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Abstract

Given two symmetric and positive definite linear function#sandy, we study the coefficients in the recurrence
relation for the system of monic polynomials orthogonal with respect to the second linear functional assuming that the
firstoneis classical and that there exists an algebraic—differential relation between these two families of polynomials.
Moreover, we determine this companion linear functional as a rational modification of the classical one.
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1. Introduction

Let % be a linear functional in the linear spaeeof the polynomials with real coefficients. LEt be
the algebraic dual space Bf i.e., the linear space of the linear functionals define@ owe will denote
(, p) the action of a linear functional over a polynomiap.

A sequence of monic polynomial®, } is said to be orthogonal with respectaoif

(i) degP, =n,
(”) (U, Py Pp) = knopm, kn 75 0, n,m e N.
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In such a case, the linear functioralis said to be quasi-definite. i, € R, then(#, p?) > 0 for
every polynomiap. In such a situation the linear functiorlis said to be positive definite.

An important characterization of sequences of monic polynomials orthogonal with respect to a quasi-
definite linear functional is given in terms of a three-term recurrence relation that such polynomials
satisfy

xPyp="Py1+ ﬂnPn + VnPn—l’ (11)

n>1, withy, # 0. This result is known as Favard’s theorem (&8 Moreover, in the positive definite
casey, > 0.

Taking into account tha¢P,} is a basis inP, we can define the corresponding dual basi®iras
follows. /

Leto, = <’75:1;’222>
prove that(o,, Py) = dum.

An important family of linear functionals is constituted by the symmetric linear functionals, i.e.,
(U, x®'*+1y = 0 for everyn € N.

Notice that if we assume is a quasi-definite linear functional then in such a situation the recurrence
relation (1.1) becomes

be the linear functional such théat,, p) = (%, (WI; ‘;"2>). Then it is straightforward to

xP, = n+l+V;1Pn—lv n>z1,

i.e., we get only one sequence of parameters in order to generate our sequence of monic orthogonal
polynomials.

In this contribution, we will analyze sequences of polynomials orthogonal with respect to a Sobolev
inner product

o(p,q) = (", pq) + (7", p'q’), (1.2)

wherep,q € P, . € RT, andw", v are positive definite symmetric linear functionals. In such a case,
there exists a sequence of monic polynom{&g} such that

(i) degQ;} =n,
(i) @(QF Q) =knSum. kn #0, n,m e N.

The three term recurrence relation (1.1) does not hold for the seqéérj¢@nd thus we need other
tools in order to analyze the behavior of such polynomials.

Afirst approach was given by Iserles et[d]. when they introduced the concept of symmetric coherent
pairs of measures. Given two linear function#ls 7, they are said to be a symmetric coherent pair when
the corresponding sequences of monic polynoniigl$ and{7,,} orthogonal with respect te" and ",
respectively, satisfy

(n+ DT, =P g+ 0, Py_q, n>1,

where(s,) is a sequence of non-zero real numbers. In the paper by I§éfleesme examples of sym-
metrically coherent pairs of measures are shown. In 1995, Méijetescribed the set of symmetrically
coherent pairs of measures. In such a case, there is a very simple connection between the detjyiences



and{Q7}. Indeed
QI);+1 + dr/l inf]_ = Pn+1 + 0y Pr—1, n=1l (13)

In [3] the authors show the interest of this concept in order to provide an efficient algorithm to find the
coefficients of the Fourier—Sobolev expansion. In particular, it reveals the role of symmetric coherence
in the approximation of a function by its projection into polynomials and simultaneously to approximate
its derivative by the derivative of the polynomial approximant. The standard projection is poor near the
end points of the support of the measutewhereas the Sobolev projection displays a reasonably good
behaviour in the whole support.

The aim of our contribution is to analyze an inverse prob[BmGiven two symmetric and positive
linear functionalsy?” andy~ as well as a Sobolev inner product (1.2), such that (1.3) holds, then to find the
relation between the measurgsandy . We solve this problem when” is a classical linear functional.

