
ar
X

iv
:c

on
d-

m
at

/0
60

66
89

v1
  [

co
nd

-m
at

.s
of

t]
  2

7 
Ju

n 
20

06
First-principles derivation of density functional formalism for

quenched-annealed systems

Luis Lafuente∗ and José A. Cuesta†
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Abstract

We derive from first principles (without resorting to the replica trick) a density functional

theory for fluids in quenched disordered matrices (QA-DFT). We show that the disorder-averaged

free energy of the fluid is a functional of the average density profile of the fluid as well as the pair

correlation of the fluid and matrix particles. For practical reasons it is preferable to use another

functional: the disorder-averaged free energy plus the fluid-matrix interaction energy, which, for

fixed fluid-matrix interaction potential, is a functional only of the average density profile of the

fluid. When the matrix is created as a quenched configuration of another fluid, the functional can

be regarded as depending on the density profile of the matrix fluid as well. In this situation, the

replica-Ornstein-Zernike equations which do not contain the blocking parts of the correlations

can be obtained as functional identities in this formalism, provided the second derivative of this

functional is interpreted as the connected part of the direct correlation function. The blocking

correlations are totally absent from QA-DFT, but nevertheless the thermodynamics can be

entirely obtained from the functional. We apply the formalism to obtain the exact functional

for an ideal fluid in an arbitrary matrix, and discuss possible approximations for non-ideal fluids.
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I. INTRODUCTION

The phase behaviour of fluids in quenched disordered matrices has been of prior interest

in the last decade. The classical theoretical approach to these systems amounts to con-

sider two different sets of state variables: the annealed variables (usually the position of

the fluid particles), which are allowed to equilibrate, and the quenched variables (usually

the position of the matrix particles), which have their values fixed. The reason for this

distinction is that our system is not in thermal equilibrium with respect to the quenched

variables, but it is in equilibrium with respect to the annealed variables for each fixed

configuration of the quenched ones. Accordingly, two different statistical averages must

be considered: the annealed average, which is the typical ensemble average of equilibrium

systems, and the quenched average or average over disorder, which is performed over the

quenched variables. For each configuration of the disorder, we can compute the equilib-

rium thermodynamic magnitudes of the system by means of the corresponding annealed

averages. These averages will, of course, depend on the configuration of the quenched

variables. However, if the matrix is statistically homogeneous (its statistical features are

similar everywhere) and the system is large, we expect little variation between annealed

averages corresponding to different matrix configurations. Thus, quenched averages of

the annealed averages are meaningful to characterize thermodynamic magnitudes of these

systems. Because of this double average, the problem becomes intractable within the

classical equilibrium statistical-mechanics tools and new theoretical methods are called

for.

Madden and Glandt [1] made an extension of the conventional diagrammatic treatment

of liquid-state theory to obtain cluster expansions for the thermodynamics and structure

of a fluid in a quenched matrix. They also derived a set of Ornstein-Zernike (OZ) equations

relating the total and direct interparticle correlation functions, which can be solved with

the appropriate closure relations [2]. Alternatively, Given and Stell [3] used the continuum

version of the replica trick [4] to rederive this set of OZ equations and they noted that,

although Madden and Glandt’s cluster expansions were correct, there were some missing

terms in the OZ equations. The corrected set of OZ equations was called the replica

Ornstein-Zernike (ROZ) equations and, for fluids with quenched-averaged density profile
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ρ1(x) and matrices with one-particle distribution ρ0(x), is given by

h00(x1, x2) = c00(x1, x2) + (c00ρ0 ⊗ h00)(x1, x2), (1)

h10(x1, x2) = c10(x1, x2) + (c10ρ0 ⊗ h00)(x1, x2) + (ccρ1 ⊗ h10)(x1, x2), (2)

h01(x1, x2) = c01(x1, x2) + (c00ρ0 ⊗ h01)(x1, x2) + (c01ρ1 ⊗ hc)(x1, x2), (3)

h11(x1, x2) = c11(x1, x2) + (c10ρ0 ⊗ h01)(x1, x2) + (ccρ1 ⊗ h11)(x1, x2)

+ (cbρ1 ⊗ hc)(x1, x2), (4)

hc(x1, x2) = cc(x1, x2) + (ccρ1 ⊗ hc)(x1, x2), (5)

where (cρ ⊗ h)(x1, x2) ≡
∫

dx3 c(x1, x3)ρ(x3)h(x3, x2), the subscripts 0 and 1 refer to

the matrix and fluid, respectively, and

h11(x1, x2) = hc(x1, x2) + hb(x1, x2), (6)

c11(x1, x2) = cc(x1, x2) + cb(x1, x2), (7)

where the subscripts c and b denote the connected and blocking parts, respectively, of the

correlation functions. In terms of the replicated system, the blocking parts, hb and cb,

are the zero-replica limit of the corresponding correlation functions between two different

replicas of the fluid [3]. Clearly h10(x1, x2) = h01(x2, x1) and c10(x1, x2) = c01(x2, x1)

and then it can be shown that Eqs. (2) and (3) are equivalent, so that Eqs. (1), (2), (4)

and (5) form an independent set.

