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Boards of directors set CEO pay. Therefore, understanding how directors’ incentives shape com-

pensation contracts is essential for understanding executive pay. The prevailing view, shared by both

optimal contracting and rent extraction explanations of CEO pay, is that reputational concerns largely

determine directors’ incentives. On the one hand, the optimal contracting view builds on the assump-

tion that directors’ reputational concerns align their incentives with those of shareholders (Fama and

Jensen, 1983), resulting in compensation contracts that maximize shareholder wealth. On the other

hand, rent extraction explanations of executive compensation view observed compensation practices

as the result of directors’ attempts to camouflage managerial rent extraction to protect their repu-

tations from shareholder “outrage” (Bertrand and Mullainathan, 2000; Bebchuk and Fried, 2004).

However, despite the key role that both views assign to directors’ reputational concerns, there are to

our knowledge no formal models of CEO pay that explicitly incorporate those concerns. Moreover, the

very different conclusions about the effect of directors’ reputational concerns reached by the optimal

contracting and rent extraction views suggest that a formal model may help clarify the debate.

Incorporating directors’ reputational concerns into a model of CEO pay may also shed light on the

use of camouflaged forms of pay (such as difficult to observe perks, poorly disclosed pension plans,

backdated options, strategically timed option grants, or manipulated performance measures), which

are difficult to rationalize by optimal contracting models.1 The very fact that some boards appear

to be hiding part of CEO pay from shareholders’ view suggests that they are concerned about the

information that executive compensation arrangements convey to shareholders.

To analyze how directors’ reputational incentives influence both disclosed and undisclosed CEO

pay, we present a signaling model of executive compensation. The model has two key ingredients.

The first one is that shareholders do not observe directors’ independence from management. To be

sure, shareholders observe formal measures of director independence (such as, for example, whether

a director is a former employee of the firm). However, shareholders may be unaware of undisclosed

1Recent reviews of the literature on CEO compensation emphasize this point: “[T]he widespread use of “stealth”
compensation is difficult to explain if compensation were simply the efficient outcome of an optimal contract” (Frydman
and Jenter, 2010, p. 91). “[T]here are a number of puzzles as yet unexplained by optimal contracting theories. Why
was backdating of stock options so prevalent? Why is a significant proportion of compensation in hidden forms such as
perks?” (Edmans and Gabaix, 2009, p. 494).
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ties between directors and the firm or the CEO, or of other attributes, such as personality traits, that

influence directors’ ability and willingness to confront the CEO.2 Since shareholders do not observe

directors’ true independence, they seek to infer it from directors’ actions. Building on the idea that

executive compensation is the “acid test” of corporate governance, in our model shareholders interpret

pay decisions as potential signals of directors’ independence.3 In turn, directors determine CEO pay

taking into account how it will affect shareholders’ perception of their independence. The second key

ingredient of the model is that, on top of the pay that is disclosed to shareholders, the board has the

ability to pay the manager in hidden ways. Hiding compensation, however, is costly either because of

the resources devoted to camouflaging pay or because the value for the manager of the hidden forms of

compensation is lower than their cost to the firm. For example, a manager is likely to prefer 100,000

dollars in cash over a perk that costs $100,000 to the firm.

We show that independent boards will signal their independence to investors by lowering CEO

pay. Lower CEO pay is a credible signal of director independence because reducing CEO pay has a

greater private cost for manager-friendly boards. Therefore, the benefit to shareholders of directors’

reputational concerns is that they generally lead to lower managerial pay. However, reputational

concerns also have a dark side: If independent boards are forced to lower executive pay below their

preferred level to signal their independence, they may allow the manager to “claw back” rents in

costly undisclosed ways. Therefore, reputational concerns may induce boards to use inefficient hidden

pay. Moreover, they may also lead independent boards to set inefficiently structured compensation

contracts, since such contracts increase the cost of imitation for manager-friendly boards.4 Although

the use of hidden pay or inefficient compensation structures is often attributed to a lack of indepen-

2The NYSE’s Listed Company Manual states that: “It is not possible to anticipate, or explicitly to provide for,
all circumstances that might signal potential conflicts of interest, or that might bear on the materiality of a director’s
relationship to a listed company.” (NYSE, 2010; section 303.A.02). Consistent with these limitations, satisfying the
NYSE independence tests is considered by the NYSE a necessary, but not sufficient condition for independence. See
Lochner (2009) for a discussion of hypothetical directors who would meet the NYSE independence test, but would be
otherwise considered not to be independent.

3Warren Buffett, Chairman and CEO of Berkshire Hathaway, coined the metaphor of executive compensation as the
acid test of corporate governance (see e.g., Buffett, 2002).

4These results are in line with Jensen and Murphy’s (1990) conjecture that “political forces” together with disclosure
requirements create distortions in the structure of compensation schemes.
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dence, we show that independent boards are more likely than manager-friendly boards to engage in

these practices. Thus, the model explains hidden pay or the use of inefficient compensation structures

not as a vehicle used by manager-friendly boards to deceive shareholders, but, rather, as a result of

independent boards’ efforts to signal their independence to investors.

We use our framework to analyze the potential impact of recent regulatory changes and corporate

governance trends towards greater transparency and board accountability. We show that disclosure

requirements that seek to make executive compensation more transparent, or greater scrutiny of

compensation packages by external monitors, will generally have the intended effect of discouraging

the use of hidden pay.5 However, greater transparency may have the effect of increasing disclosed pay.

The reason is that greater transparency makes it harder to compensate managers in undisclosed ways

and, thus, makes it more costly for manager-friendly boards to reduce disclosed pay to imitate the pay

policies of independent boards. Therefore, greater transparency reduces the pressure on independent

boards to lower executive compensation to signal their independence and, as a result, may lead to

higher managerial pay and lower shareholder profits. Indeed, we show that some pay opacity is often

optimal for shareholders. Our model, thus, shows that although stricter disclosure requirements may

have beneficial effects, there is such a thing as excessive mandated disclosure, a point made in a related

context by Hermalin and Weisbach (2012).

We also study the impact of corporate governance trends that may have increased the value of

a reputation of independence, such as the increase in institutional ownership, the adoption of voting

rules that increase the influence of investors over the election of directors (such as replacing plurality

rules by majority rules in board elections), the increased importance of proxy advisory firms, or the

passage of “say-on-pay” legislation. We show that stronger reputational concerns will generally lead

to lower executive compensation, but may have the unintended effect of increasing the use of hidden

pay. In fact, when reputational pressure is strong enough, the distortions that it induces may reduce

5In 2006, the SEC introduced a major revision of the disclosure of executive compensation. In response to the 2007-
2009 financial crisis, in December of 2009 the SEC adopted new rules that require firms to disclose information about
how the company’s overall compensation policies for employees create incentives that can affect the company’s risk and
management of that risk.
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shareholder wealth despite lowering CEO pay.

The predictions of the model shed new light on empirical results relating corporate governance

and pay-performance sensitivity. For example, Hartzell and Starks (2003) find that pay-performance

sensitivity is greater in firms where shareholders are likely to monitor management more closely, such

as firms with a large shareholder or high institutional ownership concentration. Our theory suggests

that the higher pay-performance sensitivity in these firms may not be optimal and thus, may not

be considered as a standard of good practice. Instead, the pay practices of these firms may be an

inefficient outcome of their board’s efforts to signal their independence to shareholders.

Our model may also help explain the widespread increase in the use of stock options during the

1990s. On the one hand, if investors were not aware of the true cost of stock options, as proposed by

Bebchuk and Fried (2004), our model would explain the excessive use of stock options as a form of

hidden compensation. However, whereas Bebchuk and Fried’s (2004) explanation of the use of stock

options as a rent extraction mechanism has been criticized on the grounds that the increase in the

use of stock options in the 1990s coincided with a perceived reduction in the power of top executives

(Holmstrom, 2005), our model would predict this very pattern: The increase in the use of hidden

pay would have been a response to directors’ greater accountability to shareholders. On the other

hand, our model provides an alternative explanation for the increase in stock option compensation

that does not rely on stock options being a camouflaged form of pay. Several authors have argued that

stock options were inefficiently overused during the 1990s.6 According to the model, the purportedly

excessive use of options could have been an inefficient side effect of independent boards’ increased

efforts to signal their independence to investors.

Although most of the theoretical literature on executive compensation abstracts from the role of

boards, there are exceptions. In an influential article, Hermalin and Weisbach (1998) propose a model

in which the board decides whether to retain the CEO, and the board and the CEO bargain over the

CEO’s pay and the composition of the board. However, in Hermalin and Weisbach’s model, there is no

6See, e.g., Hall and Murphy (2003), Bebchuk and Fried (2004), and Dittmann and Maug (2007)—although see also
Dittmann and Yu (2011) for the opposite view.
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need to provide incentives to the CEO, who receives a flat salary. Almazan and Suarez (2003) develop

a model in which the CEO’s incentives are determined both by a compensation contract designed by

the board and by the board’s bargaining power when negotiating with the CEO the latter’s potential

replacement. Hermalin (2005) analyzes a model in which the board decides whether to replace a

CEO of unknown ability. He shows that more diligent boards may lead to higher CEO pay, because

they implement a higher level of CEO effort. Kumar and Sivaramakrishnan (2008) propose a model

in which the board both invests in acquiring information about the firm and selects a compensation

contract for the CEO. They find that the equilibrium relationship between director independence and

equity compensation is ambiguous. None of these articles consider the impact of directors’ reputation

on their choice of CEO compensation.

