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Abstract

Given two symmetric and positive definite linear functionals,W andV, we study the coefficients in the recurrence
relation for the system of monic polynomials orthogonal with respect to the second linear functional assuming that the
first one is classical and that there exists an algebraic–differential relation between these two families of polynomials.
Moreover, we determine this companion linear functional as a rational modification of the classical one.
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1. Introduction

Let U be a linear functional in the linear spaceP of the polynomials with real coefficients. LetP′ be
the algebraic dual space ofP, i.e., the linear space of the linear functionals defined onP. We will denote
〈U, p〉 the action of a linear functionalU over a polynomialp.

A sequence of monic polynomials{Pn} is said to be orthogonal with respect toU if

(i) degPn = n,
(ii) 〈U, PnPm〉 = kn�nm, kn �= 0, n,m ∈ N.
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In such a case, the linear functionalU is said to be quasi-definite. Ifkn ∈ R+, then〈U, p2〉> 0 for
every polynomialp. In such a situation the linear functionalU is said to be positive definite.

An important characterization of sequences of monic polynomials orthogonal with respect to a quasi-
definite linear functional is given in terms of a three-term recurrence relation that such polynomials
satisfy

xP n = Pn+1 + �nPn + �nPn−1, (1.1)

n�1, with �n �= 0. This result is known as Favard’s theorem (see[2]). Moreover, in the positive definite
case,�n > 0.

Taking into account that{Pn} is a basis inP, we can define the corresponding dual basis inP′ as
follows.

Let �n = PnU
〈U,P 2

n 〉 be the linear functional such that〈�n, p〉 = 〈U, p Pn
〈U,P 2

n 〉 〉. Then it is straightforward to

prove that〈�n, Pm〉 = �nm.
An important family of linear functionals is constituted by the symmetric linear functionals, i.e.,

〈U, x2n+1〉 = 0 for everyn ∈ N.
Notice that if we assumeU is a quasi-definite linear functional then in such a situation the recurrence

relation (1.1) becomes

xP n = Pn+1 + �nPn−1, n�1,

i.e., we get only one sequence of parameters in order to generate our sequence of monic orthogonal
polynomials.

In this contribution, we will analyze sequences of polynomials orthogonal with respect to a Sobolev
inner product

�(p, q)= 〈W, pq〉 + �〈V, p′q ′〉, (1.2)

wherep, q ∈ P, � ∈ R+, andW,V are positive definite symmetric linear functionals. In such a case,
there exists a sequence of monic polynomials{Q�

n} such that

(i) degQ�
n = n,

(ii) �(Q�
n,Q

�
m)= k̃n�nm, k̃n �= 0, n,m ∈ N.

The three term recurrence relation (1.1) does not hold for the sequence{Q�
n} and thus we need other

tools in order to analyze the behavior of such polynomials.
A first approach was given by Iserles et al.[4] when they introduced the concept of symmetric coherent

pairs of measures. Given two linear functionalsW,V, they are said to be a symmetric coherent pair when
the corresponding sequences of monic polynomials{Pn} and{Tn} orthogonal with respect toW andV,
respectively, satisfy

(n+ 1)Tn = P ′
n+1 + �nP

′
n−1, n�1,

where(�n) is a sequence of non-zero real numbers. In the paper by Iserles[4] some examples of sym-
metrically coherent pairs of measures are shown. In 1995, Meijer[6] described the set of symmetrically
coherent pairs of measures. In such a case, there is a very simple connection between the sequences{Pn}
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and{Q�
n}. Indeed

Q�
n+1 + d�

nQ
�
n−1 = Pn+1 + �nPn−1, n�1. (1.3)

In [3] the authors show the interest of this concept in order to provide an efficient algorithm to find the
coefficients of the Fourier–Sobolev expansion. In particular, it reveals the role of symmetric coherence
in the approximation of a function by its projection into polynomials and simultaneously to approximate
its derivative by the derivative of the polynomial approximant. The standard projection is poor near the
end points of the support of the measureW whereas the Sobolev projection displays a reasonably good
behaviour in the whole support.

The aim of our contribution is to analyze an inverse problem[5]. Given two symmetric and positive
linear functionalsW andV as well as a Sobolev inner product (1.2), such that (1.3) holds, then to find the
relation between the measuresW andV. We solve this problem whenW is a classical linear functional.

