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Abstract

This thesis has been developed at University Carlos III of Madrid,
motivated through a collaboration with the Gregorio Marañón Gene-
ral University Hospital, in Madrid. It is framed within the field of
Penalized Linear Models, specifically Variable Selection in Regres-
sion, Classification and Survival Models, but it also explores other
techniques such as Variable Clustering and Semi-Supervised Learn-
ing.

In recent years, variable selection techniques based on penalized mod-
els have gained considerable importance. With the advance of tech-
nologies in the last decade, it has been possible to collect and process
huge volumes of data with algorithms of greater computational com-
plexity. However, although it seemed that models that provided simple
and interpretable solutions were going to be definitively displaced by
more complex ones, they have still proved to be very useful. Indeed, in
a practical sense, a model that is capable of filtering important infor-
mation, easily extrapolated and interpreted by a human, is often more
valuable than a more complex model that is incapable of providing
any kind of feedback on the underlying problem, even when the latter
offers better predictions.

This thesis focuses on high dimensional problems, in which the num-
ber of variables is of the same order or larger than the sample size.
In this type of problems, restrictions that eliminate variables from the
model often lead to better performance and interpretability of the re-
sults. To adjust linear regression in high dimension the Sparse Group
Lasso regularization method has proven to be very efficient. However,
in order to use the Sparse Group Lasso in practice, there are two criti-
cal aspects on which the solution depends: the correct selection of the
regularization parameters, and a prior specification of groups of vari-
ables. Very little research has focused on algorithms for the selection
of the regularization parameters of the Sparse Group Lasso, and none
has explored the issue of the grouping and how to relax this restriction
that in practice is an obstacle to using this method.

The main objective of this thesis is to propose new methods of vari-
able selection in generalized linear models. This thesis explores the
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Sparse Group Lasso regularization method, analyzing in detail the
correct selection of the regularization parameters, and finally relax-
ing the problem of group specification by introducing a new variable
clustering algorithm based on the Sparse Group Lasso, but much more
flexible and that extends it. In a parallel but related line of research,
this thesis reveals a connection between penalized linear models and
semi-supervised learning.

This thesis is structured as a compendium of articles, divided into four
chapters. Each chapter has a structure and contents independent from
the rest, however, all of them follow a common line. First, variable se-
lection methods based on regularization are introduced, describing the
optimization problem that appears and a numerical algorithm to ap-
proximate its solution when a term of the objective function is not dif-
ferentiable. The latter occurs naturally when penalties inducing vari-
able selection are added. A contribution of this work is the iterative
Sparse Group Lasso, which is an algorithm to obtain the estimation
of the coefficients of the Sparse Group Lasso model, without the need
to specify the regularization parameters. It uses coordinate descent
for the parameters, while approximating the error function in a vali-
dation sample. Moreover, with respect to the traditional Sparse Group
Lasso, this new proposal considers a more general penalty, where each
group has a flexible weight. A separate chapter presents an extension
that uses the iterative Sparse Group Lasso to order the variables in
the model according to a defined importance index. The introduc-
tion of this index is motivated by problems in which there are a large
number of variables, only a few of which are directly related to the
response variable. This methodology is applied to genetic data, re-
vealing promising results. A further significant contribution of this
thesis is the Group Linear Algorithm with Sparse Principal decom-
position, which is also motivated by problems in which only a small
number of variables influence the response variable. However, unlike
other methodologies, in this case the relevant variables are not neces-
sarily among the observed data. This makes it a potentially powerful
method, adaptable to multiple scenarios, which is also, as a side ef-
fect, a supervised variable clustering algorithm. Moreover, it can be
interpreted as an extension of the Sparse Group Lasso that does not
require an initial specification of the groups. From a computational
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point of view, this paper presents an organized framework for solv-
ing problems in which the objective function is a linear combination
of a differentiable error term and a penalty. The flexibility of this
implementation allows it to be applied to problems in very different
contexts, for example, the proposed Generalized Elastic Net for semi-
supervised learning.

Regarding its main objective, this thesis offers a framework for the
exploration of generalized interpretable models. In the last chapter,
in addition to compiling a summary of the contributions of the thesis,
future lines of work in the scope of the thesis are included.

Variable selection algorithms in generalized linear models xi



Resumen

Esta tesis se ha desarrollado en la Universidad Carlos III de Madrid
motivada por una colaboración de investigación con el Hospital Gene-
ral Universitario Gregorio Marañón, en Madrid. Está enmarcada den-
tro del campo de los Modelos Lineales Penalizados, concretamente
Selección de Variables en Modelos de Regresión, Clasificación y Su-
pervivencia, pero también explora otras técnicas como Clustering de
Variables y Aprendizaje Semi-Supervisado.

En los últimos años, las técnicas de selección de variables basadas
en modelos penalizados han cobrado notable importancia. Con el
avance de las tecnologías en la última década, se ha conseguido re-
copilar y tratar enormes volúmenes de datos con algoritmos de una
complejidad computacional superior. Sin embargo, aunque parecía
que los modelos que aportaban soluciones sencillas e interpretables
iban a ser definitivamente desplazados por otros más complejos, han
resultado ser todavía muy útiles. De hecho, en un sentido práctico,
muchas veces tiene más valor un modelo que sea capaz de filtrar in-
formación importante, fácilmente extrapolable e interpretable por un
humano, que otro más complejo incapaz de aportar ningún tipo de
retroalimentación al problema de fondo, incluso cuando este último
ofrezca mejores predicciones.

Esta tesis se enfoca en problemas de alta dimensión, en los cuales el
número de variables es del mismo orden o superior al tamaño mues-
tral. En este tipo de problemas, restricciones que eliminen variables
del modelo a menudo conducen a un mejor desempeño e interpretabil-
idad de los resultados. Para ajustar regresión lineal en alta dimen-
sión el método de regularización Sparse Group Lasso ha demostrado
ser muy eficiente. No obstante, para utilizar en la práctica el Sparse
Group Lasso, hay que tener en cuenta dos aspectos fundamentales de
los cuales depende la solución, que son la correcta selección de los
parámetros de regularización, y una especificación previa de grupos
de variables. Muy pocas investigaciones se han centrado en algorit-
mos para la selección de los parámetros de regularización del Sparse
Group Lasso, y ninguna ha explorado el tema de la agrupación y cómo
relajar esta restricción que en la práctica constituye una barrera para
utilizar este método.
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El principal objetivo de esta tesis es proponer nuevos métodos de se-
lección de variables en modelos lineales generalizados. Esta tesis ex-
plora el método de regularización Sparse Group Lasso, analizando
detalladamente la correcta selección de los parámetros de regulari-
zación, y finalmente relajando el problema de la especificación de
los grupos mediante un nuevo algoritmo de agrupación de variables
basado en el Sparse Group Lasso, pero mucho más flexible y que lo
extiende. En una línea de investigación paralela, pero relacionada,
esta tesis revela una conexión entre los modelos lineales penalizados
y el aprendizaje semi-supervisado.

Esta tesis está estructurada en formato por compendio de artículos,
dividida en cuatro capítulos. Cada capítulo tiene una estructura y
contenidos independiente del resto, sin embargo, siguen todos un eje
común. Primeramente, se introducen los métodos de selección de
variables basados en regularización, describiendo el problema de op-
timización que aparece y un algoritmo numérico para aproximar su
solución cuando una parte de la función objetivo no es diferencia-
ble. Esto último ocurre de manera natural cuando se añaden penaliza-
ciones que inducen selección de variables. Una de las aportaciones
de este trabajo es el iterative Sparse Group Lasso, que es un algo-
ritmo para obtener la estimación de los coeficientes del modelo Sparse
Group Lasso, sin la necesidad de especificar los parámetros de re-
gularización. Utiliza descenso por coordenadas para los parámetros,
mientras aproxima la función de error en una muestra de validación.
Además, con respecto al Sparse Group Lasso clásico, esta nueva pro-
puesta considera una penalización más general, donde cada grupo
tiene un peso flexible. En otro capítulo se presenta una extensión que
utiliza el iterative Sparse Group Lasso para ordenar las variables del
modelo según un índice de importancia definido. La introducción de
este índice está motivada por problemas en los cuales hay un número
elevado de variables, de las cuales solamente unas pocas están rela-
cionadas directamente con la variable respuesta. Esta metodología
es aplicada a unos datos genéticos, mostrando resultados promete-
dores. Otra importante aportación de esta tesis es el Group Linear
Algorithm with Sparse Principal decomposition, que está motivado
también por problemas en los cuales solamente un número reducido
de variables influye en la variable respuesta. Sin embargo, a dife-
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rencia de otras metodologías, en este caso las variables influyentes no
necesariamente están entre las características observadas. Esto lo con-
vierte en un método muy potente, adaptable a múltiples escenarios,
que además, como efecto secundario, es un algoritmo supervisado de
agrupación de variables. En un sentido, puede interpretarse como una
extensión del Sparse Group Lasso que no requiere una especificación
inicial de los grupos. Desde un punto de vista computacional, este
trabajo presenta un enfoque organizado para resolver problemas en
los cuales la función objetivo es una combinación lineal de un tér-
mino de error diferenciable y una penalización. La flexibilidad de
esta implementación le permite ser aplicada a problemas en contex-
tos muy diferentes, por ejemplo, el Generalized Elastic Net propuesto
para aprendizaje semi-supervisado.

Con relación a su principal objetivo, esta tesis ofrece un marco para la
investigación de modelos generalizados interpretables. En el último
capítulo, además de recopilarse un resumen de las aportaciones de la
tesis, se incluyen líneas de trabajo futuro en el ámbito de la temática
de la tesis.
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CHAPTER 1

Introduction

This chapter introduces basic concepts and results, assumed to be
known or referenced in the rest of the thesis. This chapter is organized
as follows. Section 1.1 introduces regression models from a general
perspective, with particular emphasis on their definition as a convex
optimization problem, and this approach is subsequently adopted in
all chapters. Furthermore, Section 1.1 discusses general techniques
for solving this type of problem using gradient descent. After that,
Section 1.2 links together regression problems and variable selec-
tion methods, explaining the consequences of including regulariza-
tion terms in the optimization of a regression problem, outlining the
Lasso and the Elastic Net variable selection techniques. Computa-
tional approaches to address these problems are also covered. Section
1.3 describes the structure of this thesis, providing the links between
different chapters.

1.1 Regression models

This section describes the classical regression models, introducing
notation and basic concepts. Under the general linear regression frame-
work, there are N observations of p variables, organized in a data ma-
trix X ∈ RN×p. The rows of X are denoted by x>i , with 1 ≤ i ≤ N ,
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and the columns of X are samples from the random variables Xj ,
with 1 ≤ j ≤ p. Thus, each row x>i is one sample of the ran-
dom vector X> = (X1, X2, . . . Xp). The matrix X is assumed to
be already transformed into an appropriate numeric format, where
the columns of X may come from different sources, e.g. quantita-
tive inputs, transformations of quantitative inputs (such as logarithm,
square-root and square), basis expansions leading to a polynomial rep-
resentation (Xj = Xj

1), interactions between variables, and numeric
or dummy coding of the levels of qualitative inputs. Besides, columns
might be normalized or scaled (not all methods require a prior stan-
dardization of X , when that is the case it will be stated explicitly).
Working with missing values in X is out of the scope of this thesis,
but most of the methodologies discussed in this chapter can handle
missing observations as well.

In supervised learning problems, there is also a matrix of labels y ∈
RN×d. Usually, d = 1 in which case y is a response vector, but set-ups
with more than one response column are possible. This thesis assumes
y ∈ RN×1, except in the case of survival with right censoring, where
the columns of times and censoring indicators are named explicitly.
The vector y is a random sample from the response variable Y .

In regression problems one tries to approximate or model y from the
linear predictor η = Xβ. Since both X and y are observed, the
objective of regression is to estimate the coefficient vector β ∈ Rp×1

such that Xβ approximates y the best. In generalized linear models,
there is a closed expression (the link function) that approximates η
from y, but one can always estimateβ without explicitly defining such
a link.

The quality of the approximation is measured in terms of a risk func-
tion,

L : Rp×1 → R+

β 7→ L(β|y,X) ≥ 0.
(1.1)

This function is often derived from the model’s likelihood, written
as a function of β. In any case, regression can be expressed as the
optimization problem,

2 Variable selection algorithms in generalized linear models



Introduction

β̂ = argmin
β∈Rp×1

L(β), (1.2)

which admits a global minimizer when L is differentiable and convex.

1.1.1 Linear regression

Linear regression assumes an underlying model in the form

E(Y |X) = β0 +X>β + ε, (1.3)

where ε is an error, independent of Y and normally distributed with
mean zero and variance unknown. Thus, this model is suitable when
the response is continuous. Maximizing the model’s likelihood as a
function of β leads to the minimization of,

L(β) =
1

N
‖y − β0 −Xβ‖22 , (1.4)

which is the objective function of linear regression – the mean square
error. To simplify notation, from now on the response vector y in
linear regression is assumed to be centered at zero, such that β0 may
be omitted from the equations.

The optimization of (1.2) leads to β̂, an estimation of the linear model’s
coefficients. With β̂, computing predictions of y is straightforward,

ŷ = Xβ̂. (1.5)

Example 1. As an illustration, consider the simple linear model Y =
Xβ + ε, with X ∼ N(0, 1), β = 1, and ε ∼ N(0, 0.2). Figure
1.1 displays the linear regression on a random sample of size N =
10. Notice that, for fixed X and y, the function L(β) has a minimum
in the estimated coefficient (β̂ = 0.869 in this case). With enough
sample size, the minimum ofL(β)will be closer to the true generating
coefficient β = 1.

Example 2. The intuition behind Example 1 extends to higher dimen-
sions. Figure 1.2 describes the geometry of the function L(β) in di-
mension two. The data is composed of N = 100 simulated observa-
tions from the model Y = X1β1 + X2β2 + ε, with X ∼ N(0, I2),
β = (1, 0) and ε ∼ N(0, 0.2).
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Figure 1.1: Linear regression onN = 10 observations generated from
the model Y = Xβ + ε.
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Figure 1.2: Plot of objective function (1.2) with p = 2 variables and
N = 100 observations generated from the model Y = X>β + ε,

1.1.2 Logistic regression

When the response Y ∈ {0, 1}, linear regression is not strictly correct,
since the normality assumption of Y |X is violated. It is possible to
find a solution using linear regression, but logistic regression is more
appropriate in this case. The logistic model is formulated as

Y |X ∼ Ber(p), where p = (1 + exp(−X>β))−1. (1.6)

Maximizing the likelihood as a function of β is equivalent to mini-
mizing,

L(β) =
1

N

N∑
i=1

{
log
[
1 + exp(x>i β)

]
− yix

>
i β
}
, (1.7)
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Function (1.7) is commonly called the logistic loss. WhenY ∈ {−1, 1},
(1.7) has an equivalent expression. This thesis, however, deals with
binary classification in the form {0, 1} only, but other labels are pos-
sible.

In a fitted logistic regression model, making predictions with β̂ is not
as straightforward as in linear regression. There are two possible pre-
diction types one may want from a logistic model, namely class and
probability predictions. Suppose x> is a new row for which predic-
tions are desired. Then,

P (Y = 1|X = x) ≈ p̂ = (1 + exp(−x>β̂))−1 (1.8)

is the predicted probability of label one. To predict the label, we have
to specify a threshold, such that if p̂ is above the threshold the pre-
dicted class is one and is zero otherwise. Working with predicted
probabilities is preferred, since they provide more information than
predicted labels.

1.1.3 Proportional hazards model with right-censoring

Under the proportional hazards model framework with right-censoring,
the response is a vector of event times t ∈ RN×1, and there is also a
vector of event indicator δ ∈ RN×1 (δi = 1 if an event was observed
at time ti, and δi = 0 if time ti is right-censored).

The proportional hazards model assumption states that, for an indi-
vidual with covariates x>, their hazard function h(t) is given by

h(t) = h0(t) exp(x
>β),

where h0(t) is a baseline hazard function. This is a semi-parametric
model, because h0(t) is not assumed to have a particular parametric
form.

In the case of right censoring, the objective function L is the negative
log-partial likelihood, given by,

L(β) =
∑
i∈D

x>i β −
∑
i∈D

log

(∑
k∈Ri

exp(x>k β)

)
,

Variable selection algorithms in generalized linear models 5



where D is the index set of observed events, and Ri is the index set of
individuals at risk at time ti.

The proportional hazards model is usually referred to as Cox regres-
sion in honor to David Cox, who observed that β could be estimated
without any consideration of the baseline hazard function.

Once the model is fitted, to estimate the baseline survival function we
can use,

S0(t) = exp(−H0(t)), with H0(t) =
∑
ti≤t

h0(ti),

where
h0(ti) =

δi∑
j∈Ri

exp(x>j β̂)
.

An individual’s estimated survival function is given by

S(t|x) = S0(t)
exp(x>β̂). (1.9)

1.1.4 A gradient method

For a continuously differentiable function R : Rp → R, consider the
general optimization problem,

β̂ = argmin
β∈Rp

R(β). (1.10)

Suppose there is Mt(·, ·) and a sequence t1, t2, . . . such that for every
k ≥ 1 and βk−1 ∈ Rp,

Mtk(βk−1,βk−1) = R(βk−1) (1.11)

and

Mtk(βk,βk−1) ≥ R(βk), where βk = argmin
β∈Rp

Mtk(β,βk−1).

(1.12)
These two conditions imply that, for each k ≥ 1

R(βk) ≤Mtk(βk,βk−1) ≤Mtk(βk−1,βk−1) = R(βk−1), (1.13)

and thus β0,β1, . . .βk−1,βk, . . . is a descent sequence for R(β).
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Consider now the quadratic approximation of R(β)

Mt(β,β0) = R(β0) + (β−β0)
>∇R(β0) +

1

2t
‖β − β0‖22 . (1.14)

It is easy to see that Mt satisfies (1.11) and (1.12), if t < 1/L(R),
where L(R) is a Lipschitz constant of R, i.e.

‖∇R(β)−∇R(β0)‖2 ≤ L(R) ‖β − β0‖2 . (1.15)

After some algebra,

(1.16)
β = argmin

β∈Rp

Mt(β,β0)

= argmin
β∈Rp

{
1

2t
‖β − (β0 − t∇R(β0))‖22

}
= β0 − t∇R(β0).

Equation 1.16 justifies a gradient algorithm to solve (1.10),

β0 → β1 = β0 − t1∇R(β0)→ . . .→ βk = βk−1 − tk∇R(βk−1).

Notice that this gradient method only requires R to be Lipschitz con-
tinuously differentiable and to know both R and ∇R. The compu-
tationally intensive part of the algorithm is to find the step-size tk in
each step k. In general, the minimum Lipschitz constant is difficult to
compute, and one could try to approximate it using backtracking, as
discussed later in this thesis.

Regardless of whether this gradient method is the best alternative to
solve the regression problem (1.2) – which is not – (1.16) is a very ge-
neral approach and adapts to the three types of regression introduced
earlier (linear, logistic and Cox regression). Moreover, it is the build-
ing block of possibly the fastest and most flexible algorithm to this
date, dealing with linear combinations of smooth and non-smooth ar-
bitrary functions. The following section discusses this in more detail.
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1.2 Variable selection techniques

This section introduces variable selection from the perspective of reg-
ularization. To illustrate it, consider again the linear regression prob-
lem,

β̂ = argmin
β∈Rp

{
1

N
‖y −Xβ‖22

}
. (1.17)

When X has full column rank, the least squares estimate is simply
β̂ = (X>X)−1X>y. In many applications, however, the matrix X
does not have full column rank (e.g. when p > N ) and there are
infinite solutions for β̂, or X is ill-conditioned such that β̂ has a huge
norm, becoming meaningless. One of the most popular regularization
methods is Ridge regression (also known as Tikhonov regularization
in other contexts),

β̂ = argmin
β∈Rp

{
1

N
‖y −Xβ‖22 + λ ‖β‖22

}
. (1.18)

Here λ > 0 is a hyperparameter that controls the tradeoff between
adjusting the data (X,y) and being robust against noise. This idea
extends to arbitrary losses,

β̂ = argmin
β∈Rp

{
L(β) + λ ‖β‖22

}
. (1.19)

Another popular regularization method is Lasso (Tibshirani, 1996),
where the squared norm-2 penalty is substituted by a norm-1 penalty,

β̂ = argmin
β∈Rp

{L(β) + λ ‖β‖1} . (1.20)

Here the term ‖β‖1 =
∑p

j=1|βj| induces sparsity in the solution, and
thus Lasso naturally performs variable selection. This will be detailed
analytically, but Figure 1.3 illustrates intuitively why Lasso tends to
force some components of β to be exactly zero. The price to pay is
that the objective function (1.20) is not differentiable anymore, and
thus using gradient descent to find β̂ is not straightforward.

Elastic Net (Zou and Hastie, 2005) is another popular regularization
technique that induces feature selection when there are strong corre-
lations between the columns of the data. It is a linear combination of
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Figure 1.3: Plot of Lasso objective (1.20) with p = 2 variables, N =
100 observations generated from the model Y = X>β+ε, and λ = 2.

Lasso and Ridge regularization, defined by,

β̂ = argmin
β∈Rp

{
L(β) + λ1 ‖β‖1 + λ2 ‖β‖22

}
, λ1, λ2 > 0. (1.21)

It is often the case in which covariates follow a natural grouped struc-
ture. For instance, when some of the variables are qualitative factors,
typically they are coded as dummy covariates. In this case, might
be of interest to include or exclude from the model all dummy vari-
ables associated with the same original factor (perhaps the practical
cost of including one of those in the model is the same as if including
the whole group). There are also other situations in which group-
ing covariates is useful (e.g., genes in certain pathways). Solving this
problem, Yuan and Lin, 2006 introduced Group Lasso, a regularized
regression method, which includes lasso as an extreme case. Several
formulations for the group lasso problem can be found in the litera-
ture. The formulation from Yuan and Lin, 2006 ( the most popular in
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literature and implementation), defines the group lasso estimate as,

β̂ = argmin
β∈Rp

{
L̂(β) + λ

J∑
j=1

√
pj‖β(j)‖2

}
, λ > 0, (1.22)

where J is the number of groups and β(j) ∈ Rpj contains the compo-
nents of β corresponding to j-th group, for j = 1, 2 . . . J , p1 + p2 +
· · ·+ pJ = p (non overlapping groups).

The Group Lasso method gives a solution corresponding to a sparse
set of groups. However, if it includes a group in the model, then
all the coefficients in that group will be non-zero, which sometimes
is appropriate, depending on the situation. Nevertheless, there are
other scenarios in which it would be nice to have both sparsity of
groups and within each group (e.g., if the predictors are genes, it
would be interesting to identify only particularly important genes in
certain pathways). Approaching this problem, Simon et al., 2013 de-
fine the Sparse Group Lasso estimate as,

β̂ = argmin
β∈Rp

{
R̂(β) + (1− α)λ

J∑
j=1

√
pj‖β(j)‖2+αλ‖β‖1

}
,

(1.23)
where α ∈ [0, 1]. Note that the penalty in (1.23) is a convex combina-
tion of the penalties for lasso and group lasso, which is very intuitive,
since the objective in this case is finding an equilibrium between both
penalties.

This thesis makes important contributions to the Sparse Group Lasso
regularization method, including but not limited to, the selection of
the regularization parameters and the estimation of the groups.

1.2.1 A fast iterative shrinkage-thresholding algorithm

This section details the fast iterative shrinkage-thresholding algorithm
(FISTA) to solve general problems in the form (1.21). Consider the
general optimization problem

β̂ = argmin
β∈Rp

F (β) = R(β) + Φ(β), (1.24)

where
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• R : Rp → R is a smooth convex function, continuously differ-
entiable with Lipschitz continuous gradient∇R (with Lipschitz
constant L(R)), such that

‖∇R(β)−∇R(β0)‖2 ≤ L(R) ‖β − β0‖2 .

• Φ : Rp×1 → R is a continuous convex function which is possi-
bly non-smooth.

The quadratic approximation of F (β) given by

Mt(β,β0) = R(β0) + (β − β0)
>∇R(β0) +

1

2t
‖β − β0‖22 + Φ(β)

(1.25)
is such that, for t < 1/L(R),

Mtk(βk−1,βk−1) = F (βk−1) (1.26)

and

Mtk(βk,βk−1) ≥ F (βk), where βk = argmin
β∈Rp

Mtk(β,βk−1).

(1.27)
Therefore, minimizing Mt(β,β0) with respect to β produces a de-
scent sequence for F (β). Notice that

(1.28)
Ut(β0) = argmin

β∈Rp

Mt(β,β0)

= argmin
β∈Rp

{
1

2
‖β − (β0 − t∇R(β0))‖22 + tΦ(β)

}
.

An explicit expression for the minimizer Ut(β0) of (1.28) provides a
gradient step to go from β0 → β1 and so on. However, to accelerate
the global rate of convergence from 1/k to 1/k2, the FISTA algorithm
(Beck and Teboulle, 2009a; Beck and Teboulle, 2009b) updates βk

according to

βk+1 ← Utk(βk) +
lk − 1

lk+1

(Utk(βk)− Utk−1(βk−1)), (1.29)

where lk+1 = (1 +
√
1 + 4l2k)/2, l1 = 1.
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Example 3. Consider again the Lasso problem (1.20). In this case,
F (β) = L(β) + λ ‖β‖1, and thus the update is given by

Ut(β0) = argmin
β∈Rp

{
1

2
‖β − (β0 − t∇L(β0))‖22 + t ‖β‖1

}
. (1.30)

Using subgradient conditions and after some algebra,

Ut(β0) = S (β0 − t∇L(β0), λt) , (1.31)

where S is the coordinate-wise soft threshold operator,

S(z, λ)i = sign(zi)(|zi|−λ)+.

