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Abstract: In this paper, we consider the generalized degenerate Bernoulli/Euler polynomial matrices
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so-called generalized degenerate Pascal matrix of the first kind, and some factorizations for the
generalized degenerate Euler polynomial matrix.

Keywords: generalized degenerate Bernoulli polynomials; generalized degenerate Euler polyno-
mials; generalized degenerate Bernoulli matrix; generalized degenerate Euler matrix; generalized
degenerate Pascal matrix

MSC: 33E20; 11B83; 11B68

1. Introduction

Matrices play an important role in all branches of science, engineering, social science,
and management. In many settings (see, e.g., [1–4] and the references therein), a number of
interesting and useful identities involving binomial (q-binomial or λ-binomial) coefficients
can be obtained from a matrix representation of a particular counting sequence. Such a
matrix representation provides a powerful computational tool for deriving identities and
an explicit formula related to the sequence.

There are many special types of matrices such as Pascal, Vandermonde, Stirling,
Riordan arrays, and others. These matrices are of specific importance in many scientific
and engineering applications. For instance, Pascal matrices appear in combinatorics, image
processing, signal processing, numerical analysis, probability, and surface reconstruction.

In the case of generalized Pascal matrices of the first kind, extensive research has
been devoted to them (cf., e.g., [3–10] and the references therein). Situations with a matrix
representation—including analogs of generalized Pascal matrices of the first kind and
degenerate versions of special classes of polynomials (e.g., Bernstein, Bernoulli, and Euler
polynomials, etc.)—are of particular interest.

Motivated by recent articles [1–4,11–14] that consider degenerate Bernstein polynomi-
als, degenerate Euler polynomials, generalized degenerate Euler–Genocchi polynomials
of order α, and algebraic properties of the generalized Euler and generalized Apostol-
type polynomial matrices, in the present article, we consider the generalized degenerate
Bernoulli/Euler polynomial matrix. In particular, we focus our attention on some inversion-
type formulae from a matrix framework. Furthermore, we show some analytic properties
for the so-called generalized degenerate Pascal matrix of the first kind. Furthermore, some
factorizations for the generalized degenerate Euler polynomial matrix in terms of such a
matrix are given.

The paper is organized as follows. Section 2 is a preliminary section containing the
definitions, notations, and terminology needed. Section 3 contains the main results of this
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paper. First, we provide the corresponding inversion-type formulae for the degenerate
Bernoulli and Euler polynomials, respectively (Theorems 1 and 2). Second, we show that the
generalized degenerate Pascal matrix of the first kind is a matrix exponential (Theorem 4),
and, as a consequence, we obtain an Appell-type property for this matrix (Corollary 5). In
addition, factorizations for the generalized degenerate Pascal matrix of the first kind in
terms of the degenerate Bernoulli/Euler matrices are given (Theorems 6 and 7, respectively).
The remainder of this section is devoted to establishing the corresponding product formulae
for generalized degenerate Euler polynomial matrices and their factorizations in terms of
generalized degenerate Pascal matrices of the first kind (Theorems 8 and 9).

2. Background and Previous Results

Throughout this paper, let N, N0, Z, R, and C denote, respectively, the set of all natural
numbers, the set of all non-negative integers, the set of all integers, the set of all real
numbers, and the set of all complex numbers. As usual, we will always use the principal
branch for complex powers, in particular, 1α = 1 for α ∈ C. Furthermore, the convention
00 = 1 will be adopted.

For w ∈ C and k ∈ Z, we use the notations w(k) and (w)k for the rising and falling
factorials, respectively, i.e.,

w(k) =


1, if k = 0,

∏k
i=1(w + i− 1), if k ≥ 1,

0, if k < 0,

and

(w)k =


1, if k = 0,

∏k
i=1(w− i + 1), if k ≥ 1,

0, if k < 0.

Any matrix is assumed an element of Mn+1(R), the set of all (n + 1)-square matri-
ces over the real field R. Moreover, for i, j, any nonnegative integers, and any matrix
A ∈ Mn+1(R) we adopt, respectively, the following conventions(

i
j

)
= 0, whenever j > i, and A0 = In+1 = diag(1, 1, . . . , 1),

where In+1 denotes the identity matrix of order n + 1.
For λ, x ∈ R and z ∈ C, the degenerate exponentials are defined as follows (cf., [15]):

ex
λ(z) =

 (1 + λz)
x
λ , if λ ∈ R \ {0},

exz, if λ = 0.
(1)

As usual, for x = 1, we use the notation eλ(z) = ex
λ(z).