The structure of the paper is as follows. In Section 2, we find the relation between the sequhces
and{T,}, under assumption that (1.3) is satisfied. In Section 3 we assume the linear funetioaal
classical one, i.e., Hermite or Gegenbauer. We find the coefficients of the three-term recurrence relation
that{T,} satisfies, as well as the explicit expression of the linear functionial terms of#". Finally, in
Section 4 we show that the examples analyz€djrare the only cases available for our problem.

2. Sobolev inner products

Let »” andy” be two positive definite symmetric linear functionals in the sfaoépolynomials with
real coefficients and assume that they are normalizedsyl) =1 and(¥", 1) = 1. Associated with this
pair of linear functionals, we define the bilinear fogmn P as usual,

o(p.q) =", pq) + iV, p'q"), p.geP (2.1)

with 2 € RT. In such a situation, the Gram matrix associated with the bilinear foisrpositive definite
and thus there exists a sequence of monic polynomials orthogonal with respeshtoh we denote by
{Q;/;}nQO'

Definition 2.1. Let#"andy" be two positive definite symmetric linear functionals and denote™hy, - o
and{7,}, - the sequences of monic polynomials orthogonal with respeet tand 7", respectively.

(w, v") is said to be a symmetric coherent pair of linear functionals if there exists a sequence of hon-zero
real numbersgas,), - 1 such that the monic orthogonal polynomials are related by

(n+l)7;1:P,;+l+0n r/l—l’ l’l>1

Symmetric coherent pairs have been introduced by Iserles et al. in 199 ]sed described in the
paper by Meijef6].

Let us denote by,, t,, andg’ the squared of the norms of the polynomigs 7,,, andQ? with respect
to %", 7", ande, respectively. This means/’, P?) = p,, (¥, T?) =t,, andp(Q}, 0}) =g/



Theorem 2.2.1f (%", ¥") is a symmetric coherent pair of linear functionals then there exists a non-zero
sequenced,f)n)l such that the Sobolev polynomia@f;},,zo are related with{ P,,},, » o by

Qﬁ;+1+d,fo;_1= Pn+1+0'nPn—la n>1, (22)
whered; = 6, pu—1/q;_, for n>1.
The proof of this result can be found [4].

Now, in a bit more general situation, we consider the case when relation (2.2) holds, but with the only
restriction that the coefficients which appear in the relation are non-zero.

Theorem 2.3. Let %, v~ be two positive definite symmetric linear functionals and define the bilinear
form¢ by (2.1).We assume that the polynomiél3, },, . o orthogonal with respect to the linear functional
" and the Sobolev polynomigl@?}, > o orthogonal with respect te are related by(2.2),with (¢,),, > 1
and(d,j“)wl non-zero sequences of real numb@iisen there exists a sequencs,),, - » such that

PratonPy 1=+ +cnTh2 n>2,
where{T,}, - o denotes the system of monic polynomials orthogonal with respect to the linear functional
V.
Proof. Taking into account the definition of the bilinear fokras well as (2.2), for &k <n — 2 we get
0=(Qfy1 +d} Q) 1. x) = 2k(7", (P 1 + 0u Py_px* 7).

Thus(7", (P}, + o, P,_;)x*) = 0 for any 0<k<n — 3. Then, we can writ@, . , + ¢, P,_, as alinear
combination off; fork=n—2,n—1,n,i.e.,

/ ’
Pn+1 + oy Pn_]_ =Cn,n T, + Cn,nflTnfl + Cn,n72Tn72v n=2.

Because of the symmetry of the polynomials, the coefficierfi,ofi must bec, ,—1 = 0, and since we
are considering monic polynomiats, , =n + 1. Then,

Pr;-l—l + on Pr/z—l =n+1T, + cnn—2Th—2, n >2.

