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Departamento de Matemáticas, Universidad Carlos III de Madrid

Date: Junio, 2017

Web/contact: evgenia.christoforou@imdea.org

This work has been supported by IMDEA Networks Institute and the Spanish Ministry of Educa-

tion grant FPU2013-03792.



VI



TESIS DOCTORAL

ACHIEVING RELIABILITY AND FAIRNESS IN ONLINE TASK COMPUTING

ENVIRONMENTS

Autor
Evgenia Christoforou, IMDEA Networks Institute & Universidad Carlos III de Madrid

Co-Director
Antonio Fernández Anta, IMDEA Networks Institute

Co-Director & Tutor
Angel Sánchez, Universidad Carlos III de Madrid

Firma del tribunal calificador:

Presidente: Alberto Tarable

Vocal: Juan Julián Merelo Guervós

Secretario: José A. Cuesta

Calificación:

Leganés, 25 de Mayo de 2017





To my father, a great man and a great scientist...
Θάρρος

Στα δύσκολα εις την ζωήν,   να μεν λιποτακτήσεις,

ούτε τζιαι την προσπάθειαν,   στην μέση να αφήσεις.

Μες τη ζωήν την δύσκολην,  ποττέ μεν σταματήσεις,

τζι’ αν κάμεις τζιαι διακοπήν,  πάλαι να ξεκινήσεις.

Αφού εγεννηθήκαμεν,  μπροστά μας να θωρούμεν,

ούτε με σιόννια τζιαι βροσιές,  πρέπει να σταματούμεν.

Τζι’ αν αιστανθείς τον κίντυνον,  εσού να μεν κολόσεις,

ούτε τζιαι τα πιστεύω σου,  ποττέ σου να προδώσεις.

Θάρρος, Χαράλαμπος Χριστοφόρου, 2013





Acknowledgements

Before presenting this work, I would like to take a moment of the reader’s time to thank the

people who have supported and guided me through this process. First and foremost I would like to

thank my parents, without them nothing of this would have been possible. They gave me a great

opportunity in life by giving me an education, which is my “fortune” as they keep saying, and for

that I am forever grateful. I would like to thank my mother, one of the strongest women I have

ever met in my life, for her endless support, her endless careering and her endless love. Words are

not enough to describe my father’s support and guidance throughout my life. He is the kindest

person I ever met and losing him was the hardest moment of my life. Dedicating this thesis to him

is the least I can do for the person that taught me how to have courage in life. Moreover, I would

like to thank my brother and my sister for being there and sharing every step of our life together.

Moving on, I would like to acknowledge my thesis directors. It is not an exaggeration to

say that without them this work would not have been possible. They have helped mature as

a scientist in every aspect, but one of the greatest lessons that Antonio gave me was to think

out of the box, while Angel (Anxo) taught to have right-thinking. I would like to give a special

thanks to Chryssis Georgiou, for being my first supervisor and showing me how to be a researcher.

Moreover, I would like to thank my co-authors Miguel Mosteiro for the excellent collaboration all
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Abstract

We consider online task computing environments such as volunteer computing platforms run-

ning on BOINC (e.g., SETI@home) and crowdsourcing platforms such as Amazon Mechanical

Turk. We model the computations as an Internet-based task computing system under the master-

worker paradigm. A master entity sends tasks across the Internet, to worker entities willing to

perform a computational task. Workers execute the tasks, and report back the results, completing

the computational round. Unfortunately, workers are untrustworthy and might report an incorrect

result. Thus, the first research question we answer in this work is how to design a reliable master-

worker task computing system. We capture the workers’ behavior through two realistic models:

(1) the “error probability model” which assumes the presence of altruistic workers willing to

provide correct results and the presence of troll workers aiming at providing random incorrect

results. Both types of workers suffer from an error probability altering their intended response.

(2) The “rationality model” which assumes the presence of altruistic workers, always reporting

a correct result, the presence of malicious workers always reporting an incorrect result, and the

presence of rational workers following a strategy that will maximize their utility (benefit). The

rational workers can choose among two strategies: either be honest and report a correct result,

or cheat and report an incorrect result. Our two modeling assumptions on the workers’ behavior

are supported by an experimental evaluation we have performed on Amazon Mechanical Turk.

Given the error probability model, we evaluate two reliability techniques: (1) “voting” and (2)

“auditing” in terms of task assignments required and time invested for computing correctly a set

of tasks with high probability. Considering the rationality model, we take an evolutionary game

theoretic approach and we design mechanisms that eventually achieve a reliable computational

platform where the master receives the correct task result with probability one and with minimal

auditing cost. The designed mechanisms provide incentives to the rational workers, reinforcing

their strategy to a correct behavior, while they are complemented by four reputation schemes that

cope with malice. Finally, we also design a mechanism that deals with unresponsive workers by

keeping a reputation related to the workers’ response rate. The designed mechanism selects the

most reliable and active workers in each computational round. Simulations, among other, de-

pict the trade-off between the master’s cost and the time the system needs to reach a state where

the master always receives the correct task result. The second research question we answer in

this work concerns the fair and efficient distribution of workers among the masters over multiple

XIII
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computational rounds. Masters with similar tasks are competing for the same set of workers at

each computational round. Workers must be assigned to the masters in a fair manner; when the

master values a worker’s contribution the most. We consider that a master might have a strategic

behavior, declaring a dishonest valuation on a worker in each round, in an attempt to increase its

benefit. This strategic behavior from the side of the masters might lead to unfair and inefficient as-

signments of workers. Applying renown auction mechanisms to solve the problem at hand can be

infeasible since monetary payments are required on the side of the masters. Hence, we present an

alternative mechanism for fair and efficient distribution of the workers in the presence of strategic

masters, without the use of monetary incentives. We show analytically that our designed mech-

anism guarantees fairness, is socially efficient, and is truthful. Simulations favourably compare

our designed mechanism with two benchmark auction mechanisms.
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Chapter 1

Introduction

The Internet is turning into a massive source of inexpensive computational power. Ev-

ery entity connected over the Internet is a potential source not only of machine computational

power but also of human intelligence. For this reason, numerous task computing environ-

ments [8, 23, 56, 102] have been designed to harvest this computational power. One of the most

representative examples is volunteer computing initiatives, like the Search for Extraterrestrial

Intelligence (SETI)@home [79] project, that is supported by the Berkeley Open-source soft-

ware for volunteer computing (BOINC) [8]. Other representative examples are profit-seeking

platforms, such as Amazon Mechanical Turk (AMT) [102]. The advantage of these online task

computing platforms is the easy access and inexpensive computational power they provide.

We refer to the computation taking place in these environments as Internet-based task comput-

ing, and we model its components by means of a master-worker approach. A “master” entity has

a set of tasks to perform, and instead of computing them locally, she sends these tasks across the

Internet to “worker” entities that execute and report back some task result. A real computational

environment may have multiple master entities with distinct set of tasks to perform.

Unfortunately, two crucial and challenging research problems prevent Internet-based task

computing from reaching its full potential. First of all, computations carried out over the In-

ternet can not be trusted due to the fact that workers can hide behind their anonymity or simply

make mistakes. Moreover, whoever is requesting the computation may be lacking tools to ver-

ify the validity of the results. Thus, the results received from a worker can not be considered

reliable, and the whole computational environment suffers from “unreliability” issues. From this

first research challenge a complementary problem emerges, that is characterizing the nature of

the workers. Being able to understand and model the workers behavior is an essential component

to any designed solution. A second challenge arises from the fact that multiple masters may be

competing at the same time for the same workers, and thus might experience issues arising from

the inefficient allocation of the workers. This work provides a number of solutions addressing

the problem of unreliability and inefficient resource allocation in Internet-based task computing

setting. Figure 1.1 describes the two main research problems addressed in this work and how they

3



4 Introduction

Motivating Example: Online Task Computing Environments

Internet-based Computing  

Entities model

Master-Workers 

System model

3rd Research Problem: Fair Distribution 
● Competing masters
● Fair and Efficient distribution of workers

 

1st Research Problem: Reliability
● Unreliable workers
● Design a reliable computational 

system 

2nd Research Problem: Worker Characterization
● Study the behavior of workers
● Assess the validity of the proposed worker models

Figure 1.1: System model and research problems

arise from the task computing environment we consider.

Online Task Computing Platforms

This work focuses on computations taking place over the internet. By computations we refer

to the processing of tasks run by machines or the processing of tasks performed through human

intelligence. Thus, we classify computations based on the mean used for performing the task.

Further more, we sub-classify these computation with respect to the payment received. Workers

in online task computing might or might not receive monetary payments. We continue by de-

scribing four principal settings according to the above classification where online task computing

platforms are present. In Table 1.1 we summarize the features of four types of task computations

via the workers’ attributes.

Volunteer computing has been greatly embraced by the scientific community that is always

in need of cheap supercomputing power. End users engaged by the mission of the project are

willing to contribute their machine’s idle computational time. The majority of these volunteering

projects use the BOINC platform [8], with SETI@home [79] being one of the most characteristic

examples. Volunteer computing initiatives such as the one of IBM through the World Community

Grid (WCG) [3] are able to bring together organizations dealing with health, poverty and sustain-

ability with volunteers all over the Internet that want to put in a good use their idle processing

power. Besides joining a project, with altruistic motives, to support a scientific goal, a worker
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 Worker 

Monetary 
Reward 

Contribution Motivation  

Yes No Machine 
Power 

Human 
Intelligence 

Power 

Payment Altruism  Enjoyment Reputation 

 
 
 
 
Task  

Volunteer 
computing  

 X X   X  X 

Crowdsourcing X X  X X X X X 

Virtual citizen 
science 

 X  X  X X X 

Bitcoin mining  X  X  X    

 
 

Table 1.1: Summary of task computations via worker’s attributes

might also be attracted by the prestige and the reputation gain of having her contribution an-

nounced [9]. This last reason for joining the computation together with the fact that a user might

actually want to harm the project are enough to jeopardize the reliability of volunteer computing.

Several studies [8, 9, 12, 63, 77] have found evidence that reliable task results is not an a-priory

property of volunteer computing and there is a need for establishing it.

In addition to users volunteering computational resources, humans themselves connected to

the Internet are a source of computational power. The word crowdsourcing was introduced by

Howe [67] to describe the situation where human intelligence tasks are executed over the In-

ternet by humans that are given monetary, social or other kind of incentives. A profit-seeking

computation platform has been developed by Amazon, called Amazon’s Mechanical Turk [102]

(AMT). Users sign in to the platform and choose to perform a Human Intelligence Task (HIT)

in return for a monetary reward. The most common tasks encountered in AMT are closed class

questions (following the categorization in [47]), meaning that the range of answers is a limited

predefined set. The word crowdsourcing is vastly used to describe any contribution that can be

produced by a human-technology collaboration by having participant volunteer or being paid. In

this work we consider micro-task crowdsourcing as it was described above and by convention we

refer to it simply as crowdsourcing. Like volunteer computing, crowdsourcing systems can not

be considered reliable [47, 68], especially now that participants expect a monetary gain.

Another example of an application that can be considered Internet-based computing is Bitcoin

mining [23], that has attracted a huge interest from the users and the financial industry. In Bit-

coin mining workers carry out complex computations to validate transactions based on Bitcoins,

a digital currency. The computational paradigm is peer-to-peer, that is, there is no centralized au-

thority. Nevertheless, the whole system can be viewed as the master assigning tasks to workers, or

in this case, the miners. Given that miners may be deceitful, the system must include measures to

prevent or minimize this drawback. However, Bitcoin relies on the complexity of the computation
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and Bitcoin payments (proof of work) to guarantee trustworthiness [20].

Finally, another example of Internet-based task computing we could consider is virtual citizen

science [41,76]. We could say that this type of computation is a hybrid among what we call volun-

teer computing and crowdsourcing. Volunteers over the Internet willing to help scientists accept

to participate in tasks that need human intelligence to be solved. One of the most characteristic

project is Galaxy Zoo [41, 56], engaging volunteers to classify galaxies into categories, doing so

in many occasions in the form of a “fun” game. It was through the work of Von Ahn [131], that

pioneered games with a purpose, where we first saw this type of scheme for creating a more pleas-

ant experience for the volunteers. As pointed out by Kloetzer et al. [76] volunteers will gradually

learn to perform a task through these “task-game mechanisms” as they call them. Thus, this type

of volunteers actually become reliable over time and given the right incentives.

The Nature of the Workers

All of the aforementioned examples in essence follow a master-worker model. A master

process sends tasks, across the Internet, to available worker processes, which execute them and

report back the task results. Moreover, it is clear from the nature of Internet-based task computing

that workers can not be trusted. A number of works present evidence that workers might actually

misreport values in online task computing platforms [8, 9, 47, 63, 68, 75, 77]. The most trivial

reason for workers misreporting values is due to hardware or software failures happening during

the computation of the task that was not detected. Other explanations are the workers might have

ulterior motives for misreporting results or might have limited capabilities of computing a correct

result. In order to be able to provide solutions that establish reliability we need first to be able to

correctly model the worker’s behavior.

A number of attempts have been made in the past to classify these workers. In Distributed

Computing a classical approach is to model the malfunctioning (due to a hardware or a software

error) or cheating (intentional wrongdoer) as malicious Byzantine workers that wish to hamper

the computation, and thus always return an incorrect result. The non-faulty workers are viewed

as altruistic ones [122] that always return the correct result. On the other hand, a game-theoretic

approach assumes that workers are rational [4, 58, 124], that is, a worker decides whether to

truthfully compute and return the correct result or return a bogus result, based on the strategy that

best serves her self-interest (increases its benefit).

A common practice in the crowdsourcing literature is to view workers as rationals in the

general sense of the term and propose social, financial or hybrid incentives [94, 123] in an at-

tempt to improve on the reported results. Moreover, workers have been considered rationals in a

game-theoretic sense and game-theoretic models based on repeated games where proposed and

analyzed [134]. Additionally, budget minimizing mechanisms targeting an overall reliability on

a number of tasks [73], where considered. Finally, crowdsourcing workers were also viewed as

malicious able to harm the computation through a number of attacks and adversarial techniques

have been proposed [44] to deal with these attacks.
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Given the above, we can safely assume that in an Internet-based task computing system,

a number of workers will be reporting always correct task results, a number of workers will

be reporting always incorrect results, and a number of workers will be reporting both correct

and incorrect results. In order to be able to give solutions to the problem of unreliability of the

workers, we need to model their behavior under a general framework. This work looks into two

different models of the workers’ behavior.

Error probability model: We assume the presence of two type of workers. Altruistic workers

that are positive towards executing the task, and willing to provide the correct result. In

the case of a BOINC system, a “positive” worker will let its machine execute the task and

report back the result, while in the case of crowdsourcing she will aim at computing the

correct task result. Troll workers are negative towards executing a task, and want to convey

an incorrect result to the master. Hence, a troll worker can miscalculate a task on purpose

by reporting a random incorrect result. Altuistic and troll workers are subject to errors, and

thus it is possible that an altruistic worker will report an incorrect result while a troll worker

might report a correct result. Notice that in this model we do not assume that workers have

an intelligent strategy to fool the system, nor that a troll worker has any information on the

actions taken by the master or the other workers.

Rationality model: We assume the presence of three types of workers. Rational workers are

selfish in a game-theoretic sense and their aim is to maximize their utility (benefit). Thus,

they will report a correct or incorrect result based on the strategy that maximizes their

benefit. Altruistic and malicious workers have a predefined behavior, to always be honest

and cheat, respectively.

Notice that the concepts of trolls and malicious workers, in the two models mentioned above,

are very similar. The main difference among the malicious and the troll workers is that malicious

workers have an intention of harming the computation and thus they form even collusions to

achieve their goal. On the other hand, troll workers are simply not interested in providing the

correct reply.

The Nature of the Masters

Besides workers exhibiting a strategic behavior (aiming at reporting a task result that will

maximize their benefit) also the masters profiting from in the computational environment might

exhibit strategic behavior. Rationality on the master’s side has been also considered in the

past [134].

In the case of profit-seeking platforms, such as AMT, a number of requesters (as masters

are referred to in AMT) are competing to have their HITs computed. According to a study by

Ipeirotis [69] a very small amount of requesters accounts for more than 30% of the overall activity

on AMT. That study shows as well that this small percentage of the top contributor requesters
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is aiming at workers with the same skills, while their budget varies in the order of thousands

of dollars. Thus, competitive behavior might arise among requesters, especially ones that are

aiming at popular task types such as content generation or object classification, for example. The

way AMT is designed allows requesters having a strategic behavior to increase the reward for a

completed task and attract more workers participation. Another feature of AMT is that it gives

the possibility to a requester to declare a task result incorrect and refuse payment to the worker.

Thus, given the fact that requesters are limited by a budget, they might exhibit a strategic behavior

to increase their benefit by posting tasks with high payments and not rewarding the worker after

receiving the answer. This strategic behavior does not only affect the workers but also the rest of

the requesters competing for workers with the same set of skills. Thus, it is essential in Internet-

based task computing to have fair and efficient (when the workers are needed the most) allocation

of the workers among the competing masters.

Contributions & Document Organization

We address the issues of reliability and fairness in online task computing environments,

proposing solutions intended to alleviate the presence of malicious entities and incentivize the

good behavior of strategic entities, in an attempt to exploit the full potentials of this computing

environments. In particular, in this work we have three research goals:

Reliability: Achieve a reliable online task computing platform, in the presence of untrustworthy

workers, where the master receives with high probability the correct answer.

Worker Characterization: Study the behavior of workers participating in micro-task crowd-

sourcing and assess the validity of our proposed worker models. In parallel, provide key

information to design reliable crowdsourcing platforms.

Fair Distribution: Achieve a fair and efficient distribution of workers among the set of strategic

masters. That is, a worker must be executing a task for the master that has the highest

valuation for her work, at any time.

To this respect our general contributions can be summarized in the following:

We provide a comprehensive study on online task computing environments paving

the way to a broad adaptation of this easy and inexpensive source of computational power.

We abstract online task computing environments to the Internet-based task computing

system model and we model the computational entities under the master-worker paradigm.

We model the workers’ unreliable behavior under two general models, the error prob-

ability model and the rationality model.

Given the error probability model we consider tasks with multiple correct and multi-

ple incorrect solutions, while a classical assumption is to consider task with a binary set of
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solutions, thus the problem complexity increases. For this reason, we provide a study of the

two main reliability techniques: (1) auditing and (2) voting given the above assumptions.

To do so, we design algorithms using the above techniques that decide with high probabil-

ity the correct task solution for a set of tasks. We analyze and compare the computational

complexity of the algorithms in terms of time and required work from the workers. For a

detailed analysis of these contributions we refer the reader to the Contribution paragraph of

Chapter 3.

We model the workers behavior according to the rationality model and we assume

a repeated interaction with the workers. The computation is modelled using evolution-

ary dynamics and we study the conditions under which the master can reliably obtain task

results. In particular, we develop and analyze algorithmic mechanisms based on reinforce-

ment learning to provide rational workers with the necessary incentives to eventually be-

come truthful, while we use reputation to deal with malice and unresponsive workers. Our

analysis identifies the conditions under which truthful behavior can be ensured. The anal-

ysis is complemented with illustrative simulations. Detailed contributions are provided in

Chapter 4 in Sections 4.3, 4.4 and 4.5.

We provide an experimental evaluation of the workers behavior on AMT where we

identify workers with different levels of accuracy in their responses. We verify a relation-

ship among reliability and task difficulty and also the relationship among reliability and

worker’s response time. Most importantly though, we are able to conjecture that validity of

our two models characterizing the workers’ behavior.

We design a mechanism for fair and efficient distribution of the workers without the

use of monetary incentives in an Internet-based computing system, in the presence of strate-

gic masters aiming at increasing their own benefit by declaring a higher than their actual

valuation on a workers’ contribution. Analysis shows the good properties of our mechanism

while simulations compare the designed mechanism with renown auction mechanisms that

use monetary incentives. For more details on these contributions we refer the reader to the

Contribution paragraph of Chapter 6.

In the rest of the document we present our work evaluating it analytically, through simulations

and experimentally. In Chapter 2 we present the most related concepts to our designed solutions.

Additionally, we review the literature regarding reliability and fairness in Internet-based task com-

puting systems. In Chapter 3 we model the behavior of the workers under the error probability

model and we review two prominent reliability techniques assuming the presence of tasks with

multiple correct and multiple incorrect solutions. We evaluate the performance of the two tech-

niques, in terms of the master receiving the correct task results with high probability, depending

on execution time and task assignments. Moving to Chapter 4 we use the rationality model to cap-

ture the behavior of the workers. Our design goal is to achieve a reliable computational platform,
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in which the master will always be receiving the correct task result after a number of interactions

with the workers. We begin by designing solutions that assume only the presence of rational

workers, and subsequently we move forward designing solutions that assume the presence of ma-

licious, altruistic and rational workers. Since the master interacts multiple times with the same

workers, we design reputation schemes that deal with the malicious workers alleviating their im-

pact in the final task outcome. In Chapter 4 we also present solutions where the master deals

with workers being unresponsive. A solution is created where the master selects the workers to

assign the task from the whole set of workers, instead of assigning the tasks to a predefined set of

workers. Chapter 5 presents the results of an experimental evaluation of the workers’ behavior on

the AMT platform. The analysis of the received data confirms the presence of workers reporting

incorrect task results. Moreover, there is evidence of strategic behavior from the workers. The

chapter concludes with a discussion where we argue that based on the experimental data our two

models (error probability model and rationality model) capture the workers behavior. Chapter 6

presents a mechanism that solves the problem of fair and efficient distribution of the workers

among the masters in the presence of non-monetary incentives. Finally, Chapter 7 summarizes

the most important conclusions and provides a discussion on the possible future directions.



Chapter 2

Background and Related Work

There is a great amount of literature related to what we describe in this work as the master-

worker Internet-based task computing problem. In this chapter we aim at reviewing the most

closely related works giving particular emphasis to how the problem of reliability and fairness

is addressed in volunteer computing and crowdsourcing. Moreover, we provide some back-

ground on the concepts appearing in this work and we refer the reader to works that exten-

sively describe the concepts of Game Theory (GT), Mechanism Design (MD), Evolutionary Game

Theory (EGT), reinforcement learning, reputation and so forth.

2.1 Background

Before reviewing the related work, we briefly introduce some concepts relevant to with this

work.

Mechanism Design & Auction Mechanisms

The concept of GT [61, 100, 103] is used in economics, computer science, biology, political

science, etc., and tries to capture and study strategic interaction among rational agents driven by

their self-interest, beliefs and preferences. In an abstract way we can describe a game a the set

of available actions the agents have and a mapping of the agents strategies to an outcome. The

utility of an agent, determines her preferences over the possible strategies she can follow and the

strategies of the other agents. Generally an agent is considered rational when it tries to maximize

its utility. To this respect, solution concepts try to compute the outcome of a game with rational

agents. The most famous solution concept is the Nash Equilibrium (NE) [98]. The concept of

rationality [61] is used to model the human behavior and formally define the outcome of a game

with self-interested agents. A complementary approach to GT is MD [100, 103] where given a

targeted outcome, a game is designed to incentivize the rational agents in behaving in such a way

such that the desired outcome is achieved.

11
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The concepts of Algorithmic Game Theory [100], MD [103] and Algorithmic Mechanism

Design [100] have a large applicability in computer science, in the fields of distributed systems

and networks since agents interacting on the Internet are considered strategic [100]. Examples

of popular problems addressed through these fields are network routing problems, scheduling

problems, task allocation problems, etc,. In MD a designer of a game aims at choosing game

structures, called mechanisms that will result in desirable outcomes. In a game we have a system

with a number of strategic agents and a possible set of outcomes. Each agent has a type, which is

a private information of the agent, determining the agents utility over different outcomes. Thus,

an outcome is preferred by an agents if it strictly provides her with a larger utility. The problem

addressed is to compute a social choice function that selects an optimal outcome given all the

agents types. The most common social choice function is to maximize the total utility of the

agents. In order for the mechanism to achieve the desirable outcomes, a set of rules and incentives

are designed to influence the rational agents preferences.

The most straightforward mechanisms for resource allocation are auctions [97], where agents

submit bids based on their preference on the auctioned good and the outcome is to assign the

good to the agent that, for example, maximizes the revenue given the bids. An auction can be

categorized in many ways [80]; open or sealed bid, first price auctions or second price auctions.

It can be a single object auction or a multi-unit auction. If it is a multi-unit auction, objects can

be identical or not and can be sold in a single round or over sequential rounds and objects can

be complements (i.e. the value of a second object obtained that is complement of the first one

obtained increases). Multi-unit auctions can be classified as uniform price auctions or discrimi-

natory price auctions. In uniform price auctions there is a fix amount of k highest bids that win

the auction and winners pay the same amount; bidder also declare the units of good they desire.

In the work presented in Chapter 6 we are assuming a multi-unit, sealed, sequential (with many

objects auctioned at each round) auction where auctioned goods are not complements. When the

agents (bidders) in an auction know how much they value a good, and this information is only

known to them, this describes a situation of private values [80], which is the case in this work.

One of the most celebrated auction mechanisms are the ones belonging to the Vickrey-Clark-

Groves (VCG) [16, 100, 103] family of mechanisms, where an agent’s dominant strategy is to be

truthfully revealing its preferences, independently of the other agents actions. A mechanism that

has this property is called strategy-proof.

Evolutionary dynamics & Evolutionary Game Theory

Evolutionary dynamics were first studied in biology as a tool to study the mathematical prin-

ciples according to which life is evolving [101]. Since then, a number of fields were inspired by

the principles of evolutionary dynamics (e.g., sociology, economics, artificial intelligence) and a

variety of mechanisms was developed, aiming to accurately model the process of evolution. The

work presented in Chapter 4 is inspired by dynamics of evolution as a mean to model workers

adaptation to a truthful behavior.
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The dynamics of evolution have been studied under the principles of EGT. Maynard-Smith

and Price [125, 126] introduced the concept of EGT in an effort to apply game theoretical ideas

to understand evolving populations of lifeforms. This made Maynard-Smith [126] adjust the

traditional concept of strategy, equilibrium, and the nature of a player’s interaction, so that a

player would learn how to optimize its behavior and maximize its return. However, while in

traditional GT players choose a strategy from their strategy sets, EGT in biology is dealing with

species inheriting possibly mutated strategies. When referring to social entities such as humans,

evolution is understood as a learning process akin to “cultural evolution” [64]. Cultural evolution

implies an analogy between learning and biological evolution. For the existing analogies between

learning, at the individual level, and biological evolution, we refer the reader to a paper by Borgers

and Sarin [26].

In EGT, instead of the NE [98] , Maynard-Smith and Price used the Evolutionarily Stable

Strategy (ESS) concept [45, 57, 115, 132]. A strategy is called evolutionarily stable if, when the

whole population is using this strategy, any group of invaders (mutants) using a different strategy

will eventually die away over multiple generations (evolutionary rounds). All ESS are NE but

the reverse is not true. Our work is driven by the concept of ESS and we wish to have a similar

stable strategy among workers that would guarantee reliability. Even if a mutant worker decides

to change its strategy to cheating, it will be soon brought back to an honest strategy. Instead of the

one-shot and repeated games of classical GT, EGT assumes that the game is played repeatedly

by players randomly drawn from large populations, uninformed of the preferences of opponents.

In our work we do not wish to change the set of players as evolutionary rounds progress, but

we rather talk about “cultural evolution”, where workers change their strategies as a process of

learning, rather than being replaced themselves.

Reinforcement Learning & Aspiration Level

While evolution operates on the global distribution of strategies within a given population, re-

inforcement learning [128] operates on the individual level of each member of the population. A

well-known model of reinforcement learning is Bush and Mosteller’s model [28]. In this model,

the players have limited information and they play in discrete time repeatedly the same normal-

form game. At each point in time, the players are characterized by a probability distribution over

their strategy sets. Players’ choices are random, since they are affected by some unpredictable

“psychological” factor. This probability distribution is adjusted over time in response to expe-

rience. This experience is gained through repeated interactions of the players with the system,

based on their strategies and the received payoffs. Positive payoffs reinforce the strategy just

chosen, and negative payoffs discourage the use of that strategy.

Specifically, Bush and Mosteller’s model is an aspiration-based reinforcement learning model:

Players adapt by comparing their experience with an aspiration level. There are several models

of how aspirations are formed and adjusted over time, formally described in a study by Bendor et

al. [21]. In the work presented in Chapter 4, we use a simple model where aspiration is fixed by the
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workers and does not change during the evolutionary process (as in [22]). For more information

on the different reinforcement learning models and comparisons between them we refer the reader

to a paper by Laslier et al. [85] and a study by Izquierdo and Izquierdo [70].

A survey by Phelps et al. [108] and an article by Conitzer and Sandholm [42] take a new

approach on MD by introducing the concept of evolutionary mechanism design. Evolutionary

mechanism design assumes an engineering approach, based on an incremental process that creates

a partly automated mechanism design. The evolutionary mechanism has a continuous interaction

and feedback from the current mechanism, as opposed to classical mechanism design, which after

the mechanism is introduced in the system, remains in the same NE forever. Looking at it from a

different perspective, evolutionary mechanism design is analogous to EGT. Just as players may

be forced to gradually adjust their strategies, in an analogous manner mechanisms are gradually

making adjustments in their rules with respect to what strategies are currently in play. In some

way, our mechanism can be seen as an evolutionary mechanism, since the probability of auditing

of the master and the probability of cheating of the workers change, which is similar to changing

the mechanism.

Distributed computation in the presence of selfishness was studied within the scope of com-

binatorial agencies in Economics [17–19, 48]. The basic model considered is a combinatorial

variant of the classical principal-agent problem [92]: A master (principal) must motivate a col-

lection of workers (agents) to exert costly effort on the master’s behalf, but the workers’ actions

are hidden from the master. Instead of focusing on each worker’s actions, the focus is on complex

combinations of the efforts of the workers that influence the outcome. The principal-agent ap-

proach deals in general with designing contracts between the principal and the workers that allow

the principal to get the most out of the workers without knowing a priori what their actual capa-

bilities are. One difference with respect to our master-worker model is that, the worker’s actions

cannot really be viewed as hidden in our setting. Another important difference is that our scheme

considers worker punishment, as opposed to the schemes in combinatorial agency where workers

cannot be fined (limited liability constraint); this is possible in our framework as worker’s actions

are contractible (either a worker truthfully performs a task or not).

In the work of Rose and Willemain [112] the principal-agent problem is extended to evolu-

tionary learning, and bounded rationality of the agents is assumed. Players’ learning is simulated

with a genetic algorithm that roughly mimics selection and mutations in biological evolution.

Changes in the system are externally induced through the use of incentives. The agents’ learning

is aided by the principal’s incentives that are used to adjust the learning, according to the output

the principal desires. The principal is also able to use an artificial selection procedure to identify

high performing agents for its own benefit.

Compared with the work of Rose and Willemain [112], in our line of work the learning model

is different (in addition to the differences our work has with the principal-agent model). We

assume that the learning procedure of the players remains the same through the evolutionary

process. In contrast, in the more general model of Rose and Willemain, the learning procedure of
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the players may change over time and players can experience mutations. In both works incentives

are used to impose a desired behavior over time. But in [112] bounded rationality has been used,

while in our work no cognitive limitation of the workers is assumed.

Reputation

In Chapter 4 we use reputation to deal with malice. The master reinforces its strategy as a

function of the reputation calculated for each worker. Reputation has been widely considered in

on-line communities that deal with untrustworthy entities, such as online auctions (e.g., eBay)

or Peer to Peer (P2P) file sharing sites (e.g., BitTorrent); it provides a mean of evaluating the

degree of trust of an entity [72]. Reputation measures can be characterized in many ways, for

example, as objective or subjective, centralized or decentralized. An objective measure comes

from an objective assessment process while a subjective measure comes from the subjective belief

that each evaluating entity has. In a centralized reputation scheme a central authority evaluates

the entities by calculating the ratings received from each participating entity. In a decentralized

system entities share their experience with other entities in a distributed manner. In our work,

we use the master as a central authority that objectively calculates the reputation of each worker,

based on its interaction with it; this centralized approach is also used by BOINC.

The Berkeley Open-source software for volunteer computing (BOINC) system itself uses a

form of reputation [11] for an optional policy called adaptive replication. This policy avoids repli-

cation in the event that a job has been sent to a highly reliable worker. The philosophy of this

reputation scheme is to be intolerant to cheaters by instantly minimizing their reputation. Our

mechanism differs significantly from the one that is used in BOINC. One important difference

is that we use auditing to check the validity of the worker’s answers while BOINC uses only

replication; in this respect, we have a more generic mechanism that also guarantees reliability of

the system. Notwithstanding inspired by the way BOINC handles reputation we have designed

a BOINC-like reputation type in our mechanism (called Boinc). The adaptive replication policy

currently used by BOINC has changed relatively recently. BOINC used to have a different pol-

icy [10], where a long time was required for the worker to gain a good reputation but a short time

to lose it. In this work we evaluate the two policies used by BOINC, adapted of course to our

mechanism. We call the old policy Legacy Boinc and we seek to understand the quantitative and

qualitative improvements among the two schemes.

Sonnek et al. [127] use an adaptive reputation-based technique for task scheduling in volunteer

setting (i.e., projects running BOINC). Reputation is used as a mechanism to reduce the degree

of redundancy while keeping it possible for the master to verify the results by allocating more

reliable nodes. In our work we do not focus on scheduling tasks to more reliable workers to

increase reliability but rather we design a mechanism that forces the system to evolve to a reliable

state. We also demonstrate several tradeoff between reaching a reliable state fast and the master’s

cost. We have created a reputation function (called reputation Linear) that is analogous to the

reputation function used in [127] to evaluate this function’s performance in our setting.
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2.2 Related Work

In this section we review the most relevant works addressing the issue of reliability in Internet-

based task computing systems and fair resource allocation without the use of monetary incentives.

Related to the topic of reliability we review a number of works considering the presence of mali-

cious, altruistic and rational workers.

Presence of Malicious & Altruistic Workers

Sarmenta [118] was among the first that introduced the problem on reliability in volunteer

computing. In his work he assumed the presence of malicious and altruistic workers, with only the

malicious workers having a constant probability of submitting an erroneous result and binary set

of response. Based on these assumptions he introduced sabotage-tolerance mechanisms that used

voting and a spot checking technique (similar to auditing in our work). Given the assumption that

altruistic workers will always reply with the correct task result, the mechanisms combine voting

with challenges to create a reputation for each worker and increase the systems’ reliability while

trying to keep redundancy low.

In the work of Kondo et al. [77], the error detection mechanisms presented in the work of Sar-

menta are evaluated with real data gathered from the XtreamLab project that uses the BOINC [8]

infrastructure. Through this work the errors generated in desktop grid applications are character-

ized. They conclude that a large fraction of errors is coming from a very small portion of workers.

Also they show that little correlation between simultaneous malicious workers exist. Addition-

ally, there is a large variability of the set of malicious workers over time, with the exception of a

few frequent offenders. Also care has to be taken if blacklisting or credibility is used. They derive

the conclusion that a large number of tasks and time are required to achieve low error rates with

spot-checking and that, in general, to achieve low error rates it is better to use majority voting.

In the work of Fernández et al. [51], an asynchronous distributed system is considered where

the master processor sends tasks to a collection of n workers and a worker may deliberately

return an incorrect result in an effort to harm the master. Hence, they consider workers to have

a predefined behavior: either they are malicious or correct. The authors model with an explicit

parameter d the probability that the master will receive a reply from a worker on time. The master

employs majority voting in accepting the correct result of a task. In order to analyze a worst case

scenario the assumption that malicious workers reply and return the same incorrect result is made

(thus a form of collusion is assumed). For each task assigned to a worker the master is charged

with one work unit. The goal of the master is to accept the correct task result with high probability

of success 1 − ε, ε � 1, and with the smallest possible amount of work. A probabilistic bound

on the number of malicious workers is considered, with a probability p < 1/2 of any worker

processor being faulty. Lower bounds on the minimum amount of (expected) work required are

given, so that any algorithm accepts the correct reply with probability of success 1− ε.
A single communication-round protocol is proposed, where the master decides upon the cor-
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rect reply by the end of the round. Two algorithms for the master using different decision strate-

gies are developed: a majority-based and a threshold-based algorithm. The authors show that both

algorithms obtain the same probability of success 1 − ε and derive similar upper bounds on the

(expected) work required in doing so. Also they show that under certain conditions, these upper

bounds are asymptotically optimal with respect to the shown lower bounds. This work shows that

it is possible to devise mechanisms for executing tasks reliably with high probability and low cost

in the presence of malicious worker processors and unreliable communication, and do so with

provable analytical guarantees. The work proposed by Fernández et al. [51] takes into account

the conclusions derived by the work of Kondo et al. [77], that in general achieving low errors it

is better to use majority. Also considers the unreliability of the network and unavailability of the

workers something that is not considered in the work of Sarmenta.

In their work Konwar et al. [78] remove the assumption that the probability of a worker being

malicious is known and new algorithms are proposed to approximate this probability. The lower

bounds on the amount of work necessary, when the set of responses is binary, are comparable

to the work complexity of our proposed algorithms. These works assume that all workers might

fail in every round with a certain probability. In our work we take a more realistic assumption,

considering that workers might reply incorrectly with a different probability related to their nature

(that is, we assume two types of workers’ failures).

The work in [81] proposes a distributed verification mechanism in which workers can verify

each other’s tasks. This approach can potentially aid the master, especially in multi-round compu-

tations, from performing the verification by itself. The authors have incorporated their distributed

checking mechanism in the BOINC server software. The goal of their mechanism is to give re-

wards only to altruist workers and prevent the system with being flooded with incorrect results.

Here the malicious workers are assumed to form a single coalition. The focus in our work is not to

design a verification mechanism, but instead to limit the use of auditing to the minimum (in such

a case, the master does not suffer a prohibitively large overhead for auditing). Also, the verifica-

tion mechanism developed in [81] assumes that no more than 20% of the workers are malicious;

otherwise their mechanism fails to verify the correctness of a result. This bound is significantly

smaller than the one assumed in [51] (50%). Our work, is not subject to any such limitations

(due to the central auditing employed by the master), but it does trade cost with reliability (more

auditing is needed if the number of malicious workers is large).

In their work Zhao and Lo [135] compare voting to challenges (called Quiz) under two as-

sumptions: that all malicious workers return the same incorrect result or that malicious workers

return distinct results. They use as performance metrics the accuracy and overhead, and through

simulations they show the trade-off among these performance metrics and the two reliability

techniques. Their work is mostly experimental and does not provide any complexity analysis.

Additionally they do not assume a density of solutions nor an error probability on the altruistic

workers.

Karger et al. [73] propose an algorithm that minimizes the degree of redundancy needed
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for each task while achieves an aimed total reliability of the tasks on a one-shot assignment.

Their proposed algorithm assigns tasks to workers based on a bipartite graph and based on that

graph their inference algorithm decides upon the correct task result of the task after a number

of iterations. They conclude that if they have a certain information on the quality of the crowd

their algorithm performs better than using majority to infer the correct solution. Like in our work

a kind of malicious and altruistic workers are assumed, named spammers and hammers. Unlike

in our work here spammers will submit a correct answer with probability 1/2 and hammers will

always submit a correct answer. More over tasks with binary solutions are assumed. Like us

thought they assume that tasks have the same difficulty and the probability of replying incorrectly

does not depend on the particular task.

Finally the work of Laredo et al. [84] takes a different approach designing scalable evolution-

ary algorithms resilient to failures, that is to errors arriving from potentially malicious workers,

and analyzes experimentally the speed by which the system converges. In their experiments they

considered two paradigms of evolutionary computation: genetic algorithms and genetic program-

ming. Their model assumes the presence of workers that join and leave the computation for a

limited period of time, an assumption that we explore as well in Section 4.5.

Presence of Rational Workers

Under the classical game-theoretic view, workers act on their own self-interest and they do not

have an a priori established behavior (malicious or altruistic). They are assumed to be rational [4,

58]. In other words, the workers decide on whether they will be honest and report the correct

task result, or cheat and report a bogus result, depending on which strategy increases their benefit

or utility. Under this view, Algorithmic Mechanisms [4, 99] are employed, where games are

designed to provide the necessary incentives so that processors’ interests are best served by acting

“correctly.” In particular, the master provides some reward (resp. penalty) should a worker be

honest (resp. cheat). The design objective is for the master to force a desired unique NE [98], i.e.,

a strategy choice by each worker such that none of them has an incentive to change it. That NE is

the one in which the master achieves a desired probability of obtaining the correct task result.

The work by Yurkewych et al. [133] considers computational grids where clients are finan-

cially compensated for their work. The work considers rational workers [124], that is, the work-

ers do not have a pre-defined behavior, but instead they are selfish and seek to maximize their

expected profit. In particular, the workers follow a cheating strategy only if that increases their

expected profit compared to an honest strategy. As with the work in [51], redundant task allo-

cation is employed: the master sends the same task to several workers and collects their replies.

Also it is assumed that workers collide into teams, and each team returns the same result. Since

workers are rational in a game-theoretic sense, incentives are given to the workers in order to be

truthful. If workers are caught cheating, they are penalized. For this purpose, an auditing mech-

anism is used. This work assumes that the communication is reliable. In more detail, in [133], a

game is developed, called Internet Auditing Game as follows: The master chooses a set of work-
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ers, announces the probability by which it will audit and sends the task to the workers. If the

master audits then it rewards honest workers and penalizes cheaters. If it does not audit and there

is a strong majority of workers (more than 50%) that return the same result, then it rewards the

members of the majority and penalizes the rest. If there is no strong majority, then no reward/pun-

ishment takes place, the master chooses again randomly a set of workers and re-initiates the same

process with the same task (but no knowledge is used from the previous round). That is, not

always a single-round protocol is followed for a specific task, whereas our frameworks consider

a single-round interaction per task. As indicated experimentally by Kondo et al. [77], a task may

take more than one day of Central Processing Unit (CPU) time to complete. Hence, repeating the

computation of a task seems to waste useful computation time.

