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We study the convergence of type I Hermite– 
Padé approximation for a class of meromor- 
phic functions obtained by adding a vector of 
rational functions with real coefficients to a 
Nikishin system of functions. 

 
 
 

1. Introduction 

 
Let s be a finite Borel measure with constant (not necessarily positive) sign whose support supp(s) contains infinitely 

many points and is contained in the real line R. If supp(s) is an unbounded set we assume additionally that xn ∈ L1 (s), n ∈ N. 

By ∆ = Co(supp(s)) we denote the smallest interval which contains supp(s). We denote this class of measures by M(∆). 

Let 

(z) = 
 

ds(x) 
s 

z x 

be the Cauchy transform of s. 

Given any positive integer n ∈ N there exist polynomials Qn , Pn  satisfying: 

• deg Qn  ≤ n, deg Pn  ≤ n − 1, Qn  ≡ 0, 

• (Qns − Pn )(z) = O(1/zn+1 ), z → ∞. 

The ratio πn = Pn /Qn of any two such polynomials defines a unique rational function called the nth term of the diagonal 

sequence of Padé approximants tos. Cauchy transforms of measures are important: for example, many elementary functions 

may be expressed through them, the resolvent function of a bounded self adjoint operator adopts that form, and they char- 

acterize all functions holomorphic in the upper half plane whose image lies in the lower half plane and can be extended 

continuously to the complement of a finite segment [a, b] of the real line taking negative values for z < a and positive val- 

ues for z > b (then supp(s) ⊂ [a, b]), see [1, Theorem A.6]. Providing efficient methods for their approximation is a central 

question in the theory of rational approximation. 
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When ∆ is bounded, A.A. Markov proved in [2] (in the context of the theory of continued fractions) that

lim
n→∞

πn(z) = s(z)
uniformly on each compact subset of C\∆. It is easy to deduce that the limit takes placewith geometric rate. In the sameyear,
see [3], T.J. Stieltjes obtained an analogous theorem for Cauchy transforms of measures with unbounded support contained
in a half line, under the assumption that the moment problem for the sequence (cn)n≥0 , cn =


xnds(x), is determinate. It is

well known that themoment problem formeasures of bounded support is always determinate; therefore, Stieltjes’ theorem
contains Markov’s result. In [4], T. Carleman proved when ∆ ⊂ R+ that

n≥1

|cn|−1/2n
= ∞ (1.1)

is sufficient for the moment problem to be determinate. For an arbitrary measure s ∈ M(∆), where ∆ is contained in a half
line, we say that it satisfies Carleman’s condition if after an affine transformation which takes ∆ into R+ the image measure
satisfies Carleman’s condition.

In an attempt to extendMarkov’s theorem to a general class ofmeromorphic functions, A.A. Gonchar considered functions
of the forms+ r where r is a rational function whose poles lie in C \ ∆. In [5], he proved that if ∆ is a bounded interval and
s′ > 0 a.e. on ∆, then

lim
n→∞

Pn
Qn

(z) = s(z) + r(z), (1.2)

uniformly on each compact subset of (inside) C \ ∆. Here, {Pn/Qn}n≥0 denotes the diagonal sequence of Padé approximants
ofs+ r , showing, additionally, that each pole of r in C\∆ ‘‘attracts’’ as many zeros of Qn as its order and the remaining zeros
of Qn accumulate on ∆ as n → ∞. Later, in [6] E.A. Rakhmanov obtained a full extension of Markov’s theorem when r has
real coefficients and proved that if r has complex coefficients then such a result is not possible without extra assumptions
on the measure s. The case of unbounded ∆ was solved in [7], when r has real coefficients, and [8], when r has complex
coefficients.

Padé approximation has two natural extensions to the case of vector rational approximation. These extensions were
introduced by Hermite in order to study the transcendency of e. Other applications in number theory have been obtained.
See [9] for a survey of results in this direction.

Given a system of finite Borel measures S = (s1, . . . , sm) with constant sign and a multi-index n = (n1, . . . , nm) ∈

Zm
+

\ {0}, |n| = n1 + · · · + nm, where Z+ denotes the set of non-negative integers and 0 the m-dimensional zero vector,
there exist polynomials an,j, j = 0, . . . ,m, not all identically equal to zero, such that:

(i) deg an,j ≤ nj − 1, j = 1, . . . ,m, deg an,0 ≤ max(nj) − 2, (deg an,j ≤ −1 means that an,j ≡ 0)
(ii) an,0(z) +

m
j=1 an,j(z)sj(z) = O(1/z|n|), z → ∞.

Analogously, there exist polynomials Qn, Pn,j, j = 1, . . . ,m, satisfying:

(i′) degQn ≤ |n|, Qn ≢ 0, deg Pn,j ≤ |n| − 1, j = 1, . . . ,m,
(ii′) Qn(z)sj(z) − Pn,j(z) = O(1/znj+1), z → ∞, j = 1, . . . ,m.

(Here and in the following, z → ∞ means taking the limit along any curve which is not tangent to the support of the
measures involved, when such supports are unbounded.) The existence of the vector of polynomials (an,1, . . . , an,m) reduces
to solving a homogeneous linear systemof |n|−1 equations on the total number of |n| coefficients of (an,1, . . . , an,m), and the
existence ofQn reduces to solving a homogeneous linear system of |n| equations on the total number of |n|+1 coefficients of
the polynomial Qn; therefore, a non-trivial solution is guaranteed. The polynomials an,0 and Pn,j, j = 1, . . . ,m, are uniquely
determined from (ii) and (ii′) once their partners are found.

Traditionally, the systems of polynomials (an,0, . . . , an,m) and (Qn, Pn,1, . . . , Pn,m) have been called type I and type II
Hermite–Padé approximants of (s1, . . . ,sm), respectively. When m = 1 both definitions reduce to that of classical Padé
approximation.

