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We study analytically the equilibrium and near-equilibrium properties of a model of ad-dimensional surface
relaxing via linear surface diffusion and subject to a lattice potential. We employ the variational mean-field
formalism introduced by Saito for the study of the sine-Gordon model. In equilibrium, our variational theory
predicts a first-order roughening transition between a flat low-temperature phase and a rough high-temperature
phase with the properties of the linear molecular-beam epitaxy equation. Moreover, the study of a Gaussian
approximation to the Langevin dynamics of the system indicates that the surface shows hysteresis when
temperature is continuously tuned. Out of equilibrium, these approximate Langevin dynamics show that the
surface mobility can have different behaviors as a function of a driving flux. Some considerations are made
regarding different underlying lattices, and connections are drawn to related models or different approaches to
the same model we study.
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I. INTRODUCTION

During the last decade, there have been great theoreti
and experimental efforts to understand surface growth. Th
is due to possible applications, e.g., to the production of th
films and, from the basic point of view, to the interestin
examples growing surfaces provide of nonequilibrium stati
tical systems@1#, in some cases with strong relation to rel
evant equilibrium systems@2#. A very important example is
provided by the discrete Gaussian~dG! model, which de-
scribes the universal features of the equilibrium roughenin
transition of many surfaces@3#. This transition is driven by
temperature fluctuations, the value of the critical temperatu
being nowadays regarded as a standard property of, e
metals@4#. The equilibrium roughening transition of the dG
model is in the Kosterlitz-Thouless~KT! class, and thus the
model is related to other important models featuring a simil
transition, such as theF model or the Coulomb gas@2,3#.
The dG model describes a surface minimizing surface ar
~to linear approximation!, in which the surface height take
on integer values. Relaxing the latter condition leads to th
sine-Gordon~sG!model for a real valued height field subjec
to surface tension and to a~lattice!potential favoring integer
values of the field. The sG model is amenable to approxima
analytic treatments@5,6#, which have allowed to develop a
rather complete picture of the equilibrium roughening tran
sition, and of the near-equilibrium properties as determine
by Langevin dynamics@7# or kinetic Monte Carlo simula-
tions @8#. However, several authors have recently raised t
idea that the KT transition in the sG model might be replace
by some kind of first-order discontinuity@9,10# when the
strength of the potential is increased further away from th
renormalization-group~RG! perturbative regime, a result
whose existence had been speculated for a long time@11#. In
this strong potential regime, the perturbative RG treatmen
break down and mean-field-type methods have been used
study the transition.

There exist some interface phenomena contexts in whi
1063-651X/2001/63~3!/036104~9!/$15.00 63 03610
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he most relevant relaxation mechanism taking place at the
nterface can be modeled as minimization of surface curva-
ure, instead of minimization of surface area as in the dG
odel. Instances of these phenomena are membranes@12#,

wo-dimensional melting@13#, or growth by molecular-beam
pitaxy ~MBE! @1# in which the main relaxation mechanism

s surface diffusion, which in the simplest approximation is
escribed effectively as surface curvature minimization. In a
lose analogy with the dG model, several authors have stud-

ed the effect of the integer height value restriction in these
ituations, but the understanding is not as complete as in the
G case. For instance, in some investigations of the two-
imensional melting problem@13# Nelson was led to formu-

ate the discrete Laplacian roughening model~dLr! model

H5
k

2 (
r

@Dh~r !#2, h~r !/a'PZ, ~1!

here r is the lattice position on aL3L dimensional sub-
trate,a' is the vertical lattice constant, andD is the lattice
pproximation to the Laplacian operator. This paper indi-
ated that Hamiltonian~1! should have two phase transitions,
oth of them in the KT universality class, which are related
ith the unbinding of disclinations and dislocations in the
elting problem. This two-step melting mechanism is

nown as the Kosterlitz-Thouless-Nelson-Halperin-Young
heory for two-dimensional melting. Despite the analytical
nd numerical efforts spent@14#, this picture has not been

ully verified for model~1!, some authors claiming a single
rst-order roughening transition occurs@15–17#. The situa-
ion is not settled either for the actual physical problem—
amely, two-dimensional melting—the Hamiltonian~1! was

ntended to model@18#, since both first-order and KT-type
ransitions have been observed in experiments and numerical
imulations.