The master in [133] has a fixed budget for computing a task, that includes the auditing cost

and the rewards to the workers cost. The goal of the master is to guarantee that it will get the

correct reply without exceeding its budget. Bounds for the auditing probability are computed to

guarantee that workers have incentives to be honest in three scenarios: redundant allocation with

and without collusion, and single-worker allocation. The authors conclude that single-worker

allocation is a cost-effective mechanism, especially in the presence of collusions. In our work we

do not restrict the budget of the master, but instead, we show trade-offs between reliability and

cost (hence considering budgets implicitly).

A later work by Fernández et al. [52] considers Internet-based master-worker computations

from a game-theoretic point of view. These computations are modeled as games where each

worker is assumed to be rational and can choose to cheat (i.e., fabricate a reply and return it to

the master), or be honest (i.e., compute and return the correct result). A general single-round

protocol is presented where the master assigns the task to n workers. Each worker cheats with

a probability and the master verifies the answer with some probability. If the master verifies,

then it rewards and punishes workers appropriately. If the master does not verify, then it rewards

the workers according to one of three reward models: (a) “majority” reward model, where the

majority of workers is rewarded, (b) “all” reward model the master rewards all workers and (c)

“none” reward model the master does not reward at all. Cost-sensitive mechanisms that provide

the necessary incentives for the workers to truthfully compute and return the correct result are

designed. The objective is to maximize the probability that the master will obtain the correct task

result while minimizing its cost. For this purpose the authors consider a set of realistic payoff

parameters that can model the environment considered in a game-theoretic sense. Four different

games are considered: (a) a game between the master and a single worker (1 : 1 game), (b) a

game between the master and a workers played n times, each with a different worker (1 : 1n

game), (c) a game with a master and n workers (1 : n game) and finally, (d) a game with n worker

and the master participating indirectly (0 : n game). Combined with the three reward models the

authors have considered twelve games in total. The authors analyze the conditions under which a

unique NE [98] is reached for each of the twelve games. Thus, the analysis leads to mechanisms

where the master can choose the game conditions that guarantee a unique NE that best fits its
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goal. Finally they have identified and proposed specific mechanisms for two realistic scenarios,

a volunteer computing scenario (like Search for Extraterrestrial Intelligence (SETI)@home [79])

and a profit-seeking company that buys computational cycles from Internet computers and sells

them to customers in the form of a task-computation service (like Amazon Mechanical Turk

(AMT) [102]).

The authors in [52] consider a weak form of collusion, where all cheaters return the same

incorrect result (we make the same assumption in our work as well). This leads to a worst case

analysis, covering all other scenarios with weaker types or no worker collusions. Also they make

the assumption that if a worker does not perform the task, then it is almost impossible to guess

the correct answer (in other words, guessing the correct result is very unlikely); we make this

assumption in our work as well (see Chapter 4). Also, in [52] a verification mechanism is

assumed where the master can verify which workers have truthfully performed the task, without

computing the task. Hence, the master by verifying does not necessarily obtain the correct result,

for example when all workers cheat.

Compared with the work of Yurkewych et al., the work of Fernández et al. [52] studies more

algorithms and games, considers richer payoffs, probabilistic cheating and shows reacher trade-

offs between reliability and cost. However they share a common conclusion: under certain con-

ditions non-redundant task allocation is best. This motivates the need for better mechanisms

that would make redundant allocation more effective. Considering knowledge gained in previous

interactions for future task computations is a promising direction, as we observe in this work.

Also in the work of Fernández et al. [53] workers are considered rational behavior on the side

of the workers in a game-theoretic sense. The authors considered that rational workers might col-

lude and they analytically present parameter conditions where a unique NE exist and the master

obtains the correct answer. Finally, in [134] the authors consider a crowdsourcing setting and

present a game-theoretic model based on repeated games, where workers and masters are con-

sidered selfish. They propose a class of incentive protocols that are based on social norms and

analyze the social welfare of the platform proving that it can operate close to Pareto efficiency.

Presence of Altruistic, Malicious & Rational Workers

Eliaz [49] seems to be the first to formally study the co-existence of Byzantine (malicious)

and rational players. He introduces the notion of k-fault-tolerant NE as a state in which no player

benefits from unilaterally deviating despite up to k players acting maliciously. He demonstrates

this concept by designing simple mechanisms that implement the constrained Walrasian function

and a choice rule for the efficient allocation of an indivisible good (e.g., in auctions). Abraham et

al [4] extend Eliaz’s concept to accommodate colluding rational players. In particular they design

a secret sharing protocol and prove that it is (k, t)-robust, that is, it is correct despite up to k

colluding rational players and t Byzantine ones.

Aiyer et al. [5] introduce the BAR model to reason about systems with Byzantine (malicious),

Altruistic, and Rational participants. They also introduce the notion of a protocol being BAR-



2.2 Related Work 21

tolerant, that is, the protocol is resilient to both Byzantine faults and rational manipulation. (In

this respect, one might say that our aim is to design mechanisms that are BAR-tolerant.) As

an application, they designed a cooperative backup service for P2P systems, based on a BAR-

tolerant replicated state machine. Li et al [90] also considered the BAR model to design a P2P live

streaming application based on a BAR-tolerant gossip protocol. Both works employ incentive-

based game theoretic techniques (to remove the selfish behavior), but the emphasis is on building

a reasonably practical system (hence, formal analysis is traded for practicality). Moreover, Li et

al [89] developed a P2P streaming application, called FlightPath, that provides a highly reliable

data stream to a dynamic set of peers. FlightPath, as opposed to the above-mentioned BAR-based

works, is based on mechanisms for approximate equilibria [30], rather than strict equilibria. In

particular, ε-Nash equilibria are considered, in which rational players deviate if and only if they

expect to benefit by more than a factor of ε. As the authors claim, the less restrictive nature

of these equilibria enables the design of incentives to limit selfish behavior rigorously, while it

provides sufficient flexibility to build practical systems.

Gairing [55] introduced and studied malicious Bayesian congestion games. These games

extend congestion games [113] by allowing players to act in a malicious way. In particular, each

player can either be rational or, with a certain probability, be malicious (with the sole goal of

disturbing the other players). As in our work, players are not aware of each other’s type, and this

uncertainty is described by a probability distribution. Among other results, Gairing shows that,

unlike congestion games, these games do not in general possess a NE in pure strategies. Also he

studies the impact of malicious types on the social cost (the overall performance of the system)

by measuring the so-called Price of Malice. This measure was first introduced by Moscibroda et

al [96] to measure the influence of malicious behavior for a virus inoculation game involving both

rational (selfish) and malicious nodes.

In an article by Alon et al. [7] the notion of Bayesian ignorance is presented. Bayesian ig-

norance is quantified by comparing the social cost obtained by players that have local views in

a Bayesian game to the expected social cost of players with global views. The authors assume

the existence of both altruistic and rational players and present their derived results on a specific

congestion game. The main result reached is that having rational agents bear a local view is

best for the social cost. Relating to our model all workers and the master have the same view

of the system, having workers with different views is something that can not be applied to our

framework.

Besides investigating the co-existence of malicious and rational players, also the co-existence

of altruistic and rational players has been considered. Hoefer and Skopalik [65] study congestion

games with altruist players, assuming a level of altruism βi for each player i: βi = 0 being a pure

selfish and βi = 1 being a pure altruist player. The work of Kuznetsov and Schmid [83] describes

arbitrary social relationships between players through a social range matrix. Their work considers

the existence of different degrees of rationality or altruism, and the existence of malicious players

as well. Their definition of maliciousness and altruism is with respect to the whole set of players.
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(I.e., malicious players aim at reducing the utility of the rest of players, while altruistic players

aim at increasing these utilities.) Instead, in the context of master-worker task computing, we

assume that maliciousness and altruism is with respect to the master.

In an earlier work [31], we considered the presence of malicious, altruistic and rational work-

ers in the presence of an unreliable communication mean and unavailable workers. Two algorith-

mic mechanisms were designed providing incentives to the rational workers to act correctly, while

alleviating the malicious workers’ actions and coping with the unreliability of the network. The

designed solutions considered a one-shot (or stateless) interaction of the master with the work-

ers, in the sense that the master decides about the outcome of an interaction with the workers

involving a specific task, without using any knowledge gained by prior interactions. Each of the

designed mechanisms implements an instance of a Bayesian game. Assuming that the stochastic

distribution of the workers over the three types is known, analysis provides the probability of the

master obtaining the correct result and the master’s utility, while identifies the conditions under

which the game has a unique NE.

Resource Allocation & Mechanisms without Monetary Incentives

The concept of mechanisms without money has been studied before by Schummer and Vohra

[120] and Procaccia and Tennenholtz [110]. We are focusing on mechanisms for resource allo-

cation/distribution. To this respect, a related work is the one by Guo et al. [60]. They study the

problem of allocating a single item over multiple competing agents in a repeated setting, without

the involvement of money. To do this, they introduce an artificial payment system; they propose a

number of repeated Bayes-Nash incentive compatible mechanisms and analyze how competitive

they are with mechanisms using money. In their setting they assume, like we do, that agents learn

their private values before each interaction, and also that preferences are i.i.d according to a dis-

tribution that does not change over time. In a later work, Guo and Conitzer [59] design a strategy

proof mechanism for allocating multiple heterogeneous goods among two agents, in a single shot,

prior-free and payments-free setting. Our designed mechanism which we call Fair and Efficient

Distribution of Resources (FEDoR) promotes a truthful declaration of values, since telling the

truth increases the agents benefit (assuming the possibility of the agents being more than two)

independently of the other agents strategy. Our mechanism considers a setting of multi-round in-

teractions among the agents, for allocating a set of heterogeneous goods to them. We assume that

all agents distributions can be transformed into a uniform [0,1] distribution, but besides that we

have no information about the distribution of the agents. So, FEDoR is payment-free mechanism

that achieves fairness and efficiency.

The work by Moscibroda and Schmid [95] investigates mechanisms without payments for

throughput maximization and compares their social welfare with payment mechanisms. In com-

parison with our work, these mechanisms can be applied in a non-repeated setting, but it is not

guaranteed that a feasible solution in terms of social welfare can be found. Moscibroda and

Schmid shed light on the degree up to which payments are inevitable and the potential benefit from
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the use of mechanism without payments. In contrast to the kind of mechanisms they consider, in

FEDoR there is no need of a trusted entity. Due to the infeasibility of using money incentives

in many computer science oriented problems, new techniques developed to substitute monetary

incentives, such as the tit-for-tat in BitTorrent [91,109] and money-burning mechanisms [62]. Un-

fortunately, these techniques can not be easily generalized to other problems. In particular, in [88]

interdomain routing is analyzed from a game theoretic perspective and incentive-compatible dis-

tributed mechanisms without payments are designed in a repeated setting.

Rahman et al. [111] considers the fairness constraint focusing on P2P systems, and propose

an alternative approach to resource allocation that achieves fairness and efficiency on effort-based

incentives, as opposed to contribution or output-based incentives. This work is somehow related

to ours by the fact that we also consider that fairness is not proportional to the valuations of the

agents, but in our work no incentives are necessary to achieve efficiency. In addition, we give

analytical proofs of the properties of our mechanism, unlike the work by Rahman et al. [111].

Jackson and Sonnenschein [71] presented the concept of linking mechanisms. They showed

that when a lot of independent copies of the same decision problem are linked together, then no

incentive constrains are needed for agents to be truthful. The spectrum of players’ responses to

a probability distribution is known by considering a budget restriction. They showed that a link-

ing mechanism is valid when the players’ possible decisions are distributed following discrete

probabilities. FEDoR is inspired by the work of Santos et al. [117], where they are faced with

an orthogonal problem, assigning to one of the participants, same in each round, the execution

of a single task that is everyone wishes to see accomplished but nobody wants to execute. The

designed mechanism is called Quid Pro Quo (QPQ) and also uses the concept of linking mecha-

nism. It provides a fair way of optimal assignments (total cost is minimized), without using any

payment. In our work we wish to achieve the opposite, we have a set of goods (i.e., workers)

that we want to be fairly allocated among the agents (i.e., masters). Like in the work of Santos et

al. [117] we do assume a linking mechanism and the presence of a GoF (Goodness of Fit test) that

decides whether the declared values of a players follow a uniform distribution. Two fundamental

deferences among our FEDoR and QPQ is: (1) they are solving problems with opposite goals,

(2) our mechanism considers multiple good assignment in a single round while QPQ solves the

problem of single task assignments.
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Chapter 3

Evaluation of Reliability Techniques

3.1 Introduction

We consider a distributed system that carries out computational tasks, as we have seen in the

introductory section. A master entity has a set of computational tasks to resolve that is unable or

unwilling to compute locally. Hence, she assigns these tasks over the Internet to worker entities

willing to perform the task and reply back to the master with a result. The inherent limitation of

this load distribution scheme is the unreliable nature of the workers. We assume that there is no

mean of verifying an answer provided by a worker unless we know the set of solutions for the

particular task.

Evidence exist that workers might actually misreport values [8, 9, 47, 63, 68, 77]. The most

straight forward explanation is that workers might have ulterior motives for misreporting a result.

Another reason might be that actually a hardware or software failures happened during the com-

putation of the task that was not detected. Another possibility is, in the crowdsourcing example,

that workers intend to convey a correct result but they miscalculate.

Drawing from the above examples and the work of Kondo et al. [77], where they have charac-

terized errors in Berkeley Open-source software for volunteer computing (BOINC) systems, we

can infer the existence of two type of workers and we characterize them based on what we call

the error probability model, where we have (i) altruistic1 workers: This type of worker is posi-

tive towards executing the task, and willing to provide the correct result. In the case of volunteer

computing systems, a “positive” worker will let its machine execute the task and report back the

result. While in the case of crowsourcing, workers will intend to compute the correct result. (ii)
Troll2 workers: This type of worker is negative towards executing a task and wants to convey an

incorrect result to the master. Hence, it can miscalculate a task on purpose and tries to report an

incorrect result. In this work we do not assume any type of intelligent strategy to fool the system,

1For historical reasons, to match with original work in the field of master-worker task computing.
2Historically they are called malicious workers, but since we are not assuming any intelligent behavior to harm the

system here we call them troll workers. For more information see Chapter 2.

25
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nor that a troll has any information on the actions taken by the master or the other workers.

We can safely assume that both types of workers can be susceptible to a small error probability

ε that is related to hardware or software failures or limited capabilities (in the case of humans

computing the task) or to any other factor that would force them to deviate from their intended

behavior. Thus an altruistic worker, will have a high probability of reporting a correct result, while

a troll will have a low probability of reporting a correct result. Although this work was initially

motivated by the volunteer computing example based on the existing literature, our experimental

work, presented in Chapter 5, shows that even in a crowdsourcing setting where humans act in a

more “selfish” way, the above modelling can also capture the crowdsourcing setting. Altruistic

workers, will aim at reporting a correct task result, by trying to calculate a correct result to the

extend of their cognitive capabilities. On the hand trolls, want to provide an incorrect solution,

by reporting an apparently incorrect task result without verifying if the reported result is correct

or not.

The goal of the master is to identify the correct result for each task assigned with high

probability (whp). Two principal techniques are used (individually or combined), by the lit-

erature, for increasing reliability. (i) Voting: The master uses redundancy by assigning the

same task to multiple workers. After all the task replies are collected, the master uses a voting

scheme [24, 82, 106] to decide on the correct result. This may fail to provide optimal reliability

since a high concentration of incorrect results reported may lead to a decision on the task result

that is incorrect. (ii) Auditing: The master uses a set of tasks with known solutions, called chal-

lenges, to identify the workers that are replying correctly. Again this approach can not guarantee

optimal reliability if the same workers in different time intervals provides correct and incorrect

results due to an error during the computation of the task (as we discussed above). Similar or

identical concepts to this approach are encountered by the name of spot-checking, challenges or

quiz [118, 135].

Both techniques add an extra load on the computation of the task. On the one hand, with

voting the same task needs to be executed by multiple workers, thus the resources of the system

are not used in an optimal way. On the other hand, auditing requires that the workers compute

tasks with known solutions, thus not only resources are not used in an optimal way but also the

execution time of a task increases. This is a worst case auditing assumption, since the master does

not have the power to compute by itself all the possible solutions of a task and has to resolve to

task with already known solutions during auditing.

An added difficulty when using these techniques is related to the nature of the task. If you have

tasks that can have multiple correct and multiple incorrect results, maybe you can not guarantee

that the result of each task will be correct whp. The common assumption in the literature is that

tasks have a binary set of solutions (i.e. only one correct and one incorrect solution are feasible).

Voting and auditing have been widely used either alone or in combination to provide the

correct task result for each task whp. What is yet unclear is the advantage of one technique over

the other or the combination of these techniques in terms of time and work complexity, given
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tasks with multiple correct and multiple incorrect results.

Contributions

Our contributions can be summarized as follows:

We model the master-worker paradigm in the presence of altruistic and troll workers

using five parameters 〈ε, fa, s, r, T 〉 (see Section 3.2): (i) ε is the probability that an altruistic

worker may reply with an incorrect result or a troll worker with a correct result, (ii) fa is

the fraction of altruistic workers over the set of workers, (iii) s, r are the number of correct

and incorrect answers for a task respectively, leading to the more realistic assumption that

tasks are not only binary but rather may have solutions in a broader domain, and (iv) T ⊆
{C, V } the set of reported result evaluation techniques, i.e., auditing using challenges and

voting. Additionally we define two measures: (i) “time” and (ii) “work”, for evaluating the

complexity of the proposed algorithms.

We fix ε = 0 in Section 3.3, i.e., the simple case where altruistic workers always reply

with a correct result and troll workers always with an incorrect result. Given this idealistic

scenario, we identify asymptotically optimal bounds on the time and work complexity when

auditing and voting are used separately. While it is clear that when auditing is used the master

can receive the correct task result with probability one, this is not always the case when voting

is used alone. In the case of voting, we were able to show a negative result giving conditions

on the parameters of s, r, na and nt, where the master will not always be deciding on the

correct task result with probability one. This result reveals that the domain of reported results

is important even in the simple case where ε = 0.

We then make the realistic assumption that ε > 0 (Section 3.4) and we provide two

algorithms MWMIX and MWVOTE that solve correctly all the tasks whp. Both algorithms

assume that s, ε and fa are known. Algorithm MWMIX uses both auditing and voting, and

can be applied if 1 − ε > s
s+1 . Algorithm MWVOTE uses only voting, and can be applied if

fa(1 − ε) + (1 − fa)ε > s
s+1 . What is interesting to observe is that these algorithms have a

log factor overhead compared to the case where ε = 0, which as shown in [78], is a necessary

price to pay when voting is used.

Finally, in the case where ε and fa are not known, in Section 3.5 we provide algorithm

E1 that estimates these parameters within tight bounds whp.

3.2 Model

Our setting consists of a master process M and a set W = {w1, . . . , wn} of n worker pro-

cesses. Workers might be unreliable and produce an incorrect result.
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Definition 3.1 (Problem statement.). The master must guarantee whp (see below) the correct

result for each task ti where ti ∈ T = {t1 · · · tn}, without computing the task locally.

To keep the pseudocode simple for the purpose of exposition we assume that |T | = n. (The

algorithms presented in this work can be easily extended to run for |T | = O(poly(log n)) without

violating the statements of correctness.)

Computation & Communication model

Processes in the system communicate by exchanging messages via reliable communication

channels. Computation proceeds in synchronous rounds. For a process p a round consists of

the following steps: (i) receive incoming messages, (ii) perform computation on the received

messages and produce a set of outgoing messages, and (iii) send the produced messages. During

a round each worker can compute only one task from the master, and report back the result of

the task. A synchronous algorithm L is a collection of processes, and its state is defined over the

vector of the states of each process in that collection. An execution ξ of L is an (infinite) sequence

of states. We denote by execs(L) the set of executions of L.

Performance Measures

An algorithm L is evaluated in terms of: (i) time, and (ii) work. Time is defined as the number
of rounds that an algorithm L requires in order to determine the result of all n tasks in T . Work
represents the number of aggregated results computed by each worker in algorithm L. More
formally, let compξ(w, t) be the number of times a worker w computes task t during an execution
ξ of algorithm L. The task t can be one the tasks in T or a task chosen from a set C of challenge
tasks available to the master M . Then,

workξ =
n∑
i=1

 n∑
j=1

compξ(wi, tj) +
∑
t∈C

compξ(wi, t)


is the work of all the workers in ξ. Thus, the work of an algorithm L is defined as Work(L) =

maxξ∈execs(L)(workξ) over all executions of L. The work captures the redundancy used by an

algorithm (i.e., the number of workers that compute the same task), as well as the computation

performed on auditing.

Density of Solutions

A reported result v for a task t may take values from a domain D(t). Let S(t) ⊂ D(t) be

the set of correct solutions and R(t) = D(t)\S(t), the set of reported results that are incorrect

solutions for task t. We only consider tasks t that have at least one correct solution, i.e., |S(t)| ≥ 1.

Given D(t) and S(t) we define the density of solutions for task t as |S(t)|
|D(t)| . The density

of solutions affects the techniques used to determine the correct task result. For simplicity of

presentation, we will assume that the size of the domain d = |D(t)|, the number of correct
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solutions s = |S(t)|, and the number of incorrect solutions r = |R(t)| are the same for every

t ∈ T . Hence, the density of solutions is the same for all tasks t.

Worker Types

We assume that each worker wi ∈ W is either altruistic or a troll and its type remains the

same throughout the execution of the algorithm. LetWa ⊆W be the set of altruistic andWt ⊆W
the set of trolls. We use na = |Wa| and nt = |Wt| to denote the sizes of these sets. We assume

that na ≥ 1. Observe that W = Wa ∪ Wt and n = na + nt. We also use fa = na
n , to

denote the fraction of altruistic workers. Altruistic workers are “positive” towards executing a

task, always aiming at returning a correct result. Trolls are “negative” towards the task, always

trying to provide an answer from the set of incorrect solutions. All workers are subject to an error

probability ε that deviates a worker from its specification. For simplicity of presentation we will

assume that ε is the same for all workers. In particular, an altruistic worker replies with a correct

result with probability 1− ε and with an incorrect result with probability ε, while for a troll holds

the contrary. For all workers, the correct and incorrect results are selected uniformly at random

from the respective sets S(t) andR(t) for a task t. When ε = 0 an altruistic worker always replies

with the correct result and a troll always replies with an incorrect result.

Result Evaluation

We assume that the master can use two techniques to determine the correct task result: au-

diting (C) and voting (V ) . During auditing a challenge task is used, that is a task which the

master knows the correct result. When a challenge is used, the master knows if a worker replied

with a correct or an incorrect result. This information can help the master determine the correct

result for each task in T . Notice, that here we do not assume that during auditing the master can

compute the task itself and determine all the correct task results. When voting is used, the same

task is assigned to multiple workers, and the master uses some voting technique to decide upon

the correct task result.

Definition 3.2 (Environmental Parameters.). A master-worker system environment can be char-

acterized by the parameters (ε, s, r, fa, T ) where: (i) ε is the worker error probability, (ii) s is the

set of correct replies for each task t, (iii) r is the set of incorrect replies for each task t (iv) fa the

fraction of altruistic workers, and (v) T ⊆ {C, V } the technique used for the evaluation of the

reported results.

Probabilities

We use the common definition of an event E occurring whp to mean that Pr[E ] = 1−O(n−α)

for some constant α > 0.
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3.3 Exact Worker Behavior (ε = 0)

In this section we examine the simple case where it is given that the error probability of each

worker is ε = 0. Hence, altruistic workers always reply with a correct result and trolls always

reply with an incorrect result. This scenario is somewhat idealistic in practical master-worker

systems, but it is used here to provide the best case analysis of our problem. The results of this

section will be used as a reference from the next section, in order to evaluate the performance of

the proposed algorithms compared to this optimistic scenario. Notice that any algorithm requires

at least n
na

rounds to complete the computation of all the |T | = n tasks, and needs to perform n

work, if all tasks have to be computed correctly with full reliability.

Algorithm 1 Simple algorithm MWSIMPLE 0 where ε = 0 and T = {C}.
1: Send challenge task t to all workers in W
2: R[j]← result received from wj ∈W , j ∈ [1, |W |]
3: Ua ← {wi|R[i] is correct}
4: for i = 1 : |Ua| : n do . for loop increments i by |Ua|
5: Send task ti+k−1 to kth worker in Ua, k ∈ [1, |Ua|]
6: Add received result for ti+k−1 into Results[i+ k]
7: end for
8: return Results

In the simple algorithm MWSIMPLE 0 that appears in Algorithm 1, the set of altruistic work-

ers is not known and thus we use auditing (T = {C}) to determine it in a single round. Once

the altruistic workers are identified the master makes unique task assignments to each of them.

Hence the master needs 1 + n
na

rounds to decide for n tasks, and requires 2n amount of work.

Theorem 3.1. Algorithm MWSIMPLE 0 has asymptotically optimal time Θ( n
na

) and optimal

work Θ(n), and compute all the n tasks with probability 1, when ε = 0.

Looking more closely at the general case of algorithms that only use voting (T = {V }) we

have found that it is possible to solve all the tasks efficiently if na > s · nt. The algorithm

MWVOTE 0 that solves the problem is given in Algorithm 2. In this algorithm the master sends

the first task t1 to all the workers. No incorrect returned value can appear more than nt times,

while from the pigeonhole principle at least one correct value appears at least na/s > nt times.

Then, the workers that return values with multiplicity larger than nt are all altruistic. These

workers are stored in Ua and used to solve the rest of tasks. The size of Ua is at least na−nt(s−
1) > nt, and hence the master needs at most 1 + n−1

na−nt(s−1) rounds and 2n− 1 work.

From the above we have the following theorem:

Theorem 3.2. The algorithm MWVOTE 0 compute all the n tasks with probability 1 when ε = 0

and na > s · nt. It has time O( nnt ) and optimal work Θ(n).

In the case that na = s · nt we have a negative result.
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Algorithm 2 Simple algorithm MWVOTE 0 where ε = 0, na > s · nt, and T = {V }.
1: Send task t1 to all workers in W
2: Add worker wj to set R[v] if it replied with value v
3: Ua ←

⋃
v:|R[v]|>nt

R[v]

4: Results[1]← any value v : |R[v]| > nt
5: for i = 2 : |Ua| : n do . loop increments i by |Ua|
6: Send task ti+k−1 to kth worker in Ua, k ∈ [1, |Ua|]
7: Add received result for ti+k−1 into Results[i+ k − 1]
8: end for
9: return Results

Theorem 3.3. If ε = 0 and na = s · nt, then for any r > 0 there exists no algorithm that allows

the master node to returns the correct result of a task t with probability greater than s
s+1 in any

execution.

Proof : Lets assume that there exists such an algorithm Lm. The master M assigns the task t

to a subsetW ′ of the set of workersW . We assume w.l.o.g. that it sends the task to all the workers

in W , since Lm can disregard the replies from the workers not in W ′. Note that the master does

not have any prior information on the correct answers or the answers that each worker returns. So

we can examine possible executions for the same task t, where the incorrect results and the troll

workers are different. Since ε = 0, an altruistic worker always returns a correct answer and a troll

returns an incorrect answer. We assume that the same worker returns the same answer if asked to

compute the task more than once.

Consider now an execution ξ1 of Lm constructed as follows. Let D(t) =

{a1, . . . , as, as+1, . . . , as+r} be the domain of possible replies for t, where S(t) = {a1, . . . , as}
is the set of correct results for t and the rest of the answers are incorrect. Since ε = 0 then the

master receives na correct answers and nt incorrect answers. Let us assume, that the troll workers

are the set {wna+1, . . . , wna+nt}. Furthermore in ξ1, let each answer ai ∈ S(t) be returned by
na
s workers. W.l.o.g assume that workers {w(i−1)na

s
+1, . . . , wina

s
} reply with answer ai ∈ S(t).

Observe that all the trolls reply with the same incorrect answer as+1. Since, na = s ·nt, it follows

that nt = na
s troll workers reply with as+1. Since, according to our assumption, algorithm Lm

returns a correct answer with probability pc > s
s+1 , then it follows by the pigeonhole principle,

that Lm will return some answer ai ∈ S(t) with probability Pr[ai] > s
(s+1)s = 1

s+1 , in ξ1. Let

w.l.o.g. a1 be that answer.

Assume now a second execution ξ2 which is similar with ξ1 with the difference that the troll

workers are the set {w1, . . . , wna
s
} and the correct answers is the set S(t) = {a2, . . . , as+1}.

Each answer is returned by the same set of workers as in ξ1. Note that correct workers

{wna+1, . . . , wna+nt} all reply with as+1. Also the troll workers in ξ2 all reply with a1. Since

all the workers reply with the same answers to the master in both ξ1 and ξ2, and since the master

does not have any prior info on the correct answers, thenM will not be able to distinguish ξ1 from

ξ2. Thus, if according to Lm, M returned a1 with probability Pr[a1] > 1
s+1 in ξ1 then M will

return a1 with the same probability in ξ2 as well. Since a1 is an incorrect answer in ξ2, then M
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returns a correct answer with probability Pr[ return ai ∈ S(t)] = 1− Pr[a1] < 1− 1
s+1 = s

s+1 .

This however contradicts our initial assumption that Lm returns a correct answer with probability

greater than s
s+1 in ξ2 and completes our proof. �

Looking at the above two results one may conjecture that na = s · nt is in fact the boundary

between solvability and unsolvability. However, this is not the case, since, for instance, if r = 1

and na is not a multiple of nt, even if na < s · nt it is possible to solve all tasks efficiently. Using

the opposite logic the incorrect value will appear nt times, while from the pigeonhole principle

at worst one correct value appears na mod nt times. Then, the workers that return values with

cardinality smaller than nt are all altruistic. These workers like in Algorithm 2 can be stored in

Ua and used to solve the rest of tasks following an analogous algorithm. The size of Ua is at least

na−
⌊
na
nt

⌋
·nt, and hence the master needs at most 1 + n−1

na−
⌊
na
nt

⌋
·nt

< n rounds and 2n− 1 work.

Thus, an algorithm analogous to Algorithm 2 has time O(n) and optimal work Θ(n).

3.4 Probabilistic Worker Behavior (ε > 0)

We are now moving to the case where the error probability of each worker is 0 < ε < 1
2 . In

this case an altruistic worker may reply with an incorrect result, or a troll with a correct result

with probability ε. Note that we do not consider the case when ε ≥ 1
2 , because in that case

essentially the roles are switched. We provide algorithms that cover the full spectrum of values

for the density of solutions ρ ∈ (0, 1) and the fraction of altruistic workers fa ∈ (0, 1]. Notice

that the algorithms presented here also apply in the case where ε = 0, but they may induce extra

performance overhead.

Under this model the master receives the correct result from a randomly selected worker with

probability at least fa(1 − ε). We provide two different algorithms for this setting: (i) algorithm

MWMIX that uses both auditing and voting, i.e. T = {C, V }, and (ii) algorithm MWVOTE that

uses only voting, i.e. T = {V }, which is possible only when the density of solutions satisfy a

given bound.

Note that in this section we do not present an algorithm that only relies on auditing to compute

all tasks in T whp. This is so, because even if the set Wa of altruistic workers is known, and only

these workers are used, the value returned by the execution of a task is correct only with constant

1−ε probability. An algorithm that does not use some form of voting will not execute a task more

than once, and cannot improve this probability.

In this section we assume that the algorithms know the parameters s, fa and ε. For the case

that this is not true, we provide algorithm E1 in the next section, that uses auditing to estimate

them. Due to lack of space the proofs of correctness and performance of the algorithms are

omitted.
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Algorithm 3 The pseudo-code for algorithm MWMIX, at the master, with n workers W comput-
ing the results of n tasks in T , where s

s+1 < 1− ε and T = {C, V }.
Phase 1

1: R[1..n]← ∅n . R[j] is the list of results from worker wj
2: for i = 1 : dc log ne do
3: Send challenge task t to all workers in W
4: Add received result from worker wj to R[j]
5: end for
6: for i = 1 : n do
7: if # correct results in R[i] ≥

⌈
1
2c log n

⌉
then

8: Ua ← Ua ∪ {wi}
9: end if

10: end for
Phase 2

11: F [i]← ∅ . initially empty for all 1 ≤ i ≤ n
12: for j = 1 : dk log ne do
13: for i = 1 : |Ua| : n do . loop increments i by |Ua|
14: Send task ti+k−1 to kth worker in Ua, k ∈ [1, |Ua|]
15: Add received result for ti+k−1 to F [i+ k − 1]
16: end for
17: end for
18: for i = 1 : n do
19: Results[i]← plurality(F [i])
20: end for
21: return Results

3.4.1 Algorithm MWMIX: Auditing and Voting

In this section we present algorithm MWMIX, that uses a combination of auditing and voting.

The general idea of the algorithm is to identify the workers in Wa, correctly whp and then use the

estimated set Ua to compute all the tasks correctly whp. Below we describe algorithm MWMIX,

with the pseudo code in Algorithm 3, using this strategy. As explained earlier, it is preferable to

avoid using the challenge method (T = {C}) because auditing implies a computational burden

on the master. Therefore, the algorithm uses auditing only to estimate Ua, and afterwards it uses

voting (T = {V }) to determine the correct result for each task, i.e. T = {C, V }.

Description of algorithm MWMIX

Algorithm MWMIX consists of two phases. During the first phase, MWMIX computes an

estimate of the set Wa, denoted by Ua, by using the challenge method. Phase 1 has c log n

rounds, for a constant c > 0 that depends on ε (L:2). During each round the master sends out

a distinct challenge task to every worker in W (L:3), and upon receiving the reponses from the

workers stores the results in an array of lists R[1], R[2], · · · , R[n], where R[i] denotes the list of

results received from process wi ∈ W (L:4). Next based on the results in R[ ], the ID of any

worker that answered the majority of the challenge tasks correctly is included in the set Ua (L:8).

During the Phase 2, only the workers in Ua are used to compute the n tasks. Each task is
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executed dk log ne times. The results sent back by the workers in Ua are stored in the array of

lists F [1], F [2], · · · , F [n] (L:15), where the results for task ti are stored in list F [i]. Finally, the

master decides for every task ti the plurality of results in F [i] to be the correct result. The results

of the tasks in T are hence stored in the array variable Results , where Results[i] is the result of

task ti (L:19).

Correctness & Performance Analysis

Now, we prove the correctness of all the tasks whp and the complexity of results. In

Lemma 3.1, we show that at the end of Phase 1 every altruistic worker and only altrusitic workers

are included in Ua. Using this lemma, we prove Theorem 3.4 which states that every task in T is

computed correctly whp.

Lemma 3.1. In any execution of MWMIX, at the end of Phase 1 we have Ua = Wa, whp.

Proof : Consider an execution of algorithm MWMIX. For any wj ∈ W we want to show that

wj ∈ Ua iff wj ∈Wa. Let us examine the two directions separately.

For the if direction we show that if wj ∈ Ua then wj ∈Wa whp, or equivalently, if wj 6∈Wa

then wj 6∈ Ua whp. Let us consider some worker wj not in Wa (a troll). Let us denote by

X1, X2, · · ·Xk, where k = dc log ne, binary variables, defined such that Xi = 1 if the result

of the ith trial for wj , stored in R[j] is correct, otherwise, we have Xi = 0. Now observe the

values of the variables X1, X2, · · ·Xk derived from R[j], after executing Lines 2-5. Note that all

the results in R[j] are essentially independent and identical trials by worker wj . Hence for any

i, Pr[Xi = 1] = ε. Now if Xwj =
∑k

i=1Xi, where the superscript wj refers to the worker wj
under consideration, then we have E[Xwj ] = kε = µ. By Chernoff bound Pr[Xwj ≥ (1+δ)µ] ≤
e−

µδ2

3 , for δ ∈ (0, 1). Now, we choose δ < 1
2ε−1, and hence (1+δ)ε < 1

2 . (Observe that 1
2ε−1 >

0 since ε < 1
2 .) Then, we have Pr[Xwj ≥ 1

2dc log ne] ≤ Pr[Xwj ≥ (1 + δ)kε] ≤ e−
kεδ2

3 ≤ 1
nα

where α > 1 is some constant, for a c chosen sufficiently large, say c1. The above result shows

that, wph, the majority of the results computed by wj are incorrect, and hence in Lines 7-9 wj
would not be added to Ua, whp.

For the only if direction, we show that if wj ∈ Wa then wj ∈ Ua whp. If wj ∈ Wa then

Pr[Xi = 1] = 1 − ε. By a similar argument as above, and using Chernoff bound, Pr[Xwj <

1
2dc log ne] ≤ Pr[Xwj < (1− δ)k(1− ε)] ≤ e−

k(1−ε)δ2
2 ≤ 1

nα
′ where α′ > 1 is a some constant,

for a c sufficiently large, say c2, and δ chosen as some value such that δ < 1− 1
2(1−ε) (and hence

(1− ε)(1− δ) > 1
2 ).

Now, we require that both directions hold for every process in W\Wa and Wa respectively,

whp. I.e., we want the event E ≡
⋂
w∈Wa

{Xw > 1
2dc log ne}

⋂ ⋂
w∈W\Wa

{Xw < 1
2dc log ne},
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whp. Therefore, we have

Pr[E ] = 1−Pr[E ]

= 1−Pr
[ ⋃
w∈Wa

{Xw ≤ 1

2
dc log ne}

⋃
⋃

w∈W\Wa

{Xw ≥ 1

2
dc log ne}

]
Now by Boole’s inequality we have

Pr[E ] ≥ 1−
∑
w∈Wa

Pr[Xw ≤ 1

2
dc log ne]

−
∑

w∈W\Wa

Pr[Xw ≥ 1

2
dc log ne]

= 1− n 1

nα
− n 1

nα′

≥ 1− 1

nβ

where β > 0. �

Theorem 3.4. If s
s+1 < 1− ε, then Algorithm MWMIX computes all n tasks correctly, whp.

Proof : By Lemma 3.1, at the end of Phase 1, Ua = Wa in MWMIX whp, and now we show

that in Phase 2 the result of all the tasks are computed correctly whp. In Lines 12-17 every task

gets computed dk log ne times with workers in Ua. If Ua = Wa then any of these executions

returns correctly with probability 1 − ε. Let us assume that it is the case that Ua = Wa. Then,

for any task tj , let us define the binary random variables X1, X2, · · ·X`, ` = dk log ne, such

that, if the ith execution is correct Xi = 1, otherwise, Xi = 0. Clearly, X1, X2, · · ·X` are

identically and independently distributed and E[Xi] = Pr[Xi = 1] = 1 − ε. Now, let us denote

Xj , X1 + · · · + X` the number of correct results returned, and Yj , ` − Xj the number

of incorrect results returned. Since X1, X2, · · ·X` are IIDs we have by Chernoff bound, for any

δ ∈ (0, 1), Pr[Xj ≤ (1 − δ)`(1 − ε)] ≤ e−
δ2(1−ε)k logn

2 ≤ 1
nα for some α > 1, when constant k

is sufficiently large.

From the assumptions of the model, the result returned by a worker from a correct computa-

tion is any of the values in S(t); and similarly, the result of an incorrect computation is any of

the values in R(t). Therefore, if we want to guarantee that the result that is returned by algorithm

MWMIX is correct, we need to guarantee that some correct value is returned more times than any

incorrect value. Since there are s = S(t) correct values, and ` returned values in total, this is

guaranteed by the pigeonhole principle if Xj

s > Yj , i.e., if Xj > s
s+1`. We bound the probability
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Algorithm 4 Algorithm MWVOTE, at the master process, performs n tasks using n workers for
the case s

s+1 < fa(1− ε) + (1− fa)ε and T = {V }.
1: F [i]← ∅ . initially empty for all 1 ≤ i ≤ n
2: for i = 1 to dk log ne do . for some constant k > 0
3: Choose a random permutation π ∈ Πn

4: Send each task tj ∈ T to worker wπ(j)

5: Add received result from worker wπ(j) to F [j]
6: end for
7: for i = 1 : n do
8: Results[i]← plurality(F [i])
9: end for

10: return Results

that this is not the case using the above Chernoff bound, defining δ = 1− s
p(s+1) . Hence,

Pr[
Xj

s
≤ Yj ] = Pr[Xj ≤ s

s+ 1
`] ≤ 1

nα
,

as long as 1− s
p(s+1) ∈ (0, 1).

Next, by using Boole’s inequality we have Pr[
⋃n
j=1{

Xj

s ≤ Yj}] ≤
∑n

j=1 Pr[X
j

s ≤ Yj ] ≤
1
nγ where γ = α− 1 > 0. Hence, the plurality of the results compute all the tasks correctly whp,

conditioned to Ua = Wa which also occurs whp. Hence the claim of the theorem. �

Theorem 3.5. Algorithm MWMIX runs in Θ( n
na

log n) synchronous rounds and performs

Θ(n log n) work.

Proof : From the algorithm it is clear. �

3.4.2 Algorithm MWVOTE: Use Voting Alone

In this section, we present algorithm MWVOTE that uses voting mechanism alone (i.e., when

T = V ) to compute all the n tasks whp. Algorithm MWVOTE can be used when s
s+1 < fa(1 −

ε) + (1 − fa)ε. Note here that, without identifying the altruistic workers, the probability that a

randomly selected worker will reply with the correct answer for a task t is fa(1− ε) + (1− fa)ε;
i.e. receive the correct answer from an altruistic worker with probability 1 − ε or to receive the

correct answer from a troll with probability ε.