Before stating our main result, let us introduce what is called a Nikishin system of measures to which wewill restrict our
study. Let ∆α, ∆β be two intervals contained in the real line which have at most one point in common, σα ∈ M(∆α), σβ ∈

M(∆β), andσβ ∈ L1(σα). With these two measures we define a third one as follows (using the differential notation):

d⟨σα, σβ⟩(x) := σβ(x)dσα(x).

Above,σβ denotes the Cauchy transform of the measure σβ . The more appropriate notation σβ causes space consumption
and aesthetic inconveniences. We need to take consecutive products of measures; for example,

⟨σγ , σα, σβ⟩ := ⟨σγ , ⟨σα, σβ⟩⟩.

Here, we assume not only that σβ ∈ L1(σα) but also ⟨σα, σβ
⟩ ∈ L1(σγ ) where ⟨σα, σβ

⟩ denotes the Cauchy transform of
⟨σα, σβ⟩. Inductively, one defines products of a finite number of measures.
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Definition 1.1. Take a collection ∆j, j = 1, . . . ,m, of intervals such that, for j = 1, . . . ,m − 1

∆j ∩ ∆j+1 = ∅, or ∆j ∩ ∆j+1 = {xj,j+1},

where xj,j+1 is a single point. Let (σ1, . . . , σm) be a system of measures such that Co(supp(σj)) = ∆j, σj ∈ M(∆j), j =

1, . . . ,m, and

⟨σj, . . . , σk⟩ := ⟨σj, ⟨σj+1, . . . , σk⟩⟩ ∈ M(∆j), 1 ≤ j < k ≤ m. (1.3)

When ∆j ∩ ∆j+1 = {xj,j+1} we also assume that xj,j+1 is not a mass point of either σj or σj+1. We say that (s1,1, . . . , s1,m) =

N (σ1, . . . , σm), where

s1,1 = σ1, s1,2 = ⟨σ1, σ2⟩, . . . , s1,m = ⟨σ1, σ2, . . . , σm⟩

is the Nikishin system of measures generated by (σ1, . . . , σm).

It is not difficult to show (see [10, Theorem 1.5]) that if σ1 = s1,1 satisfies Carleman’s condition (1.1) then s1,k, k =

2, . . . ,m, also satisfies that condition.
Initially, E.M. Nikishin in [11] restricted himself to measures with bounded support and no intersection points between

consecutive ∆j. Definition 1.1 includes interesting examples which appear in practice (see, [12, Section 1.4]). We follow the
approach of [12, Definition 1.2] assuming additionally the existence of all the moments of the generating measures. This is
done only for the purpose of simplifying the presentation without affecting too much the generality. However, we wish to
point out that the results of this paper have appropriate formulations with the definition given in [12] of a Nikishin system.

In [12, Lemma 2.9] it was shown that if (σ1, . . . , σm) is a generator of a Nikishin system then (σm, . . . , σ1) is also a
generator (as well as any subsystem of consecutive measures drawn from them). When the supports are bounded and
consecutive supports do not intersect this is trivially true. In the following, for 1 ≤ j ≤ k ≤ m we denote

sj,k := ⟨σj, σj+1, . . . , σk⟩, sk,j := ⟨σk, σk−1, . . . , σj⟩.

From the definition, type II Hermite–Padé approximation is easy to view as an approximating scheme of the vector
function (s1,1, . . . ,s1,m) by considering a sequence of vector rational functions of the form (Pn,1/Qn, . . . , Pn,m/Qn),n ∈ Λ ⊂

Zm
+
, where Qn is a common denominator for all components. In [13] the authors obtain an analogue of Markov’s theorem

for type II Hermite–Padé approximation with respect to a Nikishin system. For type I Hermite–Padé approximation is not
obvious what is the object to be approximated or even what should be considered as the approximant. This problem was
solved in [10] when the system of measures S = (s1,1, . . . , s1,m) is a Nikshin system. Surprisingly, it turns out that type I
Hermite Padé polynomials allow to recover the functions in the system (sm,m, . . . ,sm,1) = N (σm, . . . , σ1) (see Theorem 1.2
below taking r1 ≡ · · · ≡ rm ≡ 0). Later, in [14] the authors consider type II Hermite–Padé approximation with respect to a
system of meromorphic functions of the form f = (f1, . . . , fm) = s + r, where

fj(z) =s1,j(z) + rj(z), j = 1, . . . ,m. (1.4)

Here, r = (r1, . . . , rm) =


v1
t1

, . . . , vm
tm


, is a vector of rational fractions with real coefficients such that deg vj < deg tj = dj

for every j = 1, . . . ,m. It is assumed that vj/tj, j = 1, . . . ,m is irreducible and s = (s1,1, . . . , s1,m) is a Nikishin system. For
type II Hermite–Padé approximation with respect to the system f an extension of Markov’s theorem is given.

Our goal is to obtain a similar result for type I Hermite–Padé approximation with respect to the system f.