Now we denote, ,—2=c, and we compute an explicit expression for it. First, using the orthogonality of
the polynomialsQ;: with respect tap we havep(Q; 4 +d; Q:_;, x"~1) = d/q;_,. On the other hand,
using (2.2) we get
0(Qpp1 +dy 01, X" ) = 0upu1+ A = Denty—2, n>2,
from where we deduce the explicit expression for the coefficients,
. d]f['q;ibfl — OnpPn-1

Cp = ,n=2. O
(n — 1)tn72

Furthermore, we see from the proof of the theorem that 7”) is a symmetric coherent pair if and
only if ¢, =0 for alln >2, which is equivalent to

s 1] 1
&=t 0,
4n-1



We observe that it is the same value for the coefficitnwhen we deduce (2.2) from the symmetric
coherent condition.

3. The classical case

Let#", 7~ be two symmetric linear functionals and denotg By}, . o and{7,},,». o the corresponding
sequences of monic orthogonal polynomials. We assume that there exist sequences of non-zero rea
numbers(s,), -2 and(c,), > » such that

P,,/H_1+0,1P,;_1: m+DT, +c,T,—2, n=2. (3.2)

In this section, we will study the case when the first functiowal is a classical linear functional, that
is, the classical Hermite or the classical Gegenbauer functional.

We assume thdtP, }, - ¢ is a classical family of polynomials. Then, it is well known ($2p that the
corresponding monic derivatives of these polynomials, which we denote by

1
R, = m ,;+1, n=0,

constitute again a classical system of polynomials orthogonal with respect to a symmetric linear functional
2. In this case, relation (3.1) becomes

Ry+uy 2Ry 2=T,+s,2T—2, n=2

withu, o= 0 — 1o,/(n +1)ands,_2=c¢,/(n +1),n>2.
Thus the study of the algebraic—differential relation (3.1) when the first linear functional is classical
can be reduced to the study of a relation

Ry +up 2Ry 2=T, +sp2T—2, n=2

with {R,},~ o a classical family of symmetric orthogonal polynomials.
Furthermore, in order to avoid trivial situations, we can assumesthed so anduy # s1. This is an
equivalent condition t®, # T,, for all n>2, as we show in next result.

Lemma 3.1. Let{R,}, - and{7,}, - o be two sequences of monic polynomials orthogonal with respect
to symmetric linear functional® andy~, respectivelyAssume that there exist two sequences of non-zero
real numbergu,), - o and(s,), > such that

Ry +upn 2Ry 2=T,+s,-2T—2, n=2. (32)
Then,one of the following situations holds:

() if ug=sothen,R, =T, for all n>0.Moreoveru, = s, forall n>0,
(ii) if ug # so anduy # s1,thenR,, # T, for everyn>2,
(i) if ug # sp anduy = s1, thenRy, # Ty, for everyn > 1, R3 = T3, and if there exist®v > 1 such that
Roni1 # Toyi1thenRy, 11 # To,qq forall n > N.



Proof. If we assume that the linear functionatsandy~ are normalized by#, 1) =1 and{7", 1) =1,
from (3.2) we get

(U, T,) = —sp_2(U, Ty_2), n=3, (U, T2) =ug—so, (%, T1)=0,
(,V‘v Rn) = —Up-2 <4%’ Rn—2>, n>3a <HVQ7 R2> =S80 — uo, <V7 Rl) = 0

(i) If uo = so, from the previous relations we ge¥, 7,) =0 and(¥", R,) =0forn>1. ThusR,, =T,
for all n >0. Furthermore it is straightforward to see that in this situatignrs s, for all n>0.

(i) Now we assume that botly # so anduy # s1. First, we will prove that even degree polynomials
are different, thatigy, # R, forn > 1. If there exists somey € N such thatRo,,=T72,, then, from (3.2)
we deduce thatz,,—2R2,q—2 = $210—27240—2. Since the sequenceés, ), - o and(s,), > o have non-zero
elements, it must b&y,,,—2 = s2,,—2 andRp,,,—2 = T2,,—2. Applying again the same process tm2- 2
and so on, we getg = sg, which it is not possible. Thu,, # Ro, for all n>1.