Description of Algorithm MWVOTE

Below we present our algorithm MWVOTE, and the pseudo-code for the algorithm is in Al-

gorithm 4. The basic idea of MWVOTE is to exploit the fact that if a troll worker picks an answer

for a task t randomly from R(t) and s
d is small, then the likelihood of an incorrect result being

a majority or plurality among all the results is small. To apply this idea, the master distributes

the n tasks according to a random permutation from Πn, which is the set of all permutations



3.4 Probabilistic Worker Behavior (ε > 0) 37

over [n] = {1, 2, . . . , n}. In other words, if the random permutation is π then the jth task tj is

delegated to worker wπ(j) (L:4). The whole process is repeated dk log ne rounds (L:2-6). The

constant k is used to tune the exponent ` > 0 in the denominator of 1
n`

, required for the high

probability guarantee. The results for each task tj is accumulated in the multiset R[j]. When the

for loop in lines 2–6 terminates, the result for each task tj ∈ T is chosen to be the one that forms

a plurality of results in R[j] (L:8).

Correctness & Performance Analysis

The following theorems state that algorithm MWVOTE computes all tasks correctly whp un-

der the assumed case.

Theorem 3.6. If s
s+1 < fa(1−ε)+(1−fa)ε, Algorithm MWVOTE computes all n tasks correctly

whp.

Proof : We prove the above statement by first proving the correctness for one task whp, and

then generalize it to all n tasks whp by using Boole’s inequality. Consider any task tj ∈ T
computed by algorithm MWVOTE. In an execution of MWVOTE, tj is computed ` ≡ dk log ne
times each in a distinct round of the algorithm.

Consider a sequence of binary random variables Xi, 1 ≤ i ≤ `, where Xi corresponds to

round i of an execution of MWMIX, where Xi = 1 if for task tj in round i worker π(j) returns a

correct result, and Xi = 0 if it returns an incorrect result. Clearly, the random variables in {Xi}
are independent and identically distributed (IID). Now, we compute the value of Pr[Xi = 1].

Note that according to our model, during some round i of MWVOTE, task tj is delegated to a

either worker in Wa or a worker in W\Wa; and the workers can correctly or incorrectly compute

the result. Therefore, we have p ≡ E[Xi] = Pr[Xi = 1] = fa(1 − ε) + (1 − fa)ε. Now, let us

denote Xj , X1 + · · ·+X` the number of correct results returned, and Yj , `−Xj the number

of incorrect results returned. Since X1, X2, · · ·X` are IIDs we have by Chernoff bound, for any

δ ∈ (0, 1) we have, Pr[Xj ≤ (1− δ)`p] ≤ e−
δ2pk logn

2 ≤ 1
nα for some α > 1, when constant k is

sufficiently large.

From the assumptions of the model, the result returned by a worker from a correct computa-

tion is any of the values in S(t); and similarly, the result of an incorrect computation is any of the

values in R(t). Therefore, if we want to guarantee that the result that is returned by MWVOTE

is correct, we need to guarantee that some correct value is returned more times than any incorrect

value. Since there are s = S(t) correct values, and ` returned values in total, this is guaranteed

by the pigeonhole principle if Xj

s > Yj , i.e., if Xj > s
s+1`. We bound the probability that this is

not the case using the above Chernoff bound, defining δ = 1− s
p(s+1) . Hence,

Pr[
Xj

s
≤ Yj ] = Pr[Xj ≤ s

s+ 1
`] ≤ 1

nα
,

as long as 1− s
p(s+1) ∈ (0, 1).
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Next, by using Boole’s inequality we have Pr[
⋃n
j=1{

Xj

s ≤ Yj}] ≤
∑n

j=1 Pr[X
j

s ≤ Yj ] ≤
1
nγ where γ = α− 1 > 0. Hence, the plurality of the results compute all the tasks correctly whp.

�

Theorem 3.7. Algorithm MWVOTE runs in Θ(log n) synchronous rounds and performs

Θ(n log n) work.

Proof : Clear from the algorithm. �

Remark 3.1. Note that the algorithms presented in this section have a log factor overhead on the

optimal work (Theorem 3.1). According to [78] a factor of log work overhead is the least amount

of work required per task when voting is used. Thus, we can safely conclude on the optimality of

both algorithms MWMIX and MWVOTE.

3.5 Algorithm E1: Tightly Estimating fa and ε

As shown in Section 3.4, algorithms MWMIX and MWVOTE are possible only if we know

parameters of the system, like the probability of error ε, the fraction of altruistic workers fa, and

the number of correct results s, to check applicability. In this section, we assume s is known, but

that neither the value of fa and ε are known a priori. (Note that it is reasonable to assume that

the number of correct answers s is known.) Hence, we provide an algorithm to estimate fa and

ε, whp. As a byproduct, the algorithm also estimates fa(1 − ε) + (1 − fa)ε, whp. Our goal is to

estimate all these values, with user defined bounds, in a manner called (ε, δ)-approximation. By

choosing ε, δ ∈ O( 1
nc ) for some c > 0 we can provide a tight estimate of the value within a ±ε

factor and whp (greater than 1− δ).

Formally, let Z be a random variable distributed in the interval [0, 1] with mean µZ . Let

Z1, Z2, . . . be independently and identically distributed according to the Z variable. We say that

an estimate µ̃Z is an (ε, δ)-approximation of µZ if Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] > 1 − δ.

Estimating the value of µZ may be done by collecting sufficient samples and selecting the majority

as the outcome. However, such a solution is not feasible if the number of samples are not known

a priori.

The Stopping Rule Algorithm

Algorithm 6 is an algorithm for calculating an (ε, δ)-approximation of the desired parame-

ters, where the error tolerance bounds δ and ε are O( 1
nc ), for some c > 0. The core idea behind

E1 is based on the Stopping Rule Algorithm (SRA) of Dagum et al. [43]. For completeness we

reproduce in Algorithm 5 the SRA for estimating the mean of a random variable with support in

[0, 1], with (ε, δ)-approximation. SRA computes an (ε, δ)-approximation with an optimal number

of samplings, within a constant factor [43]. Thus SRA-based method provides substantial compu-

tational savings. Let us define λ = (e − 2) ≈ 0.72 and Γ = 4λ log (2
δ )/ε2. Now, Theorem 3.8
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Algorithm 5 The Stopping Rule Algorithm (SRA) for estimating µZ .
input parameters: (ε, δ) with 0 < ε < 1, δ > 0

1: Let Γ = 4λ log (2
δ )/ε2 . λ = (e− 2) ≈ 0.72

2: Let Γ1 = 1 + (1 + ε)Γ
3: initialize N ← 0, S ← 0
4: while S < Γ1 do
5: N ← N + 1
6: S ← S + ZN
7: end while
8: return µ̃Z ← Γ1

N

(slightly modified, from [43]) tells us that SRA provides us with an (ε, δ)-approximation with the

number of trials within Γ1
µZ

whp, where Γ1 = 1 + (1 + ε)Γ.

Theorem 3.8. [Stopping Rule Theorem] Let Z be a random variable in [0, 1] with µZ = E[Z] >

0. Let µ̃Z be the estimate produced and let NZ be the number of experiments that SRA runs with

respect to Z on inputs ε and δ. Then, (i) Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] > 1 − δ; (ii)

E[NZ ] ≤ Γ1
µZ

, and (iii) Pr[NZ > (1 + ε) Γ1
µZ

] ≤ δ
2 .

Description of Algorithm E1

The idea behind algorithm E1 is to sample two binary random variables: (i) Z1 ∈ {0, 1},
whose mean is “close” to fa; and (ii) Z2 ∈ {0, 1}, whose mean is fa(1 − ε) + (1 − fa)ε. Then

E1 creates (ε, δ)-approximation estimates for both of these means, using the SRA algorithm for

δ, ε ∈ O( 1
nc ), for some c > 0. Using these estimates, it solves for a (ε, δ)-approximation for the

different parameters. Below we explain the sampling process.
Z1 is defined as follows: the master randomly picks a worker w from W , sends ` (a positive

integer, explained later) challenges to w, and collects and verifies the results. If the majority of
the results R are correct then Z1 = 1, otherwise Z1 = 0. We use CorrMaj (R) to denote that the
majority of the results in R are correct. Clearly,

E[Z1] = Pr[w ∈Wa] ·Pr[CorrMaj (R)|w ∈Wa]

+ Pr[w /∈Wa] ·Pr[CorrMaj (R)|w /∈Wa]

= fa ·Pr[CorrMaj (R)|w ∈Wa]

+ (1− fa) ·Pr[CorrMaj (R)|w /∈Wa]

Next, by exploiting the fact that ε < 1
2 − ζ, where ζ > 0 is a constant, we choose ` ap-

propriately, such that, Pr[CorrMaj (R)|w ∈Wa] ≈ 1 (i.e., 1 − O( 1
nc ), for some c > 0) and

Pr[CorrMaj (R)|w /∈Wa] becomes very small (i.e., O( 1
nc ), for some c > 0). Hence E[Z1] ap-

proximated suitably enough fa = Pr[w ∈Wa]. Lines 4–15 for algorithm E1 implements the

SRA algorithm to estimate E[Z1].
Z2 is defined as follows: the master randomly picks a worker w from W , assigns a challenge

to w, and verifies the reported result. If the result is correct then Z2 = 1, otherwise Z2 = 0. Note
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that

E[Z2] = Pr[w ∈Wa] ·Pr[result is correct|w ∈Wa]

+ Pr[w /∈Wa] ·Pr[result is correct|w /∈Wa]

= fa(1− ε) + (1− fa)ε.

Lines 16–24 for algorithm E1 implement the SRA algorithm to estimate E[Z2].

Algorithm 6 Algorithm E1 to estimate fa, ε, and fa(1− ε) + (1− fa)ε.
1: Let δ = 1

nc and ε = 1
nc for c > 0

2: Let Γ = (4λ log (2
δ ))/ε2 and Γ1 = 1 + (1 + ε)Γ

3: Let ` = dk log ne, for some k > 0
4: N ← 0, S ← 0
5: while S < Γ1 do
6: N ← N + 1
7: pick a worker w randomly uniformly from W
8: for i = 1 to ` do
9: send challenge task ti to w

10: R[i]← result received from w
11: end for
12: if CorrMaj (R) then Z1

N ← 1 else Z1
N ← 0 end if

13: S ← S + Z1
N

14: end while
15: p̃← Γ1

N
16: N ← 0, S ← 0
17: while S < Γ1 do
18: N ← N + 1
19: pick a worker w randomly uniformly from W
20: send challenge task to w
21: if result received from w is correct then Z2

N ← 1 else Z2
N ← 0 end if

22: S ← S + Z2
N

23: end while
24: q̃ ← Γ1

N

25: return
(
p̃, q̃−p̃1−2p̃ , q̃

)

Analysis of the Algorithm

In the following theorem we state that E1 provides suitable approximation for the different

parameters of the system.

Theorem 3.9. The estimates p̃, q̃−p̃
1−2p̃ , and q̃ returned by E1 are (ε, δ)-approximations of the

parameters fa, ε, and fa(1− ε) + (1− fa)ε, respectively, where ε, δ ∈ O( 1
nγ ), for some γ > 0.

Proof : We first compute an estimate for the quantity

p , fa ·Pr[CorrMaj (R)|w ∈Wa]

+(1− fa) ·Pr[CorrMaj (R)|w /∈Wa]
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Now we compute Pr[CorrMaj (R)|w ∈Wa] and Pr[CorrMaj (R)|w /∈Wa].

Case Pr[CorrMaj (R)|w ∈Wa]: Suppose w ∈ Wa and denote ` , dk log ne, where

k is some constant whose value is decided later. Let us define binary random variables

X1, X2, · · · , X`, such that, Xi = 1 if the ith challenge task computed by w is found to be correct

by the master, otherwise, Xi = 0; we also define the random variable X , X1 + · · ·+X`. Now,

since ε < 1
2 − ζ then for any 0 < δ < 1− 1

1+2ζ , we have (1− δ)(1− ζ) > 1
2 , and using Chernoff

bound as the Xis are independent and identically distributed, then we have

Pr[X ≤ dk log ne
2

] ≤ Pr[X ≤ (1− δ)dk log ne(1− ε)]

≤ e−
`(1−ε)δ2

2

≤ e−
δ2dk logne

4

≤ 1

na
,

where k is chosen appropriately and the constant a > 0 depends on k.

Case Pr[CorrMaj (R)|w /∈Wa]: Now consider w /∈ Wa, and we define a set of ` binary

variables Y1, · · · , Y` such that, Yi = 1 if the ith task computed by w is found to be incorrect,

otherwise Yi = 0; and we define the random variable Y , Y1 + · · · + Y`. Now we evaluate the

following bound, by suitable picking some 0 < δ < 1− 1
1+2ζ and a constant k, then for sufficiently

large n we have a constant b > 0, such that Pr[Y ≥ 1
2dk log ne] = 1 − Pr[Y ≤ 1

2dk log ne] ≥

1−Pr[Y ≤ (1− δ)dk log ne(1− ε)] ≥ 1− e−
`(1−ε)δ2

2 ≥ 1− e−
δ2dk logne

4 ≥ 1− 1
nb

.

Now using the above relations we have the following two bounds

Pr[CorrMaj (R)|w ∈Wa] = Pr[X ≤ 1
2dk log ne] = 1 − Pr[X > 1

2dk log ne] ≥ 1 − 1
na , and

Pr[CorrMaj (R)|w /∈Wa] = 1 − Pr[not CorrMaj (R)|w /∈Wa] = 1 − Pr[Y ≥ 1
2dk log ne]

≤ 1
nb

Using the above two bounds we have p ≥ fa
(
1− 1

na

)
+ (1 − fa)0 ≥ fa

(
1− 1

na

)
and

p ≤ fa + (1− fa) 1
nb
≤ fa

(
1 + 1

nb

)
, and without loss of generality, we can adjust the constant k

such that we can choose a and b as equal fa
(
1− 1

na

)
≤ p ≤ fa

(
1 + 1

na

)
.

Now, observe that the variable Z1
N (line 12) in algorithm E1, is essentially the counter part

of ZN in Fig. 5. In each iteration Z1
N is sampled independently of and identically as other

iterations, which holds also for ZN in SRA. Also, Z1
N ∈ [0, 1], of course all of the probability

is concentrated in {0, 1} ⊆ [0, 1] and E[Z1
N ] = p. So, we observe that in Lines 4–15 in Fig. 5

essentially implements the SRA on the random variable Z1
N . Therefore, by Theorem 3.8, we

have Pr[
(
1− 1

nα

)
p ≤ p̃ ≤

(
1 + 1

nα

)
p] ≥ 1 − 1

nβ
, next using the above bound for p we get

Pr[
(
1− 1

nα

) (
1− 1

na

)
fa ≤ p̃ ≤

(
1 + 1

nα

) (
1 + 1

na

)
fa] ≥ 1− 1

nβ
, which can be simplified, for

some γ > 0 as Pr[
(
1− 1

nγ

)
fa ≤ p̃ ≤

(
1 + 1

nγ

)
fa] ≥ 1− 1

nβ
.

Now suppose we define q , fa(1−ε)+(1−fa)ε, then clearly we can solve for ε as ε = q−fa
1−2fa

.

Now, observe that the variable Z2
N (line 21) in algorithm E1, is essentially the counter part of ZN

in Fig. 5. As in the case for Z1
N each iteration Z2

N is sampled independently of and identically

as other iterations, which holds also for ZN in SRA. Therefore, arguing as in Z1
N , so we observe
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that in lines 16–24 in Fig. 5 essentially implements the SRA on the random variable Z2
N . Also,

Z2
N ∈ [0, 1] and all probability is concentrated in {0, 1} ⊆ [0, 1] and E[Z2

N ] = q. Therefore, by

Theorem 3.8, we have the following bound for the variable q̃, Pr[
(
1− 1

nα

)
q ≤ q̃ ≤

(
1 + 1

nα

)
q]

≥ 1− 1
nβ

.

Now we show that the quantity q̃−p̃
1−2p̃ is a very close approximation for ε. Observe that by

using the appropriate bounds for q̃ and p̃, derived above, we have q̃−p̃
1−2p̃ ≤

q(1+ 1
nα )−fa(1− 1

nα )
1−2fa(1+ 1

nα )
=

(q−fa)+(q+fa) 1
nα

(1−2fa)− 2fa
nα

≤
(
q−fa
1−2fa

) (
1 + 1

nγ

)
= ε

(
1 + 1

nγ

)
. Similarly, we can show that ε

(
1− 1

nγ

)
≤

q̃−p̃
1−2p̃ Now, combining the above we have Pr[ε

(
1− 1

nγ

)
≤ q̃−p̃

1−2p̃ ≤ ε
(
1 + 1

nγ

)
] ≥ 1− 1

nγ . �

Theorem 3.10. The number of rounds or the work for algorithm E1 is nc log n for c > 0 whp.

Proof : The number of times the while loop iterates is the value ofN at the end of the looping.

The value of N at the end of any of the while loop is nc log n whp, which can be proved by

substituting 1
nc for δ and ε in the Γ1 (see Algorithm 6) and applying Theorem 3.8(iii). Now,

in the first while the for loop runs for Θ(log n) iterations. Therefore, the rounds and work are

O(nc log2 n), whp. �



Chapter 4

A Reinforcement Learning Approach

4.1 Introduction

In this chapter we consider once more the problem of unreliable task computations over the

Internet following the master-worker model. Recall that, in the previous chapter we modelled

the worker’s unreliable behavior through the error probability model, considering the presence

of altruistic and troll workers, that can deviate from their true nature by an error probability ε.

We assumed that ε and the fraction of altruistic workers is known, or can be estimated with high

probability (whp), and we evaluated two reliability techniques, auditing and voting, under the

assumption that a density of solutions exists. Reliability techniques are evaluated in terms of time

and work as described in the previous chapter.

Having a good intuition on the pros and cons of each reliability technique we take a step

forward towards a mechanism that assumes no knowledge about the workers distribution in the

system. The goal of this mechanism will be to eventually guarantee that the master will always

be receiving the correct task result with probability one and with minimal cost. In the previous

chapter we modelled the diversity of the workers’ behavior though the error probability. In this

chapter we attempt a different modelling approach. We still assume that the workers might have

malicious behavior by reporting an incorrect value. In the previous chapter we were referring to

these workers as trolls. Here we choose to call them malicious since we assume that they have an

intelligent strategy that always provides them with the incorrect value and more over we assume

a worse case form of collusion where all malicious workers reply with the same incorrect value.

Additionally, like in the previous chapter we assume the presence of altruistic workers, assuming

that they will always be reporting the correct task value. One of the main contributions of this

chapter is that we model the diversity in the workers behavior though “rationality”. That is we

assume that an unknown ratio of workers will behave in a rational manner. A rational worker,

behaves in such a way choosing the appropriate strategy that will maximize its benefit. Thus, if

a master where to interact with the same worker multiple times, then potentially the behavior of

the rational worker could be “reinforced” to serve the master’s goal.

43
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Given the above, we consider Internet-based task computations with a unique correct solu-

tion, where a master process sends tasks, across the Internet, to a fix number of worker processes;

workers execute, and report back some result. However, these workers are not trustworthy and it

might be at their best interest to report incorrect results. In such master-worker computations, the

behavior and the best interest of some of the workers might change over time. We model such

computations using evolutionary dynamics and we study the conditions under which the master

can reliably obtain task results. In particular, we develop and analyze an algorithmic mecha-

nism based on reinforcement learning to provide rational workers with the necessary incentives

to eventually become truthful. Our designed mechanism uses, an auditing technique where the

master computes the correct task result by itself to reward and punish the workers accordingly.

The master deals with the malicous workers behavior through a reputation mechanism. Moreover,

to address the issue of the workers unavailability we design a reputation scheme together with a

mechanism that chooses the workers to participate in a task computation from the whole set of

workers (we call it here “pool” of workers).

Chapter Organization

The rest of the Chapter is organized in four Sections:

Section 4.2 presents the general model that all the mechanisms designed in the chapter

follow. In this section we present the general master-worker model, the tasks considered as

well as the worker types considered. Moreover, we present the master’s auditing technique

and the incentives used. Finally, we formally present the master’s goal, which we call

eventual correctness.

Section 4.3 presents a first approach mechanism that considers only the existence of

rational workers. The mechanism is complemented by an analytical part that identifies

the conditions under which truthful behavior can be ensured, and bounds the expected

convergence time to that behavior. The illustrative simulations presented show trade-offs

among a number of system parameters.

The mechanism presented in Section 4.3 is complemented and enhanced by a

reputation-based scheme presented in Section 4.4 that coops with the existence of mali-

cious workers. In this section, we upgrade the model by considering the presence of mali-

cious and altruistic workers beside the presence of rational workers. The system analysis

gives provable guarantees under which truthful behavior can be ensured. We observe the

behavior of the mechanism through simulations that reveal interesting trade-offs between

various metrics and parameters. The correlation among cost and convergence time to a

truthful behavior is shown and the four reputation schemes designed are assessed against

the tolerance to cheaters.
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Finally, in Section 4.5 we vary our current mechanism approach (assuming the master

assigns tasks to a fixed predefined set of workers) by allowing the master to select the most

reputable and responsive workers from a pool of workers. The general model is being

redefined in some aspects and a responsiveness reputation scheme is presented to coop

with the unavailability of the workers. Our analysis proves sufficient conditions for eventual

correctness under different reputation schemes, and is complemented by simulations that

show interesting trade-offs among the different reputation types, workers availability and

master’s cost.

4.2 General Model

The mechanisms described in the rest of the chapter consider a generic model that captures

Internet-based task computations and the behavior of the participating components, that is the

master and the workers. Below we describe in detail, the master-worker model, the nature of

the computational task considered as well as the worker’s behavior, together with the auditing

and incentive techniques used. Finally, we introduce the concept of eventual correctness, that

describes the goal pursued by the master.

Master-Worker Model

We consider a system consisting of a set G of voluntary workers, that is workers declaring

that they are willing to perform tasks computations. The set G is broken down into disjoint sets

Wj of size n forming the group of workers receiving a replica of the same task. For simplicity we

will focus at only one such set of workers named W . Hence we consider a master and a set W

of n workers (with out loss of generality, we assume that n is odd). The computation is broken

into rounds, and in each round the master sends a task to the workers to compute and return the

result. Based on the workers’ replies, the master must decide which is the value most likely to be

the correct result for this round.

Tasks

The tasks considered in this chapter have a unique correct solution. Although such an assump-

tion might seem limiting, there are plenty of computations where the correct solution is unique:

e.g., any mathematical function. In particular from the crowdsoucing perspective these computa-

tions can be questions with a single correct solution. While in BOINC-operated applications we

are considering the output [130] of an executable file.
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Worker Types

Based on the existing literature discussed in Chapter 2 we consider that workers can be cat-

egorized in three types: rational, altruistic and malicious, following what we call a rationality

model. This categorizations corresponds to distinct behaviors from the workers that are described

below:

Rational: Following Abraham et al. [4], and Shneidman and Parkes [124], we assume that work-

ers are rational, that is, they are selfish in a game-theoretic sense and their aim is to max-

imize their benefit (utility) under the assumption that other workers do the same. In the

context of this paper, a worker is honest in a round when it truthfully computes and returns

the task result, and it cheats when it returns some incorrect value. So, a worker decides to

be honest or to cheat depending on which strategy maximizes its utility.

Altruistic: They have a predefined behavior, to always be honest, by returning a correct value.

Malicious: They have a predefined behavior, to always cheat, by returning an incorrect value.

Notice that while altruistic and malicious workers have a predefined behavior, to always be

honest or cheat, respectively. Instead, a rational worker decides to be honest or cheat depending

on which strategy maximizes its utility. We denote by pCi(r) the probability of a rational worker

i cheating in round r. This probability is not fixed and the worker adjusts it over the course of

the computation. The master is not aware of the worker types, neither of a distribution of types.

Thus, the mechanisms presented in this section do not rely on any statistical information.

While workers make their decision individually and with no coordination, following [118]

and [51], we assume that all the workers that cheat in a round return the same incorrect value;

this yields a worst case scenario (and hence analysis) for the master with respect to obtaining the

correct result using mechanisms where the result is the outcome of voting. It subsumes models

where cheaters do not necessarily return the same answer. This can be seen as a weak form of

collusion.

For simplicity, unless otherwise stated, we assume that workers do not change their type

over time. In practice it is possible that changes occur. For example, a rational worker might

become malicious due to a bug, or a malicious worker (e.g., a worker under the influence of a

virus) become altruistic (e.g., if an antivirus software reinstates it). If this may happen, then all

our results still apply for long enough periods between two changes. In the evaluation of the

designed mechanisms through simulations we consider scenarios where the workers change their

type dynamically.

Auditing and Incentives

In the presence of rational workers the master needs to induce their correct behavior, that is

to be honest. Thus, when necessary (as instructed by it’s algorithm) the master employs auditing
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and reward/punishment schemes to influence the behavior of the rational worker.

The master, in a round, might decide to audit the responses of the workers, at a cost. By

auditing we mean that the master computes the task by itself, and checks which workers have been

honest. We denote by pA the probability of the master auditing the responses of the workers. The

master can change this auditing probability over the course of the computation, but restricted to a

minimum value pminA > 0. When the master audits, it can accurately reward and punish workers.

When the master does not audit, it rewards only those in the majority or weighted majority (see

Section 4.3 and Sections 4.4 & 4.5 respectively) of the replies received and punishes no one.

Unlike in the previous chapter, here we assume that the master has the potential of computing the

task itself instead of using challenges. This is a valid assumption since we assume solutions with

a unique correct solution, and as a result the master can accurately compute the solution of a task.

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance

Table 4.1: Payoffs. The parameters are non-negative.

We assume that each rational worker i has an aspiration ai (the same in all rounds) which is

the minimum benefit it expects to obtain in a round. Given this assumption, the master considers

three payoff parameters described in in Table 4.1 to give incentives to the rational workers to reply

with a correct value. In order to motivate the worker to participate in the computation, the master

must ensure that WBY ≥ ai; in other words, the worker has the potential of its aspiration to be

covered. We assume that the master knows the aspirations. Among the parameters involved, we

assume that the master has the freedom of choosing WBY and WPC . By tuning these parameters

and choosing n, the master tries to achieve the goal of eventual correctness (see below). All other

parameters can either be fixed because they are system parameters, or may also be chosen by the

master (except the aspiration, which is a parameter set by each worker).

Eventual Correctness

The goal of the master is to eventually obtain a reliable computational platform. After some

finite number of rounds, the system must guarantee that the master obtains the correct task results

in every round with probability 1 and audits with probability pminA . We call such property eventual

correctness.
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4.3 Presence of Rational Workers

4.3.1 Introduction

In this section we assume that all workers taking part in the computation are following a

rational behavior. This means that the workers will report an incorrect results if this will increase

their benefit. Making the initial assumption that the workers are all rational will allow us to study

and design mechanisms that exploit the multiple interactions of the master with the same workers

offering incentives that will drive, over time, the workers to an honest behavior.

To design such a mechanism that benefits from the repeated interaction among master and

workers, we introduce the concept of evolutionary dynamics (widely used under the biologi-

cal and social perspective) and apply it to Internet-based master-worker task computing. More

specifically, we employ reinforcement learning [28, 128] to model how system entities, or learn-

ers, interact with the environment to decide upon a strategy, and use their experience to select or

avoid actions according to the consequences observed. Positive payoffs increase the likelihood

of reusing the strategy just chosen, and negative payoffs reduce it. Payoffs are seen as parame-

terizations of players’ responses to their experiences. Empirical evidence [21, 29] suggests that

reinforcement learning is more plausible with players that have information only on the payoffs

they receive; i.e., they do not have knowledge of the strategies involved. This model of learn-

ing fits nicely Internet-based computing systems since each worker has no information about the

master and the other workers’ strategies and it does not know the set of strategies that led to the

payoff it received. The workers have information only about their strategies and the payoffs that

they receive. The master also has minimal information about the workers and their intentions (to

be truthful or not). Thus, we employ reinforcement learning for both the master and the workers

in an attempt to build a reliable computational platform.

Section Overview

We develop and analyze a mechanism in Subsection 4.3.2 based on reinforcement

learning to be used by the master and the workers. In particular, in each round, the master

allocates a task to the workers and decides whether to audit their responses with a certain

probability pA. Depending on whether it audits or not, it applies a different reward/pun-

ishment scheme, and adjusts the probability pA for the next round (also known as the next

task execution). Similarly, in a round, each worker i decides, with a certain probability pCi,

whether it will report an incorrect result or it will truthfully compute and report the correct

task result. Depending on the outcome of its decision, measured by the increase or the

decrease of the worker’s utility, the worker adjusts its probability pCi for the next round.

In Subsection 4.3.3 we show necessary and sufficient conditions under which the

mechanism ensures eventual correctness. That is, we establish the conditions under which,
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after some finite number of rounds, the master obtains the correct task result in every round,

with minimal auditing, while keeping the workers satisfied (with respect to their utility).

Eventual correctness can be viewed as a form of Evolutionary Stable Strategy [45, 57] as

studied in Evolutionary Game Theory (EGT) [132]: even if a “mutant” worker decides to

change its strategy to cheating, it will soon be brought back to an honest strategy.

In Subsection 4.3.3, we show that our mechanism, when adhering to the above-

mentioned conditions, reaches eventual correctness quickly. In particular, we show ana-

lytically probabilistic bounds on the convergence time, as well as bounds on the expected

convergence time.

Our analysis is complemented with simulations, in Subsection 4.3.4 for a variety of

parameter combinations likely to occur in practice.

4.3.2 Algorithmic Mechanism

We now present the algorithms that the master and the workers follow.

Master’s Algorithm (Alg. 7)

The master’s algorithm begins by choosing the initial probability of auditing. After that, at

each round, the master sends a task to all workers and, after all answers are received (a reliable

network is assumed), the master audits the answers with probability pA. In the case the answers

are not audited, the master accepts the value contained in the majority of answers and continues

to the next round with the same probability of auditing. In the case the answers are audited, the

value pA of the next round is reinforced (i.e., modified according to the outcome of the round).

Then, the master rewards/penalizes the workers accordingly.

Algorithm 7 Master’s Algorithm

1 pA← x, where x ∈ [pminA , 1]
2 for r← 1 to∞ do
3 send a task T to all workers in W
4 upon receiving all answers do
5 audit the answers with probability pA
6 if the answers were not audited then
7 accept the majority
8 else
9 p′A← pA + αm(cheaters(r)/n− τ)

10 pA← min{1,max{pminA , p′A}}
11 ∀i ∈W : pay/charge Πito worker i

The master initially has scarce or no information about the environment (e.g., workers initial

pC). The initial probability of auditing will be set according to the information the master pos-
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sesses. For example, if it has no information about the environment, a safe approach may be to

initially set pA = 0.5.

Observe that, when the answers are not audited, the master has no information about the

number of cheaters in the round. Thus, the probability pA remains the same as in the previous

round. When the answers are audited, the master can determine the number of cheaters; we

denote by cheaters(r) the number of cheaters in round r. Then, the master adapts the auditing

probability pA according to this number. Observe that the algorithm guarantees pA ≥ pminA . This,

combined with the property pminA > 0, will prevent the system to fall in a permanent set of “bad”

states where pA = 0 and pC > 0. A discount factor, which we call tolerance and denote by τ ,

expresses the master’s tolerable ratio of cheaters (typically, we will assume τ = 1/2). Hence,

if the proportion of cheaters is larger than τ , pA will be increased, and otherwise, pA will be

decreased. The amount by which pA changes depends on the change in the number of cheaters,

modulated by a learning rate αm. This latter value determines to what extent the newly acquired

information will override the old information. (For example, if αm = 0 the master will never

adjust pA.)

Workers’ Algorithm (Alg. 8).

The workers’ algorithm begins with each worker i deciding an initial probability of cheating

pCi. At each round, each worker receives a task from the master and, with probability 1 − pCi
calculates the task, and replies to the master with the correct answer. If the worker decides to

cheat, it fabricates an answer and sends the incorrect response to the master.

Algorithm 8 Algorithm for Worker i

1 pCi← y, where y ∈ [0, 1]
2 for r← 1 to∞ do
3 receive a task T from the master
4 set Si ←−1 with probability pCi, and
5 Si← 1 otherwise
6 if Si = 1 then σ← compute(T )
7 else σ← arbitrary solution
8 send response σ to the master
9 get payoff Πi

10 p′Ci← pCi − αw(Πi − ai)Si
11 pCi←max{0,min{1, p′Ci}}

Workers have a learning rate αw. We assume that all workers have the same learning rate, that

is, they learn in the same manner (see the discussion in [128]; the learning rate is called step-size

there); note that our analysis can be adjusted to accommodate also workers with different learning

rates. We choose the value of αw so that αw(ai + WPC) < 1, ∀i ∈ W . Otherwise, the system

could enter in an oscillating condition where some nodes alternate pC between 0 and 1 never
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converging to a stable state, which is necessary to guarantee reliability.

4.3.3 Analysis

In this subsection we analyze the mechanism presented in Section 4.3.2. We model the evo-

lution of the mechanism as a Markov chain, and we prove necessary and sufficient conditions

for achieving eventual correctness. We provide analytical evidence that convergence to eventual

correctness can be reached rather quickly. Observe in Algorithms 7 and 8 that there are a number

of variables that may change in each round. We will denote the value of a variableX after a round

r with a superindex r, as Xr.

The Mechanism as a Markov Chain

We analyze the evolution of the master-workers system as a Markov chain. To do so, we first

define the set of states and the transition function as follows.

Let the state of the Markov chain be given by the vector of probabilities

(pA, pC1, pC2, . . . , pCn). Then, we denote the state after round r by (prA, p
r
C1, p

r
C2, . . . , p

r
Cn).

Observe from Algorithms 7 and 8 that any state (pA, pC1, pC2, . . . , pCn) in which pA ∈ [pminA , 1]

and pCi ∈ [0, 1] for each worker i, is a possible initial state of the Markov chain. The workers’

decisions, the number of cheaters, and the payoffs in round r are the stochastic outcome of the

probabilities used in round r. Then, restricted to prA ∈ [pminA , 1] and prCi ∈ [0, 1], we can describe

the transition function of the Markov chain in detail. For each subset of workers F ⊆ W ,

P (F ) =
∏
j∈F p

r−1
Cj

∏
k/∈F (1 − pr−1

Ck ) is the probability that the set of cheaters is exactly F in

round r. Then, we have the following.

With probability pr−1
A · P (F ), the master audits when the set of cheaters is F , and

then,

(0) the master updates pA as prA = pr−1
A + αm(|F |/n− τ), and

(1) each worker i ∈ F updates pCi as prCi = pr−1
Ci − αw(ai + WPC),

(2) each worker i /∈ F updates pCi as prCi = pr−1
Ci + αw(ai − (WBY −WCT )).

With probability (1 − pr−1
A )P (F ), the master does not audit when F is the set of

cheaters. Then, the master does not change pA and the workers update pCi as follows. For

each i ∈ F ,

(3) if |F | > n/2 then prCi = pr−1
Ci + αw(WBY − ai),

(4) if |F | < n/2 then prCi = pr−1
Ci − αw · ai,

and for each i /∈ F ,

(5) if |F | > n/2 then prCi = pr−1
Ci + αw(ai + WCT ),



52 A Reinforcement Learning Approach

(6) if |F | < n/2 then prCi = pr−1
Ci + αw(ai − (WBY −WCT )).

The following terminology will be used throughout. Let a covered worker be one that is paid

at least its aspiration ai and the computing cost WCT . In any given round r, let an honest worker

be one for which pr−1
C = 0. Let an honest state be one where the majority of workers are honest.

Let an honest set be any set of honest states. We refer to the opposite cases as uncovered worker,

cheater worker (pr−1
C = 1), cheat state, and cheat set respectively.

Conditions for Eventual Correctness

We show the conditions under which the system can guarantee eventual correctness. We begin

with some terminology. Let a set of states S be called closed if, once the chain is in any state

s ∈ S, it will not move to any state s′ /∈ S. (A singleton closed set is called an absorbing state.)

For any given set of states S, we say that the chain reaches (resp. leaves) the set S if the chain

reaches some state s ∈ S (resp. reaches some state s /∈ S).

In order to show eventual correctness, we must show eventual convergence to a closed honest

set. Thus, we need to show (i) that there exists at least one such closed honest set, (ii) that all

closed sets are honest, and (iii) that one honest closed set is reachable from any initial state.

Lemma 4.1 shows that, if pA = 0 then some cheat set is closed. Given (ii), the necessity of

pminA > 0 is motivated by this claim. Hence, pA > 0 is assumed for the rest of the analysis.

Lemma 4.2 shows that, if the majority of workers is uncovered, no honest set is closed. Given

(i), the necessity of a covered majority is motivated. Hence, it is assumed that the majority of

workers are covered for the rest of the analysis. Lemma 4.3 shows that the honest set including

all the states in which all covered workers are honest is closed, which proves (i). Lemma 4.4

shows that any honest set where some covered worker is not honest is not closed, and Lemma 4.5

shows that any set that is not honest is not closed. Together, they prove (ii), and also (iii) because,

if only honest sets are closed, there is a way of going from non-honest sets to one of them. The

overall result is established in Theorem 4.1.

Lemma 4.1. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥ ai. If |Z| > n/2,

then the set of states S = {(pA, pC1, . . . , pCn)|(pA = 0) ∧ (∀w ∈ Z : pCw = 1)}, is a closed

cheat set.

Proof : Observe first that each state in S is a cheat state, since the master does not audit and a

majority of workers cheat. From transition (3) it can be seen that, if the chain is in a state of the

set S before round r, for each worker i ∈ Z, prCi ≥ pr−1
Ci = 1 holds. In addition, pA does not

change. Hence, once the chain has reached a state in the set S, it will move only to states in the

set S. �

As already mentioned, from this lemma, it is concluded that pA > 0 is required for eventual

correctness. From now on, it is assumed that in all rounds pA ≥ pminA > 0.
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Lemma 4.2. If there exists a set of workers Z ⊆ W such that |Z| > n/2 and ∀i ∈ Z : WBY <

ai + WCT then no honest set is closed.

Proof : Recall that we choose the value of αw so that ∀i ∈W : αw(ai+WPC) < 1. Consider

any starting state, which by assumption is an honest state, S = {(pA, pC1, . . . , pCn)|∃Y ⊆ W :

(|Y | > n/2) ∧ (∀w ∈ Y : pCw = 0)}.
Let the set Z be divided in three sets depending on whether the workers are honest (pC = 0),

cheaters (pC = 1) or cheat with a probability between zero and one (0 < pC < 1). We denote

these sets by Z0, Z1 and Zb respectively. In the next round the master audits (possible since

pA > 0), workers in Z0 and Zb do not cheat and workers in Z1 cheat. Then from transition (2)

all workers in Z0 and Zb increase their probability of cheating. From transition (1) all workers

in Z1 decrease their cheating probability by αw(ai + WPC). Since all workers in Z1 are cheater

workers (pC = 1) and αw(ai + WPC) < 1, after this round their cheating probability is larger

than 0. Hence, for all workers in Z their cheating probability is larger than 0 and the new state is

not honest. �

Lemma 4.3. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥ ai + WCT and

∀j /∈ Z : WBY < aj+WCT . If |Z| > n/2, then the set of states S = {(pA, pC1, . . . , pCn)|∀w ∈
Z : pCw = 0}, is an honest closed set.

Proof : Consider any round r before which the state of the chain is s ∈ S. Given that |Z| >
n/2, at round r we have cheaters(r) < n/2. Then, for all workers in Z, the transition function

is either (2) or (6), depending on whether the master audits or not. Then, given that WBY ≥
ai + WCT for all workers in Z, their probability of cheating after round r is still 0. Hence, the

claim follows. �

Lemma 4.4. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥ ai + WCT and

∀j /∈ Z : WBY < aj + WCT . Then, for any set of states S = {(pA, pC1, . . . , pCn)|∃Y ⊆ W :

(|Y | > n/2) ∧ (∀w ∈ Y : pCw = 0) ∧ (Z * Y )}, S is not a closed set.

Proof : For the sake of contradiction assume that S is a closed set. Then, after a round r when

the state is s ∈ S, the chain remains in S forever. Given that |Y | > n/2 and the assumption

that S is a closed set, at all rounds r′ > r we must have cheaters(r′) < n/2. Then, given that

∀i ∈ Z : WBY ≥ ai + WCT , from the transition function it can be seen that the probability of

cheating of all workers in Z decreases in every round, independently of whether the master audits

or not. But then, at some round r′ > r, for all i ∈ Z, pr
′
Ci = 0 must hold. Then, Z ⊆ Y at round

r′, showing that S is not closed. �

Lemma 4.5. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥ ai + WCT

and ∀j /∈ Z : WBY < aj + WCT . If |Z| > n/2 and pA > 0, then for any set of states

S = {(pA, pC1, . . . , pCn)|∃Y ⊆ W : (|Y | > n/2) ∧ (∀w ∈ Y : pCw > 0)}, S is not a closed

set.
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Proof : To prove this claim, it is enough to show that, after a round r when the state is s ∈ S,

with some positive probability the chain moves out of S. Assume that, starting at some round

r′ ≥ r, the master audits in all rounds in [r′, r′′], for a suitable r′′. Such assumption is valid

because pA > 0. Then, given that ∀i ∈ Z : WBY ≥ ai + WCT , from the transition function

it can be seen that the probability of cheating of all workers in Z decreases in every round by

an amount not smaller than αw min{WBY − ai −WCT ,WPC + ai}. But then, at some round

r′′ > r, for all i ∈ Z we have pr
′′
Ci = 0. Therefore, |Y | < n/2 at round r′′ showing that S is not

closed. �

The following theorem shows that there is a positive probability of reaching some state after

which correctness can be guaranteed, as long as for a chosen majority of workers, the payment is

enough to cover their aspiration and cost of performing the task. Its proof follows directly from

Lemmas 4.3– 4.5.

