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1 INTRODUCTION

The main goal of this paper is to provide s-step ahead prediction intervals for the observations in
nearly nonstationary first-order autoregressive models. We consider the sequence of first-order
autoregressive AR(1) models,

Xo(n) = BuXici(0) 4 e, t=1,...m, fu=1=2 4R (1.1)

n

where {¢,} are independent and identically distributed random variables with distribution func-
tion F, zero mean and finite variance o2. Assume that Xo(n) = 0. To simplify notation, X,(n)
will be written as X, throughout this paper.

This kind of nearly nonstationarity has been previously considered by several authors as
Bobkoski (1983), Ahtola and Tiao (1984), Tsay (1985), Chan and Wei (1987), Jeganathan
(1987), Phillips (1987), Chan (1988), Cox and Llatas (1991) and Cox (1991). In particular,
Bobkoski (1983) has studied the asymptotic behaviour of the least-squares estimate
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- (Fn) B,
t=1 t=1

showing that

(B = Bo) = { /0 ’ Y'z(t)(lt}—] /0 Yy aw () (1.2)

where Y'(2) is the Ornstein-Uhlenbeck process defined by the stochastic differential equation

dY (1) = =Y (1)dt + adW (1), Y(0) =0

and {W(t):0 <t <1} is a standard Brownian motion. Chan and Wei (1987) obtained that

n 1/2 .
(Z X?—l) (ﬂn - ﬂn) —u £('Y)’ (13)
t=1

where

-1/2

L(y) = {/0](1 + (e - 1)1,)"2W'2(1,)d1} /0](1 + (e = )W (@)dW ().

. -1/2
Finally, Chan (1988) showed that the variables £(v) and {fol Yz(t)dt} / Ja Y(t)dW (t) have
the same distribution. Cox and Llatas (1991) consider the asymptotic properties of a class of

maximum likelihood type estimators of j3,.
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Our aim is to construct prediction intervals I, ,, s > 1, such that, for a given coverage
level 1 — «, the probability P{X,4, € I,, | F,.} be asymptotically at least 1 — o, where
F.=0o(X,,...,X,) is the o-algebra generated by the observations X;,..., X,. Since

s
A’n+a = ﬂZA’n + Z 131_16114'.]" (14)
Jj=1

let G5 be the distribution function of $3_, A:77¢, 4, and consider the interval

1
Ls = (B2 X + 671 (w), BX0 4 G (w), 0 <uruz <3 (1.5)

If G is continuous then P{X, 4, € I, | F,,} =1 — u; — uy. Let Xogs = B;X" be the predictor
for X, 45

Since (75 is unknown, we have to estimate it from the sample; to this end, consider the
residuals é, = X, — [Ai,lXt_l, t =1,...,n and let £, and F, be the empirical distributions
corresponding to &, and &, 1 =1,...,n, respectively. The sample version of (1.5) is

~

fe = (BX, + GZ (1), B2 X, + G2 (w2)), (1.6)

n,s

where (;',l,s will be an appropriately weighted s-fold convolution of F, and given 0 < a < 1, we
want to get u; and u; such that

P{P{X,4s € IA,IV, | Fo}21=-a}—>1 as n— oo (1.7)

Analogous prediction intervals in the explosive case have been obtained by Stute and Grinder
(1993); the hootstrap version of these intervals can be seen in Stute and Griinder (1990).

The article is organized as follows. In Section 2 we prove that these prediction intervals
contain an s-step ahead value with the given asymptotic coverage probability, conditionally on
the observations. Section 3 presents the results of a Monte Carlo experiment that gives an
estimate of the conditional coverage probability. Finally, the Appendix contains the proofs of
some auxiliary results.

2 RESULTS

We will obtain our main result assuming that the distribution function function F of the
innovations satisfies

A,. F is differentiable with || F" || < 0.

Az F'(z) < 5 for all |  |> I and some finite constant c.
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As. F~1is continuous.

We start by giving an expression for the conditional probability in (1.7); since (€n41, -« -, Ensgs)
and (X,...,X,) are independent, and using (1.4),
P{Xn+s < /3 Xn + (‘1-;]3(”'2) |]:11} = P{Xn+s > (/ ) nt :.X"- + GA;,ls(u'z) |f11}
= P{Zﬂs—15n+1 = - S)Xﬂ + Cn s(uz) I'Fﬂ}
= 's((/i‘i ~ B) X + Gl (u2)),
and the covering probability of the interval in (1.6) is
GL((By = )Xo + G4 (1) = Gul(B] = B2) X + G (w)).
Let us define the function
() = Gyla + G7L(w)) = Go(z + G71 (wy)),
we will show that
H, (B, = B) X)) — 1 (2.1)

in probability as n — oo and this implies (1.7).

