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Ideal Magnetohydrodynamics (mhd) theory is extended to fully 3D magnetic configurations to
investigate the linear stability of intermediate to high n peeling-ballooning modes, with n the toroidal
mode number. These are are thought to be important for the behavior of Edge Localized Modes
(elms) and for the limit of the size of the pedestal that governs the high confinement H-mode. The
end point of the derivation is a set of coupled second order ordinary differential equations with
appropriate boundary conditions that minimize the perturbed energy and that can be solved to
find the growth rate of the perturbations. This theory allows of the evaluation of 3D effects on
edge plasma stability in tokamaks such as those associated with the toroidal ripple due to the finite
number of toroidal field coils, the application of external 3D fields for elm control, local modification
of the magnetic field in the vicinity of ferromagnetic components such as the test blanket modules
(tbms) in iter, etc.

I. INTRODUCTION

The magnetohydrodynamic (mhd) model is inherently
limited in scope and applicability by the strong assump-
tions behind it. Yet, despite its relative simplicity, it has
been shown to be surprisingly applicable, mainly due to
the strong anisotropy between the parallel and perpen-
dicular dynamics. Furthermore, mhd theory can gener-
ally be used as a baseline for the behavior of plasma dy-
namics [1]. Important here are the mhd instabilities that
may ultimately limit the peformance of fusion devices.
There is a variety of mhd instabilities that can occur

in plasma and they can be categorized in various ways:
One of them is the distinction between internal insta-
bilities, that do not disturb the plasma boundary, and
external ones, that do. Alternatively, they can be global,
spanning an extended range within the plasma, or lo-
calized. Lastly, another way of classification instabilities
is by considering the main mechanism that drives them.
These turn out to be the parallel current and the pres-
sure gradient, hence the denotation “current driven” or
“pressure driven” [2, 3].
Two important modes of instabilities that have been

identified in current devices are the peeling mode, which
is a global, current driven mode that can be thought of as
a limiting case of the external interchange mode [4], and
the ballooning mode, which is a localized pressure driven
mode. Note, however, that here and henceforth the words
local and global indicate a localization around particular
field lines versus delocalization in the entire flux surface,
respectively, and are not directly connected to the ra-
dial extent. Coupled, the peeling-ballooning modes are
thought to be important for the limiting behavior of some
modern devices, as they are able to cause periodically
erupting edge localized modes (elms). These limit the
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size of the pressure gradient in the pedestal, which is one
of the main characteristics of the high confinement H-
mode [5]. Therefore, it is of importance to correctly un-
derstand the physics behind the peeling-ballooning mode
and to be able to simulate it accurately.

There exist fairly complete analytical theories for both
the localized, pressure driven ballooning mode [6, 7] and
the global, current driven peeling mode [8]. Since the
main interest for elms lies in describing the instabili-
ties of the outer layers of the plasma, these theories take
into account the approximate effect of the perturbation
of the plasma edge. However, bringing these two theories
together required some effort, since the theory of peeling
modes is formulated for global modes, whereas the the-
ory of ballooning modes employs an asymptotic, so-called
“high n” (where n refers to the toroidal mode number)
ordering that is valid only for localized modes, and breaks
down for more extended modes. It is clear, then, that a
purely analytical theory is difficult to conceive and one
has to resort to simulations.

One strategy has been to drop the high n order-
ing which, though useful for analytical understanding of
the ballooning modes, cannot easily describe the peel-
ing modes, and to simulate the plasma with the full
mhd model without approximation in the toroidal mode
number. Codes such as mishka [9] and kinx [10] are
very successful at describing the phenomena of peeling-
ballooning modes and accurate results have been ob-
tained [11]. However, since these codes are not very fast,
they are not always suitable for parameter studies, so a
main step in this domain has been the development of the
linear numerical code elite, that indeed employs a high-
n ordering at the plasma edge, but also keeps higher order
terms to correctly describe the intermediate n peeling-
ballooning modes [12].

elite has been successful at describing peeling-
ballooning phenomena and has allowed the subsequent
study of the linear properties of elms [5, 13, 14]. How-
ever, the main limitation of elite and the theory behind
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it, is the fact that it is valid only for axisymmetric con-
figurations. This allows for many simplifications, yet it
can present an important limitation to the generality of
the predicted results. For example, stellerators are in-
herently 3D and thus need 3D theory to be accurately
described. But also tokamaks, that can be approximated
quite well by the assumption of axisymmetry, experience
some degree of three dimensionality. The ripple due to
the discrete toroidal coils, for example, breaks axisym-
metry. Also, in recent years, the effects of resonant 3D
fields on the edge of tokamak plasmas have received in-
creased attention because of their capability to control
the energy losses and power fluxes to plasma facing com-
ponents caused by elms, which can lead to unacceptable
erosion rates of these components in tokamak fusion re-
actors such as iter [15].
In this worlk a full 3D theory is developed in the same

spirit as the axisymmetric theory behind elite, yet with-
out employing the limiting axisymmetric assumption. It
differs from pure analytical 3D ballooning mode theory
and 3D peeling mode theory in two ways. Firstly, no as-
sumptions are made on the form of the plasma perturba-
tion, such as the ballooning description used to derive the
general 3D ballooning mode equation [16]. Secondly, the
treatment of the plasma edge is not done in an approxi-
mate fashion, as in [7] for 2D ballooning modes, [17] for
3D ballooning modes or [8] for peeling modes: The inclu-
sion of the effects due to the perturbation of the plasma
surface is done as in elite, through the actual calcula-
tion of the perturbed energy of the plasma boundary and
the surrounding vacuum, employing the extended energy
principle [18].
The structure of this paper is as follows: In the next

section, the major analytical derivation of the 3D peeling-
ballooning theory is developed. This is done in steps,
described in various subsections. The results, which con-
sist of a coupled set of second-order linear differential
equations whose solution provides the growth rate of the
system, are then discussed in section III and interesting
features are pointed out, as well as the parallels with the
2D work performed earlier. After that, in section IV,
conclusions are stated and finally, appendices give more
details about longer derivations.

II. DERIVATION

II.1. Preliminaries

The starting point is the extended energy principle,
which describes the system as if consisting of a body of
plasma, separated from a conducting wall by a vacuum
layer [18]. The energy of the whole system, comprised of
kinetic energy and potential energy of the plasma, a pos-
sible edge current at the plasma surface and the magnetic
energy of the surrounding vacuum, is perturbed linearly
and the eigenvalues corresponding to this perturbation
can be found from the stationary values of the Rayleigh
quotient :

Λ [ξ,Qv] ≡
δW [ξ,Qv]

K [ξ]
≡ δWp [ξ] + δWs [ξn] + δWv [Qv]

1
2

∫
p
ρ |ξ|2 dr

.