Equation 1.31 justifies why Lasso is a variable selection method. The
operator S makes some components of β be exactly zero, and this is
due to the non-smoothness of λ ‖β‖1.

1.3 Main contributions

The contributions of this thesis are divided into four distinct chapters.
Chapter 2 begins by introducing the Sparse Group Lasso regulariza-
tion in regression problems. The Sparse Group Lasso has two main
issues that are identified and approached in this thesis.

1. The Sparse Group Lasso penalty depends on two regularization
hyperparameters. Additionally, it has a relaxed version – the un-
pooled Sparse Group Lasso – that depends on a fixed but large
number of regularization hyperparameters. In any case, Sparse
Group Lasso requires a fine tuning of the hyperparameters in
order to provide meaningful fitted models.

2. The Sparse Group Lasso requires a prior specification of clus-
ters between the variables. In applications, very few times groups
among the variables are known.

To deal with the first, Chapter 2 proposes the Iterative Sparse Group
Lasso, a coordinate descent algorithm for hyperparameter selection
in the (unpooled) Sparse Group Lasso regularization context. The
advantages of the Iterative Sparse Group Lasso are illustrated with
a gene-expression dataset. Although a customized hyperparameter
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selection algorithm gives better results than no tuning at all, when
p � N there is not enough sample size to guarantee that the Sparse
Group Lasso model will not overfit the data. With this problem in
mind, Chapter 3 will attempt to justify model selection, proposing a
method to quantify the importance of each variable and determine the
best model in terms of out-of-sample prediction.

Chapter 3 partially approaches the second issue, illustrating a naive
method to create clusters of variables for the Sparse Group Lasso,
based on Principal Component Analysis. However, this solution lacks
the theoretical justification to make it a complete approach. Chapter 3
focuses on a variable selection procedure for high-dimensional data,
that sorts the features according to a defined importance index.

A rigorous solution to the second issue is given in Chapter 4, that
introduces the strongest contribution of this thesis, the Group Lin-
ear Algorithm with Sparse Principal decomposition (GLASP). This
method on one hand extends the Sparse Group Lasso, because it does
not require a prior specification of clusters between the variables. On
the other hand, GLASP can be considered as a supervised variable
clustering algorithm. Chapter 4 ties together the theoretical as well
as algorithmic concepts of this extension. The advantages of GLASP
are illustrated using both real and simulated data.

On a parallel study, conducted as part of a research stay at Technical
University of Denmark, Chapter 5 proposes a novel solution for semi-
supervised learning in the context of generalized linear model esti-
mation: the generalized Semi-Supervised Elastic Net. This method
extends the supervised elastic-net, with a general mathematical for-
mulation that covers, but is not limited to, both regression and classi-
fication problems. Although the semi-supervised context is different
from the supervised one, Chapter 5 shows that the Semi-Supervised
Elastic Net can be solved with the same tools used for supervised re-
gression problems with regularization terms.

Finally, Chapter 6 summarizes the results of this thesis, and includes
a discussion of the implication of the findings to future research.
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CHAPTER 2

An iterative sparse-group lasso

In Journal of Computational and Graphical Statistics, Volume 28,
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a Department of Statistics, University Carlos III of Madrid, Spain
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Abstract

In high-dimensional supervised learning problems, sparsity constraints in
the solution often lead to better performance and interpretability of the re-
sults. For problems in which covariates are grouped and sparse structure are
desired, both on group and within group levels, the sparse-group lasso (SGL)
regularization method has proved to be very efficient. Under its simplest
formulation, the solution provided by this method depends on two weight
parameters that control the penalization on the coefficients. Selecting these
weight parameters represents a major challenge. In most of the applications
of the SGL, this problem is left aside, and the parameters are either fixed
based on a prior information about the data, or chosen to minimize some er-
ror function in a grid of possible values. However, an appropriate choice of
the parameters deserves more attention, considering that it plays a key role
in the structure and interpretation of the solution. In this sense, we present
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a gradient-free coordinate descent algorithm that automatically selects the
regularization parameters of the SGL. We focus on a more general formula-
tion of this problem, which also includes individual penalizations for each
group. The advantages of our approach are illustrated using both real and
synthetic data sets.

Keywords: Coordinate descent. Gradient-free. High-dimension. Op-
timization. Regularization

2.1 Introduction

Regression models with a sparsity constraint on the solution have be-
come very popular in high dimensional problems. After Yuan and
Lin, 2006 introduced the group lasso, a considerable literature grew
up around the theme of simultaneously selecting individual variables
at both the group and within-group levels. For example, Huang et al.,
2009 explored this problem with a group bridge perspective. With the
same objective in mind, Zhou and Zhu, 2010 introduced the hierar-
chical lasso (HLasso). An extension of HLasso to quantile regression
was latter developed by Zhao, Zhang, and Liu, 2014. Applications
of HLasso to pattern recognition were also discussed by Sprechmann
et al., 2011.

In recent years, there has been increasing interest in the sparse-group
lasso (SGL) problem. SGL is a regularization method introduced by
Friedman, Hastie, and Robert Tibshirani, 2010, which generalizes the
lasso (Robert Tibshirani, 1996), the group lasso (Yuan and Lin, 2006)
and the elastic-net (Zou and Hastie, 2003), by combining lasso and
group lasso penalties. The solution provided by the SGL, as in lasso
and group lasso, often involves a sparse number of predictor vari-
ables, since many coefficients in the solution are exactly zero. SGL
has an advantage over lasso when the predictor variables are grouped,
as lasso penalizes all the coefficients of the solution equally. SGL, on
the other hand, distinguishes among groups and, unlike group lasso, it
is able to provide a solution which is also sparse inside each group. It
has been shown that SGL can play an important role in addressing the
issue of variable selection in genetic models, where genes are grouped
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following different pathways.

A common mathematical formulation of the SGL problem is,

β̂ = argmin
β∈B

{
R̂(β) + (1− α)λφ2(β) + αλφ1(β)

}
, (2.1)

where R̂ is a risk function depending onβ and the data, B is a parame-
ter set, φ1 and φ2 are the lasso and group lasso penalties, respectively,
λ ≥ 0 and α ∈ [0, 1] are parameters controlling the regularization
terms φ1 and φ2.

Under its simplest formulation given in (2.1), SGL leads to a solu-
tion depending on two weight parameters, α and λ, which control the
penalization on the coefficient vector β. In most of the applications
of the SGL this problem is left aside, and the parameters are either
fixed, based on prior information about the data, or chosen to mini-
mize some error function in a grid of possible values. However, an
appropriate choice of the parameters deserves more attention, consid-
ering that it plays a key role in the structure and interpretation of the
solution provided by the SGL.

Several studies have been published, regarding the computation of the
solution of (2.1). Simon et al., 2013 introduced an implementation of
the SGL, currently available as an R package. Technical details of
their approach can be found in their paper, which includes the SGL
for linear, logistic and Cox regression. However, their method failed
to consider arbitrary group weights in the group lasso penalty term, as
in (3.3). A broader perspective was adopted by Vincent and Hansen,
2014 in their implementation, which allows the user to set different
penalty weights for each group. However, no attempt was made to
optimally select those parameters in their approach. A more recent
technique to solve (3.3), is the cvxpy optimization framework (Dia-
mond and Stephen Boyd, 2016), which is available under python. It
integrates with open source solvers such as ecos (Domahidi, Chu, and
S. Boyd, 2013), scs (O’Donoghue et al., 2016) and cvxopt, among
others. Recently, Feng and Simon, 2017 relied on cvxpy to find the
solution of the SGL problem.

Since its introduction, the SGL problem and its applications have been
extensively studied. Simon et al., 2013 included a section about the
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diagnosis of ulcerative colitis and prediction of recurrence of breast
cancer, based on genes from the patients. Chatterjee et al., 2011 ex-
plored the use of the SGL to predict climate variables over different
land regions, based on measures of those variables in the oceans. They
provided a nice interpretation of the sparse solution obtained in this
context. Recently, Ndiaye et al., 2016 provided further applications
of the SGL to climate data. Xie and Xu, 2014 discussed an applica-
tion of the SGL to uncertain data. Their approach was illustrated on
several real datasets, including financial, biological and signal pro-
cessing applications. On the other hand, Rao et al., 2016 explored the
SGL in classification problems, introducing an extension of the SGL,
the sparse overlapping group lasso (SOGlasso), to deal with overlap-
ping groups. Real data applications of the SOGlasso in different areas
were exemplified in their paper, including those on text mining, fMRI
and computational biology. In this context, Cheng et al., 2017 investi-
gated the use of the similarity-regularized sparse-group lasso (SSGL),
an extension of the SGL, in image processing for glaucoma detection.

The number of publications related to the SGL and its applications,
evidence the importance of studying its theoretical properties, as well
as those details in which the SGL can be improved. Although exten-
sive research has been carried out on the SGL, and the selection the
regularization parameters is often mentioned, no single study existed
providing a methodology to adequately select these parameters, until
recently, when Feng and Simon, 2017 addressed this problem.

Friedman, Hastie, and Robert Tibshirani, 2010 compared their SGL
approach with lasso and group lasso using simulations. For the SGL
(2.1), they took α = 0.5 and λ was optimized along a regularization
path. Sprechmann et al., 2011 relied on cross-validation for the choice
of α and λ, remarking that the selection of these parameters has an im-
portant influence on the sparsity of the obtained solution. As inves-
tigating the optimal regularization parameters was beyond the scope
of their work, they selected a set of parameters that performed well
among a small set of possible parameters. As Chatterjee et al., 2011
noted, the regularization parameters play a key role in variable selec-
tion. In order to select the relevant variables in their model, Chatterjee
et al. computed the regularization path of the SGL solution, i.e., a plot
of the coefficient values for each covariate versus λ, letting α = 0.5
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fixed. As an illustration, they also plotted the regularization path for
one of the relevant variables, on a grid of λ and α values, resulting in a
three dimensional surface. However, their approach does not provide
a framework to tune the parameters, since it involves the computation
of SGL solutions for an entire grid ofα andλ values, which may be ap-
propriate in small scale problems, but not for data sets with thousands
of variables involved. Xie and Xu, 2014 tried a total of 12 different
(α, λ) combinations in their experiments. In the real data applica-
tions discussed by Rao et al., 2016, they briefly mentioned that they
had trained the models using 4-fold cross-validation to select the reg-
ularization parameters, but they did not provide a detailed method. In
the experiments illustrated by Ndiaye et al., 2016, they computed the
SGL estimator using a sequence of 100 values for the regularization
parameter λ, whereas α was chosen among 11 equally spaced values
in [0, 1], using 2-fold cross validation.

Overall, these studies highlight the need for a methodology to select
the parameters λ and γ in (2.9). The aim of this paper is to develop an
algorithm that automatically selects all the weight parameters of the
SGL. An alternative, but more general formulation of this problem is
given by,

β̂(λ,γ) = argmin
β∈B

{
R̂(β) + λ2

J∑
j=1

γj‖β(j)‖2+λ1‖β‖1

}
. (2.2)

Here J is the number of groups, and β(j) ∈ Rpj are vectors with
the components of β corresponding to j-th group (of size pj), j =
1, 2, . . . , J . Note that λ ∈ R2

+ and γ ∈ RJ
+, so that the total number

of parameters to be tuned is J + 2.

The study presented in this paper is one of the first investigations fo-
cused specifically on the selection of the weight parameters in the
sparse-group lasso problem, given in (3.3). We present a gradient-
free coordinate descent algorithm that automatically selects both pa-
rameter vectors λ and γ. Theoretical and practical advantages of our
approach are also illustrated using both real and synthetic data sets.

This paper is organized as follows. Next section ties together the vari-
ous theoretical concepts that support our approach. Section 2.3 intro-
duces our main contribution, the iterative sparse-group lasso. Sec-
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tions 2.4 and 2.5 highlight the importance of our study using both
synthetic and real datasets, respectively. Finally, Section 2.6 includes
a discussion of the implication of our findings to future research.

2.2 Theoretical background

Under the usual regression framework, we consider N observations
in the form Z = {yi,xi}Ni=1. They are a random sample from some
population with probability distribution function ρ(x, y), where y is
the response and x = [x1, x2, . . . , xp]

′ are the predictor variables.

Assuming that a flexible class of functions {F (x,β),β ∈ B} exists,
where B is a parameter set, the objective of regression is finding
β∗ ∈ B such that F (x,β∗) estimates y from x the best among all
β ∈ B. The quality of an approximation is often measured using a
loss function L(y, F (x,β)). As a common rule, L takes non-negative
values, in such a way that very positive numbers correspond to very
poor approximations. The empirical risk is defined as,

R̂(β) =
1

N

N∑
i=1

L(yi, F (xi,β)). (2.3)

and only depends on the available information in Z . Therefore,

β̂ = argmin
β∈B

R̂(β), (2.4)

is a plug-in estimate for β∗.

In the case of high dimensionality (p � N ), it becomes difficult to
work with enough data samples to achieve a high density of points.
The penalization (or regularization) approach provides a formalism
for controlling the complexity of the approximating functions, to fit
available finite data. We are interested in this non-complexity in terms
of the sparsity of β̂, and we focus on linear approximating functions
in the form

F (x,β) = β0 +

p∑
j=1

xjβj, β ∈ B = Rp+1. (2.5)
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The lasso, introduced by Robert Tibshirani in Robert Tibshirani, 1996,
is a regularized regression method which solves,

β̂(λ) = argmin
β∈B

{
R̂(β) + λφ1(β)

}
, (2.6)

where φ1(β) = ‖β‖1 is the lasso penalty. The solution that lasso pro-
vides has many components that are exactly zero. Thus, by solving
(2.6), we are also doing variable selection. This approach has inspired
many important algorithms of the last couple of decades. Yuan and
Lin introduced the group lasso (Yuan and Lin, 2006) as an extension
of lasso when variables are forming groups, and those groups are in-
volved in the regression. Other extensions involve merging different
penalties, like the elastic-net family, proposed by Zou and Hastie in
Zou and Hastie, 2003.

The group lasso method gives a solution corresponding to a sparse set
of groups. However, if it includes a group in the model, then all the
coefficients in that group will be non-zero, which may be appropriate,
depending on the situation. Nevertheless, there are other scenarios
in which it would be nice to have both sparsity of groups and within
each group. Approaching this problem, Friedman, Hastie, and Robert
Tibshirani introduced the SGL.

Consider the regression matrix X partitioned as

X = [1X(1)X(2) · · · X(J)], (2.7)

where 1 = X(0) is a column of ones for the intercept term, J is the
number of groups and X(j) is the matrix of observations correspond-
ing to variables in group j, j = 1, 2, . . . , J . Consider the vector of
parameters β partitioned as,

β = [β(0),β(1)′ ,β(2)′ , . . . ,β(J)′ ]′, (2.8)

where β(0) = β0 is the intercept term, but here β(j) ∈ Rpj are also
vectors containing the components of β corresponding to j-th group,
j = 1, 2, . . . , J .
The (classic) sparse-group lasso estimation (from Friedman, Hastie,
and Robert Tibshirani, 2010) is defined as,

β̂(λ, α) = argmin
β∈B

{
R̂(β) + (1− α)λφ2(β) + αλφ1(β)

}
, (2.9)
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where α ∈ [0, 1] and λ ≥ 0, and the group lasso penalty term is
defined as,

φ2(β) =
J∑

j=1

√
pj‖β(j)‖2, (2.10)

with pj being the size of j-th group. Note that the penalty in (2.9) is a
convex combination of the penalties for lasso and group lasso, which
is very intuitive, since the objective in this case is finding an equilib-
rium between both penalties.

2.3 The iterative sparse-group lasso

The purpose of this section is to develop an algorithm that selects
the optimal weight parameters of the sparse-group lasso, in the form
(3.3). We consider that parameterization (3.3) has an advantage over
(2.1), since the group lasso and lasso terms of the penalization are
controlled by different regularization parameters that range both in
R+, while allowing further control over individual group weights γ.
Our approach is based on sequential minimizations of the empirical
risk, keeping the regularization parameters λ,γ fixed except for one
coordinate, in which an univariate optimization is performed. In the
search for the best regularization parameter values, we tried to strike
a balance between accuracy and computational efficiency, and that is
why we consider a random search algorithm to solve the univariate
optimization part.

Traditionally, the data setZ is partitioned into three disjoint data sets,
ZT ,ZV , and Ztest. The data in ZT is used for training the model,
i.e., solving (3.3). ZV is used for validation, i.e., finding the optimal
parameters λ and γ. The remaining observations in Ztest are used
for testing how the model predicts (or describes) future data. Specifi-
cally, the selection of the optimal parameters λ and γ is based on the
minimization of the validation error, defined as,

R̂V (λ,γ) =
1

#ZV

∑
(yi,xi)∈ZV

L[yi, F (xi, β̂T (λ,γ))], (2.11)
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where

β̂T (λ,γ) = argmin
β∈B

{
R̂T (β) + λ2

J∑
j=1

γj‖β(j)‖2+λ1‖β‖1

}
,

(2.12)
and

R̂T (β) =
1

#ZT

∑
(yi,xi)∈ZT

L[yi, F (xi,β)], (2.13)

with # denoting the cardinal of a set. Therefore, the problem of find-
ing the optimal parameters (λ,γ) can be formulated as,

min(λ,γ)∈R2
+×RJ

+
R̂V (λ,γ)

s.t. β̂T (λ,γ) = argminβ∈B

{
R̂T (β) + λ2

∑J
j=1 γj‖β(j)‖2+λ1‖β‖1

}
.

(2.14)

The simplest approach to problems in the form (3.7) is brute-force.
However, the dimension of γ represents a major challenge. A straight-
forward solution would be to take γ fixed at γj =

√
pj (as formulated

by Simon et al., 2013), and solve (3.7) for λ only. Under the brute-
force approach to this simpler problem, one creates a two dimensional
grid for λ with feasible solutions of (3.7). The selected pair (λ1, λ2)
is the one that minimizes (3.4) in the points of the grid.

Figure 3.2 illustrates the search for the optimal penalty weight λ in a
grid of 100 × 4. The data set is about Ulcerative colitis (Burczynski
et al., 2006). It has been randomly partitioned into 50 and 77 obser-
vations for training and validation data, respectively. Under this grid-
search/brute-force approach, the internal optimization problem (3.5)
has been solved 400 times. As the dimension of the available data in-
creases, the computational burden of this method makes it unfeasible
for a practical use.

As an alternative to grid search (Figure 3.2), we present the itera-
tive sparse-group lasso (iSGL), a gradient-free coordinate descent
method to tune the parameters λ and γ from the sparse-group lasso
(3.3), which performs well under different scenarios while drastically
reducing the number of operations required to find optimal penalty
weight parameters that minimize the validation error in (3.4). The
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Figure 2.1: Plot of validation error R̂V (λ) in a grid of 100λ1−values
and 4λ2−values. The data set was studied by Burczynski et al., 2006
and Simon et al., 2013. There were 50 observations in the training set
ZT and 77 observations in the validation set ZV . There were consid-
ered 7819 genes as explanatory variables, grouped according to the
C1 positional geneset.

iSGL iteratively performs a univariate minimization over one of the
coordinates of [λ,γ], while the remaining coordinates are fixed.

There are three important components in our approach, that play key
roles in the performance of the iSGL: the initial values of λ and γ,
the optimization of the internal function (3.5), and the univariate op-
timization of (3.7). These three important steps are explained in the
following three sections.

2.3.1 Initial regularization parameters

One major drawback of coordinate descent algorithms is that their
performance strongly depends on the initial point, if the function is
non-smooth. This is the case of the validation error R̂V (λ,γ) (3.4)
in the sparse-group lasso. It is also important to notice in (3.3) that
for some sufficiently large λ,γ, the optimal solution of (3.3) will be
β = 0. If our algorithm iSGL initializes in a zero solution, it will
probably get stuck there. That is why it is critical to start the iSGL
algorithm with λ and γ such that βT 6= 0. The following propositions
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provide valuable insight into the appropriate initial penalty parameters
of our method.

Proposition 1 (Upper bound forλ1, linear model). Consider the sparse-
group lasso problem in the form (3.3), with

R̂(β) =
1

2N
‖y − β01−Xβ‖22 , (2.15)

being the square error risk. If λ2 = 0, then (3.3) reduces to lasso, and
β = 0 if

max
k≤J, i≤pk

{∣∣∣∣ 1NX
(k)′

i r−k,i

∣∣∣∣} ≤ λ1, (2.16)

where X(k)
i denotes the i–th column of X(k), and

r−k,i = y − β01−
J∑

j=1
j 6=k

X(j)β(j) −
pk∑
l 6=i

X
(k)
l β

(k)
l . (2.17)

Proposition 2 (Upper bound for λ1, logistic model). Consider the
sparse-group lasso problem in the form (3.3), with

R̂(β) =
1

N

N∑
i=1

[log (1 + exp{β0 + x′iβ})− yi(β0 + x′iβ)] , (2.18)

being the bernoulli negative log-likelihood (logit) risk. If λ2 = 0, then
(3.3) reduces to lasso, and β = 0 if

max
k≤J, i≤pk

{
|X(k)′

i d−k,i|
}
≤ λ1, (2.19)

where d ∈ RN , such that

dl =
1

N

[
(1 + exp{−x′lβ})

−1 − yl

]
, (2.20)

and d−k,i = d, taking β
(k)
i = 0.

Proposition 3 (Upper bound for λ2γj , linear model). Consider the
sparse-group lasso problem in the form (3.3), with R̂(β) as in (2.15).
Then, β = 0 if ∥∥∥∥S ( 1

N
X(j)′r−j, λ1

)∥∥∥∥
2

≤ λ2γj, (2.21)
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where S(·) is the coordinate-wise soft thresholding operator,

S(z, λ1)i = sign(zi)(|zi|−λ1)+, (2.22)

and

r−k = y − β01−
J∑

j=1
j 6=k

X(j)β(j). (2.23)

Proposition 4 (Upper bound for λ2γj , logistic model). Consider the
sparse-group lasso problem in the form (3.3), with R̂(β) as in (2.18).
Then, β = 0 if ∥∥∥S (X(j)′d−j, λ1

)∥∥∥
2
≤ λ2γj, (2.24)

where d−j = d, (2.20) taking β(j) = 0.

Note that the upper bounds for λ1, discussed in Propositions 1 and
2, do not depend on λ2 nor γ. Considering λ2 > 0, would only de-
crease the minimum λ1 giving β = 0. On the other hand, equations
(2.21) and (2.24) from Propositions 3 and 4, respectively, display a
dependence between λ2γj and λ1.

Simon et al., 2013 derived from (2.21), the maximum λ such that
β 6= 0 , but their parameterization of the sparse-group lasso only con-
sidered λ free, and both α and the group weights were fixed. However,
the computation of this maximum λ is rather expensive, given that a
piecewise quadratic problem has to be solved for each group j ≤ J . In
contrast, the parameterization (3.3) motivates us to compute an upper
bound (λ1max) for λ1 regardless of λ2 and γ (Propositions 1 and 2),
choose an appropriate value of λ1, and then compute an upper bound
for λ2γj (Propositions 3 and 4) and with γj fixed, an upper bound
λ2max for λ2. In our iSGL implementation, we have chosen initial
λ1 = 0.1λ1max, γj =

√
pj, j ≤ J , and λ2 = 0.1λ2max, such that the

initial βT is non-zero.

2.3.2 Internal optimization

The internal optimization (3.5) (for fixed parameters λ and γ) has a
significant impact on the performance of the iSGL. Due to the num-
ber of computations of the optimal solution (3.5) that our methodol-
ogy requires, we tried to adopt the fastest approach in practice. We
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found the blockwise descent implementation by Simon et al., 2013 to
be the most appropriate solution to this problem, and could be easily
extended to our parameterization in (3.3). The idea behind the algo-
rithm is based on the separability of the sparse-group lasso penalty
between groups. Let β, the optimum coefficient vector in (3.3), be
fixed for all groups, except for group k, 1 ≤ k ≤ J . Then, (3.3)
becomes

R(k, β) +
J∑

j=1
j 6=k

(λ2γj‖β(j)‖2+λ1‖β(j)‖1) + λ2γk‖β‖2+λ1‖β‖1,

(2.25)
where R(k, β) is the empirical risk R̂(β) with only β(k) free, which
is denoted by β for simplicity. Removing constant terms, minimizing
(2.25) is equivalent to minimizing

F (β) := R(k, β) + λ2γk‖β‖2+λ1‖β‖1. (2.26)

Under the majorization-minimization scheme (see Lange, Hunter, and
Yang, 2000, Nesterov, 2007, Beck and Teboulle, 2009), we consider
the surrogate function

(2.27)M∗(β, β0) = R(k, β) + (β − β0)
T∇R(k, β0)

+
1

2t
‖β − β0‖22 + λ2γk‖β‖2 + λ1‖β‖1.

Notice that, choosing the stepsize t sufficiently small, M∗ is such that
M∗(β, β) = F (β) and M∗(β, β0) ≥ F (β), which allows to construct
a descent scheme for minimizing (2.26). Minimizing (2.27) is equiv-
alent to minimizing

M(β, β0) =
1

2t
‖β −B0‖22+λ2γk‖β‖2+λ1‖β‖1, (2.28)

where B0 = β0 − t∇R(k, β0). Using the subgradient conditions and
after some algebra, an expression for the optimum β̂ of (2.28) is as
follows,

β̂ =

(
1− λ2γkt

‖S(B0, λ1t)‖2

)
+

S(B0, λ1t). (2.29)
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Equation (2.29) suggests an iterative procedure to obtain the minimum
of (2.25), which can be applied per group to obtain the overall solution
of (3.3) for fixed λ and γ. Our approach is similar to the implemen-
tation in Simon et al., 2013, but adding the individual group weights
γk.