We will prove (2.1) in our main result; to this end, we need some previous lemmas. The
first one gives information on the behaviour of the empirical distribution correspending to the
residuals é,,t =1,...,n.

LEMMA 2.1. If F satisfies condition A; then
I ﬁn — Fy |lo—pP 0 as n— co.

Proof. See the Appendix.

Boldin (1982) showed that 2!/2 || F,, — F, |l—p 0 in the stationary case. The convergence
in probability for the explosive case was established by Koul and Levental (1989) and this result
was improved to almost sure convergence by Stute and Griinder (1993).

LEMMA 2.2. If F satisfies conditions A; and Ay, then




” (;‘n.s - ("11..9 ”oo—)f’ 0 as n— 0,

where

Guns(x) = Fo(x) * Fu(z/B,) * ... % Fu(x/B71)

and

(;'n',(l') = ﬁ; (-l:) * ﬁ‘n(x//;n) *¥...0% ﬁ‘,,(.'l:/ ‘1’1_1)'

Proof. The Lemma follows in a similar way as Lemma 2.2 in Stute and Griinder (1993). O

LEMMA 2.3. Assume that assumptions A; and A, hold. Then

| Gos = Gy ||oo—=p 0 as n— oo
and

| Gus — Gs ||o—p 0 as n — oo.

Proof. The proof is similar to the one of Lemma 2.3 in Stute and Grinder (1993). O

LEMMA 2.4. Assume that u; and u, are continuity points of G;!. Then, under assumptions A,
and A,,

I H,,- H, leo—pr 0, as n — oo,

where H (z) = G (z + G7' (up)) — Gs(x + G (wy)).

Proof. The proof of this Lemma is an immediate consequence of the Mean Value Theorem,
Lemma 2.3 and the fact that (G5 has a bounded derivative. O

Now, we establish our main result which gives that the prediction intervals have asymptoti-
cally the correct covering probability.

THEOREM 2.1. Assume that assumptions A;, A, and Az hold. Then, given 0 < a < 1 there
exist u; and uy such that




P{P{Xyps €l | F}21-a} =1 as n— . (2.2)
Proof. We have that

P{Xn+s € fn,s |-7:n} = Hvl‘s(([:_ - :_)‘Xn)-

First, we will prove that

(B = B)X, =p 0 as n— oo. (2.3)

By Taylor’s formula we get

As L] Ve $— A 7 1 28— A -
(/311 - /311)‘)‘” = 8Py, 1(/311 - ﬂn)‘\n + Eq(“ - 1) n 2(/311 - /311)2/\11 (2'4)

where /;,l is an intermediate point beetwen /:3,1 and f3,,.
From (1.2) and Lemma 2.1 of Chan and Wei (1987) we obtain

.9/35_1(/9” - 6.)X, —=p0 as n— o0 (2.5)

and

%e(s - 1)/?;1'2(/}” - B )X, —p0 as n — oco. (2.6)

So, from (2.4), (2.5) and (2.6) one concludes (2.3).
Since by Lemma 2.5 of Stute and Griinder (1993), H, is continuous, it follows from Lemma
2.4 that

P{X,;: € ]A,m | Fu} =w Hs(0) as n — oo. (2.7)
Therefore, if we choose u; and uy such that
H Q) =uy-uy 21 -aq,

and if 1 — a is a point of continuity of the limit distribution, we obtain (2.2). This completes
our proof. O




3 A MONTE CARLO STUDY

We have performed a Monte Carlo study to investigate the approximation (1.7). The pro-
portion of {X,4+s € I, 5} -values, based on 20,000 Monte Carlo replications, has been considered
and P(X,4s € 1,5 | ) was estimated by

]3"1'3.1 = #{Xn+s E in,s}/20, OOO,

where # A indicates the cardinality of the set A and recall that « controls the size of 8,. We have
combined three different sample sizes n (n = 25,50, 100) with ten values of s (s = 1,...,10) and
F'is the standard normal distribution function.

We have used some routines from IMSL Library : GGUBS (basic uniform (0,1) pseudo-
random number generator) and GGNML (normal random deviate generator). The computer
programs were written in FORTRAN and performed in a PC/AT/486 at the Departamento de
Matematica, Universidad de La Plata.