(1)

The different terms are given by [1]:



δWF (ξ) =
1

2

∫
p

dr

[
|Q|2

µ0
− ξ∗ · j×Q+ γp |∇ · ξ|2 + (ξ · ∇p)∇ · ξ∗

]

δWs (ξn) =
1

2

∫
s

dS

[
|n · ξ|2 n ·

s
∇
(
µ0p+

B2

2

){]
s

δWv (Qv) =
1

2

∫
v

dr

[
|Qv|2

µ0

]
,

(2)

where J·K denotes a jump and ξ and Qv are the plasma
displacement and the vacuum magnetic field perturba-
tion, which have to satisfy only the essential boundary
conditions:

ξ regular (on V )

n · ∇ × (ξ ×Bv) = n ·Qv (on S)

n ·Qv = 0 (on exterior wall Wv) .

(3)
δB = Q = ∇× (ξ ×B) is the perturbation of the plasma
magnetic field and all the other symbols have their usual
meaning.
For the plasma potential energy, an equivalent form

[19] is used:

δWF =
1

2

∫
dr

[
1

µ0

∣∣Q∣∣2 + γp |∇ · ξ|2

−2 (ξ · ∇p) (κ · ξ∗)− σ (ξ∗ ×B) ·Q
]
,

(4)

where κ = b̂ · ∇b̂ = 1
B2∇⊥

(
µ0p+

B2

2

)
is the curvature,

σ ≡ J∥
B is proportional to the parallel current and Q is

defined as follows:

Q = Q−B
µ0ξ · ∇p
B2

= Q⊥ −B [∇ · ξ⊥ + 2ξ⊥ · κ] . (5)
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In equation 4 the first term can be identified as the sta-
bilizing term due to the perturbation of the magnetic field
and the second one due to the perturbation of the plasma.
The other two terms show the main driving terms for in-
stabilities, due to the pressure gradient and the parallel
current, as discussed in section I.

II.2. Plasma perturbation and other quantities

In what follows, the same flux coordinates (ψ, θ, ζ) as
in [20] are used:

B = ∇ζ ×∇ψ + q(ψ)∇ψ ×∇θ , (6)

which, by defining the field line label α = ζ − q(ψ)θ,
can be brought into Clebsch form in the new (α, ψ, θ)
coordinate system:

B = ∇α×∇ψ , (7)

where the Jacobian J (α, ψ, θ) is identical to the Jacobian
in the flux coordinates J (ψ, θ, ζ). In this coordinate sys-
tem, the parallel derivative reduces to B · ∇ = 1

J
∂
∂θ .

Note that θ has lost its immediate poloidal significance
and now rather means “along the magnetic field line”.
In the spirit of [19, eq. A.6], the plasma pertur-

bation ξ is decomposed in a normal, a geodesic and a
parallel component:

ξ = X
∇ψ
|∇ψ|2

+ U
∇ψ ×B

B2
+WB . (8)

Employing this, the three components of Q, defined in
5, are given by:

∇ψ ·Q =
1

J
∂X

∂θ
∇ψ ×B

|∇ψ|2
·Q =

1

J
∂U

∂θ
− SX

B ·Q = −B2 [∇ · ξ⊥ + 2ξ · κ] .

(9)

with the total (or local) shear S [19] in the (α, ψ, θ) co-
ordinate system:

S = −∇ψ ×B

|∇ψ|2
· ∇ ×

(
∇ψ ×B

|∇ψ|2

)

= − 1

J
∂Θα

∂θ
,

(10)

where Bi = B · ei and Θi = ∇ψ
|∇ψ|2 · ∇u

i, with ui one of

the coordinates (ψ, θ, ζ).
The curvature lacks a parallel component and, aiming

for later compactness of results, the normal and geodesic
components are defined as follows:

κn =
∇ψ
|∇ψ|2

· κ =
∇ψ

|∇ψ|2B2
· ∇
(
µ0p+

B2

2

)
κg =

∇ψ ×B

B2
· κ = − 1

2p′
1

J
∂σ

∂θ
,

(11)

with σ = B
B2 · ∇×B

µ0
proportional to the parallel current.

Use is made of the fact that the current is divergence-free,
implying:

∇ · (Bσ)− 2

B4
∇
(
B2

2

)
·B×∇p = 0 . (12)

II.3. Fourier representation of the perturbation

As mentioned in section I, the modes considered in this
work are intermediate to high n in nature. More specif-
ically, this means that these modes are assumed to have
a spectral content that is much higher than the spectral
content of the equilibrium quantities. This condition is
used further on to make key simplifications.

In this work, a Fourier representation is used, of which
the advantages are, on the one hand, that the periodic-
ity constraints that the modes have to comply with are
inherently satisfied, and, on the other hand, that the sep-
aration of spectra of the equilibrium and the perturba-
tion can be performed mathematically. Furthermore, a
Fourier representation does not fail near the plasma edge,
as is the case for the higher orders of theory using the
ballooning representation, frequently used in theoretical
studies [6, 21].

To avoid large stabilization of the plasma potential en-
ergy due to excitation of Alfvèn and fast magnetosonic
waves (the term containing Q in equation 4), the allow-
able perturbations have to approximately follow the mag-
netic field and thus have a fluted shape, similarly to the
case of normal ballooning modes. Mathematically, this
translates in the condition that the parallel derivate be
of order 1 and thus:

∂

∂θ
∼ O (1) . (13)

This reduces the order of the normal and geodesic com-
ponents of Q to O (1) and the only remaining term of
order O

(
ϵ−1
)
is ∇ · ξ⊥, with ϵ a small parameter that

will be defined later. Clearly, not both the derivates in α
and ψ can be chosen of order O (1), as this would prevent
the perturbations from being localized at all. However,
their combination in the divergence can indeed be of or-
der O (1).

Subsequently, the stabilizing term due to sound waves
that compress the plasma (the term containing ∇ · ξ in
equation 4) is assumed to be minimized to zero by cor-
rectly adjusting the parallel component of the perturba-
tion to cancel out the contribution ∇ · ξ⊥ due to the
perpendicular components (all of order O (1)), though
strictly speaking there exist theoretical cases where this
is not possible, such as the Z-pinch [22]. Thus, the plasma
is assumed to be incompressible, supressing the stabiliz-
ing sound waves.

To derive the corresponding criteria relating the two
components X and U of ξ⊥, in the (ψ, θ, ζ) coordinate
system, the Fourier representation in the variables ϵ−1α
and ϵ−1θ is presented, with n the toroidal and m the
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poloidal mode number:
X
(
ψ, ϵ−1θ, ϵ−1ζ

)
=
∑
m,n

X̂m,n (ψ) e
i[nζ−mθ]

U
(
ψ, ϵ−1θ, ϵ−1ζ|θ, ζ

)
=
∑
m,n

Ûm,n (ψ|θ, ζ) ei[nζ−mθ] ,

(14)
where the notation

(
ψ, ϵ−1θ, ϵ−1ζ|θ, ζ

)
means that an ad-

ditional periodic slow variation of the Fourier amplitude
Um,n is allowed, as is customary inmultiple-scale analysis
[23]. It will be seen that this is necessary to cancel secu-
lar terms that will appear to ultimately yield a solution
that is indeed periodic.