Theorem 4.1. Let Z ⊆ W be any set of workers such that |Z| > n/2. If pA > 0 and for all

i ∈W : αw(ai +WPC) < 1 then, in order to guarantee with positive probability that, after some

finite number of rounds, the system achieves eventual correctness, it is necessary and sufficient to

set WBY ≥ ai + WCT for all i ∈ Z in some set Z ⊆W such that |Z| > n/2.

Remark 4.1. From Algorithm 7 it is easy to see that once the closed set S =

{(pA, pC1, . . . , pCn)|∀w ∈ Z : pCw = 0} is reached, eventually pA = pminA and stays such

forever.

Convergence Time

Theorem 4.1 gives necessary and sufficient conditions to achieve eventual correctness. How-

ever, in order to have a practical system, it is necessary to bound the time taken to achieve it,

which we call the convergence time. In other words, starting from any initial state, we want to

compute the number of rounds that the Markov chain takes to reach an honest closed set. In this

section, we show bounds on the convergence time.

Expected Convergence Time. Let C be the set of all covered workers. We assume, as required

by Theorem 4.1, that |C| > n/2. From transitions (1) and (2) in the Markov chain definition,

it can be seen that it is enough to have a consecutive sequence of 1/(αw min{WBY − ai −
WCT ,WPC + ai}) audits to enforce pC = 0 for all covered workers i ∈ C. This gives the

following upper bound on the convergence time:

Theorem 4.2. The expected convergence time is at most ρ/(pminA )ρ, where ρ =

1/(αw mini∈C{WBY − ai −WCT ,WPC + ai}) and C is the set of covered workers.

Proof : The expected convergence time is upper bounded by the expected time for ρ consec-

utive audits. Consider the time divided in phases of ρ rounds. Let a phase where the master

audits in all rounds be called successful. The expected time for ρ consecutive audits is at most
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the expected time for a successful phase. The probability of success in any given phase is at

least (pminA )ρ. Consider the probability distribution of the number X of phases needed to have

success, each with probability (pminA )ρ. This distribution is geometric and the expectation of X is

1/(pminA )ρ. Given that each phase has ρ rounds, the claim follows. �

The upper bound shown in Theorem 4.2 may be too pessimistic for certain values of the

parameters. The following theorem provides a tighter bound under certain conditions.

Theorem 4.3. Let us define, for each worker i, deci , αw min{WPC + ai,WBY −WCT −
ai}, inci , αw max{WBY − ai,WCT + ai}. Let C be the set of covered workers. If pminA =

maxi∈C{inci/(inci + deci)}+ ε, for some 0 < ε < 1−maxi∈C{inci/(inci + deci)}, then the

expected convergence time is 1/(ε(mini∈C{deci}+ maxi∈C{inci})).

Proof : Let us define a potential function φ over the rounds as follows. Initially φ(0) =

maxi∈C{p0
Ci}. Then, for each round r > 0, φ(r) = φ(r − 1) if φ(r − 1) = 0. If φ(r − 1) > 0,

then φ(r) = max(0, φ(r − 1)−minj∈C{decj}) if the master audits in round r > 0, and φ(r) =

φ(r − 1) + maxj∈C{incj} otherwise.

Consider any worker i ∈ C, and observe that, in the extreme cases, pCi decreases by

minj∈C{decj} when the master audits and increases by maxj∈C{incj} when the master does

not audit. Also, once all workers in C have pCi = 0, this value does not change, since there is a

majority of honest workers. Hence, it is clear that for all r ≥ 0, φ(r) ≤ maxi∈C{prCi}.
As a worst case, assume that φ(0) = 1. We compute the expected number of rounds needed

to get φ = 0 as follows. We need 1/deci audits for each 1/inci non-audit rounds to compensate

for the increase in potential. Setting pminA = inci/(inci + deci) the master achieves at least that

ratio in expectation for any time period. (Omitting that time is discrete for clarity.) Additionally,

in order to compensate for the initial φ(0) = 1, 1/deci additional audits are needed. Making

pminA = inci/(inci + deci) + ε, for some 0 < ε < 1 − inci/(inci + deci), the expected

convergence time is 1/(ε(mini∈C{deci}+ maxi∈C{inci})). �

The following corollary is derived from the previous theorem for a suitable scenario.

Corollary 4.1. If WPC + ai ≥ WBY −WCT − ai and WBY − ai ≤ WCT + ai, ∀i ∈ C, and

if pminA = WCT +maxi∈C ai
WBY

+ ε, where C is the set of covered workers and 0 < ε < 1− (WCT +

maxi∈C ai)/WBY , then the expected convergence time is ρ/ε, where ρ = 1/(αwWBY).

Probabilistic Bound on the Number of Rounds for Convergence. We show now that, under

certain conditions on the parameters of the system, it is possible to bound the probability to

achieve convergence and the number of rounds to do so. Assume that p0
A > 0. Since pA is not

changed unless the master audits, we have the following:

Lemma 4.6. Let p0
A = p > 0. Then, the master audits in the first ρ = ln(1/ε1)/p rounds with

probability at least 1− ε1, for any ε1 ∈ (0, 1).



56 A Reinforcement Learning Approach

Proof : The master audits in the first ρ rounds with probability 1−(1−p)ρ ≥ 1−exp(−ρ·p) =

1− ε1. �

Let us assume that the system parameters are such that, for all workers i, αw(WPC + ai) ∈
[0, 1] and αw(WBY−WCT −ai) ∈ (0, 1] (all workers are covered). Let us define dec cheater ,

αw mini{WPC+ai} and dec honest , αw mini{WBY −WCT −ai}. From transitions (1) and

(2) we derive the following lemma:

Lemma 4.7. Let r be a round in which the master audits, and F be the set of cheaters in round

r. Then,

prCi ≤ 1− αw(WPC + ai) ≤ 1− dec cheater, ∀i ∈ F

prCj ≤ 1− αw(WBY −WCT − aj) ≤ 1− dec honest, ∀j /∈ F

Let us denote the sum of all cheating probabilities before a round r as P r−1 ,
∑
i

pr−1
Ci .

Lemma 4.8. Let r be a round in which the master audits such thatP r−1 > n/3. If dec cheater ≥
dec honest and dec cheater + 3 · dec honest ≥ 8/3, then P r ≤ n/3 with probability at least

1− exp(−n/96).

Proof : Let F be the set of cheaters in round r. Then, using a Chernoff bound Pr[|F | <
(1− δ)P r−1] ≤ exp(−δ2P r−1/2), for any δ ∈ (0, 1). Then, since P r−1 > n/3, using δ = 1/4,

there are at least (1 − δ)P r−1 > n/4 cheaters with probability at least 1 − exp(−δ2P r−1/2) >

1 − exp(−n/96). If that is the case, from Lemma 4.7 and dec cheater ≥ dec honest, we have

that

P r ≤ n− |F |dec cheater − (n− |F |)dec honest

≤ n− (n/4)dec cheater − (3n/4)dec honest

= n(1− (dec cheater + 3 · dec honest)/4) ≤ n/3,

as desired. �

Let us now define deci , αw min{ai,WBY −WCT − ai}. Let, dec , mini deci. Assume

WPC ≥ 0 and ai ≥ 0, for all workers.

Lemma 4.9. Consider a round r such that P r−1 ≤ n/3. Then, with probability at least 1 −
exp(−n/36) each worker i has prCi ≤ max{0, pr−1

Ci − dec}, and hence P r ≤ n/3.

Proof : Using Chernoff, there is a majority of honest workers with probability at least

Pr[majority honest|P r−1 ≤ n/3] ≥ 1− exp(−(1/2)2(n/3)/3) = 1− exp(−n/36).
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It can be observed in Algorithm 2 that, if there is a majority of honest workers in a round r, then

any worker i has prCi ≤ max{0, pr−1
Ci − dec}, independently of whether the master audits. Hence

the proof. �

Theorem 4.4. Assume αw(WPC + ai) ∈ [0, 1] and αw(WBY −WCT − ai) ∈ (0, 1] for all

workers i. (Observe that all workers are covered.) Let dec cheater , αw mini{WPC + ai},
dec honest , αw mini{WBY −WCT − ai}, and dec , αw mini{ai,WBY −WCT − ai}.
If p0
A = p > 0, dec cheater ≥ dec honest and dec cheater + 3 · dec honest ≥ 8/3, then

eventual convergence is reached in at most ln(1/ε1)/p+ 1/dec rounds, with probability at least

(1− ε1)(1− exp(−n/96))(1− exp(−n/36))1/dec, for any ε1 ∈ (0, 1).

Proof : Consider the first round r in which the masters audits. From Lemma 4.6, r is in

the first ln(1/ε1)/p rounds with probability at least 1 − ε1. If so, either P r−1 ≤ n/3 and also

P r ≤ n/3 (from Algorithm 2 and the fact that the master audits in round r, P cannot increase

in round r), or P r−1 > n/3. In this latter case, from Lemma 4.8, P r ≤ n/3 with probability at

least 1 − exp(−n/96). Then starting at round r + 1, from Lemma 4.9, with probability at least

(1 − exp(−n/36))1/dec, there are 1/dec consecutive rounds with majorities of honest workers.

Since in each of these rounds the cheating probability of any worker decreases at least by dec

(unless it is already zero), at the end of these rounds all workers have zero cheating probability.

�

4.3.4 General Simulations

This subsection complements our analytical results with illustrative simulations. The graphi-

cal representation of the data obtained captures the tradeoffs between reliability and cost, a con-

cept hard to view through the analysis. This is important as our analytical upper bounds on

convergence time correspond to worst case scenarios. Here, we present simulations for a variety

of parameter combinations likely to occur in practice. We have created our own simulation setup

by implementing our mechanism (the master’s and the workers’ algorithms) using the C++ pro-

gramming language. We have run our simulations on a PC with an Intel Core 2 Duo, 2.80GHz

CPU, 4GB of RAM and Ubuntu 11.04 OS. Each depicted plot value represents the average over

10 executions of the implementation. The plots of Figure 4.4 are an exception and the plotted

values represent only 1 execution of the implementation; the purpose is to illustrate the per round

cost of the master.

Simulation Parameters

We choose sensible parameter values likely to be encountered in real applications; the choice

of the parameters was influenced by statistics obtained from experiments contacted in SETI-like

projects ( [6, 50, 121]). In particular, the number of workers has been set to nine (an odd number

to accommodate majority voting when the master does not audit). In systems like SETI@home
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Figure 4.1: Cheating probability for each worker as a function of time (number of rounds)
for parameters pC = pA = 0.5, WBY = 1, WPC = 0, WCT = 0.1 and ai = 0.1. (a) α = 0.01;
(b) α = 0.1.

typically each task is assigned to three workers [79]. So, in that context, nine workers seems an

appropriate workforce. The initial cheating probability of each worker i is not known, therefore

we have experimented with pCi = 0.5, as a reasonable assumption, and with pCi = 1 as an

extreme case. Similarly, we have set pA ∈ {0.5, 1} as the master’s initial probability of auditing.

The minimum probability of cheating is set to be pminA = 0.01 and tolerance τ = 0.5, which

means that the master will not tolerate a majority of cheaters. Besides this intuition on the value

of tolerance, we also carried out a set of experiments to understand the effect of this parameter,

on which we will comment below.

The payoffs for the workers are set using WBY ∈ {1, 2} as our normalizing parameter and

we take WPC ∈ {0, 1, 2} and WCT = 0.1 as realistic values (within the same order of magnitude

as WBY ) to explore the effects of these choices. In the simulations, unless otherwise stated, the

master covers all workers and not some majority as assumed in the analysis (as a worst case

scenario with respect to the master’s cost).

The aspiration is a parameter defined by the workers in an idiosyncratic manner; for simplic-

ity, in these simulations we consider all workers having the same aspiration level ai ∈ {0.01, 0.1}.
We have checked that, when values are assigned randomly around some mean, the results are

similar to those presented here, provided the variance is not very large. As for the values for the

aspiration and of the workers’ cost for computing the task WCT , they are such that the necessary

conditions of Theorem 4.1 are satisfied and hence eventual convergence is reached. Finally, we

consider the same learning rate for the master and the workers, i.e., α = αm = αw. For practical

reasons [128] it must be set to a small constant value, so we consider α ∈ {0.1, 0.01}.
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Figure 4.2: Auditing probability for the master as a function of time (number of rounds) for
parameters pC = pA = 0.5, WBY = 1, WPC = 0, WCT = 0.1 and ai = 0.1. (a) α = 0.01; (b)
α = 0.1.

Convergence Time

Figure 4.1 shows that convergence can be reached very quickly, even without punishing

cheaters and with small WBY . Note that even if all workers have the same aspiration level and

begin with the same initial cheating probability, their evolution in time may be different from

each other as it depends on the individual realizations of cheating. In Figure 4.1 we also notice

that a slightly higher value of α can make the convergence time shorter. (As we argued before,

the value of α can not be very high because the learning procedure will become unstable and pC
will bounce up and down without reaching convergence.) Similar conclusions can be drawn from

Figure 4.2, where we can notice how quickly pA drops to pA = 0.01, and also that pA decreases

in the same manner as pC . Notice however, that pA decreases at a slower rate; intuitively, this is

to ensure that workers will not try to deviate from the desirable behavior.

Effects of Punishment

Notice that in previous simulations only a positive reinforcement is applied to the workers

(i.e., WPC = 0). Now, from Figure 4.3 we can notice that the larger the punishment we apply (i.e.,

WPC ∈ {1, 2}) the faster the convergence time is. In fact, we may conclude that applying only

punishment is enough to have fast convergence. Comparing Figure 4.1(b) with Figure 4.3(a) we

observe that, for a specific set of parameter values, a larger WBY leads to a shorter convergence

time. Interestingly, this observation reveals a trade-off between convergence time and the cost

the master has for reaching faster convergence and maintaining it. Thus, the master could choose

between different protocols estimating the cost of the auditing until it reaches convergence. But

less auditing leads to larger convergence times. So it is not clear initially what is going to be

optimal.
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Figure 4.3: Cheating probability for each worker as a function of time (number of rounds)for
parameters pC = pA = 0.5, α = 0.1, ai = 0.1, WBY = 2 and WCT = 0.1. (a) WPC = 0; (b)
WPC = 1; (c) WPC = 2.

Master’s Cost

Recall from the simulation parameters that only the cost of auditing and the workers’ payment

are non-zero, and that the master covers all workers (instead of some majority as in the analysis).

We contrasted first a worst case scenario where workers initially cheat with probability pC = 1,

against the case where, given the lack of knowledge about worker’s behavior, we assume that

initially pC = pA = 0.5.

The first conclusion we can draw from our simulations is that, even in this unfavorable situ-

ation, eventual convergence is still achieved. However, during the process the master’s auditing

probability reaches 1 for the system to converge. Of course, this has a direct impact on the cost

of convergence, but also on the convergence time. Denote by pA(0) the master’s initial audit-

ing probability. Interestingly, from Figures 4.4(a2), (a3), (b2), and (b3) we observe that, when

pA(0) = 1, the convergence time decreases by 9%, and that even pA converges to its minimum

in 25% less time yielding also a cost reduction. In fact, during the first 10 rounds of evolution,

for pA(0) = 0.5 the aggregate cost for the master is 56% smaller (Figure 4.4(a1)) than when

pA(0) = 1 (Figure 4.4(b1)). However, in the subsequent interval between pminA < pA < 1 the sit-
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uation is reversed, and the master’s cost for pA(0) = 1 is 19% smaller than the case pA(0) = 0.5.

These results show that using pA(0) = 1 does not necessarily increase cost as the intuition might

suggest. After convergence is achieved, Figures 4.4(a1), (b1), and (c1) show that, once the mas-

ter’s auditing probability has reached its minimum value, the master audits roughly once every

hundred rounds, which is expected given that pminA = 0.01. This behavior is observed indepen-

dently of the initial auditing probability, which is also expected.

Another surprising result, arising from Figures 4.4(b3) and (c3), is that having workers with

larger aspiration values makes the convergence time decrease by more than a half. The reason

being that the master initially audits with probability one and all workers cheat, so a larger aspi-

ration causes the workers’ cheating probability to drop at a higher rate. This, in turn, feeds back

to the master’s auditing probability and cost, making them decrease faster than the case where

workers have a smaller aspiration.

We have also examined the case where only a majority of workers is covered. Specifically,

we have run analogous simulations to the ones depicted in Figure 4.4, but now covering only 5

out of the 9 workers. A first, interesting observation, is that the convergence time for the covered

workers is not affected. An even more interesting observation is that the master’s cost, until pminA
was reached, is greater than the case of all-covered workers. This is due to the slower rate at

which pA reaches its minimum value. Of course, after this point, the master’s cost is smaller

since it rewards fewer workers.

Tolerance Value

Finally, we have also considered the effect of tolerance for achieving eventual convergence

using three different initial pC ∈ {0.3, 0.5, 1}. Choosing 5000 iterations as a value large enough

to illustrate the problems of convergence for high tolerance (values of the same order of magnitude

or larger give basically the same results), we have found that convergence will always be reached

for the lower values of pC . This is due to the fact that with “almost” honest workers, a majority

of them will always compute the answer and will force punishment to the minority of cheaters.

However, when the initial pC equals one and there is no punishment (WPC = 0), the master must

respond to a percentage of cheating workers (due to tolerance) to obtain eventual convergence,

and as a consequence convergence is not achieved for large tolerance values (for this specific

set of parameters, when τ > 0.9). Interestingly, with non-zero punishment (WPC = 1), the

master can tolerate all workers cheating and still achieve convergence. Therefore, our simulated

examples establish that, based on the rest of the parameter values, the master can appropriately

set values for tolerance τ , (its own) learning rate α, punishment WPC and perhaps WBY in such

a way that convergence can be swiftly obtained.
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4.3.5 Large Scale Simulations

For the sake of experimentation, in this subsection we test the designed mechanism under

extreme parameter values. The reason is twofold, first of all, we want to observe the time the

system needs to reach eventual correctness when the number of participating workers is a large.

At a second level, we want to examine better the tolerance parameter, for which we don’t have

much information from the analysis.

Parameters

We make the assumption that workers are rational and have no information about the master’s

initial probability of auditing. The same applies for the master’s initial probability of auditing,

hence, we have taken pA = 0.5 as the initial value. The minimum probability of auditing will be

set to be pminA = 0.01. We set the initial cheating probability of each worker i to pCi = 0.1 as a

worst case condition in terms of time to reach eventual correctness. As for the tolerance, this will

be one of our parameters of interest so we will sweep a range of values in what follows.

Let us now proceed with the payoffs for the workers. We will take the worker’s reward for

correct answers, WBY = 1, by way of normalization and, within that framework, we will choose

WPC = {0, 1} and WCT = 0.1 as realistic values (within the same order of magnitude as WBY )

to explore the effects of these choices. As we will see, those values of punishment are enough to

understand the system behavior, and, as for the computing cost, we believe that it is reasonable

to assume that it is not too large compared with the reward. Regarding the aspiration level, as

we have already said, this is a parameter defined by the workers in an idiosyncratic manner; for

simplicity, in these simulations we fix a uniform aspiration level, ai = {0.01, 0.1}. Finally, we

consider the same learning rate for the master and the workers, i.e., α = αm = αw. The learning

rate, as discussed for example in [128] (called step-size there), for practical reasons can be set to

a small constant value; so we consider α = 0.1.

Results

In this subsection, as we mentioned before, we are mainly interested on τ , the parameter

expressing the master’s tolerance to cheating. Fig. 4.5 collects our results on the influence of

tolerance on convergence, showing the percentage of runs that converged to eventual correctness

out of a batch of 50 realizations with a runtime of 1000 rounds for every tolerance value and four

numbers of workers. The first conclusion we can draw from these plots is that for the case without

punishment and with the lowest aspiration level (top left panel) all realizations yielded eventual

correctness for tolerances as large as τ = 0.6. That is, the system remained well behaved (in the

sense of providing correct answers) even if the master does not react to a majority of defectors.

For higher tolerances the system behavior worsens. Lack of convergence within our simulation

time becomes more frequent. For those realizations that do not converge, we cannot be sure that

they will reach eventual correctness at some later time. Therefore, the percentage of realizations
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Figure 4.5: Convergence percentage of 50 realizations in 1000 rounds. Initial condition in all
cases was pc = 1 for all workers, pA = 0.5. Parameters in all panels, WCT = 0.1, α = 0.1,
pminA = 0.01. Left panels: ai = 0.01, right panels: ai = 0.1. Top panels, WPC = 0, bottom
panels, WPC = 1.
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that converged would be an estimate for a lower bound to the probability of reaching eventual

correctness. As we can see from the rest of the panels, increasing the aspiration level to ai = 0.1

takes the maximum allowed tolerance that still has eventual correctness in every realization up

to τ = 0.7, whereas introducing punishment for defectors is also an improvement factor, leading

to threshold tolerances of τ = 0.85 for the low aspiration level and even to τ = 0.9 for the

largest one. A value such as τ = 0.9 is certainly very large; the fact that the system ends up

providing correct answers even when the master only updates her auditing probability in extreme

cases shows the robustness of the design.

Interestingly, Fig. 4.5 also shows the relevance of the number of workers in the system perfor-

mance. It appears from the plots that when the master takes her tolerance beyond the convergence

threshold the probability to reach eventual correctness decreases if the number of workers is in-

creased. Except for the results at the threshold (τ = 0.7) in the case with no punishment and low

aspiration (top left plot), increasing the number of workers always lead to worse results in terms

of convergence for any value of the tolerance. We believe that this phenomenon arises because in-

creasing the number of workers and keeping everything else the same, it is more probable that one

of the workers defects. In this large tolerance region, the behavior would not change the master’s

auditing probability and, given that there is no punishment, reinforcement learning would not act

so strongly on the corresponding worker, making it more difficult for the system to converge.

Further information on the dependence of the system on the number of workers is provided

by Fig. 4.6, where we study one of the cases of Fig. 4.5 in more detail. For the lowest aspiration

value, ai = 0.01, we see that for tolerances τ = 0.75 and higher, the convergence percentage

decreases with the number of workers. The system sizes we are able to study at this time are not

enough to ascertain whether it eventually reaches zero for sufficiently large number of workers,

which would indicate an abrupt transition in the performance of the algorithm upon changing the

tolerance. Increasing the aspiration level we observe, in agreement with our earlier remarks, that

the system performs much better in terms of higher convergence rates, and also that the transition

to the non-performing system seems somewhat more abrupt, going from full convergence (i.e.,

convergence percentage equal to 1) for 2217 workers at τ = 0.8 to a very low value for τ = 0.9.

However, specific claims about the nature of this transition cannot be made without studying the

whole parameter space. What we can certainly conclude is that the degrading of the performance

becomes worse for larger number of workers, as hinted from previous plots, and that for tolerance

values up to τ = 0.7 the system always provides correct answers. We thus confirm the robustness

of our design as far as the need for the master to update her auditing probability is concerned,

as she can obtain good results just keeping the same value (and hence auditing less often and

saving costs) unless an inordinate number of workers defect. In addition, having workers with

high aspirations allows for an even lower rate of increase of the auditing probability.
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Figure 4.6: Convergence percentage of 50 realizations in 1000 rounds as a function of the
number of workers for WPC = 0, WCT = 0.1, α = 0.1, pminA = 0.01, with either ai = 0.01
(red lines) or ai = 0.1 (purple lines). From top to bottom and from left to right, tolerance values
are τ = 0.7, 0.75, 0.775, 0.8, 0.9, 0.95. Lines are only a guide to the eye.



4.3 Presence of Rational Workers 67

Discussion

Looking into simulation scenarios where a large number of workers takes place has allowed us

to look in detail into the tolerance paremeter, something that our analytical results do not provide

much information.

As we have seen, the system is able to perform correctly and provide the right answer for

high tolerance values, implying that the master needs only to react to large majorities of defectors

or cheaters. In fact, using punishment may push the tolerance levels for which convergence

to eventual correctness is always guaranteed up to values as large as τ = 0.85, meaning that

the master would only need to increase her auditing probability when almost all workers are

cheating. This is a very good result not only in terms of the convergence of the system but also as

regards the cost, because lower auditing probabilities means less actual audits and therefore less

incurred costs by the master. On the other hand, the tolerance behavior above the convergence

threshold depends on the number of workers participating in the crowd computing process. As

we have seen, the performance of the system decreases with the number of workers for both

aspiration values studied, the decrease being slower (but starting at lower tolerances) for the

lowest aspiration level. This observation points to the need of balancing the requirements of the

task to be carried out in terms of number of workers involved with the reliability of the process

(convergence percentage). Keeping everything else constant, increasing the number of workers

may lead to a serious degrading of the results, so if more workers are required it is probably

necessary to lower the tolerance to keep the worker population in check.
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4.4 Presence of Malicious, Altruistic and Rational
Workers

4.4.1 Introduction

Like in the previous section, we are looking into the problem of designing mechanisms for

establishing reliability in task computing systems over the Internet. Moving ahead our original

assumption, that workers are rational, we consider that workers can be categorized in three generic

types: altruistic, malicious and rational. Altruistic workers that always return the correct result,

malicious workers that always return an incorrect result, and rational workers that decide to reply

or not truthfully depending on what increases their benefit.

Studying individually the case where only rational workers are present has allowed us to de-

sign a reinforcement learning mechanism to induce a correct behavior to rational workers, with-

out having to consider other behaviors from the workers. In this section, we move forward and

supported by the literature we assume that besides rational workers also malicious and altruistic

workers can exist. Thus adding to the existing mechanism and taking advantage of the repeated

interaction of the master with the workers we complement the mechanism with four reputation

schemes that cope with malice. The goal of the mechanism is to reach a state of eventual cor-

rectness, that is, a stable state of the system in which the master always obtains the correct task

results. Analysis of the system gives provable guarantees under which truthful behavior can be

ensured by modelling the system as a Markov chain. Finally, we observe the behavior of the

mechanism through simulations that use realistic system parameters values. Simulations not only

agree with the analysis but also reveal interesting trade-offs between various metrics and param-

eters. The correlation among cost and convergence time to a truthful behavior is shown and the

four reputation schemes are assessed against the tolerance to cheaters.

Our Contributions

In this section, we aim at establishing a reliable Internet-based task computing system. En-

tities follow the master-worker model where the master assigns tasks to a fixed set of workers

in an online fashion. (Prediction mechanisms such as the one in [87] can be used to establish

the availability of a set of workers for a relatively long period of time.) Workers on the other

hand are active, aware of their repeated interaction with the master and willing to reply. They are

categorized into three types: (1) altruistic, (2) malicious and (3) rationals. The good behavior of

the rational workers is reinforced through an incentives mechanism, while the malicious workers

are being identified through a number of reputation schemes proposed. The goal of the system

is to achieve a stable state where the master will always receive the correct task reply with the

minimum cost to the master (i.e. auditing), from there forth. In detail, our contributions are as

follows.
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We design such an algorithmic mechanism that uses reinforcement learning (through

reward and optional punishment) to induce a correct behavior to rational workers while coping

with malice using reputation, see Subsection 4.4.3.

We consider a centralized reputation scheme controlled by the master that may use four

different reputation metrics to calculate each worker’s reputation. The first (reputation type

Linear) is adopted from [127] and it is a simple approach for calculating reputation. The second

reputation type (called Exponential) , which we introduce, allows for a more drastic change of

reputation simply because the mathematical function used changes faster. The third reputation

type is inspired by Berkeley Open-source software for volunteer computing (BOINC) current

reputation scheme [11], thus we call it Boinc. Finally, the fourth reputation scheme [11] is

inspired by the previously used reputation scheme [10] of BOINC (called Legacy Boinc) and it

uses an indirect way of calculating reputation through an error rate. All four reputation schemes

are presented in Subsection 4.4.2.

We analyze, in Subsection 4.4.4 our reputation-based mechanism modeling it as a Markov

chain and we identify conditions under which truthful behavior can be ensured. We analyti-

cally prove that by using the reputation type Exponential (i.e. the one we introduce) reliable

computation is eventually achieved.

Simulation results in Subsection 4.4.5, obtained using parameter values extracted by

BOINC-operated applications (such as [6, 50]), reveal interesting trade-offs between various

metrics and parameters, such as cost, time of convergence to a truthful behavior, tolerance to

cheaters and the type of reputation metric employed. Simulations also reveal better perfor-

mance of our reputation type (Exponential) in several realistic cases.

4.4.2 Model

In this subsection we complement the general model presented in Section 4.2. Remember

that in Section 4.2 we presented the concepts of auditing, payoffs, rewards and aspiration. In this

subsection we complement the model by formally defining the four reputation types that are used

by the mechanism.

Reputation

The reputation of each worker is measured by the master; a centralized reputation mechanism

is used. In fact, the workers are unaware that a reputation scheme is in place, and their interaction

with the master does not reveal any information about reputation; i.e., the payoffs do not depend

on a worker’s reputation.

In this work, we consider four reputation metrics. The first one is analogous to a reputation

metric used in [127] and we call it Linear in this work. Reputation Boinc is inspired by the BOINC

adaptive replication metric currently in use [11], while reputation metric Legacy Boinc is inspired



70 A Reinforcement Learning Approach

by the previously used version of BOINC’s adaptive replication metric [10]. We present the

performance of our system under both BOINC reputation metrics as an opportunity to compare

and contrast these two schemes within our framework. Finally, the last reputation metric we

consider is reputation Exponential that is not influenced by any other reputation type, and as we

show in Section 4.4.4 it possesses beneficial properties. In all types, the reputation of a worker

is determined based on the number of times it was found truthful. Hence, the master may update

the reputation of the workers only when it audits. We denote by aud(r) the number of rounds the

master audited up to round r, and by vi(r) we refer to the number of auditing rounds in which

worker i was found truthful up to round r. Moreover, we define streaki(r) as the number of

rounds ≤ r in which worker i was audited, and replied correctly after the latest round in which it

was audited and caught cheating. We let ρi(r) denote the reputation of worker i after round r, and

for a given set of workers Y ⊆ W we let ρY (r) =
∑

i∈Y ρi(r) be the aggregated reputation of

the workers in Y , by aggregating we refer to summing the reputation values. Then, the reputation

types we consider are detailed in Figure 4.7.

Linear: ρi(r) = (vi(r) + 1)/(aud(r) + 2).

Exponential: ρi(r) = εaud(r)−vi(r), for ε ∈ (0, 1), when aud(r) > 0, and ρi(r) = 1/2,
otherwise.

Legacy Boinc: Here we define βi(r) as the error rate of worker i at round r. Reputation for
this type is calculated as follows:

β(r) =


0.1, if r = 0.

0.95β(r − 1), if r > 0 and worker is truthful in round r.
β(r − 1) + 0.1, otherwise.

ρ(r) =


0.5, if r = 0.

0, if β(r) > 0.05.

1−
√

β(r)
0.05 , otherwise.

Boinc: ρ(r) =

{
0, if streak(r) < 10.

1− 1
streak(r) , otherwise.

Figure 4.7: Reputation types.

These four reputation types satisfy the following two natural properties:

A. If a worker is honest when the master audits, the reputation of the worker cannot

decrease.

B. If a worker cheats when the master audits, the reputation of the worker cannot in-

crease.
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This claim is proven below in Lemmas 4.10 and 4.11.

Lemma 4.10. Natural Property A holds for reputation type Linear, Exponential, Legacy Boinc

and Boinc.

Proof : We present separately the proof for each reputation type.

Linear: Assume that at state sr worker i has reputation ρi(r) = vi(r)+1
aud(r)+2 and in the next state

the master audits and the worker is honest then reputation becomes ρi(r + 1) = vi(r)+2
aud(r)+3 . Since

vi(r)+1
aud(r)+2 ≤

vi(r)+2
aud(r)+3 the lemma holds for reputation type Linear.

Exponential: Assume that at state sr worker i has reputation ρi(r) = εaud(r)−vi(r) and in the next

state the master audits and the worker is honest then reputation becomes ρi(r+1) = εaud(r)−vi(r),

then the lemma trivially holds for reputation type Exponential.

Legacy Boinc: At state sr worker i can have reputation ρi(r) ≥ 0 and in the next state the

master audits and the worker is honest then βi(r) < 0.05 and ρi(r + 1) ≥ 0. If in state sr

ρi(r) = 0 then the natural property holds. If in state sr, ρi(r) = 1−
√

βi(r)
0.05 then in the next state

ρi(r+ 1) = 1−
√

βi(r+1)
0.05 . The property still holds since βi(r) < βi(r+ 1) and thus the claim is

proved for reputation type Legacy Boinc.

Boinc: Three possible cases exist: 1)Assume that at state sr worker i has reputation ρi(r) = 0 and

streaki(r) < 9 and in the next state the worker is honest, then reputation becomes ρi(r+1) = 0.

Since ρi(r) = ρi(r + 1) the lemma holds for this case. 2)Assume that at state sr worker i

has reputation ρi(r) = 0 and streaki(r) = 9 and in the next state the worker is honest, then

reputation becomes ρi(r + 1) = 9
10 . Since 0 ≤ 9

10 the lemma holds for this case too. 3)Finally,

assume that at state sr worker i has reputation ρi(r) = 1− 1
streaki(r)

and streaki(r) ≥ 10 and in

the next state the worker is honest, then reputation becomes ρi(r + 1) = 1 − 1
streaki(r+1) . Since

streaki(r) < streak(r + 1) then 1− 1
streaki(r)

≤ 1− 1
streaki(r+1) and the lemma holds for this

case. Thus, the lemma for reputation type Boinc holds since it is true for all three possible cases.

�

Lemma 4.11. Natural Property B holds for reputation type Linear, Exponential, Legacy Boinc

and Boinc.

Proof : We present separately the proof for each reputation type.

Linear: Assume that at state sr worker i has reputation ρi(r) = vi(r)+1
aud(r)+2 and in the next state

the master audits and the worker cheats then reputation becomes ρi(r + 1) = vi(r)+1
aud(r)+3 . Since

vi(r)+1
aud(r)+2 ≥

vi(r)+1
aud(r)+3 the lemma holds.

Exponential: Assume that at state sr worker i has reputation ρi(r) = εaud(r)−vi(r) and in the next

state the master audits and the worker cheats then reputation becomes ρi(r+1) = εaud(r)+1−vi(r).

Since ε ∈ (0, 1) then εaud(r)−vi(r) ≥ εaud(r)+1−vi(r) and the lemma holds.

Legacy Boinc: At state sr worker i can have reputation ρi(r) ≥ 0 and in the next state the master

audits and the worker cheats then βi(r + 1) > 0.05 and ρi(r + 1) = 0 and the claim holds.

Boinc: Two possible cases exist: 1)Assume that at state sr worker i has reputation ρi(r) = 0 and
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streaki(r) < 10 and in the next state the master audits and the worker cheats, then streaki(r +

1) = 0 and reputation becomes ρi(r + 1) = 0. Since ρi(r) = ρi(r + 1) the lemma holds for this

case. 2)Assume that at state sr worker i has reputation ρi(r) = 1− 1
streaki(r)

and streaki(r) ≥ 10

and in the next state the master audits and the worker cheats. Then streaki(r + 1) = 0 and the

reputation becomes ρi(r + 1) = 0. Since, 1 − 1
streaki(r)

> 0 the lemma hold also for this case.

Thus, the lemma holds in general. �

In each round, when the master does not audit, the result is obtained from the weighted ma-

jority as follows. Consider a round r. Let F (r) denote the subset of workers that returned an

incorrect result, i.e., the rational workers who chose to cheat plus the malicious ones; recall that

we assume as a worst case that all cheaters return the same value. Then, W \F (r) is the subset of

workers that returned the correct value, i.e., the rational workers who chose to be truthful plus the

altruistic ones. Then, if ρW\F (r)(r) > ρF (r)(r), the master will accept the correct value, other-

wise it will accept an incorrect value. The mechanism, presented in the next subsection, employs

auditing and appropriate incentives so that rational workers become truthful and have a reputation

that is higher than that of the malicious workers.

4.4.3 Reputation-based Mechanism

We present now our reputation-based mechanism. The mechanism is composed by an algo-

rithm run by the master and an algorithm run by each worker.

Master’s Algorithm

The algorithm begins by choosing the initial probability of auditing and the initial reputation

(same for all workers). The initial probability of auditing will be set according to the information

the master has about the environment (e.g., workers’ initial pC). For example, if it has no infor-

mation about the environment, a possibly safe approach is to initially set pA = 0.5. The master

also chooses the reputation type to use.

After that, at each round, the master sends a task to all workers and, when all answers are

received, the master audits the answers with probability pA. In the case the answers are not

audited, the master accepts the value returned by the weighed majority, and continues to the next

round with the same probability of auditing and the same reputation values for each worker. In

the case the answers are audited, the value pA of the next round is reinforced (i.e., modified

according to the accumulated reputation of the cheaters) and the reputations of the workers are

updated based on their responses. Then, the master rewards/penalizes the workers appropriately.

Specifically, if the master audits and a worker i is a cheater (i.e., i ∈ F ), then Πi = −WPC ; if i

is honest, then Πi = WBY . If the master does not audit, and i returns the value of the weighted

majority (i.e., i ∈Wm), then Πi = WBY , otherwise Πi = 0.

We include a threshold, denoted by τ , that represents the master’s tolerance to cheating (typ-
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Algorithm 9 Master’s Algorithm

1 pA← x, where x ∈ [pminA , 1]
2 aud = 0
3 // initially all workers have the same reputation
4 ∀i ∈W : vi = 0;βi = 0.1; ρi = 0.5; streaki = 0
5 for r← 1 to∞ do
6 send a task T to all workers in W
7 upon receiving all answers do
8 audit the answers with probability pA
9 if the answers were not audited then

10 // weighted majority, coin flip in case of a tie
11 accept the value returned by workers in Wm ⊆W,
12 where ρWm

> ρW\Wm

13 else // the master audits
14 aud← aud+ 1
15 Let F ⊆W be the set of workers that cheated.
16 ∀i ∈W :
17 // honest workers
18 if i /∈ F then vi← vi + 1 or βi← βi · 0.95 or streaki← streaki + 1
19 // cheater workers
20 else vi← vi or βi← βi + 0.1 or streaki← 0
21 update reputation ρi of worker i as defined
22 by reputation type used
23 if ρW = 0 then pA←min{1, pA + αm} else
24 pA←min{1,max{pminA , pA + αm( ρFρW − τ)}}
25 ∀i ∈W : return payoff Πito worker i

Algorithm 10 Algorithm for Rational Worker i

1 pCi ← y, where y ∈ [0, 1]
2 for r← 1 to∞ do
3 receive a task T from the master
4 Si ←−1 with probability pCi,
5 and Si← 1 otherwise
6 if Si = 1 then
7 σ← compute(T ),
8 else
9 σ← arbitrary solution

10 send response σ to the master
11 get payoff Πi

12 if Si = 1 then
13 Πi← Πi −WCT
14 pCi←max{0,min{1, pCi − αw(Πi − ai)Si}}

ically, we will assume τ = 1/2 in our simulations). If the ratio of the aggregated reputation of

cheaters with respect to the total is larger than τ , pA is increased, and decreased otherwise. The
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amount by which pA changes depends on the difference between these values, modulated by a

learning rate αm. This latter value determines to what extent the newly acquired information

will override the old information. (For example, if αm = 0 the master will never adjust pA.) A

pseudocode of the algorithm described is given as Algorithm 9.

Workers’ Algorithm

This algorithm is run only by rational workers (recall that altruistic and malicious workers

have a predefined behavior). The execution of the algorithm begins with each rational worker i

deciding an initial probability of cheating pCi. In each round, each worker receives a task from

the master and, with probability 1 − pCi computes the task and replies to the master with the

correct answer. Otherwise, it fabricates an answer, and sends the incorrect response to the master.

We use a flag Si to model the stochastic decision of a worker i to cheat or not. After receiving

its payoff, each worker i changes its pCi according to payoff Πi, the chosen strategy Si, and its

aspiration ai.

The workers have a learning rate αw. In this work, we assume that all workers have the same

learning rate, that is, they learn in the same manner (see also the discussion in [128]; the learning

rate is called step-size there); note that our analysis can be adjusted to accommodate also workers

with different learning rates.

4.4.4 Analysis

We now analyze the reputation-based mechanism. We model the evolution of the mechanism

as a Markov Chain, and then discuss the necessary and sufficient conditions for achieving eventual

correctness. Modeling a reputation-based mechanism as a Markov Chain is more involved than

the previous model that does not consider reputation (see Subsection 4.3.3).

The Markov Chain

Let the state of the Markov chain be given by a vector s. The components of s are: for the

master, the probability of auditing pA and the number of audits before state s, denoted as aud;

and for each rational worker i, the probability of cheating pCi, the number of validations (i.e.,

the worker was honest when the master audited) before state s, denoted as vi, the error rate βi
and streaki (the number of consecutive times a workers was found honest since the last time she

cheated). To refer to any component x of vector s we use x(s). Then,

s =
〈
pA(s), aud(s), pC1(s), pC2(s), . . . , pCn(s), v1(s), v2(s), . . . , vn(s),

β1(s), β2(s), . . . , βn(s), streak1(s), streak2(s), . . . , streakn(s)
〉
.

