 315–349 (page 4).

Randal E. Bryant (1986). “Graph-Based Algorithms for Boolean Function Manipulation”. In: IEEE
Transactions on Computers 35.8, pp. 677–691 (pages 9, 20–22).

Randal E. Bryant (1992). “Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams”. In: ACM Comput. Surv. 24.3, pp. 293–318 (page 22).

Jerry R. Burch, Edmund M. Clarke, and David E. Long (1991a). “Representing Circuits More Effi-
ciently in Symbolic Model Checking”. In: DAC, pp. 403–407 (page 40).

Jerry R. Burch, Edmund M. Clarke, and David E. Long (1991b). “Symbolic Model Checking with
Partitioned Transistion Relations”. In: VLSI, pp. 49–58 (page 40).

Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, and David L. Dill (1994).
“Symbolic model checking for sequential circuit verification”. In: IEEE Trans. on CAD of Inte-
grated Circuits and Systems 13.4, pp. 401–424 (page 40).

Tom Bylander (1994). “The Computational Complexity of Propositional STRIPS Planning”. In:
Artificial Intelligence Journal 69.1-2, pp. 165–204 (page 2).

Isabel Cenamor, Tomás De La Rosa, and Fernando Fernández (2013). “Learning predictive models
to configure planning portfolios”. In: Proceedings of the 4th workshop on Planning and Learning
(ICAPS-PAL 2013), pp. 14–22 (page 183).

Dennis de Champeaux (1983). “Bidirectional Heuristic Search Again”. In: Journal of the ACM 30.1,
pp. 22–32 (page 158).

Dennis de Champeaux and Lenie Sint (1977). “An Improved Bidirectional Heuristic Search Algo-
rithm”. In: Journal of the ACM 24.2, pp. 177–191 (pages 155, 158).

Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, James H. Kukula, Thomas R. Shiple, Helmut
Veith, and Dong Wang (2001). “Non-linear Quantification Scheduling in Image Computation”.
In: International Conference on Computer-Aided Design (ICCAD). IEEE Press. San Jose, Cali-
fornia, pp. 293–298 (page 40).

Olivier Coudert and Jean Christophe Madre (1990). “A Unified Framework for the Formal Verifica-
tion of Sequential Circuits”. In: International Conference on Computer-Aided Design (ICCAD),
pp. 126–129 (page 68).

Joseph C. Culberson and Jonathan Schaeffer (1998). “Pattern Databases”. In: Computational Intel-
ligence 14.3, pp. 318–334 (pages 6, 7, 37, 70, 97).

194 BIBLIOGRAPHY

William Cushing, J. Benton, and Subbarao Kambhampati (2011). “Cost Based Satisficing Search
Considered Harmful”. In: CoRR abs/1103.3687 (page 11).

Adnan Darwiche (2001). “On the Tractable Counting of Theory Models and its Application to Truth
Maintenance and Belief Revision”. In: Journal of Applied Non-Classical Logics 11.1-2, pp. 11–
34 (page 25).

Adnan Darwiche (2011). “SDD: A New Canonical Representation of Propositional Knowledge
Bases”. In: International Joint Conference on Artificial Intelligence (IJCAI). Ed. by Toby Walsh.
IJCAI/AAAI, pp. 819–826 (page 26).

Adnan Darwiche and Pierre Marquis (2002). “A Knowledge Compilation Map”. In: Journal of Arti-
ficial Intelligence Research (JAIR) 17, pp. 229–264 (page 25).

Rina Dechter and Judea Pearl (1985). “Generalized Best-First Search Strategies and the Optimality
of A∗”. In: Journal of the ACM 32.3, pp. 505–536 (pages 6, 33).

Edsger W. Dijkstra (1959). “A Note on Two Problems in Connexion with Graphs”. In: Numerische
Mathematik 1.1, pp. 269–271 (pages 5, 28).

John F. Dillenburg and Peter C. Nelson (1994). “Perimeter Search”. In: Artificial Intelligence Journal
65.1, pp. 165–178 (pages 97, 133, 159).

Carmel Domshlak, Jörg Hoffmann, and Ashish Sabharwal (2009). “Friends or Foes? On Planning
as Satisfiability and Abstract CNF Encodings”. In: Journal of Artificial Intelligence Research
(JAIR) 36, pp. 415–469 (page 94).

Carmel Domshlak, Michael Katz, and Alexander Shleyfman (2012). “Enhanced Symmetry Breaking
in Cost-Optimal Planning as Forward Search”. In: Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo,
Brazil, June 25-19, 2012. Ed. by Lee McCluskey, Brian Williams, José Reinaldo Silva, and Blai
Bonet. AAAI, pp. 343–347 (page 183).

Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski (2006). “Directed Model Checking with
Distance-Preserving Abstractions”. In: SPIN. Ed. by Antti Valmari. Vol. 3925. Lecture Notes in
Computer Science. Springer, pp. 19–34 (pages 99, 101).

Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski (2009). “Directed model checking with
distance-preserving abstractions”. In: STTT 11.1, pp. 27–37 (pages 99, 100).

Stefan Edelkamp (2001). “Planning with Pattern Databases”. In: European Conference on Planning
(ECP). Ed. by Amedeo Cesta and Daniel Borrajo. Lecture Notes in Computer Science. Volume
lost due to September 11th. Springer, pp. 13–34 (pages 7, 9, 97).