On the other hand, in Ref.@19# the following Hamiltonian
as proposed to study the effects of the crystalline structure

n tensionless surfaces
©2001 The American Physical Society4-1 1
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2 (
r

$@Dh~r !#21V0@12cos 2ph~r !/a'#%,

h~r !PR. ~2!

Numerical Langevin simulations@19,20#showed an equilib-
rium roughening transition, similar to that in the sG mode
For temperatures below a critical valueTR , the lattice poten-
tial is relevant, imposing a finite value for the correlation
lengthj, and thus the surface is flat. Namely, the roughne
w2[(1/L2)( r@h(r) 2h̄#2 @where h̄5(1/L2)^( rh(r) &# is fi-
nite andL independent. For temperatures higher thatTR , the
lattice potential becomes irrelevant andj diverges, the sur-
face being rough. This means that the roughness diverg
with the system size, in the same way as occurs if we ta
V0[0 in Eq. ~2!, for which case the Langevin dynamics is
that of the so-called linear MBE equation@1#. In studies of
epitaxial growth systems by Langevin dynamics, the ter
proportional tok in Eq. ~2! generates the relevant surface
diffusion effect~within a linear approximation in the surface
slopes!, whereas theV0 term models in the simplest way
effects due to a crystalline structure. Larger numerical sim
lations of Eqs.~1! and ~2! are nevertheless needed@21# in
order to settle the question about the character of the eq
librium phase transition. On the other hand, Langevin sim
lations were extended to out-of-equilibrium situation
@19,20#, finding that the mobility~to be defined below!be-
haves in various different ways, depending on the mod
parameters.

The above results make it even more natural to expect th
both Hamiltonians~1! and ~2! are related with each other in
a similar way as the dG and sG models are. In fact, th
Hamiltonian ~2! can indeed be derived~see Appendix A!
from Eq. ~1! using certain approximations@22#, although the
derivation we present is not unique. Other authors have p
posed different approximations~through a mapping to a vec-
tor Coulomb gas!to reproduce the integer height restriction
@23#, yielding continuum approximations of Eq.~1! different
from Eq. ~2!. In this paper we restrict ourselves to the stud
of the properties of Eq.~2!, in the hope that they will reflect
some of the properties of the dLr model~1!. Specifically, our
aim is to study analytically the Lr model~1! using the con-
tinuum approximation ~2! and a variational mean-field
method proposed by Saito two decades ago@5# for the sG
model. Despite its simplicity, this method anticipated th
value of the transition temperature and the infinite-ord
character of the transition occurring in the sG model, whic
were later confirmed by renormalization-group calculation
and by numerical simulations@24#. Since then, this varia-
tional mean-field theory has been used in other interfa
problems, like the preroughening transition@25#, surface
growth over disordered substrates@26#, etc., showing that
despite its simplicity this approach can indeed explain th
topological properties of the corresponding phase diagra
and, in some cases, provide accurate predictions for mo
specific properties like the values of the transition temper
ture and of the critical exponents. One might argue that
this mean-field-type treatment, fluctuations are not handl
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roperly and might eventually modify the phase diagram.
evertheless, based on the success of Saito’s mean-field

reatment for the sG model, we expect the results of our
nalysis to be relevant to model~2!, in particular for high
imensions, where fluctuations are suppressed.

The present paper is organized as follows. In Sec. II we
tudy the equilibrium Hamiltonian~2! for a two-dimensional
ubstrate, within the variational scheme of Ref.@5#; we de-
ive expressions for the roughening temperature and correla-
ion length below the transition. The precise value of the
ransition temperature within this approach is determined in
he process of elucidating the character of the transition. Sec-
ion III is devoted to the approximate study of the Langevin
ynamics of~2! within a Gaussian approximation for the
robability distribution of the height field. A discussion of

he results obtained and our conclusions are found in Sec.
V. Appendix A contains the formal derivation of the con-
inuum model~2! from Eq. ~1!. Some computational details
n the solution of self-consistent equations relevant to Sec. II
an be found in Appendix B, while Appendix C discusses
ow the results are modified when considering the model on
triangular lattice~as opposed to the square lattice studied in

he rest of the paper!, and Appendix D contains a discussion
n results for substrate dimensions different from two.