Several other articles have provided models of the board as monitor or adviser of the manager (see

Adams et al. (2010) for a review). However, none of these models investigate the role of the board in

determining CEO compensation contracts. Further, only Fisman et al. (2005) and Song and Thakor

(2006) explicitly analyze board reputation. Fisman et al. (2005) consider a model in which the board

decides on the replacement of the CEO and bears a cost for taking a decision contrary to shareholders’

desires. In Song and Thakor’s (2006) model, boards take into account the impact that their decision

whether to accept a project proposed by the CEO will have on their reputation as experts.

The theoretical literature on executive compensation has, for the most part, ignored hidden com-

pensation. An exception is the model proposed by Kuhnen and Zwiebel (2008), in which the CEO

effectively sets his own compensation, both disclosed and hidden. However, Kuhnen and Zwiebel

(2008) assume no role for the board, so their model cannot shed light on the role played by the board

in determining executive pay.

1 The Model

We consider a model with a firm and two players: the firm’s board of directors and the labor market

for directors. The firm is run by a manager, whom we do not model explicitly as a player. The
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board of directors sets the manager’s disclosed compensation contract and may pay the manager an

additional amount of hidden pay. The labor market for directors, which we treat as a single player,

observes the disclosed compensation contract, but not the hidden pay, and allocates board seats to

the firm’s directors.7

Compensation contracts, the manager’s actions, and payoffs. The board of directors has

the task of designing a compensation contract for the firm’s manager. The compensation contract

determines the manager’s incentives and, thus, the firm’s expected revenues. It also determines the

way in which revenues are shared between shareholders and the manager. Therefore, the board’s

choice of contract determines the firm’s expected profits and the manager’s expected utility. For the

sake of both generality and simplicity, we do not model explicitly the compensation contract offered

to the manager or the agency problem that the contract is meant to address. Instead, we assume

that the board directly chooses and publicly announces the manager’s certainty equivalent, w (which,

abusing the term, we refer to as the manager’s disclosed pay), and shareholders’ expected profits, π,

from a set F of feasible disclosed payoff pairs (w, π). Doing so allows us to simplify the analysis since

we do not have to treat the manager as a strategic player and explicitly solve the underlying agency

problem. At the same time, our results extend to any underlying agency problem that leads to the

same set of feasible disclosed payoff pairs. To simplify both the exposition and the derivations, we

make two assumptions about the underlying agency problem. To state formally these assumptions,

we first note that, without loss of generality, a contract γ can be represented as γ = α + f , where

α ∈ R is the manager’s fixed pay and f some function of revenues.

Assumption 1 (No wealth effects.) If disclosed contract γ = α + f leads to payoff pair (w, π),

then disclosed contract γ′ = (α+ k) + f , with k ∈ R, generates payoffs (w + k, π − k).

Assumption 2 The set of feasible disclosed payoff pairs has the form: F ≡ {(w, π) ∈ R2 : w+π ≤ s∗}.
7See Ottaviani and Sørensen (2006) for a similar reduced form modeling of the labor market for forecasters as a single

player.
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In what follows, we let s = w + π denote the total surplus (for the manager and shareholders)

generated by payoff pair (w, π). Assumption 1 implies that an increase of $1 in the fixed part of the

manager’s compensation increases the manager’s equilibrium certainty equivalent by $1 and reduces

expected profits by the same amount, leaving total surplus unchanged. Assumption 1 will hold in

a standard moral hazard model with an agent with CARA preferences. Assumption 2 simply states

that any disclosed payoff pair that generates total surplus not greater than a maximum level s∗ is

feasible.8 In Appendix B we provide a simple example that illustrates how the set F in Assumption 2

can be derived from a standard managerial moral hazard model. However, it is important to remark

that although Assumptions 1 and 2 greatly simplify both the exposition and the proofs, they are not

essential for our results.

Hidden pay. Apart from offering a disclosed contract to the manager—with corresponding disclosed

payoffs (w, π)—the board also offers hidden pay y ≥ 0, which is not observed by the labor market for

directors. However, the labor market for directors is aware that directors can pay in hidden ways and

it may be able to infer equilibrium hidden pay from boards’ strategies.

Hidden pay is inefficient: y dollars of hidden pay reduce expected profits by z(y) > y dollars. We

assume that z(0) = 0, z′ > 1, and z′′ > 0. The inefficiency of hidden pay may emerge because of

the costs of hiding monetary payments or because the value for the manager of hidden compensation

vehicles is lower than their cost to the firm.9 Alternatively, one can interpret z as also incorporating

directors’ psychological cost of hiding pay or the expected cost of potential legal penalties for directors

or the firm. Although we acknowledge that certain forms of hidden pay may also provide incentives

to the manager, we abstract from this consideration and assume that hidden pay takes the form of a

lump sum payment. This assumption, together with Assumption 1, implies that payoffs net of hidden

pay are simply w̄ = w + y and π̄ = π − z(y). Hereafter, we refer to w̄ and π̄ as total pay and net

8Assumption 2 follows from Assumption 1 if there are no restrictions on the fixed part of pay, there is free disposal
(so that any arbitrarily low s is feasible), and there exists a maximum feasible level of surplus s∗.

9To the extent that hidden pay is also hidden from tax authorities and allows the firm to save on taxes, there could be
instances of hidden pay that is less costly for the firm than disclosed pay. If such forms of hidden pay existed, all boards
(independent or not) would make use of them to the maximum extent possible, which would be optimal for shareholders.
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profits, respectively.

To be accepted by the manager, a disclosed payoff pair (w, π) and hidden pay y must provide the

manager a certainty equivalent greater or equal to the manager’s reservation utility level, which we

express in certainty equivalent terms and denote by w:

w + y ≥ w. (1)

We assume that s∗ > w, so that it is not optimal to dissolve the firm.

Board preferences and independence. We consider the board as a single decision maker with

preferences represented by the utility function:

u(w̄, π̄) + uR, (2)

where uR is the board’s expected utility from the board seats awarded by the labor market for directors.

We assume that u is increasing in both arguments. The board will prefer higher profits if directors’

pay is tied to firm performance or if directors derive utility from, for example, fulfilling their fiduciary

duty towards investors.10 Importantly, while previous models of boards (Hermalin and Weisbach,

1998; Raheja, 2005) incorporate reputational concerns through a preference for higher profits, we

model those reputational concerns explicitly through the impact of the board’s decisions on uR.

Directors may care about the manager’s utility because it may influence the manager’s willingness

to favor the board. For example, higher pay may make the CEO more prone to support directors

for reelection, to favor increases in board compensation, or to channel the firm’s charitable donations

to directors’ preferred charities. Directors may also care about the manager’s pay if they are averse

to boardroom conflict (prefer a “quiet life”) and higher pay makes the relation with the manager

less adversarial. Finally, directors may feel the need to reciprocate if the CEO helped them get

10Yermack (2004) shows that directors’ pay is significantly sensitive to firm performance. Adams and Ferreira (2008)
show that directors are responsive to monetary incentives.
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elected to the board, they may identify with the CEO, who is likely to have similar sociodemographic

characteristics, or they may be under the social influence of the CEO, whom directors may perceive

as knowledgeable and authoritative.

For expositional simplicity, we follow previous theoretical models of boards, and assume that the

board’s preferences have an additive form:11

u(w̄, π̄) = π̄ + θv(w̄), (3)

where θ > 0, v′ > 0, and v′′ < 0.

There are two types of boards, which differ in the weight they place on the manager’s welfare

relative to profits: manager-friendly (M) boards and independent (I) boards, with θI < θM . Through-

out the article we use the letter T to refer to a generic board type. The probability that a board is

independent is common knowledge and equal to q ∈ (0, 1).

We make an additional technical assumption:

Assumption 3 1
v′(s∗) > θM > z′(0)

v′(w) .

The first inequality ensures that the manager-friendly board does not want to transfer all the surplus

to the manager. The second inequality guarantees that the cost of hidden pay is low enough that a

manager-friendly board would choose to pay some hidden compensation to the manager if the disclosed

contract left the manager at his reservation utility level. We make this assumption to avoid discussing

uninteresting corner cases and cases in which both board types would behave identically in the absence

of reputational concerns.

The labor market for directors and the board’s reputational concerns. A premise of the

model is that the labor market for directors values director independence but cannot observe directors’

11In the articles by Hermalin and Weisbach (1998) and Adams and Ferreira (2007), there is a conflict of interest between
shareholders and the board because it is costly for boards to monitor the manager. Kumar and Sivaramakrishnan (2008)
explicitly assume that the board may care about the manager’s welfare, and Harris and Raviv (2008) allow for board
members who have an interest in increasing the firm’s scale beyond the profit-maximizing level. In all these models, firm
profits and the other variables of interest for the board (monitoring costs, the utility of the manager, or the firm’s scale)
enter in an additive form.
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true independence.12 Instead of explicitly modeling the labor market for directors, we assume that

directors’ discounted utility uR from future board appointments is an increasing function of the labor

market’s belief µ ∈ [0, 1] that the board is independent. Therefore, uR(µ) is the board’s discounted

expected utility if the labor market believes that the board is independent with probability µ and acts

according to that belief. For ease of exposition, we assume a simple functional form for uR:

uR(µ) = ηµ, (4)

where η > 0 is a parameter that captures both the sensitivity of hiring or replacement decisions

to directors’ reputation and the value of board seats for directors. Thus, η represents the value for

directors of a reputation of independence. The discounted utility of a type-T board (T ∈ {I,M}) as

a function of payoffs net of hidden pay (w̄, π̄) and reputation µ can then be written as:

UT (w̄, π̄, µ) ≡ u(w̄, π̄) + uR(µ) = π̄ + θT v(w̄) + ηµ. (5)

We assume that directors prefer any feasible (w̄, π̄, µ) to leaving the firm, so we can disregard the

board’s participation constraint.