The structure of the paper is as follows. In Section 2, we find the relation between the sequences{Pn}
and{Tn}, under assumption that (1.3) is satisfied. In Section 3 we assume the linear functionalW is a
classical one, i.e., Hermite or Gegenbauer. We find the coefficients of the three-term recurrence relation
that{Tn} satisfies, as well as the explicit expression of the linear functionalV in terms ofW. Finally, in
Section 4 we show that the examples analyzed in[1] are the only cases available for our problem.

2. Sobolev inner products

LetW andV be two positive definite symmetric linear functionals in the spaceP of polynomials with
real coefficients and assume that they are normalized by〈W, 1〉= 1 and〈V, 1〉= 1. Associated with this
pair of linear functionals, we define the bilinear form� in P as usual,

�(p, q)= 〈W, pq〉 + �〈V, p′q ′〉, p, q ∈ P (2.1)

with � ∈ R+. In such a situation, the Gram matrix associated with the bilinear form� is positive definite
and thus there exists a sequence of monic polynomials orthogonal with respect to� which we denote by
{Q�

n}n�0.

Definition 2.1. LetWandVbe two positive definite symmetric linear functionals and denote by{Pn}n�0
and {Tn}n�0 the sequences of monic polynomials orthogonal with respect toW andV, respectively.
(W,V) is said to be a symmetric coherent pair of linear functionals if there exists a sequence of non-zero
real numbers(�n)n�1 such that the monic orthogonal polynomials are related by

(n+ 1)Tn = P ′
n+1 + �nP

′
n−1, n�1.

Symmetric coherent pairs have been introduced by Iserles et al. in 1991 (see[4]), and described in the
paper by Meijer[6].

Let us denote bypn, tn, andq�
n the squared of the norms of the polynomialsPn, Tn, andQ�

n with respect
to W, V, and�, respectively. This means〈W, P 2

n 〉 = pn, 〈V, T 2
n 〉 = tn, and�(Q�

n,Q
�
n)= q�

n.
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Theorem 2.2. If (W,V) is a symmetric coherent pair of linear functionals then there exists a non-zero
sequence(d�

n)n�1 such that the Sobolev polynomials{Q�
n}n�0 are related with{Pn}n�0 by

Q�
n+1 + d�

nQ
�
n−1 = Pn+1 + �nPn−1, n�1, (2.2)

whered�
n = �npn−1/q

�
n−1 for n�1.

The proof of this result can be found in[4].
Now, in a bit more general situation, we consider the case when relation (2.2) holds, but with the only

restriction that the coefficients which appear in the relation are non-zero.

Theorem 2.3. LetW,V be two positive definite symmetric linear functionals and define the bilinear
form� by(2.1).We assume that the polynomials{Pn}n�0 orthogonal with respect to the linear functional
W and the Sobolev polynomials{Q�

n}n�0 orthogonal with respect to� are related by(2.2),with (�n)n�1

and(d�
n)n�1 non-zero sequences of real numbers.Then,there exists a sequence(cn)n�2 such that

P ′
n+1 + �nP

′
n−1 = (n+ 1)Tn + cnTn−2, n�2,

where{Tn}n�0 denotes the system of monic polynomials orthogonal with respect to the linear functional
V.

Proof. Taking into account the definition of the bilinear form� as well as (2.2), for 0�k�n− 2 we get

0 = �(Q�
n+1 + d�

nQ
�
n−1, x

k)= �k〈V, (P ′
n+1 + �nP

′
n−1)x

k−1〉.
Thus〈V, (P ′

n+1 + �nP ′
n−1)x

k〉 = 0 for any 0�k�n− 3. Then, we can writeP ′
n+1 + �nP ′

n−1 as a linear
combination ofTk for k = n− 2, n− 1, n, i.e.,

P ′
n+1 + �nP

′
n−1 = cn,nTn + cn,n−1Tn−1 + cn,n−2Tn−2, n�2.

Because of the symmetry of the polynomials, the coefficient ofTn−1 must becn,n−1 = 0, and since we
are considering monic polynomials,cn,n = n+ 1. Then,

P ′
n+1 + �nP

′
n−1 = (n+ 1)Tn + cn,n−2Tn−2, n�2.