In an analogous way, for odd degree polynomials we see that if theremxist& such thatRo,,+1 =
Ton0+1, then we geti; = s1 a contradiction. Therefor€, 11 # Ro,41 forn>1.

(i) If uo # so, then the same process that we have done to prove assertion (ii) allows us to prove that
To, # Ry, for n>1. For odd polynomials, sinae; = s1 from (3.2) we get thaRz = 73. Then, if we
assume that there exists> 2 such thatRoy 1 # Toy_1, thenRoy11 # Toya1 Since if it is not true,
i.e. Royi1 = Toni1, from (3.2) we haveioy _1Roy 1 = soy_1Ton 1 @ contradiction. I

3.1. On the generation of recurrence coefficients{fn

Let %, v~ be positive definite symmetric linear functionals. Considey}, .o and{7,}, - the cor-
responding sequences of monic orthogonal polynomials. We assume that (3.2) holds, Wity and
(sn)n>0 sequences of non-zero real numbers with# so andui # s;. Denote byy, and?y, the
coefficients of the three term recurrence relation{®y}, - o and{7,}, - o, respectively. This means

Rn+l = XRn - yn Rn—la n 2 la RO = 1, Rl = )C, (33)
Thi1=xT, —7,Th—1, n=1, Th=1, Ti=x (3.4)

with y, > 0 andy, > 0 forn>1.

In the background of the problem we assumas a classical symmetric linear functional, that is,
the family{R,}, - ¢ is either the Hermite polynomial sequence or the Gegenbauer polynomial sequence.
Thus, the recurrence coefficients for these polynomyalsre known. In this section, we present a study
of the coefficients, in the recurrence relation fdf7, }, - o. More precisely, we give a way to compute
these coefficients in terms @f, (#,), >0, and(s,),, >o-

Combining relations (3.2)—(3.4), and simplifying in an appropriate way, we get

(Vn +up—2 —up—1)Rp—1+ un—ZVn—ZRn—S
= G’n +sp—2 —sp—1)Tp—1+ Sn—2¥n72Tn—3, n>3. (35)

Thus, taking into account that the polynomials are monic, we have
Yo FlUp—2—Up_1= ;;n +Sp—2—Sp—-1, n >3.

From Lemma 3.1, these expressions must be different from zero farabyOtherwise, iy, + uny—2 —
uny—1 = 0 for someng =5, thenr,,_3 = T,,—3 which is not possible.



In such a situation, (3.5) becomes

Up—2Y,—2 Sn—2Vn—2
! Rn—3 = Tn—l + = )

T,-3, n=b.
Vp T Un—2 —Up—-1 Yn T Sn—2 — Sn—-1

Ry,_1+

Using again (3.2) we substitufg, 1 in order to get

Uy Sn—27p—
n +up2—uy_1 Vn tSn—2 = Sn-1

from where we deduce

Un—-2Vp—2 Sn—27n—2
—Up-3= 72
Vp +Up—2 — Up—1 Yn + Sn—2—Sp—1

— Sh-3, n>57

which are equal to zero far>5 taking into account Lemma 3.1.
As a conclusion, we have shown thgtands, are related with the recurrence coefficieptandy,, by

Vp FUp—2 —Up_1= ﬁn + Sp—2 — Sp—1, n=2, (36)
Up—2Vp_2=un-3(), +Un—2 —uy—1), n=5, (3.7)
Sn—2Vn—2 =5n-3(, + Sp—2 — Sp—1), n=5. (3.8)

Notice that (3.7) and (3.8) hold in a trivial way far= 2 if we setu_1 = s_1 =0 andyg = 79 = 0.
Moreover, if (3.6) is different from zero for = 3, 4 then, (3.7) and (3.8) hold far> 2.
Now, if we divide (3.7) by (3.8), we obtain

Vu, N=3, (3.9)

where we have used (3.6) to simplify our computations.
On the other hand, it is easy to check that- ug =7, — so. Then, using again (3.6) we can compute

n+1 n+1
Z Yk — Un—1= Z ’;k — Sn—1
forn>0.