2.3.3 Univariate optimization

It is important to remark that the minimization of (3.4) depends on
(3.5), which computational burden is very high. This cost should
be taken into consideration when choosing an univariate optimization
strategy, since many evaluations of (3.4) would require more compu-
tational time. Grid search seems like a reasonable approach to tackle
the optimization of the validation error in the one-dimensional case.
However, as Bergstra and Bengio, 2012 showed using the experiments
of Larochelle et al., 2007, randomly chosen trials are more efficient
for hyper-parameter optimization than trials on a grid. This motivates
our choice of a random search strategy.
Given the regularization parameter vector [λ,γ] fixed, except for k-th
component, say λ

(0)
k , where 1 ≤ k ≤ J +2, we set the initial stepsize

t0 =

{
λ
(0)
k /10 if λ(0)

k 6= 0,
0.01 otherwise.

However, the actual stepsize is randomly chosen between t0/10 and
t0. Therefore, the new value of the regularization parameter λ(1)

k→ ∈
[λ

(0)
k + 0.1t0, λ

(0)
k + t0], in the positive direction. Usually in regular-

ization problems, when there is only one parameter λ to select, the
regularization path is constructed from some λmax to λmin, decreas-
ing in the log-scale (see Friedman, Hastie, and Rob Tibshirani, 2010
and Simon et al., 2013). We wanted to use a non-uniform path, adapt-
ing the stepsize depending on the smoothness of the validation error
(3.4). That is why we introduced a momentum-like term (τ ≥ 1)
increasing the stepsize. If the new λ

(1)
k→ improves the evaluation of

the objective function, the next value λ
(2)
k→ is chosen uniformly in the

interval [λ(1)
k→ + τt0/10, λ

(1)
k→ + τt0]. In general, λ(m)

k→ ∈ [λ
(m−1)
k→ +

τm−1t0/10, λ
(m−1)
k→ + τm−1t0], and we stop it once the objective does

not improves. Then, our next choice is λ
(1)
k← ∈ [λ

(m)
k→ − t0, λ

(m)
k→ −
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t0/10], and after that λ(2)
k← ∈ [λ

(1)
k←−τt0, λ

(1)
k←−τt0/10]. We continue

updating the step as before, until the objective function does not de-
crease. We cyclically apply this search in each coordinate of [λ,γ],
and therefore guarantee that each update of the regularization param-
eters decreases the validation risk.
Algorithm 1 provides an overview of our custom random search min-
imization for a generic function f : R+ → R+, which in our case is
the validation risk R̂V (λ,γ) with [λ,γ] fixed, except for one coordi-
nate.
Regarding the momentum term τ , we tried different configurations
for this parameter varying between 1.5 and 3. Although τ = 2 gave
slightly better results, we could not find any significant differences in
performance and speed between the different configurations for τ .

Algorithm 1: Custom random search
/* function to optimize, initial point */
Function rs(f , λ):

t0, t← λ/10 // Initial stepsize
dir← 1 // direction →
while dir ≥ −1 do

step← Rand[t/10, t] // Compute random step
if f(λ) > f(λ+ dir · step) then

/* Has the objective improved? */
λ← λ + dir·step // Move to the new point
t← τ · t

else
dir← dir − 2 // Change direction
t← t0 // Reset stepsize

end
return λ

Algorithm 3 summarizes the main idea behind iSGL described in
these three sections.

2.4 Simulations

This section critically evaluates the effectiveness of iSGL selecting an
appropriate solution βT . We emphasize the advantages of this algo-
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Algorithm 2: iterative sparse-group lasso (iSGL)
/* Data for training/validation */
Function isgl(ZT ,ZV ):

Initialize λ,γ k← 1
while λ,γ not stationary do

[λ,γ]k ← rs(R̂V , [λ,γ]k) k← k mod (J + 2) + 1;
// Next coordinate

end
return λ,γ

rithm over current methodologies.

2.4.1 Linear response

Recently, Feng and Simon, 2017 have addressed the problem of choos-
ing the optimal regularization parameters for a variety of problems
with non-smooth penalties, including the sparse-group lasso. Their
approach, based on a modified gradient descent algorithm, proves to
be superior to grid-search, and other optimization algorithms. In this
section, we compare the iSGL with the algorithm introduced by Feng
and Simon, 2017 (GD), adapting some of the configurations for the
simulations presented in their paper. We have also considered sim-
pler versions of both algorithms (denoted by GD0 and iSGL0, respec-
tively), taking γ fixed (only λ is selected).

Although our simulation studies focused on comparing GD and iSGL,
we have also included other methods that are known to perform well
in the low dimension: grid-search (GS), random search for hyper-
parameter optimization (RS) from Bergstra and Bengio, 2012, and
Nelder-Mead (NM), from Nelder and Mead, 1965, taking the group
weights γ fixed. To implement GS, we use a bi-dimensional square
grid with 302 points, and values in the interval [2−8, 2] varying in
the log scale. For RS, 302 points (λ1, λ2) were generated, where
λ1 = R cos(θ), λ2 = R sin(θ), with R varying in the log scale in
the interval [2−8, 2] and θ a uniform random variable in [0, π/2]. For
NM , we use the implementation from Feng and Simon, 2017, with
100 iterations.
The matrix X is constructed with i.i.d. Gaussian columns, and the
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response is given by,

y =
J∗∑
j=1

X(j)β(j) + σε, (2.30)

where ε ∼ N(0, I), β(j) = [1, 2, . . . 5, 0, 0, . . . 0]T , J∗ ≤ J are the
number of generating groups and the number of groups in the model,
respectively, and σ is chosen so that the signal-to-noise ratio is 2.
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Table 2.1: Sparse-group lasso parameters tuned using iSGL, gd, rs, gs and nm, over 50 experiments for each config-
uration. There were considered 90/60/200 observations in the train/validate/test sample, 4200 predictor variables,
and 200 groups of equal size.

1 generating group (5 non-zero coefficients)
#λ RV Rtest ‖β̂ − β‖22 fprβ fnrβ fprG fnrG time(min.)

GD 201 11.02 20.55 6.82 3.52% 3.2% 13.37% 0% 446.2
GD0 2 19.71 20.74 7.13 5.2% 2.4% 20.9% 0% 38.3
iSGL 202 12.39 18.2 4.64 2.12% 1.2% 4.24% 0% 13.1
iSGL0 2 19.41 19.9 6.38 2.82% 2% 9.57% 0% 1.2
NM 2 19.39 20.24 6.73 7.1% 2% 14.55% 0% 75.2
GS 2 17.94 19.86 6.47 6.75% 2.8% 23.83% 0% 6.61
RS 2 17.89 20.01 6.7 7.23% 2.8% 26.77% 0% 19.34

2 generating groups (10 non-zero coefficients)
#λ RV Rtest ‖β̂ − β‖22 fprβ fnrβ fprG fnrG time(min.)

GD 201 28.27 48.65 20.49 3.73% 10% 11.55% 0% 466.8
GD0 2 59.12 63.8 34.69 9.88% 11.2% 32.97% 0% 44.8
iSGL 202 28.96 43.21 15.15 2.17% 5.8% 5.42% 0% 27.1
iSGL0 2 57.97 61.35 32.14 3.45% 11.2% 11.91% 0% 1.3
NM 2 58.63 63.38 34.21 4.09% 11.8% 13.2% 0% 82
GS 2 53.58 59.21 30.35 5.93% 10.6% 21.67% 0% 16.6
RS 2 53.57 59.51 30.69 6.59% 10.8% 21.98% 0% 36.7

3 generating groups (15 non-zero coefficients)
#λ RV Rtest ‖β̂ − β‖22 fprβ fnrβ fprG fnrG time(min.)

GD 201 57.09 84.79 45.33 3.03% 13.87% 7.62% 0% 445.3
GD0 2 132.39 128.24 88.48 13.18% 18.8% 34.78% 0% 43.5
iSGL 202 49.83 77.3 36.15 2.74% 10.53% 6.04% 0.67% 38.2
iSGL0 2 127.54 121.92 82.04 4.27% 24.27% 14.44% 0.67% 1.2
NM 2 131.22 126.87 87.34 5.33% 24.4% 16.44% 0.67% 75.8
GS 2 120.18 119.49 79.1 6.17% 23.2% 20.34% 1.33% 22.6
RS 2 120.27 118.92 78.36 6.09% 22.4% 19.88% 1.33% 46.1
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Table 2.1 compares iSGL, GD, NM, GS and RS. Results in Table 2.1
have been averaged over 50 experiments for J∗ = 1, 2, 3. RV and Rtest
stand for validation error (3.4) and test error (2.13), respectively. The
column ‖β̂ − β‖22 denotes the euclidean distance between the esti-
mated β, and the true β that generated the model in (2.30).
We have also compared the algorithms in terms of both variable and
group selection. fprβ and fnrβ denote the global false positive and
false negative rates, respectively, whereas fprG and fnrG denote those
same measures in terms of group selection. We have included a col-
umn (time) with the mean runtime, aimed to compare the computa-
tional complexity between algorithms. However, both RS and GS are
easily parallelizable, and thus, their runtime decreases depending on
the number of available cores in the system. In these simulations, both
RS and GS were run sequentially. We bold those methods that per-
formed significantly better in Table 2.1. For each column, we selected
the smallest result and performed paired t-tests of the corresponding
method against all the others. We bold both methods if there were no
significant differences between the means at level 0.05.

Note that iSGL tunes one extra parameter with respect to GD. This
is because Feng and Simon, 2017 considered an equivalent parame-
terization, taking λ2 = 1. In our approach, we believe it is important
to consider λ2 free, so the entire group-lasso regularization term can
be weighted against the lasso term with only one step of the algo-
rithm. Although both iSGL and GD appear to be similar in terms
of validation and test error minimization, iSGL is considerably faster
than GD in runtime. This may be because, as Feng and Simon, 2017
noted, GD needs a very precise optimization of the internal problem
(3.5), and that is why they used cvxpy in their implementation. In
contrast, iSGL is a coordinate-descent with random search algorithm
and therefore, it does not require a very accurate internal solution of
(3.5), as long as the validation error is minimized. Our implementa-
tion is based on theR package SGL, proposed by Simon et al., 2013, but
our extension, described in Section 2.3.2, considers different group
weights γ in the computation of the sparse-group lasso solution.

Figure 2.2 compares iSGL and GD in terms of error minimization,
over 50 runs summarized in Table 2.1, with 3 generating groups. Both
iSGL and GD perform similar, but the validation and test errors of
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GD sometimes exceed those of iSGL. The differences, however, are
notable when contrasting the number of parameters to be tuned versus
the computational runtime of both algorithms.
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Figure 2.2: Sparse-group lasso parameters tuned using iSGL and Gra-
dient descent from Feng and Simon, 2017 (GD), over 50 experiments,
with 3 generating groups (15 non-zero coefficients). Test, training and
validation data sizes were 200, 90, and 60, respectively. There were
considered 4200 predictor variables, and 200 groups of equal size.

2.4.2 Binary response

In order to evaluate the effectiveness of the iSGL algorithm on bi-
nary data, we have also conducted simulations with logistic response.
As reported before, the matrix X is constructed with i.i.d. Gaussian
columns, and the linear predictor is given by,

η =
J∗∑
j=1

X(j)β(j), (2.31)

where β(j) = [1, 2, . . . 5, 0, 0, . . . 0]T , and J∗ ≤ J are the number
of generating groups and the number of groups in the model, respec-
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tively. The binary response is generated as

yi ∼ Ber(pi), pi =
1

1 + exp(−ηi)
, i = 1, 2 . . . N. (2.32)

Table 2.2 compares both versions of the iSGL. The terms ccrV and
ccrT denote the correct classification rate of the final model in the
validation and test sample sets, respectively. It is important to notice
that the version of iSGL that optimizes both λ and γ achieves higher
ccrT and smaller error in the estimation of β, and this difference in-
creases with the number of relevant variables in the model.
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Table 2.2: Sparse-group lasso parameters in the logistic regression model, tuned using iSGL over 50 experiments
for each configuration. In all the experiments, the test, training and validation data sizes were 200, 90, and 60,
respectively. There were considered 480 predictor variables, and 60 groups of equal size.

1 generating group (5 non-zero coefficients)
#λ ccrV ccrT ‖β̂ − β‖22 fprβ fnrβ fprG fnrG time(min.)

iSGL 62 0.95 0.88 17.61 9.89% 2% 12.27% 0% 45.54
iSGL0 2 0.87 0.87 21.18 23.86% 4% 32.75% 0% 0.35

2 generating groups (10 non-zero coefficients)
#λ ccrV ccrT ‖β̂ − β‖22 fprβ fnrβ fprG fnrG time(min.)

iSGL 62 0.96 0.88 26.48 8.86% 2.6% 10.52% 0% 61.41
iSGL0 2 0.84 0.82 72.29 24.01% 5.4% 31.38% 0% 0.25

3 generating groups (15 non-zero coefficients)
#λ ccrV ccrT ‖β̂ − β‖22 fprβ fnrβ fprG fnrG time(min.)

iSGL 62 0.94 0.84 65.12 9.94% 4.53% 10.84% 0% 61.3
iSGL0 2 0.80 0.79 128.36 24.72% 8.27% 31.47% 0% 0.28
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2.5 Application to biomedical data

Simon et al., 2013 explored biological applications of the sparse-group
lasso. They compared sparse-group lasso, lasso and group lasso based
on their prediction accuracy for a real case-study of gene expressions.
The dataset is about Ulcerative colitis, previously studied by Burczyn-
ski et al., 2006. There are 127 patients in the study, 85 with colitis and
42 healthy, for a total of 8298 gene expressions being measured. In
this analysis, variables have been grouped according to the C1 po-
sitional gene sets (Subramanian et al., 2005, Liberzon et al., 2015).
Those genes not present in the C1 gene set, have been automatically
discarded, so in the final model matrix there are included 7819 genes
as explanatory variables.

Table 2.3: Result of iSGL on the Ulcerative colitis dataset. There
were included 127 observations and 7819 genes, grouped into a total
of 272 genesets. Standard errors are given in parenthesis.

# λ 274
# selected genes 33.95 (9.87)
# selected genesets 9.050 (0.96)
AUC 0.994 (0.003)
cutpoint 0.817 (0.029)
ccrV 0.982 (0.006)
ccrT 0.888 (0.013)

In order to evaluate the power of the iSGL in real data, we have simu-
lated 20 different partitions of the Ulcerative colitis dataset into train-
ing, validation, and test sample sets, of sizes 49, 31 and 47, respec-
tively. In each run, the training and validation sample sets were passed
to the iSGL, as described in Section 2.3. To avoid additional bias, only
the training set was considered when fitting the final model. An opti-
mal cut point was also computed, based on the accuracy of the model
in the validation sample (ccrV ). Using this cut point, we evaluated
the accuracy of the model in the test sample set (ccrT ). The results of
this analysis are summarized in Table 2.3. Note that the accuracy of
the model in the validation sample is very high. This is intuitive, con-
sidering that both, the regularization parameters in the iSGL and the
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cut point, were selected to maximize this measure. In this scenario, a
more reliable estimation of the true accuracy of the model is given by
the accuracy in the test sample, which is also very good.

On this same data set, Simon et al., 2013 commented that, due to the
great number of small groups, α = 0.05 (more weight on the group
lasso penalty) would be a reasonable selection for the sparse-group
lasso penalty parameters in (2.9). We have compared the performance
of SGL (Simon et al., 2013) with α = 0.05, lasso, group-lasso and the
two-parameter version of iSGL, in terms of the correct classification
rate (CCR). From the 127 rows in the original dataset, a random sam-
ple of 48 observations has been used for the training set, 32 for the val-
idation set, and the remaining 47 for the test set. Figure 2.3 illustrates
how each method performed in the validation and test datasets. Since
iSGL optimizes the risk in the validation set, it might seem that iSGL
has an advantage over the other methods. However, only one solution
of iSGL has been computed, whereas SGL, lasso, and group-lasso
were fit for a path of 100− λ values.

2.6 Discussion

The present study introduces the iterative sparse-group lasso, a novel
algorithm to select the optimal regularization parameters of the sparse-
group lasso. Being a gradient-free coordinate descent algorithm, one
might expect iSGL to have poor performance, compared to other meth-
ods that estimate the gradient function. In that sense, this study did not
find a significant difference between iSGL and gradient based meth-
ods (GD) from Feng and Simon, 2017 with respect to validation and
prediction error minimization. The most striking finding, however, is
that our approach turned out to be considerable faster. As we men-
tioned before, a possible explanation for this might be that gradient
descent algorithms demand a higher level of accuracy in the optimiza-
tion of the inner problem (3.5).

Taking into account the results in Table 2.1 and Table 2.2, it is impor-
tant to highlight that the version of iSGL that optimizes both λ and γ,
achieves the best performance in both the validation and test sample
sets. For this reason, in real data studies we recommend to optimize
all the regularization parameters, even if it takes more computational
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Figure 2.3: Classification accuracy on 32 validation samples (above)
and 47 test samples (below) for Ulcerative colitis data. Sparse-group
lasso (SGL), group-lasso (GL) and Lasso models were fit for a path
of 100 − λ values. For the SGL, α = 0.05 was used, according to
Simon et al., 2013. The horizontal axis corresponds to the number of
non-zero coefficients in the final model.

time.

It is somewhat interesting that, as shown in Table 2.1, when there is
exactly one generating group in the model, all the algorithms perform
similar in the test set. In contrast, those that select the group param-
eters γ considerably minimize the error in the validation set. It is
possible that these results were influenced by an overfitting of the reg-
ularization parameters in the validation set. Further studies, which
take this overfitting into account, will need to be undertaken.

This research has given rise to many questions in need for further in-
vestigation. One of the referees has provided a valuable insight into
the extension of our methodology to other regression models. Specif-
ically, we could replace the empirical risk function R̂(β) by an arbi-
trary function, which does not even need to be in the form (2.3). In
particular, research into extending the sparse group lasso formulation
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and the iSGL to Poisson regression is already underway.

The iSGL algorithm presented in this paper can be of broad use to the
scientific and biomedical communities. The evidence from simula-
tions and real data analysis suggests that properly selecting the regu-
larization parameters in the sparse-group lasso leads to better results,
when it comes to both variable selection and prediction. Further re-
search might explore the extension of Algorithm 3 to other regular-
ization methods which depend on multiple parameters.

2.7 Supplementary files

All the simulations and data analysis in Section 2.4 were run in the
same computer, a node with two Intel(R) Xeon(R) CPU E5-2630
v3 (2.4 GHz, 20 MB Smart Cache) processors with 32Gb of RAM,
running CentOS 6.5 Final (Rocks 6.1.1 Sand Boa), R 3.4.2 and python
2.7.14 (Anaconda, Inc.).

The iSGL algorithm is distributed under the sglfast package, for in-
stallation in R (See R Core Team, 2014). It is available at https://
github.com/jlaria/sglfast/ and can be installed inR via devtools.
Our sglfast package is a fork of the SGL package for R. See Simon
et al., 2013.

The source code for the simulations and analysis in Sections 2.4 and
2.5 is also available at https://github.com/jlaria/isgl-paper/.
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Appendix

Proof of propositions in Section 2.3

Proposition 1. Let

R̂(β) =
1

2N

∥∥∥∥∥y − β01−
J∑

j=1

X(j)β(j)

∥∥∥∥∥
2

2

.

Consider λ,γ fixed and let β be fixed except in components β(k).
Then (3.3) becomes,

(2.33)
β(k) = argmin

β

 1

2N

∥∥∥∥∥y − β01−
J∑

j=0

X(j)β(j)

∥∥∥∥∥
2

2

+ λ2

J∑
j=1

γj‖β(j)‖2 + λ1‖β‖1

 .

The objective function of (2.33) is convex, then the optimal solution
is characterized by the subgradient equations,

0 ∈ − 1

N
X(k)′

(
y − β01−

J∑
j=1

X(j)β(j)

)
+ λ2γku+ λ1v, (2.34)

where
u =

{
β(k)/‖β(k)‖2, if β(k) 6= 0
∈ {u : ‖u‖2≤ 1}, if β(k) = 0

, (2.35)

vi =

{
sign(β

(k)
i ), if β(k)

i 6= 0

∈ {vi : |vi|≤ 1}, if β(k)
i = 0

. (2.36)

If λ2 = 0, the subgradient conditions for a particular component β(k)
i

become,

0 ∈ − 1

N
X

(k)′

i

(
y − β01−

J∑
j=0

X(j)β(j)

)
+ λ1vi. (2.37)
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This is true for β(k)
i = 0 if

0 = − 1

N
X

(k)′

i r−k,i + λ1vi.

Then,
vi =

1

λ1N

(
X

(k)′

i r−k,i

)
,

which satisfies (2.36) only if∣∣∣∣ 1NX
(k)
i r−k,i

∣∣∣∣ ≤ λ1. (2.38)

Proposition 3. From (2.34), it follows that β(k) = 0 is the solution of
(2.34), if there is u ∈ {u : ‖u‖2≤ 1} such that

0 = − 1

N
X(k)′r−k + λ2γku+ λ1v, (2.39)

Solving (2.39) for u,

u =
1

λ2γk

(
1

N
X(k)′r−k − λ1v

)
.

Since ‖u‖2≤ 1, then the subgradient equation (2.39) is satisfied if for
some v, ∥∥∥∥ 1

N
X(k)′r−k − λ1v

∥∥∥∥
2

≤ λ2γk. (2.40)

In particular, β(k) = 0 if

min
v

∥∥∥∥ 1

N
X(k)′r−k − λ1v

∥∥∥∥
2

≤ λ2γk, (2.41)

subject to ‖vi‖≤ 1, for i = 1, 2 . . . pk. This minimum is attained when

v∗i =


−1, if 1

N
(X(k)′r−k)i < −λ1

1, if 1
N
(X(k)′r−k)i > λ1

1
λ1N

(X(k)′r−k)i, if | 1
N
(X(k)′r−k)i|≤ λ1

.
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Substituting v∗, (2.41) becomes,∥∥∥∥S ( 1

N
X(k)′r−k, λ1

)∥∥∥∥
2

≤ λ2γk,

where S(·, ·) is the coordinate-wise soft thresholding operator.

Propositions 2 and 4. The proofs to these propositions are analogous
to those of Propositions 1 and 3. Only that, instead of (2.33), we have

(2.42)
β(k) = argmin

β

{
1

N

N∑
i=1

[log (1 + exp{β0 + x′iβ})

− yi(β0 + x′iβ)] + λ2

J∑
j=1

γj‖β(j)‖2 + λ1‖β‖1

}
.

Further simulations

Tables 2.4-2.6 support the results from Section 2.4.
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Table 2.4: Sparse-group lasso parameters tuned using iSGL and Gra-
dient descent from Feng and Simon, 2017 (GD), over 30 experiments
for each configuration. Standard errors are given in parenthesis. In
all the experiments, the test, training and validation data sizes were
200, 90, and 60, respectively. There were considered 600 predictor
variables, and 30 groups of equal size.

1 generating groups (5 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 8.98 (0.39) 9.26 (0.3) 0.38 (0.02)
iSGL 32 6.58 (0.33) 8.82 (0.27) 7.16 (2.84)
GD 2 9.02 (0.38) 9.31 (0.3) 140.64 (12.11)
GD 31 6.27 (0.31) 9.69 (0.28) 1958.53 (139.88)

2 generating groups (10 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 23.7 (0.81) 26.43 (0.95) 0.67 (0.09)
iSGL 32 14.77 (0.6) 21.76 (0.57) 11.5 (3.42)
GD 2 24.23 (0.9) 27.11 (1.01) 149.41 (17.77)
GD 31 15 (0.56) 23.23 (0.65) 1943.54 (134.5)

3 generating groups (15 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 45.99 (1.63) 47.9 (1.2) 0.67 (0.09)
iSGL 32 26.41 (1.34) 36.26 (1.42) 16.23 (3.04)
GD 2 46.85 (1.67) 49.65 (1.43) 153.51 (16.1)
GD 31 26.7 (1.28) 39.15 (1.67) 1636.3 (120.91)
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Table 2.5: Sparse-group lasso parameters tuned using iSGL and Gra-
dient descent from Feng and Simon, 2017 (GD), over 30 experiments
for each configuration. Standard errors are given in parenthesis. In
all the experiments, the test, training and validation data sizes were
200, 90, and 60, respectively. There were considered 900 predictor
variables, and 60 groups of equal size.

1 generating group (5 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 9.73 (0.35) 9.28 (0.34) 0.66 (0.02)
iSGL 62 7.13 (0.27) 8.66 (0.26) 12.01 (4.46)
GD 2 9.81 (0.36) 9.4 (0.38) 333.69 (27.64)
GD 61 6.08 (0.22) 10.14 (0.33) 4004.51 (326.24)

2 generating groups (10 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 25.34 (1.46) 26.1 (0.83) 0.94 (0.14)
iSGL 62 13.76 (0.74) 21.11 (0.71) 53.71 (26.67)
GD 2 25.87 (1.48) 27.15 (0.96) 375.71 (44.24)
GD 61 13.83 (0.64) 23.43 (0.6) 3912.32 (241.89)

3 generating groups (15 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 43.87 (2.16) 46.63 (1.25) 1.11 (0.1)
iSGL 62 22.63 (1.13) 34.42 (0.81) 79.53 (38.22)
GD 2 44.84 (2.17) 47.61 (1.3) 304.19 (31.29)
GD 61 23.58 (1.15) 38.87 (1.13) 4281.04 (363.55)
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Table 2.6: Sparse-group lasso parameters tuned using iSGL and Gra-
dient descent from Feng and Simon, 2017 (GD), over 30 experiments
for each configuration. Standard errors are given in parenthesis. In
all the experiments, the test, training and validation data sizes were
200, 90, and 60, respectively. There were considered 1200 predictor
variables, and 100 groups of equal size.