Stefan Edelkamp (2002). “Symbolic Pattern Databases in Heuristic Search Planning”. In: Con-
ference on Artificial Intelligence Planning Systems (AIPS). Ed. by Malik Ghallab, Joachim
Hertzberg, and Paolo Traverso. AAAI Conference on Artificial Intelligence (AAAI), pp. 274–
283 (pages 9, 37, 70, 94, 128).

BIBLIOGRAPHY 195

Stefan Edelkamp (2005). “External Symbolic Heuristic Search with Pattern Databases”. In: Inter-
national Conference on Automated Planning and Scheduling (ICAPS). Ed. by Susanne Biundo,
Karen L. Myers, and Kanna Rajan. AAAI Conference on Artificial Intelligence (AAAI), pp. 51–
60 (pages 9, 37).

Stefan Edelkamp (2006). “Automated Creation of Pattern Database Search Heuristics”. In:
MoChArt. Ed. by Stefan Edelkamp and Alessio Lomuscio. Vol. 4428. Lecture Notes in Com-
puter Science. Springer, pp. 35–50 (page 98).

Stefan Edelkamp and Malte Helmert (2001). “MIPS: The Model-Checking Integrated Planning Sys-
tem”. In: AI Magazine 22.3, pp. 67–72 (pages 9, 33, 68).

Stefan Edelkamp and Peter Kissmann (2008a). “Limits and Possibilities of BDDs in State Space
Search”. In: AAAI Conference on Artificial Intelligence (AAAI). Ed. by Dieter Fox and Carla P.
Gomes. AAAI Press, pp. 1452–1453 (pages 24, 114).

Stefan Edelkamp and Peter Kissmann (2008b). “Partial Symbolic Pattern Databases for Optimal Se-
quential Planning”. In: German Conference on Artificial Intelligence (KI). Ed. by Andreas Den-
gel, Karsten Berns, Thomas M. Breuel, Frank Bomarius, and Thomas Roth-Berghofer. Vol. 5243.
Lecture Notes in Computer Science. Springer, pp. 193–200 (pages 9, 14).

Stefan Edelkamp and Peter Kissmann (2009). “Optimal Symbolic Planning with Action Costs and
Preferences”. In: International Joint Conference on Artificial Intelligence (IJCAI). Ed. by Craig
Boutilier, pp. 1690–1695 (pages 9, 14).

Stefan Edelkamp and Peter Kissmann (2011). “On the Complexity of BDDs for State Space Search:
A Case Study in Connect Four”. In: AAAI Conference on Artificial Intelligence (AAAI). Ed. by
Wolfram Burgard and Dan Roth. AAAI Press, pp. 18–23 (pages 24, 61).

Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba (2012). “Symbolic A∗ Search with Pattern
Databases and the Merge-and-Shrink Abstraction”. In: European Conference on Artificial Intel-
ligence (ECAI). Ed. by Luc De Raedt, Christian Bessière, Didier Dubois, Patrick Doherty, Paolo
Frasconi, Fredrik Heintz, and Peter J. F. Lucas. Vol. 242. Frontiers in Artificial Intelligence and
Applications. IOS Press, pp. 306–311 (pages 35, 188).

Stefan Edelkamp and Frank Reffel (1998). “OBDDs in Heuristic Search”. In: German Conference
on Artificial Intelligence (KI). Ed. by Otthein Herzog and Andreas Günter. Vol. 1504. Lecture
Notes in Computer Science. Springer, pp. 81–92 (pages 9, 33, 55).

Stefan Edelkamp and Stefan Schrödl (2012). Heuristic Search – Theory and Applications, pp. I–
XXIV, 1–836 (pages 37, 157).

Patrick Eyerich and Malte Helmert (2013). “Stronger Abstraction Heuristics Through Perimeter
Search”. In: International Conference on Automated Planning and Scheduling (ICAPS). Ed. by
Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone Fratini. AAAI Conference
on Artificial Intelligence (AAAI), pp. 303–307 (pages 55, 97, 127, 134, 135).

196 BIBLIOGRAPHY

Ariel Felner (2011). “Position Paper: Dijkstra’s Algorithm versus Uniform Cost Search or a Case
Against Dijkstra’s Algorithm”. In: Symposium on Combinatorial Search (SoCS). Ed. by Daniel
Borrajo, Maxim Likhachev, and Carlos Linares López. AAAI Press, pp. 47–51 (page 5).

Ariel Felner, Richard E. Korf, and Sarit Hanan (2004). “Additive Pattern Database Heuristics”. In:
Journal of Artificial Intelligence Research (JAIR) 22, pp. 279–318 (pages 8, 98).

Ariel Felner, Richard E. Korf, Ram Meshulam, and Robert C. Holte (2007). “Compressed Pattern
Databases”. In: Journal of Artificial Intelligence Research (JAIR) 30, pp. 213–247 (page 97).

Ariel Felner, Carsten Moldenhauer, Nathan R. Sturtevant, and Jonathan Schaeffer (2010). “Single-
Frontier Bidirectional Search”. In: AAAI Conference on Artificial Intelligence (AAAI). Ed. by
Maria Fox and David Poole. AAAI Press, pp. 59–64 (pages 9, 159).

Ariel Felner and Nir Ofek (2007). “Combining Perimeter Search and Pattern Database Abstractions”.
In: Symposium on Abstraction, Reformulation and Approximation (SARA). Ed. by Ian Miguel and
Wheeler Ruml. Vol. 4612. Lecture Notes in Computer Science. Springer, pp. 155–168 (pages 97,
127, 133, 134).

