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1. Introduction

In this article we construct a family of closed 
of self-adjoint extensions of the Laplace–Beltr
manifold with smooth boundary. It is well know
boundary the minimal closed extension of the L
tially self-adjoint. However, if the manifold has
defines a closed and symmetric but not self-adjo
in the study of quantum systems, where some h
for the Hamiltonian which is only symmetric. T
here can be associated with free quantum sys
of such systems is not complete until a self-ad
operator has been determined, i.e., a Hamiltoni
tary evolution of the system is given, because of
densely defined self-adjoint operators and stron
unitary operators Ut = exp itH provided by Sto
of the self-adjoint extension is not just a math
in the description of the quantum mechanical 
further results and motivation).

The collection of all self-adjoint extensions o
erator T on a complex separable Hilbert space
terms of the isometries between the deficiency 



tor T (see, e.g., [44,40,45]). Unfortunately, beyond the one-dimensional case, the use of 
von Neumann’s theorem to describe the self-adjoint extensions of the Laplace–Beltrami 
operator is unfeasible. In fact, the computation of deficiency indices requires the knowl-
edge of the adjoint operator which is a difficult problem in itself (see [6] and references 
therein). Moreover, in von Neumann’s classical result the use of important geometrical 
and physical data becomes rather indirect and for these reasons the theory of extensions 
has been developed in many different ways and is still today an active research area. The 
use of the Hermitian quadratic forms to address the extension problem has been one 
of the most useful approaches since the pioneering work by Friedrichs, Kato, Lax and 
Milgram (cf., [15,27,41]). If T is a symmetric and semi-bounded operator on the domain 
D(T ), then the semi-bounded quadratic form

Q(Φ) = 〈Φ, TΦ〉, Φ ∈ D(T ) ⊂ H, (1.1)

is closable and its closure is represented by a self-adjoint extension of T with the same 
lower bound (see, e.g., [29,40,45]). Moreover, the domain of the closure of the quadratic 
form satisfies a natural minimality condition. Theorem 2.4 provides the characterization 
of closed semi-bounded quadratic forms as those that can be represented by self-adjoint 

7,41,40]). In the particular instance of 
osed extensions on H = L2(Ω) are well
tic forms associated with the Dirichlet 
lacian: Consider the positive and closed 

‖2 (1.2)

ase and domain DN = H1(Ω) for the
eferences therein). Also equivariant and 
ed in terms of closed and semi-bounded 
is context the subtle relation between 
nifests through the fact that the form 
ain D(T ) of the representing operator. 

ent form domains while the domains of 
his fact allows, e.g., to develop spectral 
atical and physical situations using the 

 subject, the determination of the self-
he operator and their spectral properties 
d references therein). Another example 
rator has been recently analyzed is the 
g with a class of Robin boundary condi-
ence the study of such quadratic forms 

3

and semi-bounded operators as in (1.1) (cf., [2
the Laplace–Beltrami operator some of these cl
known. The simplest examples are the quadra
and Neumann self-adjoint extensions of the Lap
quadratic form

Q(Φ) = ‖dΦ

with domain DD = H1
0(Ω) in the Dirichlet c

Neumann extension (see for instance [13] and r
Robin-type Laplacians can be naturally describ
quadratic forms (see, e.g., [19,21,30,32]). In th
quadratic forms and representing operators ma
domain D(Q) always contains the operator dom
Therefore it is often possible to compare differ
the representing operators remain unrelated. T
bracketing techniques in very different mathem
language of quadratic forms [33,34].

In spite of the vast literature devoted to the
adjoint or, more generally, sectorial extension of t
is still an active field of research (see [3,27] an
where the correct extension of a symmetric ope
case of the so-called Berry’s paradox when dealin
tions with a singular Dirichlet point [11,10,35]. H



is instrumental not only for the construction of a complete quantum system but for the 
analysis of the spectrum of the corresponding self-adjoint Hamiltonian operators [26]. 
Quadratic forms also provide a natural frame for the analysis of the question of how does 
the process of selecting self-adjoint extensions of symmetric operators intertwine with 
the notion of quantum symmetry (see Section 4 in [24]).

The role of boundaries has been highlighted in the case of the study of self-adjoint 
extensions of formally self-adjoint differential operators leading to the complete classifi-
cation of boundary conditions by Grubb [17] and to the theory of boundary triples (see, 
e.g., [12] and references therein and [5] for the generalization to quasi-boundary triples; 
see also Chapter 2 in [38] for the description of boundary triples for quantum graphs 
and [39] for the theory of boundary pairs in the context of quadratic forms).

In a similar but slightly different direction focused on the physics of boundary dy-
namics it was argued in [4] that self-adjoint extensions of the Bochner Laplacian are in 
one-to-one correspondence with unitary operators on a Hilbert space of boundary data, 
the trace of the function and its normal derivative at the boundary. Such characteriza-
tion was shown to be particularly useful as it provides an explicit and easily workable 
description of the domain of the corresponding self-adjoint extension by means of the 
condition, called in what follows boundary equation:

+ iϕ̇), (1.3)

of a function Φ, i.e., ϕ = Φ|∂Ω and its 
 a unitary operator on the Hilbert space 
 self-adjoint extensions by means of the 
ration by parts on smooth functions) to 

〈ϕ, ϕ̇〉. (1.4)

ular perturbation of the standard Dirich-
ko’s theorems [29] on closable singular 

ctly applied to domains described by the 
rder to characterize the domains of the 
operator determined by (1.3) a different 

alysis of the quadratic form (1.4) on do-
proved under appropriate conditions on 
Actually it is shown that if U has gap, 
trum, and its partial Cayley transform 
arly perturbed Dirichlet quadratic form 
3) is closable and semi-bounded below. 
s of the domain defined by the boundary 
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ϕ− iϕ̇ = U(ϕ

where ϕ, ϕ̇ denote the trace at the boundary 
outward normal derivative ϕ̇ = dΦ(ν), and U is
at the boundary L2(∂Ω). The analysis of such
corresponding quadratic forms leads (after integ
the study of the quadratic form:

Q(Φ) = ‖dΦ‖2 −

Such quadratic form can be considered as a sing
let quadratic form (1.2). Note that Koshmanen
perturbations of quadratic forms cannot be dire
boundary equation (1.3) in general. Thus, in o
self-adjoint extensions of the Laplace–Beltrami 
approach is needed.

In this article we present a self-contained an
mains satisfying Eq. (1.3). Their closability is 
the unitary operator U defining the extension. 
i.e., if the eigenvalue −1 is isolated in its spec
is bounded in the Sobolev norm 1/2, the singul
(1.4) with domain determined by condition (1.
These results are obtained after a careful analysi



equation (1.3), the structure of the radial Laplace operator defined on a collar neigh-
borhood of the boundary, and a judiciously use of Neumann’s extension of the given 
quadratic form on the bulk of the manifold. As particular case these results include 
that all the Robin boundary conditions of the form ϕ̇ = gϕ, g ∈ C(∂Ω), lead to lower 
semi-bounded extensions of the Laplace–Beltrami operator. Our method also allows to 
classify this class of self-adjoint extensions labeled by admissible unitaries according to 
their invariance properties with respect to a symmetry group, in particular, with respect 
to a group action on the manifold (see Sections 6 and 7 in [24] for a detailed analysis 
and concrete examples).

The article is organized as follows. Section 2 is devoted to establish basic definitions 
and results on quadratic forms and some technicalities on the Laplace–Beltrami operator 
and Sobolev spaces in smooth manifolds with boundary. In Section 3 we introduce the 
class of quadratic forms whose closability and semi-boundedness will be established. We 
will also specify the domains of the self-adjoint extensions in terms of a class of maxi-
mal isotropic subspaces (cf., Theorem 3.6 and Proposition 3.7). The class of admissible 
unitary operators U leading to closable and semi-bounded quadratic forms is introduced 
at the end of this section paving the way to Section 4, where the main theorems prov-

 quadratic forms defined are discussed. 
tions of the approach taken here with 

 of symmetric operators, like the theory 
b on elliptic even-order systems. Finally, 
dmissible unitaries at the boundary are 
 boundary data. For instance combining 
f subdomains of the boundary.

ace–Beltrami operator

first some standard results of the theory 
t will be useful later on. Standard refer-

], [41, Section VIII.6] or [42, Chapters 10 
material on Riemannian manifolds with 
e associated Sobolev spaces. Some basic 

f the Hilbert space H and denote by
ear in the first entry and linear in the 
ith Q with domain D is its evaluation 
. We say that the sesquilinear form is
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ing the closability and semi-boundedness of the
Section 4.3, is devoted to establish the connec
other known approaches to describe extensions
of quasi-boundary triples or the work of G. Grub
in Section 5 various families of examples with a
obtained by using several choices of values of the
Dirichlet, Neumann and diverse identifications o

2. Preliminaries: Quadratic forms and the Lapl

In this section we fix our notation and recall 
of unbounded operators and quadratic forms tha
ences are, e.g., [13, Section 4.4], [27, Chapter VI
and 13]. Then we will also introduce standard 
boundary, the Laplace–Beltrami operator and th
references for this part are, e.g., [1,2,13,31,36].

2.1. Quadratic forms and operators

Definition 2.1. Let D be a dense subspace o
Q : D × D → C a sesquilinear form (anti-lin
second entry). The quadratic form associated w
on the diagonal, i.e., Q(Φ) := Q(Φ, Φ), Φ ∈ D
Hermitian if



Q(Φ, Ψ) = Q(Ψ, Φ), Φ, Ψ ∈ D.

The quadratic form is semi-bounded if there is an a ≥ 0 such that

Q(Φ) ≥ −a‖Φ‖2, Φ ∈ D.

The smallest possible value a satisfying the preceding inequality is called the lower bound
for the quadratic form Q. In particular, if Q(Φ) ≥ 0 for all Φ ∈ D we say Q is positive.

Note that if Q is semi-bounded with lower bound a, then Qa(Φ) := Q(Φ) + a‖Φ‖2,
Φ ∈ D, is positive on the same domain. We need to recall also the notions of closable and 
closed quadratic forms as well as the fundamental representation theorems that relate 
closed semi-bounded quadratic forms with self-adjoint semi-bounded operators.

Definition 2.2. Let Q be a semi-bounded quadratic form with lower bound a ≥ 0 and 
dense domain D ⊂ H. The quadratic form Q is closed if D is closed with respect to the 
norm

|||Φ|||Q :=
√
Q(Φ) + (1 + a)‖Φ‖2, Φ ∈ D.

ct to the norm | | | · | | |Q, then D0 is called
dratic form Q with domain D is called 
ain D0. A quadratic form is said to be

 inner product on the domain:

a)〈Φ, Ψ〉, Φ, Ψ ∈ D.

never a sequence {Φn}n ⊂ D satisfies
∞, then Q(Φn) → 0.
H with respect to the norm | | | · | | |Q. The

a subspace of H.

ms and self-adjoint operators goes back 
hs, Kato, Lax and Milgram, and others 

be a Hermitian, closed, semi-bounded 
⊂ H. Then there exists a unique, self-

 D(T ) and the same lower bound such 
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If Q is closed and D0 ⊂ D is dense with respe
a form core for Q. Conversely, the closed qua
an extension of the quadratic form Q with dom
closable if it has a closed extension.

Remark 2.3.

i) The norm | | | · | | |Q is induced by the following

〈Φ, Ψ〉Q := Q(Φ, Ψ) + (1 +

ii) The quadratic form Q is closable iff whe
‖Φn‖ → 0 and Q(Φn − Φm) → 0, as n, m →

iii) In general, it is always possible to close D ⊂
quadratic form is closable iff this closure is 

The following relation between quadratic for
to the pioneering work in the 1950s by Friedric
(see comments to Section VIII.6 in [41]).