In order to specify the transition function, we consider the execution of the protocol divided

in rounds. In each round, probabilities and counts (i.e. numbers of validations, audits, error
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rate and streak) are updated by the mechanism as defined in Algorithms 9 and 10. The state at

the end of round r is denoted as sr. Abusing the notation, we will use x(r) instead of x(sr) to

denote component x of vector sr. The workers’ decisions, the workers’ error rate, the number of

cheaters, and the payoffs of each round r > 0 are the stochastic outcome of the probabilities and

counts at the end of round r − 1. We specify the transition from sr−1 to sr by the actions taken

by the master and the workers during round r.

In the definition of the transition function that follows, the probabilities are limited to pA(s) ∈
[pminA , 1] and for each rational worker i to pCi(s) ∈ [0, 1], for any state s. The initial state s0 is

arbitrary but restricted to the same limitations. Let PF (r) be the probability that the set of cheaters

in round r is exactly F ⊆W . (That is, PF (r) =
∏
j∈F pCj(r−1)

∏
k/∈F (1−pCk(r−1)).) Then,

the transition from state sr−1 to sr is as follows.

Malicious workers always have pC = 1 and altruistic workers always have pC = 0.

With probability pA(r−1) ·PF (r), the master audits when the set of cheaters is F . Then,

according to Algorithms 9 and 10, the new state is as follows.

For the master: aud(r) = aud(r − 1) + 1 and, if ρW (r) > 0 then pA(r) =

pA(r − 1) + αm (ρF (r)/ρW (r)− τ) and pA(r) = min{1, pA + αm} otherwise.

(1) For each worker i ∈ F : vi(r) = vi(r−1), βi(r) = βi(r−1)+0.1 and streaki(r) =

0 and, if i is rational, then pCi(r) = pCi(r − 1)− αw(ai + WPC).

(2) For each worker i /∈ F : vi(r) = vi(r − 1) + 1, βi(r) = βi(r − 1) · 0.95 and

streaki(r) = streaki(r − 1) + 1 and, if i is rational, then pCi(r) = pCi(r − 1) +

αw(ai − (WBY −WCT )).

With probability (1−pA(r−1))PF (r), the master does not audit when the set of cheaters

is F . Then, according to Algorithms 9 and 10, the following updates are carried out.

For the master: pA(r) = pA(r − 1) and aud(r) = aud(r − 1).

For each worker i ∈W : vi(r) = vi(r − 1).

For each rational worker i ∈ F ,

(3) if ρF (r) > ρW\F (r) then pCi(r) = pCi(r − 1) + αw(WBY − ai),

(4) if ρF (r) < ρW\F (r) then pCi(r) = pCi(r − 1)− αw · ai,

For each rational worker i /∈ F ,

(5) if ρF (r) > ρW\F (r) then pCi(r) = pCi(r − 1) + αw(ai + WCT ),

(6) if ρF (r) < ρW\F (r) then pCi(r) = pCi(r − 1) + αw(ai − (WBY −WCT )).

Recall that in case of a tie in the weighted majority, the master flips a coin to choose one of the

answers, and assigns payoffs accordingly. If that is the case, transitions (3)–(6) apply according

to that outcome.
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Conditions for Eventual Correctness

We show now the conditions under which the system can guarantee eventual correctness. The

analysis is carried out for a universal class of reputation functions characterized by two properties.

Property 1 states that if the master audits in consecutive rounds, the aggregated reputation of

the honest workers will be larger than that of cheater workers in a bounded number of rounds.

Property 2 states that if the aggregated reputation of a set X ⊂ W is larger than that of a set

Y ⊂W , then it remains so if the master audits and all workers are honest. The two properties are

formally stated below.

Property 1: For any constant δ > 0, there is a bounded value γ(δ) such that, for any

non-empty X ⊆ W and any initial state sr in which vi(r) = 0,∀i /∈ X , if the Markov

chain evolves in such a way that ∀k = 1, . . . , γ(δ), it holds that aud(r+ k) = aud(r) + k,

∀i ∈ X, vi(r + k) = vi(r) + k and ∀j ∈W \X, vj(r + k) = vj(r), then ρX(r + γ(δ)) >

δ · ρW\X(r + γ(δ)).

Property 2: For any X ⊂ W and Y ⊂ W , if aud(r + 1) = aud(r) + 1 and ∀j ∈ X ∪ Y
it is vj(r + 1) = vj(r) + 1 then ρX(r) > ρY (r)⇒ ρX(r + 1) > ρY (r + 1).

Reputations Linear, Exponential and Boinc (cf. Subsection 4.4.2) satisfy Property 1, while

reputation Legacy Boinc as defined does not. However, if a constant upper bound in the value

of βi(r) is established, we obtain an adapted version of Legacy Boinc reputation that satisfies

Property 1. Regarding Property 2, while reputation Exponential satisfies it, reputation Linear,

Legacy Boinc and Boinc do not. The proofs of these facts are presented below. Moreover, as

we show below (Theorem 4.5), this makes a difference with respect to guaranteeing eventual

correctness.

Lemma 4.12. Property 1 holds for reputation Linear, while Property 2 does not.

Proof : First we show that Property 1 holds. Consider any d > 0, any X ⊆ W non

empty. Without loss of generality assume |X| = k. Consider rounds r + 1, . . . r + j,

for some j, such that the master audits, workers in X are honest and workers not in X

cheat. For ∀i ∈ X , ρi(r + j) = vi(r)+j+1
aud(r)+j+2 ; and ∀i /∈ X , ρi(r + j) = vi(r)+1

aud(r)+j+2 .

Then ρX(r + j) =
∑

i∈X ρi(r + j) =
∑
i∈X vi(r)

aud(r)+j+2 + k(j+1)
aud(r)+j+2 ≥ j+1

aud(r)+j+2 ; and

pW\X(r+ j) =
∑

i∈W\X ρi(r+ j) = (n+k)
aud(r)+j+2 ≤

n+1
aud(r)+j+2 . For any j ≤ δ(n− 1) we have,

ρX(r + j) ≥ j+1
aud(r)+j+2 >

δ(n−1)
aud(r)+j+2 ≥ ρW\X(r + j). Hence, setting γ(δ) = δ(n− 1) proves

the first part of the claim.

We now show that Property 2 does not hold. Consider any round where aud(r + 1) =

aud(r) + 1 and ∀j ∈ X ∪ Y vj(r + 1) = vj(r) + 1. Without lose of generality assume that in

state sr, |X| = kr. Then we have that if,

ρX(r) > ρY (r)
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∑
i∈X

vi(r)+1
aud(r)+2 >

∑
i∈Y

vi(r)+1
aud(r)+2∑

i∈X vi(r)

aud(r)+2 + kr
aud(r)+2 >

∑
i∈Y vi(r)

aud(r)+2 + n−kr
aud(r)+2∑

i∈X vi(r) + kr >
∑
i∈Y vi(r) + n− kr

then,

ρX(r + 1) > ρY (r + 1)∑
i∈X

vi(r)+2
aud(r)+3 >

∑
i∈Y

vi(r)+2
aud(r)+3∑

i∈X vi(r)

aud(r)+3 + 2kr+1

aud(r)+3 >
∑

i∈Y vi(r)

aud(r)+3 + 2(n−kr+1)
aud(r)+3∑

i∈X vi(r) + 2kr+1 >
∑
i∈Y vi(r) + 2(n− kr+1)

Thus if kr 6= kr+1 then the entailment may not hold. �

Lemma 4.13. Property 1 and 2 hold for reputation Exponential.

Proof :First we show that Property 1 holds. Consider any δ > 0, any X ⊆ W non

empty. Without loss of generality assume |X| = k. Consider rounds r + 1, . . . r + j, for

some j, such that the master audits, workers in X are honest and workers not in X cheat.

For ∀i ∈ X , ρi(r + j) = εaud(r)−vi(r) and ∀i /∈ X , ρi(r + j) = εaud(r)+j−vi(r).Then

ρX(r + j) =
∑

i∈X ρi(r + j) =
∑

i∈X ε
aud(r)−vi(r) ≥ εaud(r) and ρW\X(r + j) =∑

i∈W\X ρi(r+ j) =
∑

i∈W\X ε
aud(r)+j−vi(r) ≤ (n−1)εaud(r)+j . For any j < −log(δ(n−1))

we have, ρX(r + j) ≥ εaud(r) > δ(n − 1)εaud(r)+j ≥ ρW\X(r + j). Hence, setting

γ(δ) < −log(δ(n− 1)) proves the claim.

Now we show that also Property 2 holds. Consider any X ⊂ W and Y ⊂ W . Then if

ρX(r) =
∑

i∈X ε
aud(r)−vi(r) then ρX(r + 1) =

∑
i∈X ε

aud(r)+1−vi(r)−1 =
∑

i∈X ε
aud(r)−vi(r).

If ρY (r) =
∑

i∈Y ε
aud(r)−vi(r) then ρY (r+1) =

∑
i∈Y ε

aud(r)+1−vi(r)−1 =
∑

i∈Y ε
aud(r)−vi(r).

Thus trivially the condition ρX(r) > ρY (r)⇒ ρX(r + 1) > ρY (r + 1) holds. �

Lemma 4.14. Property 1 does not hold for reputation Legacy Boinc, unless an upper bound b of

the value βi(r) is established;Property 2 does not hold for reputation Legacy Boinc.

Proof : First we show that Property 1 does not hold. Consider any δ > 0, and X ⊆ W non

empty. Without loss of generality assume |X| = k. Consider rounds r + 1 . . . r + j for some

j, such that master audits, workers in X are honest and workers not in X cheat. For ∀i ∈ X if

βi(r + j) > 0.05 then ρi(r + j) = 0 else ρi(r + j) = 1−
√

βi(r)×j×0.95
0.05 . For ∀i ∈W \X then

βi(r + j) > 0.05 thus ρi(r + j) = 0. If γ(δ) > 0 then ∀i ∈ W \ X ρi(r + j) = 0.To have

ρX(r + γ(δ)) > δρW\X(r + γ(δ)) we need to know the state sr where the master starts to audit

to know in how many rounds ∃i ∈ X where βi(r) ≤ 0.05. Thus the condition of Property 1 for

Legacy Boinc depends on the current state sr where the master begins to audit. Hence Property 1
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for reputation Legacy Boinc does not hold.

Now, we show that if an upper bound b of the value βi(r) is established then Property 1 holds

for reputation Legacy Boinc. Consider any δ > 0, andX ⊆W non empty. Without loss of gener-

ality assume |X| = k. Consider rounds r+1 . . . r+j for some j, such that master audits, workers

in X are honest and workers not in X cheat. For ∀i ∈ X if βi(r + j) > 0.05 then ρi(r + j) = 0

else ρi(r + j) = 1−
√

βi(r)×j×0.95
0.05 . For ∀i ∈W \X then βi(r + j) > 0.05 thus ρi(r + j) = 0.

If γ(δ) > 0 then ∀i ∈ W \X ρi(r + j) = 0. If a constant upper bound b in the value of βi(r) is

established in the sr state then in j < 0.05
b×0.95 rounds ∀i ∈ X , ρi(r+ j) > 0 and thus the condition

ρX(r+γ(δ)) > δρW\X(r+γ(δ)) becomes true by setting γ(δ) < 0.05
b×0.95 and the claim is proved.

Finally, we show that Property 2 does not hold. Consider any X ⊂ W and Y ⊂ W . If

ρX(r) > ρY (r) then in the next state sr+1 the following apply. For ∀j ∈ X \ Y , vj(r + 1) =

vj(r) + 1 (they are honest). Thus if βj(r + 1) > 0.05 then ρj(r + 1) = 0 else ρj(r + 1) =

1−
√

βj(r)×0.95
0.05 . Consider the following case where ∀j ∈ Y , ρj(r) = 0 and ∀j ∈ X ′, where X ′

is the set of all workers in X besides one, lets name it z, ρj(r) = 0 and ρz(r) = 1−
√

βz(r)×0.95
0.05 .

Then ρX(r) > ρY (r) holds. In the next round though there is a possibility that ∀j ∈ Y , ρj(r +

1) = 1 −
√

βj(r+1)×0.95
0.05 , while only the reputation of z changes in the next state for the X set.

Thus if 1−
√

βz(r)×0.95
0.05 < |Y |×(1−

√
βj(r+1)×0.95

0.05 ) then Property 2 does not hold for reputation

Legacy Boinc and the claim is proved. �

Lemma 4.15. Property 1 holds for reputation Boinc, while Property 2 does not hold when n > 2.

Proof : First we show that Property 1 holds. Consider any δ > 0, and X ⊆ W non empty.

Without loss of generality assume |X| = k. Consider rounds r + 1 . . . r + j for some j,

such that master audits, workers in X are honest and workers not in X cheat. For ∀i ∈ X

we have ρi(r + j) = 1 − 1
streaki(r+j)

if streaki(r + j) ≥ 10. For ∀i /∈ X ρi(r + j) = 0

since streaki(r + j) = 0. Thus, ρX(r + j) =
∑

i∈X ρi(r + j) =
∑

i∈X(1 − 1
streaki(r+j)

) =

k(1 − 1
streaki(r+j)

) > ρW\X(r + j) =
∑

i∈W\X ρi(r + j) = 0. Thus, in order for

ρX(r + γ(δ)) > δρW\X(r+γ(δ)) to be true we need to set γ(δ) ≥ 10.

We now show that Property 2 does not hold when n > 2. Consider any round where aud(r+

1) = aud(r) + 1 and ∀j ∈ X ∪ Y vj(r + 1) = vj(r) + 1. Then, for any X ⊂ W and Y ⊂ W

it must hold that if ρX(r) > ρY (r) then ρX(r + 1) > ρY (r + 1) . Thus, consider state sr where

|X| = 1, |Y | = n − 1 and ∀i ∈ X streaki(r) ≥ 10 and ∀i ∈ Y streaki(r) = 9. It is true that

ρX(r) = 1− 1
streaki(r)

= 1− 1
10+δ > ρY (r) = (n−1) ·0 = 0 where δ > 1. Now, in the next state

sr+1 we have ρX(r+ 1) = 1− 1
streaki(r+1) = 1− 1

10+δ+1 < 1 and ρY (r+ 1) = (n− 1)(1− 1
10)

⇒ n − 2 < ρY (r + 1) < n − 1. If n > 2 then ρX(r + 1) < ρY (r + 1) and the claim does not.

Thus Property 2 does not hold for reputation Boinc when n > 2. �
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Moving on we present the conditions under which the system can guarantee eventual correct-

ness, but before that we establish the terminology that will be used throughout. For any given

state s, a set X of workers is called a reputable set if ρX(r) > ρW\X(r). In any given state s,

let a worker i be called an honest worker if pCi(s) = 0. Let a state s be called a truthful state

if the set of honest workers in state s is reputable. Let a truthful set be any set of truthful states.

Let a worker be called a covered worker if the payoff of returning the correct answer is at least its

aspiration plus the computing cost. I.e., for a covered worker i, it is WBY ≥ ai+WCT . We refer

to the opposite cases as uncovered worker (WBY < ai + WCT ), cheater worker (pCi(s) = 1),

untruthful state (the set of cheaters in that state is reputable), and untruthful set, respectively. Let

a set of states S be called closed if, once the chain is in any state s ∈ S, it will not move to any

state s′ /∈ S. (A singleton closed set is called an absorbing state.) For any given set of states S,

we say that the chain reaches (resp. leaves) the set S if the chain reaches some state s ∈ S (resp.

reaches some state s /∈ S).

In the master’s algorithm, a non-zero probability of auditing is always guaranteed. This is

a necessary condition. Otherwise, unless the altruistic workers outnumber the rest, a closed un-

truthful set is reachable, as we show in Lemma 4.16.

Lemma 4.16. Consider any set of workers Z ⊆ W such that WBY > ai, for every rational

worker i ∈ Z. Consider the set of states

S = {s|(pA(s) = 0) ∧ (∀w ∈ Z : pCw(s) = 1) ∧ (ρZ(s) > ρW−Z(s))}.

Then,

(i) S is a closed untruthful set, and

(ii) if pA(0) = 0, ρZ(0) > ρW−Z(0), and for all i ∈ Z it is pCi(0) > 0, then, S is

reachable.

Proof :

(i) Each state in S is untruthful, since the workers in Z are all cheaters and Z is a reputable

set. Since pA = 0, the master never audits, and the reputations are never updated. From transition

(3) it can be seen that, if the chain is in a state of the set S before round r, for each worker i ∈ Z,

it holds pCi(r) ≥ pCi(r − 1) = 1. Hence, once the chain has reached a state in the set S, it will

move only to states in the set S. Thus, S is a closed untruthful set.

(ii) We show now that S is reachable from the initial state under the above conditions. Because

pA and the reputations only change when the master audits, we have that pA(0) = 0 =⇒ pA(s) =

0 and ρZ(0) > ρW−Z(0) =⇒ ρZ(s) > ρW−Z(s), for any state s. Malicious workers always have

pC = 1, and no altruistic worker may be contained in Z because pCi(0) > 0 for all i ∈ Z. Thus,

to complete the proof it is enough to show that eventually it is pC = 1 for all the workers in L,

which is the set of rational workers in Z. Given that for each rational worker j ∈ L, pCj(0) > 0

and WBY > aj , from transition (3) it can be seen that there is a non-zero probability of moving
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from s0 to a state s1 where the same conditions apply and pCj(1) > pCj(0) for each rational

worker j ∈ L. Hence, applying the argument inductively, there is a non-zero probability of

reaching S. �

Eventual correctness follows if we can show that the Markov chain always ends in a closed

truthful set, with pA = pminA . We prove first that having at least one worker that is altruistic

or covered rational is necessary for a closed truthful set to exist. Then we prove that it is also

sufficient if all rational workers are covered.

Lemma 4.17. If all workers are malicious or uncovered rationals, no truthful set S is closed, if

the reputation type satisfies Property 2.

Proof : Let us consider some state s of a truthful set S. Let Z be the set of honest workers in

s. Since s is truthful , then Z is reputable. Since there are no altruistic workers, the workers in

Z must be uncovered rational. Let us assume that being in state s the master audits in round r.

From Property 2, since all nodes in Z are honest in r, Z is reputable after r. From transition (2),

after round r, each worker i ∈ Z has pCi(r) > 0. Hence, the new state is not truthful , and S is

not closed. �

Lemma 4.18. Consider a reputation type that satisfies Properties 1 and 2. If all rational workers

are covered and at least one worker is altruistic or rational, a closed truthful set S is reachable

from any initial state. Moreover, in every state s ∈ S, pA(s) = pminA .

Proof : LetX be the set of altruistic and rational workers, and consider any initial state sr. Let

us define a constant δ = max{1, (1−τ+η/αm)/(τ+η/αm)}, for a fixed constant η ∈ (0, ταm).

We consider the following cases.

1. In state sr not all the workers in X are truthful. Let us assume then that in the next

d 1
αw(aj−WPC)e rounds the master audits and any worker i that has pCi > 0 in the round

cheats. Then, from transition (1) and the fact that all rational workers are covered, after

these d 1
αw(aj−WPC)e rounds all the workers in X are truthful. Then, we end up in one of

the following three cases.

2. In state sr all the workers in X are truthful, and ρX(r) ≤ δ · ρW\X(r). Consider the value

γ(δ) given in Property 1. Assume that in each of the following γ(δ) rounds the master

audits. The workers in W \X are malicious, hence, it holds that ∀ /∈ X : vi(r) = 0. Then,

in these rounds all workers in X are honest (every worker in X remains truthful from

transition (2) and the fact that all rational workers are covered) and all workers in W \X
cheat because they are malicious. Therefore, it holds that ∀i /∈ X : ∀j ∈ [r, r + γ(δ)] :

vi(j) = 0. Then, from Property 1, after the γ(δ) rounds we have that ρX(r + γ(δ)) >

δ · ρW\X(r + γ(δ)). Then, we are in one of the following two cases.
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3. In state sr all the workers in X are truthful, ρX(r) > δ · ρW\X(r), and pA(r) > pminA . Let

us assume that in the next dpA(r)/ηe rounds the master audits. Then, as in the previous

case, in these rounds all workers in X are honest and all workers in W \X cheat. Hence,

the property that ρX(r + k) > δ · ρW\X(r + k) holds for each round r + k, for k =

1, . . . , dpA(r)/ηe. Then, by the definition of δ and the update of pA, in each round pA is

decremented by η (more precisely, by min{η, pA}). Hence, by round r + dpA(r)/ηe it

holds that pA = pminA . Then, we are in the following case.

4. In state sr all the workers inX are truthful, ρX(r) > δ·ρW\X(r), and pA(r) = pminA . Then,

all subsequent states satisfy all these properties, and define the set S, independently of

whether the master audits or not (from transition (2) and (6), the fact that δ ≥ 1, Property 2,

and the update of pA). This complete the proof.

�

Now, combining Lemmas 4.17 and 4.18 we obtain the following theorem.

Theorem 4.5. In a system where (1) the reputation type used satisfies Properties 1 and 2, and (2)

all rational workers are covered, having at least one altruist or rational worker is a necessary and

sufficient condition to guarantee eventual correctness. That is, from any initial state, to eventually

reach a closed truthful set S where the master audits with probability pminA .

If there is no knowledge on the distribution of the workers among the three types (altruistic,

malicious and rationals), the only strategy to make sure eventual correctness is achieved, if pos-

sible, is to cover all workers. Of course, if all workers are malicious there is no possibility of

reaching eventual correctness.

4.4.5 Simulations

Our analysis has shown that reaching eventual correctness is feasible under certain conditions.

Once the system enters a state of eventual correctness we are in an optimal state where the master

always receives the correct task reply by auditing with a minimum probability. What is left to

be clarified is under which cost eventual correctness is reached. Cost can be measured in terms

of 1) reliability, 2) auditing, 3) payment to the workers and 4) time until eventual correctness is

reached. Under these parameters we provide a comparison of the system’s performance under the

different reputation types and we are able to identify the scenarios under which every reputation

type is performing best.

We present simulations for a variety of parameter combinations similar to the values observed

in real systems (extracted from [6, 50]). We have designed our own simulation setup by imple-

menting our mechanism (the master’s and the workers’ algorithms, including the four types of

reputation discussed above) using C++. The simulations were contacted on a dual-core AMD

Opteron 2.5GHz processor, with 2GB RAM running CentOS version 5.3.
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General Setting

We consider a total of 9 workers as an appropriate degree of redundancy to depict the changes

that different ratios of rational, altruistic or malicious workers will induce in the system. SETI-

like systems usually use three workers, but using such a degree of redundancy would not allow us

to present a rich account of the system’s evolution. Additionally, by selecting 9 redundant workers

we are able to capture systems that are more critical and aim at a higher degree of redundancy.

The chosen parameters are indicated in the figures. As for the intrinsic parameter of the aspiration

level we consider for simplicity of presentation that all workers have the same aspiration level

ai = 0.1; although we have checked that with random values the results are similar to those

presented here, provided their variance is not very large. We set the learning rate to a small

constant value, as it is discussed in [128] (called step-size there), this is the general conversion

when a learning process is assumed. Thus we consider the same learning rate for the master and

the workers, i.e., α = αm = αw = 0.1. We set τ = 0.5 (which means that the master will not

tolerate a majority of cheaters), pminA = 0.01 and ε = 0.5 in reputation Exponential. We use

WBY = 1, as the normalization parameter for all the results presented. Finally, the presented

results are an average of 10 executions of the implementation, unless otherwise stated (when we

show the behavior of typical, individual realizations). Usually we choose to depict the evolution

of pA since it is an important measure of cost for the master. In all of the depicted results in

all the Figures presented here we have verified that if pA = pminA then the system has already

reached a state where the master receives always the correct reply, and hence eventual correctness

is reached. By convention for clarity of presentation, we will simply say that the system has

reached convergence once pA = pminA . Finally, we define
∑

i∈W ρiSi/|W | as the reputation

ratio. This quantity will allow us to see the overall reputation of the workers in the system and is

indicative of the existence of honest workers with higher overall reputation than cheaters.
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Figure 4.8: Rational workers. Auditing probability of the master as a function of time (num-
ber of rounds)for parameters pA = 0.5, α = 0.1, ai = 0.1, τ = 0.5, WBY = 1, WPC = 0 and
WCT = 0.1. (a) initial pC = 0.5 (b) initial pC = 1.
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Figure 4.9: Rational workers, for an individual realization with initially pC = 0.5, pA = 0.5,
τ = 0.5, WBY = 1, WCT = 0.1, WPC = 0, α = 0.1 and ai = 0.1. (a) reputation Linear, (b)
reputation Exponential, (c) reputation Legacy Boinc, (d) reputation Boinc.

We consider a variety of different scenarios where only rational workers exist in the com-

putation or where the master decided to cover the aspired amount of payment to only a small

number of workers. We also consider the case where more than one type of workers co-exist

in the same computation. Finally we consider the case where some workers change type after

eventual correctness is reached. Under these rich account of difference scenarios, we are able to

compare the four reputation types and record the system’ s behavior before eventual correctness

is reached. Notice that in all the figures’ legends we refer to reputation type Linear as type 1, to

type Exponential as type 2, to type Legacy Boinc as type 3 and finally to type Boinc as type 4.

Presence of Only Rational Workers

In crowdsourcing systems like Amazon’s Mechanical Turk the majority of workers participat-

ing in the platform are driven by monetary incentives, thus exhibiting a rational behavior where

their goal is to maximize their profit. Hence, the presence of only rational workers is plausible in

some real system examples. In this scenario we cover all the workers, that is, WBY > a+WCT .

Figure 4.8 depicts the auditing probability of the master at each round for all 4 reputation

types and the case where the mechanism designed in Section 4.3 that does not use reputation is
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place. Figure 4.8 (a) shows the case where the rational workers linger between cheating or being

honest in the first round of interaction by setting pC = 0.5. Also the master takes an approach of

ignorance by setting pA = 0.5 and not punishing the workers. Under this mild approach of the

master in all 4 reputation types the system converges in roughly 100 rounds. While in the case

where the master does not use reputation the system converges a bit earlier. On the other hand pA
at each round is the lowest for reputation Legacy Boinc while it is the highest for reputation Boinc.

In particular for Boinc the pA increases in the initial rounds before decreasing. This behavior is

correlated with the fact that Boinc is a type that is based on a threshold, it needs 10 consecutive

correct replies for a worker to increase her reputation from zero. This is also verified by the

evolution of the reputation of Boinc in Figure 4.9 (d). Reputation Legacy Boinc (Figure 4.9(c)),

on the other hand, allows for dramatic increases and decreases of reputation. This is a result

of the indirect way we calculate reputation Legacy Boinc, as we mentioned above. Notice that

in reputation Exponential (Figure 4.9(b)) reputation takes values between (0,0.3). This happens

because when the master catches a worker cheating, its reputation decreases exponentially, never

increasing again. Finally, reputation Linear (Figure 4.9(a)) leads rational workers to reputation

values close to 1 (at a rate that depends on the value of the initial pC) since it is a linear function.

In Figure 4.8 (b) now we assume that the workers are more aggressive towards the system

starting with an initial pC = 1 . In this case convergence comes roughly around 120-150 rounds

for reputation Linear, Exponential, Boinc and the case of no reputation. For reputation Legacy

Boinc convergence comes later, roughly in 200 rounds, but pA until convergence is lower in the

first 50 rounds.

In general from Figure 4.8 we can see that the mechanism presented in Section 4.3 (without

the reputation scheme) is enough to bring rational workers to produce the correct output, precisely

because of their rationality. Thus if the master can be certain that only rational workers will take

part in the computation is better to use the mechanism of Section 4.3. But if such a knowledge is

not available then selecting reputation Exponential is the best option. Reputation Legacy Boinc

performs better when pC = 0.5 while it has a poor performance in the case where pC = 1. As

for reputation Linear it is always slightly under performing Exponential and reputation Boinc has

a bad performance when pC = 0.5.

Covering Only a Subset of Rational Workers

In the previous paragraph we considered only cases where the master was covering all work-

ers, that is, WBY > a+WCT for all workers. For the case with malicious workers, as explained

in Section 4.4.4, this is unavoidable if the worker’s type distribution is not known. But if we

know that only rational workers exist then maybe by covering only a subset of them the system

can reach eventual correctness, a scenario that we now explore. Covering only a subset of the ra-

tional workers will decrease the cost of the master in terms of payment but might actually increase

the cost of auditing. This precisely is the relationship we want to explore.

In Figure 4.10 the correct reply rate as a function of time is presented for the case where the
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Figure 4.10: Correct reply rate as a function of time in the presence of only rational workers.
Parameters are initial pA = 0.5,WBY = 1, WCT = 0.1, WPC = 0 and α = 0.1, ai = 0.1,
τ = 0.5. Reputation types Linear, Legacy Boinc and Boinc have initial pC = 0.5, while in
Exponential, pC = 1.

master covers only one worker. In a time window of 2000 rounds, as observed only reputation

Exponential is able to reach eventual correctness. Even in reputation Boinc where the system

looks like converged it allows the master to receive an incorrect reply. In this scenario the master

has a tolerance of τ = 0.5 and does not punish the workers WPC = 0. As we can see thought

in other scenarios (see Figure 4.11) where the tolerance is minimum and the master punishes

the workers, the situation remains the same; the system reaches eventual correctness only when

Exponential is used. In the case of Linear in Figure 4.11(b1) although the master always received

the correct reply, the master must always audit with pA close to 1. The reason why only reputation

Exponential is able to reach eventual correctness is because it is the only reputation type that fulfils

Property 2. Under this property the reputation of the leading group of honest workers will never be

able to surpass the reputation of the rest of the workers. Thus uncovered workers that periodically

cheat only when the master does not audit will not be able to have a greater reputation than the

covered workers. Thus the system will be able to always receive the correct reply from the covered

worker that has the highest reputation than the rest of the workers’ aggregated reputations, while

reducing the auditing probability to minimum.

If the master covers the majority of workers then the system converges in most of the cases

for different reputation types. In Figure 4.12 we can observe that reputation Exponential and

Boinc converge in roughly the same amount of time in all the cases we examine. On the other

hand reputation Linear does not converge in the case where the tolerance is low and the master

punishes (see Figure 4.12(b1)). In this case the auditing probability is close to 1 meaning that this

type of reputation was not sufficient to identify the covered rationals and form a trusted majority

reputation forcing the master to audit almost at every round in order to obtain the correct reply.
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Figure 4.11: One covered worker. Parameters are WCT = 0.1, ai = 0.1, α = 0.1, and
WBY = 0.1 (uncovered workers) / WBY = 1 (covered workers). Master’s auditing probability,
audit percentage and correct reply percentage as a function of time. First row: reputation Linear,
initial pC = 0.5. Second row: reputation Exponential, initial pC = 1. Third row: reputation
Legacy Boinc, initial pC = 0.5. Fourth row: reputation Boinc, initial pC = 0.5. First column
τ = 0.5, WPC = 0. Second column, τ = 0.1, WPC = 0. Third column, τ = 0.1, WPC = 1.
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Figure 4.12: Five covered workers. Parameters are WCT = 0.1, ai = 0.1, α = 0.1, initial
pC = 1 and WBY = 0.1 (uncovered workers) / WBY = 1 (covered workers). Master’s auditing
probability, audit percentage and correct reply percentage as a function of time. First row: repu-
tation Linear. Second row: reputation Exponential. Third row: reputation Legacy Boinc. Forth
row: reputation Boinc. Left column: τ = 0.5, WPC = 0. Middle column: τ = 0.1, WPC = 0.
Right column: τ = 0.1, WPC = 1.
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Also reputation Legacy Boinc was not able to converge although the auditing probability is less

than a half the master does not always receive the correct task result.

This lead us to conclude that is best for the master to use reputation Exponential in the case

that the master can not cover the aspiration of more than one worker. If the master can cover more

than the majority of workers then both reputation Exponential and Boinc are suitable. Compar-

ing these results (see Figure 4.11(a2) and Figure 4.12(a2)&(a4)) with the ones of Figure 4.8(b)

we notice that the master does not need more auditing in the case of covering only a number of

workers,what is perhaps counter-intuitive, thus our assumption was wrong. If the master is in a

system where only rational workers exist then by using reputation Exponential she could guar-

antee eventual correctness by covering only one worker. Our analysis has indicated that a few

bad cases exist where the system might actually not converge if not all the workers are covered

even for Exponential. Although these are extreme cases as our simulations show, when a critical

application exist that needs correctness of results such a risk can not be taken to reduce the costs

of the master.
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Figure 4.13: Master’s auditing probability as a function of time in the presence of rational
and malicious workers. Parameters in all plots, rationals’ initial pC = 1, master’s initial pA =
0.5,WBY = 1, WCT = 0.1, WPC = 0 and α = 0.1, ai = 0.1. In (a) 4 malicious and 5 rationals,
(b) 5 malicious and 4 rationals , (c) 8 malicious and 1 rational.

Different Types of Workers

Moving on, we evaluate our different reputation schemes in scenarios where malicious work-

ers exist (this was the reason for introducing reputation at the first place). Figure 4.13 shows

results for the extreme case, with malicious workers, no altruistic workers, and rational workers

that initially cheat with probability pC = 1. We observe that if the master does not use reputation

and a majority of malicious workers exist, then the master is enforced by the mechanism to audit

in every round. Even with a majority of rational workers, it takes a long time for the master to

reach pminA , if reputation is not used. Introducing reputation can indeed cope with the challenge of

having a majority of malicious workers, except (obviously) when all workers are malicious. For

Linear, the larger the number of malicious workers, the slower the master reaches pminA . On the

contrary, the time to convergence to the pminA is independent of the number of malicious workers
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Figure 4.14: Master’s auditing probability as a function of time in the presence of altruistic
and malicious workers.Parameters in all plots, master’s initial pA = 0.5, WCT = 0.1, WPC = 0
and α = 0.1, ai = 0.1. In (a) master does not use reputation, (b) master uses reputation Linear,
(c) master uses reputation Exponential, (d) master uses reputation Legacy Boinc, (e) master uses
reputation Boinc.

for reputation Exponential. This is due to the different dynamical behavior of the two reputations

as discussed before. For reputation Legacy Boinc, if a majority of rationals exists then conver-

gence is slower. This is counter-intuitive, but it is linked to the way reputation and error rate are

calculated. On the other hand, with Legacy Boinc, pA is slightly lower in the first rounds. As

for reputation Boinc the convergence time and the behavior of the evolution of pA is similar to

reputation Exponential but in the initial rounds pA = 1 for a larger period of time, providing

an additional cost to the master. Given the above observations we can conclude that reputation
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Exponential has a slight advantage in all the scenarios considered (with and without a majority of

rational workers) in therms of auditing cost to the master.

We have checked the behavior of the system in the case where only malicious and altruistic

workers exist in the system (see Figure 4.14). As expected, if the majority of the workers is

malicious and the mechanism does not use a reputation scheme the system can not converge. For

the first three reputation types the mechanism converge fast and efficiently (without increasing

the initial auditing probability) for the case of 4 malicious and 5 altruistic and for the case of 5

malicious and 4 altruistic. Now for the case of 8 malicious and 1 altruistic the optimum result is

given by reputation Legacy Boinc while reputation Exponential has comparably good results with

a slight increment of the auditing probability in the fist rounds and convergence time around the

same interval. Reputation Boinc as we can see gives the worst results with the auditing probability

increasing to 1 before being able to decrease. The simulations where all three types of workers co-

exist are omitted since adding altruistic workers in a system with malicious and rational workers

only aids the convergence of the system without providing us with any useful inside.
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Figure 4.15: Presence of 4 malicious and 5 rational workers, only 1 rational worker is cov-
ered. Audit probability as function of time and correct reply percentage as a function of time.
(a) Reputation Linear. (b) Reputation Exponential. (c) Reputation Legacy Boinc. (d) Reputation
Boinc.

In Figure 4.15, we take a look at the case when the master decides to cover one worker out of
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Figure 4.16: Correct reply rate as a function of time. Presence of 5 malicious workers on the
500th round. Parameters are initial pA = 0.5,WBY = 1, WCT = 0.1, WPC = 0 and α = 0.1,
ai = 0.1, τ = 0.5, initial pC = 1.

5 rationals and 4 malicious and that worker is rational. We notice that the system is performing

in an analogous manner as in the case where all workers are covered. Only the mechanism that

uses reputation Exponential is able to converge while when reputation Boinc is use the system

performs quite well but still is unable to converge even after the 1000 round.

Dynamic Change of Roles

As a further check of the stability of our procedure, we now study the case when after correctness

is reached some workers change their type, possibly due to a software or hardware error. We

simulate a situation in which 5 out of 9 rational workers suddenly change their behavior to mali-

cious at time 500, a worst-case scenario. Figure 4.16 shows that after the rational behavior of 5

workers turns to malicious, convergence is reached again after a few hundred rounds and eventual

correctness resumes. As we see from Figure 4.17, it takes more time for reputation Exponential

to deal with the changes in the workers’ behavior, because this reputation can never increase, and

hence the system will reach eventual correctness only when the reputation of the workers that

turned malicious becomes less than the reputation of the workers that stayed rational. It also takes

more time for reputation Legacy Boinc to deal with the changes in the workers’ behavior (see

Figure 4.17). In the case of reputation Linear, not only the reputation of the workers that turned

malicious decreases, but also the reputation of the workers that stayed rational increases. As for

reputation Boinc it take a bit more time than reputation Linear to reach eventual correctness again

after the change of behavior.

Therefore, reputation Linear exhibits better performance in dealing with dynamic changes of

behavior than reputation types Exponential, Legacy Boinc and Boinc. As Figure 4.18 depicts

though the auditing probability of Linear and Legacy Boinc is drastically increasing when the

change of behavior happens while for reputation Exponential and Boinc this is not the case.
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Figure 4.17: Presence of 5 malicious workers on the 500th round. Workers’ reputation as a
function of time, audit occurrences as a function of time and reputation ratio as a function of
time, for an individual realization. Parameters in all panels, initial pC = 1, initial pA = 0.5,
WCT = 0.1, WPC = 0 and α = 0.1, ai = 0.1, τ = 0.5. (a) Reputation Linear, (b) reputation
Exponential, (c) reputation Legacy Boinc and (d) reputation Boinc.
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Figure 4.18: Presence of 5 malicious workers on the 500th round. Audit probability as a
function of time and correct reply percentage as a function of time. Parameters in all panels,
initial pC = 1, initial pA = 0.5, WCT = 0.1, WPC = 0 and α = 0.1, ai = 0.1, τ = 0.5.
(a) Reputation Linear, (b) reputation Exponential and (c) reputation Legacy Boinc, (d) reputation
Boinc.
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4.5 Selecting from a Pool of Workers

4.5.1 Introduction

In the previous two sections we implicitly assumed that workers are randomly split into groups

of size n. For each of these group of workers, the behavior of the rational workers is being

reinforced by the master, while the influence of the malicious workers to the task outcome of a

round is diminished, through the use of reputation schemes. This is one approach to address the

problem. On one hand the complexity of the problem is reduced but on the other hand eventual

correctness with minimum auditing can not be guaranteed in every group of workers. For instance,

there is a positive probability that only malicious workers are selected and the master would have

to audit always to obtain the correct result.

Another approach to the problem is to assume that the master can select in every round the

most reliable workers from all the available workers. The advantage of this approach is that

possible unresponsive workers can be avoided, since workers are selected from a huge set of

workers, that we call “pool”. Unlike the assumptions in the previous two sections (and most

previous literature), in practice workers are not always available. For instance, Heien et al. [63]

have found that in BOINC [8] only around 5% of the workers are available more than 80% of the

time, and that half of the workers are available less than 40% of the time.

We consider the existence of a pool ofN workers out of which the master chooses n < N and

workers that regardless of their behavior (malicious, altruistic or rational) might be unavailable

(e.g., be disconnected, be busy performing other tasks, etc). Building on the previous sections,

we model the behavior of the rational workers through reinforcement learning. Additionally, we

use a reputation scheme, not only to decide on the correct task response but also for selecting

the most reputable and most responsive worker from the pool. Given the designed mechanism,

we prove sufficient conditions for eventual correctness under the different reputation types. Our

analysis is complemented by simulations exploring various scenarios. Our simulation results

expose interesting trade-offs among the different reputation types, workers availability, and cost.

We consider that the approach discussed in this subsection, could be almost directly applicable

to the crowdsourcing example. The mechanism presented in this section is novel in two fronts:

(i) it leveraged the possibility of changing workers over time, given that the number of workers

willing to participate is larger than the number of workers needed, and (ii) it is resilient to some

workers being unavailable from time to time.

Contributions

To cope with the unavailability of the workers, we introduce a responsiveness rep-

utation that conveys the percentage of task assignments to which the worker replies with

an answer. The responsiveness reputation is combined with a truthfulness reputation that

conveys the reliability of the worker. We enrich our study considering three types of truth-
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fulness reputation. Namely, Boinc reputation (inspired in the “adaptive replication” of

BOINC), Exponential reputation (that we introduce in this work), and Linear reputation

(inspired on the work of Sonnek et al. [127]). All the above are included in the Subsec-

tion 4.5.2.

We present a mechanism, in Subsection 4.5.3, where the master chooses the most rep-

utable workers for each round of computation, allowing the system to eventually converge

to a state where the correct result will be always obtained, with minimal auditing. Our

mechanism does not require workers to be available all the time.

We also show formally, in Section 4.5.4, negative and positive results regarding the

feasibility of achieving correctness in the long run in the absence of rational workers.

Specifically, we show configurations (worker types, availability, etc.) of the pool of workers

such that correctness cannot be achieved unless the master always audits, and the existence

of configurations such that eventually correctness is achieved forever with minimal audit-

ing.

We evaluate experimentally, in Section 4.5.5 our mechanism with extensive simula-

tions under various conditions. Our simulations complement the analysis taking into ac-

count scenarios where rational workers exist. The different reputation types are compared

showing trade-offs between reliability and cost.