II. VARIATIONAL MEAN-FIELD METHOD:
EQUILIBRIUM PROBLEM

Following Saito@5#, our main assumption is that the most
elevant features of model~2! can be described by a simpler,
olvable Hamiltonian:

H05
T

2 (
q

S21~q!h~q!h~2q!, ~3!

hereh(q) are the Fourier components of the height field

h~q!5
1

L (
j

eiq•r jhj . ~4!

ere we consider periodic boundary conditions. Thus,qx
2pnx /L with nx52(L21)/2, . . . ,L/2 and a similar rela-

ion holds forqy . Equation~3! defines a Gaussian Hamil-
onian in which the values ofS(q) are L2 free parameters.

e will fix them by minimization of the variational free
nergyFV[F01^H2H0&0, which is known to be an upper
ound of the exact free energyF of model~2! by the Bogo-

iubov thermodynamic inequality@2#

F<FV[F01^H2H0&0 , ~5!

hereF0 is the free energy of modelH0 and^•••&0 stands
or the average with respect to the Boltzmann factore2H0 /T.

Using the Hamiltonians~2! and ~3! we obtain for the
ight-hand side of Eq.~5!:
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T
52

1

2 (
q

ln 2pS~q!1
1

2 (
q

@S0
21~q!2S21~q!#S~q!

1
L2V0

T H 12expS 2
2p2

a'
2

w2D J , ~6!

where we have definedS05T/@kv(q)# with v(q)
516@sin2(qx/2)1sin2(qy/2)#2 and

w25
1

L2 (
j

hj
25

1

L2 (
qÞ0

S~q! ~7!

@note that model~2! is symmetric underh→2h and thus, in
equilibrium, h̄[0#. By minimizing FV with respect to the
parametersS(q), we find they have to verify

S21~q!5S0
21~q!14p2

V0

a'
2 T

expS 2
2p2

a'
2

w2D . ~8!

We can rewrite Eq.~8! by noting that the second term on the
right-hand side does not depend onq. Hence

S~q!5
T

k@v~q!1j24#
, ~9!

where j is a constant given by the self-consistent relatio
@notew2 depends onj through Eqs.~7! and ~9!#

kj245
4p2V0

a'
2

expS 2
2p2

a'
2

w2D . ~10!

Equations~9! and ~10! are the solution to the equilibrium
problem. We observe that the variational~Gaussian!approxi-
mation of Hamiltonian~2! has a structure factorS(q) similar
to that of the linear MBE equation. The only effect of the
potential is to introduce a correlation lengthj given self-
consistently by Eqs.~10! and ~9!. Among all mathematical
solutions of Eq.~10!, the best approximation to model~2! is
given by that value ofj that minimizes the variational free
energyFV , which we denote byjphys. Note all roots of Eq.
~10! can be easily shown to be stationary points of the fun
tion FV(j).

In order to proceed analytically, we need to take the co
tinuum limit of the integrals appearing in Eqs.~6! and~7!. In
this limit, we make the replacementL22(q→(2p)22*dq,
and we can approximatev(q)5q4, hence using Eq.~9! we
get

w2.
1

~2p!2 E dq
T

k@v~q!1j24#
5

Tj2

8k
2

T

4kp3
1O~j24!.

~11!

Keeping the dominant term in the above equation~in powers
of j), and definingx52k1/2a'T21/2p21j21, Eq. ~10! be-
comes

x45ge21/x2
, ~12!
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here g564V0a'
2 kT22p22. As shown in Appendix B,

here are different solutions of Eq.~12! depending ong ~and
herefore on temperature!. Thus,j2150 is always a solution
f Eq. ~12!, and is the unique solution forT.TC

16V0
1/2k1/2a' /ep. However, forT<TC there appear two

ther finite solutions 0,j1
21,j2

21 of Eq. ~12!. In order to
heck which of the three roots providesjphys in this tempera-
ure range, we compute the free-energy difference

DFV~j!

TL2
[

1

TL2
@FV~j!2FV~j2150!# ~13!

.
j22

16
2

V0

T
e2Tp2j2/(4ka'

2 )1O~j24!. ~14!

e plot DFV(j) in Fig. 1 for different values ofT.
For T<TC , as can be seen in the figure,DFV(j) has

ndeed a local maximum atj1
21 and a local minimum atj2

21,
hile for T.TC both disappear. As derived in Appendix B,

or temperatures aboveTR5(e1/2/2)TC.0.82TC , the varia-
ional free-energy difference has its global minimum at

phys
21 50. However, for lower temperaturesT,TR , the finite
orrelation lengthj2 features a lower value of the variational
ree energy than the infinite correlation length solution,
ence jphys5j2 in this temperature range. Summarizing,
ithin the variational approximation a roughening transition

akes place at a temperature

TR5
8

pe1/2
a'k1/2V0

1/2. ~15!