Theorem 2.4 (Representation theorem). Let Q
quadratic form defined on the dense domain D
adjoint, semi-bounded operator T with domain
that:



i) Ψ ∈ D(T ) iff Ψ ∈ D and there exists χ ∈ H such that

Q(Φ, Ψ) = 〈Φ, χ〉, ∀Φ ∈ D.

In this case we write TΨ = χ and Q(Φ, Ψ) = 〈Φ, TΨ〉 for any Φ ∈ D, Ψ ∈ D(T ).
ii) D(T ) is a core for Q.

One of the most common uses of the representation theorem is to obtain self-adjoint 
extensions of symmetric, semi-bounded operators. Given a semi-bounded, closed and 
symmetric operator T one can consider the associated quadratic form

QT (Φ, Ψ) = 〈Φ, TΨ〉, Φ, Ψ ∈ D(T ).

These quadratic forms are always closable, cf., [40, Theorem X.23], and therefore their 
closure is associated with a unique self-adjoint operator. Even if the symmetric operator 
has infinite possible self-adjoint extensions, the representation theorem allows to select 
a particular one. This extension is called the Friedrichs extension. The approach that we 
shall take in this article is close to this method.

 Hilbert spaces, also known as theory of 
ph we state the main results (see, e.g., 

 〈·,·〉 and induced norm ‖ · ‖. Let H+ be
e Hilbert space with respect to another 
he corresponding norm is ‖ · ‖+ and we

∈ H+. (2.1)

ear functional LΦ : H+ → C as follows.

Ψ〉. (2.2)

uality and Eq. (2.1):

, ∀Φ ∈ H, ∀Ψ ∈ H+. (2.3)

l on H+ it can be represented, according
+. Namely, there exists a vector ξ ∈ H+
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2.2. Scales of Hilbert spaces

Later on we will need the theory of scales of
rigged Hilbert spaces. In the following paragra
[9,29] for proofs and more results).

Let H be a Hilbert space with scalar product
a dense linear subspace of H which is a complet
scalar product that will be denoted by 〈·,·〉+. T
assume that

‖Φ‖ ≤ ‖Φ‖+, Φ

Any vector Φ ∈ H generates a continuous lin
For Ψ ∈ H+ define

LΦ(Ψ) = 〈Φ,

Continuity follows by the Cauchy–Schwarz ineq

LΦ(Ψ) ≤ ‖Φ‖ · ‖Ψ‖ ≤ ‖Φ‖ · ‖Ψ‖+

Since LΦ represents a continuous linear functiona
to Riesz theorem, using the scalar product in H
such that



∀Ψ ∈ H+, LΦ(Ψ) = 〈Φ, Ψ〉 = 〈ξ, Ψ〉+, (2.4)

and the norm of the functional coincides with the norm in H+ of the element ξ, i.e.,

‖LΦ‖ = sup
Ψ∈H+

|LΦ(Ψ)|
‖Ψ‖+

= ‖ξ‖+.

One can use the above equalities to define an operator

Î : H → H+,

ÎΦ = ξ.
(2.5)

This operator is clearly injective since H+ is a dense subset of H and therefore it can be
used to define a new scalar product on H

〈·,·〉− := 〈Î·, Î·〉+. (2.6)

The completion of H with respect to this scalar product defines a new Hilbert space, 
ed accordingly by ‖ · ‖−. It is clear that 
+ = ‖ÎΦ‖+ = ‖Φ‖−, the operator Î can
tion.

 H− introduced above define a scale of
f the operator Î is called the canonical

+. (2.7)

 extended continuously to a pairing

→ C. (2.8)

auchy–Schwarz inequality we have the

‖+ = ‖Φ‖−‖Ψ‖+. � (2.9)

 manifolds and Sobolev spaces

adratic forms related to the self-adjoint 
ned on a Riemannian manifold. We shall 
of the different spaces of functions that 
e will restrict to smooth manifolds with 
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H−, and the corresponding norm will be denot
H+ ⊂ H ⊂ H− with dense inclusions. Since ‖ξ‖
be extended by continuity to an isometric bijec

Definition 2.5. The Hilbert spaces H+, H and
Hilbert spaces. The extension by continuity o
isometric bijection. It is denoted by:

I : H− → H

Proposition 2.6. The scalar product in H can be

(·,·) : H− ×H+

Proof. Let Φ ∈ H and Ψ ∈ H+. Using the C
following

∣∣〈Φ, Ψ〉∣∣ = ∣∣〈IΦ, Ψ〉+∣∣ ≤ ‖IΦ‖+‖Ψ

2.3. Laplace–Beltrami operator on Riemannian

Our aim is to describe a class of closable qu
extensions of the Laplace–Beltrami operator defi
start with the definition of such manifold and 
will appear throughout the rest of this article. W



smooth, compact boundary. These situation is interesting enough and covers a wide 
variety of examples, as we shall discuss in Section 3 and Section 4. We refer to [16] for 
an analysis of the Laplace–Beltrami operator in the context of Lipschitz manifolds. In 
this more general setting also the language of quadratic forms is very convenient.

Let (Ω, ∂Ω, η) be a smooth, orientable, Riemannian manifold with metric η and 
smooth, compact, boundary ∂Ω. We will denote as C∞(Ω) the space of smooth func-
tions of the Riemannian manifold Ω and by C∞

c (Ω) the space of smooth functions with 
compact support in the interior of Ω. The Riemannian volume form is written as dμη.

Definition 2.7. The Laplace–Beltrami Operator associated with the Riemannian manifold 
(Ω, ∂Ω, η) is the second order differential operator Δη : C∞(Ω) → C∞(Ω) given in local
coordinates by

ΔηΦ =
∑
i,j

1√
|η|

∂

∂xi

√
|η|ηij ∂Φ

∂xj
.

Let (Ω̃, η̃) be a smooth, orientable, boundaryless, Riemannian manifold with metric η̃.
The Laplace–Beltrami operator −Δη̃ associated with the Riemannian manifold (Ω̃, η̃)

 order differential operator, cf. [1]. One 

 the boundaryless Riemannian manifold 

η̃)kΦdμη̃.

ct to this norm Hk(Ω̃) := C∞(Ω̃)‖·‖k is 
n manifold (Ω̃, η̃). The scalar products
k. In the case k = 0 we will denote the
dμη̃.

nnian manifolds without boundary. The 
s over a manifold (Ω, ∂Ω, η) cannot be 
se the Laplace–Beltrami operator does 
wever, it is possible to construct it as a 
 a Riemannian manifold (Ω̃, η̃) without

n manifold and let (Ω̃, η̃) be any Rie-
t 

◦
Ω, i.e., the interior of Ω, is an open 

of the Riemannian manifold (Ω, ∂Ω, η)
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defines a positive, essentially self-adjoint, second
can use it to define the following norms.

Definition 2.8. The Sobolev norm of order k in
(Ω̃, η̃) is defined by

‖Φ‖2
k :=
∫
Ω̃

Φ(I − Δ

The closure of the smooth functions with respe
the Sobolev space of order k of the Riemannia
associated with these norms are written as 〈·,·〉
H0(Ω̃) scalar product simply by 〈Φ, Ψ〉 =

∫
Ω̃
ΦΨ

Note that Definition 2.8 holds only for Riema
construction of the Sobolev spaces of function
done directly like in the definition above becau
not define in general a self-adjoint operator. Ho
quotient of the Sobolev space of functions over
boundary, cf. [43, Section 4.4].

Definition 2.9. Let (Ω, ∂Ω, η) be a Riemannia
mannian manifold without boundary such tha
submanifold of Ω̃. The Sobolev space of order k
is the quotient



Hk(Ω) := Hk(Ω̃)/{Φ ∈ Ω̃ | Φ|Ω = 0}.

The norm is denoted again as ‖ · ‖k. When there is ambiguity about the manifold, the
subindex shall denote the full space, i.e.,

‖ · ‖k = ‖ · ‖Hk(Ω).

It can be shown that the Sobolev spaces Hk(Ω) do not depend on the particular 
choice of Ω̃. There are many equivalent ways to define the Sobolev norms. In particular 
we shall need the following characterization.

Proposition 2.10. The Sobolev norm of order 1, ‖ · ‖1, is equivalent to the norm
√
‖d · ‖2

Λ1 + ‖ · ‖2,

where d stands for the exterior differential acting on functions, cf. [1], and ‖d · ‖Λ1 is
the induced norm from the natural scalar product among 1-forms α ∈ Λ1(Ω).

yless Riemannian manifold (Ω̃, η̃). The
terms of the exterior differential and its 

d,

ique differential operator d† : Λ1(Ω̃) →

Λ1(Ω̃), Φ ∈ C∞(Ω̃).

dμη̃

‖Φ‖2 + ‖dΦ‖2
Λ1 . �

ear from the context which are the scalar 

ld (Ω, ∂Ω, η) has itself the structure of 
 ∂η). The Riemannian metric induced at 
nian metric ∂η = i�η, where i : ∂Ω → Ω
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Proof. It is enough to show it for a boundar
Laplace–Beltrami operator can be expressed in 
formal adjoint,

−Δη̃ = d†

where the formal adjoint is defined to be the un
C∞(Ω̃) that verifies

〈α,dΦ〉Λ1 =
〈
d†α,Φ
〉
, α ∈

Let Φ ∈ C∞(Ω̃). Then we have that

‖Φ‖2
1 =
∫
Ω̃

Φ̄(I − Δη̃)Φdμη̃

=
∫
Ω̃

Φ̄Φdμη̃ +
∫
Ω̃

Φ̄d†dΦ

= ‖Φ‖2 + 〈dΦ,dΦ〉Λ1 =

The subindex Λ1 will be omitted when it is cl
products considered.

The boundary ∂Ω of the Riemannian manifo
a Riemannian manifold without boundary (∂Ω,

the boundary is just the pull-back of the Rieman



is the inclusion map. The spaces of smooth functions over the two manifolds verify that 
C∞(Ω)|∂Ω 
 C∞(∂Ω).

There is an important relation between the Sobolev spaces defined over the manifolds 
Ω and ∂Ω. This is the well-known Lions trace theorem (cf. [2, Theorem 7.39], [31, 
Theorem 8.3]):

Theorem 2.11 (Lions trace theorem). Let Φ ∈ C∞(Ω) and let γ : C∞(Ω) → C∞(∂Ω) be 
the trace map γ(Φ) = Φ|∂Ω. There is a unique continuous extension of the trace map
such that

i) γ : Hk(Ω) → Hk−1/2(∂Ω), k > 1/2.
ii) The map is surjective.

Finally we introduce for later use some particular operators associated with the Lapla-
cian. Consider the symmetric operator on smooth functions with support away from the 
boundary Δ0 := Δη|C∞

c (Ω). Then we have the following extensions of it.

Definition 2.12.

ed to be the closure of Δ0. Its domain is

 closed operator defined in the domain

oint of Δmin.
 be extended continuously to D(Δmax),

lacian). The Sobolev space Hk(Ω), with 
e continuous extension of the trace map

−1/2(∂Ω).

annian manifold

orm that, on smooth functions over Ω, is
Motivated by this quadratic form we will 
 semi-boundedness on suitable domains.
−ΔηΨ〉 we obtain, on smooth functions,
(Ω) → C,
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i) The minimal closed extension Δmin is defin
D(Δmin) = H2

0 := C∞
c (Ω)‖·‖2 .

ii) The maximal closed extension Δmax is the
D(Δmax) = {Φ ∈ H0(Ω)|ΔηΦ ∈ H0(Ω)}.