Now we denotecn,n−2 =cn and we compute an explicit expression for it. First, using the orthogonality of
the polynomialsQ�

n with respect to� we have�(Q�
n+1 + d�

nQ
�
n−1, x

n−1)= d�
nq

�
n−1. On the other hand,

using (2.2) we get

�(Q�
n+1 + d�

nQ
�
n−1, x

n−1)= �npn−1 + �(n− 1)cntn−2, n�2,

from where we deduce the explicit expression for the coefficients,

cn = d�
nq

�
n−1 − �npn−1

�(n− 1)tn−2
, n�2. �

Furthermore, we see from the proof of the theorem that(W,V) is a symmetric coherent pair if and
only if cn = 0 for all n�2, which is equivalent to

d�
n = �npn−1

q�
n−1

, n�2.
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We observe that it is the same value for the coefficientd�
n when we deduce (2.2) from the symmetric

coherent condition.

3. The classical case

LetW,V be two symmetric linear functionals and denote by{Pn}n�0 and{Tn}n�0 the corresponding
sequences of monic orthogonal polynomials. We assume that there exist sequences of non-zero real
numbers(�n)n�2 and(cn)n�2 such that

P ′
n+1 + �nP

′
n−1 = (n+ 1)Tn + cnTn−2, n�2. (3.1)

In this section, we will study the case when the first functional,W, is a classical linear functional, that
is, the classical Hermite or the classical Gegenbauer functional.

We assume that{Pn}n�0 is a classical family of polynomials. Then, it is well known (see[2]) that the
corresponding monic derivatives of these polynomials, which we denote by

Rn = 1

n+ 1
P ′
n+1, n�0,

constitute again a classical system of polynomials orthogonal with respect to a symmetric linear functional
U. In this case, relation (3.1) becomes

Rn + un−2Rn−2 = Tn + sn−2Tn−2, n�2

with un−2 = (n− 1)�n/(n+ 1) andsn−2 = cn/(n+ 1), n�2.
Thus the study of the algebraic–differential relation (3.1) when the first linear functional is classical

can be reduced to the study of a relation

Rn + un−2Rn−2 = Tn + sn−2Tn−2, n�2

with {Rn}n�0 a classical family of symmetric orthogonal polynomials.
Furthermore, in order to avoid trivial situations, we can assume thatu0 �= s0 andu1 �= s1. This is an

equivalent condition toRn �= Tn for all n�2, as we show in next result.

Lemma 3.1. Let {Rn}n�0 and{Tn}n�0 be two sequences of monic polynomials orthogonal with respect
to symmetric linear functionalsU andV, respectively.Assume that there exist two sequences of non-zero
real numbers(un)n�0 and(sn)n�0 such that

Rn + un−2Rn−2 = Tn + sn−2Tn−2, n�2. (3.2)

Then,one of the following situations holds:

(i) if u0 = s0 then,Rn = Tn for all n�0.Moreoverun = sn for all n�0,
(ii) if u0 �= s0 andu1 �= s1, thenRn �= Tn for everyn�2,

(iii) if u0 �= s0 andu1 = s1, thenR2n �= T2n for everyn�1,R3 = T3, and if there existsN >1 such that
R2N+1 �= T2N+1 thenR2n+1 �= T2n+1 for all n>N .
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Proof. If we assume that the linear functionalsU andV are normalized by〈U, 1〉 = 1 and〈V, 1〉 = 1,
from (3.2) we get

〈U, Tn〉 = −sn−2〈U, Tn−2〉, n�3, 〈U, T2〉 = u0 − s0, 〈U, T1〉 = 0,
〈V, Rn〉 = −un−2 〈V, Rn−2〉, n�3, 〈V, R2〉 = s0 − u0, 〈V, R1〉 = 0.

(i) If u0 = s0, from the previous relations we get〈U, Tn〉 = 0 and〈V, Rn〉 = 0 for n�1. ThusRn = Tn
for all n�0. Furthermore it is straightforward to see that in this situation,un = sn for all n�0.

(ii) Now we assume that bothu0 �= s0 andu1 �= s1. First, we will prove that even degree polynomials
are different, that isT2n �= R2n for n�1. If there exists somen0 ∈ N such thatR2n0 =T2n0 then, from (3.2)
we deduce thatu2n0−2R2n0−2 = s2n0−2T2n0−2. Since the sequences(un)n�0 and(sn)n�0 have non-zero
elements, it must beu2n0−2 = s2n0−2 andR2n0−2 = T2n0−2. Applying again the same process to 2n0 − 2
and so on, we getu0 = s0, which it is not possible. ThusT2n �= R2n for all n�1.