Theorem 1.2. Let Λ ⊂ Zm
+

be an infinite sequence of distinct multi-indices. Consider the corresponding sequence

an,0, . . . ,

an,m

,n ∈ Λ, of type I Hermite–Padé approximants of f. Assume that the rational functions r1, . . . , rm have real coefficients and

their poles lie in C \ (∆1 ∪ ∆m), for j ≠ k the poles of rj and rk are distinct. Assume that

sup
n∈Λ


max

j=1,...,m
(nj) − min

k=1,...,m
(nk)


≤ C < ∞, (1.5)

and that either ∆m−1 is bounded away from ∆m or σm satisfies Carleman’s condition. Then,

lim
n∈Λ

an,j

an,m
= (−1)m−jsm,j+1, j = 1, . . . ,m − 1, (1.6)

and

lim
n∈Λ

an,0

an,m
= (−1)msm,1 −

m−1
j=1

(−1)m−jrjsm,j+1 + rm (1.7)

uniformly on each compact subset K contained in (C\∆m)′, the set obtained deleting fromC\∆m the poles of all the rj. Additionally,
let ζ1, . . . , ζp be the distinct zeros of T = t1 · t2 . . . tm and κ1, . . . , κp their multiplicities, respectively. Fix ε > 0, denote Vk :=

{z : |z − ζk| < ε} and V0 := {z : |z| > 1/ε} ∪ {z : d(z, ∆m) < ε}, where d(z, ∆m) denotes the Euclidean distance from z to
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∆m. Let ε be sufficiently small so that the closure of the neighborhoods Vk, k = 0, . . . , p are mutually disjoint. Then, there exists
an N such that for all n ∈ Λ, |n| > N and all j = 1, . . . ,m, an,j has exactly κk zeros in Vk, k = 1, . . . , p and the remaining
zeros of an,j lie in V0.

Notice that the rational fractions (r1, . . . , rm) do not play any role in the expression of the limit of ( an,1
an,m

, . . . ,
an,m−1
an,m

). On

the other hand, all the information of (r1, . . . , rm) is contained in the expression of the limit of an,0
an,m

. When ∆m is bounded
one can take V0 := {z : d(z, ∆m) < ε} in the last part of the theorem.

This paper is organized as follows. Section 2 contains some auxiliary results. In Section 3 we prove Theorem 1.2 and
describe some other consequences of the main result and further extensions.

2. Some auxiliary results

We begin with a result, which appears in [10, Lemma 2.1] whose proof we include for the sake of completeness. It gives
an integral representation of the remainder of type I multi-point Hermite–Padé approximants.

Lemma 2.1. Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) be given. Assume that there exist polynomials with real coefficients a0, . . . ,
am and a polynomial w with real coefficients whose zeros lie in C \ ∆1 such that

A(z)
w(z)

∈ H(C \ ∆1) and
A(z)
w(z)

= O


1
zN


, z → ∞,

where A := a0 +
m

k=1 aks1,k and N ≥ 1. Let A1 := a1 +
m

k=2 aks2,k. Then
A(z)
w(z)

=


A1(x)
(z − x)

dσ1(x)
w(x)

. (2.1)

If N ≥ 2, we also have
xνA1(x)

dσ1(x)
w(x)

= 0, ν = 0, . . . ,N − 2. (2.2)

In particular, A1 has at least N − 1 sign changes in
◦

∆1 (the interior of ∆1 in R with the usual topology).

Proof. We have

A(z) = a0(z) +

m
k=1

ak(z)s1,k(z) ∓ w(z)


A1(x)
(z − x)

dσ1(x)
w(x)

= a0(z) +

 m
k=1

(w(x)ak(z) − w(z)ak(x))ds1,k(x)

(z − x)w(x)
+ w(z)


A1(x)
(z − x)

dσ1(x)
w(x)

.

For each k = 1, . . . ,m

(w(x)ak(z) − w(z)ak(x)) /(z − x)

is a polynomial in z. Therefore,

P(z) := a0(z) +

 m
k=1

(w(x)ak(z) − w(z)ak(x))ds1,k(x)

(z − x)w(x)

represents a polynomial. Consequently

A(z) = P(z) + w(z)


A1(x)dσ1(x)
(z − x)w(x)

= w(z)O(1/zN), z → ∞.

These equalities imply that

P(z) = w(z)O(1/z), z → ∞.

Therefore, deg P < degw and is equal to zero at all the zeros ofw. Hence P ≡ 0. (Shouldw be a constant polynomial likewise
we get that P ≡ 0.) Thus, we have proved (2.1).

From our assumptions and (2.1), it follows that

A(z)
w(z)

=


A1(x)
(z − x)

dσ1(x)
w(x)

= O(1/zN), z → ∞.
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Suppose that N ≥ 2. We have the asymptotic expansion
A1(x)
(z − x)

dσ1(x)
w(x)

=

N−2
ν=0

dν

zν+1
+


xN−1A1(x)
zN−1(z − x)

dσ1(x)
w(x)

=

N−2
ν=0

dν

zN+1
+ O(1/zN), z → ∞,

where

dν =


xνA1(x)

dσ1(x)
w(x)

, ν = 0, . . . ,N − 2.

Therefore,

dν = 0, ν = 0, . . . ,N − 2,

which is (2.2).

Suppose thatA1 has at mostN < N−1 sign changes in
◦

∆1 at the points x1, . . . , xN . Take q(x) =
N

k=1(x−xk). According
to (2.2)

q(x)A1(x)
dσ1(x)
w(x)

= 0

which is absurd because q(a1 +
m

k=2 aks2,k)/w has constant sign in
◦

∆1 and σ1 is a measure with constant sign in
◦

∆1 whose
support contains infinitely many points. Thus, the number of sign changes must be greater or equal to N −1 as claimed. �

Some relations concerning the reciprocal and ratio of Cauchy transforms of measures will be useful. It is known that for
each σ ∈ M(∆), where ∆ is contained in a half line, there exists a measure τ ∈ M(∆) and ℓ(z) = az + b, a = 1/|σ |, b ∈ R,
such that

1/σ(z) = ℓ(z) +τ(z), (2.3)

where |σ | is the total variation of the measure σ . See [1, Appendix] and [15, Theorem 6.3.5] for measures with compact
support, and [16, Lemma 2.3] when the support is contained in a half line. If σ satisfies Carleman’s condition then τ satisfies
that condition (see [10, Theorem 1.5]).

We call τ the inverse measure of σ . They appear frequently in our reasonings, so we will fix a notation to distinguish
them. In relation with measures denoted with s they will carry over to them the corresponding sub-indices. The same goes
for the polynomials ℓ. For example,

1/sj,k(z) = ℓj,k(z) +τj,k(z).
We also write

1/σα(z) = ℓα(z) +τα(z).