Ariel Felner, Uzi Zahavi, Robert Holte, Jonathan Schaeffer, Nathan R. Sturtevant, and Zhifu Zhang
(2011). “Inconsistent heuristics in theory and practice”. In: Artificial Intelligence Journal 175.9-
10, pp. 1570–1603 (page 167).

Richard Fikes and Nils J. Nilsson (1971). “STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving”. In: Artificial Intelligence Journal 2.3/4, pp. 189–208 (page 2).

Charles Forgy (1982). “RETE: A Fast Algorithm for the Many Patterns/Many Objects Match Prob-
lem”. In: Artificial Intelligence 19.1, pp. 17–37 (page 43).

Santiago Franco, Mike Barley, and Pat Riddle (2014). “RIDA: In Situ Selection of Heuristic Sub-
sets”. In: International Planning Competition (IPC), pp. 93–96 (page 183).

Javier Garcı́a, José E. Flórez, Álvaro Torralba Arias de Reyna, Daniel Borrajo, Carlos Linares López,
Angel Garcı́a Olaya, and Juan Sáenz (2013). “Combining linear programming and automated
planning to solve intermodal transportation problems”. In: European Journal of Operational
Research 227.1, pp. 216–226 (pages 1, 189).

Hector Geffner (2014). “Artificial Intelligence: From programs to solvers”. In: AI Commun. 27.1,
pp. 45–51 (page 1).

Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins (1998). PDDL — The Planning Domain Definition Language
Version 1.2. Tech. rep. Yale Center for Computational Vision and Control (page 2).

Malik Ghallab, Dana S. Nau, and Paolo Traverso (2004). Automated planning - theory and practice.
Elsevier, pp. I–XXVIII, 1–635 (page 1).

BIBLIOGRAPHY 197

Andrew V. Goldberg and Renato Fonseca F. Werneck (2005). “Computing Point-to-Point Short-
est Paths from External Memory”. In: ALENEX/ANALCO. Ed. by Camil Demetrescu, Robert
Sedgewick, and Roberto Tamassia. SIAM, pp. 26–40 (page 30).

Eric A. Hansen, Rong Zhou, and Zhengzhu Feng (2002). “Symbolic Heuristic Search Using Deci-
sion Diagrams”. In: Symposium on Abstraction, Reformulation and Approximation (SARA). Ed.
by Sven Koenig and Robert C. Holte. Vol. 2371. Lecture Notes in Computer Science. Springer,
pp. 83–98 (pages 9, 34).

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael (1968). “A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics
4.2, pp. 100–107 (pages 5, 6, 32, 33, 168, 170).

Patrik Haslum (2008). “Additive and reversed relaxed reachability heuristics revisited”. In: Interna-
tional Planning Competition (IPC) (page 57).

Patrik Haslum (2009). “hm(P) = h1(Pm): Alternative Characterisations of the Generalisation From
hmax To hm”. In: International Conference on Automated Planning and Scheduling (ICAPS).
Ed. by Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis. AAAI Confer-
ence on Artificial Intelligence (AAAI), pp. 354–357 (pages 6, 57).

Patrik Haslum (2014). “h++ and h++
ce (IPC 2014 Planner Abstract)”. In: International Planning

Competition (IPC), p. 87 (page 183).

Patrik Haslum, Blai Bonet, and Hector Geffner (2005). “New Admissible Heuristics for Domain-
Independent Planning”. In: AAAI Conference on Artificial Intelligence (AAAI). Ed. by Manuela
M. Veloso and Subbarao Kambhampati. AAAI Press / The MIT Press, pp. 1163–1168 (pages 55,
56, 70, 71, 97).

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig (2007). “Domain-
Independent Construction of Pattern Database Heuristics for Cost-Optimal Planning”. In: AAAI
Conference on Artificial Intelligence (AAAI). AAAI Press, pp. 1007–1012 (pages 7, 14, 37, 98).

Patrik Haslum and Hector Geffner (2000). “Admissible Heuristics for Optimal Planning”. In: Con-
ference on Artificial Intelligence Planning Systems (AIPS). Ed. by Steve Chien, Subbarao Kamb-
hampati, and Craig A. Knoblock. AAAI, pp. 140–149 (pages 4, 6, 57).

Patrik Haslum, Malte Helmert, and Anders Jonsson (2013). “Safe, Strong, and Tractable Relevance
Analysis for Planning.” In: Proceedings of the Twenty-Third International Conference on Au-
tomated Planning and Scheduling, ICAPS 2013, Rome, Italy, June 10-14, 2013. Ed. by Daniel
Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone Fratini. AAAI Conference on Arti-
ficial Intelligence (AAAI), pp. 317–321 (page 115).

Malte Helmert (2003). “Complexity results for standard benchmark domains in planning”. In: Artif.
Intell. 143.2, pp. 219–262 (page 6).

198 BIBLIOGRAPHY

Malte Helmert (2004). “A Planning Heuristic Based on Causal Graph Analysis”. In: International
Conference on Automated Planning and Scheduling (ICAPS). Ed. by Shlomo Zilberstein, Jana
Koehler, and Sven Koenig. AAAI, pp. 161–170 (page 4).

Malte Helmert (2006a). “New Complexity Results for Classical Planning Benchmarks”. In: In-
ternational Conference on Automated Planning and Scheduling (ICAPS). Ed. by Derek Long,
Stephen F. Smith, Daniel Borrajo, and Lee McCluskey. AAAI Conference on Artificial Intelli-
gence (AAAI), pp. 52–62 (page 6).