In an analogous way, for odd degree polynomials we see that if there existsn0 ∈ N such thatR2n0+1 =
T2n0+1, then we getu1 = s1 a contradiction. ThereforeT2n+1 �= R2n+1 for n�1.

(iii) If u0 �= s0, then the same process that we have done to prove assertion (ii) allows us to prove that
T2n �= R2n for n�1. For odd polynomials, sinceu1 = s1 from (3.2) we get thatR3 = T3. Then, if we
assume that there existsN >2 such thatR2N−1 �= T2N−1, thenR2N+1 �= T2N+1 since if it is not true,
i.e.R2N+1 = T2N+1, from (3.2) we haveu2N−1R2N−1 = s2N−1T2N−1 a contradiction. �

3.1. On the generation of recurrence coefficients for{Tn}

Let U,V be positive definite symmetric linear functionals. Consider{Rn}n�0 and{Tn}n�0 the cor-
responding sequences of monic orthogonal polynomials. We assume that (3.2) holds with(un)n�0 and
(sn)n�0 sequences of non-zero real numbers withu0 �= s0 andu1 �= s1. Denote by�n and �̃n the
coefficients of the three term recurrence relation for{Rn}n�0 and{Tn}n�0, respectively. This means

Rn+1 = xRn − �nRn−1, n�1, R0 = 1, R1 = x, (3.3)
Tn+1 = xT n − �̃nTn−1, n�1, T0 = 1, T1 = x (3.4)

with �n > 0 and�̃n > 0 for n�1.
In the background of the problem we assumeU is a classical symmetric linear functional, that is,

the family{Rn}n�0 is either the Hermite polynomial sequence or the Gegenbauer polynomial sequence.
Thus, the recurrence coefficients for these polynomials,�n, are known. In this section, we present a study
of the coefficients̃�n in the recurrence relation for{Tn}n�0. More precisely, we give a way to compute
these coefficients in terms of�n, (un)n�0, and(sn)n�0.

Combining relations (3.2)–(3.4), and simplifying in an appropriate way, we get

(�n + un−2 − un−1)Rn−1 + un−2�n−2Rn−3

= (�̃n + sn−2 − sn−1)Tn−1 + sn−2�̃n−2Tn−3, n�3. (3.5)

Thus, taking into account that the polynomials are monic, we have

�n + un−2 − un−1 = �̃n + sn−2 − sn−1, n�3.

From Lemma 3.1, these expressions must be different from zero for anyn�5. Otherwise, if�n0
+un0−2−

un0−1 = 0 for somen0�5, thenRn0−3 = Tn0−3 which is not possible.
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In such a situation, (3.5) becomes

Rn−1 + un−2�n−2

�n + un−2 − un−1
Rn−3 = Tn−1 + sn−2�̃n−2

�̃n + sn−2 − sn−1
Tn−3, n�5.

Using again (3.2) we substituteRn−1 in order to get
(

un−2�n−2

�n + un−2 − un−1
− un−3

)
Rn−3 =

(
sn−2�̃n−2

�̃n + sn−2 − sn−1
− sn−3

)
Tn−3, n�5,

from where we deduce

un−2�n−2

�n + un−2 − un−1
− un−3 = sn−2�̃n−2

�̃n + sn−2 − sn−1
− sn−3, n�5,

which are equal to zero forn�5 taking into account Lemma 3.1.
As a conclusion, we have shown thatun andsn are related with the recurrence coefficients�n and�̃n by

�n + un−2 − un−1 = �̃n + sn−2 − sn−1, n�2, (3.6)
un−2�n−2 = un−3(�n + un−2 − un−1), n�5, (3.7)
sn−2�̃n−2 = sn−3(�̃n + sn−2 − sn−1), n�5. (3.8)

Notice that (3.7) and (3.8) hold in a trivial way forn = 2 if we setu−1 = s−1 = 0 and�0 = �̃0 = 0.
Moreover, if (3.6) is different from zero forn= 3,4 then, (3.7) and (3.8) hold forn�2.