boveTR the correlation length is infinite and the surface is
ough, with the same properties as the linear MBE model,
.e., S(q);q4 andw2;L2. Below TR the surface is flat with

finite correlation length equal toj2. When we approach the

FIG. 1. Variational mean free-energy differenceDFV as a func-
ion of the~inverse of the!correlation length for different tempera-
ures. The values ofj1 and j2 are only displayed for theT,TR

ase. The physical value of the correlation lengthjphys is given by
he global minimum ofDFV . For temperaturesT.TR the global

inimum is always reached atj2150. The parameters used are

05a'5k51. Units are arbitrary.
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roughening temperature from below, the correlation leng
doesnot diverge but, rather, tends to a constant value~see
Appendix B!given by

j~T→TR
2!5S 4ka'

2

TRp2D 1/2

~16!

implying the roughening transition atTR is of first order.
Specifically, a cusp develops in the free energyFV as a func-
tion of temperature atT5TR , as depicted in Fig. 2.

Although the results in this section have been obtaine
using a certain continuum approximation, we have nume
cally verified all our conclusions using the exact discre
sums in Eqs.~6! and~7!. The exact variational results for the
correlation length and the values ofTC and TR for L
51024 are compared in Fig. 2 to the approximate analytic
expressions obtained in this section. We see that a first-or
transition indeed takes place, although the values ofTR and
TC are modified. However, we still observe the nonlinea
dependence ofTR on V0, see inset of Fig. 2.

III. DYNAMICS WITHIN THE GAUSSIAN
APPROXIMATION

In this section, we study the near-equilibrium dynamics o
model ~2! by means of the generalized Langevin growt
equation

]hi~ t !

]t
5F2

dH
dhi~ t !

1h i~ t !, ~17!

where h i(t) is a white noise with correlations
^h i(t)h j (t8)&52Td i , jd(t2t8) andF is the flux of incoming
particles in the surface growth picture, or a chemica
potential difference in a generic context. This equation d
scribes not only the nonequilibrium statistical dynamics o

FIG. 2. Variational free energyFV as a function of temperature
for model ~2! using the exact expression~6! ~solid line! and our
continuum approximation~dashed line!. In both cases,FV develops
a cusp atT5TR due to the jump in the physical value ofj. The
inset shows the values ofTR ~lower curves!andTC as functions of
V0 within our continuum approximation~dashed lines!and using
the exact discrete expressions~solid lines!. In both cases,TR}TC

;V0
1/2. The parameters used area'5k51 and the units are arbi-

trary.
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r

ur model, but also the dynamics of the system fluctuations
round the equilibrium state~for F50). Our approximation
5# to the study of Eq.~2! will be to assume a Gaussian
ime-dependent probability distribution for the height field.
hus, we only have to calculate the first two moments of the
robability distribution, namely, the mean height@27# h̄
^hi(t)& and the second moment̂ h(q,t)h(2q,t)&
S(q,t). Using Eqs.~2! and ~17! ~see a detailed account in
ef. @25#! we find

dh̄

dt
5F2

2pV0

a'
K sinS 2phi

a'
D L , ~18!

dS~q,t !

dt
522TS~q,t !FS0

21~q!2S21~q,t !

1
4p2V0

a'
2 T

K cosS 2phi

a'
D L G ~19!

524TS~q,t !
dFV

dS~q,t !
, ~20!

here, within our Gaussian approximation,

K sinS 2ph

a'
D L 5e22p2w2(t)/a'

2
sinS 2ph̄

a'
D , ~21!

K cosS 2ph

a'
D L 5e22p2w2(t)/a'

2
cosS 2ph̄

a'
D ~22!

ith w2(t) being the time-dependent surface roughness. In
ll cases, we will study the set of coupled differential equa-

ions ~18! and ~19! subject to the initial conditionhi(t50)
0 for all substrate positionsi.