It follows immediately from (1) that

ex
λ(z) =



∞

∑
n=0

(x)n,λ
zn

n!
, |λz| < 1, if λ ∈ R \ {0},

∞

∑
n=0

xn zn

n!
, if λ = 0.

(2)

where the generalized falling factorials (x)n,λ, are given by (cf., [1,2,12–15]):
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(x)n,λ =


1, if n = 0,

∏n
i=1(x− (i− 1)λ), if n ≥ 1,

0, if n < 0,

where x, λ ∈ R and n ∈ Z.
It is clear that lim

λ→0
ex

λ(z) = ex
0(z) = exz, and for n ∈ N0, the polynomial in two variables

Qn(x, λ), given by

Qn(x, λ) =

{
1, if n = 0,

∏n
i=1(x− (i− 1)λ), if n ≥ 1,

is a continuous function on R2, and consequently, (x)n,0 = xn.
In [16,17], Carlitz introduced the degenerate Bernoulli (Euler) and the generalized

degenerate Bernoulli (Euler) polynomials of order α ∈ C, respectively, by means of the
generating functions and series expansions:

z
eλ(z)− 1

ex
λ(z) =

∞

∑
n=0

Bn,λ(x)
zn

n!
, (3)

2
eλ(z) + 1

ex
λ(z) =

∞

∑
n=0

En,λ(x)
zn

n!
, (4)(

z
eλ(z)− 1

)α

ex
λ(z) =

∞

∑
n=0

B
(α)
n,λ(x)

zn

n!
, (5)(

2
eλ(z) + 1

)α

ex
λ(z) =

∞

∑
n=0

E
(α)
n,λ (x)

zn

n!
. (6)

These are valid in a suitable neighborhood of z = 0 and represent degenerate versions
of the classical Bernoulli and Euler polynomials, respectively. In [8], the notation βn(λ, x)
is used for the degenerate Bernoulli (3).

Since the degenerate exponentials (1) satisfy the same exponent product law as the
exponentials functions, i.e.,

ex+y
λ (z) = ex

λ(z) ey
λ(z),

we can use the generating relations (2), (5) and (6) to deduce the following addition
formulas:

(x + y)n,λ =
n

∑
k=0

(
n
k

)
(x)k,λ(y)n−k,λ, n ≥ 0, (7)

B
(α+β)
n,λ (x + y) =

n

∑
k=0

(
n
k

)
B

(α)
k,λ (x)B(β)

n−k,λ(y), n ≥ 0, (8)

E
(α+β)
n,λ (x + y) =

n

∑
k=0

(
n
k

)
E
(α)
k,λ (x)E (β)

n−k,λ(y), n ≥ 0. (9)

For a treatment of diverse aspects of some summation formulas and their applications,
the interested reader is referred to the relatively recent works [18–20].
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For r ∈ N0, λ ∈ R, and α ∈ C, definitions of generalized degenerate Euler–Genocchi
and generalized degenerate Euler–Genocchi polynomials of order α, respectively, have
recently been introduced in [14] (Section 2):

2zr

eλ(z) + 1
ex

λ(z) =
∞

∑
n=0

A
(r)

n,λ (x)
zn

n!
, (10)

zr
(

2
eλ(z) + 1

)α

ex
λ(z) =

∞

∑
n=0

A
(r,α)

n,λ (x)
zn

n!
. (11)

Remark 1. Notice that:

(i) If r ∈ N, then it follows immediately from (2), (4) and (10), that

A
(r)

0,λ (x) = A
(r)

1,λ (x) = · · · = A
(r)

r−1,λ(x) = 0, and

A
(r)

n,λ (x) =
n!

(n− r)!
(x)n,λ = n(r)E

(0)
n−r,λ(x), n ≥ r.