1 generating group (5 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 8.76 (0.49) 9.89 (0.31) 1.16 (0.02)
iSGL 102 5.82 (0.33) 9.11 (0.3) 44.35 (20.68)
GD 2 8.8 (0.5) 9.98 (0.33) 594.77 (58.88)
GD 101 5.2 (0.31) 10.74 (0.33) 6024.1 (770.35)

2 generating groups (10 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 22.67 (0.88) 24.52 (0.71) 1.35 (0.05)
iSGL 102 12.32 (0.56) 20.7 (0.63) 47.17 (10.23)
GD 2 23.32 (0.92) 25.31 (0.71) 563.11 (70.08)
GD 101 12.37 (0.46) 22.54 (0.67) 6919.35 (716.22)

3 generating groups (15 non-zero coefficients)
#λ RV Rtest time(sec.)

iSGL 2 50.62 (2.14) 57.05 (2.24) 1.41 (0.08)
iSGL 102 22.16 (1.1) 38.78 (2.04) 86.28 (20.11)
GD 2 50.33 (2.08) 58.46 (2.35) 443.72 (48.46)
GD 101 22.16 (1.12) 40.57 (1.3) 7009.67 (809.94)
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Abstract

In the last decade, regularized regression methods have offered alternatives
for performing multi-marker analysis and feature selection in a whole genome
context. The process of defining a list of genes that will characterize an ex-
pression profile, remains unclear. This procedure oscillates between select-
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ing the genes or transcripts of interest based on previous clinical evidence,
or performing a whole transcriptome analysis that rests on advanced statis-
tics. This paper introduces a methodology to deal with the variable selection
and model estimation problems in the high-dimensional set-up, which can
be particularly useful in the whole genome context. Results are validated
using simulated data, and a real dataset from a triple-negative breast cancer
study.

Keywords: Variable selection. High-dimension. Regularization. Clas-
sification

3.1 Introduction

Breast cancer (BC) is the most frequent cancer among women, repre-
senting around 25% of all newly diagnosed cancer in women (Ferlay
et al., 2014). One in eight women in developed countries will be di-
agnosed with BC over the course of a lifetime.
The prognosis of this disease has progressively improved over the past
three decades, due to the implementation of population-based screen-
ing campaigns and, above all, the introduction of new effective tar-
geted medical therapies, i.e., aromatase inhibitors (effective in hor-
mone receptor-positive tumors) and trastuzumab (effective in HER2-
positive tumors). Breast cancer is, however, a heterogeneous disease.
The worst outcomes are associated with the so-called triple-negative
breast cancer subtype (TNBC), diagnosed in 15-20% of BC patients.
TNBC is defined by a lack of immunohistochemistry expression of
the estrogen and progesterone receptors and a lack of expression/am-
plification of HER2 (Dent et al., 2007). The absence of expression
of these receptors makes chemotherapy the only available therapy for
TNBC.
TNBC is usually diagnosed in an operable (early) stage. Surgery,
chemotherapy and radiation therapy are the critical components of the
treatment of early TNBC. Many early TNBC patients are treated with
upfront chemotherapy (neoadjuvant chemotherapy, NACT) and then
operated on and, perhaps, irradiated. The rationale for this sequence
is the ability to predict the long-term outcome of patients looking at
the pathological response achieved with initial NACT (Cortazar et al.,

52 Variable selection algorithms in generalized linear models



Paper B: Iterative variable selection for high-dimensional data

2014).
With the currently available neoadjuvant chemotherapy regimens, nearly
50% of TNBC achieve a good pathological response to this therapy,
while the remaining patients have an insufficient response. TNBC
patients achieving a complete or almost complete disappearance of
the tumor in breast and axilla after NACT have an excellent outcome
(less than 10% of relapses at five years), in contrast with those with
significant residual disease (more than 50% of relapses at five years)
(Symmans et al., 2017; Sharma, López-Tarruella, Garcia-Saenz, et
al., 2018).
The identification of these two different populations is therefore of
the utmost relevance, in order to test new experimental therapies in
the population unlikely to achieve a good pathological response.
Several tumor multigene predictors of pathological response of oper-
able BC to NACT have been proposed in the past few years, taking
advantage of the recent decreased economic cost of obtaining an in-
dividual’s full transcriptome (Tabchy et al., 2010; Hatzis et al., 2011;
Chang et al., 2003). Most of them have been tested in unselected pop-
ulations of BC patients and have shown insufficient positive predictive
value and sensitivity.
The process of defining a list of genes that will define a characteris-
tic expression profile is still ambiguous. This process oscillates be-
tween selecting the genes or transcripts of interest based on the clini-
cal evidence in previous studies or using an agnostic point of view that
rests on advanced statistics selection processes in multivariate analy-
sis. RNA-Seq has become one of the most appealing tools of modern
whole transcriptome analyses because it combines relatively low cost
and a comprehensive approach to transcript quantification. Some ap-
proaches to complex disease biomarker discovery already pointed to
the need to use a whole genome perspective using joint information
in order to predict complex traits instead of a priori selecting individ-
ual features (De Los Campos, Gianola, and Allison, 2010; Lupski et
al., 2011). This strategy would lead to high predictive accuracy, and
there would be no need to know the precise biological associations
in the genome background because of the high correlation among the
biomarkers (Offit, 2011). This approach is challenging from the sta-
tistical point of view because of the large number of biomarkers to
be tested along the genome related to the rather small sample sizes
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in clinical studies. On the other hand, daily clinical practice sce-
nario requires cheaper and faster quantification platforms than whole-
genome RNA-Seq analysis. Thus, it is needed to reduce the number of
biomarkers to stick with in order to define a practical gene expression
signature for the clinical community.

The regularized regression methods provide alternatives for perform-
ing multi-marker analysis and feature selection in a whole genome
context (Szymczak et al., 2009). Specifically, we focus on the sparse-
group lasso (SGL) regularization method (Simon et al., 2013), which
generalizes lasso (Tibshirani, 1996), group lasso (Yuan and Lin, 2006)
and elastic-net (Zou and Hastie, 2003), merging lasso and group lasso
penalties. The solution provided by SGL, usually involves a small
number of predictor variables, given that many coefficients in the so-
lution are exactly zero. It has an advantage over lasso when the predic-
tor variables are grouped, as many groups are entirely zeroed out, but
unlike group lasso, the solution is also sparse within those groups that
are not completely eliminated from the model. However, as will be
explained in next sections, the SGL is not appropriate for the problem
we are dealing with, without introducing a broader methodology to
control the regularization hyper-parameters, the groups, and the high-
dimensionality issue.

From a methodological point of view, this paper provides an original
contribution to perform variable selection and model fitting in high-
dimensional problems. Furthermore, the results presented in this pa-
per are the first attempt in a Translational Oncology scenario of build-
ing a predictive model for the response to treatment, based entirely on
the whole genome RNA-Seq data and conventional clinical variables.

This paper is organized as follows. Section 3.2 ties together the vari-
ous theoretical concepts that support our approach. Section 3.2.1 in-
troduces the mathematical formulation of the SGL, as an optimization
problem. Section 3.2.2 discusses the iterative-sparse group lasso, a
coordinate descent algorithm to automatically select the regulariza-
tion parameters of the SGL. Section 3.2.3 describes a clustering strat-
egy for the variables, based on principal component analysis, which
makes it possible to work with an arbitrarily large number of vari-
ables, without specifying the groups apriori. Section 3.2.5 highlights
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our main methodological contributions: the importance and the power
indexes, to weight variables and models, respectively. In Section 3.3,
a simulation study is presented, with several synthetic matrix designs,
and varying the number of variables from 40 to 4000. Section 3.4
highlights the contributions of our methodology on a TNBC cohort
which had undergone neoadjuvant docetaxel/carboplatin chemother-
apy. Some conclusions and lines for future work, are drawn in the
final section.

3.2 Methodology and algorithms

Consider the usual logistic regression framework, with N observa-
tions in the form {y(i), x(i)

1 , x(i)
2 , . . . , x

(i)
p }Ni=1, where p is the number

of features or predictor variables, and y(i) is the binary response. We
assume that the response comes from a random variable with condi-
tional distribution,

Y |(X1 . . . Xp) ∼ Ber(p(X1 . . . Xp,β)),

where
p(X1 . . . Xp,β) = (1 + exp(−η))−1,

and η is the linear predictor,

η = β0 +

p∑
j=1

βjXj, β = [β0 β1 . . . βp] ∈ Rp+1.

The objective is to predict the response Y for future observations of
X1 . . . Xp, using an estimation of the unknown parameter β, given by,

β̂ = argmin
β∈Rp+1

R̂(β), (3.1)

were

R̂(β) =
1

N

N∑
i=1

[
log

(
1 + exp{β0 +

p∑
j=1

βjx
(i)
j }

)
− yi(β0 +

p∑
j=1

βjx
(i)
j )

]
.

(3.2)

The problem with this approach is that for N < p, the minimiza-
tion (3.1) has infinite optimal solutions. When the features X1 . . . Xp
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represent genetic expressions, this problem of predicting Y becomes
more extreme, since we often have N several orders of magnitude
smaller than p.

As a solution, variable selection techniques are proposed, in order to
tackle the analytical intractability of this problem.

3.2.1 The sparse-group lasso

It has been shown that SGL can play an important role in address-
ing the issue of variable selection in genetic models, where genes are
grouped following different pathways. The mathematical formulation
of this problem is,

β̂(λ) = argmin
β∈Rp+1

{
R̂(β) + λ2

J∑
j=1

γj‖β(j)‖2+λ1‖β‖1

}
. (3.3)

Here J is the number of groups, and β(j) ∈ Rpj are vectors with
the components of β corresponding to j-th group (of size pj), and
γj =

√
pj , j = 1, 2, . . . , J . The regularization parameter is λ =

[λ1 λ2] ∈ R2
+.

The problem with (3.3) is that vector β̂(λ) of estimated coefficients
depends on the selection of a vector of regulation parametersλ, which
must be chosen before estimating β̂(λ). The selection of λ is partly
an open problem, because although there are several practical strate-
gies for choosing these parameters, there is no established theoretical
criterion to follow. In most cases, the regularization parameters are set
a priori, based on some additional information about the data, or the
characteristics of the desired solution, e.g., greater λ1 implies more
components of β̂ identically zero. The most commonly used method-
ology to select λ consists of moving the regulation parameters in a
fixed grid, usually not very thin. However, this approach has many
disadvantages.(Laria, Carmen Aguilera-Morillo, and Lillo, 2019) In
contrast, we propose the iterative-sparse group lasso, a coordinate
descent algorithm, recently introduced by Laria, Carmen Aguilera-
Morillo, and Lillo.
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3.2.2 Selection of the optimal regularization parameter

Traditionally, the data set Z = {y(i), x(i)
1 , x

(i)
2 , . . . , x

(i)
p }Ni=1 is parti-

tioned into three disjoint data sets, ZT ,ZV and Ztest. The data in ZT

is used for training the model, i.e., solving (3.3). ZV is used for vali-
dation, i.e., finding the optimal parameter λ. The remaining observa-
tions in Ztest are used for testing the prediction ability of the model
on future observations. Specifically, the selection of the optimal pa-
rameterλ is based on the minimization of the validation error, defined
as

R̂V (λ) =
1

#ZV

∑
(y(i),x(i))∈ZV

[
log(1 + exp{η(β̂T )})− y(i)η(β̂T )

]
,

(3.4)
where

β̂T (λ) = argmin
β∈B

{
R̂T (β) + λ2

J∑
j=1

γj‖β(j)‖2+λ1‖β‖1

}
, (3.5)

and

R̂T (β) =
1

#ZT

∑
(y(i),x(i))∈ZT

[
log(1 + exp{η(β̂T )})− y(i)η(β̂T )

]
,

(3.6)
with # denoting the cardinal of a set. Therefore, the problem of find-
ing the optimal parameter λ can be formulated as,

minλ∈R2
+
R̂V (λ)

s.t. β̂T (λ) = argminβ∈Rp+1

{
R̂T (β) + λ2

∑J
j=1 γj‖β(j)‖2+λ1‖β‖1

}
.

(3.7)

Algorithm 3 describes the two-parameter iterative sparse-group
lasso (iSGL0), a gradient-free coordinate descent method to tune the
parameter λ from the sparse-group lasso (3.3), which performs well
under different scenarios while drastically reducing the number of op-
erations required to find optimal penalty weight parameters that min-
imize the validation error in (3.4). The iSGL0 iteratively performs a
univariate minimization over one of the coordinates of λ, while the
other coordinate is fixed.
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Algorithm 3: two-parameter iterative sparse-group lasso
(iSGL0)
/* Data for training/validation */
Function isgl(ZT ,ZV ):

Initialize λ i← 1
while λ not stationary do

λi← argminλ∈R+
R̂V (λ|λi = λ); // minimize over

coordinate i of λ

i← i mod 2 + 1; // Next coordinate
end
return β̂T (λ)

Laria, Carmen Aguilera-Morillo, and Lillo, 2019 provide detailed in-
formation about Algorithm 3 in their paper. As mentioned before, a
very useful property of the sparse-group lasso as a variable selection
method, is the ability to remove entire groups from the model (send-
ing to zero the components of the β̂ vector relative to those groups),
as is the case with group lasso. However, this means that a group-
ing among the variables under consideration must be specified. This
does not entail a challenge if there are natural groupings among the
variables, for example, if the variables are dummies related to differ-
ent levels of the same original categorical variable. However, in our
study most of the variables are transcriptomes, for which there are no
established groupings in the literature. To overcome this problem, we
suggest an empirical variable grouping approach, based on the prin-
cipal component analysis of the data matrix.

3.2.3 Grouping variables using principal component
analysis

Principal component analysis (PCA) is a dimension reduction tech-
nique, very effective in reducing a large number of variables related
to each other to a few latent variables, trying to lose the minimum
amount of information. The new latent variables obtained (the prin-
cipal components), which are a linear transformation of the original
variables, are uncorrelated and ordered in such a way that the first
components capture most of the variation present in all the original
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variables.

Given the data matrix X ∈ RN×p, PCA computes the rotation matrix
W ∈ Rp×G, where G ≤ min(N, p) is the number of principal com-
ponent to retain. The transformed data matrix (the principal compo-
nent matrix) is T = XW. This rotation matrix W suggest a natural
grouping on the columns of X, given by

group(Xj) = argmax
i
|Wji|, j = 1, 2, . . . , p. (3.8)

This strategy will provide at most G groups on the columns of X.

Figure 3.1: Simulated sample from three random variables, that illus-
trate the grouping based on PCA.

X1

X 2

X1

X 3

X2

X 3

The following example illustrates our approach on a simulated data
set. Suppose that we want to cluster variables X1, X2 and X3 us-
ing two groups. There are 300 observations (Fig. 3.1) and they are
simulated such that corr(X1, X2) = 0.75, corr(X1, X3) = 0.1 and
corr(X2, X3) = −0.25. The principal component’s rotation matrix
W is given by,

PC1 PC2
X1 -0.67 0.40
X2 -0.70 -0.08
X3 0.23 0.91

In this example, X1 and X2 would be grouped together, whereas X3

would be in the other group. Apparently, this method is placing highly
correlated variables in the same group.
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3.2.4 Mining influent variables under a cross-validation
approach

In this section, we focus on the problem of variable selection in mod-
els where the ratio p/N is in the order of 102. In these scenarios,
even state-of-the-art methods such as SGL find it hard to select an ap-
propriate set of variables related to the response term. We propose
a cross-validation approach to fit and evaluate many different models
using only a sample size of N observations initially given.

The solution in terms of β̂(λ) provided by Algorithm 3 strongly de-
pends on the partitionZT ,ZV . As a consequence, if we run Algorithm
3 for different partitions ZT ,ZV of the same data Z , it will probably
result in different coefficient estimates β̂(λ). Therefore, the indicator
function of variable Xj included in the model, I(β̂j(λ) 6= 0), will
take different values depending on the partition ZT ,ZV . In order to
avoid this dependency on the sample data partition, we propose Algo-
rithm 4, which computes many different solutions β̂(λ) of Algorithm
3, for different partitions of the original data sample Z . The goal of
this algorithm is to be able to fit and evaluate many models using the
same data. Since the sample size is small compared to the number of
covariates, the variable selection will greatly depend on the train/vali-
date partition. We denote by R the total number of models that will be
fitted using different partitions from the original sample. Algorithm
4 stores the information of the fitting β̂ of each model and the correct
classification rate in the validation sample (ccrV ) in each case.

Algorithm 4:
/* sample data Z, # of runs R */
Function isgl(Z , R):

for r in 1, 2 . . . R do
ZT ,ZV ← random partition of Z
β(r)← ISGL(ZT , ZV )
ccr

(r)
V ← Correct classification rate of β(r) in ZV

end
return β, ccrV
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3.2.5 Selection of the best model

Our objective is to select one of those R models computed in Algo-
rithm 4 to be our final model. We believe that a selection only based
on the maximization of ccrV could lead to overfit in the training sam-
ple data Z . To overcome this problem, we define two indexes: the
importance index of a variable, and the power of a model. These in-
dexes are fundamental to choosing a final model that is not overfitting
the data.

We consider the importance index Ij of variable Xj defined as,

Ij =
R∑

r=1

|β(r)
j |·(ccr

(r)
V − δ)/max

j

{
R∑

r=1

|β(r)
j |·(ccr

(r)
V − δ)

}
, (3.9)

where β(r) and ccr
(r)
V are those returned by Algorithm 4 on the data

Z . With the objective of penalizing those models that had a bad per-
formance on the validation set, the term δ has been introduced, which
is the maximum between ȳ and 1 − ȳ, i.e., the null model correct
classification rate.

The importance index weights differently each variable X1 . . . Xp de-
pending on the correct classification rate of those models in which
each variable was present. The larger Ij , the greater the chances of
Xj being present in the underlying model that generated the data Z .

Figure 3.2 illustrates the importance index, computed on a simulated
data set, with N = 100 observations and p = 400 variables. Notice
that the highest three variables in importance are actually in the gen-
erating model, and there is a clear gap in Fig. 3.2 between them and
the rest of the variables.

Based on the maximization of the importance index, an appropriate
subset is selected from the original p variables. Although the true
number of variables involved in the model is unknown, we can fo-
cus our attention on a predefined number of important variables K,
which depends only on the sample data Z . We empirically found
K = d

√
N/2e to achieve good results. Using the important index
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Figure 3.2: Sorted importance index obtained from Algorithm 4, with
R = 150, and a simulated data sample with N = 100 observations
and p = 400 variables.
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of the best K variables, we define the power of a model as,

Pr =
1∑K

k=1 I(k)

∑
j:Ij≤I(K)

Ij|β(r)
j |/‖β(r)‖1, r = 1, 2 . . . R, (3.10)

where I(k) denotes the k−th greatest importance index, e.g., I(1) =
maxj Ij . The power index P weights each model, depending on the
importance of its included variables.

The selection of the final model is based on the criterion,

β̂ = β(r∗), where r∗ = max
r

{
Pr + ccr

(r)
V

}
. (3.11)

Equation (3.11), Algorithm 4, and the framework that supports them,
is the main contribution of this paper from a methodological point of
view. Equation (3.11) is based on the correct classification rates of
R different fitted models, two indexes defined in this paper, and the
iterative sparse-group lasso, which is a novel algorithm.

3.3 A simulation study

In this section, we illustrate the performance of Algorithm 4 using
synthetic data. To generate observations, we have followed simulation

62 Variable selection algorithms in generalized linear models



Paper B: Iterative variable selection for high-dimensional data

designs from Simon et al., 2013 (uncorrelated features), Tibshirani,
1996, Zou and Hastie, 2005 and Azevedo Costa et al., 2017 (correlated
features). Since our objective was to evaluate Algorithm 4 in binary
classification problems, we used a logistic regression model for the
response term using the simulated design matrices in each case. We
simulated data from the true model,

η = Xβ,

with logistic response y given by

yi ∼ Ber(pi), pi = (1 + exp(−ηi))−1, i = 1, 2 . . . N. (3.12)

Five scenarios for β and X were simulated. In each example, our
simulated data consisted of a training set of N = 100 observations
and p variables, and an independent test set of 5000 observations and
p variables. Models were fitted using training data only. Here are the
details of the five scenarios.

SFHT_1) This example is adapted from the sparse-group lasso paper (Si-
mon et al., 2013). We set

β = (1, 2, 3, 4, 5, 0, . . . , 0︸ ︷︷ ︸
p−5

)

and Xi are i.i.d N(0, 1), for 1 ≤ i ≤ p.

SFHT_2) In this example, β is generated as in SFHT_1, but the rows of
the model matrix X are i.i.d. generated from a multivariate
gaussian distribution with cov(Xi, Xj) = 0.5|i−j|, 1 ≤ j ≤ i ≤
p.

Tibs_1) This example is adapted from the original lasso paper (Tibshi-
rani, 1996), also found in other simulation studies (Zou and
Hastie, 2005; Azevedo Costa et al., 2017). We set

β = (3, 1.5, 0, 0, 2, 0, . . . , 0︸ ︷︷ ︸
p−5

),

and the rows of X are i.i.d. generated from a multivariate gaus-
sian distribution with cov(Xi, Xj) = 0.5|i−j|, 1 ≤ j ≤ i ≤ p.
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Tibs_4) This example is also adapted from the original lasso paper (Tib-
shirani, 1996), and found in other simulation studies as well
(Zou and Hastie, 2005; Azevedo Costa et al., 2017). We set

β = (0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
p−40

)

and the rows of X are i.i.d. generated from a multivariate gaus-
sian distribution with cov(Xi, Xj) = 0.5, and var(Xi) = 1, 1 ≤
j < i ≤ p.

ZH_d) This example is adapted from the elastic net paper (Zou and
Hastie, 2005). We chose

β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
p−15

)

and the rows of X were generated as follows,

Xi = Z1 + εxi , Z1 ∼ N(0, 1), i = 1, . . . , 5,

Xi = Z2 + εxi , Z2 ∼ N(0, 1), i = 6, . . . , 10,

Xi = Z3 + εxi , Z3 ∼ N(0, 1), i = 11, . . . , 15,

Xi ∼ N(0, 1), Xi i.i.d. for i = 16, . . . , p,

where εxi are i.i.d. N(0, 0.01), for 1 ≤ i ≤ 15.

We aimed to investigate the robustness of our methodology in each
example, regarding several measures, as the number of noisy vari-
ables (not in the generating model) increased. The criteria we used to
evaluate the models in each case were the correct classifications rate
in the test sample (ccr), the correct classifications rate in the train-
ing sample Et(ccr), and the specificity (spec.) and sensitivity (sens.)
concerning variable selection. Let β̂ be the final estimated coefficient
vector and β the true generating coefficient vector, then the sensitivity
was measured as

sens. =

p∑
j=1

I(β̂j 6= 0) · I(βj 6= 0)/

p∑
j=1

I(β̂j 6= 0)

64 Variable selection algorithms in generalized linear models



Paper B: Iterative variable selection for high-dimensional data

Analogously, the specificity was defined as

spec. =

p∑
j=1

I(β̂j = 0) · I(βj = 0)/

p∑
j=1

I(β̂j = 0).

Table 3.1 describes the performance of the final model selected un-
der our methodology in the scenarios described above. We have con-
ducted 30 experiments in each case, as we varied the number of vari-
ables in the model (p). Standard deviations are given in parenthe-
sis. Table 3.1 reveals that for all the configurations (except, perhaps
SFHT_1) the methodology is very robust with respect to an increase
in the number of variables p. In fact, for most of them, the ccr does
not vary much from p = 400 to p = 4000. Intuitively, the grouping
strategy introduced in Section 3.2.3 places highly correlated variables
in the same groups, producing better results when there is correlation
between the variables in the model. That is why the simulation scheme
SFHT_1 produces the poorest results. In SFHT_1, all the simulated
variables are independent and therefore, there is not any clear way to
group the variables.
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Table 3.1: Average correct classification rate (ccr) of the final model in the test data set (5000 observations), in 30 experiments for each
configuration. Et(ccr) denotes the estimated correct classification rate from the training sample. The mean sensitivity (sens.) and the
specificity (spec.) with respect to variable selection are also given. Standard deviations are given in parenthesis. Algorithm 4 was run with
R = 200, and N = 100 observations in the training sample.

Number of variables in the model (p)
Case 40 100 400 1000 4000

SFHT_1

ccr 0.84 (0.03) 0.80 (0.04) 0.76 (0.04) 0.73 (0.05) 0.66 (0.06)
Et(ccr) 0.90 (0.04) 0.87 (0.05) 0.86 (0.05) 0.81 (0.04) 0.80 (0.05)
sens. 0.83 (0.16) 0.71 (0.24) 0.65 (0.18) 0.59 (0.18) 0.47 (0.17)
spec. 0.66 (0.14) 0.83 (0.09) 0.93 (0.04) 0.96 (0.03) 0.98 (0.02)

SFHT_2

ccr 0.87 (0.02) 0.86 (0.02) 0.84 (0.04) 0.83 (0.04) 0.82 (0.04)
Et(ccr) 0.93 (0.04) 0.94 (0.04) 0.92 (0.04) 0.91 (0.04) 0.90 (0.05)
sens. 0.83 (0.18) 0.78 (0.16) 0.74 (0.16) 0.71 (0.16) 0.61 (0.19)
spec. 0.68 (0.17) 0.80 (0.10) 0.92 (0.04) 0.96 (0.03) 0.99 (0.01)

Tibs_1

ccr 0.82 (0.02) 0.81 (0.04) 0.79 (0.04) 0.77 (0.04) 0.76 (0.04)
Et(ccr) 0.90 (0.03) 0.90 (0.04) 0.88 (0.05) 0.87 (0.05) 0.85 (0.05)
sens. 0.99 (0.06) 0.98 (0.08) 0.92 (0.14) 0.90 (0.18) 0.81 (0.19)
spec. 0.68 (0.14) 0.82 (0.08) 0.92 (0.04) 0.96 (0.02) 0.99 (0.01)

Tibs_4

ccr 0.91 (0.03) 0.90 (0.02) 0.89 (0.01) 0.90 (0.02) 0.91 (0.01)
Et(ccr) 0.97 (0.02) 0.96 (0.03) 0.95 (0.03) 0.87 (0.05) 0.97 (0.02)
sens. 0.71 (0.17) 0.43 (0.15) 0.26 (0.11) 0.18 (0.09) 0.17 (0.23)
spec. 0.74 (0.11) 0.77 (0.09) 0.84 (0.04) 0.85 (0.05) 0.83 (0.21)

ZH_d

ccr 0.91 (0.02) 0.90 (0.02) 0.89 (0.03) 0.88 (0.03) 0.85 (0.03)
Et(ccr) 0.98 (0.02) 0.96 (0.02) 0.97 (0.02) 0.97 (0.02) 0.94 (0.03)
sens. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01)
spec. 0.67 (0.09) 0.70 (0.08) 0.82 (0.07) 0.84 (0.06) 0.93 (0.03)
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3.4 Application to Biomedical Data

In this section, we evaluate the methodology described in Algorithm 4
with the model selection criterion given by (3.11) on a real case study.
A sample of TNBC patients from a previously published clinical trial
(Sharma, López-Tarruella, Garcı́a-Saenz, et al., 2016) was used to an-
alyze relations between cancer cells transcriptome and the response of
patients to the given medical treatment (docetaxel plus carboplatin).
The dataset was composed of 93 observations (patients) and 16616
variables (genetic transcripts and clinical variables).