A. Equilibrium

In equilibrium, i.e., forF50, the solution of Eq.~18! is
50 @note Eq.~21!# and the solution of Eq.~19! is the same
s that of Eqs.~8! and~10! obtained in the previous section.
he interest of Eq.~19! is that it allows us to study dynami-
ally how the system chooses the physical value of the cor-
elation length, and corroborate the results obtained in the
revious section from the point of view of Langevin dynam-

cs. Thus, we will integrate numerically the complete set of
2 discrete equations~18! and ~19! and perform the follow-

ng experiment: starting from a flat surface andT50, we
ncrease temperature by a certain~small! amount and wait
ntil the system reaches equilibrium. Then, we increase tem-
erature by the same amount and repeat the equilibration
rocess. When the temperature is high enough~i.e., once the
ystem is in the rough phase! we decrease temperature by the
ame amount and repeat the process of equilibration untilT
0 is reached back closing a temperature cycle.
We observe that the equilibrium first-order transition

ound in the previous section indeed induces hysteresis in the
ystem correlation length~see Fig. 3!when the system is
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heated starting fromT50, in the sense that the roughening
transition takes place at thehigher temperatureTC andnot at
TR . The reason is that, for allT up to TC , the system stays
in the local FV minimum at j2, even though forTR,T
,TC the free energy already has its global minimum a
j2150, since there is an energy barrier for the system
jump across the local maximum inDFV . Once the local
minimum at j2 disappears~i.e., for T>TC), the surface is
rough and exhibits an infinite correlation length. Conversel
when the system is cooled down starting atT.TC , the sys-
tem remains in the rough phase untilT50 is reached be-
causej2150 is always a free-energy minimum.

B. Nonequilibrium

In this section we allowFÞ0 in Eqs.~18! and ~19!, in
which case the former no longer has the trivial solution (h̄
50). Rather, when the fluxF is small~quasiequilibrium con-
dition! we expect the system to feature a structure fact
S(q,t) of the same form as in equilibrium, all nonequilib-
rium effects reflecting in the~possibly nontrivial!behavior of
the average height. Actually, numerical simulations@19,20#
of the full nonlinear model~2! seem to confirm this expec-
tation. For this reason we neglect the feedback effect of t
evolution of h̄(t) on the structure factorS(q,t) and take

S~q,t !.
kBT

k@v~q!1j24#
, ~23!

wherej is given by the physical equilibrium solution of Sec
II. Within this approximation,

Fc~T![
2pV0

a'

exp$22p2w2/a'
2 %

becomes a constant and Eq.~18! can be written as

dh̄

dt
5F2Fc sin

2ph̄

a'

~24!

FIG. 3. ~Inverse of the!physical correlation length as a function
of temperature, as determined from Eqs.~19! and ~9!. The arrows
indicate the heating and cooling experiment explained in the te
Parameters used areV05a'5k51 andL51024 and the units are
arbitrary.

VARIATIONAL MEAN-FIELD STUDY OF A CONTINUUM . . .
036104
hich is simple to integrate analytically~exact expressions
or the solution can be found in Refs.@5# and @25#!. This
quation has two different solutions depending on the values
f F. If F <Fc , then h̄ tends to a constant value and the
urface does not grow. If we define the surface mobilitym as

m5
1

FK dh̄

dt L , ~25!

here the overline stands for average over a time larger than
21, then forF.Fc , one obtains from the exact solution of
q. ~24! a nonzero value form:

m5S 12
Fc

2

F2D 1/2

. ~26!

n Fig. 4 we plot the surface mobility as a function ofT.
Using the equilibrium solution forj described in Sec. II,

or temperatures above roughening (T.TR), we have that

phys
21 50, which implies Fc50 and m51. Thus, above
oughening the surface shows linear growth with a maximum
unit! mobility. In the flat phase (T,TR) the mobility is
qual to zero~i.e., the surface does not move! for a small flux
,Fc(T). For larger values of the flux@F.Fc(T)#, the
obility depends nonlinearly onT for all temperatures up to

R and actually the surface moves featuring an oscillatory
oughness reminiscent of reflection high-energy electron dif-
raction oscillations in MBE systems, see Refs.@19,28#. Due
o the jump of the correlation length atT5TR , the mobility
lso has a jump at this temperature value. These three behav-

ors of the surface mobility as a function of temperature and
riving flux agree with those obtained@19,20# for the full
odel~2!, except for the discrete jump ofm at T5TR . They

ave been summarized in the (T,F) phase diagram shown in
ig. 5, whose form differs from that computed numerically

n Ref. @19# only in the mentioned jump of the mobility at
5TR . A more detailed discussion on the relevance of Fig.
to, e.g., MBE systems can be found in Ref.@19#.

FIG. 4. Surface mobility as a function ofT for different values
f the driving fluxF. The values of the mobility are obtained from
q. ~25! using Eqs.~9! and ~10! with the parameter valuesV05k
a'51 and the units are arbitrary.