Transforming to the (α, ψ, θ) coordinate system, yields

ei[nζ−mθ] → ei[nα+(nq−m)θ] , (15)

which means that the condition that the parallel deriva-
tives be of order O (1) reduces to

nq −m ∼ O (1) , (16)

with q the safety factor.

This has the consequence that the perturbations,
though with both m ∼ O

(
ϵ−1
)
and n ∼ O

(
ϵ−1
)
, lie

clustered around the line with slope q, as seen in figure
1, which represents the separation between the spectral
content of the equilibrium quantities and the perturba-
tion. This anisotropy has an important implication: The
modes do not couple for different magnetic field lines
(represented by the coordinate α), but only along mag-
netic field lines (represented by θ), so the double summa-
tion reduces to a single summation over m.

FIG. 1. A sketch of the assumed spectra of the equilibrium
quantities (blue) and the perturbation (red, hatched). The
horizontal axis indicates the toroidal wave number n and the
vertical axis the poloidal wave number m.

This result can be indicated symbolically by consid-
ering the following representation for the plasma poten-
tial energy that explicitely shows the coupling between a
mode with mode numbers n and m and a mode with n′

and m′, and where A represents equilibrium quantities:

∑
m,n

[∫
dθ

∫
dαA (α, ψ, θ) ei[n−n

′]αei[(nq−m)−(n′q−m′)]θ
]
Xm,nX

∗
m′,n′

=
∑
m,n

[∫
dθ

[∫
dαA (α,ψ, θ) ei[n−n

′]α
]
ei[(nq−m)−(n′q−m′)]θ

]
Xm,nX

∗
m′,n′

≈ 1

2π

∑
m,n

[∫
dθA (α, ψ, θ) δn

′

n e
i[(nq−m)−(n′q−m′)]θ

]
Xm,nX

∗
m′,n′

≈ 1

2π

∑
m

[∫
dθA (α, ψ, θ) ei(m

′−m)θ
]
XmX

∗
m′

∣∣∣∣∣
n=n′

,

(17)

implying that, though the equilibrium quantities vary
across the magnetic field lines, in the coordinate α, they
are quasi-constant in the nα scales on which the pertur-
bations vary, effectively removing A from the integral in
α. The same cannot be done for the integral along the
magnetic field lines in θ, since the perturbations vary as
slowly as the equilibrium quantities due to their fluted-
ness.

Note that the integral along θ is a field-line average:
Toroidal information about the equilibrium is preserved,
since the magnetic field line varies toroidally. This in
contrast to the axisymetric case where the line average
can be reduced to an average in the poloidal angle, as in
[12].

Therefore, ultimately, the Fourier representations for

X and U used are:
X =

∑
m

X̂m (ψ) ei[nα+(nq−m)θ]

U =
∑
m

Ûm (ψ|α, θ) ei[nα+(nq−m)θ] ,
(18)

with the exponents containing both terms of order O (1)
and of order O (n) with ϵ from now on chosen to be equal
to n−1.

II.4. Minimizing plasma perturbation

In a first step, the fast variation across the magnetic
field lines, in the coordinate nα is introduced by inserting
only the fast part of the full Fourier representations of
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equation 18 {
X = X̂ (ψ, θ) einα

U = Û (ψ, θ|α, θ) einα ,
(19)

into the condition∇·ξ⊥ ∼ O (1). To this end, an ordering
technique for the normal perturbation X is applied as
follows:

X = X(0) +X(1) + . . . , (20)

with
∣∣X(k)

∣∣ / ∣∣X(k+1)
∣∣ ∼ O (n). Doing the same for the

other components, a condition for the first orders X(0)

and U (0) is derived:

Û (0) =

(
−Θα +

i

n

(
∂

∂ψ
+Θθ

∂

∂θ

))
X̂(0) . (21)

[Note that the θ component has been included for the
term in X, even though it is formally of lower order than
the other two. This is done in hindsight by realizing that
it is the most convenient way for the geodesic perturba-
tion to be periodic (see further below), simplifying the
two-scale analysis. The same result could be obtained by
considering the problem in the unmodified flux coordi-
nates (ψ, θ, ζ), but would require a little bit more work.]
Subsequently, the second order can be minimized as

well making use of the first order result. Collecting terms
in the divergence and combining them with the curvature
term yields an expression correct up to order ∼ O

(
n−1

)
0 =

(
inΘα +

∂

∂ψ
+Θθ

∂

∂θ

)
X̂ + inÛ + Q̂

(
X̂
)
, (22)

where the second-order operator Q̂ is defined as:

Q̂ (β) =

[
1

J
∂

∂ui
(
JΘi

)
+ 2κn

]
β

+

[
2κg +

1

J
∂J
∂α
− 1

J
∂

∂θ

(
Bα
B2

)
− 1

J
Bα
B2

∂

∂θ
+

∂

∂α

]
×

×
[(
−Θα +

i

n

(
∂

∂ψ
+Θθ

∂

∂θ

))
β

]
.

(23)

This eliminates the parallel component of the magnetic
terms and reduces the entire stabilizing magnetic term
to order ∼ O (1).
In a second step, the previous expression for Q is now

simplified by inserting the remainder of the Fourier rep-
resentation for the coordinate (nq −m) θ, the slow coor-
dinate along the magnetic field:


X̂ =

∑
m

X̂m (ψ) ei(nq−m)θ

Û =
∑
m

Ûm (ψ|α, θ) ei(nq−m)θ ,
(24)

For ease of notation, in what follows, the hat is left out
and it is to be understood implicitely that Fourier modes

are treated. In any case, the presence of a subscript m
denotes a (complete) Fourier mode.

Using above, the condition 22 becomes:

Um =

(
−Θζ + m

n
Θθ +

i

n

∂

∂ψ

)
Xm +

i

n
Qm(Xm) , (25)

relating Um to Xm, with Θζ ≡ Θα + q′θ +Θθq and

Qm(Xm) =

(
Q0
m +Q1

m

i

n

d

dψ

)
(Xm) , (26)

where Q0
m and Q1

m only depend on equilibrium quanti-
ties. They are calculated in appendix A:

Q0
m =

Bαq
′ + J µ0p

′

Bθ
+
(
−Θζ +Θθ

m

n

)
Q1
m

+
nq −m
n

JB · ∇ψ ×∇Θθ

Bθ

Q1
m = −i (nq −m)

Bα
Bθ

.

(27)

Note that the term proportional to Qm in equation 25
is an order of magnitude smaller than the other terms
and that Um indeed has a slow-varying component in the
coordinates α and θ. Also note that the relative strength
of the dependence on ψ is not important. Inserting the
expression thus obtained for the modes Um into equation
4 then yields an expression for the plasma potential en-
ergy, as a function of the normal displacement Xm only,
correct up to second order in n.

Summarizing, by first requiring the entire stabilizing
magnetic energy to be finite and of order O (1), leading
to fluted modes, and subsequently minimizing the mag-
netic compressional energy to zero, above expression for
the geodesic component of the Fourier modes Um was
derived, expressed as a function of Xm (eq. 25). This
allowed for the complete description of the plasma po-
tential energy as a function of the normal component
Xm.