2 Hidden pay and the board’s preferences over disclosed payoffs

Since hidden pay has no reputational or incentive consequences, for any disclosed contract, the board

will offer the level of hidden pay that maximizes its utility given the disclosed contract. Linearity of

the board’s preferences implies that expected profits do not affect the board’s choice of y, so we can

let yT (w) represent the optimal level of hidden pay as a function of disclosed pay w for board type

T .13 The following lemma characterizes the board’s choice of hidden pay as a function of both the

12Although we assume that the market prefers independent boards over manager-friendly boards, such preference can,
in fact, be generated from within the model: Since independent boards place a smaller weight on the manager’s utility,
their preferred compensation contracts (in the absence of reputational concerns) will lead to lower managerial pay and
higher profits than those preferred by manager-friendly boards. We prove this assertion in Section 3.1.

13The fact that yT does not depend on π simplifies the derivations but it is not essential to obtain our results.
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manager’s disclosed pay and the board’s type (all proofs are in Appendix A):

Lemma 1

1. For any level of disclosed pay w, the manager-friendly board pays (weakly) higher hidden pay.

2. Hidden pay is nonincreasing in w, and it is decreasing in w for levels of w such that the board

pays hidden compensation.

3. For each T ∈ {I,M}, there exists a threshold level of disclosed pay wyT such that: (a) A type-T

board pays hidden compensation if and only if w < wyT ; and (b) wyM > wyI .

4. For any board type T : (a) the manager’s total pay (w + yT (w)) is nondecreasing in w, and (b)

if w′ > w and w′ + yT (w′) > w, then w′ + yT (w′) > w + yT (w).

We note that part 1 of the lemma states that for a given level of disclosed pay, the manager-

friendly board pays greater hidden pay. It does not state that the manager-friendly board will pay

more hidden compensation in equilibrium, since in equilibrium each board type may pay a different

level of disclosed compensation.

Part 4 of the lemma states that, even though y is nonincreasing in disclosed pay, w, total pay

(w + yT (w)) is nondecreasing in w. Moreover, for levels of w such that total pay is greater than the

manager’s reservation value, total pay is strictly increasing in disclosed pay w.

To simplify the description of the model’s equilibrium, we do not consider y explicitly as a strategic

variable. Instead, we restrict the board’s offer of hidden pay to be the one that maximizes the board’s

utility given the disclosed contract offered to the manager, and we incorporate the choice of hidden

pay into the board’s utility, which we redefine as a function of disclosed payoffs (w, π) (rather than

payoffs net of hidden pay). Therefore, we define UT (w, π, µ) as the derived utility of a type-T board

if the disclosed payoff pair is (w, π), the labor market’s belief that the board is independent is µ, and

the board sets its preferred level of hidden pay given (w, π):

UT (w, π, µ) ≡ UT (w + yT (w), π − z(yT (w)), µ). (6)
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Once we incorporate the hidden pay decision into the board’s preferences, the model becomes a

reduced form two-player signaling model: The board, with preferences over disclosed payoffs described

by U , picks a disclosed payoff pair (w, π). The labor market for directors observes the payoff pair

selected by the board and updates its belief that the board is independent. In this reduced form

signaling model, the labor market is assumed to play a best response to its beliefs about the board’s

independence. Therefore, we incorporate into the model the equilibrium condition that the labor

market plays a best response through the term uR in the board’s preferences. The following lemma

describes two key properties of the board’s derived preferences U :

Lemma 2 Let w′ > w, then for any levels of expected profits π, π′ and beliefs µ, µ′:

1. If w′ + yM (w′) > w (the manager’s participation constraint is not binding for w′), then:

UM (w, π, µ) ≥ UM (w′, π′, µ′)⇒ U I(w, π, µ) > U I(w
′, π′, µ′) (7)

2. If w′ + yM (w′) = w (the manager’s participation constraint is binding for w′), then:

UM (w, π, µ)− UM (w′, π′, µ′) = U I(w, π, µ)− U I(w′, π′, µ′). (8)

The first part of the lemma shows that for levels of disclosed pay that are high enough so that the

manager’s participation constraint is not binding, the utility function U satisfies two single-crossing

conditions. First, let π′ < π and µ′ = µ, and suppose that disclosed pay w is such that the manager-

friendly board would offer total pay greater than the manager’s reservation value. Then, (7) implies

that if a manager-friendly board is willing to reduce disclosed pay in exchange for an increase in profits,

an independent board will also accept such an exchange. Second, if µ′ < µ, and π′ = π, then (7)

implies that if a manager-friendly board is willing to accept a reduction in disclosed pay in exchange

for an increase in reputation, then an independent board will also accept such an exchange.
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To understand part 2 of the lemma, notice that the fact that total pay is nondecreasing in w (Part

4 in Lemma 1) implies that if the level of disclosed pay w′ is so low that a manager-friendly board

would pay just the amount of hidden compensation necessary to meet the manager’s participation

constraint (i.e., if w′ + yM (w′) = w), then: a) the independent board would pay the same level of

hidden pay, and b) if w < w′, then both board types would pay the same level of hidden compensation

for disclosed pay w as well (namely, the amount necessary to keep the manager at his reservation utility

level). Therefore, for any two disclosed payoff pairs, (w′, π′) and (w, π), such that w′ + yM (w′) = w

and w < w′, both board types will offer the manager the same total pay. It follows that the net

payoffs associated with disclosed payoffs (w′, π′) and (w, π) would differ only in the expected profit

net of hidden pay. Since, keeping total pay constant, boards do not differ in their preferences for net

profits, it follows, as stated in part 2 of Lemma 2, that both board types will have the same preferences

over (w′, π′, µ′) and (w, π, µ). All of our main results follow from the two properties of the board’s

preferences described in Lemma 2. The additional structure of the model helps clarify the analysis

but is not essential for our results.

3 Board Independence, Reputation, and CEO Pay

3.1 Baseline case: No reputational concerns

We consider as a benchmark the behavior of a board with no reputational concerns (µ given). A

type-T board with no reputational concerns would choose the payoff pair that, for a given µ, solves

the problem:

max
(w,π)∈F

UT (w, π, µ)

s.t. w + yT (w) ≥ w. (9)

Since hidden pay is costlier than disclosed pay, in the absence of reputational concerns boards will

achieve their desired payoff pair solely by means of disclosed compensation and will not make use
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of hidden pay. Moreover, since the board’s objective is increasing in both π and w, the board will

choose an efficient compensation contract regardless of its type, i.e., a contract with associated payoffs

(w, π) such that w + π = s∗. Finally, since the manager-friendly board places a larger weight on the

manager’s utility (θM > θI), it will pay the manager a higher disclosed compensation. We state these

results formally in the following proposition:

Proposition 1 Let (w∗T , π
∗
T ) be the disclosed payoff pair chosen by a board of type T in the absence

of reputational concerns. Then:

1. Both board types choose efficient disclosed payoff pairs, i.e., w∗T + π∗T = s∗ for T ∈ {I,M}.

2. w∗M > w∗I and π∗M < π∗I .

3. Neither board type pays hidden compensation: yM (w∗M ) = yI(w
∗
I ) = 0.

4. Each board type T would chose (w∗T , π
∗
T ) if hidden pay were not possible.

Proposition 1 yields three messages: Neither board type will use inefficient hidden pay, both boards

will choose efficient disclosed compensation contracts, and the manager-friendly board will pay the

manager more. An additional implication of Proposition 1 is that, if there is a unique compensation

structure that maximizes surplus, then both board types will choose the same compensation structure,

and the manager-friendly board will simply pay a higher fixed pay.14

To analyze the board’s pay decisions when those decisions may affect the board’s reputation for

independence, we hereafter analyze the (Perfect Bayesian) equilibria of the model. The equilibrium

definition requires that the board play optimally given the market’s beliefs and that these beliefs be

consistent. To limit equilibrium multiplicity, we focus on equilibria that satisfy the Intuitive Criterion

(Cho and Kreps, 1987), which restricts the labor market’s beliefs off the equilibrium path. In Appendix

A, we provide a formal definition of the equilibrium concept.

14The example in Appendix B illustrates this possibility.
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3.2 Efficient reputational concerns

To analyze the model’s equilibria, we define the separating pay w̃ as the level of disclosed pay (such

that w̃ < w∗M ) that makes a manager-friendly board indifferent between (i) offering its preferred

contract and being perceived as manager-friendly and (ii) offering an efficient disclosed contract with

pay w̃ and being perceived as independent:

UM (w∗M , π
∗
M , 0) = UM (w̃, s∗ − w̃, 1). (10)

We also define wT as the threshold level of disclosed pay such that a board of type T sets total pay

equal to the manager’s reservation value w if and only if w ≤ wT . We note that it follows from Lemma

1 that wM < wI . Further, the inequality θMv
′(w) > z′(0) in Assumption 3 implies that wM < w.