Rosinberg et al. [5] used the same replica trick to derive the thermodynamics of these

quenched-annealed (QA) systems. There are two important results drawn from this work

that concern the present paper: (i) the thermodynamics is completely determined by the

connected parts of the correlation functions, and (ii) the connected and blocking parts of

h11 can be written without any reference to replicas as

ρ1(x1)ρ1(x2)hc(x1, x2) = ρ11(x1, x2) − ρ(x1|{qi})ρ(x2|{qi}), (8)

ρ1(x1)ρ1(x2)hb(x1, x2) = ρ(x1|{qi})ρ(x2|{qi}) − ρ1(x1)ρ1(x2), (9)

where · · · denotes the quenched average, ρ(x|{qi}) is the equilibrium density profile of the

fluid for a particular configuration {qi} of the disorder, ρ1(x) = ρ(x|{qi}), and ρ11(x1, x2)

is the disorder-averaged pair correlation function of the fluid.

The works of Madden and Glandt [1], Given and Stell [3] and Rosinberg et al. [5]

established the extension of the classical integral equation theory to fluids in quenched
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disordered matrices. Since then, this has been the main method to study QA systems

and with its help much insight on the phase behaviour of these systems have been gained.

But the replica trick is closely linked to the ROZ equations and so it has the typical

limitations of any integral equation theory: it is virtually impossible to apply the theory

to non-uniform phases. In the case of fluids without disorder this problem was solved by

density functional theories (DFTs), so it seems natural to ask for an extension of DFT to

QA systems.

There have been attempts to apply DFT to fluids in random media. For instance,

Menon and Dasgupta [6] have constructed a Ramakrishnan-Yussouff density functional,

using the same replica trick employed in the derivation of the ROZ equations, to study the

effect of pinning in the freezing of superconductor vortex lines. The same approach has

been applied to study hard spheres in a quenched random gaussian potential [7]. More

recently, Schmidt [8] has proposed a DFT for QA mixtures also based on the replica trick.

In Schmidt’s formalism, which we will refer to as replica-DFT (or simply rDFT), the

matrix is described by the equilibrium free-energy density functional corresponding to the

hamiltonian modelling the matrix particles, while the behaviour of the fluid is ruled by

the quenched-averaged grand potential of the QA system ΩrDFT[ρ1; ρ0], which is written

as a functional of the disorder-average density profile of the fluid, ρ1(x), and of the density

profile of the matrix, ρ0(q) (which enters as a parameter). The QA character becomes

explicit in the minimization principle imposed over the quenched-average grand potential,

which reads as
δΩrDFT[ρ1; ρ0]

δρ1(x)
= 0, (10)

where ρ0(q) is determined by the equation

δF0[ρ0]

δρ0(q)
= u0(q), (11)

F0[ρ0] being the equilibrium free-energy functional of the pure matrix and u0(q) ≡ µ0 −

ϕ0(q), with µ0 the chemical potential of the matrix and ϕ0(q) the external potential acting

over the matrix particles.

From ΩrDFT[ρ1; ρ0], the free-energy functional can be defined as usual as

ΩrDFT[ρ1; ρ0] = F id[ρ1] + F ex
rDFT[ρ1; ρ0] −

∫
dxu1(x)ρ1(x), (12)

where F id[ρ1] = kT
∫

dxρ1(x)[lnV1ρ1(x) − 1] is the ideal contribution (V1 being the

thermal volume of the fluid particles) and u1(x) ≡ µ1 − ϕ1(x), µ1 being the chemical
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potential of the fluid and ϕ1(x) the external potential on the fluid particles. The excess

contribution F ex
rDFT[ρ1; ρ0] describes the interparticle interactions between fluid particles,

and that between fluid and matrix particles.

From a practical point of view, the functional F ex
rDFT[ρ1, ρ0] should be approximated.

Schmidt’s proposal for F ex
rDFT is based on fundamental measure theory [9, 10, 11]. This

approximation has been applied to study the phase behaviour of colloid-polymer mixtures

in bulk random matrices, of rods in quenched sphere matrices, of spheres in random fibre

networks, and of soft-core fluids in soft-core matrices [12]. Also, with the lattice version

of fundamental measure theory [13], it has been applied to study the freezing transition

in a hard-core discrete fluid with different kinds of matrices [14]. Thus, as shown by its

applications, rDFT is an important step forward in the study of QA systems.

This notwithstanding, the theory has a number of weak points which should be pointed

out. Although the replica trick is a widely-applied method of statistical physics, it makes

a few assumptions which are difficult to justify concerning the analytic continuation of

the grand potential as a function of the number of replicas, and the replica symmetry or

its breaking. Hence an alternative derivation of DFT for QA systems would be desirable.