Furthermore, A
(0)

n,λ (x) = En,λ(x), n ≥ 0.
The first above identities guarantee that, up to multiplicative constants, it suffices to take
generalized degenerate Euler polynomials of order 0 instead of the so-called generalized
degenerate Euler–Genocchi polynomials as the main family to study. Similarly, the last identity
tells us that the generalized degenerate Euler polynomials coincides with the generalized
degenerate Euler–Genocchi polynomials of order 0.

(ii) In [14], Theorem 4 proves the following reduction formula:

A
(r,α)

n,λ (x) = n(r)E
(α)
n−r,λ(x), n ≥ r, n, r ∈ N0.

In particular, we obtain that up to multiplicative constants, the generalized degenerate Euler–
Genocchi polynomials of order α = 1 can be reduced to the generalized degenerate Euler
polynomials (4).

Hence, in order to avoid essentially redundant definitions (cf., [21]), the families of polynomials
eqrefeul-gen1 and (11) will not be considered in this paper.

3. The Generalized Degenerate Bernoulli and Euler Matrices and Their Properties

In this section, we present some novel properties for the generalized degenerate
Bernoulli and Euler matrices. Before that, we show the corresponding inversion-type
formulae for the generalized degenerate Bernoulli and Euler polynomials, respectively.

Theorem 1. For every n ≥ 0 and λ ∈ R, the degenerate Bernoulli polynomials satisfy the following
inversion-type formula:

(x)n,λ =
1

n + 1

n

∑
k=0

(
n + 1
k + 1

)
(1)k+1,λBn−k,λ(x) (12)

=
1

n + 1

n

∑
k=0

(
n + 1
k + 1

)
(1− λ)k,λBn,λ(x). (13)

Proof. Let λ ∈ R. In view of (2) and (3), and the identity

z
∞

∑
n=0

(x)n,λ
zn

n!
=

∞

∑
n=0

(n + 1)(x)n,λ
zn+1

(n + 1)!
,
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we have

∞

∑
n=0

(n + 1)(x)n,λ
zn+1

(n + 1)!
=

[
∞

∑
n=0

(1)n,λ
zn

n!
− 1

][
∞

∑
n=0

Bn,λ(x)
zn

n!

]

=

[
∞

∑
n=0

(1)n+1,λ
zn+1

(n + 1)!

][
∞

∑
n=0

Bn,λ(x)
zn

n!

]
. (14)

From the use of the Cauchy product rule on the right-hand side of (14), it follows that

∞

∑
n=0

(n + 1)(x)n,λ
zn+1

(n + 1)!
=

∞

∑
n=0

[
n

∑
k=0

(
n + 1
k + 1

)
(1)k+1,λBn−k,λ(x)

]
zn+1

(n + 1)!
. (15)

Hence, comparing the coefficients of zn+1 on both sides of (15), we obtain (12).
Finally, (13) is a simple consequence of the identity (1)k+1,λ = (1− λ)k,λ, for all

k ∈ N0.

Remark 2. Notice that the substitution of λ = 0 into (12) recovers the inversion formula for the
classical Bernoulli polynomials (cf., [22] (Equation (9))).

From a matrix framework, Theorem 1 has the following consequence.

Corollary 1. For n ∈ N0 and λ ∈ R, the matrix Tλ(x) =
(
1 (x)1,λ · · · (x)n,λ

)T can be
expressed as follows:

Tλ(x) = MλBλ(x)

=


(1

1)(1)1,λ 0 0 · · · 0
1
2 (

2
2)(1)2,λ

1
2 (

2
1)(1)1,λ 0 · · · 0

1
3 (

3
3)(1)3,λ

1
3 (

3
2)(1)2,λ

1
3 (

3
1)(1)1,λ · · · 0

...
...

...
. . .

...
1

n+1 (
n+1
n+1)(1)n+1,λ

1
n+1 (

n+1
n )(1)n,λ

1
n+1 (

n+1
n−1)(1)n−1,λ · · · 1

n+1 (
n+1

1 )(1)1,λ

Bλ(x)

=


1 0 0 · · · 0

1
2 (1)2,λ 1 0 · · · 0
1
3 (1)3,λ (1)2,λ 1 · · · 0

...
...

...
. . .

...
1

n+1 (1)n+1,λ (1)n,λ
1
2 (1)n−1,λ · · · 1

Bλ(x), (16)

where Bλ(x) =
(
B0,λ(x) B1,λ(x) · · · Bn,λ(x)

)T .