Since a reputation for independence is valuable for directors, manager-friendly boards will try to

pass as independent, and independent boards will strive to signal their independence to shareholders.

We label an equilibrium separating if the manager-friendly and the independent boards choose different

disclosed contracts. We label an equilibrium pooling if there is some disclosed contract that is played

with positive probability by both board types.

At a separating equilibrium, the labor market for directors identifies the manager-friendly board

as such. It follows that, at any separating equilibrium, the manager-friendly board will choose the

disclosed payoff pair that it would have chosen in the absence of reputational concerns. Otherwise,

deviating to its preferred payoff pair would be a profitable deviation for the manager-friendly board,

since it would cause no reputational loss. Therefore, we obtain the following result:

Proposition 2 At any separating equilibrium, the manager-friendly board selects the same efficient

payoff pair that it would have selected in the absence of reputational concerns and pays no hidden

compensation.

It is worth clarifying that, even if it sets its preferred compensation contract, the manager-friendly

board will suffer from being perceived as such at a separating equilibrium: Our assumption that η > 0
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implies that at separating equilibria manager-friendly directors are indeed more likely to be fired or

less likely to be hired to serve on other boards.

If the independent board can avoid imitation while achieving its preferred payoff pair (w∗I , π
∗
I ), it

will do so. Therefore, if the separating level of pay w̃ is large enough (w̃ > w∗I ), reputational concerns

will have no impact on CEO pay. However, if the independent board would trigger imitation by

the manager-friendly board if it set its preferred payoff pair, the independent board will lower the

manager’s pay to signal its independence. The independent board will do this in the least costly way

possible. Therefore, it will lower disclosed pay just enough to avoid imitation by the manager-friendly

board (by setting wI = w̃) and will do so by lowering the fixed component of pay while keeping an

efficient compensation structure. Further, if the reduction in fixed pay necessary to dissuade imitation

by the manager-friendly board is small enough (i.e., if the separating level of pay w̃ is greater than the

threshold level of disclosed pay wyI above which the independent board pays no hidden compensation),

the independent board will not compensate the manager in hidden ways for the reduction in disclosed

pay. Letting (wI , πI) be the equilibrium disclosed payoff pair set by the independent board and sI the

resulting surplus level, the following proposition formally states these results:

Proposition 3 If w̃ ≥ wyI , there are no pooling equilibria, and at the unique separating equilibrium:15

1. If w̃ ≥ w∗I , then (wI , πI) will be efficient (sI = s∗) and equal to the one the independent board

would have chosen in the absence of reputational concerns (wI = w∗I , πI = π∗I ). Moreover, the

independent board will pay no hidden compensation (yI(wI) = 0).

2. If w̃ < w∗I , then (wI , πI) will be efficient (sI = s∗), wI = w̃ < w∗I , and πI > π∗I . Moreover, the

independent board will pay no hidden compensation (yI(wI) = 0).

Therefore, it follows from Propositions 2 and 3 that if the reduction in pay needed to avoid imitation

by manager-friendly boards is not too large (w̃ ≥ wyI ), reputational concerns induce independent

15We use the word unique to refer to the board’s strategies. There may be different equilibrium beliefs consistent with
the unique equilibrium strategies.
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boards to efficiently transfer rents from the manager to shareholders and have no effect in equilibrium

on the compensation decisions of manager-friendly boards.

The intuition behind Proposition 3 is simple. For large enough levels of disclosed pay, Lemma 2

implies that a reduction in the manager’s disclosed pay is more costly for a manager-friendly board.

If the independent board can separate from the manager-friendly board by either setting its preferred

payoff pair or by lowering the manager’s disclosed pay to a level that does not induce the board to

pay hidden compensation, it will do so.

For parameter values such that the independent board would pay no hidden compensation at the

separating level of pay (w̃ ≥ wyI ), Proposition 3 also shows that there are no pooling equilibria. In fact,

we show in Appendix A that there are no pooling equilibria as long as w̃ is strictly greater than the

maximum disclosed pay, wM , such that the manager-friendly board would leave the manager at his

reservation pay (where wM < w ≤ wyI ). The reason is that for w to be set at a pooling equilibrium,

w has to be greater than the the separating level of pay (w > w̃). Now, if w̃ > wM , then Part

4 of Lemma 1 implies that w + yM (w) > w̃ + yM (w̃) > w. But then the single crossing condition

(7) in Lemma 2 implies that deviating to a lower disclosed pay w′ < w would be more costly for

the manager-friendly board. Therefore, independent boards could convince the labor market of their

independence by lowering disclosed pay.

3.3 Reputational concerns, hidden pay, and inefficient compensation structures

If the disclosed pay necessary to dissuade the manager-friendly board from imitating the independent

board is lower than the threshold level of pay below which the independent board would pay a positive

level of hidden compensation (w̃ < wyI ), the independent board will lower disclosed pay to w̃ (by

reducing the fixed pay) to signal its independence, but will compensate the manager for the reduced

disclosed pay with hidden compensation:

Proposition 4 If wM < w̃ < wyI , then there are no pooling equilibria, and separating equilibria are

such that the independent board selects an efficient disclosed payoff pair (sI = s∗) and a level of
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disclosed pay equal to wI = w̃, and pays hidden pay yI(wI) > 0.

Although the independent board offers an efficient disclosed compensation structure (sI = s∗), it

pays the manager inefficient hidden compensation. Therefore, Proposition 4 implies that the board’s

reputation-seeking behavior may become an agency problem. Further, Proposition 4 shows that the

independent board, not the manager-friendly one, is the one that pays in inefficient hidden ways.

Suppose now that the disclosed pay necessary for the independent board to signal its independence

(w̃) is so low that the manager-friendly board would leave the manager at his reservation utility level

if it paid disclosed compensation w̃ (i.e., w̃ ≤ wM < w). Then, on top of equilibria such as the ones

described in Proposition 4, there are also separating equilibria at which the independent board may

not only pay in hidden ways but also inefficiently distort the disclosed compensation contract (i.e.,

offer a disclosed payoff pair with sI < s∗):

Proposition 5 If w̃ ≤ wM , then for each w ∈ [w̃, wM ], there are separating equilibria with wI = w

and yI(wI) = w − wI > 0. If wI > w̃, then the disclosed payoff pair is inefficient (sI < s∗).

In equilibria with inefficient disclosed pay, the independent board pays higher disclosed pay than

in equilibria with efficient disclosed pay and achieves separation by reducing expected profits through

an inefficient compensation structure. To understand this sort of equilibrium, suppose that to achieve

separation with an efficient disclosed contract, the independent board has to set disclosed pair (w̃, π),

with w̃ < wM and π = s∗ − w̃. By definition of wM , such a disclosed payoff pair would lead to total

pay w and net profits s∗− w̃− z(w− w̃) for both board types. But then an inefficient disclosed payoff

pair (w′, π′), with w′ ∈ (w̃, wM ] and π′ = π − z(w − w̃) + z(w − w′), would lead to exactly the same

net payoffs for both boards, so if there is a separating equilibrium at which the independent board

sets (w̃, π), there is also a separating equilibrium at which the independent board sets (w′, π′).16

If w̃ < wM , there also exists a continuum of pooling equilibria:

Proposition 6 If w̃ < wM , then:

16The disclosed payoff pair is inefficient since w′+π′ = w′+π− z(w− w̃) + z(w−w′) < w′+π− z′(w−w′)(w′− w̃) <
w′ + π − (w′ − w̃) = π + w̃ = s∗, where the first inequality follows from convexity of z and the second one from z′ > 1.
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1. For each w ∈ (w̃, wM ], there are pooling equilibria at which wI = w, yI(wI) = w − wI > 0, and

πI ≤ s∗ − wI .

2. At these equilibria, the manager-friendly board plays (wI , πI) (with yM (wI) = yI(wI) = w−wI >

0) with probability σ ≥ 0, and (w∗M , π
∗
M ) (with yM (w∗M , π

∗
M ) = 0) with probability 1− σ.

The reason for this multiplicity of equilibria is that, as we show in Lemma 2, any two disclosed

payoff pairs, (w, π) and (w′, π′), with w,w′ ≤ wM lead to the same total pay for the manager irrespec-

tively of the board type, because, for such levels of disclosed pay, both board types offer the manager

the amount of hidden pay that is needed to keep him at his reservation utility. Therefore, the two

board types have exactly the same preferences over any two payoff pairs with w,w′ ≤ wM , and the

single-crossing condition that ensures separation does not apply. It follows that if the labor market for

directors expected both board types to choose (w, π) with w < wM , an independent board would not

be able to convince the market of its independence by choosing a contract such that w′ < w. Thus,

an equilibrium at which both boards (partly) pool at (wM , s
∗ − wM ) becomes possible.