For each choice of n and s, Table 1 and Table 2 contain values of ]A’n,m with a = 0.05 and
~=0,£1,£2,£5,£10 and with a« = 0.1 and v=0,1,2,5,10, respectively.

If n and 7 are fixed P, ,., increases as s increases. For large positive (large negative) values
of v (i.e., B, stays away from 1) and for a fixed n P, is getting closer to the nominal level
(1 = a) as s increases (decreases).

Forn=25and 0<4y<2(092<43,<1),n=>500and 0<L~v<5(090 <B,<1)and
for n = 100 and 0 <+ <10 (0.90 < 8, £ 1) the values of ﬁ,hm are close to the nominal level
1 —a=0.95 or 0.90 for almost all considered values of s.

Table 1 shows that the values of f’n‘m ave larger or equal to 0.95 for v < 0 in all values of s.
These quantities are close to 0.95 for 1 < 3, < 1.05 (v = -1:n =25 and s < 2,n = 50 and
s<4,n=100and s<T;y=-2:n=>50and s <2,n=100 and s < 5;v = =5:n =100 and
s=1).




TABLE 1
An estimator of P(X,4, € I, ,|F.)
when « = 0.05 and F is Normal

S

n y 1 2 3 4

<t
(=]
-3
oo
<O

10

25 -10 099 099 099 099 099 099 099 099 099 0.99
50099 099 099 099 099 099 099 099 099 0.99
-2 097 097 098 099 099 099 099 099 099 0.99
-1 096 096 097 098 098 099 099 099 099 0.99
0 094 09 09 097 097 097 098 098 098 0.98
1 093 094 095 09 096 097 097 097 097 0.98
2 092 093 095 095 09 096 097 097 097 0.97
5 087 091 093 094 094 095 095 095 096 0.96
10 077 086 089 08 09 09 090 091 091 091

5  -10 099 099 099 099 099 099 099 099 099 099

-5 097 098 099 099 099 099 099 099 099 0.99
-2 09 096 097 097 098 098 098 099 099 0.99
-1 09 096 096 096 097 097 098 098 098 0.98
0 094 09 095 096 096 096 097 097 097 098
1 094 095 095 095 095 096 096 096 096 0.97
2 093 094 094 094 095 096 096 096 096 0.96
5 091 093 094 094 095 095 095 096 096 0.96
10 087 092 092 093 093 094 094 094 095 095

100 -10 098 098 099 099 099 099 099 099 099 099
5 096 097 097 098 098 098 099 099 099 099
2 095 09 096 09 09 097 097 097 098 0.98
-1 094 095 095 096 096 096 096 097 097 097
0 094 09 09 09 095 095 096 096 0.96 0.96
1 094 094 094 095 095 095 095 095 096 0.96
2 093 094 094 095 095 095 095 095 095 096
5 092 093 094 094 094 094 095 095 095 0.95
10 091 093 093 094 094 094 094 095 095 0.96




TABLE 2
An estimator of P(X, ., € I, ,|F,)
when a =0.1 and F is Normal

n ~ 1 2 3 4 5 6 7 8 9 10
25 0 089 090 092 093 094 094 095 096 096 0.96
I 087 089 090 092 092 093 093 093 094 0.95
2 085 088 0.8 091 091 091 092 092 093 093
5 079 084 087 088 089 089 089 0.8 091 09

10 066 076 079 080 080 082 082 082 082 0.82
50 0 089 09 09 091 092 092 093 093 094 094
1 088 089 089 089 091 091 091 092 092 093
2 087 089 089 08 09 09 090 091 091 0.92
5 08> 087 088 088 089 089 089 090 090 091
10 080 08> 086 08 087 087 087 088 089 0.89
100 0 089 09 09 09 091 091 091 091 091 0.92
1 088 089 089 09 09 09 09 091 091 091
2 088 089 089 09 09 09 090 090 090 091
5 087 089 089 089 089 089 089 090 090 0.90

10 084 087 088 089 089 089 089 089 0.89 0.90

4 CONCLUSION

We have provided prediction intervals for a nearly nonstationary AR(1) model and we have
proved that these intervals contain an s-step aliead future value with a given asymptotic proba-
bility conditionally on the observations.

Moreover we have presented results from a Monte Carlo study that confirm the theoretical
results. The approximation (1.7) is good even for moderate sample sizes and for 0.90 < 3, < 1.05.




APPENDIX
In the sequel, o(1) (0,(1)) will represent a sequence of numbers (r.v.’s) converging (in prob-

ability) to zero; O(1) stands for a bounded sequence of numbers. For a real number z, [z] is the
greatest integer smaller than x.