Sometimes we write ⟨σα, σβ
⟩ in place ofsα,β . In [16, Lemma 2.10], several formulas involving ratios of Cauchy transforms

were proved. The most useful ones in this paper establish that

s1,ks1,1 =
|s1,k|
|s1,1|

− ⟨τ1,1, ⟨s2,k, σ1⟩⟩, 1 = j < k ≤ m. (2.4)

The notion of convergence in Hausdorff content plays a central role in the proof of Theorem 1.2. Let B be a subset of the
complex plane C. By U(B) we denote the class of all coverings of B by at most a numerable set of disks. Set

h(B) = inf


∞
i=1

|Ui| : {Ui} ∈ U(B)


,

where |Ui| stands for the radius of the disk Ui. The quantity h(B) is called the 1-dimensional Hausdorff content of the set B.
Let (ϕn)n∈N be a sequence of complex functions defined on a domain D ⊂ C and ϕ another function defined on D (the

value ∞ is permitted). We say that (ϕn)n∈N converges in Hausdorff content to the function ϕ inside D if for each compact
subset K of D and for each ε > 0, we have

lim
n→∞

h{z ∈ K : |ϕn(z) − ϕ(z)| > ε} = 0

(by convention ∞ ± ∞ = ∞). We denote this writing h − limn→∞ ϕn = ϕ inside D.
To obtain Theorem 1.2 we first prove (1.6) and (1.7) with convergence in Hausdorff content in place of uniform

convergence (see Lemma 2.3). We need the following notion.
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Let s ∈ M(∆) where ∆ is contained in a half line of the real axis. Fix an arbitrary κ ≥ −1. Consider a sequence of poly-
nomials (wn)n∈Λ, Λ ⊂ Z+, such that degwn = κn ≤ 2n + κ + 1, whose zeros lie in R \ ∆. Let (Rn)n∈Λ be a sequence of
rational functions Rn = pn/qn with real coefficients satisfying the following conditions for each n ∈ Λ:

(a) deg pn ≤ n + κ, deg qn ≤ n, qn ≢ 0,
(b) (qns − pn)(z)/wn = O


1/zn+1−ℓ


∈ H(C \ ∆), z → ∞, where ℓ ∈ Z+ is fixed.

We say that (Rn)n∈Λ is a sequence of incomplete diagonal multi-point Padé approximants ofs.
Notice that in this construction for each n ∈ Λ the number of free parameters equals 2n + κ + 2 whereas the number

of homogeneous linear equations to be solved in order to find qn and pn is equal to 2n + κ − ℓ + 1. When ℓ = 0 there
is only one more parameter than equations and Rn is defined uniquely coinciding with a (near) diagonal multi-point Padé
approximation. When ℓ ≥ 1 uniqueness is not guaranteed, thus the term incomplete.

For sequences of incomplete diagonal multi-point Padé approximants, the following Stieltjes type theorem was proved
in [13, Lemma 2] in terms of convergence in logarithmic capacity andwe reformulate it using 1-Hausdorff content. The proof
is basically the same.

Lemma 2.2. Let s ∈ M(∆) be given where ∆ is contained in a half line. Assume that (Rn)n∈Λ satisfies (a)–(b) and either the
number of zeros of wn lying on a bounded segment of R\∆ tends to infinity as n → ∞, n ∈ Λ, or s satisfies Carleman’s condition.
Then

h − lim
n∈Λ

Rn = s, inside C \ ∆.

Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm), and n ∈ Zm
+

\ {0} be given. Fix M ∈ Z+. Consider a vector polynomial
pn,0, . . . , pn,m


, not identically equal to zero, which satisfies:

(a′) deg pn,j ≤ nj − 1, j = 1, . . . ,m,
(b′) pn,0 +

m
j=1 pn,js1,j = O(1/z|n|−M) ∈ H(C \ ∆1).

We call

pn,0, . . . , pn,m


an incomplete type I Hermite–Padé approximation of (s1,1, . . . , s1,m) with respect to n.

The following lemma is an extended version of Lemma 2.2 and is contained in [10, Lemma 3.1] for the case whenM = 0.

Lemma 2.3. Let s = (s1,1, . . . , s1,m) = N (σ1, . . . , σm) and Λ ⊂ Zm
+

be an infinite sequence of distinct multi-indices. Fix
M ∈ Z+. Consider a sequence of incomplete type I multi-point Hermite–Padé approximants of s with respect to n ∈ Λ. Assume
that (1.5) takes place and that either ∆m−1 is bounded away from ∆m or σm satisfies (1.1). Then, for each fixed j = 0, . . . ,m− 1

h − lim
n∈Λ

pn,j

pn,m
= (−1)m−jsm,j+1, h − lim

n∈Λ

pn,m

pn,j
=

(−1)m−jsm,j+1
, (2.5)

inside C \ ∆m.

Proof. If m = 1 the statement reduces directly to Lemma 2.2, so without loss of generality we can assume that m ≥ 2. Fix
n ∈ Λ. Denote

An,j(z) := pn,j(z) +

m
k=j+1

pn,k(z)sj+1,k(z), j = 0, . . . ,m − 1.