Finally, mixing the different orders of the terms, this
expression can be split into a linear part and a part cor-
responding to the first derivative:

Um =

(
U0
m + U1

m

i

n

∂

∂ψ

)
(Xm) , (28)

with: 
U0
m = −Θζ +Θθ

m

n
+

i

n
Q0
m

U1
m = 1 +

i

n
Q1
m ,

(29)

where Q0
m and Q1

m are defined in equation 27. Um can
thus be seen as a linear differential operator, acting on the
modes of the normal perturbation. In what follows, it is
found useful to assign a symbol to the parallel derivative
of U in θ, which can be written out compactly:

∂Um
∂θ

=

(
DU0

m +DU1
m

i

n

∂

∂ψ

)
(Xm) , (30)
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with 
DU0

m = i (nq −m)U0
m +

∂U0
m

∂θ

DU1
m = i (nq −m)U1

m +
∂U1

m

∂θ
.

(31)

II.5. Minimization of plasma potential energy

To obtain the expression for the plasma potential en-
ergy it is useful to define the adjoint of the linear operator
U∗
k :

⟨Uk (α) , β⟩ψ =
⟨
α,UTk (β)

⟩
−
[
J i

n
U1∗
k α∗β

]ψs

ψa

, (32)

where the boundary term, with ψa a flux surface deep
inside the plasma and ψs at the plasma edge, arises from
the fact that external modes are considered, which do
not necessarily vanish at the limits of integration. The
inner product is defined as:

⟨α, β⟩ψ =

∫ ψs

ψa

Jα∗β dψ , (33)

and the operator UTk as:

UTk (β) =

(
UT,0k + UT,1k

i

n

∂

∂ψ

)
β , (34)

with UT,0k = U0∗
k +

1

J
i

n

∂

∂ψ

(
U1∗
k J

)
UT,1k = U1∗

k ,

(35)

and equivalently for DU from equation 30.

Now, the series of equation 18 is introduced into the
plasma potential energy, given by equation 4, making use
of the above expression of the adjoint operators UTk and
DUTk . In appendix B it is shown that this reduces to a
volume integral with three types of terms concerning the
coupling of the modes m and k (≡ m′): Those propor-
tional to the amplitude of the mode Xm, those propor-
tional to the first derivative in ψ of Xm and those propor-
tional to the second, and all terms also proportional to
the amplitude X∗

k of mode k. This is accompanied by a
surface integral, with two types of terms. The expression
for the plasma potential energy then has the form:

1

2

∑
k,m

∫ ψs

ψa

dψ

[∫
dθJX∗

ke
i(k−m)θ

{
PV 0

k,m + PV 1
k,m

(
i

n

)
d

dψ
+ PV 2

k,m

(
i

n

)2
d2

dψ2

}]
Xm , (36)

along with a surface term:

1

2

∑
k,m

∫
dθJX∗

ke
i(k−m)θ

{
PS0

k,m + PS1
k,m

(
i

n

)
d

dψ

}
Xm

∣∣∣∣
ψs

, (37)

with the coefficients PV ik,m and PSik,m given by:
PV 0

k,m = P̃ V
0

k,m + 1
J

i
n
∂
∂ψ

(
J P̃ V

1∗
m,k

)
, PS0

k,m = − i
n P̃ V

1∗
m,k ,

PV 1
k,m =

(
P̃ V

1

k,m + P̃ V
1∗
m,k

)
+ 1

J
i
n
∂
∂ψ

(
J P̃ V

2

k,m

)
, PS1

k,m = − i
n P̃ V

2

k,m ,

PV 2
k,m = P̃ V

2

k,m ,

(38)

with 

P̃ V
0

k,m =
1

µ0

|∇ψ|2

J 2B2

(
DU0∗

k − J S
) (
DU0

m − J S
)
+

1

J
∂σ

∂θ

(
U0∗
k + U0

m

)
+ Sσ

+
σ

J
(
i (nq −m)U0∗

k − i (nq − k)U0
m

)
+

1

µ0

(nq − k) (nq −m)

J 2 |∇ψ|2
− 2p′κn

P̃ V
1

k,m =
1

µ0

|∇ψ|2

J 2B2

(
DU0∗

k − J S
)
DU1

m +
U1
m

J
∂σ

∂θ
− σU

1
m

J
i (nq − k)

P̃ V
2

k,m =
1

µ0

|∇ψ|2

J 2B2
DU1

mDU
1∗
k .

(39)

The two derivative terms in PV ik,m are crucial for Her- miticity of the plasma potential energy. This can best be
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seen by inserting equations 39 and 38 into equation 36
and cancelling the surface terms from equation 37. The
integrand of equation 36, including the double summa-
tion, then can be written in tensorial notation:

(X∗)
T

P X (40)

where a factor J /2 has been left out, with X =(
Xme

−imθ
)T

and the elements of the tensor P given by:

Pk,m =P̃ V
0

k,m −
i

n

←−
∂

∂ψ
P̃V

1∗
m,k + P̃ V

1

k,m

i

n

−→
∂

∂ψ

− i

n

←−
∂

∂ψ
P̃V

2

k,m

i

n

−→
∂

∂ψ
,

(41)

which are indeed Hermitian. The arrows indicate
whether the derivatives act on the right or on the left.

II.6. Edge and vacuum energy

The edge term, given in equation 2, is associated with
a sheet current Js running on the edge of the plasma that
provokes a discontinuity in the magnetic field on either
side of the last flux surface of the plasma and is given by
applying Ampère’s law:

Js = n̂× JBK . (42)

Though a theoretical possibility, in practice an equilib-
rium edge current is unusual and therefore left out [24].
In addition, by considering the essential boundary con-
ditions of equation 3, it can be seen that the inclusion
of an equilibrium edge current would lead to a highly
stabilizing vacuum:

Qv · ∇ψ = Bv · ∇X at s . (43)

Indeed, the derivative of X in the direction of Bv is of
order O (n) if B ̸= Bv, which would imply that the vac-
uum perturbation Qv be of that order as well, leading to
a large vacuum stabilization. This is to be avoided.
The vacuum energy, also given in equation 2, is always

stabilizing and should be minimized while respecting the
essential boundary conditions of equation 3. Since the
vacuum is current-free, the vacuum magnetic perturba-
tion Qv satisfies

∇ ·Qv = ∇×Qv = 0 , (44)

which implies that it can be represented by a scalar po-
tential ϕ that has to obey Laplace’s equation:

∇2ϕ = 0 , (45)

connected to the plasma by the essential boundary con-
dition and assumed to vanish at infinity:

∇ψ · ∇ϕ =

{
B · ∇X at s

0 at w
, (46)

Then, the vacuum energy term can be rewritten as:

δWv =
1

2µ0

∫
v

dr [∇ · (ϕ∇ϕ∗)]

=
1

2µ0

∫
∂v

dS · (∇ϕ∗)ϕ

= − 1

2µ0

∫
s

J (B · ∇X∗)ϕ dθ dα ,

(47)

where the negative sign is due to the difference between
the definition of the outward normal of the plasma vol-
ume and the direction of increasing magnetic flux. The
perturbation is assumed to vanish at the surrounding
wall, located far away from the plasma, which is justi-
fied since peeling-ballooning perturbations are assumed
to be radially localized to some extent. ϕ is to be solved
with Laplace’s equation as a function of the plasma per-
turbation X at the edge.