Moreover, contrary to what happens in classical DFT, the formulation of rDFT makes it

difficult to derive the set of OZ equations for QA systems from functional relations. As a

matter of fact, at present it is not at all clear what the meaning of the second derivatives

of F ex
rDFT[ρ1; ρ0] is. These problems are the two main motivations of this paper.

The remaining of the paper is organized as follows. In section 2, we propose a DFT

for QA systems based on the convexity properties of the quenched-averaged grand po-

tential. The derivation of the formalism resembles that of classical DFT and makes no

use of the replica trick. We will Legendre-transform the grand potential to obtain the

quenched-average “intrinsic” free-energy functional, F [ρ1, ρ10;Q], which depends on the

quenched-averaged density profile of the fluid, ρ1(x), on the pair distribution function of

the fluid and matrix particles, ρ10(x, q), and on the probability distribution of disorder

Q. The dependence on ρ10(x, q) can be eliminated to obtain a functional only of ρ1(x)

(for fixed fluid-matrix interaction), which will play the same role as the standard free-

energy functional in classical DFT, and coincides with Schmidt’s FrDFT[ρ1; ρ0]. We will

then proceed with one of the most important contributions of this work: the derivation of

a set of OZ equations where the direct correlation functionals are identified with second

derivatives of this functional. Only equations (1–3) and (5) can be derived within this
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DFT approach, but as we will discuss, these form a closed set of equations which involve

all the structure information that is relevant to the thermodynamics of the system. Sec-

tion 2 concludes showing how to derive the thermodynamics within this DFT approach.

In section 3, we will make this formalism explicit in the case of an ideal fluid adsorbed in

an arbitrary matrix. Conclusions and further discussions are gathered in section 4.

II. QUENCHED-ANNEALED DENSITY FUNCTIONAL THEORY

The system that we aim to describe consists of a fluid inside a porous matrix with which

it interacts. The matrix is formed by a distribution of particles quenched at positions qi,

i = 1, . . . , M . The fluid consists of particles, whose positions are denoted xi, i = 1, . . . , N ,

and whose interactions are described by the hamiltonian (divided by kT ) HN(x1, . . . , xN).

These particles are in equilibrium with a thermal bath at chemical potential µ1 and each

of them undergoes the action of an external potential ϕ1(x). Besides, a fluid particle at

position x interacts with a matrix particle at position q through the interaction potential

ϕ10(x, q). To all purposes, the total external potential acting on a fluid particle at position

x is

Vext(x) = ϕ1(x) +

M∑

i=1

ϕ10(x, qi).

The grand partition function for this system will be (β = 1/kT )

Ξ
[
u1, u10|{qi}

]
= 1 +

∞∑

N=1

1

VN
1 N !

∫
dx1 · · ·dxN exp

{
−HN(x1, . . . , xN)

+ β

N∑

i=1

[
u1(xi) +

M∑

j=1

u10(xi, qj)

]}
,

(13)

which is a functional of u1(x) ≡ µ1−ϕ1(x) and u10(x, q) ≡ −ϕ10(x,q), and also depends

on the set {qi}. Accordingly, the grand potential will be

Ω
[
u1, u10|{qi}

]
= −kT ln Ξ

[
u1, u10|{qi}

]
. (14)

Now we need a model for the porous matrix. The simplest model is to assume that

matrix particles are placed at random positions, according to a probability density [1].

Thus the grand potential is a random variable. The hypothesis we make now is that

the grand potential per unit volume, in the thermodynamic limit, is a self-averaging

random variable; therefore we can obtain its value in this limit by simply averaging over
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disorder (matrix particle positions). Hence the grand potential for the system in the

thermodynamic limit is obtained as

Ω[u1, u10;Q] ≡ Ω
[
u1, u10|{qi}

]
, (15)

where Q({qi}) is the probability density of the matrix positions, and · · · denotes a Q-

average. This puts the quenched average into play.

A. Concavity of the grand potential

It is convenient to introduce the state functions

ρ̂N(x) ≡
N∑

i=1

δ(x − xi), ρ̂0
M (q) ≡

M∑

i=1

δ(q − qi). (16)

In terms of them

Ξ
[
u1, u10|{qi}

]
= 1 +

∞∑

N=1

1

VN
1 N !

∫
dx1 · · ·dxN exp

{
−HN (x1, . . . , xN)

+β 〈u1, ρ̂N〉 + β
〈
u10, ρ̂N ρ̂0

M

〉 }
, (17)

where

〈u1, ρ̂N〉 ≡

∫
dx u1(x)ρ̂N (x),

〈
u10, ρ̂N ρ̂0

M

〉
≡

∫
dxdq u10(x, q)ρ̂N(x)ρ̂0

M(q). (18)

With these definitions it is straightforward that

−
δΩ[u1, u10;Q]

δu1(x)
= ρ

(
x|{qi}

)
= ρ1(x),

−
δΩ[u1, u10;Q]

δu10(x, q)
= ρ

(
x|{qi}

)
ρ̂0

M(q) = ρ10(x, q),

(19)

where ρ
(
x|{qi}

)
denotes the equilibrium density of the fluid for fixed positions of the

matrix particles, and ρ1(x) is the quenched-averaged density profile of the fluid. Likewise,

ρ10(x, q) is the pair correlation function of the fluid and matrix particles.