Malte Helmert (2006b). “The Fast Downward Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 26, pp. 191–246 (pages 14, 43, 58, 83, 100, 146).

Malte Helmert (2009). “Concise finite-domain representations for PDDL planning tasks”. In: Artifi-
cial Intelligence Journal 173.5-6, pp. 503–535 (pages 2–4, 57, 59).

Malte Helmert and Carmel Domshlak (2009). “Landmarks, Critical Paths and Abstractions: What’s
the Difference Anyway?” In: International Conference on Automated Planning and Scheduling
(ICAPS). Ed. by Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis. AAAI
Conference on Artificial Intelligence (AAAI), pp. 162–169 (pages 6, 7, 11, 14, 93, 105, 149).

Malte Helmert, Patrik Haslum, and Jörg Hoffmann (2007). “Flexible Abstraction Heuristics for Opti-
mal Sequential Planning”. In: International Conference on Automated Planning and Scheduling
(ICAPS). Ed. by Mark S. Boddy, Maria Fox, and Sylvie Thiébaux. AAAI, pp. 176–183 (pages 95,
97–99, 101, 145).

Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim (2014). “Merge-and-Shrink Ab-
straction: A Method for Generating Lower Bounds in Factored State Spaces”. In: Journal of the
ACM 61.3, 16:1–16:63 (pages xix, 7, 11, 14, 94, 95, 97–101, 105, 106, 109, 121).

Malte Helmert and Hauke Lasinger (2010). “The Scanalyzer Domain: Greenhouse Logistics as
a Planning Problem”. In: International Conference on Automated Planning and Scheduling
(ICAPS). Ed. by Ronen I. Brafman, Hector Geffner, Jörg Hoffmann, and Henry A. Kautz. AAAI,
pp. 234–237 (page 1).

Malte Helmert and Robert Mattmüller (2008). “Accuracy of Admissible Heuristic Functions in Se-
lected Planning Domains”. In: AAAI Conference on Artificial Intelligence (AAAI). Ed. by Dieter
Fox and Carla P. Gomes. AAAI Press, pp. 938–943 (page 6).

Malte Helmert and Silvia Richter (2004). “Fast downward-making use of causal dependencies in the
problem representation”. In: International Planning Competition (IPC), pp. 41–43 (page 14).

Jörg Hoffmann (2005). “Where ’Ignoring Delete Lists’ Works: Local Search Topology in Planning
Benchmarks”. In: Journal of Artificial Intelligence Research (JAIR) 24, pp. 685–758 (page 6).

Jörg Hoffmann, Piergiorgio Bertoli, Malte Helmert, and Marco Pistore (2009). “Message-Based
Web Service Composition, Integrity Constraints, and Planning under Uncertainty: A New Con-
nection”. In: Journal of Artificial Intelligence Research (JAIR) 35, pp. 49–117 (page 1).

BIBLIOGRAPHY 199

Jörg Hoffmann and Bernhard Nebel (2001). “The FF Planning System: Fast Plan Generation
Through Heuristic Search”. In: J. Artif. Intell. Res. (JAIR) 14, pp. 253–302 (page 6).

Robert C. Holte, Ariel Felner, Jack Newton, Ram Meshulam, and David Furcy (2006). “Maximizing
over multiple pattern databases speeds up heuristic search”. In: Artif. Intell. 170.16-17, pp. 1123–
1136 (page 7).

Robert C. Holte, Jeffery Grajkowski, and Brian Tanner (2005). “Hierarchical Heuristic Search Re-
visited”. In: Symposium on Abstraction, Reformulation and Approximation (SARA). Ed. by Jean-
Daniel Zucker and Lorenza Saitta. Vol. 3607. Lecture Notes in Computer Science. Springer,
pp. 121–133 (page 159).

Robert C. Holte, Jack Newton, Ariel Felner, Ram Meshulam, and David Furcy (2004). “Multiple Pat-
tern Databases”. In: International Conference on Automated Planning and Scheduling (ICAPS).
Ed. by Shlomo Zilberstein, Jana Koehler, and Sven Koenig. AAAI, pp. 122–131 (page 97).

Robert C. Holte, M. B. Perez, Robert M. Zimmer, and Alan J. MacDonald (1996). “Hierarchical
A*: Searching Abstraction Hierarchies Efficiently”. In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence
Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4-8, 1996, Volume 1. Ed. by William J.
Clancey and Daniel S. Weld. AAAI Press / The MIT Press, pp. 530–535 (pages 159, 160).

Youpyo Hong, Peter A. Beerel, Jerry R. Burch, and Kenneth L. McMillan (1997). “Safe BDD
Minimization Using Don’t Cares”. In: In Design Automation Conference (DAC), pp. 208–213
(page 68).

Youpyo Hong, Peter A. Beerel, Jerry R. Burch, and Kenneth L. McMillan (2000). “Sibling-
substitution-based BDD minimization using don’t cares”. In: IEEE Transactions on CAD of
Integrated Circuits and Systems 19.1, pp. 44–55 (page 69).

Richard Howey, Derek Long, and Maria Fox (2004). “VAL: Automatic Plan Validation, Continu-
ous Effects and Mixed Initiative Planning Using PDDL”. In: ICTAI. IEEE Computer Society,
pp. 294–301 (page 11).

William Hung (1997). “Exploiting Symmetry for Formal Verification”. MA thesis. University of
Texas at Austin (page 24).