PHYSICAL REVIEW E 63 036104
-5 5



i-

-
p-
e
r

nd
n
t a
th
re
he

re

e

r

n
r-

ct
-

r
.
e
nt

-
is

t
s
i
o
a
s
m
s
n
@
p
b
t
d
t
w
~
d
r
s

c
m
G
G

a
t

w
h
u

w
t

w

ry
IV. DISCUSSION AND CONCLUSIONS

In this paper, we have performed an analytical approx
mation to the properties of model~2!, which may be relevant
to physical growth processes such as MBE or two
dimensional melting. We have employed the variational a
proximation successfully applied by Saito to the study of th
equilibrium roughening transition in the dG model. For ou
model system~2!, the equilibrium results obtained in the
previous sections predict a first-order phase transition a
the associated hysteresis phenomenon. In particular, withi
Gaussian approximation, Langevin dynamics predicts tha
rough surface can preserve its infinite correlation leng
when cooled down across the roughening temperatu
Moreover, we have found that these results apply both on t
square and on the triangular lattices~see Appendix C!. Hys-
teresis behavior and a first-order transition have been
ported in Refs.@15# and@16# for models related with the dLr
model~1! on the square lattice, and for the dLr model on th
triangular lattice@17#. However, as mentioned in the Intro-
duction, other authors seem to obtain two KT transitions fo
the dLr model, both on the square@29# and on the triangular
@30# lattices. Note that our Langevin dynamics results withi
the Gaussian approximation yield a discrete jump in the su
face mobilitym at T5TR , which isnot found in simulations
of the full nonlinear model~2!. This might indicate that the
first-order character of the transition is in our case an artifa
of the variational approximation. Moreover, this approxima
tion ~see Appendix D!also predicts a phase transition fo
model~2! in d51, which is also obtained for the sG model
This result points out the limitations of this approximat
scheme for situations in which fluctuations are very releva
for the system behavior, as in thed51 case. Since model~2!
features strong fluctuations~as does, e.g., the linear MBE
equation@1#!, it is desirable to go beyond our present mean
field approach to this model. We can take two steps in th
direction. One~numerical! is to perform extended simula-
tions of both the dLr model and model~2! @or, equivalently,
its equilibrium Langevin dynamics~17!#. The results@21#
seem to indicate that inboth cases there is only one con-

FIG. 5. Phase diagram as a function of temperatureT and driv-
ing flux F for model ~2! within the variational approximation. The
solid line separating the flat, nonmoving and the flat, oscillato
phases is the locusF5Fc(T). The parameters used areV05a'

5k51 and the units are arbitrary.
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inuum roughening transition as in the discrete Gaussian and
ine-Gordon models, although with strong size dependence

n the dLr case for sizes up to moderate, but not large. The
ther ~analytical!improvement is to perform a dynamic RG
nalysis of Eq.~2! along the lines of that in Ref.@6# for the
G model. This study is particularly important bearing in
ind that the lattice potential is expected to contribute a

urface tension, absent in Eq.~2!, which should then domi-
ate the scaling behavior as compared with surface diffusion
1#. This phenomenon is clearly beyond our mean-field ap-
roach, which neglects parameter renormalization, and will
e the subject of a forthcoming publication@31#. In any case,

he study presented in this paper does indeed predict a phase
iagram in two dimensions, including the numerical value of

he roughening transition temperature, that compares well
ith numerical simulations@20,21# of the complete model

2! and reflects the qualitative features of, e.g., the growth
ynamics of some MBE systems. Moreover we expect the
esults presented here to be even more accurate in dimen-
ions higher than two.
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APPENDIX A: DERIVATION OF THE CONTINUUM
APPROXIMATION TO THE LAPLACIAN

ROUGHENING MODEL

Here we follow Ref.@22# in order to derive a continuum
pproximation to the dLr model~1!. The dLr partition func-

ion is given by

ZdLr[ (
$h(r) %

expH 2
k

2T (
r

@Dh~r !#2J , h~r !/a'PZ,

~A1!

here the sum extends over all possible configurations of
(r). The integer height condition can be implemented by
sing delta functions in the integrals, thus giving

ZdLr5E Dh~r !F (
n(r) 52`

`

d@h~r !2n~r !#G
3expH 2

k

2T (
r

@Dh~r !#2J , ~A2!

hereDh(r )[) r dh(r). Inserting the following representa-
ion for the sum of delta functions in Eq.~A2!,

(
n52`

`

d~h2n!5 lim
B→`

B

Ap
exp$2B2 sin2ph%, ~A3!

e obtain
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ZdLr5 lim
B→`

B

Ap
E Dh~r !expH 2

k

2T (
r

$@Dh~r !#2

12TB2 sin2ph~r !%J . ~A4!