Theorem 2. For every n ≥ 0 and λ ∈ R. The degenerate Euler polynomials satisfy the following
inversion-type formula:

(x)n,λ =
1
2

n

∑
k=0

(
n
k

)
(1 + ak(λ))(1)k,λEn−k,λ(x) (17)

where

ak(λ) =

{
1, if k = 0,
0, if 1 ≤ k ≤ n,

Proof. From (2) and (4) we have
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2
∞

∑
n=0

(x)n,λ
zn

n!
=

[
∞

∑
n=0

(1)n,λ
zn

n!
+ 1

][
∞

∑
n=0

En,λ(x)
zn

n!

]

=

[
∞

∑
n=0

(1 + ak(λ))(1)n,λ
zn

n!

][
∞

∑
n=0

En,λ(x)
zn

n!

]

=
∞

∑
n=0

[
n

∑
k=0

(1 + ak(λ))

(
n
k

)
(1)k,λEn−k,λ(x)

]
zn

n!
,

where

ak(λ) =

{
1, if k = 0,
0, if 1 ≤ k ≤ n.

Therefore, by comparing the coefficients of zn on both sides, we obtain the identity.

Remark 3. Notice that if λ = 0 in (17), then we recover the inversion formula for the classical
Euler polynomials (cf., [22] (Equation (27))).

Theorem 2 has the following consequence.

Corollary 2. For n ∈ N0 and λ ∈ R, the matrix Tλ(x) =
(
1 (x)1,λ · · · (x)n,λ

)T can be
expressed as follows:

Tλ(x) =
1
2

NλEλ(x)

=
1
2


(0

0)(1 + a0(λ))(1)0,λ 0 · · · 0
(1

1)(1 + a1(λ))(1)1,λ (1
0)(1 + a0(λ))(1)0,λ · · · 0

(2
2)(1 + a2(λ))(1)2,λ (2

1)(1 + a1(λ))(1)1,λ · · · 0
...

...
. . .

...
(n

n)(1 + an(λ))(1)n,λ ( n
n−1)(1 + an−1(λ))(1)n−1,λ · · · (n

0)(1 + a0(λ))(1)0,λ

Eλ(x)

=
1
2


2 0 0 0 · · · 0

(1)1,λ 2 0 0 · · · 0
(1)2,λ 2(1)1,λ 2 0 · · · 0

...
...

...
...

. . .
...

(1)n,λ n(1)n−1,λ
(n)2

2! (1)n−2,λ
(n)3

3! (1)n−3,λ · · · 2

Eλ(x), (18)

where Eλ(x) =
(
E0,λ(x) E1,λ(x) · · · En,λ(x)

)T and ak(λ) =

{
1, if k = 0,
0, if 1 ≤ k ≤ n.

Clearly, when λ ∈ R, the matrix Nλ is an invertible matrix.

Corollary 3. For n ∈ N0 and λ ∈ R, we have

Eλ(x) = 2(Nλ)
−1MλBλ(x).

The degenerate Pascal matrices corresponding to the generalized falling factorials can
be defined as follows:
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Definition 1. Let x be any nonzero real number. For λ ∈ R, the generalized degenerate Pascal
matrix of the first kind Pλ[x], is an (n + 1)× (n + 1) matrix whose entries are given by

pi,j,λ(x) :=


(i

j)(x)i−j,λ, i ≥ j,

0, otherwise.
(19)

Remark 4.

(i) It is clear that the matrix Pλ[x] tends to the generalized Pascal matrix of the first kind P[x] as
λ→ 0.

(ii) For n ∈ N0, x ∈ R \ {0}, λ ∈ R, it is clear that P−λ[x] = Pn,λ[x], where Pn,λ[x] is the
Pascal functional matrix introduced in [5]. Hence, all results corresponding to P−λ[x] given
in [5] hold in this setting.

(iii) It is worth mentioning that the matrix entries (19) coincide with the entries of the variation
of Pascal functional matrix Pn[x, λ] introduced by Can and Cihat-Dağli in [8]. Hence, all
results corresponding to factorizing the matrix Pn[x, λ] by the summation matrices also hold
for Pλ[x], taking into account the suitable shift on the respective order for these matrices (cf.,
[8] (Lemma 1 and Theorem 2)).