Rune M. Jensen, Randal E. Bryant, and Manuela M. Veloso (2002). “SetA*: An efficient BDD-
Based Heuristic Search Algorithm”. In: AAAI/IAAI. Ed. by Rina Dechter and Richard S. Sutton.
AAAI Press / The MIT Press, pp. 668–673 (pages 9, 34).

Rune M. Jensen, Manuela M. Veloso, and Randal E. Bryant (2008). “State-set branching: Leveraging
BDDs for heuristic search”. In: Artificial Intelligence Journal 172.2-3, pp. 103–139 (pages 9, 40).

Peter Jonsson and Christer Bäckström (1998). “State-Variable Planning Under Structural Restric-
tions: Algorithms and Complexity”. In: Artificial Intelligence Journal 100.1-2, pp. 125–176
(page 4).

200 BIBLIOGRAPHY

Hermann Kaindl and Gerhard Kainz (1997). “Bidirectional Heuristic Search Reconsidered”. In:
Journal of Artificial Intelligence Research (JAIR) 7, pp. 283–317 (pages 9, 133, 155, 157, 158).

Hermann Kaindl, Gerhard Kainz, Roland Steiner, Andreas Auer, and Klaus Radda (1999). “Switch-
ing from Bidirectional to Unidirectional Search.” In: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August
6, 1999. 2 Volumes, 1450 pages. Ed. by Thomas Dean. Morgan Kaufmann, pp. 1178–1183
(page 159).

Erez Karpas and Carmel Domshlak (2009). “Cost-Optimal Planning with Landmarks”. In: Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Ed. by Craig Boutilier, pp. 1728–1733
(page 7).

Erez Karpas, Michael Katz, and Shaul Markovitch (2011). “When Optimal Is Just Not Good Enough:
Learning Fast Informative Action Cost Partitionings”. In: International Conference on Auto-
mated Planning and Scheduling (ICAPS). Ed. by Fahiem Bacchus, Carmel Domshlak, Stefan
Edelkamp, and Malte Helmert. AAAI, pp. 122–129 (page 8).

Erez Karpas, David Tolpin, Tal Beja, Solomon Eyal Shimony, and Ariel Felner (2014). “The Rational
Lazy A∗ Planner”. In: International Planning Competition (IPC), pp. 97–100 (page 183).

Michael Katz and Carmel Domshlak (2010a). “Implicit Abstraction Heuristics”. In: Journal of Arti-
ficial Intelligence Research (JAIR) 39, pp. 51–126 (page 96).

Michael Katz and Carmel Domshlak (2010b). “Optimal admissible composition of abstraction
heuristics”. In: Artificial Intelligence Journal 174.12-13, pp. 767–798 (page 8).

Michael Katz, Jörg Hoffmann, and Malte Helmert (2012). “How to Relax a Bisimulation?” In: Inter-
national Conference on Automated Planning and Scheduling (ICAPS). Ed. by Lee McCluskey,
Brian Williams, José Reinaldo Silva, and Blai Bonet. AAAI, pp. 101–109 (pages 101, 115).

Peter Kissmann (2012). “Symbolic Search in Planning and General Game Playing”. PhD thesis.
Universität Bremen (pages 10, 14, 23, 83, 105, 135).

Peter Kissmann and Stefan Edelkamp (2011). “Improving Cost-Optimal Domain-Independent Sym-
bolic Planning”. In: AAAI Conference on Artificial Intelligence (AAAI). Ed. by Wolfram Burgard
and Dan Roth. AAAI Press, pp. 992–997 (pages 9, 14, 23, 35, 37, 53, 70, 105).

Peter Kissmann, Stefan Edelkamp, and Jörg Hoffmann (2014). “Gamer and Dynamic-Gamer – Sym-
bolic Search at IPC 2014”. In: International Planning Competition (IPC), pp. 77–84 (pages 24,
183).

Peter Kissmann and Jörg Hoffmann (2013). “What’s in It for My BDD? On Causal Graphs and Vari-
able Orders in Planning”. In: International Conference on Automated Planning and Scheduling
(ICAPS). Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone Fratini.
AAAI Conference on Artificial Intelligence (AAAI), pp. 327–331 (pages 23, 24, 96).

BIBLIOGRAPHY 201

Peter Kissmann and Jörg Hoffmann (2014). “BDD Ordering Heuristics for Classical Planning”. In:
Journal of Artificial Intelligence Research (JAIR) 51, pp. 779–804 (pages 23, 96, 183).

Craig A. Knoblock (1994). “Automatically Generating Abstractions for Planning”. In: Artificial In-
telligence Journal 68.2, pp. 243–302 (pages 4, 94).

Alexander Koller and Jörg Hoffmann (2010). “Waking Up a Sleeping Rabbit: On Natural-Language
Sentence Generation with FF”. In: International Conference on Automated Planning and
Scheduling (ICAPS). Ed. by Ronen I. Brafman, Hector Geffner, Jörg Hoffmann, and Henry A.
Kautz. AAAI, pp. 238–241 (page 1).

Richard E. Korf (1985). “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search”. In:
Artificial Intelligence Journal 27.1, pp. 97–109 (pages 5, 159).

Richard E. Korf (1997). “Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases”. In:
AAAI/IAAI. Ed. by Benjamin Kuipers and Bonnie L. Webber. AAAI Press / The MIT Press,
pp. 700–705 (page 6).

Richard E. Korf and Ariel Felner (2002). “Disjoint pattern database heuristics”. In: Artificial Intelli-
gence Journal 134.1-2, pp. 9–22 (page 8).