The sum in the exponent of Eq.~A4! is the Hamiltonian~2!,
with the identification 2B25V0 /kBT. A completely analo-
gous calculation relates the dG and sG models@22#.

APPENDIX B: SOLUTION OF THE SELF-CONSISTENT
EQUATIONS

In this Appendix we calculate the self-consistent solutio
of Eqs.~9! and~10! for the equilibrium correlation length of
the variational approximation~3! to model~2!. By defining
x52k1/2a'T21/2p21j21 and g564V0a'

2 kT22p22, Eqs.
~9! and ~10! become, within the continuum approximation
made in Sec. II,

x45ge21/x2
. ~B1!

It is obvious that Eq.~B1! always has the solutionx50, and
that for some values ofg it may also have nonzero solutions
Our first aim is to determine the critical value ofg for which
x50 is the unique solution. To this end, we rewrite the equ
tion in the following way:

x5g1/4e21/4x2
. ~B2!

Now the solutions are the intersections of the functiony

5 f (x)5g1/4e21/4x2
with the straight liney5x. As we can

see in Fig. 6, forg.gC there are three solutions of Eq.~B2!,
two solutions forg5gC , and only the trivial solutionx50
for g,gC . The value ofgC can be calculated using that for
g5gC the unique solutionx5xsÞ0 verifies Eq.~B2! and
also the equation

15gC
1/4 1

2xs
3

e21/4xs
2

~B3!

FIG. 6. Graphical representation of Eq.~B2!. The dashed line is

the y5x function, while the solid lines showy5g1/4e21/4x2
for

different values ofg.
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btained by requiring that the slopes ofy5x andy5 f (x) be
qual atx5xs . With these two equations it is easy to obtain
s5221/2 andgC5e2/4. Using the definition ofg, the tem-
erature for whichj2150 is the only solution of Eq.~10! is

hen given by

TC5
16V0

1/2k1/2a'

ep
. ~B4!

ow, for T,TC we have to determine which of the three
olutions of Eq. ~B1! provides the physical correlation
ength. Sincej2150 is the unique solution for high tem-
eratures, we take as a reference valueFV(j2150), and
ote thatDF(j)5FV(j)2FV(j2150) is stationary at any
oot of Eq. ~10!. Thus, we will consider, as the physical
olution for the correlation length, that root of Eq.~10! for
hich FV has an absolute minimum. Starting out with high

emperatures, the conditionDFV(j)50 will signal the tem-
erature at~and below!which j2150 ceases to be the global
inimum of the variational free energy and thus the system
hysical correlation length. Using our previous notation, the
onditionDFV(j)50 reads

x25g8e21/x2
, ~B5!

hereg8564ka'
2 V0 /(p2T2). Using the same argument as

bove, it is easy to show that forg8,gR85e there are non-
ero solutions of Eq.~B5!. This means, using the definition
f g8, that there is a temperature given by

TR5
e1/2

2
TC , ~B6!

uch that forT,TR the global minimum of the free energy is
ttained for a correlation lengthjÞ0, whereas forT>TR the
hysical solution isjphys

21 50.

APPENDIX C: TRIANGULAR LATTICE

The Laplacian roughening model was initially proposed
y Nelson on the triangular lattice@13#. Thus, it is worth
tudying how do the features of our model~2! change when
he substrate geometry is different from the square lattice
onsidered in the text. Nevertheless, we expect that only
onuniversal quantities—such as the transition temperature
nd the numerical value of correlation length—depend upon

he lattice geometry. The Laplacian roughening model on the
riangular lattice is given by

HLR5
k

2 (
i

F(
d

~hi2hi 1d!G2

~C1!

ith i 1d being any of the six nearest neighbors of sitei. For
his case @25#, v(q)516$sin2(qx/2)1sin2@(qx1A3qy)/4#

sin2@(qx2A3qy)/4#%2, where q5(nx /L)bx1(ny /L)by ,
ith bx52p@ex2(1/A3)ey# andby5(4p/A3)ey , whereni
2(L21)/2, . . . ,L/2 andei are the standard basis vectors.

n the continuum limit,S0(q).4T/(9kq4), and we recover
q. ~10!. Taking the continuum limit, i.e,
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q dq,

where BZ denotes the first Brillouin zone, we get

w2.
T

2pk~2/A3!2 E0

p q8

q841j24/~2/A3!2
dq8. ~C2!