Now, if we divide (3.7) by (3.8), we obtain

�̃n = un

un−1

sn−1

sn
�n, n�3, (3.9)

where we have used (3.6) to simplify our computations.
On the other hand, it is easy to check that�1 − u0 = �̃1 − s0. Then, using again (3.6) we can compute

n+1∑
k=1

�k − un−1 =
n+1∑
k=1

�̃k − sn−1

for n�0.
Once we have expressed the recurrence coefficients�̃n in terms ofun, sn, and�n, we only need to study

the properties of the sequences(un)n�0 and(sn)n�0.
From (3.7) we can identify the sequence(un)n�0 as the solution of a non-linear difference equation.

Then, we will study the properties of the solution for this difference equation.

Proposition 3.2. If (un)n�0 is a solution of the difference equation(3.7), then it satisfies a quadratic
difference equation

un+1 + �n�n+1

un−1
= �n+1 + �n+2 + A, n�3, (3.10)

whereA= (u3 − �4)(1 − �3/u2).
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Proof. First, from (3.7) we putun+1 − un in terms ofun andun−1 for n�3. We sum fromk= 3 to k= n

and we get

un+1 − u3 =
n∑
k=3

�k+2 −
n∑
k=3

uk

uk−1
�k, n�3. (3.11)

On the other hand, from (3.7) we express the ratiouk/uk−1 in the form

uk

uk−1
= �k+1

uk−1
− �k−1

uk−2
+ 1, n�4.

Then, we can compute (3.11) forn�4:

un+1 − u3 =
n∑
k=3

�k+2 − u3�3

u2
−

n∑
k=4

[
�k�k+1

uk−1
− �k−1�k

uk−2
+ �k

]

= �n+1 + �n+2 − �4 − �n�n+1

un−1
+ �3�4

u2
− �3u3

u2
, n�4.

Moreover, from (3.7) this identity holds forn= 3. If we denote byA the term which does not depend on
n in the previous relation, then

A= u3 − �3u3

u2
+ �3�4

u2
− �4 = (u3 − �4)(1 − �3/u2),

and as a consequence we obtain (3.10).�

This new relation betweenun+1 andun−1 allows us to obtain interesting properties of the sequence of
coefficients(un)n�0. More precisely, in order to transform (3.10) into a linear difference equation, we
will express everyun as a rational function in the variableA. We will prove this in the following:

Theorem 3.3. If (un)n�0 is the solution sequence of(3.10)then there exist two sequences{rn}n�0 and
{qn}n�0, which are solutions of the linear difference equations

rn = [A+ �2n+1 + �2n+2] rn−1 − �2n�2n+1 rn−2, n�2, (3.12)
qn+1 = [A+ �2n+2 + �2n+3] qn − �2n+1�2n+2 qn−1, n�1, (3.13)

such that the coefficientsun can be expressed in the form

u2n+1 = rn

rn−1
, u2n = qn

qn−1
, n�1.

Furthermore,{rn}n�0 and {qn}n�0 are both systems of orthogonal polynomials in the variable A,with
degrn = n anddegqn = n− 1.

Proof. We define the sequences{rn}n�0 and{qn}n�0 recursively by

r0 = 1, u2n+1 = rn

rn−1
, n�1,

q0 = 1, u2n = qn

qn−1
, n�1.
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Then, considering relation (3.10) for both odd and even indices, we can see that{rn}n�0 and{qn}n�0 verify
the announced relations. Moreover, we check the degree of the polynomials from the initial conditions
for each system.

For the sequence{rn}n�0 we haver0=1 andr1=[u2/u2−�3]A+�4−(�3�4/u2), and, as a consequence,
degrn = n.

For {qn}n�0 the initial conditions areq0 = 1 andq1 = u2, thus degqn = n− 1.
Finally, since�2n�2n+1> 0 in the three term recurrence relation forrn, and�2n+1�2n+2> 0 in the three

term recurrence relation forqn, from the Favard’s theorem (see[2]) we deduce that{rn}n�0 and{qn}n�0
are sequences of orthogonal polynomials with respect to a positive definite linear functional.�

As a consequence, we see that the sequences{rn}n�0 and{qn}n�0 are connected with certain systems
of associated polynomials.