From Lemma 2.1 it follows that An,1 has at least |n| − M − 1 sign changes in the interior of ∆1. Therefore, there exists a
polynomial wn,1, degwn,1 = |n| − M − 1, whose zeros lie on ∆1 such that

An,1

wn,1
∈ H(C \ ∆2). (2.6)

Set nj = max{nk : k = j, . . . ,m}. Taking into account the upper bound on the degrees of the polynomials pn,j it follows that

An,j(z) = O(znj−1), z → ∞, j = 0, . . . ,m − 1. (2.7)

Since degwn,1 = |n| − M − 1 we obtain

An,1

wn,1
= O


1

z|n|−M−n1


, z → ∞. (2.8)

From (2.6), (2.8), and Lemma 2.1 we have that An,2 has at least |n|−M − n1 − 1 sign changes in
◦

∆2. This and (2.7) imply
that there exists a polynomial wn,2, degwn,2 = |n| − M − n1 − 1, whose zeros lie on ∆2, such that

An,2

wn,2
∈ H(C \ ∆3), and

An,2

wn,2
= O


1

z|n|−M−n1−n2


, z → ∞.

6



Iterating this process, using Lemma 2.1 several times, on step j, j ∈ {1, . . . ,m}, we find that there exists a polynomial
wn,j, degwn,j = |n| − M − n1 − · · · − nj−1 − 1, whose zeros are points where An,j changes sign on ∆j such that

An,j

wn,j
∈ H(C \ ∆j+1), and

An,j

wn,j
= O


1

z|n|−M−n1−···−nj


, z → ∞. (2.9)

This process concludes as soon as |n| − M − n1 − · · · − nj ≤ 0. Since limn∈Λ |n| = ∞, because of (1.5) we can always take
m steps for all n ∈ Λ with |n| sufficiently large. In what follows, we only consider such n’s.

When n1 = n1 ≥ · · · ≥ nm = nm, we obtain that An,m ≡ pn,m has at least nm − M − 1 sign changes on ∆m. If M = 0,
since deg pn,m ≤ nm − 1, this means that deg pn,m = nm − 1 and all its zeros lie on ∆m. (In fact, in this case we can prove
that An,j, j = 1, . . . ,m has exactly |n| − n1 − · · · − nj−1 zeros in C \ ∆j+1 that they are all simple and lie in the interior of
∆j, where ∆m+1 = ∅).

In general, pn,m has at least |n| − M − n1 − · · · − nm−1 − 1 sign changes on ∆m; therefore, the number of zeros of pn,m
which may lie outside of ∆m is bounded by

deg pn,m − (|n| − M − n1 − · · · − nm−1 − 1) ≤

m−1
k=1

nk − nk ≤ (m − 1)C + M,

where C is the constant given in (1.5), which does not depend on n ∈ Λ.
For j = m − 1 there exists wn,m−1, degwn,m−1 = |n| − M − n1 − · · · − nm−2 − 1, whose zeros lie on ∆m−1 such that

An,m−1

wn,m−1
=

pn,m−1 + pn,mσm

wn,m−1
∈ H(C \ ∆m),

and
An,m−1

wn,m−1
= O


1

z|n|−M−n1−···−nm−1


, z → ∞,

where deg pn,m−1 ≤ nm−1−1, deg pn,m ≤ nm−1. Thus, using (1.5) it is easy to check that (pn,m−1/pn,m)n∈Λ forms a sequence
of incomplete diagonal multi-point Padé approximants of−σm satisfying (a)–(b) with appropriate values of n, κ and ℓ. Since
σm satisfies Carleman’s condition, due to Lemma 2.2 it follows that

h − lim
n∈Λ

pn,m−1

pn,m
= −σm, inside C \ ∆m.

Dividing byσm and using (2.3), we also have

An,m−1σmwn,m−1
=

pn,m−1τm + bn,m−1

wn,m−1
∈ H(C \ ∆m),

where bn,m−1 = pn,m + ℓmpn,m−1 and

An,m−1σmwn,m−1
= O


1

z|n|−M−n1−···−nm−1−1


, z → ∞.

Consequently, (bn,m−1/pn,m−1)n∈Λ forms a sequence of incomplete diagonal multi-point Padé approximants of −τm
satisfying (a)–(b) with appropriate values of n, κ and ℓ. Again, τm satisfies Carleman’s condition and Lemma 2.2 implies
that

h − lim
n∈Λ

bn,m−1

pn,m−1
= −τm, inside C \ ∆m,

which is equivalent to

h − lim
n∈Λ

pn,m

pn,m−1
= −σ−1

m , inside C \ ∆m.

We have proved (2.5) for j = m − 1.
For j = m− 2, we have shown that there exists a polynomial wn,m−2, degwn,m−2 = |n| −M − n1 − · · · nm−3 − 1, whose

zeros lie on ∆m−2 such that

An,m−2

wn,m−2
=

pn,m−2 + pn,m−1σm−1 + pn,m⟨σm−1, σm⟩
wn,m−2

∈ H(C \ ∆m−1)

and
An,m−2

wn,m−2
= O


1

z|n|−M−n1−···−nm−2


, z → ∞.
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However, using (2.3) and (2.4), we obtain

pn,m−2 + pn,m−1σm−1 + pn,m⟨σm−1, σm⟩σm−1

= (ℓm−1pn,m−2 + pn,m−1 + C1pn,m) + pn,m−2τm−1 − pn,m⟨τm−1, ⟨σm, σm−1⟩⟩,
where deg ℓm−1 = 1 and C1 is a constant. Consequently, An,m−2/(σm−1) adopts the form of A in Lemma 2.1, An,m−2/(σm−1
wn,m−2) ∈ H(C \ ∆m−1), and

An,m−2σm−1wn,m−2
= O


1

z|n|−M−n1−···−nm−2−1


, z → ∞. (2.10)

From Lemma 2.1 it follows that for ν = 0, . . . , |n| − M − n1 − · · · − nm−2 − 3
∆m−1

xν

pn,m−2(x) − pn,m(x)⟨σm, σm−1⟩(x) dτm−1(x)

wn,m−2(x)
= 0.