On the other hand, Ω[u1, u10;Q] is a concave functional of both, u1 and u10. This

is easily proven by evaluating Ξ
[
u1, u10|{qi}

]
on u

(λ)
1 (x) = λu

(1)
1 (x) + (1 − λ)u

(0)
1 (x)

(0 < λ < 1). Since

exp{〈u
(λ)
1 , ρ̂N〉} =

(
exp{〈u

(1)
1 , ρ̂N〉}

)λ (
exp{〈u

(0)
1 , ρ̂N〉}

)1−λ

,
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by Hölder’s inequality [15] we get

Ξ
[
u

(λ)
1 , u10

∣∣∣{qi}
]

< Ξ
[
u

(1)
1 , u10

∣∣∣{qi}
]λ

Ξ
[
u

(0)
1 , u10

∣∣∣{qi}
]1−λ

,

from which

Ω
[
u

(λ)
1 , u10

∣∣∣{qi}
]

> λΩ
[
u

(1)
1 , u10

∣∣∣{qi}
]

+ (1 − λ)Ω
[
u

(0)
1 , u10

∣∣∣{qi}
]
,

and averaging over disorder,

Ω
[
u

(λ)
1 , u10;Q

]
> λΩ

[
u

(1)
1 , u10;Q

]
+ (1 − λ)Ω

[
u

(0)
1 , u10;Q

]
.

Clearly the same holds for u10. Because of this, equations (19) define a one-to-one cor-

respondence between the pair {ρ1, ρ10} and the pair {u1, u10} (i.e. the equations can be

inverted) [15].

B. Free-energy functional and minimum principle

Let us now introduce the Legendre transform of Ω[u1, u10;Q] with respect to its two

arguments

F [ρ1, ρ10;Q] ≡ Ω[u1, u10;Q] + 〈u1, ρ1〉 + 〈u10, ρ10〉 , (20)

where u1(x) and u10(x, q) are the solution of Eqs. (19) for fixed ρ1(x) and ρ10(x, q).

Because of the properties of the Legendre transform [15]

(a) F [ρ1, ρ10;Q] is a convex functional of both ρ1(x) and ρ10(x, q);

(b) the equilibrium ρ1(x) and ρ10(x, q) are the absolute minimum of the functional

Ω̃ [ρ1, ρ10;Q] ≡ F [ρ1, ρ10;Q] − 〈u1, ρ1〉 − 〈u10, ρ10〉 , (21)

for fixed u1(x) and u10(x, q), and therefore

(c) they can be obtained by solving the equations

δF [ρ1, ρ10;Q]

δρ1(x)
= u1(x),

δF [ρ1, ρ10;Q]

δρ10(x, q)
= u10(x, q). (22)

As for the meaning of the functional F , let us adopt a different point of view on the

system: let us think of the porous matrix as an external potential acting on the fluid
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particles. Then the “intrinsic” free-energy functional is obtained as

F [ρ] = Ω
[
u1, u10|{qi}

]
+

∫
dx ρ

(
x|{qi}

)
{

u1(x) +
m∑

i=1

u10(x, qi)

}

= Ω
[
u1, u10|{qi}

]
+

∫
dx ρ

(
x|{qi}

)
u1(x) +

∫
dxdq ρ

(
x|{qi}

)
ρ̂0

M (q)u10(x, q),

and is, of course, a functional of ρ
(
x|{qi}

)
. If we now average this functional over disorder

we obtain, making use of Eqs. (15), (19) and (20),

F [ρ] = F [ρ1, ρ10;Q]. (23)

This equation reveals the physical meaning of functional F [ρ1, ρ10;Q] as the intrinsic free

energy of the fluid undergoing the presence of a porous matrix, averaged over disorder.

But the fact that this functional depends on both ρ1(x) and ρ10(x, q) makes it rather

inconvenient to use it as the basis for a QA-DFT (notice that this functional is the same

for any fluid-matrix interaction, so it is far too general).

Of course, one can assume u10(x, q) fixed and Legendre-transform only with respect

to u1(x) to obtain the alternative functional

F [ρ1;Q] = Ω[u1, u10;Q] + 〈u1, ρ1〉. (24)

This is [for fixed u10(x, q) and Q] a functional of ρ1(x) alone, and fulfils the Euler-Lagrange

equation
δF [ρ1;Q]

δρ1(x)
= u1(x). (25)

Comparing with (20) and recalling that u10(x, q) = −ϕ10(x, q),

F [ρ1;Q] = F [ρ1, ρ10;Q] + 〈ϕ10, ρ10〉, (26)

the intrinsic free energy of the fluid plus the interaction energy with the porous matrix.

As we will show in Sec. IIC, this one and not F [ρ1, ρ10;Q] is the functional that plays a

similar role in QA-DFT as the standard free-energy functional does in classical DFT, and

in fact coincides with the functional FrDFT[ρ1] derived from the replica formalism.