Equivalently, one can define Δmax as the adj
The trace map defined in Theorem 2.11 can

see for instance [14,17,31]:

Theorem 2.13 (Weak trace theorem for the Lap
k ≥ 2, is dense in D(Δmax) and there is a uniqu
γ such that

γ : D(Δmax) → H

Moreover, ker γ = H2
0 (Ω).

3. A class of closable quadratic forms on a Riem

We begin presenting a canonical sesquilinear f
associated with the Laplace–Beltrami operator. 
address questions like hermiticity, closability and

Integrating once by parts the expression 〈Φ, 
the following sesquilinear form Q : C∞(Ω) × C∞



Q(Φ, Ψ) = 〈dΦ,dΨ〉Λ1 − 〈ϕ, ψ̇〉∂Ω . (3.1)

From now on the restrictions to the boundary are going to be denoted with the 
corresponding small size Greek letters, ϕ := γ(Φ). The doted small size Greek letters 
denote the restriction to the boundary of the normal derivatives, ϕ̇ := γ(dΦ(ν)), where 
ν ∈ X(Ω) is any vector field such that iνdμη = dμ∂η. Notice that in the expression above
dΦ ∈ Λ1(Ω) is a 1-form on Ω, thus the inner product 〈·,·〉Λ1 is defined accordingly by
using, η−1(·,·), the induced Hermitian structure on the cotangent bundle (see, e.g., [36]).
We have therefore that

〈dΦ,dΨ〉Λ1 =
∫
Ω

η−1(dΦ̄,dΨ)dμη.

In the second term at the right-hand side of (3.1) 〈·,·〉∂Ω stands for the induced scalar
product at the boundary given explicitly by

〈ϕ,ψ〉∂Ω =
∫
∂Ω

ϕ̄ψdμ∂η, (3.2)

y the restricted Riemannian metric ∂η.
as along as there is no risk of confusion.
ove is not Hermitian. To study subspaces 
 the part of Q related to the boundary 

 (ϕ, ϕ̇), (ψ, ψ̇) the corresponding bound-
ed as:

〈ϕ, ψ̇〉∂Ω − 〈ϕ̇, ψ〉∂Ω . (3.3)

tropic with respect to Σ if Σ(Φ, Ψ) = 0

d in Eq. (3.1) on a dense subspace D ⊂
o Σ.

s Hermitian if Q(Φ, Ψ) = Q(Ψ,Φ) for all 
o Σ(Φ, Ψ) = 0, for all Φ, Ψ ∈ D, hence D
ication is obvious. �

es can be handled more easily using the 
nge boundary form and not considering 
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where dμ∂η is the Riemannian volume defined b
The subscript Λ1 will be dropped from now on 

In general, the sesquilinear form Q defined ab
where Q is Hermitian it is convenient to isolate
data (ϕ, ϕ̇).

Definition 3.1. Let Φ, Ψ ∈ C∞(Ω) and denote by
ary data. The Lagrange boundary form is defin

Σ(Φ, Ψ) = Σ
(
(ϕ, ϕ̇), (ψ, ψ̇)

)
:=

Any dense subspace D ⊂ H0(Ω) is said to be iso
∀Φ, Ψ ∈ D.

Proposition 3.2. The sesquilinear form Q define
H0 is Hermitian iff D is isotropic with respect t

Proof. The sesquilinear form Q : D × D → C i
Φ, Ψ ∈ D. By definition of Q this is equivalent t
is isotropic with respect to Σ. The reverse impl

3.1. Isotropic subspaces

The analysis of maximally isotropic subspac
underlying Hilbert space structure of the Lagra



for the moment any regularity questions. The expression (3.3) can be understood as a 
sesquilinear form on the boundary Hilbert space Hb := H0(∂Ω) ×H0(∂Ω),

Σ(Ψ,Φ) = 〈ϕ, ψ̇〉∂Ω − 〈ϕ̇, ψ〉∂Ω .

We will therefore focus now on the study of the sesquilinear form on the Hilbert space 
Hb and, while there is no risk of confusion, we will denote the scalar product in H0(∂Ω)
simply as 〈·,·〉,

Σ
(
(ϕ1, ϕ2), (ψ1, ψ2)

)
:= 〈ϕ1, ψ2〉 − 〈ϕ2, ψ1〉, (ϕ1, ϕ2), (ψ1, ψ2) ∈ Hb.

Formally, Σ is a sesquilinear symplectic form by which we mean that it satisfies the 
following conditions:

i) Σ is conjugate linear in the first argument and linear in the second.
ii) Σ((ϕ1, ϕ2), (ψ1, ψ2)) = −Σ((ψ1, ψ2), (ϕ1, ϕ2)), (ϕ1, ϕ2), (ψ1, ψ2) ∈ Hb.
iii) Σ is nondegenerate, i.e., Σ((ϕ1, ϕ2), (ψ1, ψ2)) = 0 for all (ψ1, ψ2) ∈ Hb implies

(ϕ1, ϕ2) = (0, 0).

 sesquilinear forms is by no means new 
]. However, in order to keep this article 
graphs independent proofs of the main 

orm Σ in diagonal form. This is done 
C : Hb → Hb,

iϕ2), (ϕ1, ϕ2) ∈ Hb.

−, ψ−〉
)
, (ϕ+, ϕ−), (ψ+, ψ−) ∈ Hb,

1, ψ2)
)
, (ϕ1, ϕ2), (ψ1, ψ2) ∈ Hb. (3.4)

d define the Σ-orthogonal subspace by

ψ1, ψ2)
)

= 0, ∀(ψ1, ψ2) ∈ W
}
.

lly Σ-isotropic] if W ⊂ W⊥Σ [resp. W =
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The analysis of the isotropic subspaces of such
and their characterization is well known [12,28
self-contained, we provide in the following para
results that we will need.

First we write the sesquilinear symplectic f
introducing the unitary Cayley transformation 

C(ϕ1, ϕ2) := 1√
2
(ϕ1 + iϕ2, ϕ1 −

Putting

Σc

(
(ϕ+, ϕ−), (ψ+, ψ−)

)
:= −i
(
〈ϕ+, ψ+〉 − 〈ϕ

the relation between Σ and Σc is given by

Σ
(
(ϕ1, ϕ2), (ψ1, ψ2)

)
= Σc

(
C(ϕ1, ϕ2), C(ψ

Definition 3.3. Consider a subspace W ⊂ Hb an

W⊥Σ :=
{
(ϕ1, ϕ2) ∈ Hb

∣∣ Σ((ϕ1, ϕ2), (

A subspace W ⊂ Hb is Σ-isotropic [resp. maxima
W⊥Σ ].



We begin enumerating some direct consequences of the preceding definitions:

Lemma 3.4. Let W ⊂ Hb and put Wc := C(W).

i) W is Σ-isotropic [resp. maximally Σ-isotropic] iff Wc is Σc-isotropic [resp. maxi-
mally Σc-isotropic].

ii) If (ϕ1, ϕ2) ∈ W ⊂ W⊥Σ , then 〈ϕ1, ϕ2〉 = 〈ϕ1, ϕ2〉. If (ϕ+, ϕ−) ∈ Wc ⊂ W⊥Σc
c , then 

‖ϕ+‖ = ‖ϕ−‖.

Proof. Part (i) follows directly from Eq. (3.4) and the fact that C is a unitary transfor-
mation. To prove (ii) note that if (ϕ1, ϕ2) is in an isotropic subspace W, then

Σ
(
(ϕ1, ϕ2), (ϕ1, ϕ2)

)
= 〈ϕ1, ϕ2〉 − 〈ϕ2, ϕ1〉 = 0.

One argues similarly in the other case. �
Proposition 3.5. Let W± ⊂ H0(∂Ω) be closed subspaces and put Wc := W+ ×W− ⊂ Hb.

xists a partial isometry V : H0(∂Ω) →
ce W−, i.e., V ∗V (H0(∂Ω)) = W+ and

∈ W+
}

= gra V.

 iff there exists a unitary U : H0(∂Ω) →

H0(∂Ω)
}

= graU. (3.5)

e mapping V : H0(∂Ω) → H0(∂Ω) by
W⊥

+ . Since Wc ⊂ W⊥Σc
c we have from

 linear map and a partial isometry. The 
ϕ+) ∈ Wc we have

〈V ϕ+, V ψ+〉
)

= 0, ψ+ ∈ H0(∂Ω),

s Σc-isotropic.
ious item we have Wc = {(ϕ+, Uϕ+) |
Ω) → H0(∂Ω). Consider the following
(UW+)⊥ and note that any (ϕ⊥

+, ϕ
⊥
−) ∈

ince Wc = W⊥Σc
c we must have ϕ⊥

+ =
+, hence kerU = kerU∗ = {0} and U is
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i) The subspace Wc is Σc-isotropic iff there e
H0(∂Ω) with initial space W+ and final spa
V V ∗(H0(∂Ω)) = W− and

Wc =
{
(ϕ+, V ϕ+)

∣∣ ϕ+

ii) The subspace Wc is maximally Σc-isotropic
H0(∂Ω) such that

Wc =
{
(ϕ+, Uϕ+)

∣∣ ϕ+ ∈

Proof. (i) For any (ϕ+, ϕ−) ∈ Wc we define th
V (ϕ+) := ϕ−, ϕ+ ∈ W+ and V (ϕ) = 0, ϕ ∈
part (ii) of Lemma 3.4 that V is a well-defined
reverse implication is immediate: For any (ϕ+, V

Σc

(
(ϕ+, V ϕ+), (ψ+, V ψ+)

)
= −i
(
〈ϕ+, ψ+〉 −

hence, Wc = {(ϕ+, V ϕ+) | ϕ+ ∈ W+} = gra V i
(ii) Suppose that Wc = W⊥Σc

c . By the prev
ϕ+ ∈ W+} for some partial isometry U : H0(∂
decompositions H0(∂Ω) = W+⊕W⊥

+ = (UW+) ⊕
W⊥

+ × (UW+)⊥ satisfies (ϕ⊥
+, ϕ

⊥
−) ∈ W⊥Σc

c . S
ϕ⊥
− = 0, or, equivalently, W+ = H0(∂Ω) = UW

a unitary map.



To prove the reverse implication consider Wc = {(ϕ+, Uϕ+) | ϕ+ ∈ H0(∂Ω)} with U
unitary and choose (ψ+, ψ−) ∈ W⊥Σc

c . Then for any ϕ+ ∈ H0(∂Ω) we have

0 = Σc

(
(ϕ+, Uϕ+), (ψ+, ψ−)

)
= −i
(
〈ϕ+, ψ+〉 − 〈Uϕ+, ψ−〉

)
= −i
(〈
ϕ+,
(
ψ+ − U∗ψ−

)〉)
.

This shows that ψ− = Uψ+ and hence (ψ+, ψ−) ∈ Wc, therefore Wc is maximally
Σc-isotropic. �

The previous analysis allows to characterize finally the Σ-isotropic subspaces of the 
boundary Hilbert space Hb.

Theorem 3.6. A closed subspace W ⊂ Hb is maximally Σ-isotropic iff there exists a 
unitary U : H0(∂Ω) → H0(∂Ω) such that

W =
{(

(I + U)ϕ,−i(I− U)ϕ
) ∣∣ ϕ ∈ H0(∂Ω))

}
.