Once we have expressed the recurrence coefficigimtgerms ofu,,, s,, andy,,, we only need to study
the properties of the sequendeas),, o and(s,), > o

From (3.7) we can identify the sequengs),, - ¢ as the solution of a non-linear difference equation.
Then, we will study the properties of the solution for this difference equation.

Proposition 3.2. If (u,), >0 is a solution of the difference equati¢8.7), then it satisfies a quadratic
difference equation

Tn?
Uny1+ Z—"T =Vng1t g2+ A, 123, (3.10)

n—

whereA = (uz — 74) (1 — y3/u2).



Proof. First, from (3.7) we pulz,+1 — u, in terms ofu,, andu, 1 for n >3. We sum fronk =3to k=n
and we get

n n
Uk
un+1—u3=2 yk+2—z ks n>3. (3.11)
k=3 k=3 k-1

On the other hand, from (3.7) we express the rati0:;_1 in the form
Uk _ Tkl Tkl
Ug—1  Ug—1  Uf-2

+1, n>4.

Then, we can compute (3.11) foe= 4:

n n
U373 VVk+1  Vk=17k
un+1—u3=ZVk+2—u—2—Z[ - +Vki|

k=3 kg b M1 k2
YnVn+1 | V3V4  V3U3
=Vnt1 T Vng2 — Va4 — + - , n=4
Upn—1 uz uz

Moreover, from (3.7) this identity holds far= 3. If we denote byA the term which does not depend on
nin the previous relation, then

7343 + 734
uz uz

and as a consequence we obtain (3.10).

A=u3— — 74 = (u3 —74)(1 = y3/u2),

This new relation between, 1 andu,,—1 allows us to obtain interesting properties of the sequence of
coefficients(u,), - 0. More precisely, in order to transform (3.10) into a linear difference equation, we
will express every,, as a rational function in the variabfe We will prove this in the following:

Theorem 3.3. If (u,), - is the solution sequence (§.10)then there exist two sequendes}, - o and
{gn}n >0, Which are solutions of the linear difference equations

' =[A+ 92,41 + V20421 Tn-1 — Y2nV2n41"n-2, N=2, (3.12)
gn+1=[A +v2042 + V2043190 — V2ut1V2042Gn-1, n=1, (3.13)
such that the coefficients, can be expressed in the form
I'n dn

U1 = s Uy = , n=1.
'n—1 qdn-1

Furthermore,{r,}, o and{g,}, - are both systems of orthogonal polynomials in the variableity
degr, = n anddegg, =n — 1.
Proof. We define the sequencgs}, - o and{g,}, - o recursively by

r
r0=15 M2n+1: - k) n21’




Then, considering relation (3.10) for both odd and evenindices, we can ség thap and{g, },, - o verify
the announced relations. Moreover, we check the degree of the polynomials from the initial conditions
for each system.

For the sequende, }, -~ o we havep=1andry =[uz/uz2—y3]A+74— (y374/u2), and, as a consequence,
degr, = n.

For {g.}, >0 the initial conditions argo = 1 andg; = u», thus degj, =n — 1.

Finally, sincey,, 72,1 > 0 in the three term recurrence relation fgr andy,,, , 172, 2 > 0 in the three
term recurrence relation fay,, from the Favard’s theorem (sg&) we deduce thafr, }, .o and{g,}, >0
are sequences of orthogonal polynomials with respect to a positive definite linear functianal.