Therefore, pn,m−2 − pn,m⟨σm, σm−1⟩ ∈ H(C \ ∆m) must have at least |n| − D − n1 − · · · − nm−2 − 2 sign changes on
∆m−1. This means that there exists a polynomial w∗

n,m−2, degw∗

n,m−2 = |n| − M − n1 − · · · − nm−2 − 2, whose zeros are
simple and lie on ∆m−1 such that

pn,m−2 − pn,m⟨σm, σm−1⟩
w∗

n,m−2
∈ H(C \ ∆m)

and

pn,m−2 − pn,m⟨σm, σm−1⟩
w∗

n,m−2
= O


1

z|n|−M−n1−···−nm−3−2nm−2−1


.

Due to (1.5), this implies that (pn,m−2/pn,m), n ∈ Λ, is a sequence of incomplete diagonal Padé approximants of ⟨σm, σm−1⟩
and this measure satisfies Carleman’s condition. Using Lemma 2.2 we obtain its convergence in Hausdorff content to
⟨σm, σm−1⟩. To prove the other part in (2.5), we divide by ⟨σm, σm−1⟩(z) use (2.3) and proceed as we did in the case j = m.

Let us prove (2.5) in general. Fix j ∈ {0, . . . ,m−3} (for j = m−2,m−1 it is been proved). Having inmind (2.9) we need
to reduce An,j so as to eliminate all pn,k, k = j+ 1, . . . ,m− 1. We start out eliminating pn,j+1. Consider the ratio An,j/σj+1.
Using (2.3) and (2.4) we obtain

An,jσj+1
=


ℓj+1pn,j +

m
k=j+1

|sj+1,k|

|σj+1|
pn,j+1


+ pn,jτj+1 −

m
k=j+2

pn,k⟨τj+1, ⟨sj+2,k, σj+1⟩⟩,
and An,j/(σj+1) has the form of A in Lemma 2.1, where An,j/(σj+1wn,j) ∈ H(C \ ∆j+1), and

An,jσj+1wn,j
∈ O


1

z|n|−M−n1−···−nj−1


, z → ∞.

From Lemma 2.1, we obtain that for ν = 0, . . . , |n| − M − n1 − · · · − nj − 3

0 =


∆j+1

xν


pn,j(x) −

m
k=j+2

pn,k⟨sj+2,k, σj+1⟩(x) dτj+1(x)
wn,j(x)

,

which implies that the function in parenthesis under the integral sign has at least |n| −M − n1 − · · · − nj − 2 sign changes
on ∆j+1. In turn, it follows that there exists a polynomialwn,j+1, degwn,j+1 = |n| −M − n1 − · · · − nj − 2, whose zeros are
simple and lie on ∆j+1 such that

pn,j −
m

k=j+2
pn,k⟨sj+2,k, σj+1⟩
wn,j+1

∈ H(C \ ∆j+2)

and

pn,j −
m

k=j+2
pn,k⟨sj+2,k, σj+1⟩
wn,j+1

= O


1

z|n|−M−n1−···−nj−1−2nj−1


, z → ∞.

Notice that pn,j+1 has been eliminated and that

⟨sj+2,k, σj+1⟩ = ⟨⟨σj+2, σj+1⟩, σj+3, . . . , σk⟩, k = j + 3, . . . ,m.
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Now we must do away with pn,j+2 in pn,j −
m

k=j+2 pn,k⟨sj+2,k, σj+1⟩ (in case that j + 2 < m). To this end, we consider
the ratio

pn,j −
m

k=j+2
pn,k⟨sj+2,k, σj+1⟩

⟨σj+2, σj+1⟩
and repeat the arguments employed abovewithAn,j. Afterm− j−2 reductions obtained applying consecutively Lemma 2.1,
we find that there exists a polynomial which we denote w∗

n,j, degw∗

n,j = |n| − M − n1 − · · · − nj−1 − (m − j − 1)nj − 2
whose zeros are simple and lie on ∆m−1 such that

pn,j − (−1)m−jpn,m⟨σm, . . . , σj+1⟩
w∗

n,j
∈ H(C \ ∆m)

and

pn,j − (−1)m−jpn,m⟨σm, . . . , σj+1⟩
w∗

n,j
= O


1

z|n|−n1−···−nj−1−(m−j)nj−1


, z → ∞.

Dividing by (−1)m−j
⟨σm, . . . , σj+1⟩, from here it also follows that

pn,j(−1)m−j
⟨σm, . . . , σj+1⟩−1

− pn,m

w∗

n,j
∈ H(C \ ∆m)

and

pn,j(−1)m−j
⟨σm, . . . , σj+1⟩−1

− pn,m

w∗

n,j
= O


1

z|n|−M−n1−···−nj−1−(m−j)nj−2


, z → ∞.

On account of (1.5), these relations imply that (pn,j/pn,m),n ∈ Λ, is a sequence of incomplete diagonal multi-point Padé
approximants of (−1)m−j

⟨σm, . . . , σj+1⟩ and (pn,m/pn,j),n ∈ Λ, is a sequence of incomplete diagonal multi-point Padé ap-
proximants of (−1)m−j

⟨σm, . . . , σj+1⟩−1
. Since ⟨σm, . . . , σj+1⟩−1

= τm,j+1 + ℓm,j+1, deg ℓm,j+1 = 1, and the measures sm,j+1
and τm,j+1 satisfy Carleman’s condition by Lemma 2.2 we obtain (2.5). �

3. Proof of Theorem 1.2

Proof. The type I Hermite–Padé polynomials

an,0, . . . , an,m


with respect to f satisfy

(i) deg an,j ≤ nj − 1, j = 1, . . . ,m,
(ii) an,0 +

m
j=1 an,j(s1,j + rj) = O(1/z|n|) ∈ H(C \ ∆1)

′

Denote by T :=
m

j=1 tj, D := deg T , multiplying (ii) by T

pn,0 +

m
j=1

Tan,js1,j = O(1/z|n|−D) ∈ H(C \ ∆1) (3.1)

where

pn,0 = Tan,0 +

m
j=1

Tan,jrj. (3.2)

