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Abstract

This article proposes a test for the Martingale Difference Hypothesis (MDH) using depen-

dence measures related to the characteristic function. The MDH typically has been tested using

the sample autocorrelations or in the spectral domain using the periodogram. Tests based on

these statistics are inconsistent against uncorrelated non-martingales processes. Here, we gen-

eralize the spectral test of Durlauf (1991) for testing the MDH taking into account linear and

nonlinear dependence. Our test considers dependence at all lags and is consistent against gen-

eral pairwise nonparametric Pitman’s local alternatives converging at the parametric rate n−1/2,

with n the sample size. Furthermore, with our methodology there is no need to choose a lag

order, to smooth the data or to formulate a parametric alternative. Our approach can be easily

extended to specification testing of the conditional mean of possibly nonlinear models. The

asymptotic null distribution of our test depends on the data generating process, so a bootstrap

procedure is proposed and theoretically justified. Our bootstrap test is robust to higher order

dependence, in particular to conditional heteroskedasticity. A Monte Carlo study examines the

finite sample performance of our test and shows that it is more powerful than some competing

tests. Finally, an application to the S&P 500 stock index and exchange rates highlights the

merits of our approach.
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1. Introduction

The concept of Martingale or Martingale Difference Sequence (MDS) is central in many areas of

economics and finance. For instance, is a common implication in rational expectations models, some

examples are the martingale model of consumption of Hall (1978) or the optimal taxation model

of Barro (1981). For applications in the market efficiency theory, see Lo (1997). The Martingale

Difference Hypothesis (MDH) states that the best predictor, in the sense of least mean square error,

of the future values of a time series given the current information set is just the unconditional

expectation. Hence, past information does not help to improve the forecast of future values of a

MDS. More formally, given a real-valued stationary time series {Yt}∞t=−∞, we tackle the problem of

testing that

E [Yt | Yt−1, Yt−2, . . .] = µ a.s. µ ∈ R. (1)

In the literature there have been several proposals for testing the MDH, some of them using a

spectral approach which has been shown useful in studying serial dependence, see e.g. Hong (2000),

Paparoditis (2000) or Delgado, Hidalgo and Velasco (2002) for recent references. Durlauf (1991)

proposed a spectral distribution based test using the fact that, under the MDH, the standardized

spectral distribution function is a straight line. Deo (2000) has extended Durlauf’s (1991) test to

allow for some types of conditional heteroskedasticity. However, these tests are suitable for testing

lack of correlation but not for the MDH. In fact, they are not consistent against non-martingale

difference sequences with zero autocorrelations, that is, when only nonlinear dependence is present

(for instance, see in Section 5 the NLMA process). The inconsistency of these tests arises because

they only employ information contained in the second moments of the process, which in the case

of nonlinear dependence can not characterize completely the conditional mean. The objective of

this paper is to develop a test that can overcome this difficulty, that is, a test consistent against

uncorrelated non-martingale processes.

One way to circumvent this problem is to take into account higher moments, for instance the third

order cumulants used in Hinich and Patterson (1992), but again this test is not consistent against

non-martingale difference sequences with zero third order cumulants.

We use instead an alternative methodology based on the following equivalence principle. Let It =

{Yt, Yt−1, . . .} and Ft be the information set at time t and the σ-field generated by It, respectively.

Then,

E[Yt | It−1] = µ a.s., µ ∈ R ⇐⇒ E[(Yt − µ)w(It−1)] = 0, (2)

for any bounded Ft−1-measurable weighting function w(·). Consistent tests can be based on the

discrepancy of the sample analog of E[(Yt − µ)w(It−1)] to zero.

The problem of testing over all possible weighting functions can be reduced to testing the orthogo-
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nality condition over a parametric family of functions, see Stinchcombe and White (1998). However,

how to choose this family is not an easy problem. In the specification testing literature several

tests have been proposed using this approach. The exponential function has been considered, for

instance, in Bierens (1984, 1990), de Jong (1996), Bierens and Ploberger (1997) or Hong (1999a,

1999b). On the other hand, indicator functions have been used in Stute (1997), Koul and Stute

(1999), Park and Whang (1999), Whang (2000), Dominguez and Lobato (2003) or Escanciano and

Velasco (2002) among others. Although much effort has been devoted to testing with these families,

none of the above papers have compared both approaches because the different properties of the

weighting function usually demand alternative technical frameworks.

Among all the tests based on the equivalence (2), only de Jong (1996) considers the case in which

the conditioning variable It−1 is infinite-dimensional. de Jong (1996) generalized Bierens’ tests to

time series, and although this test has the appealing property of considering an increasing number

of lags as the sample size increase, it requires numerical integration with dimension equal to the

sample size, which makes this test unfeasible in applications where the sample size is usually large,

e.g. financial applications.

Our approach has its foundations in a series of works due to Hong (1999a, 1999b). Hong (1999a)

introduces a generalized spectral density as a new tool for testing interesting hypotheses in a non-

linear time series framework. In particular, among other tests, Hong (1999a) proposed a MDH test

using a smoothed kernel estimator of a generalized spectral density with standard normal asymptotic

distribution. Although Hong’s (1999a) MDH test has the appealing property of being asymptotic

distribution free, also presents the serious drawback that the asymptotic null distribution is only

obtained under independence. The limit distribution of this test under dependence, in particular

under conditional heteroskedasticity, is unknown. This is an important limitation in applications

since it is a well accepted fact that many real economic and financial variables display conditional

dependence in second and higher orders, see e.g. Harvey and Siddque (1999, 2000). The main dif-

ferences between our test and the Hong’s (1999a) MDH test are threefold. First, we do not assume

independence under the null of MDH and in particular we allow for conditional heteroskedasticity

in the process. Second, our test does not depend on a kernel and a bandwidth parameter but is

based on a generalized spectral distribution instead of a generalized spectral density function as in

Hong (1999a). And third, under dependence the asymptotic null distribution of our test depends

on the data generating process (DGP) and is no longer standard. Hence a bootstrap approach will

be considered and justified theoretically.

Our test is more in the spirit of Hong’s (1999b) test, which is based on a generalized spectral

distribution function. In fact, our test can be derived by appropriately differentiating this generalized

spectral distribution. Note that Hong’s (1999b) test is a test for serial independence, and not a proper
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test for the MDH. In fact, his test is not valid in the presence of conditional heteroskedasticity, e.g. for

ARCH models which are MDS but dependent processes. Our approach synthesizes the approaches

of Hong (1999b) and Deo (2000) allowing for serial dependence under the null of MDH, in particular

conditional heteroskedasticity and higher order dependence.

A related work to our problem is Kuan and Lee (2003). These authors propose a MDH test based

on the exponential function with asymptotic χ2
2 distribution. Unlike other related papers, Kuan

and Lee do not consider a “functional space” approach, because they first integrate the auxiliary

parameter and afterwards consider a norm, consequently the omnibus property is lost. As a matter

of fact, it can be easily shown that their test is equivalent to take into account a unique function w(·)

in (2), so eventually their test has power only against some particular alternatives, more specifically

those correlated with the function w(·). These limitations are confirmed in our simulations.

The layout of the article is as follows, in Section 2 we propose the test and in Section 3 we study

its asymptotic distribution under the null and under fixed and local alternatives. In Section 4 we

propose and justify a bootstrap approach. In Section 5 we provide a simulation exercise comparing

among different MDH tests proposed in the literature and we apply our methodology to the daily

S&P 500 stock index and some exchange rates returns. We finish in Section 6 with further research

and some conclusions. All proofs are gathered in an appendix. Throughout, |A| , AT and Ac denote

the usual Euclidean norm, the matrix transpose and the complex conjugate respectively, i =
√
−1

and unless indicated all convergences are taken as the sample size n −→∞. Here and in the sequel

C is a generic constant that may change from one expression to another.

2. The Generalized Spectral Martingale Test

Given raw data {Yt}n
t=1 we are interested in testing the hypothesis (1),

H∗
0 : {Yt} is a MDS.

Alternatively, one may test the hypotheses E[Yt | Yt−1, Yt−2, . . . , Yt−P ] = µ with P tending to infi-

nite with the sample size, but this approach brings some problems up, especially from a practical

point of view as can be seen in de Jong’s (1996) test which involves P -dimensional integration. We

can also consider P fixed, as in Koul and Stute (1999), Park and Whang (1999), Kuan and Lee

(2003) or Dominguez and Lobato (2003), but this is unsatisfactory from a theoretical point of view

because there could be structure in the conditional mean at omitted lags. Often, the maximum

power is achieved by using the correct lag order of the alternative. However, prior information on

the conditional mean structure is usually not available. We consider a pairwise approach that takes

into account all lags available in the sample and at the same time avoids high dimensional integra-

tion, delivering a test easy to compute. There is a price to pay for the computational feasibility,
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the omnibus property of the test procedure is lost. Our pairwise approach represents a good com-

promise between generality and simplicity leading to a test that is consistent against a broad class

of alternatives. More specifically, it is consistent against all pairwise alternatives, including most

empirically relevant models. Extensions to higher order dependence are possible and are considered

in the final section.