James B. H. Kwa (1989). “BS*: An Admissible Bidirectional Staged Heuristic Search Algorithm”.
In: Artif. Intell. 38.1, pp. 95–109 (pages 9, 158, 164).

Bradford John Larsen, Ethan Burns, Wheeler Ruml, and Robert Holte (2010). “Searching Without a
Heuristic: Efficient Use of Abstraction”. In: AAAI Conference on Artificial Intelligence (AAAI).
Ed. by Maria Fox and David Poole. AAAI Press, pp. 114–120 (pages 160, 166).

Michael J. Leighton, Wheeler Ruml, and Robert C. Holte (2011). “Faster Optimal and Suboptimal
Hierarchical Search”. In: Symposium on Combinatorial Search (SoCS). Ed. by Daniel Borrajo,
Maxim Likhachev, and Carlos Linares López. AAAI Press, pp. 92–99 (page 160).

Carlos Linares López (2005). “Heuristic Perimeter Search: First Results”. In: Current Topics in
Artificial Intelligence, 11th Conference of the Spanish Association for Artificial Intelligence,
CAEPIA 2005, Santiago de Compostela, Spain, November 16-18, 2005, Revised Selected Papers.
Ed. by Roque Marı́n, Eva Onaindia, Alberto Bugarı́n, and José Santos Reyes. Vol. 4177. Lecture
Notes in Computer Science. Springer, pp. 251–260 (page 159).

Carlos Linares López (2008). “Multi-valued Pattern Databases”. In: European Conference on Arti-
ficial Intelligence (ECAI). Ed. by Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis,
and Nikolaos M. Avouris. Vol. 178. Frontiers in Artificial Intelligence and Applications. IOS
Press, pp. 540–544 (pages 98, 134).

Carlos Linares López, Sergio Jiménez Celorrio, and Malte Helmert (2013). “Automating the evalu-
ation of planning systems”. In: AI Communications 26.4, pp. 331–354 (page 11).

202 BIBLIOGRAPHY

Carlos Linares López and Andreas Junghanns (2002). “Perimeter Search Performance”. In: Com-
puters and Games. Ed. by Jonathan Schaeffer, Martin Müller, and Yngvi Björnsson. Vol. 2883.
Lecture Notes in Computer Science. Springer, pp. 345–359 (page 133).

Marco Lippi, Marco Ernandes, and Ariel Felner (2012). “Efficient Single Frontier Bidirectional
Search”. In: Symposium on Combinatorial Search (SoCS). Ed. by Daniel Borrajo, Ariel Fel-
ner, Richard E. Korf, Maxim Likhachev, Carlos Linares López, Wheeler Ruml, and Nathan R.
Sturtevant. AAAI Press, pp. 49–56 (page 159).

Yuri Malitsky, David Wang, and Erez Karpas (2014). “The AllPACA Planner: All Planners Auto-
matic Choice Algorithm”. In: International Planning Competition (IPC), pp. 71–73 (page 183).

Giovanni Manzini (1995). “BIDA: An Improved Perimeter Search Algorithm”. In: Artificial Intelli-
gence Journal 75.2, pp. 347–360 (pages 97, 133, 159).

Bart Massey (1999). “Directions In Planning: Understanding The Flow Of Time In Planning”. PhD
thesis. Computational Intelligence Research Laboratory, University of Oregon (pages 9, 57).

Kenneth L. McMillan (1993). Symbolic model checking. Kluwer Academic publishers, pp. I–XV,
1–194 (pages 9, 19).

Kenneth L. McMillan (1996). “A Conjunctively Decomposed Boolean Representation for Symbolic
Model Checking”. In: Computer Aided Verification (CAV). Ed. by Rajeev Alur and Thomas A.
Henzinger. Vol. 1102. Lecture Notes in Computer Science. Springer, pp. 13–25 (page 68).

Làszló Méro (1984). “A Heuristic Search Algorithm with Modifiable Estimate.” In: Artificial Intel-
ligence Journal 23.1, pp. 13–27 (pages 35, 163).

Shin-ichi Minato (1993). “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Prob-
lems”. In: DAC, pp. 272–277 (page 25).

In-Ho Moon, James H. Kukula, Kavita Ravi, and Fabio Somenzi (2000). “To split or to conjoin: the
question in image computation”. In: DAC, pp. 23–28 (page 40).

T. A. J. Nicholson (1966). “Finding the Shortest Route between Two Points in a Network”. In: The
Computer Journal 9.3, pp. 275–280 (page 30).

Nils J. Nilsson (1982). Principles of Artificial Intelligence. Springer, pp. I–XV, 1–476 (page 160).

Raz Nissim, Jörg Hoffmann, and Malte Helmert (2011). “Computing Perfect Heuristics in Polyno-
mial Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning”. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). Ed. by Toby Walsh. IJCAI/AAAI,
pp. 1983–1990 (pages 100, 101, 114, 118).

Sergio Núñez, Daniel Borrajo, and Carlos Linares López (2012). “Performance Analysis of Planning
Portfolios”. In: Proceedings of the Fifth Annual Symposium on Combinatorial Search, SOCS
2012, Niagara Falls, Ontario, Canada, July 19-21, 2012. Ed. by Daniel Borrajo, Ariel Felner,

BIBLIOGRAPHY 203

Richard E. Korf, Maxim Likhachev, Carlos Linares López, Wheeler Ruml, and Nathan R. Sturte-
vant. AAAI Press, pp. 65–71 (page 183).

Sergio Núñez, Daniel Borrajo, and Carlos Linares López (2014a). “MIPlan and DPMPlan”. In: In-
ternational Planning Competition (IPC), pp. 13–16 (page 183).