(iv) If for x ∈ R \ {0}, λ ∈ R we consider the truncated exponential generating function for the
binomial-type polynomial sequence {(x)n,λ}n≥0 (cf., [9]):

f (t; x) =
n

∑
k=0

(x)k,λ
tk

k!
,

then, it is easy to see that

Pλ[x] = Pn[ f (x, t)]|t=0 = Pn

[
n

∑
k=0

(x)k,λ
tk

k!

]∣∣∣∣∣
t=0

,

where Pn[ f (t; x)] denotes the generalized Pascal functional matrix introduced by Yang and
Micek in [9].

From now on, we denote Pλ = Pλ[1]. The following theorem summarizes some
properties of Pλ[x].

Theorem 3. Let Pλ[x] ∈ Mn+1(R) be the generalized degenerate Pascal matrix of the first kind.
Then, the following statements hold.

(a) Special value. If the convention (0)0,λ = 1 is adopted, then it is possible to define

Pλ[0] := In+1.

(b) For x, y ∈ R, we have
Pλ[x + y] = Pλ[x]Pλ[y]. (20)

(c) Pλ[x] is an invertible matrix and its inverse is given by

P−1
λ [x] := (Pλ[x])

−1 = Pλ[−x]. (21)

Proof. Since part (a) is a straightforward consequence of the extension of Definition 1 for
the case x = 0, we shall omit its proof. Thus, we focus our efforts on the proof of parts (b)
and (c).
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Let Ai,j,λ(x, y) be the (i, j)-th entry of the matrix product Pλ[x]Pλ[y]. Then, by (7),
we have

Ai,j,λ(x, y) =
n

∑
k=0

(
i
k

)
(x)i−k,λ

(
k
j

)
(y)k−j,λ

=
i

∑
k=j

(
i
k

)
(x)i−k,λ

(
k
j

)
(y)k−j,λ

=
i

∑
k=j

(
i
j

)(
i− j
i− k

)
(x)i−k,λ(y)k−j,λ

=

(
i
j

) i−j

∑
k=0

(
i− j

k

)
(x)i−j−k,λ(y)k,λ

=

(
i
j

)
(x + y)i−j,λ,

which implies (20).
The substitution y = −x into (20) yields

Pλ[0] = Pλ[x]Pλ[−x] = Pλ[−x]Pλ[x].

By part (a), we have Pλ[0] = In+1, thus

Pλ[x]Pλ[−x] = In+1 = Pλ[−x]Pλ[x],

and (21) follows.

Corollary 4. For any λ ∈ R, r ∈ Z and s ∈ Z \ {0} we have

(a) Pr
λ = Pλ[r].

(b)
(

Pλ

[ r
s
])s

= Pr
λ.

Proof. Making the corresponding modifications, we apply the same reasoning as in the
proof of [7] (Corollary 3). Since Pλ = Pλ[1], Pλ[0], and P0

λ coincide with the identity matrix,
it follows from Theorem 3, by induction on r, that Pλ[r] = Pr

λ, for all r ∈ N0. Again, by
Theorem 3, we have that Pλ[−1] = P−1

λ , and a similar induction on |r| shows Pλ[r] = Pr
λ,

for all r < 0.
Next, by Theorem 3 and part (a), we obtain

(
Pλ

[ r
s
])s

= Pλ[r] = Pr
λ.

Remark 5. Part (b) of Corollary 4 shows that for a fixed λ ∈ R and any rational number x, Pλ[x]
is the x-th power of Pλ. Indeed, this property could be expected in the sense that it is satisfied for the
generalized Pascal matrix of the first kind P[x] (cf., [7]).

From the addition Formula (20), we proceed according to [7] and conclude that the
degenerate Pascal matrix Pλ[x] has an exponential form as follows: Assume that for λ ∈ R,
there is a matrix Lλ, such that Pλ[x] = exLλ . Then,

d
dx

Pλ[x] = LλexLλ = LλPλ[x],

and
d

dx
Pλ[x]

∣∣∣∣
x=0

= LλPλ[0] = Lλ In+1 = Lλ.