Our proposal for testing the MDH consists in checking all the pairwise implications of (1), namely

H0 : γj = 0 a.s. ∀j ≥ 1. (3)

where γj = E[Yt − µ | Yt−j ] a.s. are the pairwise regression functions. To this end, the conditional

mean dependence measures

γj(x) = E[(Yt − µ)eixYt−j ],

can be viewed as a generalization of the usual autocovariances to measure the conditional mean

dependence in a nonlinear time series framework. We use the following characterization of the null

hypothesis (3), see Theorem 1 in Bierens (1982),

H0 ⇐⇒ γj(x) = 0 ∀j ≥ 1,∀x, a.s.. (4)

The alternative is the negation of the null (3). The sample counterpart of γj(x) based on a sample

{Yt}n
t=1 is

γ̂j(x) =
1

n− j

n∑
t=1+j

(Yt − Y n−j)eixYt−j ,

with

Y n−j =
1

n− j

n∑
t=1+j

Yt.

Define γ−j(·) = γj(·) for j ≥ 1, and consider the Fourier transform of the functions γj(x),

f($,x) =
1
2π

∞∑
j=−∞

γj(x)e−ij$ ∀$ ∈ [−π, π], x ∈ R. (5)

Notice that f($,x) exists if

sup
x∈R

∞∑
j=−∞

|γj(x)| <∞,

which holds under a proper mixing condition. To test the serial independence between Yt and Yt−j

Hong (1999a) proposed the measures

σj(y, x) = cov(eiyYt , eixYt−|j|) = ϕ|j|(y, x)− ϕ(y)ϕ(x),

where ϕj(y, x) is the joint characteristic function of (Yt, Yt−j) and ϕ(y) is the marginal characteristic

function. He considered the Fourier transform of σj(y, x)

g($, y, x) =
1
2π

∞∑
j=−∞

σj(y, x)e−ij$ ∀$ ∈ [−π, π], (y, x) ∈ R2,
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as a generalized spectral density function. Hong (1999a) used kernel estimators of g($, y, x) and

its derivatives to test relevant hypotheses in time series. In particular, he showed that the standard

spectral density can be derived by properly differentiating the generalized spectral density. Note

that by similar arguments
∂σj(y, x)

∂y
|y=0= iγj(x), (6)

and then
∂g($, y, x)

∂y
|y=0= if($,x), (7)

which relates the generalized spectral density of Hong (1999a) with the generalized spectral density

f($,x). The introduction of the auxiliary parameters y and x, renders to g($, y, x) be able to

capture all pairwise dependencies. The same argument shows that f($,x) is able to capture pairwise

non-martingale difference alternatives with zero autocorrelations. Furthermore, the conventional

spectral density function can be obtained under finite variance by differentiating f($,x) with respect

to x at the origin, or equivalently by differentiating g($, y, x) with respect y and x at (0, 0), see

Hong (1999a) for details. The generalized spectral density f($,x) contains the same information

about the null hypothesis H0 as the whole sequence {γj(x)}∞j=0. In particular, the null hypothesis

(3) is equivalent to f0($,x) = (2π)−1γ0(x). Hong (1999a) proposed the estimators

f̂($,x) =
1
2π

n−1∑
j=−n+1

(
1− |j|

n

) 1
2

k

(
j

p

)
γ̂j(x)e−ij$

and

f̂0($,x) =
1
2π
γ̂0(x)

to test the MDH, where k(·) is a symmetric kernel and p a bandwidth parameter. He considered a

standardization of a L2-distance using a weighting function W (·)

L2
2(f̂ , f̂0) =

π

2

∫
R

π∫
−π

n
∣∣∣f̂($,x)− f̂0($,x)

∣∣∣2W (dx)d$ (8)

=
n−1∑
j=1

(n− j)k2

(
j

p

)∫
R

|γ̂j(x)|2W (dx).

The centering and scaling factors in the standardization of L2
2(f̂ , f̂0) are based on the i.i.d assump-

tion, and in principle, need to be corrected in the case of conditional heteroskedasticity. Instead of

considering kernel estimation as in Hong (1999a), we propose to use a generalized spectral distribu-

tion function

H(λ, x) = 2

λπ∫
0

f($,x)d$ ∀λ ∈ [0, 1], x ∈ R,

that is

H(λ, x) = γ0(x)λ+ 2
∞∑

j=1

γj(x)
sin jπλ
jπ

, (9)
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which is related via (7) with the generalized spectral distribution considered in Hong (1999b) to test

for serial independence. The new test is based on the sample analogue of (9),

Ĥ(λ, x) = γ̂0(x)λ+ 2
n−1∑
j=1

(1− j

n
)

1
2 γ̂j(x)

sin jπλ
jπ

,

with (1− j
n )

1
2 a finite sample correction factor as in Hong (1999a, 1999b). The effect of this correction

factor is to put less weight on very large lags, for which we have less sample information. The test

with this factor shows a better finite sample performance, specially in terms of the empirical power

of the test. It has no effect on the asymptotic distribution and can be deleted without changing the

asymptotic theory. Because (3) is equivalent to H(λ, x) = γ0(x)λ, consistent tests can be based on

the discrepancy between Ĥ(λ, x) and Ĥ0(λ, x) := γ̂0(x)λ. That is, we consider the process

Sn(λ, x) =
(n

2

) 1
2 {Ĥ(λ, x)− Ĥ0(λ, x)} =

n−1∑
j=1

(n− j)
1
2 γ̂j(x)

√
2 sin jπλ
jπ

(10)

to test H0.

Durlauf (1991) proposed a MDH test based on the usual standardized spectral distribution func-

tion, that is, a standardization of

DUR(λ) =
n−1∑
j=1

n
1
2 γ̂j

√
2 sin jπλ
jπ

(11)

where γ̂j is the usual sample autocovariance at lag j. The process Sn(λ, x) can be viewed as a

generalization of the process used in Durlauf (1991). To see this, fix the sample and consider the

formal Taylor expansion of γ̂j(x) around x = 0,

γ̂j(x) =
∞∑

k=1

ikxk

k!
γ̃jk, (12)

where

γ̃jk =
1

n− j

n∑
t=1+j

(Yt − Y n−j)Y k
t−j ,

hence, substituting (12) into (10) yields

Sn(λ, x) =
∞∑

k=1

n−1∑
j=1

(n− j)
1
2
ikxk

k!
γ̃jk

√
2 sin jπλ
jπ

. (13)

It can be seen from (13) that Sn(λ, x) can be expressed as an infinite order polynomial in x, where

the linear term, i.e. the term corresponding to k = 1, is

ix
n−1∑
j=1

(n− j)
1
2 γ̃j1

√
2 sin jπλ
jπ

,

which is equal to ixDUR(λ) except for the use of (n− j)1/2 and Y n−j instead of n1/2 and the usual

sample mean Y n = n−1
n∑

t=1
Yt, respectively. Note that Sn(λ, x) takes into account all the infinite
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terms in k in (13). For instance, the coefficient of the second term in (13) is a measure of the linear

dependence between Yt and Y 2
t−j , that is, the so called ARCH-in-mean effects. Therefore, Sn(λ, x)

uses the dependence measures γ̃jk for all values of j and k whereas DUR(λ) only considers the case

k = 1.

In order to evaluate the distance of Sn(λ, x) to zero, a norm has to be chosen. One norm considered

in practice is the Cramér-von Mises norm

D2
n =

∫
R

1∫
0

|Sn(λ, x)|2W (dx)dλ =
n−1∑
j=1

(n− j)
1

(jπ)2

∫
R

|γ̂j(x)|2W (dx), (14)

where W (·) is a weighting function satisfying some mild conditions (see Assumption A2 below). Our

generalized spectral martingale test rejects the null hypothesis (3) for large values of D2
n. Notice that

D2
n uses all the n−1 lags contained in the sample, so we have not to choose any lag order parameter.

Note the similarity between (8) and (14). L2
2(f̂ , f̂0) and D2

n differ only in the weighting scheme. The

optimal weighting scheme depends on the alternative at hand. L2
2(f̂ , f̂0) involves the choice of a

kernel and smoothing parameter and although the inferences could be sensitive to these choices,

smoothing may give more flexibility in directing the power towards some desired directions. On the

other hand, D2
n has the attractive convenience of being free of choosing any smoothing parameter

or kernel. Therefore, D2
n should be viewed as not competing but as a complement to L2

2(f̂ , f̂0).

3. Asymptotic Theory

In this section, we first establish the null limit distribution of the process Sn(λ, x). Let η = (λ, x) ∈

Π = [0, 1] × (−∞,∞) and ν the product measure of W (·) and the Lebesgue measure on [0, 1], i.e.

dν(η) ≡ dν(λ, x) = W (dx)dλ. Then, we can consider the process Sn(η) ≡ Sn(λ, x) as a random

element in the Hilbert space L2(Π, ν) of all square integrable functions (with respect to the measure

ν) with the inner product

〈f, g〉 =
∫
Π

f(η)gc(η)dν(η) =
∫
Π

f(λ, x)gc(λ, x)W (dx)dλ.