4.5.2 Model

In this subsection we build on top of the general model presented in Section 4.2 to capture

the new approach presented. We give an updated definition of the master-worker framework, of

rational workers’ cheating probability and of the eventual correctness. Moreover, we formally

define the concept of an unavailable worker and of truthfulness and responsiveness reputation.

Master-Worker Framework

We consider a master and a pool (set) of workers N , where |N | = N . The computation is

broken into rounds r = 1, 2, ..., like in the general model presented. In each round r, the master

selects a set W r of n < N workers, and sends them a task. The workers in W r are assigned a

task to compute, but may not do so (e.g., they are unavailable). The master, after waiting for a

fixed time t, proceeds with the received replies. Based on those replies, the master must decide

which answer to take as the correct result for this round. A reputation mechanism is employed by

the master to choose the n most reputable workers in every round.

Worker Unavailability

In Internet-based master-worker computations, and especially in volunteering computing,

workers are not always available to participate in a computation [63] (e.g., they are off-line for a
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particular period of time). We assume that each worker’s availability is stochastic and indepen-

dent of other workers. Formally, we let di > 0 be the probability that the master receives the reply

from worker i within time t (provided that the worker was chosen by the master to participate in

the computation for the given round r, i.e., i ∈ W r). In other words, this is the probability that

the worker is available to compute the task assigned.

Worker Types

Like in the general model (see Section 4.2) we assume the presence of altruistic and malicious

workers that have a predefined behavior: to always be honest and cheat respectively. Instead, a

rational worker decides to be honest or cheat depending on which strategy maximizes its utility.

We define the probability of a rational worker i cheating, with a slightly different notation to

capture the fact that the rational worker is selected from the pool. Thus we denote by pCi(r) the

probability of a rational worker i cheating in round r, provided that i ∈W r.

Eventual Correctness

The goal of the master is to eventually obtain a reliable computational platform: After some

finite number of rounds, the system must guarantee that the master obtains the correct task results

in every round with probability 1 and audits with probability pminA . We call such property eventual

correctness. Observe that, in this section, eventual correctness implies that eventually the master

receives at least one (correct) reply in every round.

Reputation

The reputation of each worker is measured and maintained by the master. Reputation is used

by the master to cope with the uncertainty about the workers’ truthfulness and availability. In fact,

the workers are unaware that a reputation scheme is in place, and their interaction with the master

does not reveal any information about reputation; i.e., the payoffs do not depend on a worker’s

reputation. The master wants to assign tasks to workers that are reliable, that is, workers that

are both responsive and truthful. Hence, we consider the worker’s reputation as the product of

two factors: responsiveness reputation and truthfulness reputation. Thus, the malicious workers

will obtain a low reputation fast due to their low truthfulness reputation, and also the workers

that are generally unavailable will get a low reputation due to their low responsiveness reputation.

Consequently, these workers will stop being chosen by the master.

More formally, we define the reputation of a worker i as ρi = ρrsi ·ρtri , where ρrsi represents

the responsiveness reputation and ρtri the truthfulness reputation of worker i. We also define the

reputation of a set of workers Y ⊆ W as the aggregated reputation of all workers in Y . That is,

ρY (r) =
∑

i∈Y ρi(r).

In this work, we consider three truthfulness reputation types: Linear, Exponential, and Boinc.

In the Linear reputation type (introduced in [127]) the reputation changes at a linear rate. The
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Exponential reputation type (introduced in Section 4.3) is “unforgiving”, in the sense that the

reputation of a worker caught cheating will never increase. The reputation of a worker in this

type changes at an exponential rate. The Boinc reputation type is inspired by BOINC [11]. In

the BOINC system this reputation method is used to avoid redundancy if a worker is considered

honest2.

Recall that, in the previous section we also considered an adaptation of a legacy adaptive

replication method used in BOINC, refereed to as Legacy Boinc. We have seen though, that

considering also this legacy type did not improve the performance of our mechanism, in terms of

eventual correctness. Thus, we decided to omit Legacy Boinc in this section and turn our focus to

more engaging reputation types.

For the responsiveness reputation we use the Linear reputation, adjusted for responses. For

the worker’s availability it is natural to use a “forgiving” reputation, especially when considering

volunteer computing. For the detailed description of the reputation types we introduce some

necessary notation as follows.

selecti(r): the number of rounds the master selected worker i up to round r.

reply selecti(r): the number of rounds up to round r in which worker i was selected and

the master received a reply from i.

audit reply selecti(r): the number of rounds up to round r where the master selected

worker i, received its reply and audited.

correct auditi(r): the number of rounds up to round r where the master selected worker

i, received its reply, audited and i was truthful.

streaki(r): the number of rounds≤ r in which worker iwas selected, audited, and replied

correctly after the latest round in which it was selected, audited, and caught cheating.

Then, the reputation types we consider are as follows.

Responsiveness reputation: ρrsi(r) = reply selecti(r)+1
selecti(r)+1 .

Truthfulness reputation:

Linear: ρtri(r) =
correct auditi(r) + 1

audit reply selecti(r) + 1
.

Exponential: ρtri(r) = εaudit reply selecti(r)−correct auditi(r), where ε ∈ (0, 1).

Boinc: ρtr(r) =

0, if streak(r) < 10.

1− 1
streak(r) , otherwise.

All workers are assumed to have the same initial reputation before the master interacts with

them. The goal of the above definitions is for workers who are responsive and truthful to eventu-

ally have high reputation, whereas workers who are not responsive or not truthful, to eventually

have low reputation.
2In BOINC, honesty means that the worker’s task result agrees with the majority, while in our work this decision

is well-founded, since the master audits.
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Algorithm 11 Master’s Algorithm

1 pA← x, where x ∈ [pminA , 1]
2 for i← 0 to N do
3 selecti← 0; reply selecti← 0; audit reply selecti← 0; correct auditi← 0; streaki ← 0
4 ρrsi ← 1; initialize ρtri // initially all workers have the same reputation
5 for r← 1 to∞ do
6 W r ← {i ∈ N : i is chosen as one of the n workers with the highest ρi = ρrsi · ρtri }
7 ∀i ∈W r : selecti← selecti + 1
8 send a task T to all workers in W r

9 collect replies from workers in W r for t time
10 wait for t time collecting replies as received from workers in W r

11 R← {i ∈W r : a reply from i was received by time t}
12 ∀i ∈ R : reply selecti← reply selecti + 1
13 update responsiveness reputation ρrsi of each worker i ∈W r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers Rm ⊆ R,
17 where ∀m′, ρtrRm

≥ ρtrR
m′ // weighted majority of workers in R

18 else // the master audits
19 foreach i ∈ R do
20 audit reply selecti← audit reply selecti + 1
21 if i ∈ F then streaki← 0 // F ⊆ R is the set of responsive workers caught cheating
22 else correct auditi← correct auditi + 1, streaki← streaki + 1 // honest responsive workers
23 update truthfulness reputation ρtri // depending on the type used
24 if ρtrR = 0 then pA←min{1, pA + αm}
25 else
26 p′A← pA + αm(ρtrF /ρtrR − τ)

27 pA←min{1,max{pminA , p′A}}
28 ∀i ∈W r : return Πi to worker i // the payoff of workers in W r \R is zero

4.5.3 Reputation-based Mechanism

We now present our reputation-based mechanism. Like in the previous two sections, the

mechanism is composed by an algorithm run by the master and an algorithm run by each worker.

Master’s Algorithm

The algorithm followed by the master, Algorithm 11, begins by choosing the initial probability

of auditing and the initial reputation (same for all workers). The initial probability of auditing will

be set according to the information the master has about the environment (e.g., workers’ initial

pC). For example, if it has no information about the environment, a natural approach would be to

initially set pA = 0.5 or pA = 1 (as a more conservative approach). The master also chooses the

truthfulness reputation type to use.

At the beginning of each round, the master chooses the n most reputable workers out of the

total N workers (breaking ties uniformly at random) and sends them a task T . In the first round,

since workers have the same reputation, the choice is uniformly at random. Then, after waiting
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Algorithm 12 Algorithm for Rational Worker i

1 pCi← y, where y ∈ [0, 1]
2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = pCi
6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff Πi

9 pCi←max{0,min{1, pCi + αw(Πi − ai)}}
10 else
11 send compute(T ) to the master
12 get payoff Πi

13 pCi←max{0,min{1, pCi − αw(Πi −WCT − ai)}}

t time to receive the replies from the selected workers, the master proceeds with the mechanism.

The master updates the responsiveness reputation and audits the answers with probability pA.

In the case the answers are not audited, the master accepts the value returned by the weighed

majority. In Algorithm 11, m is the value returned by the weighted majority and Rm is the subset

of workers that returned m. If the master audits, it updates the truthfulness reputation and the

audit probability for the next round. Then, the master rewards/penalizes the workers as follows.

If the master audits and a worker i is a cheater (i.e., i ∈ F ), then Πi = −WPC ; if i is honest, then

Πi = WBY . If the master does not audit, and i returns the value of the weighted majority (i.e.,

i ∈ Rm), then Πi = WBY , otherwise Πi = 0.

In the update of the audit probability pA, we include a threshold, denoted by τ , that represents

the master’s tolerance to cheating (typically, we will assume τ = 1/2 in our simulations). If the

ratio of the aggregated reputation of cheaters with respect to the total is larger than τ , pA is

increased, and decreased otherwise. The amount by which pA changes depends on the difference

between these values, modulated by a learning rate αm [128]. This latter value determines to

what extent the newly acquired information will override the old information. For example, if

αm = 0 the master will never adjust pA.

Workers’ Algorithm

Altruistic and malicious workers have predefined behaviors. When they are selected and re-

ceive a task T from the master, if they are available, they compute the task (altruistic) or fabricate

an arbitrary solution (malicious), replying accordingly. If they are not available, they do not reply.

Rational workers run the algorithm described in Algorithm 12. The execution of the algorithm

begins with a rational worker i deciding an initial probability of cheating pCi. Then, the worker

waits to be selected and receive a task T from the master. When so, and if it is available at the

time, then with probability 1 − pCi, worker i computes the task and replies to the master with

the correct answer. Otherwise, it fabricates an answer, and sends the incorrect response to the
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master. After receiving its payoff, worker i changes its pCi according to payoff Πi, the chosen

strategy (cheat or not cheat), and its aspiration ai. Similarly to the master, the workers have a

learning rate αw. We assume that all workers have the same learning rate, that is, they learn in

the same manner (in [128], the learning rate is called step-size). In a real platform the workers’

learning rate can slightly vary (since workers in these platforms have similar profiles), making

some worker more or less susceptible to reward and punishment. Using the same learning rate

for all workers is representative of what happens in a population of different values with small

variations around some mean.

4.5.4 Analysis

In this section, we prove some properties of the system. We start by observing that, in order

to achieve eventual correctness, it is necessary to change workers over time.

Observation 4.1. If the number of malicious workers is at least n and the master assigns the task

to the same workers in all rounds, eventual correctness cannot be guaranteed.

Proof : Let W 1 be the subset of n workers chosen by the master in the first round. Since

initially there is no knowledge on the type of each worker, there is a positive probability p that

all workers in W 1 are malicious. By assumption W r = W 1 for all r > 1, and hence there is

a probability p > 0 that the workers are chosen by the master in each round are all malicious.

Assume this happens, then we claim that eventual correctness cannot be satisfied. Assume oth-

erwise; hence, by definition of eventual correctness, there is a round r0 such that in all rounds

r ≥ r0 the master uses pA = pminA < 1. But then, the probability that the master obtains the

correct task result in round r cannot be 1, as required by the eventual correctness property, since

with probability 1− pA > 0 all the received replies are incorrect and the master does audit them.

Hence, eventual correctness cannot be satisfied. For the sake of contradiction, assume that the

master does not change workers over rounds and eventual correctness is achieved. That is, there

is a round r0 such that for all rounds r ≥ r0 the master uses pA = pminA < 1 and obtains the

correct answer with probability 1, even though the master never changes workers. Let W be the

subset of n workers chosen by the master that will never change. Given that the type of each

worker is unknown, that workers are chosen uniformly at random, and that there are at least n

malicious workers, there is a probability p > 0 that the master chooses only malicious workers.

Consider round r0. In round r0, there is a probability 1− pA > 0 that the master does not audit.

Thus, the probability that the master obtains the correct answer in round r0 is 1− p(1− pA) < 1,

which is a contradiction. �

The intuition behind this observation is that there is always a positive probability that the

master will select n malicious workers at the first round and will have to remain with the same

workers. This observation justifies that the master has to change its choice of workers if eventual

correctness has to be guaranteed. We apply the natural approach of choosing the n workers with
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the largest reputation among the N workers in the pool (breaking ties randomly). In order to

guarantee eventual correctness we need to add one more condition regarding the availability of

the workers.

Observation 4.2. To guarantee eventual correctness at least one non-malicious worker i must

exist with di = 1.

Proof : For the sake of contradiction assume that every non-malicious worker i has di < 1

and eventual correctness is satisfied. Then, by definition of eventual correctness, there is a round

r0 such that in all rounds r ≥ r0 the master uses pA = pminA < 1. In any round r ≥ r0 there is a

positive probability that the master does not audit and all the replies received (if any) are incorrect.

Then, there is a positive probability that the master does not obtain the correct task result, which

is a contradiction. �

To complement the above observations, we show now that there are sets of workers with which

eventual correctness is achievable using the different reputation types (Linear and Exponential as

truthfulness reputations) defined and the master reputation-based mechanism in Algorithm 11.

Theorem 4.6. Consider a system in which workers are either altruistic or malicious and there

is at least one altruistic worker i with di = 1 in the pool. Eventual correctness is satisfied if the

mechanism of Algorithm 11 is used with the responsiveness reputation and any of the truthfulness

reputations Linear or Exponential.

Proof : First, observe that the responsiveness reputation of worker i will always be ρrsi = 1,

since di = 1. In fact, all workers j with dj = 1 will have responsiveness reputation ρrsj = 1

forever. Moreover, for any worker k with dk < 1 that is selected by the master an infinite number

of rounds, with probability 1 there is a round rk in which k is selected but the master does not

receive its reply. Hence, ρrsk(r) < 1 for all r > rk.

Let us now consider truthfulness reputation (of types Linear and Exponential). All altruistic

workers j (including i) have truthfulness reputation ρtrj = 1 forever, since the replies that the

master receives from them are always correct. Malicious workers, on the other hand, fall in one

of two cases. A malicious worker k may be selected a finite number of rounds. Then, there is a

round r′k after which it is never selected. If, conversely, malicious worker k is selected an infinite

number of rounds, since dk > 0 and pA ≥ pminA > 0, its replies are audited an infinite number of

rounds, and there is a round r′k so that ρtrk(r) < 1/n for all r > r′k.

Hence, there is a round R such that, for all rounds r > R, (1) every malicious worker k

has ρtrk(r) < 1/n or is never selected by the master, and (2) every worker k with dk < 1 has

ρrsk(r) < 1 or is never selected by the master. Since there is at least worker i with reputation

ρi = 1, we have that among the n workers in W r, for all rounds r > R, there is at least one

altruistic worker j with dj = 1 and ρj = 1, and the aggregate reputation of all malicious workers

is less than 1. Hence, the master always gets correct responses from a weighed majority of
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workers. This proves the claim. �

The intuition behind the proof is that thanks to the decremental way in which the reputation

of a malicious worker is calculated at some point the altruistic worker i with full responsiveness

(di = 1) will be selected and have a greater reputation than the aggregated reputation of the

selected malicious workers. A similar result does not hold if truthfulness reputation of type Boinc

is used. In this case, we have found that it is not enough that one altruistic worker with full

availability exists, but also the number of altruistic workers with partial availability have to be

considered.

Theorem 4.7. Consider a system in which workers are either altruistic or malicious and there

is at least one altruistic worker i with di = 1 in the pool. In this system, the mechanism of

Algorithm 11 is used with the responsiveness reputation and the truthfulness reputation Boinc.

Then, eventual correctness is satisfied if and only if the number of altruistic workers with dj < 1

is smaller than n.

Proof : In this system, it holds that every malicious worker k has truthfulness reputation

ρtrk = 0 forever, since the replies that the master receives from it (if any) are always incorrect.

Initially, altruistic workers also have zero truthfulness reputation. An altruistic worker j has

positive truthfulness reputation after it is selected, and its reply is received and audited by the

master 10 times. Observe that, once that happens, the truthfulness reputation of worker j never

becomes 0 again. Also note that the reponsiveness reputation never becomes 0. Hence, the

first altruistic workers that succeed in raising their truthfulness reputation above zero are always

chosen in future rounds. While there are less than n workers with positive reputation, the master

selects at random from the zero-reputation workers in every round. Then, eventually (in round

r0) there are n altruistic workers with positive reputation, or there are less than n but all altruistic

workers are in that set. After then, no new altruistic worker increase its reputation (in fact, is ever

selected), and the set of altruistic selected workers is always the same.

If the number of altruistic workers with dj < 1 is smaller than n, since worker i has di = 1,

after round r0 among the selected workers there are altruistic workers with dj = 1 and positive

reputation. Then, in every round there is going to be a weighted majority of correct replies, and

eventual correctness is guaranteed.

If, on the other hand, the number of altruistic workers with dj < 1 is at least n, there is

a positive probability that all the n workers with positive reputation are from this set. Since

there is a positive probability that n altruistic workers with dj < 1 are selected in round r0 with

probability one the worker i with di = 1 will never be selected. If this is the case, eventual

correctness is not satisfied (since there is a positive probability that the master will not receive a

reply in a round). Assume otherwise and consider that after round r′0 it holds that pA = pminA .

Then, in every round after r′0 there is a positive probability that the master receives no reply from

the selected workers and it does not audit, which implies that it does not obtain the correct result.

�
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This result is rather paradoxical, since it implies that a system in which all workers are altru-

istic (one with di = 1 and the rest with dj < 1) does not guarantee eventual correctness, while a

similar system in which the partially available workers are instead malicious does. This paradox

comes to stress the importance of selecting the right truthfulness reputation. Theorem 4.7 shows

a positive correlation among a truthfulness reputation with the availability factor of a worker in

the case a large number of altruistic workers.

4.5.5 Simulations

Theoretical analysis is complemented with illustrative simulations on a number of different

scenarios for the case of full and partial availability. The simulated cases give indications on the

values of some parameters (controlled by the master, namely the type of reputation and the initial

pA) under which the mechanism performs better. The rest of the parameters of the mechanism

and the scenarios presented are essentially based on the observations extracted from [6, 50], and

are rather similar to the ones used in Subsection 4.4.5. We have developed our own simulation

setup by implementing our mechanism (Algorithms 11 and 12, and the reputation types discussed

above) using C++. The simulations were executed on a dual-core AMD Opteron 2.5GHz proces-

sor, with 2GB RAM, running CentOS version 5.3.

For simplicity, we consider that all workers have the same aspiration level ai = 0.1, although

we have checked that with random values the results are similar to those presented here, provided

their variance is not very large (ai ± 0.1). We consider the same learning rate for the master and

the workers, i.e., α = αm = αw = 0.1. Note that the learning rate, as discussed for example

in [128] (called step-size there), is generally set to a small constant value for practical reasons.

We set τ = 0.5, pminA = 0.01, and ε = 0.5 in reputation Exponential. We assume that the

master does not punish the workers WPC = 0, since depending on the platform used this might

not be feasible, and hence more generic results are considered. Also we consider that the cost

of computing a task is WCT = 0.1 for all workers and, analogously, the master is rewarding

the workers with WBY = 1 when it accepts their result (for simplicity no further correlation

among these two values is assumed). The initial cheating probability used by rational workers is

pCi = 0.5 and the number of selected workers is set to n = 5.

The first batch of simulations consider the case when the workers are fully available (i.e, all

workers have d = 1), and the behavior of the mechanism under different pool sizes is studied.

The second batch considers the case where the workers are partially available.

Full Availability

Assuming full worker availability we attempt to identify the impact of the pool size on differ-

ent metrics: (1) the number of rounds, (2) number of auditing rounds, and (3) number of incorrect

results accepted by the master, all of them measured until the system reaches convergence (the
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first round in which pA = pminA )1. Additionally, we are able to compare the behavior of the three

truthfulness reputation types, showing different trade-off among reliability and cost.

We have tested the mechanism proposed in this section with different initial pA values. We

present here two interesting cases of initial audit probability, pA = 0.5 and pA = 1. The first

row of Figure 4.19 (plots (a1) to (c1)) presents the results obtained in the simulations with initial

pA = 0.5 and the second row (plots (a2) to (c2)) the case pA = 1. The simulations in this section

have been done for systems with only rational and malicious workers, with 3 different ratios

between these worker types (ratios 5/4, 4/5, and 1/8), with different pool sizes (N = {5, 9, 99}),
and for the 3 truthfulness reputation types. These ratios consider the three most “critical” cases in

which malicious workers can influence the results.

A general conclusion we can extract from the first row of Figure 4.19 (plots (a1) to (c1))

is that, independently of the ratio between malicious and rational workers, the trend that each

reputation type follows for each of the different pool size scenarios is the same. (When the ratio

of rational/malicious is 1/8 this trend is more noticeable.) Reputation Linear does not show a

correlation between the pool size and the evaluation metrics. This is somewhat surprising given

that other two reputation types are impacted by the pool size.

For reputation Exponential and Boinc we can observe that, as the pool size increases, the

number of rounds until convergence also increases. It seems like, for these reputation types,

many workers from the pool have to be selected and audited before convergence. Hence, with a

larger pool it takes more rounds for the mechanism to select and audit these workers, and hence to

establish valid reputation for the workers and to reinforce the rational ones to be honest. For both

reputation types (Exponential and Boinc) this is a costly procedure also in terms of auditing for all

rational/malicious ratios. (The effect on the number of audits is more acute for reputation Boinc

as the pool size increases.) As for the number of incorrect results accepted until convergence,

with reputation Exponential they still increase with the pool size. However, reputation Boinc is

much more robust with respect to this metric, essentially guaranteeing that no incorrect result is

accepted.

Comparing now the performance of the different reputation types based on our evaluation

metrics, it seems that reputation Linear performs better when the size of the pool is big compared

to the other two reputation types. On the other hand reputation types Exponential and Boinc

perform slightly better when the pool size is small. Comparing reputation types Exponential and

Boinc, while reputation Boinc shows that has slightly faster convergence, this is traded for at

least double auditing than reputation Exponential. On the other hand, reputation Exponential is

accepting a greater number of incorrect results until convergence. This is a clear example of the

trade-off between convergence time, number of audits, and number of incorrect results accepted.

Similar conclusions can be drawn when the master decides to audit with pA = 1 initially, see

Figure 4.19 (a2) - (c2). The only difference is that the variance, of the different instantiations on

the three metrics is smaller. Hence, choosing pA = 1 initially is a “safer” strategy for the master.

1As we have seen experimentally, first the system reaches a reliable state and then pA = pminA .
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Partial Availability

Assuming now partial worker availability (i.e, workers may have d < 1), we attempt to iden-

tify the impact of the unavailability of a worker on four different metrics: (1) the number of

rounds, (2) number of auditing rounds, and (3) number of incorrect results accepted by the mas-

ter, all until the system reaches convergence. In addition, we obtain (4) the number of incorrect

results accepted by the master after the system reaches convergence (which was zero in the pre-

vious section). Moreover, we are able to identify how suitable each reputation is, under different

workers’ ratio and unavailability probabilities.

We keep the pool size fixed to N = 9, and the number of selected workers fixed to n = 5;

and we analyze the behavior of the system in a number of different scenarios where the workers

types and availabilities vary. The depicted scenarios present the cases of initial audit probability:

pA = {0.5, 1}.
Figure 4.20 (a1)-(b1) compares a base case where all workers are altruistic with d = 1 (sce-

nario S1) with scenarios where 1 altruistic worker exists with d = 1 and the rest of the workers are

either altruistic (scenario S2) or malicious (scenario S3) with a partial availability d = 0.5. Our

base case S1 is the optimal scenario, and the mechanism should have the best performance with

respect to metrics (1)-(3); this is confirmed by the simulations as we can observe. For scenario S2,

where the 8 altruistic workers have d = 0.5, reputations Linear and Exponential are performing

as good as the base case. While Boinc is performing slightly worse than the base case. Compar-

ing the different reputation types for scenarios S1 and S2, it is clear that, for all metrics, Linear

and Exponential are performing better than Boinc. Moving on to scenario S3, where 8 malicious

workers with d = 0.5 exist, as expected, the mechanism is performing worse according to our

reputation metrics. What is interesting to observe, though, is that reputation Boinc is performing

much better than the other two reputation types. It is surprising to observe, for reputation Boinc,

how close are the results for scenario S2 and especially scenario S3 to the base case S1. We

believe that this is due to the nature of reputation Boinc, which keeps reputation to zero until a

reliability threshold is achieved. From the observation of Figure 4.20 (a1)-(b1), we can conclude

that, if there is information on the existence of malicious workers in the computation, a “safer”

approach would be the use of reputation Boinc. The impact of pA on the performance of the

mechanism, in the particular scenarios, as it is shown on Figure 4.20 (a1)-(b1), in all cases setting

pA = 0.5 initially improves the performance of the mechanism.

The results of Figure 4.20 (a1)-(b1) are confirmed by Theorem 4.6. Through the simulation

results, we have observed that eventual correctness happens (i.e., no more erroneous results are

further accepted) when the system converges, for the depicted scenarios. As for Theorem 4.7

we have observed that, although the condition of having 5 altruistic with d = 1 is not the case

for scenarios S2 and S3, in the particular scenarios simulated the system was able to reach even-

tual correctness. Although from the depicted scenarios reputation Boinc seems like is a good

approach, theory tells us that it can only be used when we have info on the workers types.

Figure 4.20 (a2)-(b2), depicts more scenarios with different workers types ratios, in the pres-
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ence of rational and malicious workers. Following the same methodology as before, we compare

a base case (scenario S4) where all workers are rational with d = 1, with a scenarios where one

rational with d = 1 exists and the rest are rational (scenario S5) or malicious (scenario S6) with

d = 0.5. We can observe that in the base scenario S4, the mechanism is performing better than

in the other two scenarios, for reputation metrics (1),(2) and (4), independently of the reputation

type. What we observe is that the most difficult scenario for the mechanism to handle is sce-

nario S5, independently of the reputation type, because, although the system converges, eventual

correctness has not been reached and the master is accepting incorrect replies for a few more

rounds before reaching eventual correctness. This is due to the ratio of the workers’ type, and

some rational workers that have not been fully reinforced to a correct behavior may have a greater

reputation than the rational worker with d = 1, while the master has already dropped pA = pminA .

That would mean that the master would accept the result of the majority that might consist of

rational workers that cheat. As we can see, Exponential is performing worse than the other two

types, based on metric (4). As for reputation Linear we can see that, for scenarios S4 and S5,

although the variation on the convergence round is greater than reputation Boinc, this is traded

for half the auditing that reputation Boinc requires. As for scenario S6 (with malicious work-

ers), reputation Linear converges much slower, while the number of audits is roughly the same,

compared to reputation Boinc. This observation gives a slight advantage to reputation Boinc for

scenario S6, while reputation Linear has an advantage on S5.

Discussion

One conclusion that is derived by our simulations is that, in the case of full availability, rep-

utation Boinc is not a desirable reputation type if the pool of workers is large. As simulations

showed us, convergence is slow, and expensive in terms of auditing. One could select one of the

other two reputation types (according to the available information on the ratio of workers’ type),

since accepting a few more incorrect results is traded for fast eventual correctness and low audit-

ing cost. Additionally, in the scenario with full availability we have noticed that, selecting initially

pA = 1 is a “safer” option to have small number of incorrect results accepted, if no information

on the system is known and the master is willing to invest a bit more on auditing.

For the case of partial availability, the simulations with only altruistic or with altruistic and

malicious converged in all cases. This was expected due to the analysis in all cases except in S2

with reputation Boinc, when we expected to see some rounds after convergence with no replies.

The fact is that the altruistic worker with full availability was able to be selected forever in al

cases. Simulations have also shown that, in the presence of malicious and altruistic workers,

reputation Boinc has an advantage compared to the other two types. Finally, it is interesting to

observe that, in the partial availability case with only rational workers, our mechanism has not

reached eventual correctness when the system has converged, but a few rounds later. This means

that, although the rational workers are partially available, the mechanism is able to reinforce them

to an honest behavior eventually.
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Figure 4.19: Simulation results with full availability. First column plots are for initial pA = 0.5.
Second column plots are for initial pA = 1. The bottom (red) errorbars present the number of
incorrect results accepted until convergence (pA = pminA ), the middle (green) errorbars present
the number of audits until convergence; and finally the upper (blue) errorbars present the number
of rounds until convergence, in 100 instantiations. In plots (a1) and (a2) the ratio of rational/mali-
cious is 5/4. In plots (b1) and (b2) the ratio of rational/malicious is 4/5. In plots (c1) and (c2) the
ratio of rational/malicious is 1/8. The x-axes symbols are as follows, L: Linear, E: Exponential
and B: Boinc reputation; p5: pool size 5, p9: pool size 9 and p99: pool size 99.
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Figure 4.20: Simulation results with partial availability: (a1)-(a2) initial pA = 0.5, (b1)-(b2)
initial pA = 1 . For (a1)-(b1) The bottom (red) errorbars present the number of incorrect results
accepted until convergence (pA = pminA ). For (a2)-(b2) the bottom (red) errorbars present the
number of incorrect results accepted after convergence. For all plots, the middle (green) errorbars
present the number of audits until convergence; and finally the upper (blue) errorbars present the
number of rounds until convergence, in 100 instantiations. The x-axes symbols are as follows, L:
reputation Linear, E: reputation Exponential, B: reputation Boinc, S1: 9 altruistic workers with
d = 1, S2: 1 altruistic with d = 1 and 8 altruistic workers with d = 0.5, S3: 1 altruistic with
d = 1 and 8 malicious workers with d = 0.5, S4: 9 rational workers with d = 1, S5: 1 rational
with d = 1 and 8 rational workers with d = 0.5, S6: 1 rational with d = 1 and 8 malicious
workers with d = 0.5.



Chapter 5

Worker Characterization: An
Experimental Evaluation

5.1 Introduction

The preceding chapters addressed the issue of reliability in Internet-based task computing

systems and proposed solutions that deal with the untrustworthy nature of the workers. To this

respect two model assumptions are designed that characterize the workers’ behavior. Recall that

workers are characterized as following an altruistic or troll behavior subject to errors in the error

probability model, while in the rationality model the presence of malicious, altruistic and rational

workers is assumed. These assumptions are based on the literature [8,9,44,63,73,77,94,123,134]

describing the errors on volunteer computing or the low quality of task results in crowdsourcing

systems.

Crucially, the behavior of workers in volunteer computing is easier to be observed since the

tasks are almost always in the form of a machine executable code and errors can be classified [77]

but this is not the case in crowdsourcing. Crowdsourcing tasks in platforms like Amazon Mechan-

ical Turk (AMT) are directed to humans, so mistakes can arise more easily, and it is more difficult

to classify the nature of the error, or the intended behavior of the workers behind that error. In

this chapter we evaluate our two modeling assumptions, regarding the nature of the workers, on

micro-task crowdsourcing platforms and in particular on AMT.

There is a huge amount of literature referring to the demographics of the participants [27,105]

trying to understand the characteristics of this population [104] the incentives that can improve

the quality, reliability and accuracy of the results [27, 93, 107, 114, 123]. In particular, there are

some very enlightening works [66, 94] on the main incentive that potentially could drive workers

quality, that is payments and a work by Kaufmann et al. [74] describing the main motivations

for participating in a crowdsourcing platform. Although this huge amount of literature can shed

light to the motives related to the workers behavior, the purpose of our experiments is a slightly

different one. We wish to study whether our characterization on the workers behavior is a valid

109
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one, that is if workers participating in our experiments can be characterized either through the

error probability mode or through the rationality model.

AMT is developed to bring together requesters having a set of tasks to perform with workers

that are willing to perform a task under payment. A requester announces her task on the plat-

form in the form of a Human Intelligence Task (HIT), as tasks are called in AMT, together with

additional information on the task. Workers that like the task description accept to perform the

HIT and report back a result. Requesters evaluate the task results and reward the workers. In

this experimental evaluation we took the role of the requester and we have posted HITs with dif-

ferent degrees of difficulty, which were executed by workers on the platform. Based on the data

collected, we try to identify the relationship among the time invested by a worker, the difficulty

of the task and the correctness of the task result. Moreover, we aim at identifying workers with

a guessing behavior. Given the evalutation of the received results we take one step forward and

we try to characterize the workers in different types, confirming our two model assumptions on

the workers’ behavior. Interestingly, this work will have implications not only for the issue of the

reliability of crowdsourcing results, but even for the reliability of economic and psychological ex-

periments done with AMT; in fact, only in 2015 more than 1100 studies of this type were carried

out with a pool of about 30000 AMT subjects [25]. As we will see below, the population may be

distributed in types that may affect the results in these two contexts.

5.2 Experiments on Amazon Mechanical Turk

The main objectives of this set of experiments, are to (a) identify an intrinsic behaviors

through assessing the correlation among the worker’s accuracy with the response time and diffi-

culty of the task, (b) identify different types of workers that characterize their behavior. We begin

by a assessing a number of hypothesis, while we also conjecture that a set of workers reply with

a guessed answer.

To test our hypotheses we have designed three variations of the same tasks. The general task

designed consists of four subtasks, each of which shows a connected graph to the workers and

asks them a question. The four graphs presented are the same in all three variations of the task.

More precisely, the workers are presented with two simple graphs which are different perspectives

(nodes are distributed in a different way) of the same graph. The other two graphs presented to

the workers are more complex, and again are two different perspectives of the same graph. The

graphs shown to the workers are depicted in Figure 5.1. Note that the graphs appear to each

worker in a random order. The task varies depending on the question asked related to the graphs

illustrated to the worker. The three task variations we consider are the following:

Color: For each of the four graphs, we ask the workers if the red nodes or the black nodes are

the majority in the graph.

Majority: For each of the four graphs, we inform the workers that the majority of the received
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(a1) (a2)

(b1) (b2)

Figure 5.1: Graphs used in the tasks given to the workers. (a1) subtask with graph G1, (a2)
subtask with graph G2, (b1) subtask with graph G3 and (b2) subtask with graph G4. In (a1) and
(a2) there are 59 black nodes and 55 red nodes; in (b1) and (b2) there are 28 black nodes and 14
red nodes.

answers claims that nodes with a particular color form a majority in the graph. We ask the

worker to let us know whether she agrees with the majority and in case she does not agree

we ask the worker to count the number of nodes in the majority color.

Count: For each of the four graphs, we ask the workers to let us know the total number of nodes

in the graph.

The idea behind these three HITs is to evaluate the workers behavior on a task with a binary

answer, that is HIT color. For the same task evaluate the workers behavior when they have the

possibility to provide a precise solution or choose the default solution a.k.a, HIT majority, and
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finally evaluate the workers answers on the same task but asking them to provide a precise answer

in the HIT count. Hence, we like to study the behavior of the workers when we present them with

an easy way to avoid investing a lot of time in the task, that is to count the nodes, and yet have

a high chance of providing the correct reply. Thus, these experiments try to simulate actual tasks

posted on AMT that have a binary answer, a default answer or ask for a precise answer (and thus

multiple distinct replies are received). In the rest of the section we describe how we implemented

these tasks on AMT and we present our findings.

5.2.1 Experimental Set-Up

As we mentioned above our designed tasks are implemented on AMT, where each task given

to the workers is called a HIT. Three different HITs were implemented corresponding to the

three task variations. Below we present a comprehensive report of the values assigned to the

HIT parameters, such as the task description, promised reward, number of assignments, allocated

time, etc. Besides these parameter values which we are set before placing the HIT online, we

have a number of internal task parameters. In particular, we record the worker’s response to each

of the four subtasks together with the time it took the worker to respond. Moreover, we record the

workers responses on a few demographic questions: age, gender, education and occupation.

Notice that the payment in each HIT varies proportionally to its difficulty, in an effort to

cancel out the effect that payments might have on motivating the workers honesty (or equivalently

dishonesty). The three HITs designed are presented below in order of ascending task difficulty.

Color HIT Design

Figure 5.2: HIT preview, for the task variation color, as seen by the worker.

The initial preview of the HIT implementing the color variation is presented in Figure 5.2,

while the HIT parameters are the following:
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Title: Looking at network nodes;

Description: Find out whether the majority of nodes has the color black or red in a graph;

Keywords: graph, network, majority;

Rewards per assignment: $0.10;

Number of assignments per HIT:100;

Time allotted per assignment: 1h;

HIT expires in: 7 days (with possibility of extending the initial expiration time);

Auto-approve and pay Workers in: 7 days;

Require that Workers be Masters to do your HITs: No;

Workers must: be from USA;

Workers must: not have participated in our experiments in the past.

If the workers accept to compute the task based on the HIT preview (see Figure 5.2) that

gives them the instructions and an example of the task, then the HIT is presented to them, and the

four graphs of Figure 5.1 are shown to them in a random order. No default value, red or black is

preselected for the workers. Notice that is not obvious which is the majority color for graph in

Figure 5.1 G1 while for G2 graph it is more obvious and for graphs G3 and G4 the majority color

in the nodes is obvious.

Note that we do not provide any explanation to the workers as to the methodology we will use

to reward them (based on the validity of all 4 replies or proportionally). Workers are only aware

that completing correctly a task, according to the requesters standards, will be worth $0.10. We

use such an approach for the following reasons: (1) To simulate the standard “vague” approach

taken by the majority of the requesters. (2) To avoid workers strategically replying to questions

if we were to reward proportionally for each correct answer to a subtask. (3) In case we were to

reward only if a worker replied correctly to all questions, we would have actually given additional

incentives to the workers to respond honestly, while our intention is to study their behavior.

Majority HIT Design

The initial preview of the HIT implementing the majority variation is presented in Figure 5.3,

while the HIT parameters are the following:

Title: Looking at network nodes;

Description: Let us know your opinion on the majority color of the graphs shown;

Keywords: graph, network, majority;

Rewards per assignment: $0.15;

Number of assignments per HIT:100;

Time allotted per assignment: 1h;

HIT expires in: 7 days (with possibility of extending the initial expiration time);

Auto-approve and pay Workers in: 7 days;

Require that Workers be Masters to do your HITs: No;

Workers must: be from USA;
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Figure 5.3: HIT preview, for the task variation majority, as seen by the worker.

Workers must: not have participated in our experiments in the past.

In this HIT we inform the worker that the majority of the received answers claims that nodes

with a particular color form a majority in the graph. We ask the worker to let us know whether

she agrees with the majority. If the worker disagrees, she must compute the number of nodes

in the majority. In particular, in the difficult subtasks showing G1 and G2, the question claims

that the majority has reported red as the majority color in the graph. While, in the easy subtasks

showing graphs G3 and G4, the question claims the truth that the nodes in majority are of color

black. Aside from discussion in the previous HIT about the difficulty of identifying the majority

without counting, now counting the number of nodes with different colors can be confusing in

the case of graphs in Figure 5.1 G1 and G2. Again, we do not provide any explanation to the

workers as to the methodology we will use to reward them (based on the validity of all 4 replies

or proportionally) for the reasons mentioned before. Workers are only aware that completing

correctly a task, according to the requesters standards, will receive $0.15.

Count HIT Design

The initial preview of the HIT implementing the count variation is presented in Figure 5.4,

while the HIT parameters are the following:

Title: Looking at network nodes;

Description: Let us know the number of nodes in a graph;

Keywords: graph, network, count;

Rewards per assignment: $0.20;

Number of assignments per HIT:100;

Time allotted per assignment: 1h;

HIT expires in: 7 days (with possibility of extending the initial expiration time);
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Figure 5.4: HIT preview, for the task variation count, as seen by the worker.

Auto-approve and pay Workers in: 7 days;

Require that Workers be Masters to do your HITs: No;

Workers must: be from USA;

Workers must: not have participated in our experiments in the past.

Again, the workers that accept to compute the task based on the HIT preview (see Figure 5.4)

are presented with the four graphs of Figure 5.1 in a random order and are asked to count the

number of nodes in the graph. The graphs G1 and G2 are obviously more difficult in comparison

to G3 and G4 in Figure 5.1. No further explanations are provided to the workers as to the method-

ology used to reward them besides the fact that if the reported task result is marked correct they

will receive $0.20.

5.2.2 Observations

In this subsection, after having received 100 responses for each of the three HITs, we analyze

the data collected and we assess our hypothesis. Our first hypothesis is that regardless the diffi-

culty of a subtask, a number of workers will respond correctly. Another hypothesis that we make

is that for any given subtask, regardless of its difficulty, a number of workers will reply incor-

rectly. This hypothesis is actually contradicted by our collected data. To evaluate the correctness

of a worker’s response, we talk about a worker’s accuracy which is the ratio of the sum of the

worker’s correct subtask answers over the total number of subtasks in a HIT. Thus, our third hy-

potheses claims that workers’ accuracy and response time are correlated. Our fourth hypotheses

claims that workers’ accuracy is related with the task difficulty. Finally, we also conjecture that a

number of workers reply with a guessed answer.
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Hypothesis A: Given a subtask, regardless its difficulty a number of workers will reply
correctly

To test this hypothesis we collected data from the three HITs for all subtasks. Figure 5.5

presents the number of workers giving a correct and an incorrect response for HIT color. Fig-

ure 5.6 shows a histogram of the number of workers giving a correct and an incorrect response for

HIT majority. Finally, Figure 5.7 shows the number of workers counting correctly and incorrectly

the nodes of the graphs.