Proof. By Lemma 3.4(i) and Proposition 3.5(ii) we have that W is maximally Σ-isotropic 
. �
be a unitary operator and consider the
em 3.6. Then W can be rewritten as

ϕ2 = U(ϕ1 + iϕ2)
}
. (3.6)

 W ′ be a subspace defined as in Eq. (3.6). 
 is straightforward to verify that (ϕ1, ϕ2)
fore W ⊂ W ′.
(3.6) and let (ϕ1, ϕ2) ∈ W ′. Then the

U)ϕ2 = 0. (3.7)

ϕ ∈ H0(∂Ω)

2,−i(1 − U)ϕ
〉

U∗)ϕ2, ϕ
〉

U∗)ϕ2 = 0. (3.8)
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iff W = C−1Wc, where Wc is given by Eq. (3.5)

Proposition 3.7. Let U : H0(∂Ω) → H0(∂Ω)
maximally isotropic subspace W given in Theor

W =
{
(ϕ1, ϕ2) ∈ Hb

∣∣ ϕ1 − i

Proof. Let W be given as in Theorem 3.6 and let
Put ϕ1 := (I +U)ϕ and ϕ2 := −i(I −U)ϕ. Then it
satisfy the relation defining Eq. (3.6) and there

Consider a subspace W ′ defined as in Eq.
following relation holds

(1 − U)ϕ1 − i(1 +

Now consider that (ϕ1, ϕ2) ∈ W⊥. Then for all 

0 =
〈
ϕ1, (1 + U)ϕ

〉
+
〈
ϕ

=
〈(

1 + U∗)ϕ1 + i
(
1 −

and therefore

(
1 + U∗)ϕ1 + i

(
1 −

Now we can arrange Eqs. (3.7) and (3.8)



M

(
ϕ1
ϕ2

)
:=
(

1 − U −i(1 + U)
1 + U∗ i(1 − U∗)

)(
ϕ1
ϕ2

)
= 0, (3.9)

where now M : Hb → Hb. But clearly M is a unitary operator so that Eq. (3.9) implies
that (ϕ1, ϕ2) = 0 and therefore W⊕W ′ ⊥ = (W⊥⋂W ′)⊥ = Hb. This condition together
with W ⊂ W ′ implies W = W ′ because W is a closed subspace, as it is easy to verify. �
3.2. Admissible unitaries and closable quadratic forms

In this subsection we will restrict to a family of unitaries U : H0(∂Ω) → H0(∂Ω) that
will allow us to describe a wide class of quadratic forms whose Friedrichs’ extensions are 
associated with self-adjoint extensions of the Laplace–Beltrami operator.

Definition 3.8. Let U : H0(∂Ω) → H0(∂Ω) be unitary and denote by σ(U) its spectrum.
We say that the unitary U on the boundary has gap at −1 if one of the following 
conditions holds:

i) I + U is invertible.
oint of σ(U).

ing on H0(∂Ω) with gap at −1. Let Eλ

ted with the unitary U , i.e.,

dEλ.

by W = RanE⊥
{π}. The orthogonal pro-

cting on H0(∂Ω) with gap at −1. The
 the operator

U + I)−1.

 is a bounded, self-adjoint operator on 

d AU commute. That AU is bounded is
se the operator P (I +U) is under these 
he boundary space W . To show that AU

 the identity of the operator U . Since U
sts a neighborhood V of {eiπ} such that

 σ(U) besides {eiπ}. Pick δ ∈ V ∩ S1.
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ii) −1 ∈ σ(U) and −1 is not an accumulation p

Definition 3.9. Let U be a unitary operator act
be the spectral resolution of the identity associa

U =
∫

[0,2π]

eiλ

The invertibility boundary space W is defined 
jection onto W is denoted by P .

Definition 3.10. Let U be a unitary operator a
partial Cayley transform AU : H0(∂Ω) → W is

AU := iP (U − I)(

Proposition 3.11. The partial Cayley transform
H0(∂Ω).

Proof. First notice that the operators P , U an
a direct consequence of the Definition 3.8, becau
assumptions an invertible bounded operator on t
is self-adjoint consider the spectral resolution of
has gap at −1, either {eiπ} /∈ σ(U) or there exi
it does not contain any element of the spectrum



Then one can express the operator AU using the spectral resolution of the identity of
the operator U as

AU =
π−δ∫

−π+δ

ie
iλ − 1
eiλ + 1dEλ =

π−δ∫
−π+δ

− tan λ

2 dEλ.

Since λ ∈ [−π + δ, π − δ], then tan λ
2 ∈ R. Therefore the spectrum of AU is a subset of

the real line, necessary and sufficient condition for a closed, symmetric operator to be 
self-adjoint. �

We can now introduce the class of closable quadratic forms that was announced at 
the beginning of this section.

Definition 3.12. Let U be a unitary with gap at −1, AU the corresponding partial Cayley
transform and γ the trace map considered in Theorem 2.11. The Hermitian quadratic 
form associated with the unitary U is defined by

γ(Φ), AUγ(Φ)
〉
∂Ω

⊥γ(Φ) = 0
}
.

nded by the Sobolev norm of order 1,

‖1‖Ψ‖1.

ed by the H1(Ω) norm is direct conse-
roposition 2.10.

·
∥∥γ(Φ)
∥∥

0‖γ(Ψ)‖0

‖ ·
∥∥γ(Φ)
∥∥

1
2
‖γ(Ψ)‖ 1

2

U‖ · ‖Φ‖1‖Ψ‖1,

equality. �
issibility on the unitaries on the bound-

of QU .
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QU (Φ, Ψ) = 〈dΦ,dΨ〉 −
〈

on the domain

DU =
{
Φ ∈ H1(Ω)

∣∣ P
Proposition 3.13. The quadratic form QU is bou

QU (Φ, Ψ) ≤ K‖Φ

Proof. That the first summand of QU is bound
quence of the Cauchy–Schwarz inequality and P

For the second term we have that

∣∣〈γ(Φ), AUγ(Ψ)
〉
∂Ω

∣∣ ≤ ‖AU‖

≤ C‖AU

≤ C ′‖A

where we have used Theorem 2.11 in the last in

Finally, we need an additional condition of adm
ary that will be needed to prove the closability 



Definition 3.14. Let U be a unitary with gap at −1. The unitary is said to be admissible
if the partial Cayley transform AU : H0(∂Ω) → H0(∂Ω) is continuous with respect to
the Sobolev norm of order 1/2, i.e.,

‖Aϕ‖H1/2(∂Ω) ≤ K‖ϕ‖H1/2(∂Ω).

Example 3.15. Consider a manifold with boundary given by the unit circle, i.e., ∂Ω = S1,
and define the unitary (Uβϕ)(z) := eiβ(z)ϕ(z), ϕ ∈ L2(S1). If β ∈ L2(S1) and ranβ ⊂
{π} ∪ [0, π − δ] ∪ [π + δ, 2π), for some δ > 0, then Uβ has gap at −1. If, in addition,
β ∈ C∞(S1), then Uβ is admissible.

4. Closable and semi-bounded quadratic forms

This section addresses the questions of semi-boundedness and closability of the
quadratic form QU defined on its domain DU (cf. Definition 3.12).

4.1. Functions and operators on collar neighborhoods

t refer to the functions and operators in 
ndary ∂Ω and that we will denote by Ξ. 
tion 3: If Φ ∈ H1(Ω), then ϕ = γ(Φ)

, ϕ̇ is the restriction to the boundary of 

Ω). Then, for every ε > 0 there exists
2(∂Ω) < ε and ‖f − ˙̃ϕ‖H1/2(∂Ω) < ε.

f., Theorem 2.11). Moreover, it is enough 
ν ∈ X(Ω) is the normal vector field, on 
r 4] for details on such neighborhoods). 
is is a dense subset of H1(Ω). The com-
res that the collar neighborhood has a 

e can consider that the collar neighbor-
eing ∂

∂r the normal vector field pointing 
0] × ∂Ω and ∂Ω 
 {0} × ∂Ω. Moreover, 
 H1(∂Ω) is dense in H1/2(∂Ω).
the following properties:
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We will need first some technical results tha
a collar neighborhood close to the compact bou
Recall the conventions at the beginning of Sec
denotes its restriction to ∂Ω and for Φ smooth
the normal derivative.

Lemma 4.1. Let Φ ∈ H1(Ω) and f ∈ H1/2(∂
Φ̃ ∈ C∞(Ω) such that ‖Φ − Φ̃‖1 < ε, ‖ϕ − ϕ̃‖H1/

Proof. The first two inequalities are standard (c
to consider Φ ∈ C∞(Ω) with dΦ(ν) ≡ 0, where 
a collar neighborhood Ξ of ∂Ω (see [23, Chapte
According to the proof of [13, Theorem 7.2.1] th
pactness assumption on the boundary ∂Ω ensu
minimal width δ. Without loss of generality w
hood Ξ has Gaussian coordinates x = (r, θ), b
outwards. In particular, we have that Ξ 
 [−δ, 
it is enough to restrict to f ∈ H1(∂Ω), because

Consider a smooth function g ∈ C∞(R) with 

• g(0) = 1 and g′(0) = −1.
• g(s) ≡ 0, s ∈ [2, ∞).
• |g(s)| ≤ 1 and |g′(s)| ≤ 1.



Define now the rescaled functions gn(r) := 1
ng(−nr). Let {fn(θ)}n ⊂ C∞(∂Ω) be any

sequence such that ‖fn − f‖H1(∂Ω) → 0. Now consider the smooth functions

Φ̃n(x) := Φ(x) + gn(r)fn(θ). (4.1)

Clearly we have that ˙̃ϕn(θ) ≡ fn(θ) and therefore ‖ ˙̃ϕn − f‖H1(∂Ω) → 0 as needed. Now

we are going to show that Φ̃n
H1

−→ Φ. According to Proposition 2.10 it is enough to show 
that the functions and all their first derivatives converge in the H0(Ω) norm.

∥∥Φ̃n(x) − Φ(x)
∥∥
H0(Ω) =

∥∥gn(r)fn(θ)
∥∥
H0(Ω)

≤ M
∥∥gn(r)
∥∥
H0(− 2

n ,0)‖fn‖H0(∂Ω)

≤ M

√
2

n3/2 ‖fn‖H0(∂Ω); (4.2a)∥∥∥∥ ∂∂r Φ̃n(x) − ∂

∂r
Φ(x)
∥∥∥∥
H0(Ω)

=
∥∥∥∥ ∂∂r gn(r)fn(θ)

∥∥∥∥
H0(Ω)

≤ M‖ ∂

∂r
gn(r)‖H0(− 2

n ,0)‖fn‖H0(∂Ω)

‖fn‖H0(∂Ω); (4.2b)

∂

θ
fn(θ)
∥∥∥∥
H0(Ω)

)
∥∥
H0(− 2

n ,0)

∥∥∥∥ ∂∂θfn(θ)
∥∥∥∥
H0(∂Ω)

′‖fn‖H1(∂Ω). (4.2c)

annian metric. The constant M ′ in the 

H0(∂Ω) ≤ M̃‖fn‖H1(∂Ω). Since {fn(θ)}
s appearing at the right-hand sides are

r every ε > 0 there exists a Φ̃ ∈ C∞(Ω)

it is enough to approximate any smooth 
a collar neighborhood.
the following properties:
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≤ M

√
2

n1/2∥∥∥∥ ∂∂θ Φ̃n(x) − ∂

∂θ
Φ(x)
∥∥∥∥
H0(Ω)

=
∥∥∥∥gn(r)

∂

≤ M
∥∥gn(r

≤
√

2
n3/2M

The constant M depends only on the Riem
last inequality comes from the fact that ‖∂θfn‖
is a convergent sequence in H1(∂Ω) the norm
bounded. �
Lemma 4.2. Let Φ ∈ H1(Ω) and c ∈ R. Then fo
with ˙̃ϕ = cϕ̃ such that ‖Φ − Φ̃‖1 < ε.