Figure 3.3: Sorted Importance indexes, according to the criterion
given in (3.9), and after running Algorithm 4 with R = 200. The
cutoff value was set to K = d

√
N/2e = 7, as described in Section

3.2.5.
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Figure 3.3 shows the highest 30 importance indexes out of a total of
16616 variables. The criterion to measure the importance of the vari-
ables is given in (3.9). Algorithm 4 was run with R = 200, and the
cutoff value was set to K = d

√
N/2e = 7, as described in Section

3.2.5. With this importance index, the power of each model was com-
puted using (3.10) and the best model was chosen according to (3.11),
as highlighted in Fig. 3.4.

The selected model included 843 out of 16616 variables. The group-
ing strategy commented in Section 3.2.3 found a total of 82 groups,
from which 18 were included in the final model.

Figure 3.5 displays the distribution of the number of non-zero coef-
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Figure 3.4: Power index (3.10), measured in R = 200 models, in
decreasing order, with the corresponding correct classification rate
(ccr) of each model in the validation sample.
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ficients for each group that was included in the final model, which is
revealing in several ways. Firstly, it indicates that PCA finds groups
of similar lengths, and secondly, the selected model is sparse at both
the group and the variable levels.

In an attempt to discover the biological and genetic meaning in the
model selected by our methodology, we ran DAVID (Huang, Sher-
man, and Lempicki, 2008b; Huang, Sherman, and Lempicki, 2008a)
to detect enriched functional-related gene groups. The clustering and
functional annotation was performed using the default analysis op-
tions, and the role of the potential multiple testing effect was consid-
ered using the false discovery rate (FDR).

We observed just two remarkable families of pathways after the gene
enrichment analysis: the homeobox-related and the oxidative phos-
phorylation pathways. They are both involved in the mechanism of
action of docetaxel and carboplatin in response to the provided treat-
ment.
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Figure 3.5: Number of included variables in the final model, by groups
(top) and total (bottom). There were included 18 out of 82 groups.
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The homeobox genes have been proposed to be involved in mecha-
nisms of resistance to taxane-based oncologic treatments in ovarian
and prostate cancer (J. Li et al., 2014; Hanrahan et al., 2017; Marı́n-
Aguilera et al., 2014; Puhr et al., 2012). Docetaxel hyper-stabilizes
the microtube structure, irreversibly blocking the cytoskeleton func-
tion in the mitotic process and intracellular transport. In addition, this
drug induces programmed cell death (Wishart et al., 2017).

On the other hand, carboplatin attaches alkyl groups to DNA bases
resulting in fragmentation by repair enzymes when trying to repair it.
It also inducts to mutations due to nucleotide despairing and gener-
ates DNA cross-links that affects the transcription process (Wishart et
al., 2017). The development of resistance to platinum-based schemes
of chemotherapy is a common feature. Several studies demonstrate
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that dysfunctions in mitochondrial processes, in conjunction with the
mentioned mechanism of action, can contribute to develop the pheno-
types associated with resistance (Matassa et al., 2016; Dai et al., 2010;
Chappell et al., 2012; Marrache, Pathak, and Dhar, 2014; Belotte et
al., 2014; McAdam, Brem, and Karran, 2016).

3.5 Conclusions

The present study introduces a methodology to deal with the variable
selection problem in the high dimensional set-up. It can be seen as an
extension of the sparse-group lasso regularization method, without
the dependencies on both the hyper-parameters and the groups. There
are several critical components in this approach,

• A clustering on the variables, based on PCA, makes it possible
to work with an arbitrarily large number of variables, without
specifying groups apriori.

• The iterative sparse group lasso removes the dependence on the
hyper-parameters of the sparse group lasso, but it is sensible
to the train/validate sample partitions. This problem has been
solved running the algorithm for a large number of different
train/validate sample partitions (Algorithm 4).

• The correct classification rate of each model in its respective
validation sample is stored. Notice that this is an overestimation
of the true correct classification rate on future observations, and
the highest validation rate does not imply the best model.

• The importance index weights the variables, based on the cor-
rect classification rate of the models that include them.

• The power index weights the models, based on the importance
of the variables they include.

This methodology was tested on a sample of TNBC patients, trying
to reveal the genetic profile associated with resistance to the treatment
of interest. The literature studies mentioned in Section 3.4 provide
a rationale supporting the potential predictive value of the two gene
pathways identified in our study (the homeobox-related and the ox-
idative phosphorylation pathways). In order to validate these results,
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we are testing the model in a new cohort of TNBC patients from the
same clinical trial.

Future studies should examine other strategies to group the variables,
as discussed in Section 3.2.3, based on supervised algorithms as well
as unsupervised ones.
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Abstract

This paper introduces the Group Linear Algorithm with Sparse Principal de-
composition, an algorithm for supervised variable selection and clustering.
Our approach extends the Sparse-Group Lasso regularization to calculate
clusters as part of the model fit. Therefore, unlike Sparse-Group Lasso, our
idea does not require prior specification of clusters between variables. To
determine the clusters, we solve a particular case of sparse Singular Value
Decomposition, with a regularization term that follows naturally from the
Group Lasso penalty. Moreover, this paper proposes a unified implemen-
tation to deal with, but not limited to, linear regression, logistic regression,
and proportional hazards models with right-censoring. Our methodology is
evaluated using synthetic data, and details of the implementation in R and
hyperparameter search are discussed.

Keywords: Regression, Classification and Clustering, Statistical Computing
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4.1 Introduction

In recent years, penalized regression problems for variable selection
have become very popular. Since the introduction of Lasso (Robert
Tibshirani, 1996) as a regularization term for linear models, many
extensions have dealt with variable selection by penalizing the loss
function. Most of these extensions are limited to linear regression,
but some of them, such as Elastic-Net (Zou and Hastie, 2005), Group
Lasso (Zhou and Zhu, 2010) or recently Sparse Group Lasso (Simon
et al., 2013) have been also extended to generalized linear models
(GLMs).

In this paper, we focus on the Sparse Group Lasso as a variable se-
lection method in high-dimensional problems. The hypothesis of the
existence of previously known clusters among the variables poses a
significant practical difficulty for this method to be applied to every
supervised problem. Besides, the Sparse Group Lasso penalty func-
tion is the linear combination of a Lasso penalty (`1 norm) and a Group
Lasso penalty (`2 norm), so there are at least two regularization hyper-
parameters (plus one for each group, usually fixed). In most of the ap-
plications of the Sparse Group Lasso, the parameters are either fixed
based on a prior information about the data, or chosen to minimize
some error function in a grid of possible values. In that sense, Laria,
Carmen Aguilera-Morillo, and Lillo, 2019 proposed a gradient-free
coordinate descent algorithm, which allows the automatic selection
of the regularization parameters in the SGL. However, the problem
of grouping the variables was not solved. In genetic or financial ap-
plications, there is a growing demand not only for building predictive
models but also for clustering the variables.

The main methodological contribution of this article is the formal def-
inition of GLASP, a Group Linear Algorithm with Sparse Principal
decomposition. GLASP is an extension of the Sparse Group Lasso,
that, not only avoids the need for a specification of clusters among
the variables, but also computes such clusters during the model fitting
process. Therefore, apart from a predictive model, GLASP can be
considered as a supervised variable clustering algorithm.

The GLASP specification is motivated by the Cluster Elastic Net (CEN)
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(Witten, Shojaie, and Zhang, 2014), where the authors extend the
elastic-net to obtain groups between variables using k-means, besides
variable selection and model fitting. Recently, some extensions have
considered multivariate response CEN, for example, Price and Sher-
wood, 2017 and Ren, Kang, and Lu, 2020. A minor disadvantage of
CEN is that the number of clusters between variables has to be speci-
fied initially. Unlike CEN, our GLASP algorithm can obtain a smaller
number of groups than initially specified.

From an algorithmic point of view, GLASP has two parts. The first is
an accelerated block gradient descent algorithm to adjust the Sparse
Group Lasso with an arbitrary and flexible error function, which is
a linear combination of the model loss function and a differentiable
regularization term. The second is a particular type of regularized
Singular Value Decomposition, with a penalty function adapted to this
specific problem, in order to find the groups.

The method proposed in this paper is, to the best of our knowledge,
the first extension of the Sparse Group Lasso that computes groups au-
tomatically. The internal supervised variable clustering algorithm is
also an original contribution and integrates naturally within the Group
Lasso penalty. Moreover, our implementation provides the flexibility
to change the risk function and address any regression problem.

This paper is organized as follows. Section 4.2 introduces GLASP
as the solution to a problem involving sparsity, clustering, and struc-
ture assumptions on the variables. Section 4.3 describes in detail the
solutions of both sub-problems addressed, with particular emphasis
on the internal optimization algorithms. Later, Section 4.4 compares
our approach with other linear regression methods that perform vari-
able selection and clustering. Although a general notation is adopted
from the beginning to refer to the loss function, the main differences
when a linear, logistic or Cox survival model with right-censoring is
adjusted with GLASP are explained in Section 4.5. For the latter, ad-
ditional details related to prediction are presented, as well as a simu-
lation study on survival data. Moreover, relevant details and practical
examples related to the implementation of GLASP in R language are
illustrated in Section 4.6, with special emphasis on its tidy interface,
and the optimization of hyper-parameters. Section 4.7 illustrates an
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application of GLASP to gene clustering and survival prediction with
right-censored data.

Finally, Section 4.8 discusses the implications of our work and future
directions of research.

4.2 Formulation of GLASP

Under the penalized general linear regression framework, we have a
data matrix X ∈ RN×p, a response vector y ∈ RN×1, and we are
interested in finding β ∈ Rp×1 such that L(β) + φ(β) is minimum.
Here φ : Rp×1 → R+ is some penalty, and L : Rp×1 → R is an
empirical risk function that measures how good can we approximate y
knowing Xβ. Throughout this paper, and without loss of generality,
we will assume that the data matrix X is standardized to have mean
0 and variance 1 in each column (i.e. X̄j = 0 and X>

j Xj = 1 for
every j = 1, 2 . . . p). This is important for the computations in next
sections. We will make the following extra assumptions:

1. (Sparsity) There is a small number of columns of X that are
actually related to y, and therefore many components of β are
exactly zero.

2. (Clustering) There is a (possible unknown) number K of un-
known groups, or clusters, among the variables of X .

3. (Structure) For every group, there is associated a latent variable
that summarizes the information provided by all the variables in
that cluster. In linear models, information is measured in terms
of linear predictors. A variable Xj provides information to the
model through Xjβj . Knowing those groups will improve the
estimation of β, and knowing β will give us insight into the
groups.

These assumptions are aligned with those of Witten, Shojaie, and
Zhang, 2014. However, we want to remark that often, the number
K is unknown. In addition, we do not want to assume beforehand that
Xjβj and Xlβl are close in the squared euclidean distance, for Xj

and Xl in the same group.

Solving the sparse regression problem and, at the same time, finding
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the clusters in the columns of X , motivates the GLASP optimization
problem,

(4.1)
min
β,W ,T

L(β) + λ1 ‖β‖1 + λ2

K∑
k=1

‖Jkβ‖2

+
λ3

2

∥∥∥∥∥X
p∑

j=1

(eje
>
j )βj − TW>

∥∥∥∥∥
2

F

 ,

where

• ‖·‖2F is the squared Frobenius norm, given by ‖M‖2F = Tr(MM>).

• W ∈ Rp×K is an orthogonal matrix with cluster information,
W>W diagonal.

• T ∈ RN×K (latent groups) is a low-rank unitary representation
of the linear predictors, T>T = IK .

• ej is the j–th vector in the canonical basis of Rp×1.

• X

p∑
j=1

(eje
>
j )βj ∈ RN×p is the matrix of linear predictors.

• Jk = ‖Wk‖0
p∑

j=1

(eje
>
j )1(Wjk 6= 0) is a diagonal projection

matrix such that ‖Jkβ‖2 is the euclidean norm of the vector of
coefficients associated with group k, penalized by the size of the
group. Here ‖Wk‖0 denotes the number of elements in column
k–th of W that are non-zero, which is the size of group k.

• λ1, λ2, λ3 are regularization hyperparameters.

Problem (4.1) is a non-convex optimization problem, and finding the
global optimum would require to search for orthogonal matrices T ,
rotation matrices W and coefficient vectors β that minimize (4.1).
This is impractical, and we propose a two-step iterative approach to
find a local minimum of (4.1). See, for example Witten, Shojaie, and
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Zhang, 2014. This problem can be separated in two optimization sub-
problems.

min
β

L(β) + λ1 ‖β‖1 + λ2

K∑
k=1

‖Jkβ‖2 +
λ3

2

∥∥∥∥∥X
p∑

j=1

(eje
>
j )βj − TW>

∥∥∥∥∥
2

F

 ,

(4.2)
and

min
W ,T

λ3

2

∥∥∥∥∥X
p∑

j=1

(eje
>
j )βj − TW>

∥∥∥∥∥
2

F

+ λ2

K∑
k=1

‖Jkβ‖2

 , (4.3)

Remark 1. If λ3 = 0, problem (4.2) is the Sparse Group Lasso.

It is easy to see that, when λ3 = 0, (4.2) is equivalent to the formula-
tion of the Sparse Group Lasso (Simon et al., 2013), given by,

min
β

{
L(β) + λ1 ‖β‖1 + λ2

K∑
k=1

√
pk
∥∥β(k)

∥∥
2

}
,

with β(k) and pk the coefficients and size of group k, respectively.

Remark 2. In general, for T ,W fixed, the penalization ϕ(β) =

λ3/2
∥∥∥X∑p

j=1(eje
>
j )βj − TW>

∥∥∥2
F

does not shrink β towards zero,
and therefore, the regularization function in (4.2) may not shrink to
zero, but to some other vector.

After some algebra, ϕ(β) can be written in the form

ϕ(β) = (β1 − c1)
2/a1 + (β2 − c2)

2/a2 + · · ·+ (βp − cp)
2/ap − k2,

where aj, cj, k are values depending on X,W ,T . The contour levels
of ϕ(β) correspond to ellipsoids in Rp, centered at (c1, . . . cp). To see
this, we will plot the penalty as a function of β. As a toy example,
consider a data matrix X ∈ R100×3, with N(0, 1) columns, such that
cov(X1, X2) = 0 , cov(X2, X3) = 0 and cov(X1, X3) = 0.5. Let
c̃ = (0.5, 0.25, 0.1)>, and UΣV > the singular value decomposition
of Xc̃. We choose T = U and W such that W>W diagonal, but
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close to V Σ. Then, we have T>T = I and W is approximately
given by,

W =

 4.97 0
0 2.46

0.37 0

 ,

such that β1 and β2 are in different groups. The contour plot for the
GLASP penalty is shown in Figure 5.6a, compared with Lasso (Figure
5.6b), Sparse Group Lasso (Figure 5.6c), and GLASP with λ1 = λ2 =
0 (Figure 5.6d).

Figure 4.1: Contour plots for the GLASP(a), the Lasso (b), the Sparse
Group Lasso (c) and GLASP with λ1 = λ2 = 0 (d).
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Remark 3. For a fixed β, problem (4.3) can be written in the form

min
W ,T

{∥∥M − TW>∥∥2
F
+ γP (W )

}
. (4.4)

This is a penalized low-rank approximation problem, and in this case,
P is a sparsity penalty.

This problem written in the general form (4.4) is very similar to those
investigated by Shen and Huang, 2008. The first part is a low rank
approximation problem, which is known to be solved by the singular
value decomposition. In our case, the challenging part is the function
P , which is non-differentiable and non-convex.

P (W ) =
K∑
k=1

(
p∑

j=1

β2
j1(Wjk 6= 0) ‖Wk‖0

)1/2

. (4.5)

However, it is clear that P is a sparsity penalty, and therefore, (4.4)
will force sparsity in W . We propose a solution based to the sparse
PCA via regularized SVD of Shen and Huang, 2008, but considering
our function P as penalty for W , instead of common choices.
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4.3 Algorithms

In this section, we detail the computations to solve the GLASP prob-
lem, separated into two sub-problems, defined in (4.2) and (4.3), re-
spectively.

4.3.1 Internal optimization by groups

Consider (4.2) for W ,T fixed. The final algorithm is a block gradient
descent method. We found this solution to be very fast to solve convex
optimization problems in a general context, where there is a differ-
entiable loss and a sub-differentiable penalty. Recent papers dealing
with the Sparse Group Lasso and extensions have also adopted simi-
lar approaches (Simon et al., 2013; Ren, Kang, and Lu, 2020; Laria,
Carmen Aguilera-Morillo, and Lillo, 2019).

Problem (4.2) can be minimized using a cyclic group-wise gradient
descent. Assume that vector β is fixed for all groups but k–th, and
without loss of generality, assume that the coefficients in group k
are β1, β2 . . . βpk . To avoid difficult notation, throughout this section
β = (β1, β2 . . . βpk)

> will denote the coefficient vector for group k.
Since the remaining groups are fixed, and using the definition of the
Frobenius norm, (4.2) becomes

min
β

{
L(β) + λ1 ‖β‖1 + λ2

√
pk ‖β‖2 +

λ3

2

pk∑
j=1

∥∥Xjβj − TW>
j·
∥∥2
2

}
.

(4.6)
To solve (4.6) we will use the fast iterative shrinkage-thresholding
algorithm (FISTA) (Beck and Teboulle, 2009).

Consider the general optimization problem

min
β
{F (β) := R(β) + Φ(β)} , (4.7)

where

• R : Rp×1 → R is a smooth convex function, continuously dif-
ferentiable with Lipschitz continuous gradient ∇R (with Lips-
chitz constant L(R)), such that

‖∇R(β)−∇R(β0)‖2 ≤ L(R) ‖β − β0‖2 .
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• Φ : Rp×1 → R is a continuous convex function which is possi-
bly non-smooth.

Consider (4.6) in the form (4.7), taking

R(β) = L(β) +
λ3

2

pk∑
j=1

∥∥Xjβj − TW>
j·
∥∥2
2
,

and
φ(β) = λ1 ‖β‖1 + λ2

√
pk ‖β‖2 .

The core of the FISTA algorithm is to consider, for any t > 0, the
quadratic approximation of F (β) at a given point β0, given by,

Mt(β,β0) = R(β0) + (β − β0)
>∇R(β0) +

1

2t
‖β − β0‖22 + Φ(β),

(4.8)
which admits a unique minimizer (that we refer to as update function)

(4.9)Ut(β0) = argmin
β
{Mt(β,β0)}

= argminβ

{
M∗

t (β,β0) =
1
2
‖β −B0‖22 + tΦ(β)

}
,

where B0 = β0 − t∇R(β0). The idea of the iterative shrinkage-
thresholding algorithm (ISTA) algorithm is to produce a descent se-
quence for F via β(k+1) ← Ut(β(k)), choosing t carefully such that
t < 1/L(R). If the Lipschitz constant L(R) is unknown, tk is found
in each step using a backtracking stepsize rule, to be the maximum
t > 0 such that,

F (Ut(β(k))) ≤Mt(Ut(β(k)),β(k)). (4.10)

To accelerate the global rate of convergence from 1/k (ISTA) to 1/k2,
the FISTA algorithm updates β(k) according to

β(k+1) ← Utk(β(k)) +
lk − 1

lk+1

(Utk(β(k))− Utk−1(β(k−1))), (4.11)

where lk+1 = (1 +
√
1 + 4l2k)/2, l1 = 1.
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The most difficult part to formulate in our algorithm to solve (4.6)
using FISTA, is to minimize M∗

t as a function of β, which in our case
is given by,

M∗
t (β) =

1

2
‖β −B0‖22 + tλ1 ‖β‖1 + tλ2

√
pk ‖β‖2 (4.12)

Next proposition provides the update function (4.9) corresponding to
M∗

t in (4.12).

Proposition 1. The update function of problem (4.6) is given by,

Ut(β0) =

(
1−

tλ2
√
pk

‖S(B0, tλ1)‖2

)
+

S(B0, tλ1),

where S is the coordinate-wise soft threshold operator,

S(z, λ)i = sign(zi)(|zi|−λ)+

The following proposition provides conditions for β = 0 to be the
minimizer of (4.6). If we know, after a simple computation, that β =
0, then we can skip the FISTA optimization for the coefficients in
that group. Moreover, these conditions are also upper bounds for the
maximum values of the hyper-parameters, such that β 6= 0.

Proposition 2. β = 0 is the minimizer of (4.6) if

‖S(∇R(0), λ1)‖2 ≤ λ2
√
pk. (4.13)

In particular, it is also true if,

max
j
|∇jR(0)|≤ λ1. (4.14)

The proofs of Propositions 1 and 2 can be found in the Appendix.

4.3.2 Group optimization

This section describes the solution that we propose for sub-problem
(4.3). In addition, we will assume that there are no overlapping groups.
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As stated in Remark 3, when β is fixed, assuming that λ3 > 0 and
ignoring constant terms, (4.3) can be written as (4.4), where M is the
matrix of linear predictors,

M = X

p∑
j=1

(eje
>
j )βj,

and P is a sparsity penalty on W , given in (4.5). Furthermore, to as-
sume that there are not overlapping groups (and each variable belongs
to exactly one group) can be written as a constraint in W , ‖Wj·‖0 =
1, for every j = 1, 2 . . . p. We will deal with this constraint later, but
first let’s tackle problem (4.4).

Problem (4.4) is a special type of regularized Singular Value Decom-
position, where the penalty term can be separated into a sum of penal-
ties on the columns of W . An efficient way of dealing with this prob-
lem, is solving regularized one-rank approximation problems to con-
structW andT column-wise. An example of such an algorithm is the
sPCA-rSVD from Shen and Huang, 2008, Algorithm 1. Our approach
here is very similar to theirs, except for the penalty term.

Consider the simpler problem,

min
u,v

∥∥M − uv>
∥∥2
F
+ γ

(
p∑

j=1

β2
j1(vj 6= 0) ‖v‖0

)1/2
 . (4.15)

Although the regularization in (4.15) is discontinuous, an iterative so-
lution is possible, and it is shown in Preposition 3.

Proposition 3. The optimal v in (4.15) is such that, for l = 1, 2 . . . p,

vl = (M>u)l1

(
(M>u)2l

> γ
(
C

(−l)
β,v + β2

l

)1/2 (
C(−l)

v + 1
)1/2 − γ

(
C

(−l)
β,v C(−l)

v

)1/2)
,

(4.16)
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where

C
(−l)
β,v =

p∑
j=1
j 6=l

β2
j1(vj 6= 0), C(−l)

v =

p∑
j=1
j 6=l

1(vj 6= 0).

The update function for v in Proposition 3 can not be applied in one
step, because the expression for each component vl can not be sepa-
rated from the whole vector v. To tackle this, we propose to iterate
through v, updating each vl with (4.16) until convergence. Algorithm
5 describes the iterative optimization to solve (4.15), which is a spe-
cial case of one-rank regularized singular value decomposition. The
whole process to find all the columns of W and T is explained in
Algorithm 6.

Algorithm 5: One-rank regularized singular value decomposition
(1rSVD).
Result: u,v that minimize (4.15)
Input: M ,β

Compute û, v̂, s that minimize
∥∥M − ûsv̂>

∥∥2
F

(one-rank SVD).
Initialize u← û; v ← sv̂
while v not stationary do

Update v with (4.16), cyclically iterating component-wise
until convergence.

Update u←Mv/‖Mv‖2
end

Algorithm 6: Regularized singular value decomposition.
Result: W ,T that minimize (4.4)
Input: M ,β, K
for k = 1 . . . K do

u,v ← 1rSVD(M ,β) (Solve the one-rank SVD problem)
Set Tk ← u; Wk ← v
M ←M − uv> (update M with the residuals)

end

Finally, we have to deal with the non-overlapping groups restriction
‖Wj·‖0 = 1. We propose a greedy approach to force W to have the
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desired structure. The idea is to update W by,

Wjk ←Wjk1
(
|Wjk|= max

i
|Wji|

)
, for all j, k (4.17)

For sufficiently large values of the penalization hyper-parameter γ,
most of the components of W will be zero, so the effect of update
(4.17) will be negligible as γ increases. Update (4.17) guarantees that
‖Wj·‖0 ≤ 1. To get the equality, we will append W a column WK+1

such that Wj K+1 =
∏K

k=1 1(Wjk = 0), and T a null column TK+1.