It is important to remark that, as described in part 2 of Proposition 6, even though both boards set

the same disclosed pay in equilibrium with positive probability, it does not follow that the manager-

friendly board pays more hidden compensation for that level of disclosed pay than the independent

board. Pooling equilibria are only possible at disclosed pay levels such that both boards pay the same

amount of hidden compensation, namely the level just necessary to satisfy the manager’s participation

constraint. Therefore, it is still the case that at all pooling equilibria the expected level of hidden pay

is weakly greater for the independent board and strictly greater whenever equilibria are only partly

pooling (i.e., when the manager-friendly board sets its preferred contract with positive probability).

Figure 1 summarizes the main features of the model’s equilibria for different values of the separating

disclosed pay w̃. Below the w̃ axis we also indicate how the separating level of disclosed pay depends

on the values of parameters η and κ. We introduce κ and derive the relation between parameter

values, w̃, and equilibrium disclosed pay in sections 4 and 5 below.
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Figure 1: Equilibria and parameter values. The axis represents different values of the separating level
of disclosed pay w̃. Above the axis, the figure describes the different equilibria as functions of w̃. Below
the axis, the figure describes how w̃ depends on parameter values η and κ. We define κ in Section 4.
Propositions 7 and 9 describe the relation between w̃ and parameter values κ and η, respectively.

3.4 Discussion

Agency costs of board’s reputational concerns. Propositions 2–3 show that the board’s reputa-

tional concerns can help alleviate the agency problem that exists because the board, not shareholders,

sets the manager’s compensation: If it is relatively easy to avoid imitation by manager-friendly boards,

reputational concerns lead independent boards to lower the manager’s pay, transferring wealth from

the manager to shareholders with no efficiency loss. However, Propositions 4–6 highlight the agency

costs of the board’s reputational concerns: When the reduction in the manager’s pay that is necessary

to signal the board’s independence is large enough, independent boards will compensate the manager

with costly hidden pay and may even inefficiently distort the disclosed compensation contract.

Board independence, hidden pay, and inefficient compensation contracts. Propositions

2–6 imply that independent boards will be more likely than manager-friendly boards to pay the

managers by means of perks, hard-to-identify pension plans, option backdating and other forms of

poorly disclosed compensation. In fact, for most parameter values, the manager-friendly board pays no

hidden compensation, and if it does (at pooling equilibria), it does not pay more hidden compensation

than the independent board. Therefore, our model identifies hidden pay not as a strategy by manager-
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friendly boards to mislead investors, but as a side effect of independent boards’ efforts to signal their

independence to shareholders.

We note, however, that the implication that more independent boards make greater use of camou-

flaged compensation is compatible with a different explanation from the one we propose here. Namely,

camouflaged compensation could be the result of actions taken by captured directors or the manager

himself to keep independent directors unaware of the CEO’s true compensation.

Empirical implications. Since true independence is not observable, the model’s predictions that

directly relate true independence and compensation contracts are difficult to test. However, Cohen

et al. (2012) provide suggestive evidence indicating that firms whose directors are more manager-

friendly, yet still formally independent, pay their CEOs more. In particular, Cohen et al. (2012)

show that CEO compensation increases in firms that appoint formally independent directors who may

be expected to be more lenient towards the manager (former sell-side analysts who issued especially

positive recommendations about the firm).

The model yields other potentially testable implications. First, since at any separating equilibrium

the manager-friendly board sets a higher level of disclosed pay, all our results regarding separating

equilibria imply that boards that pay higher disclosed pay are likely to suffer negative reputational ef-

fects. Both anecdotal and econometric evidence show that, at least in recent years, directors risk being

singled out for their compensation decisions. Corporate governance watchdogs, such as Institutional

Shareholder Services (ISS) or GovernanceMetrics International, or activist institutional investors, such

as CalPERS, publish corporate governance ratings and watch lists, and boards’ compensation decisions

are a key factor in determining those ratings. Similarly, executive compensation practices significantly

affect the voting recommendations of proxy advisory firms (ISS, 2011), and these recommendations

have a substantial impact on voting outcomes (Alexander et al., 2009; Choi et al., 2009; Ertimur et al.,

2011). Mutual funds’ policies regarding proxy voting also identify compensation decisions as factors

to determine their vote. In line with these practices, the empirical evidence suggests that excessive

CEO pay affects voting outcomes in corporate elections (Morgan and Paulsen, 2006; Cai et al., 2009;
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Fischer et al., 2009; Yermack, 2010; Ertimur et al. 2011). Additionally, Core et al. (2008) find that

excess CEO pay leads to negative press coverage of firms’ compensation practices, and Kuhnen and

Niessen (2012) document that CEO pay is responsive to the negativity of the average media coverage

of executive compensation.

Another implication of the model, which follows from Proposition 4, is that hidden compensation

will be more likely in firms that pay relatively low disclosed compensation. This implication is po-

tentially testable if reasonable proxies of camouflaged pay can be found. Such proxies could be ex

post measures, like the use of option backdating or the frequency of scandals or litigation related to

executive pay. To the extent that insider trading profits are not fully accounted for by investors, lax

restrictions on insider trading by executives can also be understood as a form of hidden pay. Using dif-

ferent data sets and types of insider trading limitations, Roulstone (2003) and Henderson (2011) find

that firms that restrict insider trading pay higher total compensation, which suggests a substitution

between disclosed and undisclosed forms of pay. The use of compensation vehicles that are disclosed

in such a way that investors may not grasp their true cost could also act as proxies for hidden pay.

Stock options or pension fund contributions before regulation required firms to disclose them in a way

that allows investors to better evaluate their costs could, arguably, be such proxies. In sections 4 and

5 we derive comparative statics results that provide further potentially testable implications.

It is important to emphasize that these empirical implications (and most of the implications dis-

cussed in sections 4 and 5) are all else equal, including the degree of formal independence of the board.

Therefore, when we distinguish between independent and manager-friendly boards we do not refer to

boards that differ in observable characteristics, such as size, the fraction of formally independent di-

rectors, or whether the CEO serves as chairman of the board. Rather, we focus on the differences that

persist after controlling for all observable board characteristics.

Implications concerning the use of stock options. The model offers two potential explanations

for the increase in the use of stock options during the 1990s. To the extent that shareholders underesti-

mated the value of stock options, as proposed by Bebchuk and Fried (2004), Proposition 4 would imply
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that stock options may have been used as a camouflaged form of compensation. However, our model

predicts that truly independent boards, rather than those captured by the manager, would have been

the ones more prone to pay the manager in this way. This explanation of stock option compensation

as a form of camouflaged pay hinges on the assumption that the market was not fully aware of the

true cost of executive compensation, either because this form of compensation was initially disclosed

in the footnotes to the financial statements or because the labor market underestimated the cost of

option compensation for the firm (as argued by Hall and Murphy, 2003, who, however, propose that

boards may have also underestimated that cost.)

Proposition 5 provides an alternative explanation for the excessive use of stock option compensa-

tion, which hinges on the arguments of, among others, Hall and Murphy (2003) and Dittmann and

Maug (2007), which suggest that stock options may have been inefficiently overused during the 1990s:

Stock options may have been an inefficient form of compensation adopted by independent boards

in their effort to distinguish themselves from manager-friendly boards. We must highlight, however,

that the model is neutral as to the exact form of the distortion in compensation practices introduced

by independent boards. Our preferred interpretation is that the distortion will take the form of an

inefficient overuse of the accepted set of best practices at any given point in time. Thus, at a time

when options were considered a desirable means of aligning the interests of managers with those of

investors, independent boards may have lowered executive pay relative to manager-friendly boards

and substituted inefficient stock option compensation for other forms of compensation.17

Welfare implications. One has to be cautious when deriving welfare implications from our results

because we derive the payoffs for the period under consideration in the model, but not for (unmodeled)

future periods: Whereas the function uR incorporates the future welfare effects that the choice of

contract has for the board, we do not explicitly derive the effects on the manager’s and shareholders’

future wealth.

17The tide turned in the 2000s: Kuhnen and Niessen (2012) report that stock option compensation was the form of
compensation receiving the greatest (generally negative) attention by the press in the period 1997-2004
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To shed some light on the welfare implications of the model, suppose that there is one additional

period after which the firm is liquidated and directors retire. If directors retire after the second

period, they will have no reputational concerns in that period and will choose their preferred contracts

described in Proposition 1. Therefore, expected profits will be higher in the second period in those

firms whose second-period boards are more likely to be independent. Expected profits in the second

period could also be higher with an independent board, if such a board is more likely to prevent

potential value-destroying choices by the manager.

At a separating equilibrium, manager-friendly boards are identified as such and, thus, are likely

to be replaced in the second period by a board with a positive probability of being independent.

Therefore, at a separating equilibrium the probability that the board is independent in the second

period is higher than the prior probability q.18 At the other extreme, if there is complete pooling at

equilibrium, shareholders do not obtain any information from the board’s contract choice and, thus,

are unlikely to replace the board (assuming potential replacements have a similar prior probability

of being independent). Therefore, the probability that the second-period board is independent at a

pooling equilibrium is unlikely to be higher than q.

It follows that it is not possible to directly compare the welfare implications of equilibria with dif-

ferent degrees of pooling, because such comparison would require considering potential future effects

on shareholder wealth. However, we can directly compare the welfare implications of different sepa-

rating equilibria, since they all lead to the same amount of information revelation. Since equilibria are

separating for a wide range of parameter values this limitation is not highly restrictive, but one should

keep it in mind when interpreting the welfare implications of the changes in disclosure requirements

and reputational pressures that we analyze in the next two sections.