This is done conveniently using Green’s method, based
on Green’s second identity [24, 25]:

∇ · (a∇b) = a∇2b+∇a · ∇b , (48)

which, upon interchanging a and b, taking the difference
between both equations and integrating over a volume
yields:∫

v

(
a∇2b− b∇2a

)
dV =

∫
∂v

(a∇b− b∇a) · dS . (49)

This equation is used by setting a = ϕ (r) and b =
GN (r, r′) = 1

|r−r′| +F (r, r′), a modified Green’s function

for Neumann boundary conditions [26] for the laplacian
in three dimensions, with ∇2G = −δ (r− r′) and F a
function that is symmetric in its arguments and satisfies:∇

2F (r, r′) = 0

∇ψ · ∇GN = −4π

∂v
,

(50)

with ∂v the total surface surrounding the volume.
Choosing this equal to the vacuum volume and evaluating
at a point in the plasma edge, this yields an expression
for the vacuum potential [27]:

ϕ (r) = ⟨ϕ⟩+
∫∫

∂v

GN (r, r′)∇′ϕ (r′) · dS′ , (51)

where ⟨ϕ⟩ is the average value of the potential over the
whole surface.

Since the perturbation is assumed to vanish at the sur-
rounding wall, the more complicated treatment of low n
codes such as vacuum [25], that take into account the
image currents in the surrounding wall, is not needed
here. So upon introducing the boundary conditions from
equation 46 and realizing that the average potential goes
to zero due to the surrounding wall, assumed to be at
infinity, equation 51 becomes:

ϕ (r) = −
∫∫

s

GN (r, r′)JB (r′) · ∇′X (ψ) dα′ dθ′ .

(52)



8

Inserting this relation between the potential and the plasma perturbation Xm,s (ψ) at the edge of the plasma
into equation 47 yields:

δWv =
1

2

∑
k,m

X∗
k

[∫∫
s

J dθ dα

∫∫
s

J dθ′ dα′V Sk,m

]
Xm , (53)

with the Hermitian coefficients V Sk,m given by:

V Sk,m =
1

µ0

GN (r, r′)

J 2
ei[n(α

′−α)+(nq−m)θ′−(nq−k)θ] (nq −m) (nq − k) . (54)

II.7. Kinetic energy

Finally, the last ingredient in the extended spectral
variational principle described in subsection II.1 is the
plasma kinetic energy, given by:

K [ξ] =
ω2

2

∫
p

ρ |ξ|2 dr , (55)

where ρ is the density of the plasma.

Now, as stated above, in subsection II.4, the minimiza-
tion of the plasma compressional energy to zero by ad-
justing the parallel component is relatively simple, and
unaffected by the kinetic energy if the kinetic energy

of the parallel component is neglected. Not doing this
would raise the complexity of the problem, as the num-
ber of equations that has to be solved would double. As
the applicability and accuracy of the parallel dynamics
of the basic ideal mhd theory are questionable, this is
not a major simplification and, in any case, it represents
a worst-case scenario since the plasma sound waves are
stabilizing [22].

Since in the (perpendicular) plasma kinetic energy no
derivatives of the perturbation appear, these terms do
not influence the minimization of the magnetic compres-
sion term of the plasma potential energy performed in
subsection II.4 and the results obtained there relating
the geodesic perturbation U to the normal perturbation
X are introduced in above formula for the plasma kinetic
energy:

K⊥ =
ω2

2

∫
p

drρ

[
1

|∇ψ|2
|X|2 + |∇ψ|

2

B2
|U |2

]

=
ω2

2

∫
p

drρ
∑
k,m

ei(k−m)θ

[
1

|∇ψ|2
X∗
kXm +

|∇ψ|2

B2
U∗
k (X

∗
k)Um (Xm)

]

=
ω2

2

∫
p

dr
∑
k,m

X∗
ke

i(k−m)θ

[
ρ

|∇ψ|2
+ UTk

ρ |∇ψ|2

B2
Um

]
(Xm) ,

(56)

where the operators work on everything to their right,
resulting in volume and surface coefficients equivalent to
the ones used equations 36 and 37:

K̃V
0

k,m =
ρ

|∇ψ|2
+
|∇ψ|2

B2
U0∗
k U0

mρ

K̃V
1

k,m =
|∇ψ|2

B2
U0∗
k U1

mρ

K̃V
2

k,m =
|∇ψ|2

B2
U1∗
k U1

mρ .

(57)

Using the same arguments as in subsection II.5, the
integrand of the plasma kinetic energy integral can be
written in a Hermitian form equivalent to equation 40.

III. DISCUSSION

In the previous section, expressions were found for the
potential energy due to the plasma, which was described
by three volume coefficients PV ik,m and two surface co-

efficients PSik,m, the plasma kinetic energy, described by

KV 0
k,m and KS0

k,m, and the potential energy due to the
edge and vacuum, of which the former is neglected and
the latter is described by V Sk,m.

By taking the Euler minimization with respect to each
of the M amplitudes of the Fourier modes X∗

k , an equa-
tion in the M unknowns Xm is obtained. The result can
be summarized by the following equation that has to be
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solved for every field line:∑
m

{⟨
ei(k−m)θV 0

k,m

⟩
θ
+
⟨
ei(k−m)θV 1

k,m

⟩
θ

(
i

n

)
d

dψ

+
⟨
ei(k−m)θV 2

k,m

⟩
θ

(
i

n

)2
d2

dψ2

}
Xm = 0,

(58)

for k = m0 . . .m0+M and with the field-line average ⟨·⟩θ
defined as:

⟨A⟩θ =
∫ ∞

−∞
JAdθ , (59)

with the coefficients V ik,m given by:

V ik,m = PV ik,m − ω2KV ik,m , (60)

from equations 38 and an equivalent for KV ik,m.
The restriction due to the normalization of the plasma

kinetic energy using a Lagrange multiplier ω2 is mathe-
matically equivalent to the minimization of the Rayleigh
quotient of equation 1 with an eigenvalue ω2 and the ap-
propriate boundary conditions shown below [27].
This is a system ofM ordinary differential equations of

second degree for the M different amplitudes Xm. Two
boundary conditions are needed, the first one being the
assumption that the perturbation vanishes deep into the
plasma. The second boundary condition comes by mini-
mizing the surface contributions from the plasma poten-
tial and kinetic energy and from the vacuum term, which
leads to N equations:∑

m

{⟨
ei(k−m)θS0

k,m

⟩
+
⟨
ei(k−m)θS1

k,m

⟩ i

n

∂

∂ψ
+

+δvack,m

}
Xm = 0 ,

(61)

where the surface coefficient PSk,m are given by equa-
tions 38 and and equivalent for KSk,m and the vacuum
term is given by the integrand of equation 53. These M
equations provide a relation between the plasma pertur-
bation of the M modes at the boundary.
The solution of this system of equations has to be done

numerically. This will be the subject of a future paper.