L2(Π, ν) is endowed with the natural Borel σ-field induced by the norm ‖f‖ = 〈f, f〉1/2, see Chapter

VI in Parthasarathy (1967) for convergence results on Hilbert spaces. For recent applications in

the econometrics literature see Politis and Romano (1994), Chen and White (1996, 1998) or Chen

and Fan (1999). If Z is a L2(Π, ν)-valued random element and has probability distribution µZ , we

say that Z has mean m if E[〈Z, h〉] = 〈m,h〉 ∀h ∈ L2(Π, ν). If E ‖Z‖2 < ∞, then the covariance

operator of Z (or µZ), CZ(·) say, is a continuous, linear, symmetric, positive definite operator from

L2(Π, ν) to L2(Π, ν) defined by

CZ(h) = E[〈Z, h〉Z].
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An operator s on a Hilbert space is called nuclear if it can be represented as s(h) =
∞∑

j=1

li〈h, fj〉fj ,

where {fj} is an orthonormal basis of the Hilbert space and {li} is a real sequence such that
∞∑

j=1

|li| < ∞. It is easy to show, see e.g. Bosq (2000), that the covariance operator CZ(·) is a

nuclear operator provided that E ‖Z‖2 <∞. Let =⇒ denote weak convergence in the Hilbert space

L2(Π, ν) endowed with the norm metric. To derive the asymptotic theory we consider the following

assumptions.

ASSUMPTION A1:

A1(a): {Yt} is a strictly stationary and ergodic process.

A1(b): E |Y1|2(1+δ)
< C for some δ > 0.

ASSUMPTION A2: W : R −→ R+ is nondecreasing, absolutely continuous with respect to Lebesgue

measure and with bounded total variation.

Note that Assumption A1(a) is mild, in particular it allows us to consider conditional heteroskedas-

tic processes. A1(b) only assumes finite variance in contrast with the eighth moment necessary in

Durlauf (1991) and Deo (2000).

The choice of the weighting function W (·) has implications on the power performance of the test.

The optimal choice of W (·) depends on the true alternative at hand. Also, it can be shown (cf.

Neuhaus, 1976) that the directions of maximum power of the test depend on the inner product

considered in L2(Π, ν), which at the same time depends basically on the function W (·). But on the

other hand, because an analytic characteristic function is determined in a neighborhood of the origin,

it appears that the most relevant point is the behaviour of W (·) at the origin. Here, following Epps

and Pulley (1983) three considerations influence the choice of W (·). The first is that it should assign

high weight where |γj(x)| is large under the alternative. The second is that W (·) should give high

weight where the statistics γ̂j(x) are precise estimators. It can be shown that this precision is greatest

near the origin. A final practical consideration is that W (·) should be such that D2
n has a closed

form, examples of this are the normal or exponential cumulative probability distribution functions.

In any case, any W (·) satisfying A2 will deliver a consistent test against all pairwise alternatives.

Some simulations in Hong (1999a, 1999b) confirm that the power results for similar tests to D2
n

are not too sensitive to the choice of W (·). It can be shown that the choice of W (·) is similar

to the choice of the kernel function in nonparametric smoothing, see Fan and Li (2000). Finally,

note that unbounded support of W (·) is generally necessary because the characteristic functions

of two different distributions may coincide on a finite interval. However, when Yt is bounded, any

continuous W (·) with a bounded support containing the origin will ensure consistency against all

pairwise non-MDS alternatives.
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3.1. Asymptotic null distribution.

Using a martingale central limit theorem it can be shown, see the proof of Theorem 1, that the

finite dimensional projections 〈Sn, h〉, with h ∈ L2(Π, ν), converge in distribution under (1) and

Assumptions A1-A2 to a Gaussian random variable with zero mean and asymptotic variance

σ2
h =

∞∑
j=1

∞∑
k=1

E[(Y1 − µ)2
∫

Π×Π

h(η)hc(η′)φc
t−j(x)φt−k(x′)Ψj(λ)Ψk(λ′)dν(η)dν(η′)] (15)

where φt(x) := exp(ixYt)− ϕ(x), Ψj(λ) := (
√

2 sin jπλ)/jπ, η = (λ, x) and η′ = (λ′, x′).

The next result extends the convergence of the finite dimensional projections to weak convergence

on the Hilbert space L2(Π, ν).

THEOREM 1. Under Assumptions A1, A2 and (1), the process Sn(η) converges weakly to S(η) on

the Hilbert space L2(Π, ν), where S(η) is a Gaussian process with zero mean and covariance operator

satisfying σ2
h = 〈CS(h), h〉, where σ2

h is given in (15).

The next corollary is a simple consequence of the Continuous Mapping Theorem, see e.g. Billings-

ley’s (1968) Theorem 5.1, and Theorem 1.

COROLLARY 1. Under the Assumptions of Theorem 1,

D2
n

d−→ D2
∞ :=

∫
R

1∫
0

|S(λ, x)|2W (dx)dλ.

To study the properties of D2
∞, let li and ψi be the solutions of the eigenvalue problem CS(ψi) = liψi.

Because CS(·) is a nuclear operator, we have that {li, ψi}∞i=1 is a complete sequence of eigenelements

of it, i.e. {li}∞i=1 are real-valued and positive, and the corresponding eigenfunctions {ψi}∞i=1 form a

complete orthonormal basis for L2(Π, ν). Hence any L2(Π, ν)-valued random element has a Fourier

expansion in terms of {ψi}∞i=1. In particular, we have the expansions

Sn(η) =
∞∑

i=1

√
liεniψi(η),

S(η) =
∞∑

i=1

√
liεiψi(η),

where

εi = l
−1/2
i

∫
Π

S(η)ψi(η)dν(η),

and

εni = l
−1/2
i

∫
Π

Sn(η)ψi(η)dν(η).

10



Note that by Theorem 1 {εi}∞i=1 are i.i.d. N(0, 1) random variables and {εni}∞i=1 are at least

uncorrelated with unit variance. Then, by Parseval’s identity

D2
∞ =

∫
R

1∫
0

|S(η)|2 dν(η) =
∞∑

i=1

(εi
√
li)2. (16)

Therefore, the asymptotic distribution of D2
n can be expressed as a weighted sum of independent

χ2
1 random variables with weights depending on the DGP. The principal components {εi}∞i=1 are

involved in the directions of maximum power of D2
∞, see Neuhaus (1976).

3.2. Consistency

The consistency properties of the generalized spectral martingale test based on rejecting H0 for

large values of D2
n are stated in the following theorems.

THEOREM 2. Under Assumptions A1 and A2,

1
n
D2

n
P−→

∞∑
j=1

1
(jπ)2

∫
R

|γj(x)|2W (dx).

Under the alternative there exists at least one j ≥ 1 such that γj(x) 6= 0 for some subset of R

with positive Lebesgue measure. Then, since W (·) is absolutely continuous with respect to Lebesgue

measure, the test will be consistent because, given the unbounded support of W (·)
n−1∑
j=1

1
(jπ)2

∫
R

|γj(x)|2W (dx) > 0.

That is, the test is consistent against all pairwise alternatives of the null (3), a property not attainable

by the tests of Durlauf (1991), Deo (2000), Dominguez and Lobato (2003) and Kuan and Lee (2003).

To gain some insights in the consistency properties of the test, next theorem shows the behaviour

of Sn(η) under a sequence of alternative hypotheses tending to the null at the parametric rate n−1/2.

Consider the nonparametric local alternatives,

HA,n : E[Yt − µ | Ft−1] =
gt√
n
, a.s., (17)

where the sequence {gt} satisfies the following assumption.

ASSUMPTION A3: {gt} is Ft−1-measurable, zero mean, strictly stationary, ergodic and square

integrable sequence such that there exists a j ≥ 1 with E[gt | Yt−j ] 6= 0 a.s..

THEOREM 3. Under the sequence of alternative hypothesis (17) satisfying A3 and Assumptions A1

and A2

Sn(η) =⇒ S(η) +G(η),

11



where S(η) is the process defined in Theorem 1 and G(η) is the deterministic function

G(λ, x) =
∞∑

j=1

µj(x)
√

2 sin jπλ
jπ

,

where µj(x) := E[gt exp(ixYt−j)].

Under the local alternatives HA,n and using A3, there exists at least one j ≥ 1 such that µj(x) 6= 0

in a set of positive measure, and therefore

∞∑
j=1

1
(jπ)2

∫
R

|µj(x)|2W (dx) > 0.

Then, D2
n can detect all pairwise alternatives (17) satisfying A3 that converge to the null (3) at the

parametric rate n−1/2, a property which does not hold for those MDH tests based on smoothing

approaches, e.g. Hong (1999a).

Again, the next corollary is an immediate consequence of the Continuous Mapping Theorem and

Theorem 3.

COROLLARY 2. Under the local alternatives (17) and Assumptions A1, A2 and A3,

D2
n

d−→
∫
Π

|S(η) +G(η)|2 dν(η).