As a consequence, we see that the sequengks. o and{g,}, > o are connected with certain systems
of associated polynomials.

Corollary 3.4. Let {R,},-o be a sequence of polynomials orthogonal with respect to a positive def-
inite symmetric linear functionallhen,we consider(S,},~o and {Q,}, - o sequences of polynomials
orthogonal with respect to positive definite linear functionals, such that

Ron(x) = Sp(x?), Ropp1(x) =x0,(x%), n>0. (3.14)

Thus,the sequencegy, },~o and {r,}, o considered in the previous theorem are the co-recursive of
associated polynomials of first kind {&#,},, - o and{Q,}, > o, respectively.

Proof. First, notice that such sequendes}, - o and{Q,}, > exist because the polynomidlg,}, - o
are orthogonal with respect to a symmetric linear functional [gpeThen, we consider the three-term
recurrence relations for these polynomials,

xSy = n+l+anSn +bySp—1, n=1, (315)
xQy=0nt1+a@nQn + by 0n-1, n>1. (3.16)

Changingx by x? in (3.15) we substitute (3.14) and taking into account Rt - o satisfy (3.3), we
obtain for even degree polynomials

Ront2 + [720 + v2n411R2n + 12,1720 R2n—2 = Ron42 + anRon + by Rop—2,
for n>1. Then we deduce that the coefficients of the recurrence relatids,fljy- o can be written as a
sum or a product of the recurrence coefficients{®y}, - o,

an = Y2, + V2041 b, = Von—1V2n, N >1.

Thus, by comparison with (3.13) and taking into account the initial conditions for these polynomials, we
deduce thatg,}, - ¢ are the co-recursive of associated polynomials of first kingsgpf,, - o.
In a similar way, changing by x2 in (3.16) and multiplying by, we get

Rons3 + [72n41 + 7204 2) R2nt1 + 72,7204 1R20-1 = Ron43 + GnRoni1 + by Rou—1,

for n>1. Then, the recurrence coefficieatsandb,, are

an = You41 + V2n42> b =V272041, n=1.



Finally, we compare with (3.12) and deduce that, . o are the co-recursive of associated polynomials
of firstkind of {Q,},,~0. O

In Section 4 we will see that in some particular cases we can identify explicitly these systems of
orthogonal polynomials.

In a similar way, we can obtain analogous properties for the coefficignisom (3.6), (3.7) and (3.9)
we can easily obtain that the sequeiigg is the solution of the second-order difference equation,

Np+15n = Sn+1(77n—1 —Sp—1+8n), n=2,

wherey, =y, o+u,—u,11, forn > 1. This difference equation is the analogous to (3.7) for the coefficients
u,, and it can be treated in the same way.

3.2. The companion linear functional

In this section we study the companion linear functiongland we will show that it is a rational
modification of the classical linear functional

Theorem 3.5. Let# and v~ be symmetric and positive definite linear functionals such that the corre-
sponding systems of monic orthogonal polynomjfdls}, . o and{7,}, - o respectivelyare related by
(3.2),with u,s, # 0,n € N. Then there exist real numberstg,and u such that

P +a)U=px>+b)v. (3.17)

Proof. Leta € R be an arbitrary real number. Let us analyze the action of the polynomial modification
(x2 4 a) % over the polynomial$7,}, - o. From relation (3.2) we get

(P +a)U, Tpy) = —su (X2 +a) U, Ty—2)

for n>5. Because of the symmetry of the linear functionaf + a) % vanishes over odd polynomials,
and it is easy to check the values over even polynomials of degecs:

(X2 +a)u, To) =71 +a,
(% + @), Ta) = 172 + (1o — $0) (1 + @),
(X2 + @), Ta) = (uz — s2)7172 — 520 — 50) (71 + a).

Sinceug # sg ands, # 0, we can choose € R such that((x? + a)%, Ts) = 0, and then we have
(x%2 4 a)u, T,) = 0 for everyn > 3.