III.1. Identification of terms

The terms due the plasma potential energy, given by
equation 38, clearly show the intuitive structure of equa-
tion 4, where the stabilizing and potentially destabilizing
terms can be identified:

• The stabilizing magnetic terms, described by
1
µ0

∣∣Q∣∣2, have only a normal and a geodesic com-

ponent, as the parallel component is minimized
to zero. The normal component, reflected in the

fifth term of P̃ V
0

k,m, relates to 1
J
∂X
∂θ of equation

9 whereas the geodesic component is reflected in

the first terms of P̃ V
0

k,m, P̃ V
1

k,m and P̃ V
2

k,m and

relates to 1
J
∂U
∂θ − SX of equation 9.

• The stabilizing plasma compression term is not
present as this is minimized to zero by adjusting
the parallel component of the perturbation.

• Since the geodesic curvature is related to ∂σ
∂θ

through equation 11, the last term of P̃ V
0

k,m, along
with the part containing the complex conjugate of

the second term of P̃ V
0

k,m and the second term of

P̃ V
1∗
m,k represent the destabilizing term due to the

pressure gradient. This is the main driving term of
the ballooning instability, −2 (ξ · ∇p) (κ · ξ∗).

• Finally, through equation B10, the other part of

the second term of P̃ V
0

k,m, the third and fourth

term of P̃ V
0

k,m, the second term of P̃ V
1

k,m and the

third terms of P̃ V
1

k,m and P̃ V
1∗
m,k correspond to

the destabilizing term due to the parallel current σ.
This is the main driving term of the kink instability,
−σ (ξ∗ ×B) ·Q.

For the plasma kinetic energy, a similar analysis can

be easily made, showing that the first term of K̃V
0

k,m

corresponds to the normal part and all the rest to the
geodesic part. The parallel part was neglected.

III.2. Axisymmetric approximation

In the axisymmetric approximation, employed in [12]
and subsequent papers, a derivation has been done simi-
lar to the one in the work presented here, with the major
exception that there it is assumed that the plasma equi-
librium as well as the perturbations have axisymmetric
symmetry. This results in simplifications in the deriva-
tions, but also limits the applicability of the results.

The axisymmetric results equivalent to equation 60
from [12] are based on the theory derived in [6]. However,
the comparison between the results from [12] and the re-
sults from this work, with the axisymmetric approxima-
tion inserted, is only feasible experimentally, by actually
calculating the energy for certain test cases, because the
direct axisymmetric results in [12] are not written in a
compact and clearly self-adjoint form, and could be writ-
ten in a virtually unlimited number of similar ways.

What is shown here, however, is a demonstration of
the agreement between the results from [6], on which the
direct axisymmetric results are based, with equation 4,
which is the basis of the 3D theory developed here.

First of all, the “straight field line angle” ω of [12]
is identified as the flux coordinate θF which is related
to the measure of the length along the magnetic field,
since B = 1

JF
eθF as seen from equation 7. Therefore, the
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following relations between the flux coordinates and the
axisymmetric coordinates:

αF = ζA −
∫ χA

ν dχ

ψF = ψA

θF =
1

q

∫ χA

ν dχ ≡ ω ,

(62)

to transform from the 3D flux coordinate system
(αF, ψF, ζF) used here to the axisymmetric coordinate
system (ψA, χA, ζA) used in [6] (with the orientation in-
verted, consistent with subsequent papers), can be found.
Using this, expression 27 is simplified for the axisym-

metric case and inserted into the expression for the min-
imizing geodesic perturbation Um from equation 25:

U0
m =

m

n
ω′
(
1 +

nq −m
nq

f2/R2

B2

)
+

i

n

(
−m
n

f2/R2

B2

1

ν

(
ν

q

)′

+
1

JA
∂JA
∂ψ

+ 2κn

)

U1
m = 1 +

nq −m
nq

f2/R2

B2
.

(63)

This expression corresponds to the direct axisymmet-
ric result found in [6, equation 12], which can be seen
by inserting the slow dependence X = Xme

−imω and
U = Ume

−imω (the fast ζ-dependence has already been
accounted for) and rewriting it for Um:

Um =
i

n

∂Xm

∂ψ
+
m

n
ω′Xm + eimω

i

n
Qconnor , (64)

with Qconnor given at the bottom of the same page. In-
deed, this yields:

Qconnor =
f2/R2

B2ν
JABk∥

(
1

n

∂X

∂ψ

)
+X

(
1

JA
∂JA
∂ψ

+ 2κn

)
=

{
f2/R2

B2

[
nq −m
nq

∂

∂ψ
−

(
m

n

(
1

ν

)(
ν

q

)′

+ ω′im
nq −m
nq

)]
(Xm) +Xm

(
1

JA
∂JA
∂ψ

+ 2κn

)}
e−imω ,

(65)

which is equivalent to equation 63.
Subsequently, inserting the minimized Um into equa-

tion 4, assuming axisymmetry and taking the same steps
as to get to equation 36, inserting fast Fourier modes, [12,
equation 1] could be relatively easily derived, which is the
starting point of the theory behind elite. Introducing
the slow Fourier modes then leads to the axisymmetric
equivalent to equation 60. As the original derivation in
[6] was quite cumbersome, this is a useful alternative that
also provides deeper physical insight. The derivation has
been verified by the first author but, due to lack of space,
is only mentioned here, without reproducing it.
These results hint at the correctness of the 3D theory

derived here, at least considering the axisymmetric limit
as a verification and the necessary Hermiticity. More
thorough comparisons will be the subject of future work.

IV. CONCLUSIONS

Intermediate to high linear n modes in full 3D configu-
rations were investigated theoretically using mhd theory.
This is of interest because of peeling-ballooning modes,

which are thought to play an important role for the cyclic
behavior of elms in magnetic fusion reactors and could
also clarify some of the issues concerning the limits of
the high confinement H-mode observed in many of these
devices.

The work presented here builds up on the previous
theoretical basis in [19] and [12], which was based in turn
on [6]. The major innovation in this work is that the
condition of axisymmetry is relaxed and thus provides
results which are more widely applicable than those from
previous studies.

Thus, a full 3D treatment of the stability of peeling-
ballooning modes with intermediate to high nmode num-
bers, valid also near the edge of the plasma, was devel-
oped making use of a Fourier expansion that included a
multiple-scale analysis to separate the spectral content
of the equilibrium and the perturbation, based on the
extended energy principle first cornered by [18].