Mathematics 2023, 11, 2731 9 of 15

Thus, there is at most one matrix Lλ such that Pλ[x] = exLλ . For instance, in the case
n = 3, we can find the only possible value as follows:

d
dx

Pλ[x] =


0 0 0 0
1 0 0 0

−λ + 2x 2 0 0
x(−2λ + x) + x(−λ + x) + (−2λ + x)(−λ + x) 3(−λ + 2x) 3 0

,

and

Lλ =
d

dx
Pλ[x]

∣∣∣∣
x=0

=


0 0 0 0
1 0 0 0
−λ 2 0 0
2λ2 −3λ 3 0

.

While, in the case n = 7, we have

Lλ =
d

dx
Pλ[x]

∣∣∣∣
x=0

=



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
−λ 2 0 0 0 0 0 0
2λ2 −3λ 3 0 0 0 0 0
−6λ3 8λ2 −6λ 4 0 0 0 0
24λ4 −30λ3 20λ2 −10λ 5 0 0 0
−120λ5 144λ4 −90λ3 40λ2 −15λ 6 0 0
720λ6 −840λ5 504λ4 −210λ3 70λ2 −21λ2 7 0


.

This suggests a general way of choosing Lλ. More precisely, the entries of Lλ are
given by

(Lλ)i,j =


sλ(i− j, 1)(i

j), if i ≥ j + 1,

0, otherwise,

where sλ(n, k) denotes the degenerate Stirling number of the first kind, defined as follows
(cf., [17,23] or [24] (Ch. 5)):

n

∑
k=0

sλ(n, k)xk = (x)n,λ. (22)

Furthermore, the entries of the matrix Lk
λ, for 1 ≤ k ≤ n and n ∈ N can be explicitly

represented as follows.

Lemma 1. For every n ∈ N and 1 ≤ k ≤ n, the entries of Lk
λ are given by the formula

(
Lk

λ

)
i,j
=


k!sλ(i− j, k)(i

j), if i ≥ j + k,

0, otherwise,

where sλ(n, k) is the degenerate Stirling number of the first kind (22).

Proof. It suffices to proceed by induction on k, taking into account that for k > n, we have
Lk

λ = 0.

Theorem 4. For every real numbers x, λ ∈ R, Pλ[x] = exLλ .
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Proof. By part (a) of Theorem 3, if x = 0, then exLλ = In+1 = Pλ[x]. Now, assume that
x 6= 0 since Lk

λ = 0 for k > n, the infinite series for exLλ reduces to the finite sum

exLλ = In+1 + xLλ +
x2

2
L2

λ + · · ·+ xn

n!
Ln

λ. (23)

Applying Lemma 1, we can now read off the entries in exLλ . Clearly, it is a lower
triangular matrix, and the diagonal entries are all 1. Now suppose i > j, and let 0 ≤ k ≤
i− j. Then, using (22), we have that the (i, j)-th entry in the sum (23) is

(
exLλ

)
i,j
=

i−j

∑
k=0

xk

k!

(
Lk

λ

)
i,j
=

(
i
j

) i−j

∑
k=0

sλ(i− j, k)xk =

(
i
j

)
(x)i−j,λ = pi,j,λ(x).

This completes the proof.

As a consequence of Lemma 1 and Theorem 4, we obtain the following Appell-
type property.

Corollary 5. The generalized degenerate Pascal matrix of the first kind Pλ[x] satisfies the following
differential equations:

Dk
xPλ[x] = Lk

λPλ[x], 1 ≤ k ≤ n, (24)

where Dk
xPλ[x] is the matrix resulting from the k-th derivative with respect to x of each entry of

Pλ[x].

Definition 2. The generalized degenerate (n + 1)× (n + 1) Bernoulli matrix B
(α)
λ (x) of (real or

complex) order α is defined by the entries

B
(α)
i,j,λ(x) =


(i

j)B
(α)
i−j,λ(x), i ≥ j,

0, otherwise.

Remark 6.

(i) It is worth mentioning that the entries (2) of B
(α)
λ (x) coincide with the entries of the general-

ized degenerate Bernoulli matrix B
(α)
m [λ, x] introduced in [8], when these matrices are the

same order.
(ii) We denote by Bλ(x) the degenerate Bernoulli matrix B

(1)
λ (x).

The following result was established in [8] (Theorem 4).