As we can notice, even for graphs G1 and G2 that are the most difficult independently of the

HIT question, there is a percentage of workers replying correctly. Even when we ask a precise

question (i.e. HIT count) asking the workers to count the number of nodes a 10% and 29% of the

workers for graphs G1 and G2 respectively reply with the correct answer.
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Figure 5.5: Number of workers’ correct and incorrect replies in all four subtasks for HIT
color. We present with the blue color (left) bar the correct replies and with the red color (right)
bar the incorrect replies.

Hypothesis B: Given a subtask, regardless of its difficulty a number of workers will reply
incorrectly

The data received from our experiments, as Figures 5.5 and 5.6 show, are actually contra-

dicting our hypothesis. In the experiment HIT color and HIT majority, in G3 and G4 graphs

respectively, all workers have reported the correct task result. We believe that the reason behind

this is not the high reliability of the workers, something that is contradicted in the rest of the

subtasks, but rather the almost obvious answer of the task combined with a 50% probability of

randomly selecting the correct reply. This last argument is supported also by the fact that all work-

ers replied correctly in different representations of the same graph in HIT color and HIT majority.

Additionally, in both HITs two distinct workers replied incorrectly to the different representation
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Figure 5.6: Number of workers’ correct and incorrect replies in all four subtasks for HIT
majority. We present with the blue color (left) bar the correct replies and with the red color (right)
bar the incorrect replies.
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Figure 5.7: Number of workers’ correct and incorrect replies in all four subtasks for HIT
count. We present with the blue color (left) bar the correct replies and with the red color (right)
bar the incorrect replies. In all four graphs the correct answer is equal to the mode.

of the same graph.

As we can notice, when the question is more explicit, like in HIT count where the exact

number of nodes is asked, the majority of the workers reply incorrectly, even in the two easy

subtasks showing graphs G3 and G4, which is certainly unexpected.

It is interesting to note that in HITs color and majority the percentage of workers reporting

a correct result in G1 is much lower than 50% in comparison with G2 (different visualization of

G1) where we almost received the same number of correct and incorrect responses. This is due
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to the fact that graph G1 has somehow a non-intended optical illusion. If the worker does not

devote enough time to analyze the graph she might easily believe that the majority color is red

since red nodes are more concentrated in the middle of the graph and draw more attention. This

is an indication that some workers choose not to devote time to verify a seemingly trivial answer.

Hypothesis C: Workers’ accuracy and response time are correlated

We want to examine if there is any correlation among the time a worker needs to provide a

reply and the correctness of the reply. For this reason we calculate the accuracy of each workers’

answer as the ratio of the worker’s correct subtask responses over the number of subtasks. As a

first approach to test our hypothesis we check what is the linear correlation of the total response

time of each worker with the worker’s accuracy in all three HITs posted. These correlations are

shown in Table 5.1.

Color Majority Count
0.2339 0.5024 0.3879

Table 5.1: Correlation coefficient of the workers’ response time with the accuracy of the
workers (ratio of worker’s correct subtask responses over all subtasks in the HIT. Columns
represent the three HIT tasks published on AMT.

As we can see from Table 5.1 there is a relationship among worker’s accuracy and total worker

response time, that is more apparent in HIT majority. Although an existing linear correlation

among accuracy and response time affirms our hypothesis it does not give any further informa-

tion, thus we want to examine better this relationship. To this end we will look at the Empirical

Cumulative Distribution Function (ECDF) of the different accuracy groups in a HIT with the total

workers’ total response time to the HIT. We compute the ECDF according to the Kaplan-Meier

estimate [86]. This estimator is usually used for survival or failure times data, that is the time a

certain element of a study remained active after a treatment or the time a machine part needs to

fail, etc. In our case we use this method to observe the time a worker needs to respond to four

subtasks. In particular we categorize our workers in five different accuracy groups, based on the

number of the correct subtask responses and we observe the response time of each accuracy group

member. Hence, we have accuracy group zero where workers did not reply correctly to any of

the subtasks; accuracy group one where workers belonging to that group replied correctly only to

one subtask, and so on.

It looks like HIT majority is the most interesting case, and hence we will look first at the

ECDFs of the total response time for accuracy groups two, three and four, depicted in Figure 5.8.

As we see from Figure 5.6, accuracy group zero is not present while there are at most two work-

ers in accuracy group one, which makes these two cases not interesting. The results of Figure 5.8

show a large difference between accuracy group two and accuracy group three and four. Com-

bining these results with the ones of Figure 5.6, appears that almost all workers replied correctly

to the two easy tasks. Some of the workers where able to give three correct responses, replying
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correctly also to a difficult subtask, in particular 37 workers, while 15 workers replied correctly to

all four subtasks. Notice that for accuracy groups three and four, only 10% of the workers reply

within the first minute, in comparison with accuracy group two, where around 60% of the work-

ers reply in the first minute to all four subtasks. This observation not only shows that workers’

accuracy is correlated with the response time but also indicates that a worker’s accuracy is cor-

related with the task difficulty. Later on, we revisit this last observation, discussing the workers’

behavior.
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Figure 5.8: The ECDF of the total response time for HIT majority. From left to right, the
workers with accuracy degree two up to degree four.

Moving on, we examine the ECDF of the total response time for the HIT color and each of

the three accuracy groups (groups one and two are empty or have one-two elements), as shown

in Figure 5.9. We observe that for HIT color for accuracy groups two and three there is a large

correlation among time and accuracy. As we can see more than 90% of the workers in these

groups reply within 1 minute, while it takes the 90% of the workers in accuracy group four

more than 2.5 mins to reply. Notice that in all three accuracy groups a 25% of the workers

replied within 30 seconds to all four subtasks. This observation suggests that a number of workers

replied correctly simply because they guessed right, rather than counting for example the nodes.

Comparing Figure 5.8 with Figure 5.9, we notice that, first of all, the distinction among accuracy

group two and three, in terms of response time, is not so clear in HIT color again pointing to a

guessing behavior from the side of the workers.

Finally, we look at the ECDF of the total response time for HIT count, shown in Figure 5.10.

Notice that, in this case, where a more difficult task is asked of the workers, one where they

can not guess the correct answer, accuracy depends even more on the response time. Workers in

accuracy group four needed at least 5 minutes to provide their four correct replies. We can also

notice that, there is a roughly constant separation in the plot among the five accuracy groups for

values between 20% and 80%. This distance is likely to arise from the fact that accuracy of a
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Figure 5.9: The ECDF of the total response time for HIT color for the five accuracy groups.

worker is correlated to the response time. Notice that for values more than 80% this correlation

does not exist anymore. We believe that this is due to the fact that workers devote time in counting

the nodes but they simply fail to provide the correct answer. On the other hand, for values below

10% is clear that workers in accuracy groups one, two and three might have guessed the correct

reply.
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Figure 5.10: The ECDF of the total response time for HIT count for the five accuracy groups.

Hypothesis D: Worker’s accuracy is related with the task difficulty

The three graphs in Figures 5.8- 5.10, indicated that there is a relationship among a worker’s

accuracy and the difficulty of a task. We have seen this relationship in all three tasks, each of

which has 2 easy subtasks and 2 difficult subtasks. The difference among the three HITs is that
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while color and majority HITs ask a multiple choice question, HIT count asks a question where

the response is a positive integer, thus harder to guess.

In HIT color as we can see from Figure 5.9 and Figure 5.5 accuracy depends on the difficulty

of the subtask. Subtasks with graphs G3 and G4 are easy to spot and thus all workers responded

correctly. Conversely, for subtasks with graphs G1 and G2 it is more difficult for a worker to com-

pute or guess the correct response, hence less workers reply correctly to them. This observation

is also backed up by the response time as shown in Figure 5.9, some of the workers in accuracy

group three either guessed for graphs G1 and G2 or devoted time only to one of the two graphs

and thus the response time for group two and three is very similar.

Another way to see this relationship among accuracy and task difficulty, is through the number

of workers belonging to each accuracy group for the three HITs, shown in Table 5.2. It is obvious

that the difficulty of HIT count is affecting the accuracy of the workers. In addition, it seems that

accuracy is not affected much by the different type of question asked in HIT majority. Of course,

this observation does not provide enough information since the worker replying negatively to

our question can still provide the wrong number of nodes in the majority. Figures 5.11 and

Figures 5.12 show the answers of the workers that replied negatively to the requester’s question in

HIT majority. In the question regarding graph G1 only 25% of the workers that replied negatively

found the correct answer, while in the question regarding G2 37.5% of the workers that replied

negatively found the correct answer. If we compare these results with the results of Figure 5.13

and Figure 5.14, where we have the histogram of the workers, answer in HIT count, we can see

that, in the case of graph G1 only 10% of the workers replied correctly while in the case of graph

G2 29% of the workers replied correctly. Although in the case of the HIT majority, the sample is

quite small, this is an indication that accuracy depends on the task difficulty, which in this case is

counting only the black nodes instead of the whole set of nodes.

Color Majority Count
Group zero 0 0 34
Group one 1 1 24
Group two 38 47 24

Group three 46 37 12
Group four 15 15 6

Table 5.2: The number of workers belonging to each accuracy group in all three HITs.

Conjecture: A number of workers reply with a guessed answer

It is clear from Figures 5.8- 5.10 that given the way a task is presented to the workers a

“guessing” behavior is more or less likely to be observed. The average response time of accuracy

groups two, three and four is less in the case of HIT count compared to the other two HITs. Also

the average response time of accuracy groups two, three and four is larger in HIT count compared

to the other two HITs. Thus, HIT color is more likely to provoke a guessing behavior from some
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Figure 5.11: Histogram of the density of reported number of black nodes in graph G1 for
HIT majority.
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Figure 5.12: Histogram of the density of reported number of black nodes in graph G2 for
HIT majority.

workers, HIT majority is a bit less likely to provoke a guessing behavior from the workers, while

HIT count polarizes somewhat the behavior of the workers, by either forcing them to count or

guess with high error probability.

As we have noticed before in Figure 5.9, 30% of the workers in all three accuracy groups

examined respond with in 30 seconds in total. This is indicative of a guessing behavior from those

workers, where some of them are able to guess correctly. Notice that 80% of the workers that had

full accuracy, i.e., correct response ratio one, replied within 2 minutes. Even the faster worker

in the case of HIT count that had full accuracy needed almost 5 mins to respond to the requester

as we see in Figure 5.10, hence we can conclude that many workers in HIT color that have full
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Figure 5.13: Histogram of the density of reported number of nodes in graph G1 for HIT
count. The correct answer is 114.
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Figure 5.14: Histogram of the density of reported number of nodes in graph G2 for HIT
count.The correct answer is 114.

accuracy did not count the nodes but rather devoted time in guessing the correct answer. We have

similar observations for the case of HIT majority, but this time the percentage of workers that

replied within 2 minutes correctly to all four subtasks is 30%. This is due to the fact that devoting

time to guess correctly is not enough and more time is required to count the majority nodes.

Finally, the values depicted in Table 5.3 allow us to see in which graphs the workers are prone

to guess. Table 5.3 shows the correlation coefficient values among the worker’s response time

in each graph and its correct response ratio (in the four subtasks). It is immediately obvious for

graphs G3 and G4, that are easy graphs, and HITs color and majority, that are HITs that allow

guessing, the correlation is very low. Thus, it is clear that highly accurate or not, workers are
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G1 G2 G3 G4
Color 0.2852 0.1945 0.0478 -0.0013
Majority 0.4905 0.3791 0.1270 0.2196
Count 0.4083 0.3009 0.4040 0.0969

Table 5.3: The correlation coefficient of the worker’s correct response ratio (in the four
subtasks) with the response time in each graph. Columns represent the correlation coefficient
for each the graph and rows represent the HIT task.

responding in roughly the same time, that is very low as we have already observed. This is a

clear indication of guessing the answer in these easy graphs. Another thing that we can notice

from Table 5.3 is the high correlation in the difficult tasks G1 and G2 in HITs majority and count.

Workers with high accuracy invest also a lot of time in these graphs, which makes us conclude

that correct guessing behavior in these graphs is smaller.

5.3 Categorizing the workers’ behavior

The observations of the previews section give us a comprehensive view of the workers’ behav-

ior. This behavior is consistent with the taxonomy of workers we have assumed in the modelling

part of this work. That is, workers’ behavior can be mapped to the following types: (1) altruistic

with an error probability, (2) troll with an error probability, (3) pure altruistic, (4) pure malicious,

and finally (5) rational workers.

We begin by studying the rational workers behavior in the experiments we conducted. One

of our main conjectures from the experimental observations is that a number of workers reply

with a guessed answer and for some workers this guessing behavior is induced by the question

asked. In other words, some workers try to guess the correct answer because they have a high

probability of identifying it without a significant cost. In our experiments, costs translate into

time. We have observed a rational behavior from some workers in the HIT color where they

maximize their benefit by trying to receive the payment while investing a minimal amount of time

in the task. Comparing HIT color with HIT majority, where an extra amount of time is needed

for the worker to provide the correct answers, can provide us with an additional indication of

rationality. Recall that 80% of the workers that replied correctly to all four subtasks in HIT color

replied within 2 minutes, while in the case of HIT majority only 30% of the workers that replied

correctly to all four subtasks replied within 2 minutes. Thus, seems like a number of workers tried

to maximize their benefit by providing a fast answer and hoping that they guessed correctly, while

a larger number of workers tried to invest more time the task to get the correct answer and secure

payment. In particular, in the HIT majority 80% of the workers belonging to accuracy group four

replied within 6 minutes, investing 3 times longer in replying.

Identifying pure altruistic workers in our experiments is more easy. It is clear from the HIT

count that workers replying to all four subtasks correctly and investing more than 10 minutes
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to count the correct task result can be considered pure altruistic. By pure altruistic we refer

to workers that would always reply correctly to a subtask. What separates these workers from

rational workers that reply correctly is the fact that they invest an unreasonably large amount of

time to respond to the requester. Unfortunately, we can not compute any percentage of altruistic

behavior in our experiments since it is possible that workers with higher cognitive capabilities,

thus faster in counting nodes, can be altruistic.

Again, through the HIT count we can identify pure malicious as the workers belonging in

accuracy group zero. That is, they have not replied correctly in any subtask and they have done it

in less than 1 minute. In a set of 34 workers, 20% of the workers have exhibited this behavior. It is

possible that more workers have a pure malicious behavior and they are slower in giving a reply,

but this is not clear as their behavior could also be characterized as the one of a worker aiming at

replying fast and correctly, and failing.

We have observed that accuracy is related to the task difficulty. This observation supports the

claim that workers might be acting in a altruistic way, aiming at reporting the correct answer but

they fail due to the task difficulty, for example. In Figure 5.10 we noticed that it existed a case

where a worker took 30 minutes to respond, and still she replied wrongly to one subtask. This is

an extreme observation, that points out the existence of altruistic workers that suffer from errors.

Finally, the behavior of trolls with an error probability can be spotted in the workers that

replied to more than one subtask correctly in roughly 30 seconds, in the HIT color and majority.

In the HIT count is more difficult to spot such a behavior due to the nature of the task.

We noticed that given our task, it was more or less easy to spot some of the workers behaviors.

These behaviors are mainly identified through the time a worker needs to respond to a subtask

or to the whole task in comparison with its accuracy (i.e., the accuracy group it belongs in the

HIT). To further check whether we have correctly identified the workers behavior we run a k-

mean clustering algorithm [15] for each HIT with a vector of the workers response time and four

parameters specifying whether the worker replied correctly or not to the subtask. The k-mean

clustering algorithm we used here uses the squared Euclidean distance measure and the cluster

k-means++ algorithm for cluster center initialization as it is implemented in MATLAB [15]. For

each HIT vector we have run the k-mean algorithm evaluating the number of centroids. The

way we choose the optimal centroid value was through visualization of the created clusters by

k-mean. We visualized the data by plotting the scatter plot of the total response time against the

number of correct responses in each task. We have found that while 2 centroids were giving two

almost distinct clusters it was not enough to provide us with any useful information. On the other

hand, 4 and 5 centroids were too many and there was no clear meaning in the clusters. Thus, we

concluded that 3 centroids are enough to provide us with sufficient information, without having

clusters interfering too much with each other.

In Figure 5.15 we can observe the k-mean clustering for three centroids, for the HIT color,

for all four subtasks. In each subfigure we plot the accuracy group of the worker with the total

response time in seconds. As can be observed, the three cluster groups created by k-mean algo-
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Figure 5.15: Scatter plot of the workers’ response time against workers accuracy group for
all four HIT color subtasks.

rithm do form visible groups, although there are points where there is not a clear visual separation

among the clusters. The scatter plots of Figure 5.15 are consistent with our observation that ac-

curacy is related to response time. From the way the clusters are formed we could conclude that

cluster 1 could represent altruistic workers that have an error probability, while cluster 3 could

represent troll workers with an error probability. This reasoning on the workers behavior can also

be justified by the scatter plot of Figure 5.16 and Figure 5.17.

Rationality in Figure 5.15, Figure 5.16 and Figure 5.17 can be associated with cluster 2.

Independently of the worker’s correct response ratio the workers in cluster 2 devote on average

the same amount of time across subtasks of the same difficulty. Notice that the amount of workers

in cluster two with accuracy four is significantly less while workers in cluster two are almost

evenly partitioned among the rest of the possible accuracy groups. This observation indicates

that workers in cluster 2 have a threshold on the amount of time devoted to a task that does not

depend on their accuracy. Thus, generally speaking, workers of cluster 2 can be characterized as

rationals.
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Figure 5.16: Scatter plot of the workers’ response time against workers accuracy group for
all four HIT majority subtasks.

5.4 Conclusions

This chapter summarizes our main findings on the behavior of the workers on AMT when

three HITs with different computational complexities are each computed by 100 workers. Our

HITs are designed in such a way to capture the relationship among workers’ accuracy with the

task difficulty and the time invested in the task. Indeed, we have clearly seen that more than 50%

of the workers reply with an incorrect answer to a complex to compute subtask, regardless of the

complexity of the question asked (i.e. find the majority, count etc.). A bit to our surprise, we

have also noticed that if the subtask complexity and also the question complexity is low, that is a

binary set of answers is presented, in two cases all 100 workers replied correctly. Thus, one of the

general observation was that a worker’s accuracy is correlated with the task difficulty. Another

general observation we took is that a worker’s accuracy is correlated with the response time to

the task. Finally, we conjecture that a number of workers is actually guessing the correct answer

rather than accurately calculating it, something that become obvious when the workers were asked

to compute the precise number of nodes in the presented graphs.

Our observations regarding the relationship of the worker’s accuracy with regards to the task
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Figure 5.17: Scatter plot of the workers’ response time against workers accuracy group for
all four HIT majority subtasks.

difficulty and the time invested are actually agreeing with the literature on the topic. This actually

supports the validity of our experiments, but the main contribution of this work comes from the

fact that through our particular observations we are able to draw conclusions that support our

beliefs on the workers’ behavior. In particular, we have significant data that support the existence

of workers behaving according to the rational model or viewed from another perspective work-

ers that are altruistic but suffer from errors. Moreover, we have also some indications that could

justify a model assuming the presence of pure malicious and pure altruistic workers or another

model that assumes the presence of troll workers with an error probability. Gadiraju et al. [54]

conducted experiments on CrowdFlower investigating the workers behavior on crowdsourced sur-

veys. From their findings, among other types of worker they were able to spot fast deceivers and

smart deceivers, these two types they observed are similar to the rational behavior we observed

in our experiements. Moreover, Gadiraju et al. observed a type of worker which they call gold

standard preys. This type of worker has a similar behavior to altruistic workers with an error

probability. In their work, Gadiraju et al. classified workers into five different types according to

the received responses and on the workers responses to auditing questions, while in our work the

derived conclusions are based on the response time and the subtask difficulty in combination with
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the received response.
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Figure 5.18: The reported age of participating workers in all three HITs
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Figure 5.19: The reported education of participating workers in all three HITs

Finally, we conclude our observations in this chapter with some demographics, which were

collected after the workers have replied to the four subtasks of each HIT. We have mentioned to

the workers that replying to these demographics questions was not obligatory. As we have seen

47.6% of the worker population reported they are women, while 51.3% reported they are men

and the rest of the worker choose not to reply. Figure 5.18 shows that the majority of workers are

among 20-40 years old. In Figure 5.19 we can observe that more than half of the workers have

received a higher education while in Figure 5.20 we see that a bit more than half of the workers

don’t have a fixed occupation.
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Figure 5.20: The reported occupation of participating workers in all three HITs



Chapter 6

Fair and Efficient Distribution of
Resources

6.1 Introduction

In the previous chapters we have addressed the problem of reliability in Internet-based task

computing systems. In Section 4.5 we have presented a mechanism for achieving reliability where

the master, in each round, selects the most reliable workers to take part in the computation. Up

to now, we have abstracted our problem considering the presence of only one master and thus

focusing on the untrustworthy nature of the workers. But, in all the examples of Internet-based

computing such as volunteer computing and crowdsourcing, we have multiple masters besides

multiple workers. In the case of volunteer computing, workers can participate in multiple vol-

unteer projects supported by Berkeley Open-source software for volunteer computing (BOINC).

While in crowdsourcing platforms such as Amazon Mechanical Turk (AMT), masters are com-

peting for the same workers, paying the same fee rate to the platform. Imagine a scenario where

a master keeps assigning tasks to a worker that is considered highly reputable not only by her but

also by other masters, such that the worker does not accept to compute other masters’ tasks in that

time interval. This is a case where one master is monopolizing a valuable common “resource”,

while all masters have equal rights to be sharing that resource. Thus the question rises, how can

the masters share the reputable workers in a fair manner?

This problem could be trivially solved if the reputable workers where computing tasks for the

master in a round-robin fashion. Such a solution is not efficient though, since master might not

get to assign a task to a worker when she values it the most. Thus, another approach would be that

a worker is assigned to the master that values her contribution the most. In this solution, masters

exactly like workers can be rational and thus declaring a different valuation, than their actual one,

on the reputable workers, in an attempt to increase their benefit.

A number of mechanism have been designed dealing with the problem of allocating resources

in the presence of strategic agents, for example auction mechanisms. The two most famous auc-

131



132 Fair and Efficient Distribution of Resources

tion mechanisms are the Vickrey-Clark-Groves (VCG) auction [16] and the Generalized Second

Price (GSP) auction [46]. In both mechanisms, payment is present for incentivizing the correct

behavior of the participating agents according to the mechanism designer’s goal. In the volunteer

computing and crowdsoucing example, it is infeasible to have payments from the side of the mas-

ters. Considering the first example, payments would defeat the concept of volunteer computing

and as for the crowdsourcing example masters expect to have fair access to the workers since they

are already paying a fee rate for it.

Given all the above, in this chapter we solve the problem at hand by designing a mechanism

for Fair and Efficient Distribution of Resources (FEDoR) , in the presence of strategic agents and

without the use of monetary incentives. There is a plethora a real world applications deriving

from computer science or from social sciences were payments can not be used as incentives in

resource allocation problems. For example allocating Central Processing Unit (CPU) cycles or

sharing of valuable hospital equipment. For this reason we choose to present our mechanism in

a general manner, talking about strategic agents instead of masters that share a set of indivisible

goods or resources instead of making reference to workers in particular.

Resource allocation in an efficient and fair manner among strategic agents (we use the terms

agent and player interchangeably) that can misreport their values to increase their benefit, is a

non-trivial problem. The most straightforward approach is the design of mechanisms where, once

the solution concept is achieved, fairness and efficiency are guaranteed. In order for the designed

mechanism to be incentive compatible, economic incentives/payments must usually be designed.

In this work, we do not use any economic incentives/payments and hence our mechanism design

goals are achieved without any incentive constraint, that is without money.

Based on the nature of the problem, we assume a Bayesian setting where agents have private

information. In the master-worker paradigm, the masters’ private information is a function of the

reputation value assigned to every worker in each round. Agents can be cheating, declaring pref-

erences that do not correspond to their true valuations in an effort to increase their utility. That is

a master might continually reporting that she has high valuation on a worker while this might not

be the case. Unlike mechanisms with payments, were money incentives enforce the good behav-

ior of the agents, this is not the case here. FEDoR is designed especially to detect cheating and

punish it. This is feasible since FEDoR is designed to work in a repeated setting, which allows the

mechanism to gain knowledge on the agents’ valuations and appropriately punish misbehaving

agents, incentivizing their good behavior. The mechanism is able to guarantee fairness and social

efficiency by exploiting the concept of linking mechanisms [71] described in Chapter 2. That is

when a lot of independent copies of the same decision problem are linked together, then no incen-

tive constrains are needed for agents to be truthful. We are assuming that preferences are declared

within a common unit measure. In realistic applications, valuations might not even appear within

the same unit of measure. Agents might not be able to associate their valuation under a common

unit of measure. To deal with this matter FEDoR uses a common normalization process called

Probability Integral Transformation (PIT) [13]. Using PIT any cumulative probability distribution
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function can be transformed to the uniform [0,1] distribution. Essentially, the PIT of a value x

extracted from a probability distribution is the aggregated probability of the values no larger than

x in the distribution. Intuitively, it is similar to the percentile of x. Under the assumption that FE-

DoR has a historical sample of the agents’ valuations, a distribution fitting the agents valuations

can be defined. Since knowing the agent’s valuation distribution is the only thing that we need to

know to apply the PIT, from this point onwards we will assume that the valuations declared by

the agents follow the uniform [0,1] distribution. In the work by Santos et al. [117], this approach

was used in an analogous way to transform the agent’s cost to the uniform distribution (see Fig 1

in [117]). Having transformed the agent’s valuation to the uniform [0,1] distribution, a Goodness

of Fit (GoF) test can define whether an agent’s valuation is following its true distribution, and

act in an analogous manner; this guarantees that FEDoR is a truthful mechanism (as we prove

below).

Contributions

We design a mechanism for Fair and Efficient Distribution of Resources (FEDoR) in the

presence of strategic agents. We consider a multiple-instances, Bayesian setting, where in each

round the preference of an agent over the set of resources is a private information. We assume

that in each of r rounds n agents are competing for k non-identical indivisible goods, (n > k).

In each round the strategic agents declare how much they value receiving any of the goods in

the specific round. The agent declaring the highest valuation receives the good with the highest

value, the agent with the second highest valuation receives the second highest valued good, etc.

Hence we assume a decision function that assigns goods to agents based on their valuations.

The novelty of the mechanism is that no payment scheme is required to achieve truthfulness in

a setting with rational/strategic agents. The FEDoR mechanism takes advantage of the repeated

nature of the framework, and through a statistical test is able to punish the misreporting agents

and be fair, truthful, and socially efficient. The mechanism is fair in the sense that, in expectation

over the course of the rounds, all agents will receive the same good the same amount of times.

Through FEDoR , we solve the problem of allocating workers to masters in an Internet-based

computing platform in a fair and efficient manner without payments. Masters in different rounds

have different valuation on the workers based on the private reputation value they have for each

worker. Thus, we guarantee that in expectation over the course of the computation rounds, all

masters will receive each worker the same amount of times when they value them the most (based

on the reputation value each master has on the workers). Moreover, we perform comparison with

two benchmark auction mechanisms presenting the advantage of FEDoR, in Internet-based task

computing systems.

Besides allocation of workers in volunteer computing and crowdsourcing platforms, FEDoR

is an eligible candidate for other applications that require fair distribution of resources over time.

For example, equal share of bandwidth for nodes through the same point of access. But further on,

FEDoR can be applied in less trivial settings like sponsored search, where payment is necessary
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and can be given in the form of a flat participation fee. FEDoR can be a good candidate in a

setting like that to solve the problem of starvation of publicity slots for some advertisers that have

a difficult time determining their true valuations.

The rest of the Chapter is structured as follows, in Section 6.2 we present a general model,

instead of focusing in the master-worker paradigm. In Section 6.3 we present our designed mech-

anism and in Section 6.4 we show that our mechanism satisfies the properties of fairness, truth-

fulness and social efficiency. Section 6.5 presents simulations comparing FEDoR to VCG and

GSP in Internet-based task computing systems. Finally, in Section 6.5 we provide an extensive

discussion on other feasible applications of FEDoR.

6.2 Model

Before moving any further, let us define the setting we are considering as well as the problem

we are solving.

Definition 6.1 (Setting). We consider the presence of n risk-neutral players, N = {1, 2, . . . , n}.
Every one of the n players participates in a (a priori unknown) number of consecutive instances

(each instance is considered a round) of an allocation game. In each instance of the allocation

game:

1. k heterogeneous non-divisible goods are allocated among the n players, where 1 ≤ k < n.

2. For every good i of the k goods of the round there exist a relative value depicted by the

weight wi (goods in each round can be different but the relative values remain the same).

We assume that goods are sorted by decreasing weight, i.e., w1 ≥ w2 ≥ · · · ≥ wk.

3. Players declare how much they value obtaining any of the goods of the set. This is expressed

by a single value.

The outcome set of the game played is the set D of all k-permutations of N (i.e., all posible

permutations of the subsets of N of size k). Hence, the outcome d = (d1, d2, . . . , dk) ∈ D is the

ordered list of players to whom the goods will be allocated, so that the player di will receive the

ith good (whose weight is wi).

Each player privately observes her preferences over the alternatives in D before the collective

choice in the game is made. This is modeled by assuming that player i privately observes a

parameter θi, which determines her preferences over obtaining a good from the set. We say that

θi is the player type, for every player i. The set of all possible types of player i is Θi. We

denote by θ = (θ1, θ2, . . . , θn) the vector of player types. The set of all possible vectors is

Θ = Θ1 ×Θ2 × . . .Θn. We denote by θ−i the vector obtained by removing θi from θ.

Thus, we denote by Π = ∆(Θ) (in general, we denote by ∆(S) the set of all probability

distributions over some set S) the set of all probability distributions over Θ. It is assumed that
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there is a common prior distribution π ∈ Π that is shared by all the players. We denote by

πi ∈ ∆(Θi) the marginal probability of θi. We define πi(θi|θ−i) as the conditional probability

distribution of θi given θ−i.

In this work we assume that the player types are normalized, in the sense that Θi = [0, 1], for

every player i. Moreover, for every player i the marginal probability πi of θi is also normalized as

the uniform continuous distribution in the interval [0, 1]. This are not simple assumptions as in the

work by Santos et al. [117], applying the PIT we can transform any probability distribution to the

uniform [0,1] Finally, we assume that all distributions πi are independent, i.e., π(·|θ−i) = πi(·).

For this reasons we have made the simplification of having our notations free from the concept of

the round.

Players’ preferences over outcomes are represented by a utility function ui(d, θi) ∈ R de-

fined over all d ∈ D and θi ∈ Θi. In this work the utility function is defined as ui(d, θi) =

θi
∑k

j=1wjδidj , ∀i ∈ N, ∀d ∈ D, where δab is the Kronecker delta.

We assume that the set of outcomes D, the set of players N , the type sets in Θ, the common

prior distribution π ∈ Π, and the utility functions ui are common knowledge for all the players.

Similarly, the game rules defined by the mechanism used are also common knowledge. However,

the specific type θi observed by player i belongs to her private information.

A strategy for the player i is a map σi : Θi → ∆(Θi), where σi(θ̂i|θi) is the conditional

probability that the player reports θ̂i when her true type is θi. A strategy σi is truthful (and we say

that the player is honest) if, for every pair (θ̂i, θi), σi(θ̂i|θi) = 1 if θ̂i = θi and 0 otherwise. As

usually done, we will use θ̂i to denote the reported type, and θi the actual type.

We assume the availability of a GoF test, that can test whether a value (a reported type in our

case) is a sample from a uniform distribution in [0, 1]. Hence, GoF Test(θ̂i) is true if and only

if θ̂i is a uniform random sample. By this definition we assume that the GoF test is perfect, but

this is a theoretical artifice. In Section 6.5, through simulations we find a good approximation to

a perfect GoF test.

In this work, we search for a mechanism 〈Θ, g〉, where g : Θ̂ → ∆(D) is the decision

function. With this function, g(d|θ̂) is the conditional probability that the mechanism decides

d ∈ D when the players report θ̂. The mechanism must be without utility transfers (payments)

and satisfy the following properties.

Fairness. Every player i (honest or not) gets the jth good, the same proportion of

times in expectation, for every j. I.e.,

Eθ,θ̂∈Θ

 ∑
d∈D:dj=i

g(d|θ̂)

 = Eθ,θ̂∈Θ

 ∑
d∈D:dj=i′

g(d|θ̂)

 ,∀i, i′ ∈ N, ∀j ∈ [1, k],∀σ.

(6.1)
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Truthfulness. The strategy that maximizes the utility of a player i is to be honest. I.e.,

Eθ,θ̂∈Θ

[∑
d∈D

ui(d, θi)g(d|θi, θ̂−i)

]
≥ Eθ,θ̂∈Θ

[∑
d∈D

ui(d, θi)g(d|θ̂)

]
, ∀i ∈ N, ∀σ. (6.2)

Social Efficiency. If all players are honest, the expected social utility with decision

function g is maximized with respect to any other decision function g′. I.e.,

Eθ∈Θ

[∑
i∈N

∑
d∈D

ui(d, θi)g(d|θ)

]
≥ Eθ∈Θ

[∑
i∈N

∑
d∈D

ui(d, θi)g
′(d|θ)

]
. (6.3)

6.3 The FEDoR Mechanism

FEDoR solves the problem of allocating multiple resources in a multi-instance setting, with

a decision function that is such that the properties of fairness, truthfulness and social efficiency

are satisfied without utility transfers. Algorithm 13 describes the steps that a generic player i

executes and the actions taken by the mechanism. This algorithm represents how the mechanism

can be applied in a distributed setting, in the absence of a central authority that takes the allocation

decision.

Algorithm 13 FEDoR Algorithm (code for player i)

1 foreach k set of goods do
2 Observe type θi
3 Choose type θ̂i using probability distribution σi(·|θi) (player i’s strategy)
4 Broadcast the type θ̂i (this is the bid of player i)
5 Wait to receive the reported types θ̂ from all the players in N
6 d← gf (θ̂) \\ applying the FEDoR mechanism
7 if (i = dj) then player i receives the jth good

In every instance of the allocation game (defined as a new announcement of k goods to be

allocated) a player i observes its type θi. Then, applying its strategy σi, the player chooses a type

θ̂i that will be reported as the player’s bid. These bids are gossiped among all players, so that

all of them end with the same vector of reported types θ̂. We are assuming that communication

among players is perfect (reliable and synchronous). Once a player has received all the reported

types from the rest of the players, the algorithm moves on, applying the mechanism.

Each player applies the mechanism to obtain the allocation decision. The decision function

gf : Θ→ D of FEDoR is one where gf (θ̂) = (i1, i2, . . . ik) such that (i1, i2, . . . ik) : vi1 ≥ vi2 ≥
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. . . vik and vik ≥ vi∀i ∈ N \ {i1, ..ik} where

vi =

θ̂i GoFtest(θ̂i)

pseudorandom(θ̂−i) otherwise

In other words the decision function of FEDoR is one that given the vector of declared types θ̂i
provides the vector of players (i1, i2, . . . ik) receiving the k goods, by ij we declare the player

receiving the jth good. The decision of the mechanism is based on a cheaters (following a strategy

besides declaring their true type) detection scheme. Recall that, as we explained in Section 6.2

each player has a uniform continuous distribution in the interval [0,1] over all instances. This is

a common information that all players share and allows them to verify announced types of the

rest of the players. If the player i declared type θ̂i passes the GoF test then the declared value

is accepted. Otherwise the declared value is replaced, by each player, by a pseudorandom value

uniform in [0, 1] derived from the rest of reported types θ̂−i. Since all players apply the same

perfect GoF test to the same value θ̂i, and the same pseudorandom function to the same vector

θ̂−i, they all assign the same value to vi. As a result, the same vector v is obtained by each player,

which contains the values of the players that passed the test and the generated values for those

that did not. The mechanism allocates the k goods in order to the k players with the highest value

in the vector v.

It is important to notice that the algorithm is the same for all players and that it is based

on information known by all of them. Therefore, no central entity is required to apply the FE-

DoR mechanism. Of course, if the environment is such that a central authority is available, the

algorithm can trivially be transformed to accommodate a centralized solution using FEDoR.

6.4 Formal Analysis

In this section we analyze the FEDoR mechanism and we show that the three desired proper-

ties described in Section 6.2, namely fairness, truthfulness, and social efficiency are satisfied. We

start by proving the latter.

We show that FEDoR is socially efficient if all players are honest. To prove this, first we

prove that there is no mechanism that has a decision function that gives a higher utility to a

player, independently of the declared types Θ.

Lemma 6.1. There is no mechanism 〈Θ, g〉 such that

E[
∑
i∈N

∑
d∈D

ui(d, θi)g(d|θ)] > E[
∑
i∈N

∑
d∈D

ui(d, θi)gf (d|θ)].
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Proof : Assume the claim is not true. Then, there is a mechanism 〈Θ, g〉 such that

E[
∑
i∈N

∑
d∈D

ui(d, θi)g(d|θ)] > E[
∑
i∈N

∑
d∈D

ui(d, θi)gf (d|θ)]. (6.4)

This means that there is at least one θ such that∑
i∈N

∑
d∈D

ui(d, θi)g(d|θ) >
∑
i∈N

∑
d∈D

ui(d, θi)gf (d|θ). (6.5)

Let dx = (x1, x2, . . . , xk) be an outcome that maximizes
∑

i∈N ui(dx, θi).

Then,
∑

i∈N ui(dx, θi) ≥
∑

i∈N
∑

d∈D ui(d, θi)g(d|θ). On the other hand, let gf (df |θ) = 1

for df = (i1, i2, . . . , ik). By the definition of ui, this means that
∑k

j=1 θxjwj >
∑k

j=1 θijwj .

However, this is not possible, since w1 ≥ w2 ≥ · · · ≥ wk, and the values θij are the largest values

in θ in decreasing order, i.e., θi1 ≥ θi2 ≥ · · · ≥ θik . Hence, the mechanism 〈Θ, g〉 does not exist.

�

Since there is no mechanism that has a decision function that is better than the one of FEDoR

mechanism, then we can also proof that when all players are honest (a.k.a declaring their true

type) the social utility (i.e. the total utility of all players) is maximized.

Theorem 6.1 (Social efficiency). For any mechanism 〈Θ, g〉 and strategies σi,∀i ∈ N , it holds

that

E[
∑
i∈N

∑
d∈D

ui(d, θi)gf (d|θ)] ≥ E[
∑
i∈N

∑
d∈D

ui(d, θi)g(d|θ̂)|σ1, . . . , σn].

Proof : Assume the claim is not true, and hence there is a mechanism 〈Θ, g〉 and strategies

σi,∀i ∈ N , such that

E[
∑
i∈N

∑
d∈D

ui(d, θi)gf (d|θ)] < E[
∑
i∈N

∑
d∈D

ui(d, θi)g(d|θ̂)|σ1, . . . , σn]. (6.6)

Then, let us define a new mechanism 〈Θ, g′〉 as follows. g′(d|θ) =
∫ 1

0

∫ 1

0
. . .
∫ 1

0
g(d|θ̂) · σ1(θ̂1|θ1) ·

. . . · σn(θ̂n|θn)dθ̂ndθ̂n−1 . . . dθ̂1. The decision function g′(·) assigns the same probability to each
possible outcome d as the combination of the strategies σi(·) and the decision function g(·). Thus,

E[
∑
i∈N

∑
d∈D

ui(d, θi)gf (d|θ)] < E[
∑
i∈N

∑
d∈D

ui(d, θi)g(d|θ̂)|σ1, . . . , σn] (6.7)

= E[
∑
i∈N

∑
d∈D

ui(d, θi)g
′(d|θ)], (6.8)

contradicting Lemma 6.1. �

We will now start proving the truthfulness property of the FEDoR mechanism. Let us denote

by E[Ûi|σ1, . . . , σn] the expected utility of player i under the FEDoR mechanism when players

follow strategy σi,∀i ∈ N .



6.4 Formal Analysis 139

Lemma 6.2. For any non empty set of players S ⊂ N , the total expected utility of the players in

S does not depend on the strategies of the rest of players.

Proof : We start by proving that the expected utility of a player i does not depend on the strat-

egy of another player h 6= i. In particular, we will show that E[Ûi|σx, ∀x ∈ N ] = E[Ûi|σx, ∀x 6=
h;h honest], i.e., that the utility of i does not depend on whether h is honest or not, which implies

the former statement.

For every player x ∈ N , let fx(vx, θx) be the density function of the pairs of values (vx, θx),

where θx is the type observed by player x and vx is the entry corresponding to x in the vector v

used to decide in FEDoR (see Algorithm 13). If the strategy σx(·) induces a uniform distribution

on the reported types θ̂x (recall that θx does follow a uniform distribution), then the values vx will

always be the declared types (bid) θ̂x. Otherwise, the GoF test will always fail and vx will be

pseudorandom values generated from the rest of declared values. In any case, the values vx are

uniformly distributed, and the function fx is independent from the rest of functions fi,∀i 6= x.

Moreover, the marginal distributions of fx(vx, θx) must also be uniform.