If we consider the expansion of the functioriaf + a) % in terms of the dual basis of the system of
polynomials{7,}, - o, then we get

T; v
lj

2
«Crayu=>y 1

j=0

(3.18)

10



where/; =0 and/; = (x% 4+ a)u, T;) for j =0, 2. Since we have already computed these values, we
substitute the appropriate value #oand we finally deduce relation (3.17) with

uz — 82 uz —s2 . . ~ uz71y2
a=—"—"—"—71Y2 — 71, Y1V2 — 71, M= —
s2(ug — s0) )

b= —"F —=, O
u2(uo — so $2 7172

4. Hermite and Gegenbauer cases

In this section we analyze in particular each possible case for the classical funetighat is, when
it is the classical Hermite functional defined as

+o00o 2
(UH, p) =/ px)e" dx, peP, (4.1)

—0o0

and when it is the classical Gegenbauer functional given by

1
(wo.p)= [ po@-x 2 per (4.2)
-1
with 2> —1/2.
4.1. On the generation of recurrence coefficients for the companion polynomials

First we deal with the Hermite function@y defined by (4.1) and the corresponding Hermite poly-
nomials{H,},-o. Let 7'y a symmetric linear functional and denote {3}, . o the system of monic
polynomials orthogonal with respect 16y . Assume that these polynomials are related to Hermite poly-
nomials by

Hy +uyoH, 2=T,+ s, 2T,—2, n=2, (43)

whereu,,, s, are non-zero constants for alk0, with ug # sg anduy # s1.
It is well known that Hermite polynomials verify the following three-term recurrence relation

Hya=xH,—Ho1 n>l. Ho=1 Hi=x.

As in the previous section, we denote Jythe coefficients of the three term recurrence relation for
the polynomialq7,}, - o,

Thy1=xTy _anTn—l, nz0, To=1l Th=x

with 7, > 0 forn>1. Then, as in (3.9), we have

- n up Sp-1
n = 5
" 2up_1 Sy

, n>=3.

Now, by Theorem 3.3 we can write the coefficieqts),, - o as a rational function. We will rewrite the
statement of that theorem in this particular case and moreover we identify such a family of polynomials.

11



Theorem 4.1. The coefficientsu,), - o in relation (4.3) can be expressed as a rational function in the
form

I'n dn

9 uzﬂ - 9
'n—1 qn—1

Uyl = n>1,

wherer,, andg, are polynomials in the variablg = (u3—2)(1— %2), withdegr, =n anddegg,, =n — 1.
Moreover they satisfy the following three term recurrence relations:
rm=[A+2n+3/2lry—1—nn+1/r,_2, n=2,
and
n+1=[A+2n+5/2q, — (n+1)(n+1/2qy-1, n=1,

with initial conditions

_ 2u» A—2M2_3,
2upr — 3 uo
go=1 q1=u>.

ro=1, n

Then, we can identify these families of polynomials, up to a linear change of variable, as the co-
recursive polynomials of associated Laguerre polynomials of first kind, with parametéry2 for the
polynomialsr, (A) ande = —1/2 for the polynomialg, (A).

On the other hand, this result agrees with Corollary 3.4. It is known, see for ing@jndkat the
sequences of orthogonal polynomials corresponding to Hermite polynomials of even and odd degree are
the Laguerre polynomials with parameter —1/2 and 1/2, respectively, i.e.

—1/2 1/2
Hop(x) = LS Y2 (?),  Hopy1(x) =xL? (), n>0.