In Lemma A1l we state a preliminary technical result that we need to prove Lemma 2.1.

LEMMA Al. Let 8, =1—+9/n, y€ IR,y #0. Then

l n . R )
=3 18P 5 (1 = &) /27, as n— oo. (A.1)
N =

Proof. The following proof is similar to that of (2.3) in Chan and Wei (1987). For any § > 0,
choose 0 =15 <t; <... <t =1 such that

max |e =) _ g=2(1-tiz)| £ g, (A.2)
1<i<k

Hence,

1
/O e~ =ty — Zf‘“(‘ G=)(t = tiq)

< Z/_l _21(1 -t) _ ,‘2”(]""‘)|(lt < é. (A.3)

Let I; = {l € IN : [nt;.1] <1< [nt]]} and ¢, = (1 — €7*7)/25. Then

1> .
Bn = EZ'ﬂnlzm J)"(

— _ZZ|ﬂn|2(n 1) -c,

1=11€l,
" Z SOl1Bu P — |3, Hrtrtima ]
i=11lel,
+ z Z iﬁ |2(n—[nt.-1]) z an‘z("'[mi-;])(ti _ ti—]) (A4)
} 1=1l¢gl; s

+ Z B[Pt — 1) — e
=1

= Bln + B‘Zn + B.'in,
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where

By, = - ZZ[W |2(n-l) |ﬂn|2(n—[nt.-_l])],

1-1 lel;
B,, = - Z Z |8, |2(""[Nlc -1 Z |ﬂn|2("-["l.‘-1])(ti —tiy)
“i=1lel; =1
and
k
B.'Bn = Z |ﬂn|2(n_[nti_’])(ti - ti-]) = Gy
From

|ﬂ”|2(n—[ut,‘])_*6—27(1—1_,) as 1 — 0o

and (A.2), we have

‘ 2n=1) _ | p12(n=[nt,21])
Iax max [|A,| I |
ma |4, 204D — |5, [t
< 1n<].d<>i |€ 2y(1-4) _ f.-z’Y(]—ti—l)l + 0(1)

<8+ o(l).

Thus,

|B1n| S 5 + O(l)

Since

max |3, |20 Intial) < 2
1<i<

we obtain

|B,.,| £ fl|"|2|— ([nts] = [ntiq]) = (£ = tic1)] = o(1)

Moreover, since ¢, = fJ e~2"179d4 it follows that

11

(A.6)

(A7)




|Bm < |Z|/j|2("—[71h_1] ti—ti1) Ze—zw(l tie1) t —tiq )|

1=1
1
+| Ze-‘““-“—ﬂ(u — i) — f e=20-044). (A.8)
1=1 0
Then from (A.3) and (A.5) there exits Ny such that
|B3”| < 25, Vn Z No. (Ag)

So, from (A.4), (A.6), (A.7T) and (A.9) one concludes (A.1) This completes our proof. O

Proof of Lemma 2.1. We have

F.(zr) = 11 3 Ay(x)

|

where Ay(z) =1 if ¢, < « and 0 otherwise. Since é,, = ¢, — (/9” - B,) X1,

1 7n ,
ZA T + - ﬂn)At_l).
Then
1%'”("1’) - FI”(J") = Z]”(.'IZ) + Z’),,(.‘E),
where
1 1 . A ,
Zl" - ; Z[Ag(.’l' + (ﬁ" - /3”)‘)‘,‘—1) - At(m) - F(-E + (ﬁn - ﬁﬂ.)At—]) + F(l:)]
S t=1
and

Z')n = 71_’ Z[F(L + (Bn - /j”)A’t_l) - F(.L‘)]
T =1

First, we will show that

sup | Zon(x) | 2P0 as n — oo. (A.10)

By Taylor’s formula we get




1 , N n , 1 " N k13 ,
Zon(x) = =F'(2) (B = B) 3_ Xeer + 5 PO - B2 XL, (A.11)
' t=1 4

t=1]
where € is an intermediate point between ¢ and = + (Bn -/)X.-.
As in Chan and Wei (1987), we have

n=-1

1 113 . 1 . )
A X = DY A WX (2) = [ X0t + [ 00X, (1)
’ t=1 0 0
= op(l) + / X, (1)dt (A.12)
0

where X,,(1) = 72 S fi~Ye;.
From (A.12), Lemma 2.1 of Chan and Wei (1987) and the continuous mapping theorem,