4.4 Simulations

This simulation set-up is described in Witten, Shojaie, and Zhang,
2014. The data is simulated according to the linear model y = Xβ+
ε, with p = 1000 features, and εi i.i.d. from a N(0, 2.52) distribution
(1 ≤ i ≤ n). The data matrix X is simulated from a multivariate
N(0,Σ) distribution, where Σ ∈ Rp×p is block diagonal, given by

Σ =

 Σρ 0 0
0 Σρ 0
0 0 0


1000×1000

,

with Σρ ∈ R50×50 such that

Σρ(i, j) =

{
1 i = j
ρ i 6= j

.

The parameter ρ is varied from 0 to 0.8, exploring different scenarios
for the correlation inside groups. The true coefficient vector β ∈ Rp

is random, given by,

β = [β1 β2 . . . β25 0 . . . 0︸ ︷︷ ︸
25

β51 β52 . . . β75 0 . . . 0︸ ︷︷ ︸
925

],

where
βj ∼

{
U [0.9, 1.1], 1 ≤ j ≤ 25
U [−1.1,−0.9], 51 ≤ j ≤ 75

.

The data matrix is composed of two groups of 50 variables, correlated
within each group and independent between groups. Only 25 columns
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within each group are significant. Additionally, there are another 900
variables that are independent of each other and have no impact on
the response. This simulation scheme, as Witten, Shojaie, and Zhang
mention, is motivated by gene pathways, where genes within the same
pathway have correlated levels of expression, but only a fraction of
these are associated with the response of interest.

Table 4.1 reports the results of the different methods in these simula-
tions. We compared Lasso (Robert Tibshirani, 1996), Ridge, Elastic
Net (EN) (Friedman, Hastie, and Rob Tibshirani, 2010), Elastic Net
Cluster (CEN) (Witten, Shojaie, and Zhang, 2014), CEN with known
groups, Cluster Group Lasso (Bühlmann et al., 2013), Group Lasso
with known groups (Friedman, Hastie, and Robert Tibshirani, 2010),
and our approach the GLASP. CEN and Group Lasso with known
groups have been included for baseline comparisons since groups are,
in general, unknown. A training data set composed of 200 observa-
tions was used to compare the different algorithms, whereas the hy-
perparameters were chosen using a validation sample also of size 200.
The experiments were repeated 30 times in order to obtain more rele-
vant results, calculated on an independent test sample of 800 observa-
tions. The different algorithms have been compared in terms of root
mean squared error (RMSE) of the linear predictor, i.e,

RMSE =
∥∥∥Xβ −Xβ̂

∥∥∥
2
.

We have also studied the accuracy of the variable selection (Correct
Zeros), the number of coefficients different from zero (notice that 50
is the correct number of coefficients different from zero in the generat-
ing model), as well as the Rand Index (RI) (Rand, 1971), which mea-
sures the agreement between the actual and estimated clusters with
each algorithm. This index varies between 0 and 1 (from low to high
agreement). In the case of Lasso, Ridge, and EN, the reported groups
are found by the k-means algorithm applied to the linear predictor ma-
trix after estimating β̂. The values reported in Table 4.1 correspond
to the means in 30 repetitions. The standard errors of the mean are
shown in parentheses.

The results in Table 4.1 show that GLASP is superior to the other
methods (except for the baseline methods with known groups) in terms
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of RMSE and Correct Zeros, sometimes by a large margin, when cor-
relations within groups are moderate (0.1, 0.2, 0.5). Furthermore, in
general, the number of non-zero coefficients selected by GLASP is
the lowest among the different methods, resulting in more parsimo-
nious models. Concerning the Rand Index, GLASP is usually lower
than other approaches, but we believe this is because GLASP builds
the groups by balancing both criteria, the correlations between pre-
dictors and the relationship between predictors and the response vari-
able. Therefore, GLASP does not produce either of the two groupings
that are trivial in this case: two groups of 50 and one group of 900
(correlation), or two groups of 25 and one group of 950 (prediction).
Groups found by GLASP are closely related to those groups that one
can compute from the singular value decomposition (or, equivalently,
the principal components) of the matrix of linear predictors.
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Table 4.1: Average results of GLASP and other methods on a test set (800 observations) over 30 simulations. Standard
errors are given in parenthesis. Models were fit on a training set (200 observations) with the hyperparameters that
led to optimal RMSE on a validation set (200 observations). CEN and Group Lasso with known groups have been
included for baseline comparisons (shaded rows).

ρ = 0.0
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 166.662(1.532) 0.885(0.005) 133.967(6.35) 0.909(0.001)
Ridge + Kmeans 182.004(0.97) 0.05(0) 1000(0) 0.897(0.004)
EN + Kmeans 165.491(1.264) 0.831(0.013) 196.767(13.684) 0.909(0.001)
CEN 167.013(1.463) 0.777(0.032) 253.933(32.999) 0.908(0)
CEN Known Groups 162.681(1.282) 0.807(0.008) 224.767(9.708) 1(0)
Cluster Group Lasso 183.714(0.871) 0.05(0) 1000(0) 0.366(0)
Group Lasso Known Groups 56.759(1.277) 0.113(0.044) 936.667(44.005) 1(0)
GLASP 172.771(1.414) 0.67(0.047) 358.633(49.427) 0.774(0.013)

ρ = 0.1
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 93.876(2.304) 0.911(0.004) 138.533(4.245) 0.951(0.003)
Ridge + Kmeans 199.147(1.619) 0.05(0) 1000(0) 0.949(0.002)
EN + Kmeans 93.635(2.283) 0.906(0.004) 143.5(4.127) 0.953(0.003)
CEN 93.954(2.357) 0.892(0.011) 157.433(11.147) 0.953(0.003)
CEN Known Groups 91.809(2.117) 0.881(0.011) 169.167(10.995) 1(0)
Cluster Group Lasso 166.879(2.137) 0.154(0.032) 895.433(32.323) 0.395(0.004)

90
Variable

selection
algorithm

sin
generalized

linearm
odels



PaperC
:A

variable
selection

and
clustering

m
ethod

forG
LM

s

Group Lasso Known Groups 39.468(0.866) 0.335(0.081) 715(80.841) 1(0)
GLASP 90.545(2.669) 0.956(0.009) 87(9.184) 0.914(0.003)

ρ = 0.2
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 77.449(1.807) 0.933(0.004) 116.4(3.753) 0.98(0.001)
Ridge + Kmeans 185.387(1.779) 0.05(0) 1000(0) 0.936(0.001)
EN + Kmeans 77.166(1.768) 0.931(0.004) 118.467(3.907) 0.981(0.001)
CEN 73.654(1.306) 0.744(0.026) 306.267(25.934) 0.983(0.002)
CEN Known Groups 74.051(1.5) 0.829(0.017) 221.4(16.967) 1(0)
Cluster Group Lasso 77.141(3.553) 0.104(0.037) 946.5(37.447) 0.839(0.021)
Group Lasso Known Groups 35.551(0.775) 0.43(0.086) 620(86.423) 1(0)
GLASP 62.03(1.517) 0.97(0.005) 79.333(5.137) 0.943(0.002)

ρ = 0.5
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 64.632(1.583) 0.958(0.002) 91.933(2.505) 0.982(0.001)
Ridge + Kmeans 149.217(1.627) 0.05(0) 1000(0) 0.91(0)
EN + Kmeans 63.369(1.407) 0.946(0.003) 103.7(3.077) 0.984(0.001)
CEN 61.36(1.52) 0.789(0.049) 260.567(49.496) 0.988(0.001)
CEN Known Groups 52.998(1.119) 0.813(0.022) 236.667(22.255) 1(0)
Cluster Group Lasso 59.377(0.888) 0.2(0.062) 850(62.284) 0.906(0)
Group Lasso Known Groups 29.144(0.691) 0.905(0.053) 145(52.923) 1(0)
GLASP 58.516(1.757) 0.968(0.002) 82.3(1.675) 0.963(0.003)
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ρ = 0.8
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 60.031(1.348) 0.955(0.002) 89.7(2.476) 0.964(0.002)
Ridge + Kmeans 114.86(1.454) 0.05(0) 1000(0) 0.906(0)
EN + Kmeans 52.864(0.94) 0.935(0.003) 114.033(2.943) 0.969(0.001)
CEN 42.833(0.879) 0.732(0.043) 317.9(43.026) 0.993(0.001)
CEN Known Groups 32.346(0.834) 0.753(0.048) 296.867(48.34) 1(0)
Cluster Group Lasso 48.994(0.493) 0.17(0.057) 880(56.812) 0.906(0)
Group Lasso Known Groups 20.968(0.692) 0.905(0.053) 145(52.923) 1(0)
GLASP 48.291(0.892) 0.954(0.001) 96.333(0.946) 0.987(0.002)

92
Variable

selection
algorithm

sin
generalized

linearm
odels



Paper C: A variable selection and clustering method for GLMs

4.5 Extension to other models

In Section 4.4, the choice of the function L(β) corresponds to classi-
cal linear models. However, one strength of our methodology is that
it can easily extend other risk functions, such as logistic regression or
Cox models.

We have implemented the following three types of problems: lin-
ear and logistic regression and Cox proportional hazard models with
right-censoring. In the first two cases, the function L is given by,

• Linear regression

L(β) =
1

N
‖y − η‖22 ,

where η = Xβ is the linear predictor.

• Logistic regression

L(β) =
1

N

N∑
i=1

log (1 + eηi)− yiηi.

Our implementation requires to determine∇L, which is given in each
case by,

• Linear regression

∇L(β) = − 1

N
X>(y − η).

• Logistic regression

∇L(β) = 1

N
X>

(
1

1 + eη
− y

)

There are lots of numerical details to consider, especially in the case
of logistic regression. For example, the function log(1 + eη) is un-
stable when |η|> 30. However, it can be substituted by a more stable
approximation, given by
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ˆlog(1 + eη) =


η, η > 33.3
η + e−η, 18 < η < 33.3
log(1 + eη), −37 < η < 18
eη, η < −37

(4.18)

Similarly, its derivative can be replaced by

d

dη
ˆlog(1 + eη) =

{
(1 + e−η, η > −30
eη, η < −30 (4.19)

Although our implementation can address logistic regression, we will
now focus on the Cox model, which has been less addressed in the
literature from the perspective of variable selection.

4.5.1 Proportional hazards model with right-censoring

Under the proportional hazards model framework with right-censoring,
we assume we have a covariate matrix X ∈ RN×p, a vector of event
times t ∈ RN×1 and a vector of event indicator δ ∈ RN×1 (δi = 1 if an
event was observed at time ti, and δi = 0 if time ti is right-censored).

The proportional hazards model assumption states that, for an indi-
vidual with covariates x> ∈ R1×p, their hazard function h(t) is given
by

h(t) = h0(t) exp(x
>β),

where h0(t) is a baseline hazard function. This is a semi-parametric
model, because h0(t) is not assumed to have a particular parametric
form. More details can be found in Moore, 2016.

In the case of right censoring, our functionL is the negative log-partial
likelihood and it is given by,

L(β) =
∑
i∈D

x>i β −
∑
i∈D

log

(∑
k∈Ri

exp(x>k β)

)
,

where D is the index set of observed events, and Ri is the index set
of individuals at risk at time ti. Furthermore, the first derivative of L
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has the expression,

∂

∂βj

L(β) =
∑
i∈D

(
xij −

∑
k∈Ri

xkj exp(x
>
k β)∑

k∈Ri
exp(x>k β)

)
.

Once the model is fitted, with coefficient vector β̂, to estimate the
baseline survival function we use,

S0(t) = exp(−H0(t)), with H0(t) =
∑
ti≤t

h0(ti),

where

h0(ti) =
δi∑

j∈Ri
exp(x>j β̂)

.

An individual’s estimated survival function is given by

S(t|x) = S0(t)
exp(x>β̂). (4.20)

Example 1. For illustrative purposes, we simulated a survival data
set. The data matrix X ∈ R1000×10 has i.i.d. N(0, 1) columns and
βj ∼ N(0, 1/9) for j ≤ 5 and 0 otherwise. The underlying sur-
vival time t∗i for a row x>i is simulated exponential with parameter
λ = exp(x>i β). The censoring time si distributes exponential with
parameter λ = exp(x>i β)/2. The observed time is the minimum be-
tween t∗i and si.

Figure 4.2 displays the estimation of the survival function given by
(4.20), for an individual outside the training sample. In this case, the
estimated function is remarkably close to the true survival function of
this individual, according to the simulated model.

4.5.2 Simulation studies: right-censored survival data

We consider an adaptation of the simulation set-ups described in Sec-
tion 4.4. This time the response variable t and the event indicator δ
are simulated, for every i = 1, 2 . . . N , according to the scheme,
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Figure 4.2: Survival functions S(t|x) estimated and real for an indi-
vidual with simulated covariates. The GLASP model has been fitted
on simulated data with the same x distribution.
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hi = exp(x>i β),

t∗i ∼ Exp(λ = hi),

si ∼ Exp(λ = hi/2),

ti = min(t∗i , si),

δi = 1(ti = t∗i ).

The data matrix X is simulated from a multivariate N(0,Σ) distri-
bution, where Σ is block diagonal, given by

Σ =

 Σρ 0 0
0 Σρ 0
0 0 0


20×20

,

with Σρ ∈ R5×5 such that

Σρ(i, j) =

{
1 i = j
0.5 i 6= j

.

The true coefficient vector β ∈ Rp is random, given by,

β = [β1 β2 0 0 0 β6 β7 0 . . . 0︸ ︷︷ ︸
13

],
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where
βj ∼

{
U [0.9, 1.1], 1 ≤ j ≤ 2
U [−1.1,−0.9], 6 ≤ j ≤ 7

.

In this case, the X matrix has two significant groups of 5 variables,
and only 2 variables within each group have an actual impact on the
generating model. We have simulated 50 observations for training and
50 for testing. Furthermore, to obtain relevant results, the simulations
were repeated 30 times, and the results averaged.

The models studied in Section 4.4 no longer apply, as they are not
studied for Cox regression, or do not have an effective method for the
selection of the regularization hyperparameters in the case of survival
data. We have compared GLASP and the function coxph of the R
package survival (Therneau, 2015; Terry M. Therneau and Patricia
M. Grambsch, 2000). To calculate the groups given by coxph, we
have used k-means, applied to the matrix of linear predictors once the
model was adjusted, as we did in Section 4.4 for the algorithms that
would not directly compute variable clusters.

Table 4.2 highlights the results of the simulations for survival data.
The metric β WMSE (weighted mean squared error) refers to the β
estimation error, given by (β̂−β)>Σ(β̂−β), as described in Zhao et
al., 2019. The rates β TPR (true positive rate) and TNR (true negative
rate) refer to the correct identification of the variables that enter the
model. Moreover, we included in Table 4.2 the mean estimation error
of the survival curve S(t|x) for the individuals in the test sample,
measured as the integral of the absolute difference of the estimated
and actual curves for each individual.

One can see from Table 4.2 that the estimation of GLASP is superior
to the classical estimation of coxph in almost every aspect. We believe
that this difference is, apart from the algorithm itself, also accentuated
by the regularization hyperparameter selection approach that we have
integrated with GLASP, described in the next section.

Variable selection algorithms in generalized linear models 97



Table 4.2: Average results of GLASP and the Cox proportional hazards model.

Method β WMSE Correct Zeros β TPR β TNR Num. Non-Zeros S(t|x) error RI
coxph 9.11 (1.54) 0.2 (0) 1 (0) 0 (0) 20 (0) 15.88 (0.35) 0.53 (0.01)
GLASP 3.27 (0.61) 0.37 (0.04) 0.95 (0.03) 0.23 (0.06) 16.03 (1.01) 13.86 (0.43) 0.58 (0.03)
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4.6 Implementation details

In this section, we will describe some details of the implementation
of GLASP, with emphasis on its R interface, and the selection of hy-
perparameters.

4.6.1 Interface

Recently, Kuhn and Vaughan have developed the R parsnip package
(Kuhn and Vaughan, 2020), which provides a standard and organized
interface for creating modelling packages in R. A critical advantage
of this approach is that it integrates very well with other tidymodels
packages. We have implemented our GLASP algorithm in an R pack-
age called glasp1, created with the vision to integrate with parsnip,
as well as the rest of tidymodels packages. This offers numerous
advantages, highlighting, for example, the optimization of hyperpa-
rameters, which is always a concern in penalized models.

All the internal optimization of the glasp library has been imple-
mented in C++, and integrated in R through RcppArmadillo (Ed-
delbuettel and François, 2011) and Rcpp (Eddelbuettel and François,
2011).

Currently, the parsnip library considers two types of objectives for
the models: regression and classification. Taking this into account,
we have created a model for parsnip, called glasp_model, which
supports both regression and classification. For example, one way to
fit a GLASP model for linear regression would be as follows.

glasp_model() %>%
set_mode("regression") %>%
set_engine("glasp") %>%
fit(y~., data)

To adjust logistic regression is analogous, changing "regression"
to "classification". However, it is challenging to match this tidy
approach to the specification of a survival model. One path we have
decided to take is to consider Cox regression as a particular case of
classification, so that the response variable is δ (indicating whether the

1https://github.com/jlaria/glasp
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event has been observed at each instant of time), and the covariates are
the columns of X and the instants of time t. Thus, a GLASP model
for Cox regression with right-censoring would fit as follows.

model <- glasp_model() %>%
set_mode("classification") %>%
set_engine("glasp") %>%
fit(event ~ time + ., data)

Let β̂ be the coefficient estimation obtained by GLASP. Since (4.20)
provides an approximation of the survival function, then the probabil-
ity of having observed the event at a time prior to t for an individual
with covariates x, can be estimated as p(t,x) = 1 − S(t|x). One
would expect p(ti,xi) to be high if δi = 1 and low if δi = 0, there-
fore, in a very practical predictive context, a survival problem can be
considered as a classification problem, where p(T,X) ≈ P (δ = 1).
An important advantage of considering it this way, is that all predictive
error metrics associated to classification problems (accuracy, sensitiv-
ity, specificity, F1-score, etc) can be calculated in survival problems,
which provides a general approach to optimize hyperparameters.

4.6.2 Hyperparameter selection

Since glasp_model is a parsnip model, it integrates with the tune
and dials libraries (Kuhn, 2020) to deal with the optimization of the
hyperparameters λ1, λ2, λ3, and K, from a very general approach.
Package tune offers implementations of the three most popular types
of hyperparameter search: grid search, random search (Bergstra and
Bengio, 2012) and Bayesian Optimization (Snoek, Larochelle, and
Adams, 2012).

For example, the following code in R finds the optimal combination
of hyperparameters that minimizes the area under the ROC curve for a
GLASP model in simulated survival data, using Bayesian Optimiza-
tion, and 4-fold cross validation.

data <- simulate_dummy_surv_data()
model <- glasp_model(l1 = tune(), l2 = tune(),

frob = tune(), num_comp = tune()) %>%
set_mode("classification") %>% set_engine("glasp")
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data_rs <- vfold_cv(data, v = 4)
hist <- tune_bayes(model, event~.,

resamples = data_rs,
metrics = metric_set(roc_auc),
iter = 100)

show_best(hist, metric = "roc_auc")

In the simulation studies of Sections 4.4 and 4.5, the GLASP hyper-
parameters were optimized using random search.

4.7 Application to right-censored survival data

In this section we present an application of GLASP to real data from a
study of patients with diffuse large-B-cell lymphoma (DLBCL). The
data is available as right-censored survival sample data in the BioNet
packages. For more information see Dittrich et al., 2008, Beisser et
al., 2010, and Alizadeh et al., 2000.

The study of gene-expression profiles as predictors for survival of pa-
tients with DLBCL is motivated by the large variation in survival
times after treatment of this disease, even for patients with similar
clinical features. Several authors have studied patients with DLBCL,
trying to predict the survival of individuals receiving treatment based
on high-dimensional microarray gene expression data. Among these,
we can find the works of Rosenwald et al., 2002, Bair et al., 2006 and
Chen et al., 2011. To pre-process the data, we have followed an ap-
proach similar to that of Chen et al., 2011. We selected the genes for
which individual Cox scores, obtained after fitting univariate Cox re-
gression models, were more significant than a certain threshold. After
removing missing values, the data were composed of 190 observa-
tions, 78 genetic features, and one clinical variable, which is a factor
variable with several levels.

The objective of using the GLASP methodology with this dataset is
twofold. Firstly, to build a survival model that includes only relevant
genetic and clinical characteristics. Secondly, to find clusters among
those relevant features, as GLASP can reveal hidden biological in-
terrelations between gene expressions associated with this particular
disease.
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Figure 4.3 depicts the resulting coefficient estimation and feature clus-
tering from GLASP in the DLBCL survival data described above. The
output in Figure 4.3 includes only those variables with associated non-
zero coefficients. According to the model, there are 11 groups, with
varying sizes. From a biological perspective, the resulting cluster-
ing could give insight into possible genetic interactions. For example,
Cluster 1 includes BCL2 and CASP10. Both genes are associated
with cell apoptosis. BCL2 blocks the apoptotic death of some cells
such as lymphocytes2, whereas CASP10 plays a central role in the
execution-phase of cell apoptosis3. This not only explains that they
are in the same group, but also that their associated coefficients have
opposite sign. As another illustration, Cluster 3, is formed by BMP6
and SRP72. BMP6 induces cartilage and bone formation4, and muta-
tions of SRP72 are associated with familial bone marrow failure5.

2https://www.genecards.org/cgi-bin/carddisp.pl?gene=BCL2
3https://www.genecards.org/cgi-bin/carddisp.pl?gene=CASP10
4https://www.genecards.org/cgi-bin/carddisp.pl?gene=BMP6&

keywords=BMP6
5https://www.genecards.org/cgi-bin/carddisp.pl?gene=SRP72&

keywords=SRP72
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Figure 4.3: GLASP model estimation and gene-clustering for the diffuse large-B-cell lymphoma dataset. Each row represents a cluster,
with squares describing each variable that was included in the final model and its associated coefficient estimation in the Cox model.
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4.8 Conclusions

The main contribution of this paper is the formulation of GLASP, a
supervised variable clustering method, very competitive not only as
a clustering method but also as a predictive model. Multiple mod-
els have been unified under a joint implementation, which also inte-
grates with the latest algorithms for hyperparameter search in R. The
methodologies are rarely so flexible that they allow adjusting clas-
sification problems, regression, and Cox survival models with the
same algorithm. Moreover, Section 4.7 showcased an application of
GLASP to biological survival data. From a methodological point of
view, this paper has also introduced a particular case of sparse Sin-
gular Value Decomposition, with a penalty term appearing naturally
from the Group Lasso penalty. Its solution and implementation using
coordinate-descend was demonstrated in detail.

In the simulation studies in sections 4.4 and 4.5, it is observed that
GLASP is substantially advantageous in terms of predictive ability
and variable selection, apart from providing the simplest models. In
the simulations of Section 4.4 we noticed that GLASP is the preferred
alternative when the correlations between variables of the same group
are moderate. If the dependencies are low, all the methods have sim-
ilar performance, whereas if the correlations are high, Cluster Elastic
Net has better performance.

Regarding possible extensions, we propose to explore possible safe-
rules that would rule out multiple predictors from the very beginning,
in order to reduce the dimension of the problem, as Ndiaye et al., 2016;
Robert Tibshirani et al., 2012 do. Moreover, this would also allow
finding bounds for the regularization hyperparameters, and thus ac-
celerate the search for the best combinations.
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Appendix: Proof of Propositions 2, 3 and 1. (PDF)

R-package glasp: R-package glasp containing code of the method
described in the article. (GNU zipped tar file)

Source code: R scripts to generate Figures 5.6, 4.2, and 4.3, as well
as Tables 4.1 and 4.2. The data set studied in Section 4.7 is
included. These files are also available at https://github.
com/jlaria/glasp-code. (Zip archive)

Dockerfile: The Dockerfile to build the docker image jlaria/glasp:0.0.1
(https://hub.docker.com/repository/docker/jlaria/
glasp) that includes the dependencies to run the experiments
in this paper. (Plain text file)

Appendix

Proof of Proposition 1. To find the minimizer of (12), we use the sub-
gradient conditions, since the penalization part is sub-differentiable.
We have,

∂j

(
1

2
‖β −B0‖22

)
= βj − (B0)j

∂j (‖β‖1) = vj, where vj =

{
sign(βj) βj 6= 0
∈ [−1, 1] βj = 0

∂j (‖β‖2) = uj, where u =

{
β/‖β‖2 β 6= 0
∈ {u : ‖u‖2 ≤ 1} β = 0

Consider β 6= 0. If β is a minimizer of (12), then for every j =
1, 2 . . . pk,

0 = βj − (B0)j + tλ1vj + tλ2
√
pkβj/‖β‖2 .

To take βj out of this equation, we have to separate by cases and find
vj .

• Case βj > 0 (vj = 1)

βj(1 + tλ2
√
pk/‖β‖2) = (B0)j − tλ1

• Case βj < 0 (vj = −1)

βj(1 + tλ2
√
pk/‖β‖2) = (B0)j + tλ1
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• Case βj = 0 (|vj|≤ 1)

0 = −(B0)j + tλ1vj

Taking vj out and since |vj|≤ 1,

1 ≥
∣∣∣∣(B0)j
tλ1

∣∣∣∣
which means that βj = 0 if −tλ1 ≤ (B0)j ≤ tλ1.

Summarizing these three cases, we obtain,

β

(
1 +

tλ2
√
pk

‖β‖2

)
= S(B0, tλ1).

Taking ‖·‖2,
‖β‖2 = ‖S(B0, tλ1)‖2 − tλ2

√
pk

and substituting ‖β‖2 in the expression above,

β =

(
1−

tλ2
√
pk

‖S(B0, tλ1)‖2

)
S(B0, tλ1).

The case β = 0 is analogous to Proposition 2 and leads to

‖S(B0, tλ1)‖2 ≤ tλ2
√
pk.