Hidden pay and private benefits. Although we generally interpret hidden pay as a form of

opaque monetary compensation, the model allows for an alternative interpretation in terms of non-

18Let q2 > 0 be the probability that a board hired in the second period is independent. If boards identified as manager-
friendly were fired with probability one, the (ex ante) equilibrium probability that the board is independent in the second
period would be q + (1 − q)q2 > q.
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monetary private benefits. Thus, y could be interpreted as the monetary value for the manager of

some action taken by the firm and z(y) as the cost to the firm of that action. For example, instead

of compensating the manager for lower disclosed pay with, say, poorly disclosed pension benefits, the

board could compensate the manager by allowing him to make some inefficient decision valued by the

manager, such as hiring a relative or friend, directing the firm’s charitable contributions to the charity

favored by the manager (rather than the one favored by shareholders or with an optimal reputational

impact for the firm), or even investing in negative NPV projects cherished by the manager.

Partly hidden pay. In the model, the labor market for directors observes only the disclosed contract

when deciding the allocation of board seats. Of course, publicly available information other than the

disclosed contract (such as information on realized revenues and profits) could, in principle, allow

investors to learn about the amount of hidden pay. However, in practice, publicly available information

will typically be only of limited use to infer the amount of hidden compensation paid to the CEO, since

many factors other than the manager’s pay determine profits, and investors observe only accounting

measures of those factors (which the board could manipulate). For tractability, instead of incorporating

explicitly into the model the possibility of partial learning about hidden pay by the labor market, we

assume that the only piece of information used by the labor market when it attempts to infer the

board’s type is the disclosed contract.19We note that our assumption that hidden pay is truly hidden

is compatible with the labor market correctly inferring the amount of hidden compensation paid by

the board at separating equilibria.

19Suppose that realized profits are given by Π = r− t− c− z, where r and t are the realized values of revenues and the
manager’s disclosed compensation, respectively, c are costs other than the manager’s compensation, and z is the cost to
the firm of hidden pay. Suppose also that there is uncertainty about c, that c is privately observed by the board, and
that the board discloses an accounting measure ĉ = c+ z of c. Thus, ĉ (or Π) would be a valuable signal of hidden pay
in those cases in which the labor market for directors a) observed a contract that is offered with positive probability
by both board types and b) expected each board type to offer a different amount of hidden pay given that contract.
However, if the distribution of c has a large variance, the information provided by this additional information would
be limited. For tractability we do not model this possibility, because doing so would require considering both disclosed
and hidden pay as potential signals, greatly complicating the analysis. We note, however, that whether noisy signals of
hidden pay exist is immaterial for our results concerning separating equilibria. Moreover, the pooling equilibria obtained
in the model would survive in the presence of such noisy signals, since at these equilibria both boards set the same level
of hidden pay.
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4 The Impact of Disclosure Requirements and Monitoring

Regulation may alter the cost of hidden compensation by imposing stricter disclosure requirements or

by providing stronger incentives to accountants and auditors to reveal all forms of managerial compen-

sation. In this section, we investigate the impact of disclosure requirements and auditors’ incentives

by analyzing the impact of changes in z, the function describing the costs of hidden compensation,

on equilibrium outcomes. To do so, we assume that z belongs to a one-parameter family of functions

with parameter κ ∈ [0,K] such that: z(0;κ) = 0 for any κ, and zyκ = ∂2z
∂κ∂y (y;κ) > 0. Therefore, a

larger κ translates into larger marginal and total costs of hiding compensation.

What is the effect of stricter disclosure requirements on disclosed compensation and profits? As

hidden pay becomes more expensive, it becomes more costly for manager-friendly boards to compen-

sate the manager in hidden ways if they reduce the manager’s pay to imitate independent boards.

Therefore, the maximum disclosed pay that dissuades manager-friendly boards from imitating inde-

pendent boards may increase and, thus, the equilibrium disclosed pay chosen by independent boards

may increase as well. This increase, together with the greater cost of hiding compensation for indepen-

dent boards, leads to a reduction in equilibrium hidden pay, so there is substitution between disclosed

and undisclosed compensation. These results are stated in the following proposition and summarized

in Figure 1:20

Proposition 7 The separating level of disclosed pay w̃ and the independent board’s equilibrium dis-

closed pay are nondecreasing in κ. The equilibrium level of hidden compensation paid by the indepen-

dent board is nonincreasing in κ.

The substitution between disclosed and hidden pay implies that the observable effect of an increase

in the cost of hidden compensation may be an increase in the (disclosed) pay offered by independent

boards, and, thus, a reduction in the disclosed pay premium paid by manager-friendly boards.

20For the region with multiple equilibria, we say that the equilibrium disclosed pay is increasing in κ if the minimum
disclosed pay possible in equilibrium (w̃) and the maximum disclosed pay (other than w∗M , which is the same for all
values of κ) possible in equilibrium (wM ) are both increasing in κ. This definition can be restated more formally as
saying that the set of equilibrium salaries other than w∗M is increasing in κ in the strong set order (Milgrom and Shannon,
1994). The definition of nonincreasing for the level of hidden pay is analogous.
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It follows from Proposition 7 that stricter transparency requirements have both costs (higher

disclosed pay) and benefits (lower hidden pay) for shareholders. To evaluate the net effect of more

stringent disclosure requirements, consider the scenario described in Proposition 3. In that scenario

the independent board sets a level of disclosed pay, w̃, lower than its preferred level and pays no

hidden compensation. An increase in the cost of hidden compensation, by making imitation more

costly for the manager-friendly board, could allow the independent board to increase its disclosed pay

and still achieve separation (w̃ would increase). Since the independent board was not paying any

hidden compensation, the increase in the cost of camouflage will not reduce hidden pay. Thus, the

effect of an increase in the cost of hidden pay will be an increase in the manager’s total pay and a

corresponding reduction in expected profits. Moreover, if separation is still achieved, the same amount

of information about the board’s independence is revealed, so future profits would remain unchanged.

Therefore, an increase in the cost of hidden compensation may make the manager better off and

shareholders worse off. Intuitively, if disclosure requirements are lax, the independent board will be

likely to make use of inefficient hidden pay, and making disclosure requirements more stringent will be

likely to make shareholders better off. However, if disclosure requirements are already strict, greater

transparency requirements may just have the undesired effect of increasing disclosed pay. In the

following proposition we give a sufficient condition that ensures that there is such a thing as excessive

transparency. Before doing so, we make a technical assumption about the family of functions z:

Assumption 4

1. zy(0;κ)→ θMv
′(w) when κ→ K, and zy(0;K) = θMv

′(w).

2. For κ > 0 low enough: UM (w, s∗ − w, 1) > UM (w∗M , π
∗
M , 0).

The first part of the assumption ensures that for any w ≥ w, yM (w) → 0 as κ → K. At the same

time, Assumption 3 ensures that yM (w) > 0 for any κ ∈ [0,K). The second part of Assumption 4

states that when the cost of hiding pay is low enough, the manager-friendly board will be willing to

set a disclosed pay of w (and compensate the manager with cheap hidden pay) to pass as independent.
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Proposition 8 Suppose that Assumption 4 holds, that w∗I > w, and that:

UM (w, s∗ − w, 1) < UM (w∗M , π
∗
M , 0). (11)

Then, there is a κ̄ < K such that equilibrium profits are higher for κ̄ than for any κ ∈ (κ̄,K].21

Inequality (11) means that if hidden pay were not possible the manager-friendly board would prefer

setting its optimal contract and being recognized as manager-friendly over keeping the manager at

his reservation utility level and passing as independent. The condition w∗I > w implies that for small

reductions in w below w∗I the independent board would not compensate the manager with hidden pay.

Together, this condition and inequality (11) ensure that the board’s preferences place enough weight

on the manager’s utility. If these conditions hold, then Proposition 8 shows that making camouflage

too costly (that is, making pay too transparent) is harmful for shareholders.

Hermalin and Weisbach (2012) also predict a positive impact of stricter disclosure requirements

on CEO pay and argue that too much transparency may reduce firm value. In their model, improving

disclosure may increase executive compensation because managers also capture some of the benefits of

better monitoring or because they are adversely affected by greater disclosure, so that managerial pay

has to rise as a compensating differential. Hermalin and Weisbach (2012) also discuss the possibility

that better disclosure may lead managers to devote costly effort to distorting performance measures.

The mechanism we highlight is different and operates through the extra cost that stricter disclosure

requirements would impose on manager-friendly boards were they to imitate the compensation policies

of independent boards. This extra cost reduces the pressure on independent boards to lower disclosed

pay to signal their independence.

We note that even though we focus above on disclosure and auditing regulations as determinants

of κ, the cost of hiding compensation may also increase if corporate governance watchdogs, analysts,

or the media scrutinize more carefully firms’ compensation practices, since such scrutiny could make

21Notice the difference between the second part of Assumption 4, where the utility function is the derived U , and
expression (11), where the utility function is the primitive U .
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it more expensive to effectively hide pay from the public view. However, these external monitors

may also have an impact on equilibrium compensation by increasing the value of a reputation for

independence. We analyze this potential impact in the following section.