Thus, for the Hermite linear functional we can compute the values of the coeffigjeftisn >4, once
we know the values af; andus, which are determined in terms @ andu, according to (3.6) and (3.7).
In fact, we have few possible cases depending on the vanishing of (3:6:& 1, 2, 3, as we show in
the table below:

A B
0 up=1/2 up #1/2
1 ur=14ug up #1+ug
2 up =3/2+u1 up =3/24+u1 — u1/2ug
3 Uz =2+ uy uz =2+ uz —uz/u1

For Gegenbauer polynomialg;”},~ o, orthogonal with respect to the linear functional (4.2), the
three term recurrence relation is

2, -1
n(n + ) C(?l, n>1.
An+i—Dn+21) "

Let{7,}, o be asequence of monic polynomials orthogonal with respect to a symmetric linear functional
¥ G, such that

D _ L~
Cl’l+l —_ xcn -

C,g/l) + Mn—ZC,(IA_)Z =Ty +sp2Th—2, n=2
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If we denote byj, the recurrence coefficients for these polynomials, then from (3.9) we get

. nin+21—1) Uy Sp—1

Ty = , n=3.
T A+ =D+ Dy s,

Moreover, according to Theorem 3.3 we can identify the parametgys- o:

Theorem 4.2. The sequences of polynomidts}, . o and{g,}, - o defined recursively byy =1,g0 =1,
and
I'n dn

U2n+1 = ,  U2p = >
'n—1 qn—-1

n>1,

verify the following three term recurrence relations:

1, 2n + 1)(n + 2) (n+1)(2n +27+ 1)
= 22+ )2+ i+ 22+t D@+t

n(2n + 2% —1)2n + 1)(n + 2)

- 2 'n—2, n>2
420+ —1) 2+ D22+ 1+ 1)
and
[y, D@24 2n+3)(n+7+1)
An+1= 2+ i+ (2442 22+ i+2@n+i+3) "

_ @n+1)(n+A)(n+1D)2n+21+1)
42n + )2+ 2+ 122n+ 1 +2)

Qn—la n>1

In particular, when.. = 0 we have the monic Chebyshev polynomials of the first kidd,}, - o,
orthogonal with respect to the functional

1 dx
<%c,p>=/ () . peP.
-1 1—x

For these polynomials (s¢2]) the coefficients in the recurrence relation gge= 1/2 andy, = 1/4 for
n>=2,thatis

Cn+1:xcn - %Cn—lv n=2,
Co=1, Ci=x, Co=x*>-1)2
Then, by Corollary 3.4 the sequences of polynomial$, . o and{g,.},, » o can be identified, up to a linear

change of variable, as the co-recursive of associated Jacobi polynomials of first kind with parameters
(x, B) =(—1/2, 1/2), and as the co-recursive of Chebyshev polynomials of the first kind, respectively.

4.2. The companion linear functional

Finally, in this last section we give a classification of all the companion linear functionals in the Hermite
and Gegenbauer cases.

13



Remind that the Hermite functional is defined by (4.1). Then from (3.17), we see that the companion
functionaly g is given by

+oo (x2 +a) 2
Yy, p) = ———e " dx, € P,
(V"H, p) /OO p(x)(x2+b) X, P
wherea andb are positive real numbers.

In the Gegenbauer case, we have two different possibilities for the companion linear functional, de-
pending on the values of the constaa@ndb defined in (3.17):

1 2
. + _
<~ﬂG,p>=/lp<x) g2+2§ 1—x?Y2dx, pep

with a, b > 0, and

1 2
(76, p) = / . ”(X)H (L—x""Y2dx + Mp(Vb) + p(—VD)I, peP
with a, b > 1.

We finish with a remark about an example studied bjL]nIn this work they prove that Hermite (resp.
Gegenbauer) polynomials are related to the Sobolev polynomials associated with the pair of functionals
WUy, n) (resp.(%c, 7" c)) by an expression of the type (2.2). Then, by Theorem 2.3 we know that
relation (3.1) holds between Hermite (resp. Gegenbauer) polynomials and the companion sequence of
polynomials orthogonal with respect to the modified linear functiongl (resp.7 ).

Thus, our result states that these examples are not by chance, but this is the only possible modification
of the Hermite functional in order to get (2.2).
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