The expression for the update function follows.

Proof of Proposition 2. The subgradient condition for β = 0 to be
the minimizer of (6) is that 0 ∈ ∂βF (0), i.e., there is uwith ‖u‖2 ≤ 1
and v ∈ [0, 1]p such that,

0 = ∇R(0) + λ1v + λ2
√
pku.

Taking u out,
u = − 1

λ2
√
pk

(∇R(0) + λ1v)
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and using ‖u‖2 ≤ 1,

‖∇R(0) + λ1v‖2 ≤ λ2
√
pk.

This is true if and only if

min {‖∇R(0) + λ1v‖2 : v ∈ [0, 1]p} ≤ λ2
√
pk,

and that minimum is attained when

vj =


−1, ∇jR(0) > λ1

−(∇jR(0))/λ1, |∇jR(0)|≤ λ1

1 ∇jR(0) < −λ1

.

Substituting v in the expression above, the condition becomes,

‖S(∇R(0), λ1)‖2 ≤ λ2
√
pk.

In particular, β = 0 is also optimal if

0 = ‖S(∇R(0), λ1)‖2 ≤ λ2
√
pk,

and by the definition of the coordinate-wise soft thresholding operator,
that means,

max
j
{|∇R(0)|} ≤ λ1.

Proof of Proposition 3. Firstly, notice that the differentiable part of
(15) can be written as,

∥∥M − uv>
∥∥2
F
=

N∑
i=1

p∑
j=1

(Mij − uivj)
2

=
N∑
i=1

p∑
j=1

(M 2
ij − 2Mijuivj + u2

iv
2
j )

=
N∑
i=1

p∑
j=1

M 2
ij −

N∑
i=1

p∑
j=1

2Mijuivj +
N∑
i=1

p∑
j=1

u2
iv

2
j

= ‖M‖2F −
p∑

j=1

vj

N∑
i=1

Mijui +

p∑
j=1

v2
j

N∑
i=1

u2
i .
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Since u>u = 1, we can write,∥∥M − uv>
∥∥2
F
= ‖M‖2F +

p∑
j=1

v2
j −

p∑
j=1

vj

(
M>u

)
j
,

and after removing constant terms,

min
u,v

∥∥M − uv>
∥∥2
F
= min

u,v

p∑
j=1

(
v2
j − 2(M>u)jvj

)
.

Assuming u fixed, we want to minimize the function,

F (v) :=

p∑
j=1

(
v2
j − 2(M>u)jvj

)
+γ

(
p∑

j=1

β2
j1(vj 6= 0)

)1/2( p∑
j=1

1(vj 6= 0)

)1/2

.

For a particular component vl, the optimality conditions follow after
separating by cases.

• Case vl 6= 0. F (vl 6= 0) becomes

(4.21)

p∑
j =1
j 6=l

(
v2
j − 2(M>u)jvj

)
+
(
v2
l − 2(M>u)lvl

)
+ γ

(
C

(−l)
β,v + β2

l

)1/2 (
C(−l)

v + 1
)1/2

,

whose minimum is v∗l = (M>u)l.

• Case vl = 0. F (vl = 0) becomes,
p∑

j=1
j 6=l

(
v2
j − 2(M>u)jvj

)
+ γ

(
C

(−l)
β,v C(−l)

v

)1/2
.

For v∗l = 0 to be the optimum ofF (vl) it must hold thatF (0) ≤
F ((M>u)j). That is,

(M>u)2l ≤ γ
(
C

(−l)
β,v + β2

l

)1/2 (
C(−l)

v + 1
)1/2−γ (C(−l)

β,v C(−l)
v

)1/2
.

The formula for v∗l follows.
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Abstract

The elastic-net is among the most widely used types of regularization al-
gorithms, commonly associated with the problem of supervised generalized
linear model estimation via penalized maximum likelihood. Its nice prop-
erties originate from a combination of `1 and `2 norms, which endow this
method with the ability to select variables taking into account the correla-
tions between them. In the last few years, semi-supervised approaches, that
use both labeled and unlabeled data, have become an important component
in the statistical research. Despite this interest, however, few researches have
investigated semi-supervised elastic-net extensions. This paper introduces
a novel solution for semi-supervised learning of sparse features in the con-
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text of generalized linear model estimation: the generalized semi-supervised
elastic-net (s²net), which extends the supervised elastic-net method, with a
general mathematical formulation that covers, but is not limited to, both re-
gression and classification problems. We develop a flexible and fast imple-
mentation for s²net in R, and its advantages are illustrated using both real
and synthetic data sets.

Keywords: Semi Supervised. Elastic Net. GLM. Variable selection.
Linear models. R package

5.1 Introduction

In this paper, we propose a simple, but novel solution for extending
the elastic-net to semi-supervised generalized linear models. Semi-
supervised statistical methods are attracting increasing interest due to
their ability to learn from both labeled and unlabeled data. They rep-
resent a remarkable alternative to supervised methods, that only use
labeled observations in their learning process. There are many practi-
cal problems in which a semi-supervised framework arises naturally.
For instance, when we fit a predictive model, often some part of the
“future” data (with unknown labels) that we want to predict, is already
available. This data represents information that can be exploited to
improve the performance of the trained model.

In the history of statistical learning, the focus has often been on su-
pervised methods, possibly due to their ability to predict labels when
new observations are given, which also make their evaluation and
benchmark straightforward. Recent developments in distributed com-
puting and data storage technologies, have contributed to boost the
research on statistical models. In this new context, semi-supervised
approaches are likely to become an important component in the sta-
tistical research, as demonstrated by the active investigations on arti-
ficial neural networks, deep-learning and image classification in the
semi-supervised context (Ji, Henriques, and Vedaldi, 2019; Genkin,
Sengupta, and Chklovskii, 2019; Oliver et al., 2018).

Despite this interest, as far as we know, few researchers have inves-
tigated semi-supervised elastic-net extensions, from the perspective
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of penalized linear models. Among the few, we find the work of Tan,
Zhang, and Wang, 2011, where the authors propose a novel elastic-net
approach to deal with sequential data for pedestrian counting. How-
ever, their context is very different from the problem set-up that we
investigate, which bears a close resemblance to the one explored by
Ryan and M. V. Culp, 2015; M. Culp, 2013, where very detailed the-
oretical results and proofs of the advantages of the joint trained linear
framework (JT) in the semi-supervised framework are provided. The
JT simultaneously shrinks the linear estimator and de-correlates the
data (as the supervised elastic-net does), but using the existing unla-
beled observations to more accurately define the correlations in the
data, introduced as an additional regularization term. From a com-
putational point of view, JT is not a novel algorithm. Its solution is
computed using the supervised elastic-net (specifically, the glmnet
package for R), but it can exploit properties of that elastic-net imple-
mentation, such as the regularization paths (Friedman, Hastie, and
Rob Tibshirani, 2010), and the safe rules (Robert Tibshirani et al.,
2012). Regarding this, our method could be interesting because the
loss function is more general, and it does not rely on other implemen-
tations. Recently, Larsen et al., 2020 introduced the extended linear
joint trained framework (ExtJT), where the shift in mean value and the
covariance structure are modelled explicitly, resulting in a more flexi-
ble framework. Larsen et al., 2020 focused on semi-supervised regres-
sion with a penalized least squares error loss to transfer a model from
a labeled source domain to an unlabeled target domain. Although the
ExtJT approach is interesting, it does not allow for automatic variable
selection via elastic-net, since the authors use partial least squares to
solve the supervised least squares part. Moreover, to date, the joint
trained methodology is only applicable to linear regression problems.
Our s²net integrates the core ideas of ExtJT, adding the elastic-net
regularization to deal with high dimensional data, and a generaliza-
tion to both regression and classification problems. Thus, our frame-
work also provides semi-supervised logistic regression models with
elastic-net penalizations.

Regarding classification with unlabeled data, early extensions of lo-
gistic models to handle unlabeled observations are found in the work
by Amini and Gallinari, 2002, from a maximum likelihood approach.
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More details on the semi-supervised literature are provided by Chapelle,
Schölkopf, and Zien, 2010. More recent approaches to deal with clas-
sification in this context, but not from an elastic-net regularization
perspective, are described by M. V. Culp and Ryan, 2018 and Krijthe
and Loog, 2015.

This paper outlines a new approach to semi-supervised learning: the
Generalized semi-supervised elastic-net (s²net), including the follow-
ing contributions.

• Our method extends the supervised elastic-net problem, and
thus it is a practical solution to the problem of feature selec-
tion in semi-supervised contexts.

• Its mathematical formulation is presented from a general per-
spective, covering a wide range of models. We focus on linear
and logistic responses, but the implementation could be easily
extended to other losses in generalized linear models.

• We develop a flexible and fast implementation for s²net in R,
written in C++ using RcppArmadillo and integrated into R via
Rcpp modules (R Core Team, 2019; Eddelbuettel and François,
2011; Eddelbuettel and Balamuta, 2017; Eddelbuettel and Sander-
son, 2014; Sanderson and Curtin, 2016; Sanderson and Curtin,
2019). The software is available in the s2net package.

This paper is organized as follows. Section 5.2 provides the mathe-
matical framework of our methodology. Details regarding the algo-
rithm and its implementation are discussed in Sections 5.3 and 5.4.
Sections 5.5 and 5.6 explore its properties using synthetic and real
data sets, respectively. Some conclusions are drawn in the final sec-
tion.

5.2 Methodology

Given labeled dataXL ∈ RnL×p, with labels yL ∈ RnL and unlabeled
data XU ∈ RnU×p, the Extended Linear Joint Trained Framework
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(ExtJT) optimization problem from Larsen et al., 2020 is given as

(5.1)β = argmin
β∈Rp

{
‖yL −XLβ‖22 + γ1 ‖T1(γ2)β‖22

+ γ3
nLnU

nL + nU

‖T2β‖22 + λ1 ‖β‖1 + λ2 ‖β‖22
}
,

whereλ1, λ2, γ1, γ2, γ3 are regularization hyper-parameters,T2 = µ> ∈
R1×p is the vector of column-means of XU , and

T1(γ2) =
√
γ2(Σ

2 + γ2I)
−1/2ΣV >,

with UΣV > the singular value decomposition of the centered unla-
beled data XU − 1µ>. To simplify computations and notation, we
assume that the labeled data XL is column-centered (X>

L 1 = 0p).

Here we have included the elastic-net regularization term λ1 ‖β‖1 +
λ2 ‖β‖22. In their methodology, Larsen et al. solve (5.1) using partial
least squares regression, and thus avoid the need of the elastic-net reg-
ularization to solve the least squares objective in the high-dimensional
setting. However, this has two downsides: the number of PLS compo-
nents is a hyper-parameter that has to be selected, and the coefficient
vector β produced by the PLS regression model is not sparse. We
instead prefer to set (5.1) as our initial framework.

The objective function in (5.1) has three important parts, namely

• The error function for the labeled data, ‖yL −XLβ‖22 .

• The elastic-net regularization on the coefficients, λ1 ‖β‖1 +
λ2 ‖β‖22 .

• A regularization part that only depends on the unlabeled data,

γ1 ‖T1(γ2)β‖22 + γ3
nLnU

nL + nU

‖T2β‖22 . (5.2)

Using a reparameterization of γ1, γ2 and γ3, one can show that (5.2) is
equivalent to γ1 ‖T (γ2, γ3)β‖22, where T (γ2, γ3) is a transformation
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of the unlabeled data that captures both the covariance structure and
the shift with respect to the labeled data, given by,

T (γ2, γ3) =
√
γ2U(Σ2 + γ2I)

−1/2ΣV > + γ31µ
>. (5.3)

Furthermore, to obtain (5.1), Larsen et al. assume that the labels yL

are centered. If they are not centered, (5.1) can be rewritten as,

(5.4)β = argmin
β∈Rp

{
‖yL −XLβ‖22 + λ1 ‖β‖1 + λ2 ‖β‖22

+ γ1 ‖ȳL1− T (γ2, γ3)β‖22
}
.

The intuition behind (5.4) is that we are adding information about the
unlabeled data to the model through a transformation of this data, and
we want predictions on those points to be close to ȳL, which is the
mean response we expect a-priori on future unknown data.

Figure 5.1 provides insights into the intuition behind T (γ2, γ3), when
the hyper-parameters γ2 and γ3 are changed. We can see that γ2 reg-
ulates the covariance structure, whereas γ3 controls the shift between
the center of the labeled data and the center of the unlabeled data.
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We now turn our attention to an extension of (5.4). The choice of
square error norm for the error term ‖yL −XLβ‖22 is justified when
the underlying model is linear. However, in other scenarios (for in-
stance, binary response) it makes more sense to use other risk func-
tions. With that in mind, we propose to write (5.4) in a more general
form, letting R(· | y,X) : Rp → R be any (continuously differen-
tiable and convex) risk function.

(5.5)β = argmin
β∈Rp

{
R(β | yL,XL) + λ1 ‖β‖1 + λ2 ‖β‖22

+ γ1R(β | ȳL,T (γ2, γ3))
}
.

Notice that both the input data matrices and the hyper-parameters are
fixed, and therefore, (without loss of generality) problem (5.5) can be
reparameterized as (s²net)

β = argmin
β∈Rp

{
L(β) + λ1 ‖β‖1 + λ2 ‖β‖22

}
, (5.6)

where L(β | yL,XL,XU , γ1, γ2, γ3) is given by

L(β) = R(β | yL,XL) + γ1R(β | ȳL,T (γ2, γ3)). (5.7)

Remark 1. Problem (5.6) is a generalized elastic-net problem with a
custom loss function. If γ1 = 0, then (5.6) is the (naive) supervised
elastic-net problem (Zou and Hastie, 2003).

Remark 2. If we let T (γ2) =
√
γ2U(Σ2 + γ2I)

−1/2U>XU , with
XU = UΣV > the singular value decomposition ofXU (without cen-
tering), and R(· | y,X) the norm-2 squared error , then (5.6) is the
Linear Joint Trained Framework (JT) (M. Culp, 2013).

Remark 3. Letting γ2 = 0 and R(· | y,X) the norm-2 squared error,
(5.6) is the NARE formulation from Andries, Kalivas, and Gurung,
2019.

Previous remarks highlight that s²net generalizes other approaches
and therefore, with a strong algorithm to optimize the objective func-
tion and an appropriate selection of the hyperparameters, s²net can
outperform (or at least emulate) other popular methods’ results.
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5.3 Algorithm

Remark 1 suggests that the solution of (5.6) can be found solving an
elastic-net problem with a general error term. To solve it, we prefer
the fast iterative shrinkage-thresholding algorithm (FISTA) (Beck and
Teboulle, 2009), which is an accelerated gradient descent approach
with backtracking. In each step, given an initial β0 ∈ Rp, we mini-
mize the surrogate function

Mt(β) =
1

2t
‖β − β0 + t∇L(β0)‖22 + λ1 ‖β‖1 + λ2 ‖β‖22 , (5.8)

where t > 0 is some step-size (chosen using backtracking).

Proposition 1.

Ut(β) := argmin
β∈Rp

{Mt(β)} = (1 + 2tλ2)
−1︸ ︷︷ ︸

ridge

S (β0 − t∇L(β0), tλ1)︸ ︷︷ ︸
lasso shrinkage

,

(5.9)
where S is the coordinate-wise soft-thresholding operator,

S(z, λ)i = sign(zi)(|zi|−λ)+.

Proposition 1 suggests a gradient descent procedure to minimize (5.8).
In addition, after each iteration k, we apply the FISTA update, given
by

β(k+1) ← Utk(β(k)) +
lk − 1

lk+1

(Utk(β(k))− Utk−1
(β(k−1))), (5.10)

where lk+1 = (1 +
√
1 + 4l2k)/2, l1 = 1.

The choice for the function R in (5.7) depends on the type of response
variable. For instance, if the response is continuous (linear regression)
then R(β | y,X) = ‖y −Xβ‖22 is probably the best choice. How-
ever, if the response is binary (logistic regression) then the logit loss
is more appropriate,

R(β | y,X) =
n∑

i=1

(
log(1 + exp(x>i β))− yix

>
i β
)

(5.11)
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Here we want to emphasize that the function log(1 + eη) is computa-
tionally problematic when, roughly, |η|> 30. In our implementation
we substitute it by a more stable approximation – see Mächler, 2012;
Pedregosa and Merrienboer, 2019,

ˆlog(1 + eη) =


η, η > 33.3
η + e−η, 18 < η < 33.3
log(1 + eη), −37 < η < 18
eη, η < −37

(5.12)

5.3.1 Removing the shift in the unlabeled data

When the direction of the mean shift of the unlabeled data XU with
respect to the labeled data XL is in the same direction as β (or close),
then EyL 6= EyU . This, as Larsen et al. noticed, forces the optimal
hyper-parameter γ3 to be zero. One strategy that they propose is to
remove the effect ofβ inµ (which is the mean shift ofXU with respect
to XL) by updating XU with

X̃U = XU − 1µ>pp>, (5.13)

where

p =
X>

L yL∥∥X>
L yL

∥∥
2

. (5.14)

We instead propose to use

p = − ∇R(0 | yL,XL)

‖∇R(0 | yL,XL)‖2
(5.15)

thus extending this idea to a general loss functions. However, the up-
date in (5.13) is not necessary (and may introduce unwanted noise) if
the angle between µ and β is too big (Larsen et al.). In our imple-
mentation, we have set the threshold to π/4, but the user can choose
whether to apply this update or not. Figure 5.2 illustrates update (5.13)
with a 2D example. The unlabeled data XU (blue) is shifted (green)
towards the center of XL (red) in the direction of ∇R(0), after eval-
uating if |cos(θ)|< 1/

√
2.
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Figure 5.2: Example update of the unlabeled data in the direction of
−∇R(0) prior to computing the s²net solution.

5.4 The s2net package

This section describes the implementation and usage of R package
s2net. Figure 5.3 summarizes the most important exported S3 and S4
classes. Method fit of S4 class s2net features the main functionality
of this package, estimating the regression coefficients β as described
in Section 5.3.
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s2Data	(S3)

+	xL,	yL,	xU:	matrix

+	type:	"regression"	or	"classification"

+	(attr	-	transformation)	rm_cols,	center,	scale,	y_center:	vector

+	print(s2Data)

s2net	(S4)
Exported	C++	class

+	beta:	matrix

+	intercept:	double

+	initialize(s2Data,	loss)

+	setupFista(s2Fista)

+	predict(newX,	type)

+	fit(s2Params,	frame,	project)

s2Params	(S3)

+	lambda1,	lambda2,	gamma1,	gamma2,	gamma3:	named	vector

s2Fista	(S3)

+	MAX_ITER_INNER,	TOL,	t0,	step,	use_warm_start:	named	vector

Figure 5.3: S4 and S3 classes in package s2net.

124
Variable

selection
algorithm

sin
generalized

linearm
odels



Paper D: Semi-Supervised Elastic-Net

The S3 class s2Data contains the data to fit the model. Such data is
supposed to be fixed for each model, and therefore s2Data is an inde-
pendent class, that handles all the pre-processing and cross-validation
set-up. The "auto_mpg" dataset Dua and Graff, 2017; Quinlan, 1993
is included for benchmark, with two semi-supervised set-ups described
in Section 5.6. A typical usage would be the following.

R> library("s2net")
R> data("auto_mpg")

Function s2Data transforms the data for the semi-supervised frame-
work. Using model.matrix from stats, factor variables are expanded
to dummies, and additionally, constant columns are removed. This
function also handles input errors, and impossible situations that might
trigger errors, such as missing data or non-matching dimensions.

R> train = s2Data(auto_mpg$P2$xL, auto_mpg$P2$yL,
auto_mpg$P2$xU)

A nice feature of s2Data is that is can receive as input another s2Data
object and process the new data according to the same transformation.

R> valid = s2Data(auto_mpg$P2$xU, auto_mpg$P2$yU,
preprocess = train)

S3 classes s2Params and s2Fista are simple wrappers for the model’s
hyper-parameters and the FISTA optimization set-up, respectively. There
are two ways to fit a semi-supervised elastic-net using s2net, one is
trough the function s2netR.

R> model = s2netR(train, params = s2Params(0.01, 0.01,
0.01, 100, 0.1))

Alternatively, if we are fitting the semi-supervised elastic-net many
times, using the same train data (for example, searching for the best
hyper-parameters), then it is faster to use the S4 class s2net instead.

R> obj = new(s2net, train, 0)
R> obj$fit(s2Params(0.01, 0.01, 0.01, 100, 0.1), 0, 2)
R> obj$beta

[,1]
[1,] -0.28700933
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[2,] 0.04228791
[3,] -3.02580178
[4,] 0.61559052
[5,] 3.65723926
[6,] 0.71451133
[7,] 0.43040118

Depending on the choice to fit the model, there are several ways to
predict the labels for new observations. The prediction type (linear
predictor, probability, class) may be specified, otherwise it is auto-
matically inferred from the input data. All of the following yield the
same result.

R> ypred = predict(model, valid$xL)
R> ypred = obj$predict(valid$xL, 0)
R> ypred = predict(obj, valid$xL)

5.5 Simulations

In this section, we will investigate our proposed method s²net as a
semi-supervised alternative to the elastic-net, when the underlying
model is linear and sparse. The simulation designs discussed in this
section are available as functions simulate_groups and simulate_extra
exported from s2net.

To introduce the simulations and analysis in the rest of the paper, we
make the following assumptions on the problem.

1. There are labeled samples Xs
L,y

s
L from a source domain (e.g.,

measurements taken with an old instrument).

2. There are (some) labeled samples X t
L,y

t
L from a target domain

(e.g., measurements taken with a new instrument or with differ-
ent raw materials going into the production).

3. There are unlabeled samples X t
U from a target domain (e.g.,

measurements taken with a new instrument, which are very ex-
pensive to label).

4. The objective is to construct a model that predicts the labels
from the target domain.
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In a recent paper, Oliver et al., 2018 establish some guidelines for
comparing semi-supervised deep-based methods. Some of them, can
be adapted to our framework of study as follows.

• High quality supervised baseline. The goal is to obtain bet-
ter performance using X t

U and Xs
L than what would be ob-

tained using Xs
L alone. In our case, a natural baseline to com-

pare against is s²net with γ1 = 0 (as mentioned in Remark 1).
We denote this supervised method as baseline. In addition, we
also include the elastic-net (glmnet) from the R package glm-
net (Friedman, Hastie, and Rob Tibshirani, 2010), to compare
the naive estimation of baseline with the actual elastic-net solu-
tion. The hyper-parameters of each method were selected using
random search, which has been shown to be superior to grid
search (Bergstra and Bengio, 2012), with a total of 1000 ran-
dom points. The hyper-parameters that minimized the loss in
the validation data set, were selected as the best combination.

• Varying the amount of labeled and unlabeled data. To cover
different scenarios in the simulations, we vary the number of
unlabeled target samples nt, in addition to the number of vari-
ables p.

• Realistically small validation dataset. This is related to the as-
sumption 2 above, which is very important in order to have val-
idation data. Without it, there is no clear and realistic way to
select the hyper-parameters of the methods. It is possible to se-
lect the hyper-parameters using test data, but this would contra-
dict the fact that in a real semi-supervised scenario, these labels
are unknown. To make it feasible, we assume that the number
of available samples for validation is small (in the rest of the
simulations and data analyses, we fix it at 20).

Additionally, the following semi-supervised methods were included
in the simulations: the safe semi-supervised semi-parametric model
(s4pm) and fast anchor graph approximation (agraph) from M. V. Culp
and Ryan, 2018, available in the R package SemiSupervised, the im-
plicitly constrained semi-supervised least squares classifier (ICLS)
(Krijthe and Loog, 2015), available in the R package RSSL, and the
joint trained linear framework (JT) from M. Culp, 2013.
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5.5.1 Two-group design

The simulation design is the following. Let

Σσ2

ρ =


σ2 ρ . . . ρ
ρ σ2 . . . ρ
...

... . . . ...
ρ ρ . . . σ2


p/2× p/2

, Σσ2
1 , σ

2
2

ρ1, ρ2
=

[
Σ

σ2
1

ρ1 0

0 Σ
σ2
2

ρ2

]
p×p

.

The source and target data rows are i.i.d., given by,

xs ∼ N
(
0, Σ1, .05

.8, .01

)
, xt ∼ N

(
0, Σ.1, 1

.01, .5

)
. (5.16)

Figure 5.4 illustrates this simulation design using an example data set,
with p = 200 variables, and 50, 200 source and target observations,
respectively.

type source target
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Figure 5.4: Example of simulated source/target data structure. Left
panel shows the projected data on the first two principal components.
Right panel compares the rows of Xs (black) and X t (red).

To generate the responses for the source data Xs, we have used a
sparse coefficient vector, given by

βj =

{
0 j /∈ I
1 j ∈ I

,

where I is the included variables’ index set, that contains 5 random
indexes between 1 and p/2 − 1 and 5 random indexes between p/2
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and p. Therefore, there are 10 out of p “true” variables in the model.
The target model’s coefficients, however, are given by

βt
j = Ujβj, where Uj ∼ U [0.9, 1.1] for j = 1, 2 . . . p. (5.17)

This introduces additional uncertainty in the target data, and models
the case of a small change in the underlying coefficient vector for the
new data.

The training set consists of labeled source dataXs
train,y

s
train (ns = 50

rows) and unlabeled target data X t
train (nt rows), whereas the valida-

tion set consists of labeled target samples X t
valid,y

t
valid (20 rows). A

test data set X t
test, yt

test (800 rows) was used to evaluate the perfor-
mance of both methods, for each of 100 repetitions.

Linear response

In the regression case, the source labels were simulated asys = Xsβ+
εs, where εs ∼ N(0, σ2I), with σ2 such that the signal-to-noise ratio
was 4. Analogously, yt = X tβt + εt.