C. Replica Ornstein-Zernike equations

Let us work out the identity

δ(x−x
′) =

δρ1(x)

δρ1(x′)
=

∫
dy

δρ1(x)

δu1(y)

δu1(y)

δρ1(x′)
= −

∫
dy

δ2Ω[u1, u10;Q]

δu1(x)δu1(y)

δ2F [ρ1;Q]

δρ1(y)ρ1(x′)
. (27)
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This is one of the replica Ornstein-Zernike (ROZ) equations, namely Eq. (5). To see it

let us compute

− kT
δ2Ω[u1, u10;Q]

δu1(x)δu1(y)
= ρ11(x, y|{qi}) − ρ1(x|{qi})ρ1(y|{qi}) − δ(x − y)ρ1(x|{qi})

= ρ1(x)ρ1(y)hc(x, y) − δ(x, y)ρ1(x), (28)

where we have made use of Eq. (8). Introducing this expression into Eq. (27) we are

immediately led to the identification

−β
δ2F ex[ρ1;Q]

δρ1(x)ρ1(x′)
= cc(x, x′; [ρ1;Q]), (29)

where F ex[ρ1;Q] is the excess (over the ideal) part of the functional F [ρ1;Q].

In order to obtain Eqs. (1–3) we must set Q as the probability distribution of a grand-

canonical ensemble at temperature T0, chemical potential µ0 and external potential ϕ0(q).

Thus, if we define as usual u0(q) ≡ µ0 − ϕ0(q), the probability of finding the matrix

configuration {M ; q1, . . . , qM} is given by Q = {PM(q1, . . . , qM)}M≥0, where

PM(q1, . . . , qM) =
1

Ξ0[u0]

1

VM
0 M !

exp
{
−H0

M (q1, . . . , qM) + 〈u0, ρ̂
0
M〉

}
, (30)

H0
M(q1, . . . , qM) being the hamiltonian which models the interaction between matrix par-

ticles (divided by kT0) and Ξ0[u0] the grand partition function

Ξ0[u0] = 1 +
∞∑

M=1

1

VM
0 M !

∫
dq1 · · ·dqM exp

{
−H0

M (q1, . . . , qM) + 〈u0, ρ̂
0
M〉

}
(31)

(V0 is the thermal volume of the matrix fluid). From classical DFT we know that for

each external potential u0(q) there exists a unique equilibrium density profile ρ0(q) and

the system can be described alternatively in terms of any of them. Therefore, if the

hamiltonian H0
M(q1, . . . , qM) and temperature T0 remain fixed, the dependence of the

functionals Ω[u1;Q] and F [ρ1;Q] on the disorder is actually a dependence on either u0(q)

or ρ0(q). Hereafter, we will make explicit this dependence by writing this functional as

F [ρ1; ρ0] and the grand potential as Ω[u1; u0].

Now, Eq. (1) is just the identity

δ(q − q
′) =

δρ0(q)

δρ0(q′)
=

∫
ds

δρ0(q)

δu0(s)

δu0(s)

δρ0(q′)
= −

∫
ds

δ2Ω0[u0]

δu0(q)δu0(s)

δ2F0[ρ0]

δρ0(s)ρ0(q′)
, (32)

where Ω0[u0] = −kT0 ln Ξ0[ρ0] is the grand potential of the matrix and F0[ρ0] the corre-

sponding free-energy functional. Finally, to obtain Eqs. (2) and (3), we will notice that
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the QA system can be described in terms of any of the following pairs of independent

functions {u1(x), u0(q)} or {ρ1(x), ρ0(q)}. Then, both ROZ equations can be identified,

respectively, with the identities

0 =
δu1(x)

δu0(q)
=

∫
dy

δu1(x)

δρ1(y)

δρ1(y)

δu0(q)
+

∫
ds

δu1(x)

δρ0(s)

δρ0(s)

δu0(q)

= −

∫
dy

δ2F [ρ1; ρ0]

δρ1(x)δρ1(y)

δ2Ω[u1; u0]

δu1(y)δu0(q)
−

∫
ds

δ2F [ρ1; ρ0]

δρ1(x)δρ0(s)

δ2Ω0[u0]

δu0(s)δu0(q)
,

(33)

0 =
δρ1(x)

δρ0(q)
= −

∫
dy

δρ1(x)

δu1(y)

δu1(y)

δρ0(q)
−

∫
ds

δρ1(x)

δu0(s)

δu0(s)

δρ0(q)

= −

∫
dy

δ2Ω[u1; u0]

δu1(x)δu1(y)

δ2F [ρ1; ρ0]

δρ1(y)δρ0(q)
−

∫
ds

δ2Ω[u1; u0]

δu1(x)δu0(s)

δ2F0[u0]

δρ0(s)δρ0(q)
,

(34)

where we have used Eqs. (19) and (25) for the QA system, and their counterparts for

the matrix. To complete the identification of these identities with the corresponding OZ

equations, we have to take into account the expression (28) as well as

−kT
δ2Ω[u1; u0]