The results of the theoretical investigation of this work
are a concise Hermitian set of M second order linear dif-
ferential equations for M poloidally coupled modes re-
sulting from the energy minimization. These equations
have to obey two boundary conditions each, one of which
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is the vanishing of the modes deep inside the plasma and
the other one is a relation found by minimizing the sur-
face terms of the energy of the plasma and the vacuum.
This system of equations has to be solved numerically,
which will be the focus of future work.
The 3D equations derived in this study have been

applied to the axisymmetric situation and it has been
demonstrated that previous results in this approxima-
tion can be reproduced, which provides an initial proof of
the correctness of the theoretical model developed here.
Further simplified verification of the validity of the 3D
approach will be carried out when the numerical imple-
mentation of the model is developed. Subsequently, the
results will be used to investigate various 3D effects, such
as toroidal ripple in tokamaks, the behavior of perturba-
tion coils for the control of elms, the influence of a tbm

module, etc.
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APPENDICES

Appendix A: Calculation of Q

By using

∂

∂α

[(
−Θα +

i

n

(
∂

∂ψ
+Θθ

∂

∂θ

))(
Xm (ψ) ei(nq−m)θ

)]
=

∂

∂α

[(
−
(
Θα + q′θ +Θθ

nq −m
n

)
+

i

n

∂

∂ψ

)
(Xm (ψ))

]
ei(nq−m)θ

=

[
−∂Θ

α

∂α
− ∂Θθ

∂α

nq −m
n

]
Xm (ψ) ei(nq−m)θ ,

(A1)

equation 23 can be described, upon introducing the slow Fourier modes defined in equation 24, by the operators Q0
m

and Q1
m from subsection II.4:

Q0
m =

(
∂

∂θ
− nq −m

n

∂

∂α

)
Θθ +

Θi

J
∂J
∂ui

+ 2κn +
Bα
JB2

∂

∂θ

(
Θζ −Θθ

m

n

)
+
(
−Θζ +Θθ

m

n

)
Q1
m

Q1
m =− i (nq −m)

Bα
JB2

+
1

J
∂J
∂α
− 1

J
∂

∂θ

(
Bα
B2

)
+ 2κg .

(A2)

This can be simplified by expressing the pressure balance and the expressions for the curvature components described
in subsection II.1, explicitely in the (α, ψ, θ) coordinate system, making use of the Clebsch representation for the
magnetic field, B = ∇α×∇ψ. Firstly, the pressure balance becomes:

µ0p
′∇ψ =

1

J

(
∂Bα
∂θ
− ∂Bθ

∂α

)
∇α+

1

J

(
∂Bψ
∂θ
− ∂Bθ

∂ψ

)
∇ψ , (A3)

implying that, since the current lies in the magnetic flux surfaces,

∂Bα
∂θ

=
∂Bθ
∂α

and that µ0p
′ =

1

J

(
∂Bψ
∂θ
− ∂Bθ

∂ψ

)
. (A4)

Introducing this, and the fact that Bθ = B2J , in the expression for the normal and geodesic curvature:
κn =

1

Bθ

∂Bψ
∂θ

+
1

Bθ

(
gαψ

gψψ
∂

∂α
− ∂

∂ψ
+
gθψ

gψψ
∂

∂θ

)(
Bθ
2

)
− 1

J

(
giψ

gψψ
∂

∂ui

)(
J
2

)
κg =

J
B2
θ

(
Bθ

∂

∂α
−Bα

∂

∂θ

)(
Bθ
2J

)
.

(A5)
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Therefore, the operator Q0
m becomes:

Q0
m =

nq −m
n

1

Bθ

(
Bα

∂

∂θ
−Bθ

∂

∂α

)
Θθ +

∂Θθ

∂θ
+
Bα
Bθ

(
∂Θα

∂θ
+ q′

)
+

2

Bθ

∂Bψ
∂θ

+
1

Bθ

(
Θα

∂

∂α
− ∂

∂ψ
+Θθ

∂

∂θ

)
Bθ +

(
−Θζ +Θθ

m

n

)
Q1
m

=
nq −m
n

J
Bθ

B · ∇ψ ×∇Θθ + q′
Bα
Bθ

+
1

Bθ

(
∂Bψ
∂θ
− ∂Bθ

∂ψ

)
+
(
−Θζ +Θθ

m

n

)
Q1
m

=
Bαq

′ + J µ0p
′

Bθ
+
(
−Θζ +Θθ

m

n

)
Q1
m +

nq −m
n

JB · ∇ψ ×∇Θθ

Bθ
,

(A6)

with Θζ = Θα + q′θ + qΘθ. using the same technique, the operator Q1
m simplifies to:

Q1
m = −i (nq −m)

Bα
Bθ

. (A7)

The axisymmetric limit of these equations corresponds to the work done by [6] and is discussed in subsection III.2.

Appendix B: Minimization of plasma potential energy

The series of equation 18 is introduced into the plasma potential energy, given by equation 4, making use of the
expressions for the adjoint operators UTk and DUTk of II.4. This is done here term by term.

1. Line bending term

The stabilizing magnetic terms were described in subsection II.1 by the term 1
µ0
|Q⊥|2. The parallel component,

also called the magnetic compression term, was minimized to zero by the condition of equation 25 and the two
perpendicular components, also called the line bending terms, are to be calculated independently from

1

µ0

(
1

|∇ψ|2

∣∣∣∣ 1J ∂X

∂θ

∣∣∣∣2 + |∇ψ|2B2

∣∣∣∣ 1J ∂U

∂θ
− SX

∣∣∣∣2
)
, (B1)

Inserting the series of equation 18 then results in a contribution

1

µ0

1

J 2 |∇ψ|2

∣∣∣∣∣∑
m

i (nq −m)Xme
i[nα+(nq−m)θ]

∣∣∣∣∣
2

, (B2)

from the normal component, which directly leads to

1

µ0

∑
k,m

X∗
ke

i(k−m)θ

[{
(nq − k) (nq −m)

1

J 2 |∇ψ|2

}]
Xm , (B3)

and

1

µ0

|∇ψ|2

J 2B2

∣∣∣∣∣∑
m

[
DU0

m − J S +DU1
m

i

n

∂

∂ψ

]
(Xm) ei[nα+(nq−m)θ]

∣∣∣∣∣
2

, (B4)

from the geodesic component. Extracting the different orders in the derivates in ψ:

1

µ0

∑
k,m

X∗
ke

i(k−m)θ

[(
DUT,0k − J S +DUT,1k

i

n

∂

∂ψ

)(
|∇ψ|2

J 2B2

(
DU0

m − J S +DU1
m

i

n

∂

∂ψ

))
(Xm)

]

=
1

µ0

∑
k,m

X∗
ke

i(k−m)θ

[{
DUT,1k

|∇ψ|2

J 2B2
DU1

m

}(
i

n

)2
∂2

∂ψ2
+

{(
DUT,0k − J S

) |∇ψ|2
J 2B2

DU1
m

+DUT,1k

|∇ψ|2

J 2B2

(
DU0

m − J S
)
+DUT,1k

i

n

∂

∂ψ

(
|∇ψ|2

J 2B2
DU1

m

)}(
i

n

)
∂

∂ψ

+

{(
DUT,0k − J S

) |∇ψ|2
J 2B2

(
DU0

m − J S
)
+DUT,1k

i

n

∂

∂ψ

(
|∇ψ|2

J 2B2

(
DU0

m − J S
))}]