Sergio Núñez, Isabel Cenamor, and Jesús Virseda (2014b). “NuCeLaR”. In: International Planning
Competition (IPC), pp. 48–51 (page 183).

Armando Ordóñez, Vidal Alcázar, Juan Carlos Corrales, and Paolo Falcarin (2014). “Automated
context aware composition of Advanced Telecom Services for environmental early warnings”.
In: Expert Systems with Applications 41.13, pp. 5907–5916 (page 1).

Jörn Ossowski and Christel Baier (2006). “Symbolic Reasoning with Weighted and Normalized
Decision Diagrams”. In: Electr. Notes Theor. Comput. Sci. 151.1, pp. 39–56 (page 26).

Héctor Luis Palacios Verdes (2009). “Translation-based approaches to Conformant Planning”. PhD
thesis. Universitat Pompeu Fabra (page 25).

Bo Pang and Robert C. Holte (2012). “Multimapping Abstractions and Hierarchical Heuristic
Search”. In: Symposium on Combinatorial Search (SoCS). Ed. by Daniel Borrajo, Ariel Fel-
ner, Richard E. Korf, Maxim Likhachev, Carlos Linares López, Wheeler Ruml, and Nathan R.
Sturtevant. AAAI Press, pp. 72–79 (page 95).

Edwin P. D. Pednault (1994). “ADL and the State-Transition Model of Action”. In: J. Log. Comput.
4.5, pp. 467–512 (page 2).

Ira Pohl (1969). Bi-directional and heuristic search in path problems. 104. Department of Computer
Science, Stanford University. (pages 30, 155, 158).

Ira Pohl (1971). “Bi-directional search”. In: Machine Intelligence. Vol. 6. Edinburgh University
Press., pp. 127–140 (page 158).

George Politowski and Ira Pohl (1984). “D-Node Retargeting in Bidirectional Heuristic Search”. In:
AAAI Conference on Artificial Intelligence (AAAI). Ed. by Ronald J. Brachman. AAAI Press,
pp. 274–277 (page 159).

Florian Pommerening and Malte Helmert (2013). “Incremental LM-Cut”. In: Proceedings of
the Twenty-Third International Conference on Automated Planning and Scheduling, ICAPS
2013, Rome, Italy, June 10-14, 2013. Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo
Oddi, and Simone Fratini. AAAI Conference on Artificial Intelligence (AAAI), pp. 162–170
(page 183).

Florian Pommerening, Gabriele Röger, and Malte Helmert (2013). “Getting the Most Out of Pattern
Databases for Classical Planning”. In: International Joint Conference on Artificial Intelligence
(IJCAI). Ed. by Francesca Rossi. IJCAI/AAAI, pp. 2357–2364 (page 8).

204 BIBLIOGRAPHY

Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet (2014). “LP-Based Heuristics
for Cost-Optimal Planning”. In: Proceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-
26, 2014. Ed. by Steve Chien, Minh Binh Do, Alan Fern, and Wheeler Ruml. AAAI, pp. 226–
234 (page 8).

Julie Porteous, Laura Sebastia, and Jorg Hoffmann (2001). “On the extraction, ordering, and usage
of landmarks in planning”. In: 6th European Conference on Planning, pp. 174–182 (page 7).

Francisco Javier Pulido, Lawrence Mandow, and José-Luis Pérez-de-la-Cruz (2012). “A two-phase
bidirectional heuristic search algorithm”. In: STAIRS. Ed. by Kristian Kersting and Marc Tou-
ssaint. Vol. 241. Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 240–251
(page 159).

Silvia Richter and Malte Helmert (2009). “Preferred Operators and Deferred Evaluation in Satisfic-
ing Planning”. In: International Conference on Automated Planning and Scheduling (ICAPS).
Ed. by Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis. AAAI Confer-
ence on Artificial Intelligence (AAAI), pp. 273–280 (page 35).

Silvia Richter, Malte Helmert, and Matthias Westphal (2008). “Landmarks Revisited”. In: AAAI
Conference on Artificial Intelligence (AAAI). Ed. by Dieter Fox and Carla P. Gomes. AAAI
Press, pp. 975–982 (page 7).

Wheeler Ruml, Minh Binh Do, Rong Zhou, and Markus P. J. Fromherz (2011). “On-line Planning
and Scheduling: An Application to Controlling Modular Printers”. In: Journal of Artificial Intel-
ligence Research (JAIR) 40, pp. 415–468 (page 1).

Stuart J. Russell and Peter Norvig (2010). Artificial Intelligence - A Modern Approach (3. internat.
ed.) Pearson Education, pp. I–XVIII, 1–1132 (page 1).

Scott Sanner and David A. McAllester (2005). “Affine Algebraic Decision Diagrams (AADDs) and
their Application to Structured Probabilistic Inference”. In: International Joint Conference on
Artificial Intelligence (IJCAI). Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti. Profes-
sional Book Center, pp. 1384–1390 (page 26).

Ulrich Scholz (2004). “Reducing planning problems by path reduction”. PhD thesis. Darmstadt Uni-
versity of Technology (page 115).

Jendrik Seipp and Malte Helmert (2013). “Counterexample-guided Cartesian Abstraction Refine-
ment”. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 347–
351 (pages 7, 97).

Jendrik Seipp, Silvan Sievers, and Frank Hutter (2014). “Fast Downward Cedalion”. In: Interna-
tional Planning Competition (IPC), pp. 17–27 (page 183).