δu1(x)δu0(q)
= ρ1(x)ρ0(q)h10(x, q), (35)

and to make the identification

−β
δ2F [ρ1; ρ0]

δρ1(x)δρ0(q)
= c10(x, q; [ρ1; ρ0]). (36)

At this point, it is important to notice that the set of OZ equations that we have

obtained within the DFT approach is self-contained. This means that if we have the

functionals F0[ρ0] and F [ρ1; ρ0], we can derive from them the direct correlation functionals

c00, cc and c10, and using them as inputs in the OZ Eqs. (1), (2) and (5) to obtain h00, h10

and hc. Moreover, both Eqs. (1) and (5) can be solved independently and their solutions

can be used to solve Eq. (2). This situation is remarkably different from the one we

find in the integral equation framework. In that case, although the OZ equation for the

matrix [Eq. (1)] is independent of all the others, the remaining ones [Eqs. (2), (4) and

(5)] form a coupled system. The reason for this difference is that in the case of integral

equation theory, the direct correlation functions are also unknown and the ROZ equations

must be complemented with closure relations. This additional equations are derived from

exact relations between the interaction potentials between particles and the correlation

functions, with one equation for each potential. Thus, in our case, we would have two

11



new equations which would involve {h10, c10} and {h11, c11}, respectively. The absence of

a closure relation for {hc, cc} is what keeps the set of Eqs. (2), (4) and (5), the two closure

relations, and one of Eqs. (6) or (7), coupled.

We should remark that in the QA-DFT the blocking parts are absent. Nevertheless,

contrary to what happens with integral equation theory, we are able to compute all

the structure functions that are relevant to the thermodynamics without the blocking

correlations.

D. Thermodynamics

We will finish this section showing how all the thermodynamics can be derived from

the functional F [ρ1; ρ0]. The starting point will be the relation proved by Rosinberg et

al. [5]

Ω[u1|{qi}] = Ω[u1; u0] = −pV, (37)

where p is the thermodynamic pressure and V the volume of the system (see Refs. [16] and

[17] for a discussion about the definition of the thermodynamic pressure and the difference

between this one and the mechanical pressure). Now, as the functional F [ρ1; ρ0] is related

to the quenched-averaged grand potential Ω[u1; u0] [Eq. (24)] in the same way as the

standard free-energy functional with the grand potential in classical DFT, and as this

formal equivalence is also found in the relation (25) between F [ρ1; ρ0] and the chemical

potential, we can conclude that all the thermodynamic relations we found in classical

DFT remain formally identical in the QA-DFT, with cc playing the role of the direct

correlation because of Eq. (29).

III. AN EXACT MODEL: IDEAL FLUID IN AN ARBITRARY MATRIX

As the simplest example let us consider the only known example which can be exactly

solved in this formalism: an ideal fluid in an arbitrary porous matrix. As a QA system,

the matrix is taken to be a configuration of a grand-canonical ensemble of a certain fluid

at temperature T0, chemical potential µ0, and external potential ϕ0(q) [let us also define

u0(q) ≡ µ0−ϕ0(q)]. The grand partition function, grand potential and free energy of this

fluid will be denoted, respectively, Ξ0[u0], Ω0[u0] and F0[ρ0], ρ0(q) being the corresponding

equilibrium density profile.

12



For the ideal gas HN = 0, so the grand partition function of the fluid becomes

Ξ
[
u1, u10|{qi}

]
= 1 +

∞∑

N=1

1

VN
1 N !

{∫
dx exp

[
βu1(x) +

M∑

i=1

βu10(x, qi)

]}N

= exp

{
1

V1

∫
dx exp

[
βu1(x) +

M∑

i=1

βu10(x, qi)

]}
.

(38)

Thus,

Ω
[
u1, u10|{qi}

]
= −

kT

V1

∫
dx exp

[
βu1(x) +

M∑

j=1

βu10(x, qi)

]
, (39)

and therefore

Ω[u1, u10;Q] = −
kT

V1

∫
dx eβu1(x) Ξ0[ũ0(x, ·)]

Ξ0[u0]

= −
kT

V1

∫
dx eβu1(x)−β0∆Ω0(x). (40)

In this expressions Ξ0

[
ũ0(x, ·)

]
stands for the grand partition function of the matrix fluid

undergoing an external potential ũ0(x, q) ≡ u0(q)+(T0/T )u10(x,q), x being the position

of a fixed fluid particle, and ∆Ω0(x) ≡ Ω0

[
ũ0(x, ·)

]
− Ω0[u0].

From the first of Eqs. (19) it follows that

ρ1(x) =
1

V1

eβu1(x)−β0∆Ω0(x), (41)

an interesting equation which tells us that the average equilibrium density profile of the

fluid is given by the barometric law corrected with the probability of inserting a fluid

particle in the matrix fluid at position x, namely e−β0∆Ω0(x).