Proof. As in the proof of the preceding lemma 
function Φ with vanishing normal derivative in 

Consider a smooth function g ∈ C∞(R) with 

• g(0) = 0 and g′(0) = −1.
• g(s) ≡ 0, s ∈ [2, ∞).
• |g(s)| ≤ 1 and |g′(s)| ≤ 1.



Notice the difference in the definition of this function with the one in the previous lemma. 
Define the rescaled functions gn(r) := 1

ng(−nr). Pick now a sequence of smooth functions

Φ̃n(x) := Φ(x) + cΦ(0,θ)gn(r),

This family of functions clearly verifies the boundary condition ˙̃ϕ = cϕ̃. The inequal-
ities (4.2) now read

∥∥Φ̃n(x) − Φ(x)
∥∥
H0(Ω) =

∥∥cgn(r)Φ(0,θ)
∥∥
H0(Ω)

≤ cM
∥∥gn(r)
∥∥
H0(− 2

n ,0)

∥∥Φ(0,θ)
∥∥
H0(∂Ω)

≤ cM

√
2

n3/2

∥∥Φ(0,θ)
∥∥
H0(∂Ω); (4.3a)∥∥∥∥ ∂∂r Φ̃n(x) − ∂

∂r
Φ(x)
∥∥∥∥
H0(Ω)

=
∥∥∥∥c ∂

∂r
gn(r)Φ(0,θ)

∥∥∥∥
H0(Ω)

≤ cM

∥∥∥∥ ∂∂r gn(r)
∥∥∥∥
H0(− 2

n ,0)

∥∥Φ(0,θ)
∥∥
H0(∂Ω)

√ ∥∥Φ(0,θ)
∥∥
H0(∂Ω); (4.3b)

∂

θ
Φ(0,θ)
∥∥∥∥
H0(Ω)

)
∥∥
H0(− 2

n ,0)

∥∥∥∥ ∂∂θΦ(0,θ)
∥∥∥∥
H0(∂Ω)∥∥∥∥ ∂∂θΦ(0,θ)

∥∥∥∥
H1(∂Ω)

. (4.3c)

nds only on the Riemannian metric. �
e partial Cayley transform of an admis-
f smooth functions {Φ̃n} ⊂ C∞(Ω) such

1
n , and ‖ ˙̃ϕn −AU ϕ̃n‖H1/2(∂Ω) <

1
n .

g smooth function Φ̃n0 as in Lemma 4.1

1/2(∂Ω)

 that f ∈ H1/2(∂Ω), cf. Definition 3.14).

/2(∂Ω))n0
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≤ cM
2

n1/2∥∥∥∥ ∂∂θ Φ̃n(x) − ∂

∂θ
Φ(x)
∥∥∥∥
H0(Ω)

=
∥∥∥∥cgn(r)

∂

≤ cM
∥∥gn(r

≤ cM

√
2

n3/2

As in the previous lemma the constant M depe

Corollary 4.3. Let {Φn}n ⊂ H1(Ω) and AU be th
sible unitary U . Then there exists a sequence o
that ‖Φn − Φ̃n‖H1(Ω) <

1
n , ‖ϕn − ϕ̃n‖H1/2(∂Ω) <

Proof. For Φn0 , n0 ∈ N, take the approximatin
with

f := AUϕn0 ∈ H

(note that since U is admissible we have indeed
Choose also ε > 0 such that

ε ≤ 1
(1 + ‖AU‖H1



and note that this implies ε ≤ 1
n0

. Then the first two inequalities follow directly from 
Lemma 4.1. Moreover, we also have

‖ ˙̃ϕn0 −AU ϕ̃n0‖H1/2(∂Ω) ≤ ‖ ˙̃ϕn0 −AUϕn0‖H1/2(∂Ω) + ‖AUϕn0 −AU ϕ̃n0‖H1/2(∂Ω)

≤ ε + ‖AU‖H1/2(∂Ω)‖ϕn0 − ϕ̃n0‖H1/2(∂Ω)

≤
(
1 + ‖AU‖H1/2(∂Ω)

)
ε ≤ 1

n0
,

which concludes the proof. �
For the analysis of the semi-boundedness and closability of the quadratic form 

(QU , DU ) defined in the previous section we need to analyze first the following one-
dimensional problem in an interval. The operator is defined with Neumann conditions 
on one end of the interval and Robin-type conditions on the other end.

Definition 4.4. Consider the interval I = [0, 2π] and a real constant c ∈ R. Define the 
second order differential operator

by Rc = − d2

dr2

Φ

r

∣∣∣∣
r=2π

= cΦ|r=2π

}
⊂ H0([0, 2π]

)
.

Definition 4.4 is essentially self-adjoint
with lower bound Λ0.

ther with this boundary conditions de-
.g., [4,12,17,20]). We show next that its 
 a self-adjoint extension of the Laplace 
tor has finite dimensional deficiency in-
ve empty essential spectrum. According 
ons of a closed, symmetric operator with 
spectrum and therefore the spectrum of 

:

∂Φ

∂r

∣∣∣∣
r=2π

= cΦ|r=2π, (4.4)

(r) = Aeiλr + Be−iλr we impose the
obtain the following relation
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Rc : D(Rc) → H0([0, 2π]
)

on the domain

D(Rc) :=
{
Φ ∈ C∞(I)

∣∣∣ ∂Φ
∂r

∣∣∣∣
r=0

= 0 and ∂

∂

Proposition 4.5. The symmetric operator Rc of 
with discrete spectrum and semi-bounded below 

Proof. It is well known that this operator toge
fines an essentially self-adjoint operator (see, e
spectrum is semi-bounded below. Its closure is
operator defined on H2

0[0, 2π]. The latter opera
dices and its Dirichlet extension is known to ha
to [45, Theorem 8.18] all the self-adjoint extensi
finite deficiency indices have the same essential 
Rc is discrete.

Consider now the following spectral problem

RcΦ = ΛΦ,
∂Φ

∂r

∣∣∣∣
r=0

= 0,

with c a real constant. On general solutions Φ
boundary conditions. For nonzero solutions we 



−(iλ + c)e−i2πλ + (iλ− c)ei2πλ = 0, (4.5)

where Λ = λ2 ∈ R. The equation is symmetric under the interchange λ → −λ. It is 
therefore enough to consider either λ ≥ 0 or λ = iμ with μ > 0. These two choices 
correspond to the positive and negative eigenvalues, respectively. The imaginary part of 
Eq. (4.5) vanishes identically. If λ ≥ 0 its real part takes the form

tan 2πλ = − c

λ
,

which leads to infinite solutions for each c ∈ R and therefore there are infinite positive 
eigenvalues. If λ = iμ we obtain from Eq. (4.5)

e−4πμ = μ− c

μ + c
, (4.6)

which has either no solution for c < 0, the trivial solution μ = 0 for c = 0 and exactly one 
negative solution for c > 0. So the operator Rc is positive for c ≤ 0 and semi-bounded
below for c > 0. We denote the lowest possible eigenvalue by Λ0. �

] and let {Γi(θ)} ⊂ H0(∂Ω) be an or-
tor Rc on the tensor product H0(I) ⊗

) where Rc := Rc ⊗ I,

1
Φi(r)Γi(θ), n ∈ N, Φi ∈ D(R)

}
.

self-adjoint, semi-bounded below and has
Proposition 4.5.

omposition in terms of the orthonormal 
r)iΓi(θ). We have that 〈Ψ, (Rc±i)Φ〉 = 0
D(Rc). Then

c ± i)Φi0

〉
H0(I)〈Γi, Γi0〉H0(∂Ω)

i)Φi0

〉
H0(I), ∀Φi0 ∈ D(Rc).

ition 4.5, Rc is essentially self-adjoint.
nt.
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Definition 4.6. Consider the interval I = [0, 2π
thonormal basis. Consider the following opera
H0(∂Ω) 
 H0(I × ∂Ω) given by

Rc : D(Rc) → H0(I) ⊗H0(∂Ω

on its natural domain

D(Rc) =
{
Φ ∈ H0(I) ⊗H0(∂Ω)

∣∣∣ Φ =
n∑

i=

Proposition 4.7. The operator Rc is essentially 
the same lower bound Λ0 as the operator Rc of 

Proof. Let Ψ ∈ ker(R†
c ∓ i) and consider its dec

basis {Γi(θ)} ⊂ H0(∂Ω) such that Ψ =
∑∞

i=1 Ψ(
∀Φ ∈ D(Rc). In particular for any Φ = Φi0Γi0 ∈

0 =
〈
Ψ, (Rc ± i)Φi0Γi0

〉
=

∞∑
i=1

〈
Ψi, (R

=
〈
Ψi0 , (Rc ±

This implies that Ψi0 = 0 because, by Propos
Therefore Ψ = 0 and Rc is essentially self-adjoi



Finally we show the semi-boundedness condition. Using the orthonormality of the 
basis {Γi(θ)} and for any Φ ∈ D(Rc) we have that

〈Φ,RcΦ〉H0(I×∂Ω) =
n∑

i=1
〈Φi, RcΦi〉H0(I) ≥ Λ0

n∑
i=1

〈Φi, Φi〉H0(I)

= Λ0〈Φ,Φ〉H0(I×∂Ω). �
4.2. Quadratic forms and extensions of the minimal Laplacian

We begin associating quadratic forms with some of the operators on a collar neigh-
borhood of the precedent subsection.

Lemma 4.8. Denote by Qc the closed quadratic form represented by the closure of Rc.
Then its domain D(Qc) contains the Sobolev space of order 1. For any Φ ∈ H1(I×∂Ω) ⊂
D(Qc) we have the expression

Qc(Φ) =
∫ [ ∫

∂Φ̄

∂r

∂Φ

∂r
dr − c
∣∣γ(Φ)
∣∣2]dμ∂η.

the boundary conditions specified in the

∑
i

〈Φi, RcΦi〉H0(I)

(I)
− cΦ̄i(0)Φi(0)

c|ϕ|2
]
dμ∂η. (4.7)

this quadratic form is dominated by the 

Φ)

I

∂Φ̄

∂r

∂Φ

∂r
drdμ∂η + c‖ϕ‖2

H0(∂Ω)

‖2
H1(I×∂Ω)

 the equivalence appearing in Proposi-
ality shows that D(Rc)‖·‖1 ⊂ D(Qc).
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∂Ω I

Proof. Let Φ ∈ D(Rc). Then we have, recalling 
domain D(Rc) that

Qc(Φ) = 〈Φ,RcΦ〉H0(I×∂Ω) =

=
∑
i

〈
∂Φi

∂r
,
∂Φi

∂r

〉
H0

=
∫
∂Ω

[ ∫
I

∂Φ̄

∂r

∂Φ

∂r
dr −

Now it is easy to check that the graph norm of 
Sobolev norm of order 1, H1(I × ∂Ω):

|||Φ|||2Qc
=
(
1 + |Λ0|

)
‖Φ‖2

H0(I×∂Ω) + Qc(

≤
(
1 + |Λ0|

)
‖Φ‖2

H0(I×∂Ω) +
∫
∂Ω

∫

≤
(
1 + |Λ0|

)
‖Φ‖2

H0(I×∂Ω) + C‖Φ

≤ C ′‖Φ‖2
H1(I×∂Ω),

where in the second step we have used again
tion 2.10 and Theorem 2.11. The above inequ



Moreover, Lemma 4.2 states that D(Rc) is dense in H1(I × ∂Ω). Hence the expression
Eq. (4.7) holds also on H1(I × ∂Ω). �
Theorem 4.9. Let U : H0(∂Ω) → H0(∂Ω) be a unitary operator with gap at −1. Then
the quadratic form QU of Definition 3.12 is semi-bounded from below.