Logistic response

For the classification case, to simulate the source data labels ys, we
used a logistic model,

ys|xs ∼ Ber(p), with p =
(
1 + exp(−β>xs)

)−1
. (5.18)

The target labels yt were generated analogously, but using βt instead
– the noisy version of β given in (5.17).

Table 5.1 and 5.2 summarize the simulation results for linear and lo-
gistic responses, respectively. To evaluate the statistical significance
of the difference between each method and baseline, we performed a
Friedman rank test, followed by paired post-hoc tests (Pohlert, 2019).
Significant improvements (α = 0.05) with respect to baseline are
shown in bold font. In these simulations, s²net achieves the best re-
sult in every scenario. In addition, the semi-supervised s4pm and JT
are also superior to glmnet and baseline in some cases.

5.5.2 Extrapolation design

This simulation design is based on the one described in Ryan and
M. V. Culp, 2015, but we varied the number of variables and unla-
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nt = 50 nt = 250
p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

baseline .59 .58 .69 .56 .53 .64
glmnet .61 .60 .71 .58 .56 .66
s²net .55 .54 .65 .53 .51 .62
s4pm .71 .71 .75 .64 .57 .65

agraph .86 .88 .99 .77 .76 .91
JT .62 .61 .72 .56 .53 .63

Table 5.1: Average test MSE of the different methods (two-group de-
sign, linear response), over 100 simulations for each scenario. Signif-
icant improvements (α = 0.05) with respect to baseline are shown in
bold font.

nt = 50 nt = 250
p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

baseline 75.3 70.2 78.4 74.8 73.7 72.1
glmnet 75.9 71.8 78.3 73.6 74.9 71.7
s²net 79.4 73.8 79.4 78.6 75.8 76.6
s4pm 71.1 68.5 77.0 75.0 74.8 75.8

agraph 68.7 65.3 73.5 68.8 67.0 70.8
ICLS 60.4 54.2 57.6 60.4 55.8 53.6

Table 5.2: Average test area under the ROC curve (AUC, %) of the
different methods (two-group design, logistic response), over 100 sim-
ulations for each scenario. Significant improvements (α = 0.05) with
respect to baseline are shown in bold font.
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beled target samples, the shift, and included the logistic response case.
The source data are simulated with i.i.d. rows given by,

xs ∼ N(0, 0.4I) (5.19)

Two possible coefficient patterns are considered,

β(lucky) = ( 1 . . . 1︸ ︷︷ ︸
5

−1 . . . − 1︸ ︷︷ ︸
5

0 . . . 0︸ ︷︷ ︸
p−10

)

and
β(unlucky) = ( 1 . . . 1︸ ︷︷ ︸

10

0 . . . 0︸ ︷︷ ︸
p−10

)

There are three scenarios for the target data,

same xt ∼ N(0, 0.4I) and β = 5/
√
10β(lucky)

lucky xt ∼ N(δβ(unlucky), 0.4I), and β = 5/
√
10β(lucky)

unlucky xt ∼ N(δβ(unlucky), 0.4I), and β = 5/
√
10β(unlucky)

with δ the shift of the target with respect to the source domain. Figure
5.5 displays the three possible configurations for the data, projected in
X1 and X6. In the “same” scenario, the source and target data follow
the same distribution, and thus the direction of β is not important. In
the “lucky” case, β is orthogonal to the shift (the source and target
domains are different, but the response is less affected by the shift).
In the “unlucky” case, however, β is parallel to the shift, and thus we
expect the responses to be shifted as well. This “unlucky” scenario
is more challenging, specially in the linear response case, where the
bias in the estimation of β will impact the extrapolation.

For each repetition, the training data consist of ns = 50 rows of
labeled Xs

train,y
s
train, and varying nt rows of unlabeled target data

X t
train. The validation and test sets consist of 20 and 100 observa-

tions, respectively, from the target domain.
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type source target
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Figure 5.5: Simulated source/target data structure: Extrapolation design.
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Linear response

The labels (for the source and target data, respectively) were simulated
as y = Xβ + ε, with εi ∼ N(0, 2.5), for i = 1, 2 . . . n. The number
of features p = 100 and the shift δ = 1.

Logistic response

The labels (source and target) are generated following a logistic re-
sponse model,

y|x ∼ Ber(p), with p =
(
1 + exp(−β>x)

)−1
. (5.20)

The number of features p = 20 and the shift δ = 0.1.

Tables 5.3 and 5.4 compare the simulations for linear and logistic
responses, respectively. Table 5.4 displays a better performance for
baseline, and s²net, suggesting that there is improvement when choos-
ing the semi-supervised elastic-net framework. However, in the “un-
lucky” scenario of Table 5.3 (where the shift δ is in a direction parallel
to the response direction of the labeled data), glmnet outperforms the
other alternatives by a weak margin. The implementation of JT esti-
mates the coefficients using glmnet, so they are expected to yield simi-
lar estimations when the supervised model prevails. However, glmnet
and baseline are (in theory) solving the same optimization problem.
We believe such differences are due to the way coefficients are actu-
ally estimated: baseline uses a block gradient descent optimization
with soft-threshold, whereas glmnet is optimized using coordinate-
gradient descent, with rules to discard predictors (Robert Tibshirani
et al., 2012), and a correction factor in the β estimations. A detailed
description of the differences between the naive and the elastic-net
solution can be found in Bühlmann and Van De Geer, 2011. Never-
theless, the relative improvement of glmnet over s²net is less than 5%
in this “unlucky” case, which is approximately the relative improve-
ment of s²net over glmnet in the “same” and “lucky” scenarios.

5.6 Application to real data

The purpose of this section is to evaluate the performance of s²net in
real data - based examples, and compare it with glmnet, s4pm, agraph,
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“same” “lucky” “unlucky”
nt = 50 nt = 250 nt = 50 nt = 250 nt = 50 nt = 250

baseline 5.58 5.71 5.85 5.74 61.6 48.0
glmnet 5.66 5.82 6.03 5.97 56.5 46.1
s²net 5.56 5.70 5.75 5.73 62.1 48.1
s4pm 6.23 6.21 5.76 5.81 120 86.7

agraph 6.21 6.39 6.09 6.06 56.6 71.6
JT 5.79 5.74 5.58 5.69 59.1 47.7

Table 5.3: Average test MSE of the different methods (extrapolation
design, linear response), over 100 simulations for each scenario. Sig-
nificant improvements (α = 0.05) with respect to baseline are shown
in bold font.

JT, ICLS, and the baseline (s²net with γ1 = 0) in regression and clas-
sification tasks. An overview of the datasets used in this section is
given in Table 5.5.

5.6.1 IDRC 2002 ``Shootout'' data

This data set was published in the International Diffuse Reflectance
Conference in 2002, and it is currently available online1. It consists of
the spectra from 655 pharmaceutical tablets measured with two spec-
trometers. The response variable is the proportion of active ingredi-
ent. As shown in Figure 5.6, there are differences in both instruments’
measures ranging from 0.6− 0.7 µm and 1.7− 1.8 µm.

1http://eigenvector.com/data/tablets last access: 21-Oct-2019
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“same” “lucky” “unlucky”
nt = 50 nt = 250 nt = 50 nt = 250 nt = 50 nt = 250

baseline 74.7 74.9 76.2 74.0 77.5 75.5
glmnet 74.7 75.1 76.2 74.0 77.3 75.5
s²net 76.3 74.9 76.3 74.1 77.5 75.6
s4pm 74.2 74.4 74.6 74.1 73.6 74.2

agraph 74.4 73.0 74.3 72.8 75.7 72.9
ICLS 69.0 68.1 68.3 68.1 68.2 67.0

Table 5.4: Average test area under the ROC curve (AUC, %) of the
different methods (extrapolation design, logistic response), over 100
simulations for each scenario. Significant improvements (α = 0.05)
with respect to baseline are shown in bold font.

Dataset Lab. ns (train) Unlab. nt (train) Reg. Class. p
shootout 50 50 X 575

auto-mpg (P1) 149 100 X 9
auto-mpg (P2) 208 100 X 7

spambase 100 500 X 52

Table 5.5: Description of the data used in the analysis.
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Figure 5.6: Spectra from 655 tablets (IDRC 2002 “Shootout” data) measured with two different instruments (left-
right).
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To illustrate the s²net methodology, we will assume that labels asso-
ciated with measures from Instrument 1 are known, and we will in-
vestigate how predictions are affected when labels are predicted using
measures from Instrument 2. For this purpose, the original data is ran-
domly divided up into training, validation and test data sets, and this
process is repeated 100 times. A total of 50 tablets are used as train-
ing labeled samples from Instrument 1 (source), whereas 50 measures
from Instrument 2 (target) are used as training unlabeled samples. To
select the best hyper-parameters for the methods, we separated a sam-
ple of 20 labeled measurements from Instrument 2 (target). The re-
maining tablets (unknown during the training process) are used as test
samples from Instrument 2, in addition to the (already known) 50mea-
sures used as training unlabeled samples. The response variable in the
test data is used to compute prediction errors.

Figure 5.7 compares the distributions of the MSE obtained by the
different algorithms in the test data set, for 100 repetitions. Notice that
s²net is the one that achieves the smallest error mean and variance, but
all the methods are very similar.
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Figure 5.7: Density estimation of the (test) MSE of each method for
100 repetitions (shootout data).
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5.6.2 Auto MPG dataset

This data set is available in the UCI repositories (Dua and Graff, 2017),
and the original data was published by Quinlan, 1993. We have pro-
cessed this data for the semi-supervised setting following the paper
by Ryan and M. V. Culp, 2015. The first set-up (P1) separates source
and target domains by variable Domestic, whereas the second set-up
(P2) splits the data by variable Cylinder <= 4.

Figure 5.8 and 5.9 display the results for 100 repetitions (varying the
validation and training target samples). As indicated by the distribu-
tion of the test error, and its mean in Figure 5.8, s²net clearly out-
performs the other methods in the auto-mpg (P1) data. However, for
the auto-mpg (P2) setting, the supervised glmnet is the one minimiz-
ing the test error. Apparently in this last case, the supervised meth-
ods have an advantage, and semi-supervised alternatives do a poor
job (although, in theory, s²net and JT should always be better than
baseline and glmnet, respectively – with the appropriate choice of
hyper-parameters).
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Figure 5.8: Density estimation of the (test) MSE of each method for
100 repetitions (auto-mpg-P1 data).

5.6.3 Spambase data

This data set was collected by Hewlett-Packard Labs, and it is avail-
able at the UCI Repository of Machine Learning Databases (Dua and
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Figure 5.9: Density estimation of the (test) MSE of each method for
100 repetitions (auto-mpg-P2 data).

Graff, 2017). It classifies 4601 e-mails as spam or non-spam. There
are 57 explanatory variables indicating the frequency of certain words
and characters in the e-mail. This data set was also studied by Kawakita
and Kanamori, 2013 in a semi-supervised context. To adapt it to our
semi-supervised set-up, we have split the data according to variable
Internet (e-mails from the source domain containing the word in-
ternet in the body of the message). This partition yields to different
balances of the response variable in the source and target domains,
which suggests an additional complexity for the prediction.

Figure 5.10 displays the empirical distribution of the accuracy in the
test set for the spambase data. We notice that s²net outperforms glm-
net by a margin close to 10%. However – and this is why it is impor-
tant to have a baseline method to compare – the supervised version of
s²net performs very similarly (slightly better). In this case, there is no
advantage in using the unlabeled data, but the optimization method
itself that computes the coefficient estimations for s²net and baseline
is showing good performance.
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Figure 5.10: Density estimation of the (test) accuracy of each method
for 100 repetitions (spambase data).

5.7 Conclusions

In this paper we have introduced s²net, a semi-supervised elastic-net
for generalized linear models. Furthermore, we showed that s²net
generalizes both JT and ExtJT, in addition to the supervised elastic-
net for generalized linear models, and thus with the appropriate choice
of hyper-parameters s²net defaults to the supervised solution if the un-
labeled information is not relevant. Our method was tested using both
real and synthetic data sets, and the experiments confirmed our ap-
proach as a good alternative to the elastic-net in the semi-supervised
context.

We introduced a general optimization framework, that implements the
FISTA algorithm to solve the elastic-net for a generic loss function.
We believe our implementation can be easily adapted to solve other ex-
tensions of lasso, such as the group-lasso and the sparse-group lasso.
In addition, we observed a relative improvement of using gradient-
descent to optimize (5.6) with respect to coordinate-descent, demon-
strated by the fact that our elastic-net baseline sometimes outperforms
glmnet (Tables 5.1, 5.2, 5.3, and Figure 5.10).
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The simulation design studied in Section 5.5.1 highlighted a scenario
where s²net clearly outperforms all the other methods. We believe the
increased performance is due to the fact that the underlying model’s
coefficient are different for the source and target domains. Since s²net
uses the information in the unlabeled data (in contrast to the elastic-
net), it can learn that change and adapt. Compared to other semi-
supervised methods, s²net has the advantage of separating the shift
from the covariance information, which adds flexibility to the model.
Additionally, s²net brings nice properties of elastic-net to the semi-
supervised framework, such as the sparsity in the solution.

Computational details

All the experiments in Sections 5.6 and 5.5 were conducted in the
same HPC cluster2, specifically 8 nodes with Intel(R) Xeon(R) CPUs
E5-2680 v2, 128G RAM, running Linux 3.10.0 and R (3.6.1 – plat-
form x86_64-conda_cos6-linux-gnu (64-bit) – Anaconda Inc.).

To select the hyper-parameters of all the methods we used random
search with 1000 iterations. For s²net and baseline, we took λ1, λ2 ∼
2U [−8,1], and γ1, γ3 ∼ 2U [−8,1], γ2 ∼ 2U [−1,10] (s²net). For glmnet and
JT, α ∼ U [0, 1], λ ∼ 2U [−8,1], and γ1(τ) ∼ 2U [−8,1], γ2(γ) ∼ 2U [−1,10]

(JT). For s4pm and agraph, lams, gams, hs ∼ 2U [−8,1], and for ICLS,
λ1, λ2 ∈ 2U [−8,1]. The code for the simulations and data analyses is
available online3.

Acknowledgments

We gratefully acknowledge the help provided by Prof. Mark Culp,
who gave us access to the source code of the methods JT, s4pm and
agraph, compared in our simulations and data analyses.

2www.hpc.dtu.dk
3https://github.com/jlaria/s2net-paper

Variable selection algorithms in generalized linear models 141

www.hpc.dtu.dk
https://github.com/jlaria/s2net-paper


Bibliography for Chapter 5

Amini, Massih-Reza and Patrick Gallinari (2002). “Semi-supervised
logistic regression”. In: ECAI, pp. 390–394.

Andries, Erik, John H Kalivas, and Anit Gurung (2019). “Sample and
feature augmentation strategies for calibration updating”. In: Jour-
nal of Chemometrics 33.1, e3080.

Beck, Amir and Marc Teboulle (2009). “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems”. In: SIAM jour-
nal on imaging sciences 2.1, pp. 183–202.

Bergstra, James and Yoshua Bengio (2012). “Random search for hyper-
parameter optimization”. In: Journal of Machine Learning Research
13.Feb, pp. 281–305.

Bühlmann, Peter and Sara Van De Geer (2011). Statistics for high-
dimensional data: methods, theory and applications. Springer Sci-
ence & Business Media.

Chapelle, O., B. Schölkopf, and A. Zien (2010). Semi-supervised Learn-
ing. Adaptive computation and machine learning. MIT Press. isbn:
9780262514125. url: https://books.google.dk/books?id=
zHAOQgAACAAJ.

Culp, Mark (2013). “On the Semisupervised Joint Trained Elastic Net”.
In: Journal of Computational and Graphical Statistics 22.2, pp. 300–
318.

Culp, Mark Vere and Kenneth Joseph Ryan (2018). “SemiSupervised:
Scalable Semi-Supervised Routines for Real Data Problems”. In:

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repos-
itory. url: http://archive.ics.uci.edu/ml.

Eddelbuettel, Dirk and James Joseph Balamuta (Aug. 2017). “Ex-
tending extitR with extitC++: A Brief Introduction to extitRcpp”.
In: PeerJ Preprints 5, e3188v1. issn: 2167-9843. doi: 10.7287/
peerj.preprints.3188v1. url: https://doi.org/10.7287/
peerj.preprints.3188v1.

Eddelbuettel, Dirk and Romain François (2011). “Rcpp: Seamless R
and C++ Integration”. In: Journal of Statistical Software 40.8, pp. 1–
18. doi: 10.18637/jss.v040.i08. url: http://www.jstatsoft.
org/v40/i08/.

Eddelbuettel, Dirk and Conrad Sanderson (Mar. 2014). “RcppArmadillo:
Accelerating R with high-performance C++ linear algebra”. In: Com-

142 Variable selection algorithms in generalized linear models

https://books.google.dk/books?id=zHAOQgAACAAJ
https://books.google.dk/books?id=zHAOQgAACAAJ
http://archive.ics.uci.edu/ml
https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.18637/jss.v040.i08
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/


Paper D: Semi-Supervised Elastic-Net

putational Statistics and Data Analysis 71, pp. 1054–1063. url:
http://dx.doi.org/10.1016/j.csda.2013.02.005.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani (2010). “Reg-
ularization paths for generalized linear models via coordinate de-
scent”. In: Journal of statistical software 33.1, p. 1.

Genkin, Alexander, Anirvan M Sengupta, and Dmitri Chklovskii (2019).
“A Neural Network for Semi-supervised Learning on Manifolds”.
In: International Conference on Artificial Neural Networks. Springer,
pp. 375–386.

Ji, Xu, João F Henriques, and Andrea Vedaldi (2019). “Invariant in-
formation clustering for unsupervised image classification and seg-
mentation”. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 9865–9874.

Kawakita, Masanori and Takafumi Kanamori (2013). “Semi-supervised
learning with density-ratio estimation”. In: Machine learning 91.2,
pp. 189–209.

Krijthe, Jesse H and Marco Loog (2015). “Implicitly constrained semi-
supervised least squares classification”. In: International sympo-
sium on intelligent data analysis. Springer, pp. 158–169.

Larsen, Jacob Søgaard et al. (2020). “Semi-supervised covariate shift
modelling of spectroscopic data”. In: Journal of Chemometrics.

Mächler, M (2012). “Accurately Computing log (1- exp (-| a|))”. In:
URL http://cran. r-project. org/web/packages/Rmpfr/vignettes/log1mexp-
note. pdf.

Oliver, Avital et al. (2018). “Realistic evaluation of deep semi-supervised
learning algorithms”. In: Advances in Neural Information Process-
ing Systems, pp. 3235–3246.

Pedregosa, Fabian and Bart van Merrienboer (2019). How to Evaluate
the Logistic Loss and not NaN trying. http://fa.bianp.net/
blog/2019/evaluate_logistic/. (Visited on 09/27/2019).

Pohlert, Thorsten (2019). PMCMRplus: Calculate Pairwise Multiple
Comparisons of Mean Rank Sums Extended. R package version
1.4.2. url: https://CRAN.R-project.org/package=PMCMRplus.

Quinlan, J Ross (1993). “Combining instance-based and model-based
learning”. In: Proceedings of the tenth international conference on
machine learning, pp. 236–243.

Variable selection algorithms in generalized linear models 143

http://dx.doi.org/10.1016/j.csda.2013.02.005
http://fa.bianp.net/blog/2019/evaluate_logistic/
http://fa.bianp.net/blog/2019/evaluate_logistic/
https://CRAN.R-project.org/package=PMCMRplus


R Core Team (2019). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. Vienna, Aus-
tria. url: https://www.R-project.org/.

Ryan, Kenneth Joseph and Mark Vere Culp (2015). “On semi-supervised
linear regression in covariate shift problems”. In: The Journal of
Machine Learning Research 16.1, pp. 3183–3217.

Sanderson, Conrad and Ryan Curtin (2016). “Armadillo: a template-
based C++ library for linear algebra”. In: Journal of Open Source
Software 1.2, p. 26.

– (2019). “Practical Sparse Matrices in C++ with Hybrid Storage and
Template-Based Expression Optimisation”. In: Mathematical and
Computational Applications 24.3, p. 70.

Tan, Ben, Junping Zhang, and Liang Wang (2011). “Semi-supervised
elastic net for pedestrian counting”. In: Pattern Recognition 44.10-
11, pp. 2297–2304.

Tibshirani, Robert et al. (2012). “Strong rules for discarding predic-
tors in lasso-type problems”. In: Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 74.2, pp. 245–266.

Zou, Hui and Trevor Hastie (2003). “Regression shrinkage and selec-
tion via the elastic net, with applications to microarrays”. In: Jour-
nal of the Royal Statistical Society: Series B. v67, pp. 301–320.

144 Variable selection algorithms in generalized linear models

https://www.R-project.org/


Conclusions

This thesis has filled relevant gaps in the literature, exploring several
penalized regression methods for generalized linear models. Two sig-
nificant issues are identified in the Sparse Group Lasso regularization
context, namely the correct hyper-parameter selection and the initial
clustering specification.

To address the first issue, Chapter 2 presented the iterative Sparse
Group Lasso, a coordinate descent algorithm for hyperparameter se-
lection in the Sparse Group Lasso regularization context. There are in
fact two versions of the iSGL, one that finds hyperparameters for each
group, and a simpler version that only addresses the global penalties
associated with the Lasso and Group Lasso terms. The advantages of
iSGL were illustrated in a gene-expression dataset in Chapter 2, but
also with a biomedical case study in Chapter 3, carried out as part of a
collaboration with Hospital General Universitario Gregorio Marañón.

Although Chapter 3 partially approached the problem of variable clus-
tering in the Sparse Group Lasso, it motivated a deep research into
this second issue, provided in Chapter 4. The Group Linear Algo-
rithm with Sparse Principal decomposition is, formally, an extension
of the Sparse Group Lasso (zeroing one hyperparameter gives exactly
the Sparse Group Lasso solution without groups). GLASP, unlike
Sparse Group Lasso, does not require a prior specification of clusters
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between the variables. Besides, GLASP can be considered as a super-
vised variable clustering algorithm. The advantages of GLASP were
illustrated using both real and simulated data, and its source code is
available for the community to use.

A contribution of regularization methods to transfer learning models
was highlighted in Chapter 5, where the Semi-Supervised Elastic Net
was compared with other state-of-the-art algorithms for explainable
variable selection in the semi-supervised learning context. Although
this context is different from the supervised one, Chapter 5 showed
that the Semi-Supervised Elastic Net can be solved with the same tools
used for supervised regression problems with regularization terms.

The source code of the contributions of this thesis is available as three
different R packages: sglfast4, s2net5 and glasp6.

Besides its main contributions, this thesis has identified areas for fur-
ther research, which can be summarized as follows.

1. To explore extensions of the iterative Sparse Group Lasso to
deal with the regularization parameter selection of GLASP. Chap-
ter 4 addressed the penalty parameter selection using available
solutions based on random search and bayesian optimization,
but an iterative approach could lead to better results.

2. To study the methodologies discussed in this thesis when the
response variable is multivariate. In this case, β is a matrix,
and thus the groups are both row-wise and column-wise. A
Sparse Group Lasso with multivariate response was discussed
by Vincent and Hansen, 2014, and Multivariate Cluster Elastic
Nets have been proposed by Price and Sherwood, 2017 and,
recently, Ren, Kang, and Lu, 2020. An extension of GLASP in
this direction seems reasonable.

3. To analyze practical scenarios of the algorithms discussed here.
One emerging field of application is the financial data, where
variable selection and variable clustering techniques would pro-
vide deep insight into underlying structures. Recent applica-

4https://github.com/jlaria/sglfast
5https://cran.r-project.org/package=s2net
6https://github.com/jlaria/glasp
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tions of variable selection techniques in finance can be found in
Uniejewski, Marcjasz, and Weron, 2019 and Hosaka, 2019.

4. To examine the possible integration of GLASP and the algo-
rithm described in Chapter 3 (instead of iSGL). This combined
approach would be a novel ensemble method in the high dimen-
sional context.

5. To model survival after treatment of patients in a biomedical
study in collaboration with Hospital General Universitario Gre-
gorio Marañón. The data investigated in Chapter 3 is part of a
broader study in which, besides measuring the binary response
to treatment, the time until relapse is also quantified. This cor-
responds to high-dimensional right-censored survival data.

6. To improve with a rigorous theoretical justification the defini-
tion of the variable importance index introduced in Chapter 3,
and to compare this technique with other state-of-the-art meth-
ods that weight variables based on their relative importance in
the models.

7. To extend the iterative Sparse Group Lasso, the Semi-Supervised
Elastic Net and GLASP to other risk functions, covering other
generalized linear models apart from linear and logistic regres-
sion. In this sense, GLASP is superior to the rest because it
covers linear, logistic, and survival (including right-censored)
models. Besides, both glasp and s2net packages have been im-
plemented following a modular approach – the optimization and
the model specification are implemented in separate classes –
and thus adding a new risk function should be straightforward.

8. To investigate the implementation of the methods discussed in
this thesis in a high performance computing context. The ma-
jor limitation of GLASP is that its performance is severely af-
fected by the number of training observations. Empirically, we
noticed that sample sizes in the order of thousands when the
number of variables was also large, penalized the computational
performance significantly. However, the block-gradient descent
method to solve the optimization (FISTA) could be paralleled
by groups. Moreover, to this date, not even the Sparse Group
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Lasso has been implemented in a scalable framework, and it
is possible because Elastic Net is available in a parallel frame-
work (through Spark’s MLib). The underlying optimization al-
gorithm that the Elastic Net model pipeline uses in this case is
described in Andrew and Gao, 2007.

This thesis set out to find new methods for variable selection in gen-
eralized linear models, and delivered its primary objective. It has of-
fered a framework for the exploration of modern explainable machine
learning and statistical algorithms, paving the way for future research,
which is already underway.
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