1 n 1 .
WEXt_l —>w/0 e"“'””/’(t)(lt as n — oo (A.13)
' t=1

where {W (1) : 0 < < 1} is a standard Brownian motion.
From Lemma 2.2 of Chan and Wei (1987) we deduce that

4 1”1 2(i—-n) g ! 29(1- - r2
nzz’\ A X2 (2) = [ entmoxzq) (lf+/ 0-0 x2(1)dt

= op(l +/ 2(1-0) y2(4) gy (A.14)

By (A.14), Lemma 2.1 of Chan and Wei (1987) and the continuous mapping theorem we obtain

E\’ / W-0W2(1)dt as n — oo. (A.15)

n2

Hence from (1.2), (A.11), (A.13), (A.15) and the fact that sup, F'(x) < oo, we obtain (A.10).
So to prove the lemma, it suffices to show that

sup | Z1u(2) |=p 0 as n— oo. (A.16)
Consider the auxiliary process (Boldin (1982))
l n , ,
Z,l(.'l}, 7’,HX) = ; E[At(.'F + 7’”.\t_1) - Al(ilf) -— F(.’E + nn.At—l) + F(-T)]
" t=1
depending on x, the non-random sequence {1, },.,n € IN, and the vector X = (Xo,..., Xu-1).
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Foralle >0

P(sup| Ziu(2) | > €) < P(sup  sup | Zu(z, 70, X) [> &)+ P(n | B = B |> n!=°)  (A.17)

T |gu|gn=0

where 3/5 < v < 1.
From (1.2), n(f,, — f3,.) is bounded in probability. Then

P(n | B, — B, |>n'™) =0 as n— oo. (A.18)
So, to prove (A.16) it suffices to show that

sup sup | Zu(2, 7, X) [2p 0 as n— oo (A.19)

T yn|<n-
for all v > 3/5.

Let {m, : n € 2N} and {N,, : n € IN}, be sequences of integers such that n=7/43"» — 1
and n~YV2 AN, 51, as n — oo. We divide the interval [-n~7,n~"] into 3™~ parts using the
points

Nsn = =N+ 20773 Mg, s=0,1,...,3"",

and the real line into N, parts using the points

—o=1ro< 2 < ... <y, =+00, F(z;)=:iN"

We can go over from the supremum in (A.19) to the supremum for a finite set of the points
z and 1, such that

r€{x;:1=0,1,...,N,} and 0, € {§sn :s=0,1,...,3"}.

Consider the sequences of random variables

\75,c = X1 (1 = 27737 7}s’n1 ]{Xk—l>0}) and \Zk = Xi(1 - 211,""3'"‘"7;;3 ]{Xk-xso})

where 4 denotes the indicator of the event A. If 5,, = 0, we set ‘sz = ‘sz = X1, k=1,...,n.
Let

Vo= (V... Vi) and V, = (Vig,..., V).

If 7, satisfies the condition 0 <9, — 7, < 207737™n, it follows that
7]jnvjt < 7]11A,t—1 < ntnvjta t = 1, ey N

14




Thus, for x € [z,,1,4,], we have
T, + 7]]'11‘71'1 Sz4+nX L Tryy + 77jn‘2jta t=1,...,n
We obtain
. ) . -
Zn(-Ta s X) 2 Zn(:l!.,., MNiny v]) + ;; Z[F(Tr + 77jnvjt) - F(zr+1 + 77j'n.vjt)]
=1

and
. 12 N N
Z"(;E’U”’X) S Z”("I"T"']’"J'”’ VJ) + ; Z[F(mr+1 + 7]jnvjt) - F(.lt,- + njft‘/jt)]
=1
1 n
+= 2 (1) = Flan) = D) + F(x)).

S =1

Hence,

SUP  SUDP|,, |<nm | Zo(2ym0, X) |
o

< sup sup | Z”(.r,-,7]sn,\7s) | (A.20)
<Ny s<3mn

+ sup sup |Z,l(;vi+1,7]s,l,\7s)| (A.21)
i<Np—1 s<3mn

1 n

+ sup —| Z[A,(F‘l(tl)) =t — A(F7 (1)) + 1] | (A.22)

lti=t2| <N T k=
1 . .
+ sup  sup =Y [F(zipr + Vi) = Fei + 05Vi)). (A.23)

iSNn—l 353"'" n =1

Term (A.22) converges to zero in probability by Theorem 13.1 of Billingsley (1968) (p. 105
-108). Now we will show that (A.23) tends to zero in probability as n — co. By Taylor’s formula,
(A.23) is bounded above by

Sul)iSN,,_1[F(mi+l) - F(.I',)] + SU])_,L. | F'(.I') | Su])as.'j""n (% |2?=1 77.911‘7.91 + ;1; ?—_—1 nanvat )
+% sup, | F"(‘IB) | Supas-'i’"" ',1—1 ;l=] 7]:921;(‘73% + va%)' (A24)

—
Lt



From definitions of V;, and V;, we have

max ( ) <n™?