It is easy to show that ∫
Π

|S(η) +G(η)|2 dν(η) =
∞∑

i=1

(τi + εi
√
li)2,

where εi, li and ψi are as before, and {τi}∞i=1 are the Fourier coefficients of G(η), that is

τi = l
−1/2
i

∫
R

1∫
0

G(η)ψi(η)dν(η).

Now, we consider the “large” local alternatives

HL
A,n(c) : E[Yt − µ | Ft−1] =

cσgt√
n
, a.s., (18)

with gt verifying A3 and E[g2
t ] = 1. Define ut := Yt−E[Yt | Ft−1] and assume that E[u2

t | Ft−1] = σ2

a.s.. Then, from Theorem 4 of Bierens and Ploberger (1997) we obtain the following result related

with the rate of the asymptotic power function of the generalized spectral martingale test,

ΠGSM (c) := lim
n−→∞

Pr
(
D2

n rejects H0 | HL
A,n(c)

)
.
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COROLLARY 3. Under the sequence of alternative hypothesis (18) and Assumptions A1, A2 and

A3, we have for any positive constant K,

lim
c−→∞

c−2 ln Pr
(
D2
∞(c) ≤ K

)
= −1

2
.

If the test has nontrivial local power, then ΠGSM (c) approaches 1 at an exponential rate as c −→∞.

This result is even stronger if it is compared with the t-statistic for δ = 0 in the following regression

Yt = µ+ δg∗t + vt,

where g∗t is some “guess” of gt which is assumed to satisfy A3 and E[g∗2t ] = 1. If ρ = Corr(gt, g
∗
t )

and Πt(c) := lim
n−→∞

Pr
(
t test rejects H0 | HL

A,n(c)
)
, then it is proved in Theorem 5 of Bierens and

Ploberger (1997) that

lim
c−→∞

c−2 ln (1−Πt(c)) = −ρ
2

2
.

This result implies that if the correlation coefficient ρ involved is not equal to 1 or -1, then there

exists a c0 such that ΠGSM (c) > Πt(c) for c > c0, that is, as long as the correlation between g∗t and

gt is not perfect, our test is more powerful than the t-test uniformly for large c’s.

We end this section by proving an optimality power property of our test that can be derived under

the following assumption.

ASSUMPTION A4: ut | Ft−1 ∼ N(0, σ2).

Note that Assumption A4 does not imply that Yt is Gaussian. For alternatives for which Yt is

non-Gaussian, it is expected that our generalized spectral martingale tests will be more powerful

than correlation-based tests as confirmed in our simulations. The next result, which follows from

Theorem 6 of Bierens and Ploberger (1997), ensures that there does not exist a test uniformly more

powerful than our test against all local alternatives satisfying A3.

COROLLARY 4. Under Assumptions A1 to A4 the generalized spectral martingale test is asymp-

totically admissible, that is, there does not exist a test that is uniformly more powerful than the

generalized spectral martingale test against all local alternatives (17) satisfying A3.

4. The Bootstrap Test
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The asymptotic distribution of the generalized spectral martingale test statistic can be expressed

as that of a weighted sum of independent χ2
1 random variables and, although the weights depend

on the DGP, they can be approximated by various methods. A simple multiple χ2 approximation

is due to Satterthwaite (1941, 1946). Under independence this approximation might be accurate,

see Kock and Yang (1986) for an application. However, in the present context and under the null of

MDS, the asymptotic distribution of Sn(η) depends, in general, on the DGP in a very complicated

way, and the same problem arises with the asymptotic distribution of the corresponding norm D2
n.

One possibility to solve this problem is to estimate the distribution of Sn(η) by that of

S∗n(λ, x) =
n−1∑
j=1

(n− j)1/2γ̂∗j (x)
√

2 sin jπλ
jπ

,

with

γ̂∗j (x) =
1

n− j

n∑
t=1+j

(Yt − Y n)φ̂t−j(x)wt,

where φ̂t−j(x) = eixYt−j − (n − j)−1
n∑

t=1+j

eixYt−j and {wt} is a sequence of independent random

variables with zero mean, unit variance, bounded support and also independent of the sequence

{Yt}n
t=1. This procedure is similar to the wild bootstrap used in Wu (1986), Liu (1988) or Mammen

(1993). Also, our bootstrap approximation can be view as a fixed design wild bootstrap for a constant

model, see e.g. Goncalves and Kilian (2003). Examples of {wt} sequences are i.i.d. Bernoulli variates

with

P (wt = 0.5(1−
√

5)) = (1 +
√

5)/2
√

5 (19)

and

P (wt = 0.5(1 +
√

5)) = 1− (1 +
√

5)/2
√

5 (20)

used in e.g. Mammen (1993), Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998) or more

recently in Li, Hsiao and Zinn (2003), or P (wt = 1) = 0.5 and P (wt = −1) = 0.5 as in Liu (1988) or

de Jong (1996), for other sequences see Mammen (1993). Note that the third moment of wt in those

cases is equal to 1, and hence the first three moments of the bootstrap series coincide with the three

moments of the original series. These properties have implications on the second order asymptotic

properties of the bootstrap approximation, see Liu (1988). Next theorem shows the validity of the

bootstrap and allows us to approximate the critical values of the test.

THEOREM 4. Assume A1 and A2, then under the null hypothesis (1), under any fixed alternative

hypothesis or under the local alternatives (17)

S∗n(η) =⇒
∗
S(η), a.s. in L2(Π, ν),
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where S(η) is the process defined in Theorem 1 and =⇒
∗

a.s. denote weak convergence almost surely

under the bootstrap law, that is, if the sample is χn,

ρw(L(S∗n(η) | χn),L(S(η))) → 0 a.s. as n −→∞

where L(S∗n(η) | χn) stands for the law of S∗n(η) given the sample, and ρw is any metric which

metricizes weak convergence in L2(Π, ν), see Politis and Romano (1994).

Therefore, we can approximate the asymptotic distribution of the process Sn(η) by that of S∗n(η).

In particular, we can simulate the critical values for the test statistic D2
n by the following algorithm:

1. Calculate the test statistic D2
n with the original sample {Yt}n

t=1.

2. Generate {wt}n
t=1, a sequence of independent random variables with zero mean, unit variance

and bounded support and independent of the sample {Yt}n
t=1.

3. Compute γ̂∗j (x), S∗n(η) and D∗2
n .

4. Repeat steps 2 and 3 B times and compute the empirical (1 − α)th sample quantile of D∗2
n

with the B values, D∗2
n,α say. The proposed test rejects the null hypothesis at the significance

level α if D2
n > D∗2

n,α.

Note that given the result obtained in Theorem 4, the proposed bootstrap test has a correct

asymptotic level, is consistent and is able to detect alternatives tending to the null at the parametric

rate n−1/2.

5. Empirical Evidence

In order to examine the finite sample performance of the proposed test we carry out a simulation

experiment with some DGP under the null and under the alternative. We compare our test with

those of Deo (2000), Dominguez and Lobato (2003) and Kuan and Lee (2003). We briefly describe

them to clarify our simulation setup. Let Ỹt,P = (Yt−1, . . . , Yt−P ) be the P -lagged values of the

series.

Dominguez and Lobato (2003) have considered a generalization of Koul and Stute (1999) for

a fixed number of lags P , P ≥ 1. We denote by CvMP and KSP their Cramér-von Mises and

Kolmogorov-Smirnov statistics, respectively. Their tests statistics are based on the multivariate
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integrated regression function, i.e.

CvMP : =
1
n2

n∑
j=1

[
n∑

t=1

(Yt − Y n)I(Ỹt,P ≤ Ỹj,P )

]2

,

KSP : = max
1≤i≤n

∣∣∣∣∣ 1√
n

n∑
t=1

(Yt − Y n)I(Ỹt,P ≤ Ỹi,P )

∣∣∣∣∣ .
They also considered a wild bootstrap approach. In the simulations we consider the values P = 1, 2

and 3, although only P = 1 and 3 are reported.

Deo (2000) has corrected Durlauf’s (1991) test to take into account some kinds of conditional

heteroskedasticity. The corrected version of the test statistic is

DURC :=
n−1∑
j=1

nâ2
j

(
1
jπ

)2

,

where

âj := ρ̂j

(n− j)−1
n∑

t=1+j

(Yt − Y n)2(Yt−j − Y n)2

−1/2

,

and

ρ̂j := (n− j)−1
n∑

t=1+j

(Yt − Y n)(Yt−j − Y n).

We have considered the factor (n− j)−1 in ρ̂j instead of n−1 used in Deo (2000) as in the definition

of D2
n. Note that we do not consider a kernel or weighting function in DURC. Under the null

hypothesis of MDS and some additional assumptions (see Deo (2000)),

DURC
d−→

1∫
0

B2(t)dt as n −→∞,

where B(t) is the standard Brownian bridge on [0,1]. The 10%, 5% and 1% asymptotic critical values

are obtained from Shorack and Wellner (1986, p. 147) and are 0.347, 0.461 and 0.743 respectively.