5 Reputational Pressure and CEO Pay

The board’s discounted future expected utility (uR) is a function of the labor market’s belief that the

board is independent, µ, and the parameter η, which measures the sensitivity of the board’s expected

utility to the labor market’s perception of its independence. In this section, we analyze how changes

in η influence equilibrium outcomes, as well as the factors that determine η.

An increase in η, by making imitation of independent boards more attractive for manager-friendly

boards, lowers independent boards’ equilibrium disclosed pay, since these boards are forced to reduce

the manager’s pay to signal their independence. However, greater reputational pressure on boards

has the potential cost of leading to a higher level of inefficient hidden pay, as independent boards

partly compensate the manager for the reduction in disclosed pay needed to signal independence. The

following proposition formally states these results, which we also summarize in Figure 1:

Proposition 9

1. The separating level of pay, w̃, is decreasing in η, and the maximum pay for which the manager-

friendly board would keep the manager at his reservation level, wM , is not affected by η.

2. yI(w̃) is nondecreasing in η (and increasing in η if yI(w̃) > 0) and yI(wM ), yM (wM ) are not

affected by η.

3. The maximum probability with which the manager-friendly board pays hidden compensation in

equilibrium is nondecreasing in η.

For parameter values such that there are only separating equilibria, independent boards’ equilib-

rium disclosed pay is wI = min{w∗I , w̃}. Therefore, part 1 implies that independent boards’ disclosed
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pay is nonincreasing in η and is decreasing in η as long as w̃ < w∗I , that is, as long as the independent

board has to reduce pay below its preferred level to signal its independence. When w̃ < wM , Propo-

sitions 5 and 6 show that there are multiple equilibria. In this case, part 1 ensures that the minimum

disclosed pay possible in equilibrium (w̃) is decreasing in η, while wM , which is the maximum disclosed

pay possible in equilibrium (other than w∗M ), is unchanged. Therefore, disclosed pay tends to decrease

when η increases.

Part 2 of Proposition 9 shows that, for parameter values for which there are only separating

equilibria, the level of equilibrium hidden compensation paid by the independent board (yI(w̃)) is

nondecreasing in η. For parameter values such that there are multiple equilibria, the maximum

level of hidden compensation possible in equilibrium (yI(w̃)) is nondecreasing in η and the minimum

level (yI(wM )) is not affected by changes in η. Therefore, even in those cases in which there are

multiple equilibria, we still obtain the same comparative statics result (although in weaker form due

to equilibrium multiplicity). Finally, part 3 shows that when there are multiple equilibria (so that the

independent board pays hidden compensation with probability one at any equilibrium), the maximum

probability with which the manager-friendly board pays hidden compensation, is also nondecreasing

in η. Therefore, Proposition 9 shows that hidden compensation will tend to increase when η increases.

Since hidden pay is inefficient, we immediately obtain the result that any η that leads to hidden

pay in equilibrium is inefficient. Let ηyT be such that wyT = w̃ for η = ηyT . Therefore, since hidden

compensation is paid in equilibrium for w̃ < wyI , and dw̃
dη < 0, it follows that:

Corollary 1 Any η ≤ ηyI is efficient, and any η > ηyI is inefficient.

High levels of η lead to lower disclosed pay but also induce greater pay distortions that reduce

profits for any level of disclosed pay. To ascertain the net impact on profits of a higher η we restrict

the analysis to values of η for which there are only separating equilibria. For these values of η, we

can obtain precise comparative statics results and unambiguous welfare implications, as discussed in

Section 3.4. To formally state these results, let ηT be defined as the level of η such that w̃ = wT .

Recalling that dw̃
dη < 0, it follows that ηM > ηI ≥ ηyI for ηyI defined above. It also follows from
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propositions 3-6 that for η < ηM there exists a unique separating equilibrium.

Proposition 10 Assume that η < ηM . Then:

1. If η < ηyI , then equilibrium expected profits are increasing in η.

2. If η > ηI , then equilibrium expected profits are decreasing in η.

Proposition 10 shows that too weak reputational pressure (η < ηyI ) is not optimal for shareholders.

For such low values of η, a higher η unambiguously increases profits, since it forces the independent

board to lower disclosed pay to separate from the manager-friendly board, yet the reduction in pay

is not large enough to induce the independent board to compensate the manager in hidden ways. At

the other extreme, when reputational pressures are strong enough to make the independent board

keep the manager at his reservation level (η > ηI), further increases in η reduce disclosed pay but

also increase hidden pay so that total managerial compensation is unchanged. However, profits fall

because hidden pay is costly. Therefore, for η < ηM , the optimal level of η for shareholders lies in the

interval [ηyI , ηI ].

What factors are likely to determine the value of parameter η? First, η is likely to be greater if

shareholders have a greater say in the appointment of directors. Second, greater scrutiny of executive

pay by the media or governance watchdogs is likely to increase η if the labor market for directors reacts

to media attention on executive pay or to the assessment of executive pay by corporate governance

watchdogs, as suggested by the evidence provided by Core et al. (2008) and Kuhnen and Niessen

(2012) (regarding press coverage of firms’ compensation practices) and Alexander et al. (2009), Choi

et al. (2009), and Ertimur et al. (2011) (regarding corporate watchdogs). Similarly, say-on-pay policies

may also increase η both by focusing shareholder attention on executive pay and, in those cases in

which compensation arrangements are voted down, by publicly signaling shareholder dissatisfaction

with compensation practices. This public show of opposition to the board’s pay decisions may hinder

its reelection as well as focus the attention of the shareholders of other firms on the executive pay

choices of the board whose pay proposal is voted down. Boards’ compensation decisions will also
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have a greater impact on directors’ employment prospects if shareholders are more likely to attribute

the board’s actions to the board’s formally independent directors. Thus, η may be higher if formally

independent directors have a greater influence over board decisions, as in those boards with a large

fraction of independent directors.22 Poor firm performance may also focus shareholders’ attention

on the firm’s compensation policies.23 Finally, director age and past experience may also play a

role, since the value of a reputation for independence may be, other things equal, lower for older

directors, because they face a shorter career. Therefore, it follows from Propositions 9 and 10 that

an increase in the power of shareholders in the election of directors, greater attention by the media

or governance watchdogs on executive pay, greater formal board independence, the implementation of

say-on-pay policies, the presence of younger outside directors, or poor firm performance may lead to

lower disclosed pay and higher hidden pay. The net impact for shareholder wealth of these changes

is likely to be positive when directors are very entrenched, but may become negative when directors’

prospects depend strongly on their reputation for independence.

Proposition 10 may offer an explanation for the use of hidden pay and inefficient compensation

structures in the 1990s and early 2000s at a time when many observers argue that the power of

CEOs decreased (see, e.g., Holmstrom, 2005) and directors became the subject of stricter monitoring.

According to our model, these very changes in the labor market for directors may have led to greater

pay distortions or more widespread use of hidden pay. Our model, however, does not yield the

prediction that total compensation would have increased following these changes. Therefore, it does

not explain the rapid increase in CEO compensation that took place in the 1990s. Complementary

22Results by Coles and Hoi (2003) and Ertimur et al. (2010) support this hypothesis. Coles and Hoi (2003) find that
rejecting antitakeover provisions affects positively the careers of nonexecutive directors, but only when nonexecutive
directors control the board. Similarly, Ertimur et al. (2010) find that the career prospects of independent directors are
affected more positively by the implementation of shareholder proposals in boards with a high fraction of independent
directors. However the estimated difference is small and only statistically significant in some specifications.

23Several articles provide suggestive evidence that shareholders may focus on compensation decisions when firms
perform poorly. Ertimur et al. (2011) find that the probability of receiving a compensation-related shareholder proposal
is decreasing in firm performance. Core et al. (2008) report that poor accounting performance is associated with a
higher probability of press coverage of CEO compensation and, in some specifications, that poor operating performance
is associated with greater negativity of press coverage. Core et al. find a less clear relation between stock returns and
press coverage of CEO pay, with firms with high positive stock returns and very low negative returns being less likely to
receive negative press coverage.
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explanations, such as shifts in the demand for skills as proposed by Gabaix and Landier (2008) and

Murphy and Zabojnik (2004), would be necessary to generate both increases in observed compensation

and an increase in the use of hidden pay or inefficient compensation structures.

6 Conclusion

Reputational concerns are, arguably, the single most powerful incentive for directors to act in the

interest of shareholders. The alignment of the interests of shareholders and the board is especially

important in the determination of executive compensation, because of the potentially strong incentives

by directors to favor the CEO. In this paper, we propose a model to investigate the impact of boards’

reputational concerns on the level and structure of executive compensation.

Our model yields the expected result that reputational concerns induce directors to lower executive

pay. However, we show that reputational concerns may also lead boards to pay managers in hidden

ways or structure compensation inefficiently. Moreover, a key insight of the model is that independent

boards may be more likely than manager-friendly boards to pay in hidden ways. In our model, hidden

pay emerges as an inefficient side effect of independent boards’ efforts to signal their independence to

investors, rather than as a strategy by manager-friendly boards to keep investors uninformed of the

high levels of executive compensation at their firms.