Thus, by definingT85T/3, andj8531/4j, we get the same
Eq. ~12! but with redefined constantsT8 and j8. One can
readily reproduce all the results obtained in the text, simp
by making the replacementsT→T8 and j→j8. In conclu-
sion, on the triangular lattice a first-order roughening trans
tion is also obtained, the only effect of the geometry being
shift in the value of the roughening temperatureTR

triang

53TR
square.

APPENDIX D: SUBSTRATE DIMENSIONS dÅ2

In this Appendix we discuss the possibility to find a
roughening transition in equilibrium when model~2! is de-
fined on a substrate of generic dimensiond. In such a case
Eq. ~10! is still valid, but with

w2~j!.E ddq

~2p!d

T

k@v~q!1j24#
~D1!

within the continuum limit. For substrate dimensiond.4,
the integral~D1! is finite for j2150, namely,w2(j2150)
5Kdpd24T/@k(d24)# ~whereKd is thed-dimensional an-
gular integralKd5*dd21V/(2p)d52pd/2/@(2p)dG(d/2)#).
Thus,j2150 is no longer a solution of Eq.~10!. Therefore
the system has no rough solution and is in the flat phase
all temperatures. On the other hand, ford,4, the integral
above may be approximated by

w2~j!&
T

k

pKd

4 sin~pd/4!
j42d. ~D2!

In this case,j2150 is always solution of Eq.~10!, there
being two additional finite solutions whenT,TC

d . The value
of TC

d can be calculated using the same argument as ind
52 and is

TC
d,45

8ka'
2 sin~dp/4!

~42d!Kdep3 S 4p2V0

ka'
2 D 12d/4

. ~D3!

In order to know which solution of Eq.~10! minimizes the

ESTEBAN MORO AND RODOLFO CUERNO
variational free energy, we calculateDFV , which now reads t

,

036104
r

DFV~j!

TLd
.

42d

d

pKd

8 sin~pd/4!
j2d2

V0

T
e22p2w2/a'

2
.

~D4!

n this case, the local minimumj2
21Þ0 is also the global

inimum and the physical solution for temperatures below
he roughening temperature (T,TR

d,4), which is given by

TR
d,45

d

4
e12d/4TC

d,4 . ~D5!

or temperatures above roughening (T>TR
d,4), j2150 pro-

ides the global free-energy minimum. Thus, ford,4 there
s a first-order roughening transition atTR

d,4 . Note this in-
ludesd51, which might seem conflictive since in this case
odel~2! is expected to be in the rough phase for all values
f T @13#: In d51 thermal fluctuations are expected to de-
troy the ordered flat phase for any temperature value. Our
esult can be understood by noting thatFV is not a true free
nergy, in the sense that it is not the free energy of any
odel@32#, but rather an upper bound for the free energy of
odel ~2!. Actually, exactly the same result is obtained in

he variational study of the sG model ind51 @5#. Note that
n this reference the analysis of thed51 case is incomplete,
ith the incorrect conclusion that the variational theory pre-
icts no phase transition whend51. The complete expres-
ion forDFV(j) analogous to Eq.~D4! indeed shows that for
he sG model ind51, the variational approximation predicts
nonzero temperature below which the physical value of the

orrelation length is finite.
Finally, for d54, Eq.~10! is very similar to that obtained

y Saito@5# for the sine-Gordon model

kj245
4p2V0

a'
2 ~11p4j4!2(T/16ka'

2 ). ~D6!

ollowing Saito’s analysis, we readily obtain that ford54
ur model has a Kosterlitz-Thouless transition atT5TR

d54

16ka'
2 . The correlation length now diverges asj;exp

2A/(T2TR
d54)% whenT→TR

d54,2 (A being aT independent
onstant!.

In summary, within the variational approach, our model
isplays a first-order transition ford,4 between a flat phase
nd a rough phase with the properties of the linear MBE
quation. For the marginal dimensiond54 this transition
ecomes of the Kosterlitz-Thouless type, whereas ford.4

PHYSICAL REVIEW E 63 036104
he surface is in the flat phase for all temperature values.
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