From the second of Eqs. (19) it follows that

ρ10(x, q) =
1

V1

eβu1(x) kT0

Ξ0[u0]

δΞ0[ũ0(x, ·)]

δũ0(x, q)
. (42)

Dividing this equation by Eq. (41) leads to

ρ10(x, q)

ρ1(x)
= −

δΩ0[ũ0(x, ·)]

δũ0(x, q)
= ρ0(x, q), (43)

where ρ0(x, q) is the equilibrium density profile of the matrix fluid corresponding to the

external potential ũ0(x, q) created by a fluid particle placed at x.

Because of Eq. (41), Eq. (40) simply becomes

Ω[u1, u10;Q] = −kT

∫
dx ρ1(x), (44)

13



the equation of state of the ideal gas. On the other hand, eliminating u1(x) from Eq. (41),

u1(x) = kT ln
(
V1ρ1(x)

)
+

T

T0

∆Ω0(x), (45)

so Eq. (20) becomes

F [ρ1, ρ10;Q] = F id[ρ1] +
T

T0

∫
dx

{
ρ1(x)Ω0[ũ0(x, ·)] − ρ1(x)Ω0[u0]

}

+

∫
dx

∫
dq u10(x, q)ρ10(x, q),

(46)

where u10(x, q) is the solution to Eq. (43) and

F id[ρ1] = kT

∫
dx ρ1(x)

{
ln

(
V1ρ1(x)

)
− 1

}
. (47)

Adding and subtracting

T

T0

∫
dx ρ1(x)

{∫
dq u0(q)

(
ρ0(q) − ρ0(x, q)

)}

to Eq. (46) and using Eq. (43) yields

F [ρ1, ρ10;Q] =F id[ρ1] +
T

T0

∫
dx ρ1(x)

{∫
dq u0(q)

(
ρ0(q) − ρ0(x, q)

)}

+
T

T0

∫
dx ρ1(x)

{
Ω0[ũ0(x, ·)] +

∫
dq ũ0(x, q)ρ0(x, q)

}

−
T

T0

∫
dx ρ1(x)

{
Ω0[u0] +

∫
dq u0(q)ρ0(x)

}
.

(48)

One can recognize in the brackets above the Legendre transforms of the grand potential

of the matrix fluid; thus the final expression for the functional can be written as

F [ρ1, ρ10;Q] = F id[ρ1] +
T

T0

∫
dx ρ1(x)

{
F0 [ρ10(x, ·)/ρ1(x)] − F0[ρ0]

}

+
T

T0

∫
dx

∫
dq

δF0[ρ0]

δρ0(q)

{
ρ1(x)ρ0(q) − ρ10(x, q)

}
.

(49)

Notice that, apart from the standard ideal free-energy functional, there is a non-trivial

term arising from the interaction between the fluid and the matrix.

So far for the intrinsic free-energy functional. Now to obtain the functional F [ρ1;Q] —

or, considering that we are describing a QA system, better F [ρ1; ρ0]— we make a Legendre

transformation of Ω[u1, u10;Q] only w.r.t. u1 (u10 is assumed fixed) to obtain

F [ρ1; ρ0] = F id[ρ1] +
T

T0

∫
dx ρ1(x)

{
F0[ρ0(x, ·)] − F0[ρ0]

}

+
T

T0

∫
dx ρ1(x)

∫
dq

{
ρ0(q)

δF0[ρ0]

δρ0(q)
− ρ0(x, q)

δF0[ρ0(x, ·)]

δρ0(x, q)

}
.

(50)
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A. The special case of an ideal matrix

One particular case which has received some attention in the literature [3, 5, 18] is

the case in which the matrix is also ideal. The reason is that the ROZ equations for this

system can be exactly solved (when u10 is a hard-sphere potential), and, in spite of its

simplicity, the blocking part of the direct correlation function is non-zero.

If the matrix is a configuration of an ideal gas at temperature T0, then

F0[ρ0] = kT0

∫
dq ρ0(q)

{
ln

(
V0ρ0(q)

)
− 1

}
. (51)

Substituting this F0 in the expressions of the previous section one gets

ρ0(q) =
eβ0u0(q)

V0
,

ρ0(x, q) =
eβ0u0(q)+βu10(x,q)

V0
= ρ0(q)eβu10(x,q);

(52)

therefore

F [ρ1; ρ0] = F id[ρ1] − kT

∫
dx

∫
dq ρ1(x)ρ0(q)f10(x, q), (53)

f10(x, q) ≡ eβu10(x,q) − 1, (54)

and

ρ1(x) =
eβu1(x)

V1
exp

{∫
dq ρ0(q)f10(x, q)

}
. (55)

A simple inspection of the exact functional (53) for an ideal fluid in an ideal matrix

reveals that the non-ideal term is quadratic, so the only second derivative that is nonzero

is c10 = f10. Nevertheless, as mentioned above, this system has a non-trivial cb [3, 5, 18],

which certainly cannot be derived from (53) by any functional differentiation. In spite of

this, the functional (53) contains all the equilibrium thermodynamics of the system.