Proof. Let (Ω, ∂Ω, η) be a Riemannian manifold with smooth, compact boundary. One 
can always select a collar neighborhood Ξ of the boundary with coordinates (r, θ) such 
that Ξ 
 [−L, 0] × ∂Ω and where

η(r,θ) =
[

1 0
0 g(r,θ)

]
.

The normal vector field to the boundary is going to be ∂
∂r . With this choice, the induced 

Riemannian metric at the boundary becomes ∂η(θ) ≡ g(0, θ). The thickness L of the 
collar neighborhood Ξ can be also selected such that there exists δ � 1 that verifies

(1 − δ)
√∣∣g(0,θ)

∣∣ ≤√|g(r,θ)| ≤ (1 + δ)
√∣∣g(0,θ)

∣∣. (4.8)

litting. Let Φ ∈ DU ⊂ H1(Ω). Obviously
 simplify the notation and since there is
r both Φ ∈ H1(Ω) and Φ|Ξ ∈ H1(Ξ).

∂η (4.9a)

,dΦ)dμη −
∫
∂Ω

ϕ̄AUϕdμ∂η (4.9b)

∂η (4.9c)

|g(r,θ)|dr ∧ dθ −
∫
∂Ω

ϕ̄AUϕdμ∂η

(4.9d)∫
∂Ω

ϕ̄AUϕdμ∂η (4.9e)

∧ dθ −
∫
∂Ω

ϕ̄AUϕ
√∣∣g(0,θ)

∣∣dθ (4.9f)

) |ϕ|
2
]√

|g(0,θ)|dθ (4.9g)
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The quadratic form QU can be adapted to this sp
Φ|Ξ ∈ H1(Ξ) 
 H1(I × ∂Ω). In what follows, to
no risk of confusion, the symbol Φ will stand fo

QU (Φ) =
∫
Ω

η−1(dΦ̄,dΦ)dμη −
∫
∂Ω

ϕ̄AUϕdμ

=
∫
Ξ

η−1(dΦ̄,dΦ)dμη +
∫

Ω\Ξ

η−1(dΦ̄

≥
∫
Ξ

η−1(dΦ̄,dΦ)dμη −
∫
∂Ω

ϕ̄AUϕdμ

=
∫
∂Ω

∫
I

[
∂Φ̄

∂r

∂Φ

∂r
+ g−1(dθΦ,dθΦ)

]√

≥
∫
∂Ω

∫
I

∂Φ̄

∂r

∂Φ

∂r

√
|g(r,θ)|dr ∧ dθ −

≥ (1 − δ)
∫
∂Ω

∫
I

∂Φ̄

∂r

∂Φ

∂r

√∣∣g(0,θ)
∣∣dr

≥ (1 − δ)
∫
∂Ω

[ ∫
I

∂Φ̄

∂r

∂Φ

∂r
dr − ‖AU‖

(1 − δ



≥ −|Λ0|(1 − δ)‖Φ‖2
H0(I×∂Ω) ≥ −|Λ0|

(
1 − δ

1 + δ

)
‖Φ‖2

H0(Ξ) (4.9h)

≥ −|Λ0|
(

1 − δ

1 + δ

)
‖Φ‖2

H0(Ω).

In the step leading to (4.9c) we have used the fact that the second term is positive. In 
the step leading to (4.9e) we have used that the second term in the first integrand is 
positive. Then (4.9f) follows using the bounds (4.8). The last chain of inequalities follows 
by Proposition 4.7 and Lemma 4.8, taking c = ‖AU‖/(1 −δ). Notice that the semi-bound
of Proposition 4.7 is always negative in this case because c = ‖AU‖/(1 − δ) > 0. In
Definition 4.4 the interval I was taken of length 2π whereas in this case it has length L. 
This affects only in a constant factor that can be absorbed in the constant c by means 
of a linear transformation of the manifold T : [0, 2π] → I. �
Theorem 4.10. Let U : H0(∂Ω) → H0(∂Ω) be an admissible, unitary operator. Then the
quadratic form QU of Definition 3.12 is closable.

Proof. According to Remark 2.3 a quadratic form is closable iff for any Φ ∈ DU
|||·|||QU

Φn} verifies ‖Φn‖ → 0 then Q(Φ) = 0.

Ω) such that

0,

(∂Ω) → 0.

 − Φn| | |QU
→ 0. For the sequence {Φn}

e have that

U
+ |||Φn − Φ̃n|||QU

U
+ K‖Φn − Φ̃n‖1,

ies that ‖Φ̃n‖ → 0. For every Ψ ∈ H2
0 =

nΨ‖‖Φ̃n‖ → 0.

ng to Theorem 2.13 the traces of such

 i.e., ϕ̃n
H−1/2(∂Ω)−−−−−−−→ ϕ̃.
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such that the corresponding Cauchy sequence {
Let Φ ∈ DU

||·|||QU .

(a) Let us show that there exist {Φ̃n} ∈ C∞(

|||Φ− Φ̃n|||QU
→

‖ ˙̃ϕn −AU ϕ̃n‖H1/2

There exists {Φn} ∈ DU ⊂ H1(Ω) such that | | |Φ
take {Φ̃n} ∈ C∞(Ω) as in Corollary 4.3. Then w

|||Φ− Φ̃n|||QU
≤ |||Φ− Φn|||Q
≤ |||Φ− Φn|||Q

where we have used Proposition 3.13.

(b) Let us assume that ‖Φn‖ → 0. This impl
D(Δmin) we have that

|〈ΔminΨ, Φ̃n〉| ≤ ‖Δmi

Hence lim Φ̃n ∈ D(Δ†
min) = D(Δmax). Accordi

functions exist and are elements of H−1/2(∂Ω),

(c) Finally we have that



QU (Φ) = lim
m→∞

lim
n→∞

[
〈dΦ̃n, dΦ̃m〉 − 〈ϕ̃n, AU ϕ̃m〉∂Ω

]
= lim

m→∞
lim
n→∞

[
〈Φ̃n,−ΔηΦ̃m〉 + 〈ϕ̃n, ˙̃ϕm〉∂Ω − 〈ϕ̃n, AU ϕ̃m〉∂Ω

]
= lim

m→∞
(ϕ̃, ˙̃ϕm −AU ϕ̃m)∂Ω = 0.

Notice that in the last step we have used the continuous extension given in Proposition 2.6
of the scalar product of the boundary 〈·,·〉∂Ω to the pairing (·,·)∂Ω : H−1/2(∂Ω) ×
H1/2(∂Ω) → C associated with the scale of Hilbert spaces H1/2(∂Ω) ⊂ H0(∂Ω) ⊂
H−1/2(∂Ω). �

Theorem 4.9 and Theorem 4.10 ensure that Theorem 2.4 applies and that the closure 
of the quadratic form QU for an admissible unitary U is representable by means of a
unique self-adjoint operator T , with domain D(T ) ⊂ D(QU ) := DU

||·||QU , i.e.,

QU (Ψ,Φ) = 〈Ψ, TΦ〉, Ψ ∈ D(QU ), Φ ∈ D(T ).

Admissibility of U is a sufficient but not necessary condition to ensure the closability 
xample 5.5 we prove a slightly weaker
 of the boundary.

tion between this operator T and the 

tor with domain D(T ) representing the 
he operator T is a self-adjoint extension

 Φ ∈ D(QU ) and there exists χ ∈ H0(Ω)

∀Ψ ∈ D(QU ).

ϕ〉∂Ω
, ϕ̇〉∂Ω − 〈ψ,AUϕ〉∂Ω

0(Ω) the above equality holds also for
Ω) ⊂ D(T ) and moreover T |D(Δmin) =
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of the corresponding quadratic form QU . In E
condition adapted to a particular decomposition

The following theorem establishes the rela
Laplace–Beltrami operator.

Theorem 4.11. Let T be the self-adjoint opera
closed quadratic form QU with domain D(QU ). T
of the closed symmetric operator −Δmin.

Proof. By Theorem 2.4 we have that Φ ∈ D(T ) iff
such that

QU (Ψ,Φ) = 〈Ψ, χ〉,

Let Φ ∈ H2
0(Ω) ⊂ DU and Ψ ∈ DU . Then

QU (Ψ,Φ) = 〈dΨ,dΦ〉 − 〈ψ,AU

= 〈Ψ,−ΔminΦ〉 + 〈ψ

= 〈Ψ,−ΔminΦ〉.

Since DU is a core for QU and D(QU ) ⊂ H
every Ψ ∈ D(QU ). Therefore D(Δmin) = H2

0(
−Δmin. �



4.3. Relations to existing approaches

The analysis and classification of classes of self-adjoint extensions of second order ellip-
tic differential operators on n-dimensional manifolds Ω is incomparably more involved 
and rich in the case n ≥ 2, than in the case of one-dimensional ordinary differential 
operators of Sturm–Liouville type. One of the reasons is that the associated boundary 
Hilbert space L2(∂Ω) is a separable infinite dimensional Hilbert space if n ≥ 2, while 
in the one-dimensional case it is just isomorphic to Ck, k ∈ N. Moreover, the deficiency 
indices of the corresponding closed symmetric differential operators are typically infi-
nite if n ≥ 2. As mentioned in the introduction, the complexity of the classification of 
self-adjoint extensions in the former case has opened the possibility of many different 
approaches [17,19,5,8,39]. In this subsection we will briefly explain some relations to 
existing results and techniques.