Claude E. Shannon (1938). “A Symbolic Analysis of Relay and Switching Circuits”. In: Transac-
tions of the American Institute of Electrical Engineers (AIEE) 57.12, pp. 713–723 (page 20).

BIBLIOGRAPHY 205

Detlef Sieling (2002). “The Nonapproximability of OBDD Minimization”. In: Information and
Computation 172.2, pp. 103–138 (page 22).

Detlef Sieling and Ingo Wegener (1993). “Reduction of OBDDs in Linear Time”. In: Inf. Process.
Lett. 48.3, pp. 139–144 (pages 21, 25).

Silvan Sievers, Martin Wehrle, and Malte Helmert (2014). “Generalized Label Reduction for Merge-
and-Shrink Heuristics”. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec, Canada. Ed. by Carla E. Brodley and
Peter Stone. AAAI Press, pp. 2358–2366 (pages 100, 101, 116, 118).

Fabio Somenzi (2012). CUDD: CU Decision Diagram Package Release 2.5.0 (pages 14, 111).

David Tolpin, Tal Beja, Solomon Eyal Shimony, Ariel Felner, and Erez Karpas (2013). “Toward Ra-
tional Deployment of Multiple Heuristics in A∗”. In: International Joint Conference on Artificial
Intelligence (IJCAI). Ed. by Francesca Rossi. IJCAI/AAAI (pages 35, 36, 183).

Álvaro Torralba and Vidal Alcázar (2013). “Constrained Symbolic Search: On Mutexes, BDD Min-
imization and More”. In: Symposium on Combinatorial Search (SoCS). Ed. by Malte Helmert
and Gabriele Röger. AAAI Press, pp. 175–183 (pages 82, 187, 189).

Álvaro Torralba, Vidal Alcázar, Daniel Borrajo, Peter Kissmann, and Stefan Edelkamp (2014a).
“SymBA∗: A Symbolic Bidirectional A∗ Planner”. In: International Planning Competition
(IPC), pp. 105–109 (page 183).

Álvaro Torralba, Vidal Alcázar, Peter Kissmann, and Stefan Edelkamp (2014b). “cGamer: Con-
strained Gamer”. In: International Planning Competition (IPC), pp. 74–76 (page 182).

Álvaro Torralba, Vidal Alcázar, Carlos Linares López, Daniel Borrajo, Peter Kissmann, and Stefan
Edelkamp (2014c). “SPM&S Planner: Symbolic Perimeter Merge-and-Shrink”. In: International
Planning Competition (IPC), pp. 101–104 (page 182).

Álvaro Torralba, Stefan Edelkamp, and Peter Kissmann (2013a). “Transition Trees for Cost-Optimal
Symbolic Planning”. In: International Conference on Automated Planning and Scheduling
(ICAPS). Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone Fratini.
AAAI Conference on Artificial Intelligence (AAAI), pp. 206–214 (pages 30, 54, 187, 188).

Álvaro Torralba, Carlos Linares López, and Daniel Borrajo (2013b). “Symbolic Merge-and-Shrink
for Cost-Optimal Planning”. In: International Joint Conference on Artificial Intelligence (IJCAI).
Ed. by Francesca Rossi. IJCAI/AAAI, pp. 2394–2400 (pages 55, 128, 134, 147, 151, 152, 188,
189).

Menkes van den Briel, J. Benton, Subbarao Kambhampati, and Thomas Vossen (2007). “An LP-
Based Heuristic for Optimal Planning”. In: Principles and Practice of Constraint Programming
- CP 2007, 13th International Conference, CP 2007, Providence, RI, USA, September 23-27,
2007, Proceedings. Ed. by Christian Bessiere. Vol. 4741. Lecture Notes in Computer Science.
Springer, pp. 651–665 (page 7).

206 BIBLIOGRAPHY

Vincent Vidal and Hector Geffner (2005). “Solving Simple Planning Problems with More Inference
and No Search”. In: CP. Ed. by Peter van Beek. Vol. 3709. Lecture Notes in Computer Science.
Springer, pp. 682–696 (page 60).

Martin Wehrle and Malte Helmert (2012). “About Partial Order Reduction in Planning and Com-
puter Aided Verification”. In: Proceedings of the Twenty-Second International Conference on
Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25–29, 2012.
Ed. by Lee McCluskey, Brian Williams, José Reinaldo Silva, and Blai Bonet. AAAI, pp. 287–
305 (page 183).

Christopher Wilt and Wheeler Ruml (2011). “Cost-Based Heuristic Search Is Sensitive to the Ratio
of Operator Costs”. In: Symposium on Combinatorial Search (SoCS). Ed. by Daniel Borrajo,
Maxim Likhachev, and Carlos Linares López. AAAI Press, pp. 172–179 (page 11).

Yexiang Xue, Arthur Choi, and Adnan Darwiche (2012). “Basing Decisions on Sentences in Deci-
sion Diagrams”. In: AAAI Conference on Artificial Intelligence (AAAI). Ed. by Jörg Hoffmann
and Bart Selman. AAAI Press, pp. 842–849 (page 26).

Ryo Yoshinaka, Jun Kawahara, Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato (2012).
“Counterexamples to the long-standing conjecture on the complexity of BDD binary operations”.
In: Information Processing Letters 112.16, pp. 636–640 (page 22).

Sandra Zilles and Robert C. Holte (2010). “The computational complexity of avoiding spurious
states in state space abstraction”. In: Artificial Intelligence 174.14, pp. 1072–1092 (page 55).