We have also used in the simulations bootstrap critical values. Since the results do not differ

substantially we only report the results based on the asymptotic critical values.

Recently, Kuan and Lee (2003) have proposed a MDH test related to the characteristic function

which is robust to conditional heteroskedasticity and with asymptotic χ2
2 distribution. Their test

statistic is

KLP :=
n− P

σ̂2
c,gσ̂

2
s,g − σ̂2

cs,g

[
σ̂2

s,gΨ
2

c,g + σ̂2
c,gΨ

2

s,g − 2σ̂2
cs,gΨ

2

c,gΨ
2

s,g

]
where for j = c, s

Ψj,g :=
1

n− P

n∑
t=P+1

Ψj,g(Yt, Ỹt,P ),

σ̂2
j,g :=

1
n− P

n∑
t=P+1

Ψ2
j,g(Yt, Ỹt,P ),
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σ̂2
cs,g :=

1
n− P

n∑
t=P+1

Ψc,g(Yt, Ỹt,P )Ψs,g(Yt, Ỹt,P ),

and

Ψc,g(Yt, Ỹt,P ) := Yt

∫
RP+

cos(xT Ỹt,P )g(x)dx,

Ψs,g(Yt, Ỹt,P ) := Yt

∫
RP+

sin(xT Ỹt,P )g(x)dx.

Kuan and Lee (2003) assume that µ = 0 and a fixed number of lags in the conditioning set, P say.

Instead of consider a norm as in D2
n, they first integrate with respect to x with the weight function

g(x), which plays the same role as our W (dx), and consider a norm on the sample means Ψj,g. They

supply formulae for Ψj,g(Yt, Ỹt,P ) using a multivariate exponential density function g(x), see Kuan

and Lee (2003) p. 9. In the simulations we consider P = 1 and 3.

In the sequel εt and ut are independent sequences of i.i.d. N(0, 1). The models used in the simulations

include first three MDS:

1. Independent and identically distributed N(0, 1) variates (IID).

2. GARCH(1,1) processes, Yt = εtσt, with

σ2
t = 0.01 + αY 2

t−1 + βσ2
t−1,

and the following combinations for (α, β): (0.01, 0.97), (0.09, 0.89) and (0.09, 0.90). We denote

these processes by GARCH1, GARCH2 and GARCH3 respectively.

3. Stochastic volatility model (SV), Yt = εt exp(σt), with

σt = 0.936σt−1 + 0.32ut.

And the following non-martingale difference sequences:

4. Non-Linear Moving Average model (NLMA):

Yt = εt−1εt−2(εt−2 + εt + 1).

5. Bilinear Processes:

Yt = εt + b1εt−1Yt−1 + b2εt−1Yt−2,

with parameter values (b1, b2): (0.15, 0.05) and (0.25, 0.15). We call these processes BIL-I and

BIL-II respectively.

6. Fractional integrated model ARFIMA(0, d, 0), that is (1−L)dYt = εt, with d = 0.3 and where

L is the usual back shift operator, i.e. LYt = Yt−1.
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7. The sum of a white noise and the first difference of a stationary autoregressive process of order

one (NDAR):

Yt = εt +Xt −Xt−1,

Xt = 0.85Xt−1 + ut.

8. Threshold autoregressive model of order one (TAR(1)):

Yt = −0.5Yt−1 + εt if Yt−1 ≥ 1 and Yt = 0.4Yt−1 + εt if Yt−1 < 1.

9. First order exponential autoregressive model (EXP(1)):

Yt = 0.6Yt−1 exp(−0.5Y 2
t−1) + εt.

Models 1, 2, 4 and 5 are used in Dominguez and Lobato (2003). Models 3, 6 and 7 are used in Deo

(2000), while models 8 and 9 are used in Hong (1999b). Models 1, 2, 5 and 8 are also considered in

Kuan and Lee (2003).

We consider for the experiments under the null a sample size of n = 100 and under the alternative

n = 100 and 300, the number of Monte Carlo experiments is 1000 and the number of bootstrap

replications is B = 300. We consider a nominal level of 5%, the results with other nominal levels are

similar. In all the replications 200 pre-sample data values were generated and discarded. Random

numbers were generated using IMSL ggnml subroutine. For the bootstrap, we employ a sequence

{wt} of i.i.d. Bernoulli variates given in (19)-(20). The simulation program was written in Fortran

90 and run on a PC using a P-4 processor at 1,7GHz. The computational time for computing D2
n

and the bootstrap p-value with B = 300 at 10%, 5% and 1% levels, for the NLMA model is 9” for

n = 100 and 4’10” for n = 300. Computational time with other models were very similar.

We choose the standard normal cumulative probability distribution function as the weighting

function W (·), and g(·) is the density of the multivariate exponential distribution with parameter

β̃ = (n−1
n∑

t=1
Y 2

t )−1/2, see Kuan and Lee (2003) for details.

In Table 1 we report the empirical rejections probabilities (RP) associated with the models 1 to

3. The results for D2
n, CvMP , KSP , KLP and DURC show that the empirical size properties of

the tests are appropriate, although KL3 shows some size distortions for the GARCH2 and the SV

models. From these results with the GARCH models we conclude that D2
n is robust to thick tails.

Please insert Table 1 about here.

In Tables 2 and 3 we report the empirical power against the models 4 to 9 for the sample size

n = 100 and n = 300 respectively. The results show that for almost all nonlinear alternatives D2
n

has more empirical power than the other tests and maintains good properties for linear models
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(ARFIMA). In the NLMA case DURC has no power, as expected, because this NLMA process is

uncorrelated. For the bilinear cases, D2
n has excellent power whereas KLP and DURC have low

power. For the Deo’s (2000) model NDAR, all the test statistics have low empirical power. For the

TAR(1) and EXP(1) models D2
n has the highest empirical power. Note that CvMP and KSP are

largely affected by the curse of dimensionality for moderate values of P . In all cases D2
n outperforms

KLP for all alternatives considered and all values of P . This confirms that for all these alternatives

it can be much better to consider a pairwise than a joint approach as taken in Dominguez and

Lobato (2003) or Kuan and Lee (2003). In Table 3, we show the empirical power with the sample

size n = 300. As was expected, all the empirical powers increase and D2
n maintains its overall

superiority.

Please insert Tables 2 and 3 about here.

Now, we present applications of our generalized spectral martingale test to the daily closed S&P

500 stock index and some exchange rates returns. We consider three sample periods for the S&P 500

stock index, first from 2 January 1990 until 31 December 1993, the second period from 3 January

1994 until 31 December 1997 and third from 2 January 1998 until 28 August 2002. With a total of

1013, 1011 and 1170 observations respectively. We consider the returns of the index obtained as the

log differences of the data. The implementation is as in the Monte Carlo simulations. To facilitate

interpretations we show the p-values for the three periods in Table 4.

Please insert Table 4 about here.

We observe that for the first period all the tests fail to reject the MDH, whereas in the second

period, althoughDURC finds no correlation in the data and CvM3, KS3, KL1 andKL3 fail to reject

the MDH, our generalized spectral test statistic D2
n strongly rejects the null hypothesis of MDS.

Again, this shows the ability of our test to detect possibly uncorrelated non-martingale difference

sequences. Note that for the second period, CvMP , KSP deliver contradictory results for different

values of P, possibly due to the curse of dimensionality. For the third period, D2
n also questions the

MDH whereas KL1, KL3, and DURC strongly support the MDH.

We next examine the martingale properties of some exchange rates returns studied previously by

Fong and Ouliaris (1995) or Kuan and Lee (2003) among others. The data set consists in five 760

weekly exchange rate returns on the Canadian Dollar (Can), the German Deutschmark (Dm), the

French Franc (Fr), the sterling Pound (£) and the Japanese Yen (U), from August 14, 1974 to March

29, 1989. The empirical results are reported in Table 5. Again, we use the same implementation

as in the Monte Carlo experiments and we show the p-values. The results for the Canadian dollar

are inconclusive with our test statistic D2
n and contradictory with the statistics CvMP , KSP and

KLP . Also, DURC finds no correlation in Can at 5% level. Our test D2
n rejects the MDH for all the
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remaining exchange rates returns at 5% level and also at the 1% in Dm and U. Note that Fr and £

seem to be serially uncorrelated, although they are not MDS. Therefore, our new test statistic D2
n

finds nonlinear dependence in the conditional mean of these exchange rates, contrasting with most

previous studies which conclude that exchange rate changes are very nearly to be unpredictable

given past prices. The nonlinearity in the conditional mean suggest that additional effort has to be

dedicated to investigate the form of such nonlinearity in the conditional mean before modelling the

conditional variance.

Please insert Table 5 about here.