(i) The notion of quasi-boundary triple was introduced in [5] as a generalization of the 
notion of (ordinary) boundary triples and was applied to second order elliptic differ-
ential operators on bounded domains of Rn, n ≥ 2 (see also [8], [38, Section 3.4] and 
references cited therein). We refer to the introduction of [8] for a motivation of these 

rators and to [26] for a one-dimensional 
le.
ased on the analysis of unbounded op-
mains require the use of functions with 

approach used in this article. In the con-
consider a minimal, closed, symmetric 

oundary triple for the maximal opera-
L2(∂Ω) is the boundary Hilbert space,
om the space Hs

L(Ω), s ∈ [ 32 , 2] (which
oundary ∂Ω and Γ1 : Hs

L(Ω) → L2(∂Ω)
stricted to the boundary (see, e.g., [8, 
 Neumann extension of the operator is 
operator with domain Hs

L(Ω) to kerΓ1
joint extensions of the minimal operator 

on the boundary Hilbert space L2(∂Ω)
.21 in [8] for details). Roughly speaking, 
 Θ we have ΘΓ0 = Γ1. In the case that
 things, that Θ preserves the fractional 
e admissibility condition of the partial 
We refer to [5, Section 4] and [7] for the 
r Θ is a linear, self-adjoint relation on 
eyl functions in this context). Note also 

riples, in the context of quasi-boundary 
ce between the self-adjoint extensions of 
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structures through Sturm–Liouville like ope
motivation of the analysis done in this artic
The analysis of quasi-boundary triples is b
erators and, therefore, the corresponding do
more regularity than in the quadratic form 
text of second order elliptic operators L on Ω
and densely defined operator S. A quasi-b
tor S∗ is given by {G, Γ0, Γ1}, where G =
Γ0 : Hs

L(Ω) → L2(∂Ω) is the restriction fr
contains the Sobolev space H2(Ω)) to the b
is (up to a sign) the normal derivative re
Section 1.4] for details). In this context the
obtained as a restriction of the differential 
(cf., [8, Proposition 4.19]). A class of self-ad
are parametrized by a self-adjoint operator Θ
satisfying certain conditions (see Theorem 1
on the domain of the extensions labeled by
the scale s = 2 it is required, among other
Sobolev space H1/2(∂Ω) similarly as in th
Cayley transform in Definition 3.14 above. (
more general situation where the paramete
the boundary Hilbert space and for use of W
that, in contrast with ordinary boundary t
triples there is not a bijective corresponden



S labeled by Θ and the self-adjoint parameters Θ. In this sense, the quasi-boundary 
triple approach specifies a class of so-called Krein–von Neumann-type extensions 
(see, e.g., Proposition 4.5 in [5]).
In contrast with the quasi-boundary triple approach, we study the extension purely 
from a quadratic form point of view. This allows in general larger domains (i.e., 
domains containing less regular functions) and the classification of extensions is done 
through the analysis of the (non locally compact) group of unitaries U(L2(∂Ω)) on
the boundary Hilbert space. In particular, we recover the Dirichlet extension through 
the selection of the unitary U = −I which trivially satisfies admissibility and the 
spectral gap condition at −1. In this sense, our approach is closer to the boundary 
pair approach introduced by Post in [39] (see [39, Section 7.4], where a positive 
quadratic form without a boundary term is considered). Moreover, our approach 
selects Friedrichs-type self-adjoint extensions of the corresponding minimal operator.

(ii) The pioneering work of Grubb [17,18] gives a complete characterization of the closed 
extensions of an even order elliptic differential operator in terms of boundary con-
ditions. These boundary conditions are expressed in terms of pseudo-differential 
operators acting on spaces of functions at the boundary. More concretely these 

ces of fractional order, Hs(∂Ω), where 
2.2] and [22, Theorem 3.1]. There are 

 the pseudo-differential operators at the 
lf-adjoint extensions of the given elliptic 
erators to be pseudo-differential opera-

oundary shows up in our context in the 
or U : L2(∂Ω) → L2(∂Ω) is admissible,
Ω).
undedness of even order elliptic bound-

8, Theorem 4.3]. A characterization of 
lower semi-boundedness is given in [20, 
 operator needs to be semi-bounded in 
 condition in our approach ensures that 
this is a sufficient condition to prove the
 is clear from the proof of Theorem 4.9
semi-bounded in L2(∂Ω) and thus our
ss is weaker.
s to preserve the local structure of the 

me generality with respect to the works 
ary conditions presented in this article 
osed in Definition 3.14, as will be shown 
in smooth subsets of codimension one. 
 in [21].
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spaces are orthogonal sums of Sobolev spa
s can take negative values, cf. [17, Theorem
given sufficient and necessary conditions on
boundary to define closed symmetric and se
operator. The necessity of the boundary op
tors acting on the Sobolev spaces at the b
sufficient condition that the unitary operat
i.e., that AU is a bounded operator in H1(∂
A necessary condition for the lower semi-bo
ary problems can already be found in [1
sufficient and necessary conditions for the 
Theorem 2.12]. In particular the boundary
a Sobolev space of negative order. The gap
the operator AU is bounded in L2(∂Ω) and 
semi-boundedness of the quadratic form. It
that it is enough that the operator AU is 
sufficient condition for the semi-boundedne
Our approach to the boundary problem aim
space of boundary data although loosing so
by Grubb. The simpler form of the bound
allows to relax the regularity condition imp
in Example 5.5, and treat discontinuities 
Therefore generalizing the results appearing



5. Examples

In this section we introduce some examples that show that the characterization of the
quadratic forms of Section 3 and Section 4 include a large class of possible self-adjoint 
extensions of the Laplace–Beltrami operator. This section also illustrates the simplicity 
in the description of extensions using admissible unitaries at the boundary.

For the purpose of this section it is enough to consider that the boundary admits a 
covering with sets of non-empty interior, that are disjoint up to subsets of codimension 
one and such that they are diffeomorphic to a reference set Γ0. The following construction
ensures that such a covering does always exist.

As the boundary manifold ∂Ω is an (n −1)-dimensional, smooth manifold, there always 
exist an (n − 1)-simplicial complex K and a smooth diffeomorphism f : K → ∂Ω such 
that f(K) = ∂Ω, cf., [46,47]. Any simplex in the complex is diffeomorphic to a reference 
polyhedron Γ0 ⊂ R

n−1. The simplicial complex K defines therefore a triangulation of
the boundary ∂Ω =

⋃
N
i=1Γi, where Γi := f(Ai), Ai ∈ K. For each element of the

triangulation Γi there exists a diffeomorphism gi : Γ0 → Γi. Consider a reference Hilbert
space H0(Γ0, dμ0), where dμ0 is a fixed smooth volume element. Each diffeomorphism
gi defines a unitary transformation as follows:

ant of the transformation of coordinates
t μi ∈ C∞(∂Ω) be the proportionality
e pull-back of the diffeomorphism. The 
Γ0, dμ0) is defined by

Φ ◦ gi). (5.1)

tary. First note that T is invertible. It 

|g�i dμ∂η

|μidμ0 = 〈TiΦ, TiΨ〉Γ0 .

oundary of the Riemannian manifold 
nts, i.e., ∂Ω = Γ1 ∪ Γ2. (Note that Γ1
ace of the boundary satisfies H0(∂Ω) =
 is given explicitly by the characteristic

odulo a null measure set we have that
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Definition 5.1. Let |Ji| be the Jacobian determin
given by the diffeomorphism gi : Γ0 → Γi. Le
factor g�i dμ∂η = μidμ0, where g�i stands for th
unitary transformation Ti : H0(Γi, dμ∂η) → H0(

TiΦ :=
√

|Ji|μi(

We show that the transformation above is uni
remains to show that T is an isometry:

〈Φ, Ψ〉Γi
=
∫
Γi

ΦΨdμ∂η

=
∫
Γ0

(Φ ◦ gi)(Ψ ◦ gi)|Ji

=
∫
Γ0

(Φ ◦ gi)(Ψ ◦ gi)|Ji

Example 5.2. Consider that the compact b
(Ω, ∂Ω, η) admits a triangulation of two eleme
and Γ2 need not be disjoint sets.) The Hilbert sp
H(Γ1∪Γ2) 
 H0(Γ1) ⊕H0(Γ2). The isomorphism
functions χi of the submanifolds Γi, i = 1, 2. M



Φ = χ1Φ + χ2Φ.

We shall define unitary operators U = H0(∂Ω) → H0(∂Ω) that are adapted to the block
structure induced by the latter direct sum:

U =
[
U11 U12
U21 U22

]
,

where Uij : H0(Γj) → H0(Γi). Hence consider the following unitary operator

U =
[

0 T ∗
1 T2

T ∗
2 T1 0

]
, (5.2)

where the unitaries Ti are defined as in Definition 5.1. Clearly, U2 = I, and therefore the
spectrum of U is σ(U) = {−1, 1} with the corresponding orthogonal projectors given by

P⊥ = 1
2(I− U),

P = 1(I + U).

e the null operator, since P (I − U) = 0.
d the corresponding quadratic form will 
 quadratic form QU is given by all the
ich in this case becomes

=
[

χ1γ(Φ) − T ∗
1 T2χ2γ(Φ)

−T ∗
2 T1χ1γ(Φ) + χ2γ(Φ)

]
= 0.

(5.3)

χ2γ(Φ)
)
. (5.4)

ribe generalized periodic boundary con-
ts of the boundary with each other. The 
e the triangulation elements congruent.
phic as Riemannian manifolds then one
ditions.

e previous example but with the unitary 

]
, α ∈ C∞(Γ0). (5.5)
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2

The partial Cayley transform AU is in this cas
The unitary operator is therefore admissible an
be closable. The domain of the corresponding
functions Φ ∈ H1(Ω) such that P⊥γ(Φ) = 0, wh

P⊥γ(Φ) = 1
2

[
I1 −T ∗

1 T2
−T ∗

2 T1 I2

] [
χ1γ(Φ)
χ2γ(Φ)

]

We can rewrite the last condition as

T1
(
χ1γ(Φ)

)
= T2
(

More concretely, this boundary conditions desc
ditions identifying the two triangulation elemen
unitary transformations Ti are necessary to mak
In particular, if (Γ1, η1) and (Γ2, η2) are isomor
can recover the standard periodic boundary con

Example 5.3. Consider the same situation as in th
operator replaced by

U =
[

0 T ∗
1 e

iαT2
T ∗

2 e
−iαT1 0



In this case we have also that U2 = I and the calculations of the previous example can be
applied step by step. More concretely, P⊥ = (I−U)/2 and the partial Cayley transform 
also vanishes. The boundary condition becomes in this case

T1
(
χ1γ(Φ)

)
= eiαT2

(
χ2γ(Φ)

)
. (5.6)

This boundary conditions can be called generalized, quasiperiodic boundary conditions. 
For simple geometries and constant function α these are the boundary conditions that 
define the periodic Bloch functions.

The condition α ∈ C∞(Γ0) in the example above can be relaxed. First we will show
that the isometries Ti do preserve the regularity of the function.

Proposition 5.4. Let Ti be a unitary transformation as given by Definition 5.1. Let Φ ∈
Hk(Γi), k ≥ 0. Then TiΦ ∈ Hk(Γ0).

Proof. It is well known, cf. [2, Theorem 3.41] or [13, Lemma 7.1.4], that the pull-back of 
a function under a smooth diffeomorphism g : Ω1 → Ω2 preserves the regularity of the
function, i.e., g�Φ ∈ Hk(Ω1) if Φ ∈ Hk(Ω2), k ≥ 0. It is therefore enough to prove that

o preserves the regularity. According to 
oth, compact, boundaryless Riemannian 
), since this set is dense in Hk(Ω̃). Let

Φ(I − Δη̃)k(fΦ)dμη̃

(I − Δη̃)kΦfΦdμη̃

2 ∫
Ω̃

(I − Δη̃)kΦΦdμη̃ < ∞.

 that the operator (I−Δη̃)k is essentially 

χiγ(Φ)) ∈ H1/2(Γ0), i = 1, 2. Therefore,
.6), the function α : Γ0 → [0, 2π] can be
0(Γ0) is a dense subset in H1/2(Γ0), and
ion for continuous functions it is enough 

 Riemannian manifold (Ω, ∂Ω, η) admits 
ple 5.2. So we have that ∂Ω = Γ1 ∪ Γ2.
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multiplication by a smooth positive function als
Definition 2.9 it is enough to prove it for a smo
manifold (Ω̃, η̃) and to consider that Φ ∈ C∞(Ω̃
f ∈ C∞(Ω̃). ∫

Ω̃

fΦ(I − Δη̃)k(fΦ)dμη̃ ≤ sup
Ω̃

|f |
∫
Ω̃

≤ sup
Ω̃

|f |
∫
Ω̃

≤
(
sup
Ω̃

|f |
)

We have used Definition 2.8 directly and the fact
self-adjoint over the smooth functions. �

According to Proposition 5.4 we have that Ti(
to get nontrivial solutions for the expression (5
chosen such that eiαT2(χ2γ) ∈ H1/2(Γ0). Since C
point-wise multiplication is a continuous operat
to consider α ∈ C0(Γ0).