Theorem 5. The generalized degenerate Bernoulli matrices B
(α)
λ (x) satisfy the following product

formulas.

B
(α+β)
λ (x + y) = B

(α)
λ (x)B

(β)
λ (y) = B

(β)
λ (x)B

(α)
λ (y)

= B
(α)
λ (y)B

(β)
λ (x). (25)

Definition 2 and the inversion-type Formula (12) lead to the following result:

Theorem 6. The generalized degenerate Pascal matrix of the first kind Pλ[x] can be factorized in
terms of Bλ(x) as follows:

Pλ[x] = Bλ(x)Hλ, (26)
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where Hλ is an (n + 1)× (n + 1) invertible matrix with entries

Hi,j,λ =


(

i
i− j

)
(1)i−j+1,λ

i− j + 1
, i ≥ j,

0, otherwise.

Proof. Let us consider n ∈ N0 and 0 ≤ i, j ≤ n such that i ≤ j. From Definition 2 and the
inversion-type Formula (12), we have

pi,j,λ(x) =

(
i
j

)
(x)i−j,λ =

(
i
j

)
i− j + 1

i−j

∑
k=0

(
i− j + 1

k + 1

)
(1)k+1,λBi−j−k,λ(x)

=
i−j

∑
k=0

[(
i− j

k

)
Bi−j−k,λ(x)

][(
i

i− j

)
(1)k+1,λ

k + 1

]
. (27)

Since the right hand member of (27) is the (i, j)-th entry of matrix product Bλ(x)Hλ,
we conclude that (26) holds.

The following example shows the validity of Theorem 6.

Example 1. Let us consider n = 2. It follows from Definition 1, (26), and a simple computation that

Pλ[x] =


(0

0)(x)0,λ 0 0

(1
0)(x)1,λ (1

1)(x)0,λ 0

(2
0)(x)2,λ (2

1)(x)1,λ (2
2)(x)0,λ



=


(0

0)B0,λ(x) 0 0

(1
0)B1,λ(x) (1

1)B0,λ(x) 0

(2
0)B2,λ(x) (2

1)B1,λ(x) (2
2)B0,λ(x)


︸ ︷︷ ︸

Bλ(x)


(0

0)(1)1,λ 0 0

(1
1)

(1)2,λ
2 (1

0)(1)1,λ 0

(2
2)

(1)3,λ
3 (2

1)
(1)2,λ

2 (2
0)(1)1,λ


︸ ︷︷ ︸

Hλ

Definition 3. The generalized degenerate (n + 1)× (n + 1) Euler matrix E
(α)
λ (x) is defined by

the entries

E
(α)

i,j,λ(x) =


(i

j)E
(α)

i−j,λ(x), i ≥ j,

0, otherwise.

We denote by Eλ(x) the degenerate Euler matrix E
(1)
λ (x).

Definition 3 and the inversion-type Formula (17) lead to the following result:

Theorem 7. The generalized degenerate Pascal matrix of the first kind Pλ[x] can be factorized in
terms of Eλ(x) as follows:

Pλ[x] = Eλ(x)Tλ, (28)
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where Tλ is an (n + 1)× (n + 1) invertible matrix with entries

Ti,j,λ =


(

i
i− j

)(
1 + ai−j(λ)

)
(1)i−j,λ

2
, i ≥ j,

0, otherwise.

Proof. Let us consider n ∈ N0 and 0 ≤ i, j ≤ n such that i ≤ j. From Definition 3 and the
inversion-type Formula (17), we have

pi,j,λ(x) =

(
i
j

)
(x)i−j,λ =

1
2

(
i
j

) i−j

∑
k=0

(
i− j

k

)
(1 + ak(λ))(1)k,λEi−j−k,λ(x)

=
i−j

∑
k=0

[(
i− j

k

)
Ei−j−k,λ(x)

][(
i
j

)
(1 + ak(λ))(1)k,λ

2

]
. (29)

Since the right-hand member of (29) is the (i, j)-th entry of matrix product Eλ(x)Tλ,
we conclude that (28) holds.

Combining Theorems 6 and 7 gives the following connection formula.

Corollary 6. For any λ, x ∈ R, we have

Eλ(x) = Bλ(x)HλT −1
λ .