6. Conclusions and Further Extensions

In this article we have synthesized the approaches of Hong (1999a, 1999b) and Durlauf (1991)

introducing a new test for the MDH which is based on a functional of the difference between a

generalized spectral distribution function under the null and under the alternative. We generalized

Deo’s (2000) test which uses the second moment information, in the sense that we use all the

information contained in the pairwise regression functions. In fact, as was shown by Hong (1999a,

1999b), Durlauf’s (1991) test statistic can be obtained by differentiating our test statistic with

respect to the auxiliary parameter at the origin. The auxiliary parameter x, renders a test statistic

able to pick any pairwise alternative of the MDH. In particular, our test is able to detect failures

of the MDS assumption for processes that are uncorrelated, as has been shown in the Monte Carlo

simulations and the application. The asymptotic null distribution depends on the DGP and hence,

we have proposed to implement the test via a bootstrap procedure.

We have carried out an empirical comparison with the MDH tests of Deo (2000), Dominguez and

Lobato (2003) and Kuan and Lee (2003) and the results have shown that our test has for almost

all nonlinear alternatives more empirical power. Note also that our test avoids the choice of any lag

order or smoothing parameter and overcomes the problem of the curse of dimensionality which may

affect other tests, for instance Dominguez and Lobato’s (2003) test when P is high or even moderate.

These facts confirm that in practice it could be better to consider a pairwise approach than a joint

approach as in Dominguez and Lobato (2003) or Kuan and Lee (2003). One obvious limitation of

our approach is that our test is not consistent against pairwise MDS which are non-MDS. To solve

this problem one can apply the same methodology but considering as the target the hypothesis

E[Yt − µ | Yt−j , Yt−j−1, . . . , Yt−j−P+1] = 0 a.s. for all 1 ≤ j ≤ n− P

for P fixed. Let x̃P = (x1, x2, . . . , xP ) and ỸtjP = (Yt−j , Yt−j−1, . . . , Yt−j−P+1). Hence, defining the

measures

γj(x̃P ) = E[(Yt − µ) exp(ix̃T
P ỸtjP )],
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we test

H0 : γj(x̃P ) = 0 ∀j ≥ 1, x̃P ∈ RP .

Let nP = n−P and njP = n− j−P +1. Proceeding in exactly the same way as above, an extended

test can be based on the statistic

Ĥ(λ, x̃P ) = γ̂0(x̃P )λ+ 2
nP∑
j=1

(
njP

n
)1/2γ̂j(x̃P )

sin jπλ
jπ

,

where

γ̂j(x̃P ) =
1
njP

n∑
t=P+j

(Yt − Y njP
) exp(ix̃T

P ỸtjP ).

We consider the statistic Ĥ(λ, x̃P ) as a L2(Π, ν)-valued random element with Π = [0, 1]× RP . The

Cramér-von Mises test in this case is

D2
n =

nP∑
j=1

njP

(jπ)2

∫
RP

|γ̂j(x̃P )|2 dW (x̃P ),

which involves P -dimensional integration. All the results shown in this paper hold trivially for this

multivariate case. The lack of theoretical complication in the multivariate situation is one of the

advantages of our Hilbert space approach over a “sup” norm approach as in Hong (1999b).

Finally, we make some comments on how to extent our approach to test the correct specification

of a conditional mean of linear and nonlinear time series models. It is well known that the correct

specification for the conditional mean is equivalent to a MDS property on the unobservable errors.

Then, we could apply our methodology to the residuals to test this MDS property. The main problem

is to take into account the parameter uncertainty. In particular, the bootstrap approximation as

is proposed here is no longer valid and needs some modification, although other resampling or

asymptotic approximations could be considered. These topics are currently being investigated.
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Appendix: Proofs.

Let Re(A) and Im(A) be the real and imaginary parts, respectively, of the complex number A.

First, consider two useful lemmas.

LEMMA 1. Suppose we have a random element in L2(Π, ν) of the form hn(η) =
n−1∑
j=1

hj,n(x)
√

2 sin jπλ
jπ .

Assume A2 and that

(i)
∫
R
E |hj,n(x)|2W (dx) < C uniformly in j ≥ 1.

(ii) supx∈[−a,a] |hj,n(x)| = op(1) ∀1 ≤ j < n,∀a > 0.

Then, hn(η) converges in probability to zero in L2(Π, ν), i.e. ‖hn(η)‖2 = op(1).

Proof. Decompose for each K fixed with 1 ≤ K ≤ n− 1

hn(η) =
K∑

j=1

hj,n(x)
√

2 sin jπλ
jπ

+
n−1∑

j=K+1

hj,n(x)
√

2 sin jπλ
jπ

: = h1K(η) + h2K(η).

Now, for all a > 0,

‖h1K(η)‖2 =
K∑

j=1

1
(jπ)2

∫
R

|hj,n(x)|2 dW (x)

=
K∑

j=1

1
(jπ)2

∫
[−a,a]

|hj,n(x)|2 dW (x) +
K∑

j=1

1
(jπ)2

∫
R\[−a,a]

|hj,n(x)|2 dW (x). (21)

Thus, by (ii) for the first summand on the right hand side of (21) and by (i) and letting a → +∞

for the second summand, we have that ‖h1K(η)‖2 = op(1). Next, use (i) to show that

E ‖h2K(η)‖2 =
n−1∑

j=K+1

1
(jπ)2

∫
R

E |hj,n(x)|2 dW (x)

≤ C
∞∑

j=K+1

1
(jπ)2

−→ 0 as K →∞.

Finally, Theorem 4.2 of Billingsley (1968) yields that ‖hn(η)‖2 = op(1) by letting first n → ∞ and

then K →∞. This finishes the proof of Lemma 1. �

Let define

Zn(λ, x) :=
n−1∑
j=1

(n− j)
1
2 r̂j(x)

√
2 sin jπλ
jπ

,
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where

r̂j(x) =
1

n− j

n∑
t=1+j

(Yt − µ)φt−j(x).

The next lemma states that the norm of the process Sn(λ, x) can be approximated by the norm of

Zn(λ, x).

LEMMA 2. Under (1) and the assumptions A1 and A2 ,∣∣∣‖Sn(η)‖2 − ‖Zn(η)‖2
∣∣∣ P−→ 0.

Proof. It is easy to show that

γ̂j(x) = r̂j(x)−

 1
n− j

n∑
t=1+j

(Yt − µ)

 1
n− j

n∑
t=1+j

φt−j(x)

 , (22)

and therefore, we have that Sn(η) = Zn(η)−Rn(η) where

Rn(η) =
n−1∑
j=1

(n− j)1/2

 1
n− j

n∑
t=1+j

(Yt − µ)

 1
n− j

n∑
t=1+j

φt−j(x)

 √2 sin jπλ
jπ

. (23)

By simple algebra∫
R

1∫
0

|Sn(η)|2 dWdλ =
∫
R

1∫
0

|Zn(η)|2 dWdλ+
∫
R

1∫
0

|Rn(η)|2 dWdλ− 2 Re


∫
R

1∫
0

Zn(η)Rc
n(η)dWdλ

 .

(24)

Let define φn−j(x) := (n− j)−1
n∑

t=1+j

φt−j(x), then

‖Rn(η)‖2 =
n−1∑
j=1

(n− j)
(jπ)2

 1
n− j

n∑
t=1+j

(Yt − µ)

2 ∫
R

∣∣φn−j(x)
∣∣2W (dx).

From A1 and (1) we obtain that

1
(n− j)1/2

n∑
t=1+j

(Yt − µ) = Op(1) ∀1 ≤ j < n.

Whereas Theorem 2 in Jenrich (1969) and the Glivenko-Cantelli’s Theorem for stationary and ergodic

sequences, see e.g. Dehling and Philipp (2002) p. 4, yield the following uniform ergodic theorem

(UET),

sup
x∈[−a,a]

∣∣φn−j(x)
∣∣ = op(1) ∀1 ≤ j < n,∀a > 0.

Thus, applying Lemma 1 we have that ‖Rn(η)‖2 = op(1). On the other hand, it is easy to show

that under (1)

E

∫
R

1∫
0

|Zn(η)|2 dWdλ =
n−1∑
j=1

(n− j)
(jπ)2

E

∫
R

|r̂j(x)|2 dW (x) = O(1). (25)
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Combining (24), (25) and Cauchy-Schwartz’s inequality we conclude the proof. �

PROOF OF THEOREM 1. By Lemma 2 we only need to show that the finite dimensional projections

〈Zn(η), h〉 are asymptotically normal ∀h ∈ L2(Π, ν) with the appropriate asymptotic variance, and

that the sequence {Zn(η)} is tight, see e.g. Parthasarathy (1967). The idea of the proof is first, to

prove these facts for a partition version of Zn(η), and then, to show that the remainder is negligible.

These steps are considered in Theorems A1, A2 and A3 below hold. From these theorems and

Theorem 4.2 of Billingsley (1968) Theorem 1 follows. We write for some integer K,

Zn(η) =
K∑

j=1

(n− j)
1
2 r̂j(x)

√
2 sin jπλ
jπ

+
n−1∑

j=K+1

(n− j)
1
2 r̂j(x)

√
2 sin jπλ
jπ

: = ZK
n (η) +RK

n (η), (26)

say.