Let us consider any player i ∈ S. The expected utility E[Ûi|σx, ∀x ∈ N ] of the player can

then be computed as

∑
d∈D

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

ui(d|θi)gf (d|v)f1(v1, θ1) · · · fn(vn, θn) (6.9)

dv1 · · · dvndθ1 · · · dθn (6.10)

=
∑
d∈D

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n−1

ui(d|θi)gf (d|v)f1(v1, θ1) · · · (6.11)

fh−1(vh−1, θh−1)fh+1(vh+1, θh+1) · · · fn(vn, θn) (6.12)∫ 1

0
fh(vh, θh)dθhdv1 · · · dvndθ1 · · · dθh−1dθh+1 · · · dθn (6.13)

=
∑
d∈D

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n−1

ui(d|θi)gf (d|v)f1(v1, θ1) · · · (6.14)

fh−1(vh−1, θh−1)fh+1(vh+1, θh+1) · · · fn(vn, θn) (6.15)

dv1 · · · dvndθ1 · · · dθh−1dθh+1 · · · dθn. (6.16)

The first equality follows from the independence of fh from the other fj . The last equality

follows from the fact that
∫ 1

0 fh(vh, θh)dθh = 1, from the uniform marginal distribution of fh
with respect to θh. Now, applying a change of variable, we can replace in the above expression
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vh by θh, resulting after reordering in

E[Ûi|σx,∀x ∈ N ] =
∑
d∈D

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
2n−1

ui(d|θi)gf (d|v−h, θh) (6.17)

f1(v1, θ1) · · · fh−1(vh−1, θh−1)fh+1(vh+1, θh+1) · · · (6.18)

fn(vn, θn)dv1 · · · dvh−1dθhdvh+1 · · · dvndθ1 · · · dθn (6.19)

= E[Ûi|σx, ∀x 6= h;h honest]. (6.20)

This property can now be applied iteratively for every player h /∈ S, showing that the expected

utility of i ∈ S is independent of the strategy of the players in S. Summing over all the players in

S the claim of the lemma is proved. �

Using Lemma 6.2 we can proof the truthfulness property.

Theorem 6.2 (Truthfulness). The strategy that maximizes the utility of a player i is to be honest.

I.e., E[Ûi|σx,∀x ∈ N ] ≤ E[Ûi|σx,∀x 6= i; i honest].

Proof : Assume for contradiction that the claim is not true. Then, there are strategies σx, ∀x ∈
N such that

E[Ûi|σx,∀x ∈ N ] > E[Ûi|σx,∀x 6= i; i honest]. (6.21)

From Lemma 6.2 we have the following identities (the third one uses linearity of expectations).

E[Ûi|σx, ∀x ∈ N ] = E[Ûi|σi;x is honest, ∀x 6= i] (6.22)

E[Ûi|σx,∀x 6= i; i honest] = E[Ûi|all players are honest] (6.23)

E[
∑
h6=i

Ûh|σi;x is honest, ∀x 6= i] = E[
∑
h6=i

Ûh|all players are honest] (6.24)

Replacing equations 6.22 and 6.23 in 6.21, we obtain

E[Ûi|σi;x is honest, ∀x 6= i] > E[Ûi|all players are honest]. (6.25)

Which added to 6.24 yields

E[
∑
h∈N

Ûh|σi;x is honest, ∀x 6= i] > E[
∑
h∈N

Ûh|all players are honest]. (6.26)

However, this contradicts Theorem 6.1. �

We concentrate now in the fairness property. Recall the FEDoR mechanism as it was de-

scribed in the previous subsection. Either because the player reports types that are uniformly

distributed, or because they are replaced by FEDoR with uniform pseudorandom values. The

values vi of the vector v used to distribute the goods are independent random samples form a

uniform distribution [0, 1]. Hence the following theorem.
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Theorem 6.3 (Fairness). Every player i (honest or not) has the same probability 1/n of getting

the jth good, for every j.

Proof : Since the elements of the vector v are independent uniform samples as mentioned,

the probability that the value vi is the jth largest in v is

(
n− 1

j − 1

)
(1 − vi)j−1vn−ji . Then the

probability that a player i has the jth largest value in v, given that vi takes values uniformly

between 0 and 1 is ∫ 1

0

(
n− 1

j − 1

)
(1− vi)j−1vn−ji dvi =

1

n
(6.27)

�

Finally, we will analyze the expected utility of the players depending on their strategy. We

start by presenting the expect utility of an honest player. Observe that the utility obtained is

independent from the strategies of the rest of players, as proven in Lemma 6.2.

Theorem 6.4. The expected utility of an honest player i is

E[Ûi|σx, ∀x 6= i; i honest] =
∑k
j=1 wj(n−j+1)

n(n+1) . This value is independent from the strategies

σx,∀x 6= i.

Proof : Since i is honest, she reports her true type θi, which follows a uniform distribution.

Hence, it holds that vi = θi. As in the proof of Theorem 6.3, the probability that the type θi is the

jth largest value is

(
n− 1

j − 1

)
(1− θi)j−1θn−ji . Then, the expected utility can be computed as

E[Ûi|σx, ∀x 6= i; i honest]

=
k∑
j=1

wj

∫ 1

0
θi

(
n− 1

j − 1

)
(1− θi)j−1θn−ji dθi

=

∑j
i=1wj(n− j + 1)

n(n+ 1)

(6.28)

�

We now find the utility of a player i that is not honest (a.k.a cheater), but she reports values

that are not uniform (and hence the GoF test always fails) or she reports types θ̂i that are uniform

but independent of her true types θi. Observe that this theorem does not consider the case when

the types reported are uniform and somehow correlated with the real types (this is left to be shown

experimentally).

Theorem 6.5. The expected utility of a dishonest player i that reports non uniform types or types

independent of her true normalized uniform distribution is E[Ûi|σx, ∀x ∈ N ] = 1
2n

∑k
j=1wj .

Proof : In this case, the value vi used to distribute the goods follow a uniform distribution that
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is independent of the actual type θi of player i. Hence,

E[Ûi|σx,∀x ∈ N ]

=
k∑
j=1

wj

∫ 1

0
θi

∫ 1

0

(
n− 1

j − 1

)
(1− vi)j−1vn−ji dvidθi

=
1

2n

k∑
j=1

wj .

(6.29)

�

6.5 Simulation Results

FEDoR is a mechanism for distributing/allocating goods, without monetary incentives, in

the presence of strategic agents. It guarantees an allocation of the goods that will be fair and

socially efficient, given that the mechanism is truthful (strategy-proof). The good properties of

the mechanism are feasible under a specific setting, discussed in Section 6.2. As we mentioned in

the introductory section, FEDoR is a good match for volunteer computing where no payments are

involved and the crowdsourcing example where masters’ expect a fair treatment since they pay a

fee to the platform. For the sake of experimentation though, we would like to simulate FEDoR and

compare it with VCG [16] and GSP [46] auction mechanisms. As far as we know, currently, no

computational environment that corresponds to the Internet-based task computing system model

uses auctions to assign workers to the masters, but this could be implemented in the future. Our

goal is to study whether our mechanism behaves well in a scenario where payments are involved

in comparison with well established auction mechanisms. On a side note, through this study we

also examine the feasibility of auction mechanisms in Internet-based task computing systems for

distributing the workers.

Simulations compare FEDoR with two benchmark auction mechanisms, VCG and GSP mech-

anisms in two cases: (1) only honest players are present, (2) dishonest players are present. Ad-

ditionally, simulations examine the cost of not having a perfect GoF test and the length of the

historical test that would yield an almost perfect GoF test. We choose to compare FEDoR with

VCG that is a powerful strategy proof and efficient (in every instance) mechanism. In VCG the

ith highest bidder gets the ith best good, but pays the externality that she imposes on the other

bidders by winning that good. Besides its good properties, VCG is difficult to be understood by

the bidders. Thus, we also compare FEDoR with GSP, a simplification of the previous mentioned

mechanism that lack some essential properties. In GSP the ith highest bidder gets the ith best

good, but pays to the seller the bid of the (i + 1)st highest bidder. This mechanism is neither

strategy proof nor efficient but is easily understandable by the bidder.
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Figure 6.1: Comparing FEDoR with VCG and GSP in the mean utility of seller (computa-
tional platform) and player (master) per auction. The values for FEDoR form a line in each
experiment, since the utilities of platform and masters can be tuned with the flat fee. The val-
ues for VCG and GSP always lie on the corresponding FEDoR line. Plots represent the mean
utility per auction of the platform and one master over 10000 rounds of execution and 100 exper-
iments. (a) Scenarios with 9 masters and the number of workers increasing from 1 (leftmost line)
to 8 (rightmost line). (b) Scenarios with 3 workers and the masters decreasing from 9 (line with
largest slope) to 4 (line with smallest slope).

Presence of only honest players: In this scenario we look at an instance where the masters are

following an honest strategy. This could happen either because the mechanism is strategy proof,

which is the case of VCG and FEDoR or because they just choose to follow an honest strategy.

We consider the scenario of Internet-based task computing and we compute the utilities of the

masters and the computational platform in all three mechanisms. The utilities are computed in

two distinct scenarios: (a) the presence of 9 masters is assumed and the number of workers for

which they compete k varies from 1 to 8; the weight for each worker values in decreasing order

from k to 1. (b) the number of workers is fixed to k = 3 and the number of masters varies from

4 to 9. Additionally we assume that, for the purpose of experimentation, the GoF test used is

perfect. The results obtained are presented in Fig 6.1, where we plot the utility achieved by one

of the masters (all masters are honest and follow a uniform distribution) against the utility of the

computational platform. In the case of FEDoR, we plot the utility values assuming that the same

flat fee is paid by every master, so that the utility of the platform is simply this flat fee multiplied

by the number of masters. The utility of a masters, on the other hand, is the value she assigns to

the workers she gets (which is essentially the value given in Theorem 6.4) minus the flat fee.

In Fig 6.1(a) it can be observed that the utilities are the same for VCG (with externality) and

GSP in the case of auctioning one good. When the number of workers, for which the masters
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Figure 6.2: The percentage of positives with the KS test as a function of the history length
of the KS test. (a) The upper bound threshold of the p.value of the KS test is 0.05, (b) the upper
bound threshold of the p.value of the KS test is 0.1, (c) the upper bound threshold of the p.value
of the KS test is 0.2. From bottom to top the lines represent the behavior in a scenario with no
cheaters, cheaters bidding values with a beta distribution where β = 0.9, cheaters bidding values
with a beta distribution where β = 0.7, and cheaters bidding values with a normal distribution
(µ = 0.5, σ = 0.15).

are competing, increases, the utility of the platform is greater with GSP than with VCG, while on

the other hand the utility of the master is greater with VCG than with GSP. This behavior was

expected since GSP is a mechanism that favours the entity that applies the mechanism. Moreover,

it is not strategy proof, something that would not put the master in an advantageous position if

she is honest compared to VCG. The utilities with the FEDoR mechanism, on its hand, form a

line that is a function of the flat fee the masters pay. It is worth to observe that all the points

that correspond to GSP and VCG utilities are on the FEDoR line, which means that with the

appropriate value of the flat fee, FEDoR can achieve the same platform and worker utilities as

GSP and VCG. Moreover, the advantage of FEDoR, as it is shown in Fig 6.1(a), is that the flat

fee provides a tradeoff between platform and master utilities, and allows to chose any point in

the lines shown in the figure. Hence, FEDoR has an adjustable performance that can be changed

depending on the needs of the platform. In Fig 6.1(b) we make similar observations and derive

the same conclusions. Again the utilities of GSP and VCG lie on the FEDoR line, and the utilities

with FEDoR can be tuned with the flat fee. In addition, we notice that when the number of

masters increases, their utility decreases in all three mechanisms. On the contrary, the utility of

the platform increases in all three mechanisms when the number of masters increases.

Presence of dishonest players: In this section we assume that the masters are dishonest, we set

as our GoF test the Kolmogorov-Smirnov (KS) test and we evaluate its performance. Through

simulations we examine the conditions under which the KS test performs optimally and we eval-
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uate the impact of this optimality to our mechanism. Simulations show that FEDoR is a truthful

mechanism. We compare the utility of FEDoR with VCG and GSP in a number of scenarios

where the cheating behavior of the masters varies. Having as a base case the scenario where all

masters are honest, we compare the way in which the honest and dishonest masters’ utility is

affected. Finally, we show how the social utility is affected by the presence of dishonest masters

in all three mechanisms considered.

Unless otherwise stated, our results have been obtained by running 100 experiments of 10000

rounds (auctions) each. The number of participating masters is 9 and the number of workers for

which they compete is k = 3. The weights assigned to the workers are w1 = 3, w2 = 2, w3 = 1.

Recall that honest masters are considered the ones that reveal their true valuation for the set of

goods. Cheater masters are the ones declaring a different valuation from their actual valuation on

the set of workers. All masters’ private valuations follow independent uniform distributions in the

interval [0, 1].

To evaluate the impact of the presence of dishonest masters in their utility, the utility of the

honest masters, and also in the social utility, we have simulated 10 distinct scenarios. The scenar-

ios we consider are as follows. Scenario A: 9 honest masters following the uniform distribution,

B: 8 honest masters and one cheater with normal distribution (µ = 0.5, σ = 0.15), C: 8 honest

masters and one cheater with beta distribution with β = 0.9, D: 8 honest masters and one cheater

with beta distribution with β = 0.7, E: 8 honest masters and one cheater with a random uniform

distribution (different from its own distribution of values), F : 6 honest masters and 3 cheaters

with random uniform distributions, G: 6 honest masters and 3 cheaters with beta distributions

(β = 0.9), H: 6 honest masters and 3 cheaters with beta distributions (β = 0.7), I: 6 honest

masters and 3 cheaters with normal distributions (µ = 0.5, σ = 0.15), J : 5 honest masters, 1

cheater with random uniform distribution, 1 cheater with beta distribution (β = 0.9), 1 cheater

with beta distribution (β = 0.7), and 1 cheater with normal distribution (µ = 0.5, σ = 0.15).

First we examine the performance of the KS test when it is used as the GoF test in FEDoR.

Fig 6.2 evaluates the impact of the history length in the accuracy of the test. As it can be seen the

KS test is a good fit for our mechanism. The history length refers to the number of values the test

keeps as a reference to decide whether the new value reported by the master follows the uniform

distribution. Notice that, in all three graphs of Fig 6.2, in the case where the master has a uniform

distribution, as the history length gets smaller, the number of false positives increases. In addition

to that, we have checked what happens in the case when the master cheats with a distribution

that may resemble (or not) the uniform distribution. We have chosen the beta distributions with

different parameter and a normal distribution. As you can see from the plots in Figs 6.3 and 6.4,

with a beta distribution and a large β parameter, the master can approximate the uniform behavior,

and thus it is difficult for the KS test to identify a cheater. Notice that in all three graphs of

Fig 6.2, as the length of the history test decreases, the percentage of true positives decreases.

For different values on the upper bound threshold of the p.value (which decides the acceptance

of a value based on the history), we have noticed that using a p.value < 0.1 is a good balance
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Figure 6.3: Different strategies, modelled as a β = 0.7 probability distribution. (a) The
declared values are not correlated with the true values (following a uniform distribution). (b) The
declared values are correlated with the true values (following a uniform distribution). Note that
the marginal distribution represented in the x-axis corresponds to the declared values of the agent,
while the y-axis represents the true values of the agent.

between having large percentage of true positives and not having too many false positives. For

example, for a history length of 1000 rounds (which is a value that does not give a great overhead

to the mechanism), in Fig 6.2(a), where p.value < 0.05, the true positives are close to 75%; in

Fig 6.2(b), where p.value < 0.1, the true positives are close to 82%; while in Fig 6.2(c), where

the p.value < 0.2, the true positives are close to 95% while the false positive are much higher

than in the other scenarios (close to 20%). Hence, selecting 1000 rounds as the history of the

mechanism, provides a good performance and is large enough if we compare it with the 10000

rounds that our scenarios execute as part of the online auction process. In the rest of the section

we will run experiments with a history length of 1000 and KS test with p.value < 0.1. Before

actual auctions are run, the history buffer is filled with 1000 values, so the results are not affected

by history’s transient states.

We investigate now the utility of the honest masters and cheaters in a variety of different

scenarios, while having the KS test as our GoF test. In this study we assume that the masters pay

no flat fee. We have shown analytically (assuming a perfect GoF test) that the best strategy for

each masters is to be honest. Our experimental results come to assert this even in the case where

the GoF is not perfect. From Fig 6.5(a), the utility of the honest master is greater than the cheater

in all scenarios considered. Independently of the behavior of the rest of the masters, the mean

utility of the honest master is around the same value of 5400. There is no cheating strategy that
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Figure 6.4: Different strategies, modelled as a β = 0.9 probability distribution.(a) The de-
clared values are not correlated with the true values (following a uniform distribution). (b) The
declared values are correlated with the true values (following a uniform distribution). Note that
the marginal distribution represented in the x-axis corresponds to the declared values of the agent,
while the y-axis represents the true values of the agent.

will give a higher utility. Especially in scenarios C and G where the master cheats with a beta

(where parameter is β = 0.9) indeed the cheaters increase their mean utility by roughly around

500 units but still the mean utility of the honest master is around 1500 units higher. This also

proves the efficiency of the KS test for p.value < 0.1 and history length 1000. The horizontal

(blue) line in Fig 6.5(a) represents the value of utility as it is calculated from the analytical part.

Notice that the analytical value is quite close to the experimental with the single exception of the

master cheating with beta, where β = 0.9.

Going one step further now we compare the utility of masters when FEDoR is used with the

cases where VCG and GSP are used. As Fig 6.5 shows, the honest master has always a larger

utility compared with the utility of the cheating master in all scenarios considered, and in all

mechanisms. However, in some scenarios the distance between the utility of a cheater and an

honest master is very small (see, e.g., scenario H in Fig 6.5(b)). It is also interesting to notice

that in FEDoR in scenario A, where all masters are honest, the utility of the master is maximized

compared to the honest masters in the rest of the scenarios. This is not the case for the other two

mechanisms (see scenario I for both VCG and GSP).

The utility of an honest master with VCG and GSP can vary significantly depending on the

scenario. In any case, it is always around 1100 for VCG and 700 for GSP. Comparing with

FEDoR, the utility of an honest master with the latter is up to four times larger than those with
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Figure 6.5: The utility of an honest master compared to a cheating master in different sce-
narios. (a) Using the FEDoR mechanism, for p.value< 0.1 and history length 1000 (the blue
line represents the analytical utility values). (b) Using the VCG mechanism. (c) Using the GSP
mechanism. The left box for each mechanism (marked A) represents the distribution of the util-
ity of an honest master in a scenario where all 9 masters are honest following a uniform. Right
top box represents the utility of honest masters that follow a uniform distribution in scenarios
B − J . Left bottom box represents the utilities of cheating masters with the distributions defined
in scenarios B − J . Scenarios are as follows, B: 8 honest masters and one cheater with normal
distribution (µ = 0.5, σ = 0.15), C: 8 honest masters and one cheater with beta distribution with
β = 0.9, D: 8 honest masters and one cheater with beta distribution with β = 0.7, E: 8 honest
masters and one cheater with a random uniform distribution (different from its own distribution
of values), F : 6 honest masters and 3 cheaters with random uniform distributions, G: 6 honest
masters and 3 cheaters with beta distributions (β = 0.9), H: 6 honest masters and 3 cheaters
with beta distributions (β = 0.7), I: 6 honest masters and 3 cheaters with normal distributions
(µ = 0.5, σ = 0.15), J : 5 honest masters, 1 cheater with random uniform distribution, 1 cheater
with beta distribution (β = 0.9), 1 cheater with beta distribution (β = 0.7), and 1 cheater with
normal distribution (µ = 0.5, σ = 0.15), which is the one represented in the plot.

VCG and GSP. This is due to the fact that in our experiments we assumed that the flat fee of the

master is zero. As we showed though in Fig 6.1, the flat fee is something that can be adjusted to

match the desired utility of the master (or the platform).

Finally, from Fig 6.6 (a) we see that the social utility is maximized in FEDoR when all masters

are truthful (scenario A compared with the rest of scenarios). This does not hold for the other two

mechanisms. As you can see from Fig 6.6 (b) and (c) scenariosB and I (where dishonest masters

cheat with normal distribution µ = 0.5, σ = 0.15) have greater social utility than scenario A

where they are all honest. We can also notice that the social utility in FEDoR is up to four times

larger than those of GSP and VCG (but, of course, we are assuming no flat fee).

6.6 Discussion

Although powerful mechanisms (such as VCG) exist that, under monetary incentives, achieve

the designed goals, cashing out payments is not always feasible. Maybe the system is distributed
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Figure 6.6: The social utility in different scenarios. (a) Using the FEDoR mechanism, for
p.value<0.1 and history lenght 1000 (b) Using the VCG mechanism. (c) Using the GSP mecha-
nism. The scenarios A to J are the same as in Fig 6.5.

and no central authority exists that can guarantee the payments, or payments are too impracti-

cal. Another possibility is that the nature of the setting is such that payments are not allowed

(i.e., a public common good). According to [14, 119] mechanisms without monetary incentives

have limited capabilities. A case by case study is the only hope for finding mechanisms with

good properties and without payments, like in [88, 95]. FEDoR is a general mechanism that is

truthful, fair and socially efficient, and without using monetary incentives. The inherent repeated

nature of FEDoR , though, makes it applicable only to settings with infinite or unknown number

of repetitions. If the number of repetitions is known to the agents, then they can devise a strategy

that would maximize their utility and potentially lead to a non-truthful mechanism. Our intuition

is that, if the nature of the problem allows it, mechanisms like FEDoR can be devised for other

problems as well. Taking advantage of the repeated interaction between the agents, and applying

the concept of linking mechanisms, should allow to derive other mechanisms without payments

for multiple combinations of desirable properties (i.e., different fairness criteria, strategy proof-

ness, social efficiency, etc). An additional advantage, as we have seen experimentally, is that a

mechanism without payments like FEDoR was able, without incentivizing the workers through

payments, to provide a way for the mechanism designer to select its utility and the utility of the

participating players.

While FEDoR is a mechanism with several interesting features, there are some issues that are

worth discussing. FEDoR assumes that the valuations of the players follow a uniform distribution.

Although this might seem as a constraint, if the real bids do not follow such a distribution, they

can be transformed by using the PIT, as proposed by Santos et al. [117]. Moreover we make the

assumption that all players have i.i.d. valuations. As this is a first approach towards this line of

mechanisms without monetary incentives we wanted to keep our model simple. In an extension of

the mechanism, we plan to explore the correlated case where players distributions are correlated

with those of other players [116].
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An additional extension to the mechanism would be to allow players to provide their valuation

for a particular good of the set and not for the whole set, as it is implemented now. This is yet

another challenge, since players might have correlated preferences between certain goods in the

same or different round.

In Section 6.5 we considered the case of FEDoR in an Internet-based computing system where

the masters pay the same flat fee. There could be the case that masters with a higher budget would

like to claim a larger number of workers over the consecutive rounds, something that FEDoR does

not allow to happen due to the fairness property. An approach to solve this constrain of FEDoR

would be to allow a master with a higher budget to participate with more than one identity. As a

consequence, she will be increasing the amount of workers that she will receive, proportionally

to the number of identities. Again though, allowing masters to have multiple identities one must

assume that masters might have correlated preferences.

Non-Trivial Motivating Example In the field of computer science, FEDoR can be applied to

solve the problem of efficiently allocating CPU cycles between processes. Another application

could be the periodical allocation in a fair manner of bandwidth among nodes connected to the

same point of access. Imagine the scenario where many nodes are connected to the same point

of access. An application could be built to support the feature of nodes declaring how much they

value receiving bandwidth from the point of access at a specific time interval. Then, nodes would

be served from the point of access according to FEDoR . This would guarantee fairness and ef-

ficiency over time for all the nodes. More applications can be imagined, where FEDoR could

allocate resources over the cloud. In this case it depends on the policy and the specific implemen-

tation on how FEDoR could apply. For example, a number of users with only periodic demands

for large amount of resources could be sharing resources using FEDoR instead of resolving into

costly provisioning of resources.

Another possible application is hospitals sharing valuable equipment. No allocation based on

the money that each hospital is willing to give for renting the equipment can be made. Hence,

FEDoR is a perfect candidate, without monetary payments can guarantee that all the hospitals

sharing the valuable equipment will be allocated the same machine the same amount of time

in expectation and most importantly in an efficient manner (when they most need it). Similar

application could also be good candidates for FEDoR , as long of course no life threatening

decisions are left to be taken by the mechanism.

We have mentioned before a number of intuitive examples where FEDoR could apply. What

these examples have in common is the difficulty or inappropriateness of using payments to allo-

cate the resources. This fact, in combination with the repeated nature of the setting makes FEDoR

a perfect candidate in those scenarios. The good properties of the mechanism though (fairness,

social efficiency and truthfulness) can make it a suitable candidate also to scenarios in which

payments are essential for resource allocation, for example to sponsored search.

As the business model of search engines’ (i.e., Google, Yahoo!, Bing, etc) has evolved over
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time their main source of income are the ad links delivered to users each time they do a search. For

each keyword search, there exists a number of available slots for advertisement in each page of

results. Due to the fact that slots are limited while advertisers are numerous, and in combination

with the search engines’ goal for revenue maximization, auction mechanisms are used for slot

allocation.

The setting of sponsored search fits the setting for which FEDoR was designed. A number of

slots (goods in the general version) are allocated over r consecutive instances, having the same

advertisers (in a simplified version of the problem) competing for them. Each slot can be seen as

having a relative value. A simple analysis of the sponsored search auction [46] treats the click-

through rate (CTR) of an advertisement as correlated with the slot positioning and hence this is

where the relative value for each slot emerges.

Two famous auction mechanisms, as we mentioned before, are the VCG [16] and the GSP

auction [46]. VCG is a powerful mechanism that is strategy proof and efficient (in every instance).

In VCG the ith highest bidder gets the ith best good, but pays the externality that she imposes on

the other bidders by winning that slot. A mechanism like that is difficult to be understood by a

normal advertiser (it is also difficult to determine its valuation), making VCG not such a suitable

candidate for sponsored search. On the other hand there is GSP, were the ith highest bidder gets

the ith best good, but pays to the seller the bid of the (i+ 1)st highest bidder. This mechanism is

neither strategy proof neither efficient but is easily understandable by the advertiser. In fact this

mechanism was developed by Google and it is also used by Yahoo!. Adwords [1] of Google uses

this mechanism but also takes into account a “quality score” [2]. Part of that quality score is the

click through rate that a specific advertiser is estimated to obtain if she gets a specific slot. In this

case, the allocation mechanism is basing its result on the product of the estimated CTR multiplied

by the bid; and the payment of the bidder that wins a slot is obtained by multiplying her bid by

the CTR. As mentioned in the previous paragraph we have modeled the CTR as a weight of the

importance of each slot (like Edelman et al. [46]) and we assume that it is the same for all bidders.

The key business ingredient of the current sponsored search model is promoting high quality

advertisement (measured through CTR estimation) and in parallel increase of revenue for the

search engine. We argue that in addition to these features, fairness is a valid business model.

Fairness, in the sense that no qualified advertiser would suffer publicity starvation (obtaining an

ad slot few times or never). To this respect, FEDoR could be used to guarantee fairness. To deal

with the payments that the search engine would require, a flat fee for participating in r rounds

could be set.

The mechanism could run centrally on the search engine and advertisers would communicate

their desire to appear to a certain keyword search. For r instances of this communication with

the search engine the advertiser will pay a flat fee. FEDoR guarantees that in expectation the

advertiser will appear the same number of times in each slot. It also guarantees truthfulness and

social efficiency, meaning that if the advertisers provide their true valuations on the slots they will

be receiving a slot when they most value it.
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This business model could also apply to recommendation engines. Consider the example

of Amazon’s recommendation engine, that after a search for a good recommends to you several

alternative goods. The way in which a decision is taken on which similar good should be presented

to the customer can be based on the FEDoR mechanism, so that fairness among all similar goods

will be guaranteed. A similar example is the one of showing adds to a newspaper reader related

to the content of the news she read.

Comparing FEDoR to the celebrated VCG mechanism, it is clear that VCG has an advantage

since its properties hold deterministically. On the other hand, FEDoR ’s properties hold on ex-

pectation. This means that FEDoR can only be applied on a repeated setting where the agents

remain the same. Nevertheless, simulations have shown us that besides fairness, applying FEDoR

to a setting where the need of payments is inherent has another benefit. Due to the necessary

flat participation fee scheme, the search engine (i.e., the seller) can set this fee in such a way to

control her utility and the utility of the advertisers.
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Conclusions and Future Work

In this work, we proposed solutions for achieving reliability and fairness in online task com-

puting environments. We modelled these environments though what we call Internet-based task

computing system and through the master-worker paradigm we capture its two main compo-

nents. To address the problem of reliability in Internet-based task computing we characterized

the behavior of the workers by proposing two models: (1) the error probability model and (2) the

rationality model. We supported our models’ assumptions through the literature and through the

experimental data we collected from posting tasks on Amazon Mechanical Turk (AMT). Thus,

our modelling assumptions capture a realistic view of online task computing systems. This fact

does not only provide an added value to our designed solutions, but also paves the way for more

realistic assumptions in works exploring such online computing environments.

In Chapter 3, we present one of our two main modelling assumptions on the workers behavior.

We consider the presence of altruistic and troll workers subject to an error probability that can alter

their intended behavior. A generic model capturing the parameters of the master-worker paradigm

is introduced that deviates from the usual conventions made in the literature, in two directions:

the error probability that workers might have and the usual assumption that a task can only have

one correct and one incorrect result, thus making our model more realistic. In our model we do

not consider the possibility that workers might be unavailable at some stages in the execution, or

that they may exhibit dynamic behavior by experiencing different error probability over time. We

plan to address this issues in future work. We have assumed for simplicity of presentation that ε

is the same for all workers, an assumption that also helped us gain a better understanding of our

master-worker setting. In the future we plan to remove this assumption and consider that each

worker has its own error probability that can even change over time. Thus, we plan to adapt our

algorithm to deal with this dynamic setting by using an appropriate reputation technique to keep

track and update the workers error probability.

The mechanisms designed in Chapter 4 take a step forward towards being applied to volunteer

computing or crowdsourcing systems, since they do not make any assumption on the distribution

of worker types in the system. We take advantage of the repeated interaction of the workers with
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the master and we apply reinforcement learning techniques to capture the evolution of Internet-

based master-worker computations. Although the assumption that a task has a unique solution

might seem limiting, indeed many tasks in volunteer computing and crowdsourcing systems have

unique solutions. Moreover, in crowdsourcing systems the task can often be designed in such a

way that only one correct solution exist. We model the workers behavior assuming the presence

of malicious, atruistic and rational workers and we show that under necessary and sufficient con-

ditions, the master reaches a state after which the correct task result is obtained at each round,

with minimal cost, that is, a state of eventual correctness. In addition, we show analytically that

in the presence of only rational workers such state can be reached ‘‘quickly’’. Moreover, we

present a malicious-tolerant generic mechanism that uses reputation. We consider four reputation

types, and give provable guarantees that only reputation Exponential (introduced in this work)

provides eventual correctness. Finally, we design reputation mechanism dealing with workers

being unresponsive.

Our simulations considering the presence of only rational workers suggest that having a posi-

tive reinforcement learning (i.e., WPC = 0) the master can reach fast convergence, while applying

punishments (i.e., WPC ∈ {1, 2}) provides even faster convergence. In fact, we may conclude

that applying only punishment is enough to have fast convergence in the presence of rational

workers. Also, our simulations demonstrated that it is possible when the master begins with an

aggressive auditing strategy, to have a smaller cost and convergence time compared to the case

of using a less aggressive auditing policy. Simulating the system in the presence of malicious,

altruistic and rational workers showed that having all rational workers covered is enough to reach

eventual correctness in all four reputation types. In the case of covering only one altruistic or

rational worker, simulations showed that only reputation Exponential can achieve eventual cor-

rectness. We show that reputation Exponential has more potential in commercial platforms where

high reliability together with low auditing cost, rewarding few workers and fast convergence are

required. We believe this advances the development of reliable commercial Internet-based task

computing systems. In particular, our simulations reveal interesting tradeoffs between reputation

types and parameters and show that our mechanism is a generic one that can be adjusted to various

settings. Additionally, we have seen that when full availability is considered, reputation Boinc is

not a desirable reputation type if the pool of workers is large. This is an interesting result since

reputation Boinc is an adaptation of the reputation used in volunteer computing systems dealing

with large pools of workers. Finally, it is interesting to observe that, in the partial availability case

with only rational workers, our mechanism did not reach eventual correctness when the system

converged, but a few rounds later. This means that, although the rational workers are partially

available, the mechanism is able to reinforce them to behave honestly eventually.

The analysis of the system in Chapter 4 is done assuming that workers have an implicit form

of collusion, i.e., we assume that all misbehaving workers reply with the same answer and all

workers behaving correctly give the same answer. Following [53], we are now studying stronger

models, in which workers collude in deciding when to cheat and when to be honest. In a follow-
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up work we plan to investigate what happens if workers are connected to each other, forming

a network (i.e, a social network through which they can communicate) or if malicious workers

develop a more intelligent strategy against the system. Also the degree of trust among the players

has to be considered and modeled in this scenario.

In our experimental evaluation we were able to classify the workers behavior and draw con-

clussions on the correlation among time invested on the Human Intelligence Task (HIT) and

correctness of the answer to the HIT. We have also been able to identify several of the behaviors

we postulated in our models, thus showing that they are realistic enough to understand already

existing commercial crowdsourcing platforms such as AMT. We have looked at tasks that had a

unique correct solution. In the future, we would like to evaluate the workers behavior where a

task result is evaluated based on a quality measure rather than having a yes or no response. To this

respect, new mechanisms need to be designed incentivizing the workers to provide high quality

results. Moreover, we wish to perform an intensive series of experiments considering different

types of tasks [47] and try to systematically classify the participating workers into a number of

different classes based on their error rate. It has been shown [129] that when such information

is available it can be exploited during the task assignment process and significantly improve the

system performance.

Finally, we have designed Fair and Efficient Distribution of Resources (FEDoR), a mecha-

nism for achieving fair, socially efficient and truthful allocation of the workers among the masters

in expectation over multiple rounds, without the use of monetary incentives. The inherent re-

peated nature of FEDoR , makes it applicable to other settings with infinite or unknown number

of repetitions. If the number of repetitions is known to the strategic players, then they can devise

a strategy that would maximize their utility and potentially lead to a non-truthful mechanism. Our

intuition is that, if the nature of the problem allows it, mechanisms like FEDoR can be devised

for other problems as well. Taking advantage of the repeated interaction between the players, and

applying the concept of linking mechanisms, should allow to derive other mechanisms without

payments for multiple combinations of desirable properties (i.e., different fairness criteria, strat-

egy proofness, social efficiency, etc). An additional advantage, as we have seen experimentally,

is that a mechanism without payments like FEDoR was able, without incentivizing the workers

through payments, to provide a way for the mechanism designer to select its utility and the util-

ity of the participating masters. According to [14, 119] mechanisms without monetary incentives

have limited capabilities. A case by case study is the only hope for finding mechanisms with good

properties and without payments, like in [88, 95].

While FEDoR is a mechanism with several interesting features, there are some issues that are

worth discussing. FEDoR assumes that the valuations of the players follow a uniform distribution.

Although this might look like as a constraint, if the real bids do not follow such a distribution,

they can be transformed by using the Probability Integral Transformation (PIT) transformation,

as proposed by Santos et al. [117]. Moreover, we make the assumption that all players have i.i.d.

valuations. As this is a first approach towards this line of mechanisms without monetary incentives
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we wanted to keep our model simple. In an extension of the mechanism, we plan to explore the

correlated case where players distributions are correlated with those of other players [116].

In our particular master-worker scenario we have considered that all players (a.k.a. masters)

pay the same flat fee. There could be the case that masters with a higher budget would like to

claim a larger number of workers over the consecutive rounds, something that FEDoR does not

allow to happen due to the fairness property. An approach to solve this constraint of FEDoR

would be to allow a master with a higher budget to participate with more than one identity. As

a consequence, she will be increasing the amount of task allocations to workers that she will

receive, proportionally to the number of identities. However, allowing masters to have multiple

identities one must assume that that masters might have correlated preferences.
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and Ángel Sánchez. Reputation-based mechanisms for evolutionary master-worker com-

puting. In Principles of Distributed Systems - 17th International Conference, OPODIS

2013, Nice, France, December 16-18, 2013. Proceedings, pages 98–113, 2013.

[38] Evgenia Christoforou, Antonio Fernández Anta, Kishori M. Konwar, and Nicolas C. Nico-

laou. Evaluating reliability techniques in the master-worker paradigm. In 15th IEEE In-

ternational Symposium on Network Computing and Applications, NCA 2016, Cambridge,

Boston, MA, USA, October 31 - November 2, 2016, pages 183–190, 2016.

[39] Evgenia Christoforou, Antonio Fernández Anta, and Agustı́n Santos. A mechanism for

fair distribution of resources with application to sponsored search. CoRR, abs/1502.03337,

2015.

[40] Evgenia Christoforou, Antonio Fernández Anta, and Agustı́n Santos. A mechanism for fair

distribution of resources without payments. PLOS ONE, 11(5):1–20, 05 2016.

[41] Daniel Clery. Galaxy zoo volunteers share pain and glory of research. Science,

333(6039):173–175, 2011.

[42] Vincent Conitzer and Tuomas Sandholm. Incremental mechanism design. In IJCAI, pages

1251–1256, 2007.

[43] P. Dagum, R.M. Karp, M. Luby, and S. Ross. An optimal algorithm for monte carlo

estimation. In Proceedings of the Foundations of Computer Science, pages 142–149, 1995.

[44] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux. Mechanical
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Appendix

Publications

The work presented in this doctoral thesis has appeared in three journal articles [35, 36, 40],

four conference papers [32, 33, 37, 38], one poster [39], one brief announcement [34] and one

workshop paper [39]. Additionally, one more journal article is under review. In this section we

briefly elaborate on these publications and how they form part of the doctoral thesis.

We have published our work related to reinforcing the behavior of the rational workers and

achieving a reliable computational platform in three conferences. Each of the three conference

publications (presented below) was extending on the original ideal of taking advantage of the

repeated interaction among the master and the workers to achieve a reliable computational plat-

form. In the first conference work we presented the case where only rational workers where

present, while in the two subsequent conference papers we considered the presence of malicious

and rational workers, as well as the case of unresponsive workers.

E. Christoforou, A. Fernández Anta, Ch. Georgiou, M. A. Mosteiro and Angel

Sánchez, Achieving Reliability in Master-Worker Computing via Evolutionary Dynamics,

in the Proceedings of the International European Conference on Parallel and Distributed

Computing (EURO-PAR), Rhodes Island, Greece, 2012.

E. Christoforou, A. Fernández Anta, Ch. Georgiou, M. A. Mosteiro and Angel

Sánchez, Reputation-based Mechanisms for Evolutionary Master-Worker Computing, in

the Proceedings of the 17th International Conference On Principles Of Distributed Systems

(OPODIS), Nice, France, 2013.

E. Christoforou, A. Fernández Anta, Ch. Georgiou and M. A. Mosteiro, Internet

Computing: Using Reputation to Select Workers from a Pool, in the Proceedings of the 4th

International Conference on Networked Systems (Netys), Marrakech, Morocco, 2016.

The work presented on the first conference paper was extended and appeared in two journal

articles, presented below. The journal version of the second conference paper considering the

presence of malicious, rational and altruistic workers is currently under review on ACM Transac-

tions on Modeling and Performance Evaluation of Computing Systems (TOMPECS).
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E. Christoforou, A. Fernández Anta, Ch. Georgiou, M. A. Mosteiro and Angel

Sánchez, Applying the dynamics of evolution to achieve reliability in master-worker com-

puting, Journal of Concurrency and Computation: Practice and Experience, 2013 (invited

extended version of the EURO-PAR 2012 article).

E. Christoforou, A. Fernández Anta, Ch. Georgiou, M. A. Mosteiro and Angel

Sánchez, Crowd Computing as a Cooperation Problem: An Evolutionary Approach, Jour-

nal of Statistical Physics, 2013.

Additionally, the preliminary results of the original work achieving a reliable computational

platform in the presence of rational workers were presented in a brief announcement.

E. Christoforou, A. Fernández Anta, Ch. Georgiou, M. A. Mosteiro and Angel

Sánchez, Brief Announcement: Achieving Reliability in Master-Worker Computing via

Evolutionary Dynamics, in the Proceedings of the 31st Annual ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing (PODC), Madeira, Portugal, 2012.

Moreover, we have published our fundamental results evaluating the reliability techniques

in online task computing environments in the presence of unreliability and tasks with multiple

correct and multiple incorrect solutions.

E. Christoforou, A. Fernández Anta, K. M. Konwar and N. Nicolaou, Evaluating

reliability techniques in the master-worker paradigm, in the Proceedings of the IEEE 15th

International Symposium on Network Computing and Applications (IEEE NCA16), Cam-

bridge, MA, 2016.

The second part of this work related to fair and efficient allocation of workers to master entities

under the master-worker paradigm appeared in a journal version where our designed mechanism

was presented under a general framework. In this journal version, we presented the applicability

of our designed mechanism in a vast number of resource allocation problems in the presence of

strategic agents and without the use of monetary incentives.

E. Christoforou, A. Fernández Anta and A. Santos, A Mechanism for Fair Distribu-

tion of Resources without Payments, PLOS ONE, 2016.

Finally, preliminary results of the above mentioned work where disseminated as a poster and

a workshop paper.

E. Christoforou, A. Fernández Anta, A. Santos, A Mechanism for Fair Distribution

of Resources with Application to Sponsored Search, Poster presented in the 10th Confer-

ence on Web and Internet Economics (WINE 2014), Beijing, China, 2014.

E. Christoforou, A. Fernández Anta and A. Santos. A Mechanism for Fair Distribu-

tion of Resources with Application to Sponsored Search, in the Proceedings of the XXIII

Jornadas de Concurrencia y Sistemas Distribuidos, Malaga, Spain, 2015.
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