The next result is an immediate consequence of Definition 3 and the addition Formula (9).

Theorem 8. The generalized degenerate Euler matrices E
(α)
λ (x) satisfy the following product

formulas.

E
(α+β)
λ (x + y) = E

(α)
λ (x) E

(β)
λ (y) = E

(β)
λ (x) E

(α)
λ (y)

= E
(α)
λ (y) E

(β)
λ (x). (30)

Proof. Let C(α,β)
i,j,λ (x, y) be the (i, j)-th entry of the matrix product E

(α)
λ (x) E

(β)
λ (y), then, by

the addition Formula (9), we have

C(α,β)
i,j,λ (x, y) =

n

∑
k=0

(
i
k

)
E
(α)

i−k,λ(x)
(

k
j

)
E
(β)
k−j,λ(y), n ≥ 0

=
i

∑
k=j

(
i
j

)(
i− j
i− k

)
E
(α)

i−k,λ(x)E (β)
k−j,λ(y)

=

(
i
j

) i−j

∑
k=0

(
i− j

k

)
E
(α)

i−j−k,λ(x)E (β)
k,λ (y),

=

(
i
j

)
E
(α+β)

i−j,λ (x + y), for i ≥ j,

which implies the first equality of (30). The second and third equalities of (30) can be
derived in a similar way.
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Corollary 7. Let (x1, . . . , xk) ∈ Rk. For αj real or complex parameters, the generalized degenerate

Euler matrices E
(α)
λ (x) satisfy the following product formulas, j = 1, . . . , k.

E
(α1+α2+···+αk)
λ (x1 + x2 + · · ·+ xk) =

k

∏
j=1

E
(αj)

λ (xj).

Proof. The application of induction on k gives the desired result.

Taking x = x1 = x2 = · · · = xk and α = α1 = α2 = · · · = αk, we obtain the following
simple formula for the powers of the generalized degenerate Euler matrices E

(α)
λ (x).

Corollary 8. The generalized degenerate Euler matrices E
(α)
λ (x) satisfy the following identity.(

E
(α)
λ (x)

)k
= E

(α)
λ (kx), k ∈ N.

Remark 7. Analogously, the above corollaries hold, mutatis mutandis, for the generalized degen-
erate Bernoulli matrices. More precisely, from Theorem 5, and using the same assumptions as
Corollaries 7 and 8, we obtain

B
(α1+α2+···+αk)
λ (x1 + x2 + · · ·+ xk) =

k

∏
j=1

B
(αj)

λ (xj),

(
B

(α)
λ (x)

)k
= B

(α)
λ (kx).

Theorem 9. The generalized degenerate Euler matrices E
(α)
λ (x) satisfy the following relations.

E
(α)
λ (x + y) = E

(α)
λ (x) Pλ[y] = Pλ[x] E

(α)
λ (y)

= E
(α)
λ (y) Pλ[x]. (31)

Proof. The substitution β = 0 into (30) yields

E
(α)
λ (x + y) = E

(α)
λ (x) E

(0)
λ (y) = E

(0)
λ (x) E

(α)
λ (y)

= E
(α)
λ (y) E

(0)
λ (x).

Since E
(0)
λ (x) = Pλ[x], we obtain

E
(α)
λ (x + y) = Pλ[x]E

(α)
λ (y).

A similar argument allows us to show that E (α)(x + y) = E (α)(x)Pλ[y] and E
(α)
λ (x +

y) = E
(α)
λ (y)Pλ[x]. This completes the proof of (31).

4. Conclusions

The aim of our research was to determine novel properties of generalized degenerate
Bernoulli and Euler matrices. First, we focused our attention on some matrix-inversion
formulae involving these matrices. Secondly, we showed some analytic properties for the
generalized degenerate Pascal matrix of the first kind and provided some factorizations for
the generalized degenerate Euler polynomial matrix in terms of the generalized degenerate
Pascal matrix of the first kind.

Finally, it is worth mentioning that the use of the Cauchy product of the power series
is the technique behind some of our formulations. This approach is not a novelty; however,
it has been useful for generating new families of special polynomials (satisfying or not
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Appell-type conditions), even very recently. In this regard, we refer the interested reader
to [25,26] and the references therein for a detailed exposition about very recent trends in
this broad field.
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