(Xm) ,

(B5)
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with the surface term, discussed in equation 32 for the adjoint operator of U∗
k equal to:

− 1

µ0

[
J i

n
DU1∗

k X∗
ke

i(k−m)θ |∇ψ|
2

J 2B2

(
DU0

m − J S +DU1
m

i

n

∂

∂ψ

)
(Xm)

]ψs

ψa

. (B6)

2. ballooning term

The term that can be driven unstable by a pressure gradient oriented in the opposite direction than the curvature
is the origin of the ballooning and interchange instability and has a contribution to the plasma potential energy equal
to

−2Xp′ (X∗κn + U∗κg) , (B7)

that leads to ∑
k,m

(−2)X∗
ke

i(k−m)θ
[
p′κnXm + UTk (κgp

′Xm)
]

=
∑
k,m

(−2)X∗
ke

i(k−m)θ

[{
κgp

′UT,1k

}
i

n

∂

∂ψ
+

{
p′κn +

(
UT,0k + UT,1k

i

n

∂

∂ψ

)
(κgp

′)

}]
Xm ,

(B8)

and a surface term [
2J i

n
U1∗
k X∗

ke
i(k−m)θp′κgXm

]ψs

ψa

. (B9)

3. kink term

The kink term represents the term that can be driven unstable by a parallel current. It has a contribution equal to

1

J
∂

∂θ
(σX∗)U + SσX∗X + σ

U∗

J
∂X

∂θ
, (B10)

which leads to∑
k,m

X∗
ke

i(k−m)θ

[
1

J
∂σ

∂θ
Um (Xm)− i (nq − k) σ

J
Um (Xm) + SσXm + UTk

(
σ

J
i (nq −m)Xm

)]

=
∑
k,m

X∗
ke

i(k−m)θ

[{
σ

J

(
UT,1k i (nq −m)− U1

mi (nq − k)
)
− 2p′κgU

1
m

}
i

n

∂

∂ψ

+

{
σ

J

(
i (nq −m)UT,0k − i (nq − k)U0

m

)
+ Sσ − UT,1k

1

n

∂

∂ψ

(
σ

J
(nq −m)

)
− 2p′κgU

0
m

}]
Xm ,

(B11)

and surface term [
1

n
U1∗
k X∗

ke
i(k−m)θσ (nq −m)Xm

]ψs

ψa

. (B12)

4. Hermitian form

Combining the contributions from all the terms, the expression for the plasma potential energy now has the form:

1

2

∑
k,m

∫ ψs

ψa

dψ

[∫
dθJX∗

ke
i(k−m)θ

{
PV 0

k,m + PV 1
k,m

(
i

n

)
d

dψ
+ PV 2

k,m

(
i

n

)2
d2

dψ2

}]
Xm , (B13)
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where the coefficients PV ik,m can be simplified to a compact and visibly Hermitian form.

The coefficient PV 0
k,m is given by a part

P̃ V
0

k,m =
1

µ0

{
(nq − k) (nq −m)

1

J 2 |∇ψ|2

}
− 2

{
p′κn +

(
UT,0k + UT,1k

i

n

∂

∂ψ

)
(κgp

′)

}

+
1

µ0

{(
DUT,0k − J S

) |∇ψ|2
J 2B2

(
DU0

m − J S
)
+DUT,1k

i

n

∂

∂ψ

(
|∇ψ|2

J 2B2

(
DU0

m − J S
))}

+

{
σ

J

(
i (nq −m)UT,0k − i (nq − k)U0

m

)
+ Sσ − UT,1k

1

n

∂

∂ψ

(
σ

J
(nq −m)

)
− 2p′κgU

0
m

}
=

1

µ0

|∇ψ|2

J 2B2

(
DU0∗

k − J S
) (
DU0

m − J S
)
+

1

J
∂σ

∂θ

(
U0∗
k + U0

m

)
+

1

µ0

(nq − k) (nq −m)

J 2 |∇ψ|2

+
σ

J
(
i (nq −m)U0∗

k − i (nq − k)U0
m

)
− 2p′κn + Sσ ,

(B14)

and some more terms equal to:

1

J
∂σ

∂θ

1

J
i

n

∂

∂ψ

(
U1∗
k J

)
+ U1∗

k

i

n

∂

∂ψ

(
1

J
∂σ

∂θ

)
− U1∗

k

1

n

∂

∂ψ

(
σ

J
(nq −m)

)
+
DU1∗

k

µ0

i

n

∂

∂ψ

(
|∇ψ|2

J 2B2

(
DU0

m − J S
))

+
1

J
i

n

∂

∂ψ

(
U1∗
k J

) σ
J
i (nq −m) +

1

J
i

n

∂

∂ψ

(
DU1∗

k J
)( 1

µ0

|∇ψ|2

J 2B2

(
DU0

m − J S
))

=
1

J
i

n

∂

∂ψ

(
U1∗
k

(
∂σ

∂θ
+ σi (nq −m)

)
+DU1∗

k

|∇ψ|2

B2

(
DU0

m

J
− S

))
,

(B15)

which are proportional to the normal derivative of a part of the coefficent PV 1
k,m, to which the surface term SV 0

k,m is
proportional as well.
The coefficient PV 1

k,m is given by

PV 1
k,m =

1

µ0

{(
DUT,0k − J S

) |∇ψ|2
J 2B2

DU1
m +DUT,1k

|∇ψ|2

J 2B2

(
DU0

m − J S
)
+DUT,1k

i

n

∂

∂ψ

(
|∇ψ|2

J 2B2
DU1

m

)}

− 2

{
κgp

′UT,1k

}
+

{
σ

J

(
UT,1k i (nq −m)− U1

mi (nq − k)
)
− 2p′κgU

1
m

}
=

1

µ0

|∇ψ|2

J 2B2

[(
DU0∗

k − J S
)
DU1

m +
(
DU0

m − J S
)
DU1∗

k

]
+

1

J
∂σ

∂θ

(
U1
m + U1∗

k

)
+
σ

J
(
U1∗
k i (nq −m)− U1

mi (nq − k)
)
+

1

µ0

1

J
i

n

∂

∂ψ

(
|∇ψ|2

JB2
DU1

mDU
1∗
k

)
,

(B16)

where the last term is proportional to the normal derivative of the coefficient PV 2
k,m. The other terms of PV 1

k,m can
be written as the sum of:

P̃ V
1

k,m =
1

µ0

|∇ψ|2

J 2B2

(
DU0∗

k − J S
)
DU1

m +
U1
m

J

(
∂σ

∂θ
− σi (nq − k)

)
, (B17)

and its conjugate. Also, the surface term PS1
k,m is proportional to PV 2

k,m.

The coefficient PV 2
k,m is given by

PV 2
k,m = P̃ V

2

k,m =
1

µ0

|∇ψ|2

J 2B2
DU1

mDU
1∗
k , (B18)

which cannot be simplified any further.
Bringing it all together results in the terms PV ik,m stated in subsection II.5.
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