Therefore

pn,0, Tan,1, . . . , Tan,m


is an incomplete type I Hermite–Padé approximant of the Nikishin system (s1,1, . . . , s1,m)

with respect to the multi-index (n1 + D, . . . , nm + D). From Lemma 2.3 it follows that for j = 1, . . . ,m

h − lim
n∈Λ

an,j

an,m
= (−1)m−jsm,j+1, h − lim

n∈Λ

an,m

an,j
=

(−1)m−jsm,j+1
, (3.3)

and

h − lim
n∈Λ

pn,0

Tan,m
= (−1)msm,1, h − lim

n∈Λ

Tan,m

pn,0
=

(−1)msm,1
. (3.4)
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Substituting (3.2) and (3.3) into (3.4) we get

h − lim
n∈Λ

an,0

an,m
= (−1)msm,1 −

m
j=1

(−1)m−jsm,j+1rj. (3.5)

Due to (ii) and (2.2), it follows that
xνAn,1(x)T (x)dσ1(x) = 0, ν = 0, . . . , |n| − D − 2

where An,1 = an,1 +
m

k=2 an,ks2,k. This implies that An,1 has at least |n| − D − 1 sign changes in
◦

∆1.
Let Nn = max{n1, n2 −1, . . . , nm −1} andwn,1 be themonic polynomial whose zeros are the points whereAn,1 changes

sign in
◦

∆1. Then

An,1(z)
wn,1(z)

= O

1/z|n|−Nn−D

∈ H(C \ ∆2). (3.6)

Let ȷ be the last component of (n1, . . . , nm) such that nȷ = minj=1,...,m(nj). Let us prove that an,ȷ has at most D zeros on
C \ ∆m.

From [16, Theorem 1.3] (see also [12, Theorem 3.2]), we know that there exists a permutation λ of (1, . . . ,m) which
reorders the components of (n1, n2, . . . , nm) decreasingly, nλ(1) ≥ · · · ≥ nλ(m), and an associated Nikishin system
(r2,2, . . . , r2,m) = N (ρ2, . . . , ρm) such that

An,1 =


qn,1 +

m
k=1

qn,kr2,ks2,λ(1), deg qn,k ≤ nλ(k) − 1, k = 1, . . . ,m,

wheres2,λ(1) ≡ 1 when λ(1) = 1. The permutation may be taken so that for all 1 ≤ j < k ≤ nwith nj = nk then also λ(j) <
λ(k). In this case, see formulas (31) in the proof of [16, Lemma 2.3], it follows that qn,m is either an,ȷ or −an,ȷ.

Set

Qn,j := qn,j +

m
k=j+1

qn,kr1,k, j = 1, . . . ,m − 1, Qn,m := qn,m.

From (3.6), using again (2.2) we get
xνQn,2(x)

dρ2(x)
wn,1(x)

= 0, ν = 0, . . . , |n| − nλ(1) − nλ(2) − D − 2,

which implies that Qn,2 has at least |n| − nλ(1) − nλ(2) −D− 1 sign changes on
◦

∆2. Repeating the argumentsm− 1 times, it

follows that Qn,m = qn,m has at least nȷ − D − 1 sign changes on
◦

∆m which implies that an,ȷ has at most D zeros on C \ ∆m
because qn,m = ±an,ȷ.

The index ȷ as defined above may depend on n ∈ Λ. Given ȷ ∈ {1, . . . ,m}, let Λ(ȷ) denote the set of all n ∈ Λ such that
ȷ is the last component of (n1, . . . , nm) satisfying nȷ = minj=1,...,m(nj). Fix ȷ and suppose that Λ(ȷ) contains infinitely many
multi-indices.

Should ȷ = m, then an,m hasnm−D−1 zeros in
◦

∆m. According to (3.5) the sequence of rational fractions


an,0
an,m


,n ∈ Λ(m),

which have atmostD poles inC\∆m converges in Hausdorff content to a functionwhich has exactlyD poles inC\∆m (recall
that if j ≠ k the poles of rj and rk distinct). Using Gonchar’s lemma in [17] it follows that for all n ∈ Λ(m)with |n| sufficiently
largewehave that deg an,m = nm−1 having an,m exactly nm−D−1 zeros on∆m and the rest of its zeros converge to the poles
of the rj, j = 1, . . . ,m according to their order. This fact togetherwith (3.3) andGonchar’s lemma again imply (1.6) and (1.7).

Let us prove that for every compact K ⊂ C \ ∆m there exists N = N(K) such that for n ∈ Λ, |n| > N , the polynomial
an,m has at most D zeros on K . To the contrary, suppose there exists K ⊂ C \ ∆m and an infinite sequence of multi-indices
Λ′

⊂ Λ such that for every n ∈ Λ′an,m has at least D + 1 zeros on K . Since ∪
m
j=1

Λ(ȷ) = Λ there exists ȷ such that Λ(ȷ) ∩ Λ′

contains infinitely many sub-indices. Because of what was proved above ȷ ∈ {1, . . . ,m − 1}.
Fix R sufficiently large so that K is contained in the disk D(0, R) = {z : |z| < R}. The polynomial an,ȷ,n ∈ Λ(ȷ) ∩ Λ′, has

at most D zeros in D(0, R) \ ∆m. Let qn be the monic polynomial of degree ≤ D whose zeros are the points in D(0, R) \ ∆m
where an,ȷ equals zero. Since the zeros of the polynomials qn are uniformly bounded, there exists an infinite sequence of
indicesΛ ⊂ Λ(ȷ) ∩ Λ′ such that limn∈Λ qn = q, deg q ≤ D, uniformly of D(0, R). Since the number of zeros of q is at most D
and the distance between K and {z : |z| = R} ∪ ∆m is positive, we can find a compact setK ⊂ D(0, R) \ ∆m which contains
K in its interior, whose boundary ∂K consists of a finite number of non-intersecting smooth Jordan curves, and ∂K contains
none of the zeros of q. Taking a subsequence of Λ if necessary we can assume that ∂K contains no zero of qn,n ∈ Λ.
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The functions qnan,m/an,ȷ,n ∈ Λ, are holomorphic in D(0, R) \ ∆m. On account of the second part in (3.3) and Gonchar’s
lemma, we obtain that