Corollary 3.4. Let {Rn}n�0 be a sequence of polynomials orthogonal with respect to a positive def-
inite symmetric linear functional.Then,we consider{Sn}n�0 and {Qn}n�0 sequences of polynomials
orthogonal with respect to positive definite linear functionals, such that

R2n(x)= Sn(x
2), R2n+1(x)= xQn(x

2), n�0. (3.14)

Thus,the sequences{qn}n�0 and {rn}n�0 considered in the previous theorem are the co-recursive of
associated polynomials of first kind of{Sn}n�0 and{Qn}n�0, respectively.

Proof. First, notice that such sequences{Sn}n�0 and{Qn}n�0 exist because the polynomials{Rn}n�0
are orthogonal with respect to a symmetric linear functional (see[2]). Then, we consider the three-term
recurrence relations for these polynomials,

xSn = Sn+1 + anSn + bnSn−1, n�1, (3.15)
xQn =Qn+1 + ãnQn + b̃nQn−1, n�1. (3.16)

Changingx by x2 in (3.15) we substitute (3.14) and taking into account that{Rn}n�0 satisfy (3.3), we
obtain for even degree polynomials

R2n+2 + [�2n + �2n+1]R2n + �2n−1�2nR2n−2 = R2n+2 + anR2n + bnR2n−2,

for n�1. Then we deduce that the coefficients of the recurrence relation for{Sn}n�0 can be written as a
sum or a product of the recurrence coefficients for{Rn}n�0,

an = �2n + �2n+1, bn = �2n−1�2n, n�1.

Thus, by comparison with (3.13) and taking into account the initial conditions for these polynomials, we
deduce that{qn}n�0 are the co-recursive of associated polynomials of first kind of{Sn}n�0.

In a similar way, changingx by x2 in (3.16) and multiplying byx, we get

R2n+3 + [�2n+1 + �2n+2]R2n+1 + �2n�2n+1R2n−1 = R2n+3 + ãnR2n+1 + b̃nR2n−1,

for n�1. Then, the recurrence coefficientsãn andb̃n are

ãn = �2n+1 + �2n+2, b̃n = �2n�2n+1, n�1.
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Finally, we compare with (3.12) and deduce that{rn}n�0 are the co-recursive of associated polynomials
of first kind of {Qn}n�0. �

In Section 4 we will see that in some particular cases we can identify explicitly these systems of
orthogonal polynomials.

In a similar way, we can obtain analogous properties for the coefficientssn. From (3.6), (3.7) and (3.9)
we can easily obtain that the sequence(sn) is the solution of the second-order difference equation,

�n+1sn = sn+1(�n−1 − sn−1 + sn), n�2,

where�n=�n+2+un−un+1, forn�1. This difference equation is the analogous to (3.7) for the coefficients
un, and it can be treated in the same way.

3.2. The companion linear functionalV

In this section we study the companion linear functionalV, and we will show that it is a rational
modification of the classical linear functionalU.

Theorem 3.5. LetU andV be symmetric and positive definite linear functionals such that the corre-
sponding systems of monic orthogonal polynomials{Rn}n�0 and {Tn}n�0 respectively,are related by
(3.2),with unsn �= 0, n ∈ N. Then there exist real numbers a,b,and	 such that

(x2 + a)U = 	(x2 + b)V. (3.17)

Proof. Let a ∈ R be an arbitrary real number. Let us analyze the action of the polynomial modification
(x2 + a)U over the polynomials{Tn}n�0. From relation (3.2) we get

〈(x2 + a)U, Tn〉 = −sn〈(x2 + a)U, Tn−2〉
for n�5. Because of the symmetry of the linear functional,(x2 + a)U vanishes over odd polynomials,
and it is easy to check the values over even polynomials of degreen<5:

〈(x2 + a)U, T0〉 = �1 + a,

〈(x2 + a)U, T2〉 = �1�2 + (u0 − s0)(�1 + a),

〈(x2 + a)U, T4〉 = (u2 − s2)�1�2 − s2(u0 − s0)(�1 + a).

Sinceu0 �= s0 ands2 �= 0, we can choosea ∈ R such that〈(x2 + a)U, T4〉 = 0, and then we have
〈(x2 + a)U, Tn〉 = 0 for everyn�3.