THEOREM A1. Under the conditions of Theorem 1, for an arbitrary but fixed integer K the finite

dimensional distributions of ZK
n (η), 〈ZK

n (η), h〉, converge to those of ZK(η), 〈ZK(η), h〉, ∀h ∈

L2(Π, ν), where ZK(η) is a Gaussian process with zero mean and asymptotic projected variances

σ2
h,K := V ar[〈ZK , h〉] =

K∑
j=1

K∑
k=1

E[(Y1 − µ)2
∫

Π×Π

h(η)hc(η′)φc
t−j(x)φt−k(x′)Ψj(λ)Ψk(λ′)dν(η)dν(η′)]

THEOREM A2. Under the conditions of Theorem 1, for an arbitrary but fixed integer K the sequence

{ZK
n (η)} is tight .

THEOREM A3. Under conditions of Theorem 1, the process RK
n (η) verifies for all ε > 0

Lim
K−→∞

Lim
n−→∞

P [‖Rn(η)‖ > ε] = 0.

PROOF OF THEOREM A1. Note that

〈ZK
n , h〉 =

n∑
t=2

(Yt − µ)


(t−1)∧K∑

j=1

(n− j)−1/2

∫
Π

φt−j(x)hc(η)Ψj(λ)dν(η)


:=

n∑
t=2

SK
h,t =

K+1∑
t=2

SK
h,t +

n∑
t=K+2

SK
h,t, (27)

where SK
h,t(η) := (Yt − µ)QK

h,t and QK
h,t is implicitly defined. Under (1), {SK

h,t,Ft} is an adapted

MDS with stationary and ergodic differences for t ≥ K + 2. Applying Markov’s inequality it is easy

to show that the first summand in the right-hand side of (27) goes to zero in probability. For the

second, the Central Limit Theorem (CLT) for martingales with stationary and ergodic differences
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(Billingsley (1961)) states that the process converges to a normal distribution. Now we check that

the limit variance is the appropriate, under (1) and stationarity

σ̂h,K : = V ar[〈ZK
n , h〉] =

n∑
t=2

E[SK
h,tS

K
h,t] =

n∑
t=2

E[(Yt − µ)2
∣∣QK

h,t

∣∣2]
: =

K∑
j=1

K∑
k=1

(n− j)−1/2(n− k)−1/2
n∑

t=1+k∨j

E[(Yt − µ)2atjk]

=
K∑

j=1

K∑
k=1

(n− j)−1/2(n− k)−1/2(n− k ∨ j)E[(Y1 − µ)2a1jk]

−→
K∑

j=1

K∑
k=1

E[(Y1 − µ)2a1jk] as n −→∞, (28)

where

atjk :=
∫

Π×Π

h(η)hc(η′)φc
t−j(x)φt−k(x′)Ψj(λ)Ψk(λ′)dν(η)dν(η′).

Then, Theorem A1 follows. �

PROOF OF THEOREM A2. We apply Theorem 2.1 of Politis and Romano (1994). Again, we write

ZK
n = n−1/2

n∑
t=2

(Yt − µ)


(t−1)∧K∑

j=1

(
n

n− j

)1/2

φt−j(x)Ψj(λ)


: = n−1/2

n∑
t=2

SK
n,t = n−1/2

K+1∑
t=2

SK
n,t + n−1/2

n∑
t=K+2

SK
n,t, (29)

where SK
n,t is implicitly defined. For each fixed K ≥ 1 we have that n−1/2

K+1∑
t=2

SK
n,t is tight because

it is a finite sum and each summand is tight, see Theorem 1.4 in Billingsley (1968). Then, we

concentrate on the second summand in the right hand side of (29). To verify Theorem 2.1 in Politis

and Romano (1994) we have to show that the following conditions hold:

(i) E
∥∥SK

n,t

∥∥2
<∞

(ii) For each integerm ≥ 2, (SK
n,K+2, S

K
n,K+3, ..., S

K
n,K+m) regarded as a random element of L2(Π, ν)

converges in distribution to (SK
K+2, S

K
K+3, ..., S

K
K+m), say.

(iii) For each integer m ≥ 2, E[〈SK
n,K+2, S

K
n,K+m〉] −→ E[〈SK

K+2, S
K
K+m〉] as n −→∞.

(iv) Lim
n−→∞

n∑
t=K+2

E[〈SK
n,K+2, S

K
n,t〉] =

∞∑
t=K+2

E[〈SK
K+2, S

K
t 〉] < ∞ , and the last series converges

absolutely.

(v) V ar[〈ZK
n , h〉] → σ2

h,K := V ar[〈ZK , h〉] as n −→∞.

Conditions (i) and (ii) are trivially satisfied. Conditions (iii) and (iv) follow easily from (1),

because in that case {SK
t ,Ft} is an adapted MDS. Finally, condition (v) has been proved in (28).

�
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PROOF OF THEOREM A3. By Tchebychev’s inequality it is sufficient to prove that

Lim
K−→∞

Lim
n−→∞

E[
∥∥RK

n (η)
∥∥2

] = 0.

Then under the null and A1(b),

E[
∥∥RK

n (η)
∥∥2

] = n−1
n∑

t=2+K

E[(Yt − µ)2
t−1∑

j=1+K

(
n

n− j
)

1
(jπ)2

∫
R

|φt−j(x)|2W (dx)]

≤ C
∞∑

j=1+K

(
n

n− j
)

1
(jπ)2

→ 0.

by first letting n→∞ and then K →∞. �

PROOF OF THEOREM 2. Write

1
n
D2

n =
n−1∑
j=1

n− j

n

1
(jπ)2

∫
R

|γ̂j(x)|2W (dx) = A1 +A2 +A3,

where

A1 =
n−1∑
j=1

n− j

n

1
(jπ)2

∫
R

|γ̂j(x)− γj(x)|2W (dx),

A2 =
n−1∑
j=1

n− j

n

1
(jπ)2

∫
R

|γj(x)|2W (dx)

and

A3 =
n−1∑
j=1

n− j

n

2
(jπ)2

Re

∫
R

(γ̂j(x)− γj(x))γc
j (x)W (dx)

 .
We shall prove that A1 = oP (1). Using a UET for stationary and ergodic sequence is easy to show

that

sup
x∈[−a,a]

|γ̂j(x)− γj(x)| = op(1) ∀1 ≤ j < n,∀a > 0.

Then, from Lemma 1 we have that A1 = oP (1). Using this and that A2 = O(1), from the Cauchy-

Schwartz’s inequality we also conclude that A3 = oP (1). �

PROOF OF THEOREM 3. Let vt,n := Yt−µ−n−1/2gt and φ̂t−j(x) := eixYt−j−(n−j)−1
n∑

t=1+j

eixYt−j .

Then, by simple algebra

γ̂j(x) = (n− j)−1
n∑

t=1+j

(Yt − µ− gt√
n

)eixYt−j

−(n− j)−1
n∑

t=1+j

(Y n−j − µ− gt√
n

)eixYt−j

= (n− j)−1
n∑

t=1+j

vt,nφ̂t−j(x) + n−1/2(n− j)−1
n∑

t=1+j

gtφ̂t−j(x)

: = γ̂1j(x) + n−1/2γ̂2j(x).
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Then, substituting in Sn(η) yields

Sn(η) =
n−1∑
j=1

(n− j)1/2γ̂j(x)
√

2 sin jπλ
jπ

:= S1n(η) +Gn(η),

where

S1n(η) :=
n−1∑
j=1

(n− j)1/2γ̂1j(x)
√

2 sin jπλ
jπ

and

Gn(η) :=
n−1∑
j=1

n−1/2(n− j)1/2γ̂2j(x)
√

2 sin jπλ
jπ

.

Notice that under HA,n, vt,n is a MDS with respect to the σ-field Ft, so that by Theorem 1 it is

straightforward to show that S1n(η) converges to S(η). On the other hand, by a UET for ergodic

stationary time series

sup
x∈[−a,a]

|γ̂2j(x)− µj(x)| = op(1) ∀1 ≤ j < n,∀a > 0.

Hence, using Lemma 1 is easy to show that Gn(η) converges in probability in L2(Π, ν) to G(η).

Thus, from Slutsky’s Theorem

Sn(η) =⇒ S(η) +G(η).

This proves the Theorem. �

PROOF OF THEOREM 4. We need to show that the process S∗n(η) (conditionally on the sample)

has the same asymptotic finite projections that the process Sn(η) and that S∗n(η) is tight. First,

define similarly to Lemma 2

Z∗n(η) :=
n−1∑
j=1

(n− j)
1
2 r̂∗j (x)

√
2 sin jπλ
jπ

,

where

r̂∗j (x) =
1

n− j

n∑
t=1+j

(Yt − µ)φt−j(x)wt.