Moreover, since | 1 —2n=73"™ny=1 |< 3 for any s,

n

2 Nsn f/st

t=1

n

2 Nsn ‘A/st

t=1

n

+207737" Y | X | (A.25)

t=1

n
9 2 /\,t—-l

t=1

max(| Vi |,| Vae |) <3 | Xec1 |
Then

n

Sonh(Vi+ Vi) sy X2 (A.26)

t=1 t=1

Therefore (A.24) is bounded by

1

v
Ly oy,
n t=1

JV”—1 +c (71.“Y

1 n ; 1 n ,
+ 71‘"3‘"‘"7—1 E | Xi-1 | +n'2'*;; > Xf_l> , (A.27)
=1 1=1

where ¢ is a constant.

From Lemma 2.1 and 2.2 in Chan and Wei (1987} and from the continuous mapping theorem,
it follows that == S, | Xioq | is bounded in probability. Hence from (A.13), (A.15) and the
fact that n=/43"n — | and n='/2=7/4N, — 1, as n — oo, one concludes that (A.27) tends to
zero in probability as n — oo. Thus, the convergence of (A.23) to zero in probability is proved.
Only remains to show that

sup sup | Zo (i, 0en, Vi) |=p 0 as n— oo (A.28)
i<N, s<3mn

and

sup  sup | Zy(Tig1, s, V) [P 0 as n — oo. (A.29)
z’_(_]\rn_l 353111,,

We will establish (A.28) and (A.29) can be proved similarly. For each sequence {l, : n € IN}
of non-negative integers we define

ln=1

Xia=2 B

r=0

and

(7% Y Oy =y=My, =1
Vt - t—l(l - 2n7"3 Nsn ]{X:_]>0})-

?

So, we can write Z,(Z;, s, V5) in the form
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Zn(vn"]sn, ~ = 1_2:1/[ l Q + - Zfl z q

t=1
where
’/l(ia S) = At(lEi + 77311‘21!) - F(Tz + nanf/sl) - A[(.’E,’ + nsnf/,l:) + F(.’E,‘ + nanV,I;)
and
&(i,5) = Adi + 0o VD) = Flei 4 Vih) — Agi) + F(z0).
Hence
~ l n
sup sup | Z,(Ti, Nen, Vi) | sup sup | |= ) w2, 8) .
iSJ\}’i .953:]7:,, | Zu(zisn ) | isuf\}’)n SS‘;']"" ( n tz;’t (Z,8) )

So, for all § > 0,

P sup sup | Z,(xi 0en, Vi) |> 26
t<Nys<3mn

Ny 3mn 1 12
<ZZ[P(- i) >6>+P(‘—Z£t(i,s) >5)
=0 s=0 ! =1 n t=1
Nyn 3™Mn [ 1 2 12 4
< Z Z [5_ ( 1— Zl/, 7 Q ) + 5_4E ( ; Z{,(r,s) )J . (A30)
1=0 s=0 C =1

As in Lemma 1 of Boldin (1982) we obtain

1 1 n .
T Sup sup E ()"]7 ;f,(z,s)

ni<Nps<amn

) =0(1) (A.31)

where A, = 271773 4+ =27, Then if we choose I, = n*/1% it follows from (A.31) that

N, 3™mn ) n 4
Z Z E ( }-Z&(i’s) ) —0 as n— o0 (A.32)
1=0 s=0 ! t=1

for any v > 3/5.
From Lemma Al and Lemma 2 in Boldin (1982) we have

s) ) = 0(1).

1 n

"'1/2 Z '/l(7

=

!+ sup sup E (

i<Nps<3mn

Therefore




Ny 3mn 12 2
Y E=-Y s | 20 as n > oo (A.33)
i=0 s=0 "=

for any v > 3/5.

Hence from (A.32) and (A.33) we obtain that (A.30) tends to zero in probability for any
v > 3/5. Then (A.28) holds and therefore (A.19) follows. Thus, from (A.17), (A.18) and (A.19)
one now concludes (A.16). This completes our proof. O
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