If we consider the expansion of the functional(x2 + a)U in terms of the dual basis of the system of
polynomials{Tn}n�0, then we get

(x2 + a)U =
2∑
j=0

�j
Tj V

tj
, (3.18)
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where�1 = 0 and�j = 〈(x2 + a)U, Tj 〉 for j = 0, 2. Since we have already computed these values, we
substitute the appropriate value fora and we finally deduce relation (3.17) with

a = u2 − s2

s2(u0 − s0)
�1�2 − �1, b = u2 − s2

u2(u0 − s0)
�̃1�̃2 − �̃1, 	 = u2

s2

�1�2

�̃1�̃2
. �

4. Hermite and Gegenbauer cases

In this section we analyze in particular each possible case for the classical functionalU, that is, when
it is the classical Hermite functional defined as

〈UH , p〉 =
∫ +∞

−∞
p(x)e−x2

dx, p ∈ P, (4.1)

and when it is the classical Gegenbauer functional given by

〈UG, p〉 =
∫ 1

−1
p(x)(1 − x2)�−1/2, p ∈ P (4.2)

with �>− 1/2.

4.1. On the generation of recurrence coefficients for the companion polynomials

First we deal with the Hermite functionalUH defined by (4.1) and the corresponding Hermite poly-
nomials{Hn}n�0. Let VH a symmetric linear functional and denote by{Tn}n�0 the system of monic
polynomials orthogonal with respect toVH . Assume that these polynomials are related to Hermite poly-
nomials by

Hn + un−2Hn−2 = Tn + sn−2Tn−2, n�2, (4.3)

whereun, sn are non-zero constants for alln�0, withu0 �= s0 andu1 �= s1.
It is well known that Hermite polynomials verify the following three-term recurrence relation

Hn+1 = xHn − n

2
Hn−1, n�1, H0 = 1, H1 = x.

As in the previous section, we denote by�̃n the coefficients of the three term recurrence relation for
the polynomials{Tn}n�0,

Tn+1 = xT n − �̃nTn−1, n�0, T0 = 1, T1 = x

with �̃n > 0 for n�1. Then, as in (3.9), we have

�̃n = n

2

un

un−1

sn−1

sn
, n�3.

Now, by Theorem 3.3 we can write the coefficients(un)n�0 as a rational function. We will rewrite the
statement of that theorem in this particular case and moreover we identify such a family of polynomials.
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Theorem 4.1. The coefficients(un)n�0 in relation (4.3)can be expressed as a rational function in the
form

u2n+1 = rn

rn−1
, u2n = qn

qn−1
, n�1,

wherern andqn are polynomials in the variableA=(u3−2)(1− 3
2u2
),withdegrn=n anddegqn=n−1.

Moreover,they satisfy the following three term recurrence relations:

rn = [A+ 2n+ 3/2]rn−1 − n(n+ 1/2)rn−2, n�2,

and

qn+1 = [A+ 2n+ 5/2]qn − (n+ 1)(n+ 1/2)qn−1, n�1,

with initial conditions

r0 = 1, r1 = 2u2

2u2 − 3
A− 2u2 − 3

u2
,

q0 = 1, q1 = u2.

Then, we can identify these families of polynomials, up to a linear change of variable, as the co-
recursive polynomials of associated Laguerre polynomials of first kind, with parameter� = 1/2 for the
polynomialsrn(A) and� = −1/2 for the polynomialsqn(A).

On the other hand, this result agrees with Corollary 3.4. It is known, see for instance[2], that the
sequences of orthogonal polynomials corresponding to Hermite polynomials of even and odd degree are
the Laguerre polynomials with parameter� = −1/2 and 1/2, respectively, i.e.

H2n(x)= L
(−1/2)
n (x2), H2n+1(x)= xL

(1/2)
n (x2), n�0.

Thus, for the Hermite linear functional we can compute the values of the coefficientsun for n�4, once
we know the values ofu2 andu3, which are determined in terms ofu0 andu1 according to (3.6) and (3.7).
In fact, we have few possible cases depending on the vanishing of (3.6) forn= 0, 1,2, 3, as we show in
the table below:

A B
0 u0 = 1/2 u0 �= 1/2
1 u1 = 1 + u0 u1 �= 1 + u0
2 u2 = 3/2+ u1 u2 = 3/2+ u1 − u1/2u0
3 u3 = 2 + u2 u3 = 2 + u2 − u2/u1

For Gegenbauer polynomials,{C(�)n }n�0, orthogonal with respect to the linear functional (4.2), the
three term recurrence relation is

C
(�)
n+1 = xC(�)n − n(n+ 2� − 1)

4(n+ � − 1)(n+ �)
C
(�)
n−1, n�1.