Example 5.5. Consider that the boundary of the
a triangulation of two elements like in the Exam



Consider the following unitary operator U : H0(∂Ω) → H0(∂Ω) adapted to the block
structure defined by this triangulation

U =
[
eiβ1I1 0

0 eiβ2I2

]
, (5.7)

where C0(Γi) � βi : Γi → [−π+ δ, π− δ] with δ > 0. The latter condition guaranties that
the unitary matrix has gap at −1. Since the unitary is diagonal in the block structure, 
it is clear that P⊥ = 0. The domain of the quadratic form QU is given in this case by
all the functions Φ ∈ H1(Ω). The partial Cayley transform is in this case the operator 
AU = H0(∂Ω) → H0(∂Ω) defined by

AU =
[
− tan β1

2 0
0 − tan β2

2

]
. (5.8)

A matrix like the one above will lead to self-adjoint extensions of the Laplace–Beltrami 
operator that verify generalized Robin-type boundary conditions χiϕ̇ = − tan βi

2 χiϕ.
Notice that this example allows discontinuities in the Robin parameter between each 

 the admissibility condition in this case. 
rm above is indeed closable.

=
⋃

N
i=1Γi we can consider the Hilbert

ponding Sobolev spaces. We will denote 

k(Γi). (5.9)

ng notation, the norms of these Hilbert 

|Γi
‖2
Hk(Γi). (5.10)

 of Lemma 4.1 and Corollary 4.3, respec-
 general normal derivatives. In particular 
he different neighboring elements of the 

∈
⊕

H1/2. Then, for every ε > 0 there
ϕ̃‖H1/2(∂Ω) < ε and ‖f − ˙̃ϕ‖⊕H1/2 < ε.
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piece of the triangulation.
The partial Cayley transform does not satisfy

Nevertheless, we will show that the quadratic fo

Given a triangulation of the boundary ∂Ω
space that results of the direct sum of the corres
it as

⊕
Hk :=

N⊕
i=1

H

For simplicity we will denote, using the precedi
spaces by

‖ϕ‖2⊕
Hk :=

N∑
i=1

‖ϕ

Now we can give the following generalizations
tively. The main difference is that we allow more
they may be discontinuous at intersections of t
triangulation.

Lemma 5.6 (Lemma 4.1∗). Let Φ ∈ H1(Ω), f
exists Φ̃ ∈ C∞(Ω) such that ‖Φ − Φ̃‖1 < ε, ‖ϕ −



Proof. The proof of this lemma follows exactly the one for the Lemma 4.1. It is enough
to notice that the space H1(∂Ω) is dense in 

⊕
H1/2. �

Corollary 5.7 (Corollary 4.3∗). Let {Φn} ⊂ H1(Ω) and let AU be the partial Cay-
ley transform of a unitary operator with gap at −1 such that ‖AUγ(Φ)‖⊕H1/2 ≤
K‖γ(Φ)‖⊕H1/2 . Then there exists a sequence of smooth functions {Φ̃n} ∈ C∞(Ω) such
that ‖Φn − Φ̃n‖H1(Ω) <

1
n , ‖ϕn − ϕ̃n‖H1/2(∂Ω) <

1
n , and ‖ ˙̃ϕn −AU ϕ̃n‖⊕H1/2 < 1

n .

Proof. The proof is the same as for Corollary 4.3 but now we take Φ̃n0 as in Lemma 5.6
with f = AUϕn0 ∈

⊕
H1/2. �

Now we can show that the quadratic forms QU defined for unitary operators of the
form appearing in Example 5.5 are closable. We show first that the partial Cayley trans-
form of Eq. (5.8) verifies the conditions of the Corollary 5.7 above. We have that

‖AUϕ‖2⊕
H1/2 = ‖AUχ1ϕ‖2

H1/2(Γ1) + ‖AUχ2ϕ‖2
H1/2(Γ2)

=
∥∥∥∥tan β1

2 χ1ϕ

∥∥∥∥
2

1/2
+
∥∥∥∥tan β2

2 χ2ϕ

∥∥∥∥
2

H1/2(Γ2)

χ2ϕ‖2
H1/2(Γ2)

]
= K‖ϕ‖2⊕

H1/2 .

after Example 5.3 because the functions 
he sequence {Φn} ∈ DU as in the proof
∞(Ω) as in Corollary 5.7. Then we have

Aϕ̃m〉∂Ω
∣∣

∣∣〈ϕ̃n, ˙̃ϕm −AU ϕ̃m〉∂Ω
∣∣]

∣∣∣∣∣
N∑
i=1

〈ϕ̃n, ˙̃ϕm −AU ϕ̃m〉Γi

∣∣∣∣∣
]

˜m〉Γi

∣∣

)‖χi ˙̃ϕm − χiAU ϕ̃m‖H1/2(Γi)

‖χi ˙̃ϕm − χiAU ϕ̃m‖H1/2(Γi) = 0.

f the scales of Hilbert spaces H1/2(Γi) ⊂
ors of Example 5.5 are closable. In par-
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H (Γ1)

≤ K
[
‖χ1ϕ‖2

H1/2(Γ1) + ‖

The last inequality follows from the discussion 
βi : Γi → [−π + δ, π − δ] are continuous. Take t
of Theorem 4.10 and accordingly take {Φ̃n} ∈ C
that

∣∣Q(Φ)
∣∣ = lim

m→∞
lim
n→∞

∣∣〈dΦ̃n, dΦ̃m〉 − 〈ϕ̃n,

≤ lim
m→∞

lim
n→∞

[∣∣〈Φ̃n,−ΔηΦ̃m〉
∣∣+

= lim
m→∞

lim
n→∞

[∣∣〈Φ̃n,−ΔηΦ̃m〉
∣∣+

≤ lim
m→∞

lim
n→∞

N∑
i=1

∣∣〈ϕ̃n, ˙̃ϕm −AUϕ

≤ lim
m→∞

lim
n→∞

N∑
i=1

‖χiϕ̃n‖H−1/2(Γi

≤ lim
m→∞

lim
n→∞

‖ϕ̃n‖H−1/2(∂Ω)

N∑
i=1

We have used Definition 2.9 and the structure o
H0(Γi) ⊂ H−1/2(Γi). Hence, the unitary operat



ticular, this class of closable quadratic forms defines generalized Robin-type boundary 
conditions ϕ̇ = − tan β

2ϕ where β is allowed to be a piecewise continuous function with 
discontinuities at the vertices of the triangulation.

Example 5.8. Consider a unitary operator at the boundary of the form

U =
[
−I1 0
0 eiβ2I2

]
, (5.11)

with β2 : Γ2 → [−π + δ, π − δ] continuous. Again we need the condition δ > 0 in order
to guaranty that the unitary matrix U has gap at −1. In this case it is clear that

P⊥ =
[
I1 0
0 0

]
,

and that the partial Cayley transform becomes

AU =
[

0
− tan β2

2

]
.

r admissibility condition of the previous 
ic form too. This one defines a boundary 

tan β2

2 χ2ϕ.

undary condition defines the boundary
h

ϕ̇ = 0.

nnian manifold with compact boundary.
riangulation ∂Ω =

⋃
N
i=1Γi. Any unitary

 of the above examples, i.e., Eqs. (5.2), 
unded quadratic form QU .

o select a large class of self-adjoint ex-
ese were introduced by using directly a 
 suitable unitaries acting on the Hilbert 
cient condition for the Laplace–Beltrami 
oth manifolds, not necessarily compact, 
racterization of such situation which was 
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This partial Cayley transform verifies the weake
example and therefore defines a closable quadrat
condition of the mixed type where

χ1ϕ = 0, χ2ϕ̇ = −

In particular when β2 ≡ 0 this mixed-type bo
conditions of the so-called Zaremba problem wit

χ1ϕ = 0, χ2

Example 5.9. Let (Ω, ∂Ω, η) be a smooth, Riema
Suppose that the boundary manifold admits a t
matrix that has block-wise the structure of any
(5.5), (5.7) or (5.11) leads to a closable, semi-bo

6. Outlook

In the present article we give a procedure t
tensions of the Laplace–Beltrami operator. Th
family of associated quadratic forms labeled by
space of the boundary. It has been proved a suffi
operator to be semi-bounded from below in smo
with compact boundary. This is not the first cha



addressed recently in [22]. However, as explained in Section 4.3, the condition introduced 
here is weaker.

The particular form of the boundary conditions introduced here and the semi-
boundedness makes this approach suitable for numerical purposes and there are already 
one and higher dimensional algorithms approximating the spectrum of such problems, 
cf. [25,26]. Moreover, since the proof introduced in this article is related with the geomet-
rical character of the Laplace–Beltrami operator one can easily detect what assumptions 
are essential for the proof and which ones are susceptible to be weakened. For instance, 
the existence of the collar neighborhood and the bounds of Eq. (4.8) are crucial but 
the assumption on the compactness of the boundary is there to guaranty that these are 
satisfied. Hence the results of this article can be taken as a step forward towards the 
generalization to manifolds with non-compact boundary. The conjecture stated in [22, 
Remark 4.7] that the lower bound for second order elliptic operators is of order c2, where 
c is the lower bound for the boundary operator, holds for the quadratic forms consid-
ered here and the proportionality factor depends only on the Riemannian metric. Just 
notice that Λ0 in Eq. (4.9h) is the lowest eigenvalue of the one dimensional problem of
Proposition 4.5 and Eq. (4.6) establishes that Λ0 ∼ c2 for large c.

An advantage of using the representation theorem to obtain self-adjoint extensions 
s. For instance, the Zaremba problem, 
ns are imposed on disjoint subsets of the 

where the two boundary conditions meet 
o this problem). This type of boundary 
oach using the splitting of the boundary 
r case of Example 5.8 when β2 ≡ 0.
ace–Beltrami operator that can not be 
Krein–von Neumann extension of the 

ing as the self-adjoint operator AU the
H−1/2(∂Ω) does not verify the admissi-
ndary term associated with this case is 

2
H1/2(∂Ω),

 with our approach where a bound in 

taken here does not hold is the problem 
in boundary conditions is introduced. In 
p condition. It is already known, cf. [35,
on in this case one needs to fix an extra 
is suggests the following generalization 
plitting of the boundary introduced in 
omain acquire a local phase shift across 
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is that it regularizes automatically the domain
where Dirichlet and Neumann boundary conditio
boundary is known to be irregular at the points 
(see, e.g., [39, Section 7.7] for an introduction t
conditions can be treated with the present appr
explained in Section 5 and in fact is a particula

There are important extensions of the Lapl
treated with this approach. In particular the 
Laplace–Beltrami operator defined by consider
Dirichlet–von Neumann map Λo : H1/2(∂Ω) →
bility condition. Moreover, even though the bou
bounded in H1/2(∂Ω), i.e.,

∣∣〈ϕ,Λoϕ〉
∣∣ ≤ C‖ϕ‖

this is not enough to proof semi-boundedness
L2(∂Ω) is needed.

An interesting problem where the approach 
considered in [11] where a particular class of Rob
particular these conditions fail to satisfy the ga
10], that in order to select a self-adjoint extensi
phase at the so-called Dirichlet Singularity. Th
of the approach presented here. Consider the s
Section 5 and impose that the functions in the d



the boundaries of the subsets of the boundary. This could lead to a characterization of 
a wider class of self-adjoint extensions and could also include the situation where the 
manifold has non-convex corners, cf. [37]. Eventually this procedure could also be applied 
to the situation with the Dirichlet Singularity.
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