lim
n∈Λ

qnan,m

an,ȷ
= (−1)m−ȷ qsm,ȷ+1

uniformly on compact subsets of D(0, R)\∆m; in particular on ∂K . The limit is never equal to zero on ∂K . Let ∂K be oriented
positively. Then

lim
n∈Λ

1
2π i


∂K

(qnan,m/an,ȷ)
′(z)dz

(qnan,m/an,ȷ)(z)
=

1
2π i


∂K

(q/sm,ȷ+1)
′(z)dz

(q/sm,ȷ+1)(z)
.

According to the argument principle, the right hand equals the number of zeros of q surrounded by ∂K which is at most D.
Therefore, for all n ∈ Λ such that |n| is sufficiently large the left hand must be equal to an integer ≤ D. However, for each
n the integral on the left represents the number of zeros of an,m surrounded by ∂K which is at least equal to D + 1. This
contradiction proves the statement.

Combining the statement just proved with formula (3.5) and Gonchar’s lemma, (1.7) readily follows. Additionally, Gon-
char’s lemma implies that each pole of rj, j = 1, . . . ,m attracts as many zeros of an,m as its order. That is, if ζ is a zero of T
of multiplicity κ then for each ε > 0 sufficiently small there exists an N such that for all n ∈ Λ, |n| > N , an,m has at least
κ zeros in {z : |z − ζ | < ε}. Since the total number of such zeros counting multiplicities is D, we conclude that the only
accumulation points of the zeros of the an,m are either the poles of the rj (each of which attracts exactly as many zeros of
the an,m as its order) or points in ∆m ∪ {∞}. Using again the argument principle this is true for all j = 1, . . . ,m and the rest
of the zeros of an,j accumulate on ∆m ∪ {∞}. This together with (3.3) and Gonchar’s lemma imply (1.6). Finally, (1.6) and
the argument principle imply that also for each j = 1, . . . ,m − 1 each zero of T attracts exactly as many zeros of an,j as its
multiplicity and the rest of the zeros of an,j accumulate on ∆m ∪ {∞}. �

Remark 3.1. According to formula (17) in [12, Lemma 2.9], for each j = 0, . . . ,m − 1

0 ≡ (−1)m−jsm,j+1 +

m−1
k=j+1

(−1)m−ksm,k+1sj+1,k +sj+1,m, z ∈ C \ (∆j+1 ∪ ∆m). (3.7)

Combining (3.7), (1.6), and (1.7), we obtain

lim
n∈Λ


an,j +

m
k=j+1

an,ksj+1,k

an,m

 = 0, j = 1, . . . ,m − 1,

and

lim
n∈Λ

an,0 +

m
k=1

an,k(s1,k + rk)

an,m

 = 0,

uniformly on each compact subset K of (C \ ∆m)′.

Remark 3.2. The thesis of Theorem 1.2 remains valid if in place of (1.5) we require that

nj =
|n|

m
+ o(|n|), |n| → ∞, j = 1, . . . ,m. (3.8)

To prove this we need an improved version of Lemma 2.3 in which the parameter M in (b′) depends on n but M(n) =

o(n), n → ∞.

Remark 3.3. If either∆m or∆m−1 is a compact set and∆m−1 ∩∆m = ∅, it not difficult to show that convergence takes place
in (1.6) and (1.7) with geometric rate. More precisely, for j = 1, . . . ,m − 1, and K ⊂ C \ ∆m, we have

lim sup
n∈Λ

 an,j

an,m
− (−1)m−jsm,j+1

1/|n|

K

= δj < 1 (3.9)

and

lim sup
n∈Λ

 an,0

an,m
−


(−1)msm,1 −

m−1
j=1

(−1)m−jsm,j+1rj + rm


1/|n|

K

= δ0 < 1. (3.10)
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The proof is similar to that of [18, Corollary 1]. It is based on the fact that the number of interpolation points on ∆m−1
is O(|n|), |n| → ∞, and that the distance from ∆m to ∆m−1 is positive. Relations (3.9) and (3.10) are also valid if (1.5)
is replaced with (3.8). Asymptotically, (3.8) still means that the components of n are equally distributed. One can relax
(3.8) requiring, for example, that the generating measures are regular in the sense of [15, Chapter 3] in which case the
exact asymptotics of (3.9) and (3.10) can be given (see, for example, [19], [20, Chapter 5, Section 7], and [21, Theorem 5.1,
Corollary 5.3]).

Remark 3.4. The previous ideas can be applied to other approximation schemes.
Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm),n = (n1, . . . , nm) ∈ Zm

+
\ {0}, and wn, degwn ≤ |n| +max(nj) − 2, a polynomial

with real coefficients whose zeros lie in C \ ∆1, be given. We say that

an,0, . . . , an,m


is a type I multi-point Hermite–Padé

approximation of (s1,1 + r1, . . . ,s1,m + rm) with respect to wn if:

(i) deg an,j ≤ nj − 1, j = 1, . . . ,m, deg an,0 ≤ n0 − 1, n0 := maxj=1,...,m(nj) − 1, not all identically equal to 0 (nj = 0
implies that an,j ≡ 0),

(ii) An,0/wn ∈ H(C \ ∆1)
′ and An,0(z)/wn(z) = O(1/z|n|), z → ∞.

Then, a result analogous to Theorem 1.2 is true.
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