Let {Tn}n�0 be a sequence of monic polynomials orthogonal with respect to a symmetric linear functional
VG, such that

C(�)n + un−2C
(�)
n−2 = Tn + sn−2Tn−2, n�2.
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If we denote bỹ�n the recurrence coefficients for these polynomials, then from (3.9) we get

�̃n = n(n+ 2� − 1)

4(n+ � − 1)(n+ �)

un

un−1

sn−1

sn
, n�3.

Moreover, according to Theorem 3.3 we can identify the parameters(un)n�0:

Theorem 4.2. The sequences of polynomials{rn}n�0 and{qn}n�0 defined recursively byr0 = 1,q0 = 1,
and

u2n+1 = rn

rn−1
, u2n = qn

qn−1
, n�1,

verify the following three term recurrence relations:

rn =
[
A+ (2n+ 1)(n+ �)

2(2n+ �)(2n+ � + 1)
+ (n+ 1)(2n+ 2� + 1)

2(2n+ � + 1)(2n+ � + 2)

]
rn−1

− n(2n+ 2� − 1)(2n+ 1)(n+ �)

4(2n+ � − 1)(2n+ �)2(2n+ � + 1)
rn−2, n�2

and

qn+1 =
[
A+ (n+ 1)(2n+ 2� + 1)

2(2n+ � + 1)(2n+ � + 2)
+ (2n+ 3)(n+ � + 1)

2(2n+ � + 2)(2n+ � + 3)

]
qn

− (2n+ 1)(n+ �)(n+ 1)(2n+ 2� + 1)

4(2n+ �)(2n+ � + 1)2(2n+ � + 2)
qn−1, n�1.

In particular, when� = 0 we have the monic Chebyshev polynomials of the first kind,{Cn}n�0,
orthogonal with respect to the functional

〈UC, p〉 =
∫ 1

−1
p(x)

dx√
1 − x2

, p ∈ P.

For these polynomials (see[2]) the coefficients in the recurrence relation are�2 = 1/2 and�n = 1/4 for
n�2, that is

Cn+1 = xCn − 1
4 Cn−1, n�2,

C0 = 1, C1 = x, C2 = x2 − 1/2.

Then, by Corollary 3.4 the sequences of polynomials{rn}n�0 and{qn}n�0 can be identified, up to a linear
change of variable, as the co-recursive of associated Jacobi polynomials of first kind with parameters
(�, �)= (−1/2, 1/2), and as the co-recursive of Chebyshev polynomials of the first kind, respectively.

4.2. The companion linear functionalV

Finally, in this last section we give a classification of all the companion linear functionals in the Hermite
and Gegenbauer cases.
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Remind that the Hermite functionalUH is defined by (4.1). Then from (3.17), we see that the companion
functionalVH is given by

〈VH , p〉 =
∫ +∞

−∞
p(x)

(x2 + a)

(x2 + b)
e−x2

dx, p ∈ P,

wherea andb are positive real numbers.
In the Gegenbauer case, we have two different possibilities for the companion linear functional, de-

pending on the values of the constantsa andb defined in (3.17):

〈VG, p〉 =
∫ 1

−1
p(x)

(x2 + a)

(x2 + b)
(1 − x2)�−1/2 dx, p ∈ P

with a, b >0, and

〈VG, p〉 =
∫ 1

−1
p(x)

(x2 − a)

(x2 − b)
(1 − x2)�−1/2 dx +M[p(√b)+ p(−√

b)], p ∈ P

with a, b >1.
We finish with a remark about an example studied by in[1]. In this work they prove that Hermite (resp.

Gegenbauer) polynomials are related to the Sobolev polynomials associated with the pair of functionals
(UH ,VH) (resp.(UG,VG)) by an expression of the type (2.2). Then, by Theorem 2.3 we know that
relation (3.1) holds between Hermite (resp. Gegenbauer) polynomials and the companion sequence of
polynomials orthogonal with respect to the modified linear functionalVH (resp.VG).

Thus, our result states that these examples are not by chance, but this is the only possible modification
of the Hermite functional in order to get (2.2).
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