IV. DISCUSSION AND CONCLUSIONS

We have made a first-principles derivation of a density functional formalism for

fluids inside quenched disorder matrices without resorting to the replica trick. The

main conclusion is that, for fixed interaction potential between the fluid particles,

HN(x1, . . . , xN), and fixed distribution of the disorder, there exist a unique functional

F [ρ1, ρ10;Q] from which all the equilibrium structure information and thermodynamics
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can be derived. Given the generalized external potential acting on the fluid particles,

u1(x) = µ1 − ϕ1(x), and the interaction potential between the fluid and matrix parti-

cles, u10(x, q) = −ϕ10(x, q), the disorder-average of the equilibrium density profile of

the fluid, ρeq
1 (x), and the fluid-matrix pair distribution ρeq

10(x, q) can be derived from

Eqs. (22). Once we have ρeq
1 (x) and ρeq

10(x, q), the average of the “intrinsic” free-energy

of the system is given by F [ρeq
1 , ρeq

10;Q], and the grand potential by

Ω =F [ρeq
1 , ρeq

10;Q] −

∫
dx

δF [ρ1, ρ10;Q]

δρ1(x)

∣∣∣∣ ρ1=ρ
eq

1

ρ10=ρ
eq

10

ρeq
1 (x)

−

∫
dxdq

δF [ρ1, ρ10;Q]

δρ10(x, q)

∣∣∣∣ ρ1=ρ
eq
1

ρ10=ρ
eq

10

ρeq
10(x, q).

(56)

Although for the ideal fluid in a quenched matrix we have been able to derive the

explicit form of F [ρ1, ρ10;Q], this is a formidable task for an arbitrary system. Note that

this functional is valid for any interaction potential between the fluid and matrix particles

and if we had it, then we would have solved a very general problem. Thus, it is more prac-

tical to turn to a less general functional, F [ρ1;Q], which will be a functional only of ρ1(x)

and whose functional form will depend on u10(x, q). Again, we have an Euler-Lagrange

equation to obtain the equilibrium properties for a given generalized external potential

u1(x) [Eq. (25)], but now F [ρeq
1 ;Q] is not just the average over disorder of the “intrinsic”

free energy, but it also contains an additional contribution due to the quenched-average of

the interaction energy between the fluid and matrix particles, −
∫

dxdq u10(x, q)ρeq
10(x, q),

where ρeq
10(x, q) can be obtained from the OZ Eq. (2).

One of the most relevant contributions of this work is the identification of the direct

correlation functionals appearing in the ROZ equations with second functional derivatives

of F [ρ1;Q] [Eqs. (29) and (36)]. It is worth mentioning that, in contrast to the case of

classical DFT, the second derivative of F ex[ρ1;Q] with respect to ρ1(x) and ρ1(x
′) is not

c11(x, x′; [ρ1;Q]) but only its connected part. Notwithstanding, the formalism is closed in

the set of correlation functionals {(c00, h00), (c10, h10), (c01, h01), (hc, cc)}, since the direct

correlation functionals are obtained by simple functional differentiations of F [ρ1;Q] and

the total correlation ones can be derived from the ROZ Eqs. (1–3), and (5), which have

been obtained as functional identities in the QA-DFT presented in this work.

As we have discussed previously, the blocking parts hb and cb do not enter anywhere

in the formalism. The fact that the QA-DFT does not contain these correlations and that

the thermodynamics can be entirely derived from it implies that the blocking correlations
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are not relevant for the thermodynamics. In this respect, we would like to mention

that mode-coupling theory has been recently extended to QA systems [19] in order to

study the dynamics of confined glass-forming liquids, and the only equilibrium structural

information needed to obtain the relaxing density fluctuations is the set {cc, c10, c0}. Thus

even the liquid-glass transition can be determined if we know the functional F [ρ1;Q]. Also

notice that in Refs. [6, 7], where freezing is studied with a Ramakrishnan-Yussouff density

functional, the direct correlation employed in its construction (which is derived with the

replica trick) is cc, not c11.

Finally, as it happens in classical DFT, there are few systems for which F [ρ1;Q] can be

obtained exactly (in this case only ideal fluids in arbitrary matrices, as far as we know).

Therefore, this formalism should be complemented with approximations for F ex[ρ1;Q].

In this line are the works by Schmidt and collaborators [8, 12, 14], which make use of the

constructing principle of fundamental measure theory [9, 10, 11, 13], namely the exact

result for a 0D cavity (a cavity which can hold at most either a fluid or a matrix particle)

to approximate F [ρ1;Q]. Although the results obtained seem promising, we think that the

extension of fundamental measure theory to QA systems involves subtleties concerning

the correlations between fluid and matrix particles that are difficult to deal with, and

further study is required.

Another research line worth exploring is, in analogy to the development of classical

DF approximations, to study the extension of those approximation based on the thermo-

dynamics and structural information of the uniform fluid (usually obtained from integral

equation theory) such as the weighted density or the effective liquid approximations [20].

This will be the subject of a forthcoming work.
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