Then, some algebra shows that

γ̂∗j (x) = r̂∗j (x)− (ϕ̂n−j(x)− ϕ(x))

 1
n− j

n∑
t=1+j

(Yt − µ)wt

− (Y n − µ)

 1
n− j

n∑
t=1+j

φt−j(x)wt

 ,
where ϕ̂n−j(x) := (n−j)−1

n∑
t=1+j

eixYt−j . Now, we follow similar arguments as in the proof of Lemma

2 and write S∗n(η) = Z∗n(η)−R∗n(η) where R∗n(η) is implicitly defined. By a simple inequality

∫
R

1∫
0

|R∗n(η)|2 dWdλ ≤ 2
∫
R

1∫
0

|R∗1n(η)|2 dWdλ+ 2
∫
R

1∫
0

|R∗2n(η)|2 dWdλ,
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where

‖R∗1n(η)‖2 =
n−1∑
j=1

(n− j)
(jπ)2

 1
n− j

n∑
t=1+j

(Yt − µ)wt

2 ∫
R

|ϕ̂n−j(x)− ϕ(x)|2W (dx),

and

‖R∗2n(η)‖2 =
n−1∑
j=1

(n− j)
(jπ)2

(Y n − µ)2
∫
R

∣∣∣∣∣∣ 1
n− j

n∑
t=1+j

φt−j(x)wt

∣∣∣∣∣∣
2

W (dx).

Now, using standard bootstrap notation, denote by E∗ and V ∗ the expectation and the variance,

respectively, given the sample. Then, it is not difficult to show that

E∗

 1
n− j

n∑
t=1+j

(Yt − µ)wt

2

= OP ((n− j)−1)

and

E∗

∣∣∣∣∣∣ 1
n− j

n∑
t=1+j

φt−j(x)wt

∣∣∣∣∣∣
2

= OP ((n− j)−1),

where the last inequality holds uniformly in x. So, from these inequalities, an Ergodic Theorem for

(Y n − µ), a UET for |ϕ̂n−j(x)− ϕ(x)| and a partition argument as in Lemma 1 we conclude that

‖R∗1n(η)‖2 = oP (1) a.s. and ‖R∗2n(η)‖2 = oP (1) a.s.. Therefore,∣∣∣∣∣∣
∫
R

1∫
0

|S∗n(λ, x)|2W (dx)dλ−
∫
R

1∫
0

|Z∗n(λ, x)|2W (dx)dλ

∣∣∣∣∣∣ P−→ 0 a.s..

To show that the finite dimensional projections of Z∗n(η) converge (conditional on the original sample)

to those of S(η) a.s. for all samples, we consider a partition argument similar to that used in the

proof of Theorem 1. Decompose analogously to (26) Z∗n(η) = ZK∗
n (η) + RK∗

n (η) for fixed K. We

shall show that first, 〈ZK∗
n (η), h〉 converges (conditionally on the original data) in distribution to

〈ZK(η), h〉 a.s. for all samples and ∀h ∈ L2(Π, ν), and second that remainder RK∗
n (η) is negligible

a.s. for all samples. To this end, write

〈ZK∗
n (η), h〉 = n−1/2

n∑
t=2

(Yt − µ)


(t−1)∧K∑

j=1

(
n

n− j

)1/2 ∫
Π

φt−j(x)hc(η)Ψj(λ)dν(η)

wt

= n−1/2
n∑

t=2

(Yt − µ)QK
h,twt =

n∑
t=2

ζK∗
nt ,

where ζK∗
nt = n−1/2(Yt − µ)QK

h,twt and QK
h,t is implicitly defined. Then

E∗(
n∑

t=2

ζK∗
nt ) =

n∑
t=2

n−1/2(Yt − µ)QK
h,tE(wt) = 0,
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while

V ∗(
n∑

t=2

ζK∗
nt ) =

n∑
t=2

n−1(Yt − µ)2
∣∣QK

h,t

∣∣2 V (wt)

=
n∑

t=2

n−1(Yt − µ)2
∣∣QK

h,t

∣∣2 := σ̃2
h,K .

Note that conditional on the original data, ζK∗
nt is an independent (not identically distributed) array

of random variables. Note that using a SLLN for stationary and ergodic sequences is easy to show

that σ̃2
h,K −→ σ2

h,K a.s.. Then, we will verify a Lindeberg-Feller’s condition. On the other hand

using that QK
h,t and wt are bounded

n∑
t=2

E∗[
∣∣ζK∗

nt

∣∣2 1(
∣∣ζK∗

nt

∣∣ > δ)] ≤ C

n

n∑
t=2

(Yt − µ)21(|(Yt − µ)| > δ′
√
n)] a.s.

for some positive constants δ and δ′. By A1 the last expression converges almost surely to zero. Then

the triangular array {ζK∗
nt } satisfies the conditions of the Lindeberg-Feller’s CLT, conditionally on

almost all samples, so that
n∑

t=2
ζK∗
nt =⇒∗ N(0, σ2

h,K) a.s.. Next, arguing as in the proof of Theorem

A3,

E∗[
∥∥RK∗

n (η)
∥∥2

] = n−1
n∑

t=2+K

(Yt − µ)2
t−1∑

j=1+K

(
n

n− j
)

1
(jπ)2

∫
R

|φt−j(x)|2W (dx)

≤ C

(
n−1

n∑
t=2+K

(Yt − µ)2
) ∞∑

j=1+K

(
n

n− j
)

1
(jπ)2

→ 0 a.s.,

by first letting n → ∞ and then K → ∞. Finally, we have to prove the tightness of the sequence

{S∗n(η)} a.s.. Write

S∗n(η) = n−1/2
n∑

t=2

(Yt − Y n)


(t−1)∑
j=1

(
n

n− j

)1/2

φ̂t−j(x))Ψj(λ)

wt

: = n−1/2
n∑

t=2

S∗n,t.

Note that S∗n,t and S∗n,s are independent given the sample for s 6= t, thus it is sufficient for the

tightness that E∗
∥∥S∗n,t

∥∥2
< ∞ a.s. for all samples, which is trivially satisfied, see example 1.8.5 in

van der Vaart and Wellner (1996). The proof is finished. �
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Table 1. Size of Tests at 5%.

n = 100, B = 300 IID GARCH1 GARCH2 GARCH3 SV

D2
n 4.8 5.2 5.4 5.1 5.9

CvM1 4.6 4.6 5.5 5.6 5.3

KS1 5.3 5.1 4.8 6.3 4.6

CvM3 5.8 5.8 5.2 5.5 4.2

KS3 6.6 6.2 5.1 6.1 6.1

KL1 5.4 5.7 4.9 3.6 6.7

KL3 6.5 4.9 2.9 4.9 9.3

DURC 5.4 5.4 5.9 5.8 4.3

Table 2. Power of Tests at 5%.

n = 100 NLMA BIL-I BIL-II ARFIMA NDAR TAR(1) EXP(1)

D2
n 19.0 25.4 59.5 80.0 6.5 72.4 66.6

CvM1 18.3 11.5 25.8 84.3 7.7 50.7 65.6

KS1 18.4 12.6 30.1 79.4 8.5 47.6 65.8

CvM3 6.4 5.4 11.0 73.5 6.5 15.0 26.5

KS3 7.4 8.7 14.1 69.5 7.6 20.8 30.7

KL1 12.5 5.9 13.0 66.5 2.7 42.6 49.4

KL3 10.2 5.8 7.3 35.3 7.4 16.0 14.0

DURC 5.3 6.3 11.3 87.6 7.2 19.5 49.5

Table 3. Power of Tests at 5%.

n = 300 NLMA BIL-I BIL-II ARFIMA NDAR TAR(1) EXP(1)

D2
n 41.9 66.6 98.5 100.0 9.2 99.9 98.7

CvM1 35.5 30.5 80.5 100.0 9.6 97.9 98.7

KS1 38.3 30.8 80.5 100.0 9.7 95.3 98.9

CvM3 14.2 9.4 27.2 99.8 4.6 47.6 72.6

KS3 24.2 11.0 45.4 99.8 4.6 63.6 84.8

KL1 21.8 8.4 41.6 99.0 2.6 92.2 98.0

KL3 13.4 8.2 12.6 91.8 7.4 46.6 40.6

DURC 6.4 7.2 21.2 100.0 9.0 51.5 93.8
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Table 4. P-values for the S&P 500 stock index.

1990-1993 1994-1997 1998-2002

D2
n 0.280 0.000 0.080

CvM1 0.300 0.004 0.156

KS1 0.390 0.006 0.194

CvM3 0.882 0.758 0.076

KS3 0.634 0.342 0.030

KL1 0.670 0.108 0.331

KL3 0.737 0.392 0.252

DURC 0.130 0.730 0.650

Table 5. P-values for the Exchange Rates Returns.

n = 760 Can Dm Fr £ U

D2
n 0.050 0.000 0.010 0.032 0.000

CvM1 0.024 0.000 0.020 0.044 0.000

KS1 0.044 0.000 0.030 0.082 0.000

CvM3 0.122 0.006 0.086 0.056 0.000

KS3 0.378 0.002 0.080 0.252 0.004

KL1 0.000 0.005 0.033 0.114 0.002

KL3 0.1959 0.000 0.000 0.000 0.000

DURC 0.071 0.010 0.095 0.580 0.010
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