Another key implication of our model is that there is substitutability between disclosed and cam-

ouflaged forms of pay. On the one hand, independent boards will generally have lower disclosed pay

and higher hidden compensation than manager-friendly boards. On the other hand, independent

boards substitute between disclosed and hidden pay as a response to changes that affect the costs of

camouflaging pay or the value of a reputation for independence.

The theory developed in this paper yields several implications concerning the impact on executive

compensation and shareholder value of corporate governance trends and regulatory reforms that tend

to increase pay transparency and strengthen directors’ reputational concerns. Thus, we show that

corporate governance changes that increase the reputational pressure faced by directors are likely to
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reduce disclosed pay, but may also lead to an increase in the use of hidden pay. Moreover, when

reputational concerns are strong enough, a further increase in reputational pressure may reduce share-

holder wealth. Therefore, although greater media or investor attention to compensation decisions or

greater influence by shareholders over the director nomination process could lead to an efficient trans-

fer of wealth from managers to shareholders in some circumstances, such changes may also lead to an

increase in the use of inefficient hidden pay or to inefficient distortions in compensation contracts and

may even hurt shareholders.

We also show that corporate governance changes that make it more costly for boards to pay the

CEO in hidden ways (such as stricter disclosure requirements, stronger incentives for accountants and

auditors to fully disclose firms’ compensation practices, or the emergence of corporate governance

watchdogs) will generally discourage the use of hidden forms of pay. However, by making it more

costly for manager-friendly boards to imitate the compensation policies of independent boards, such

changes will also reduce the reputational pressure on independent boards to reduce transparent forms

of pay and may, thus, lead to higher disclosed compensation. Moreover, if disclosure requirements are

sufficiently stringent, making them stricter may reduce shareholder value. Therefore, the model has

the implication that too much transparency may reduce shareholder value.

There are several issues that we do not address in this paper and that, in our view, warrant future

research. First, we adopt a reduced form approach to modeling the labor market for directors. A more

detailed model of the labor market for directors may generate valuable additional insights regarding

the determinants of the value of a reputation for independence and its impact on boards’ decisions.

Second, we assume that hidden pay has no incentive effects. However, hidden pay could have incentive

effects if, for example, it is used ex post to compensate the managers of underperforming firms for

low realized levels of disclosed pay. We believe that the potential incentive effects of hidden pay

deserve further study. Finally, in the model we take directors’ compensation contracts as given. The

interplay between reputational concerns and the compensation contracts that boards grant themselves

is a fruitful area for future research.
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Appendix A Proofs

In all proofs we refer to the manager-friendly and the independent board as M and I, respectively.

Sketch of the proof of Lemma 1. Given disclosed payoffs (w, π), a board of type T will set the

level of hidden pay y that solves problem (Y):

max
y

(π − z(y)) + θT v(w + y) + ηµ

s.t y ≥ 0 (NN)

w + y ≥ w. (PC)

Inspection of this maximization problem shows that π does not affect the board’s choice of y.

Further, the objective function is strictly concave, so for any (w, θ), (Y) has a unique solution, which

can be expressed as a function y(w, θ) and satisfies the first order condition:

θT v
′(w + y)− z′(y) + λT + νT = 0, (FOCy)

where λT ≥ 0 and νT ≥ 0 are the Lagrange multipliers associated with the nonnegativity, (NN), and

the manager’s participation constraints, (PC), respectively.

Parts 1 and 2 of the lemma follow immediately from Theorems 4’-6 in Milgrom and Shannon

(1994).24 Let V : Y × W × Θ with Y = R+,W = R, and Θ = R+ be defined as V (y, w, θ) =

(π − z(y)) + θT v(w + y) + ηµ. Let S(w) = {y ∈ Y : y ≥ w − w} be the feasible set of problem (Y)

as a function of w. It follows immediately from the definition of S(w) that the set S is monotone

nonincreasing in w (if S(w) is an interval of the form [y(w),∞), S is monotone nonincreasing if

w′ > w implies that y(w′) ≤ y(w)).) Moreover, ∂2V
∂y∂θ > 0 (i.e., V has increasing differences in (y, θ))

and ∂2V
∂y∂w < 0 (i.e, V has decreasing differences in (y, w)). Therefore, Theorem 5 in Milgrom and

24Parts 1 and 2 can also be proven straightforwardly using standard implicit function techniques. We provide a proof
that relies on monotone comparative statics methods for the sake of brevity and to highlight that the results follow from
the sign of the cross-partial derivatives and do not hinge on the specific functional form assumed for U .
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Shannon (1994) implies that y(w, θ) is nondecreasing in θ for any w, so that yM (w) ≥ yI(w), which

proves part 1 of the lemma. Theorem 4’ in Milgrom and Shannon (1994), in turn, implies that y(w, θ)

is nonincreasing in w for any θ, so that yT (w) is nonincreasing in w, which proves the first statement

in part 2 of the lemma.25

Suppose now that yM (w) > 0. Then, either yM (w) is interior or yM (w) = w − w. In the former

case, it follows from implicit differentiation of (FOCy), v
′′ < 0 and z′′ > 0 that:

y′T =
θT v

′′

z′′ − θT v′′
< 0. (12)

For w such that (PC) is binding: yT (w) = w−w. Therefore, y′T = −1 < 0, which completes the proof

of part 2 of the lemma.

We relegate the proof of parts 3 and 4 to the Online Addendum, since they follow straightforwardly

from parts 1 and 2, v′′ < 0, z′′ > 0, and the first order condition (FOCy) of Problem (Y ).

Proof of Lemma 2. Define U(w, π, µ; θ) as the board’s utility when the board’s type is given by

θ, disclosed payoffs are (w, π), the labor market’s belief is µ, and the board sets its preferred level of

hidden pay given (w, π), y(w, θ):

U(w, π, µ; θ) ≡ U(w + y(w, θ), π − z(y(w, θ)), µ; θ). (13)

To prove part 1, it suffices to show that for any π, π′, µ, µ′, if w′ > w and w′ + yM (w′) > w, then:

[
U(w′, π′, µ′; θI)− U(w, π, µ; θI)

]
−
[
U(w′, π′, µ′; θM )− U(w, π, µ; θM )

]
< 0. (14)

For fixed (w, π, µ) and (w′, π′, µ′) with w′ > w, define G(θ) ≡ U(w′, π′, µ′; θ) − U(w, π, µ; θ). Then,

a sufficient condition for (14) is that G′(θ) ≥ 0 for any θ ∈ [θI , θM ] and that there exists an interval

(θa, θb) ⊂ [θI , θM ], such that G′(θ) > 0 for any θ ∈ (θa, θb). Since U is the value function of problem

25The theorems require Y to be a lattice, W and Θ to be partially ordered sets, and V to be supermodular in y. Since
Y , W , and Θ are subsets of R, they are lattices (and, hence, partially ordered). Moreover, since Y ⊂ R, any function is
supermodular in y (see Milgrom and Shannon, 1994, for details).
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(Y ), we can apply the Envelope Theorem and obtain:

∂U(w, π, µ; θ)

∂θ
= v(w + y(w, θ)). (15)

Therefore:

G′(θ) = v(w′ + y(w′, θ))− v(w + y(w, θ)). (16)

Thus, it follows from Lemma 1, w′ > w, and v′ > 0 that G′(θ) ≥ 0 for any θ. Further, we know from

Lemma 1 that if w′ + y(w′, θ) > w then w′ + y(w′, θ) > w+ y(w, θ). Therefore, if w′ + y(w′, θM ) > w,

then G′(θ) > 0 in some interval (θa, θb) ⊂ [θI , θM ], which proves part 1 of the lemma.

If w′ + y(w′, θM ) = w, then it follows from Lemma 1 that w′ + y(w′, θM ) = w + y(w, θM ) =

w′ + y(w′, θ′I) = w + y(w, θ′I) = w. Therefore:

U(w′, π′, µ′; θI)− U(w, π, µ; θI) =(π′ − π)−
[
z(w′ − w)− z(w − w)

]
+ η(µ′ − µ) =

=U(w′, π′, µ′; θM )− U(w, π, µ; θM ), (17)

which proves part 2 of the lemma. �

Sketch of the proof of Proposition 1. The complete proof can be found in the Online Addendum.

The basic idea is that the feasible set of the board’s problem (in which the board can use hidden pay)

is a subset of the feasible set of a modified problem in which hidden pay is not possible. This can be

seen straightforwardly if one formulates both problems as finding the profit maximizing payoffs net

of hidden pay (w̄, π̄) among the feasible ones. If hidden pay is not possible, for any feasible (w, π),

(w̄, π̄) = (w, π), so (w̄, π̄) is feasible if and only if w̄+ π̄ ≤ s∗. If hidden pay is possible, the inefficiency

of hidden pay implies that w+π ≥ w̄+π̄, so w̄+π̄ > s∗ would imply w+π > s∗. Therefore, a necessary

condition for feasibility is that w̄ + π̄ ≤ s∗. It follows that if (w̄, π̄) is feasible in the problem with

hidden pay, then it is also feasible in the problem with no hidden pay. With hidden pay, feasibility
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also requires that there exist some feasible disclosed payoff pair (w, π) such that w̄ = w + yT (w) and

π̄ = π− z(yT (w)). Thus, if (w̄∗, π̄∗) is the solution to the (relaxed) problem with no hidden pay, then

if (w̄∗, π̄∗) is feasible if hidden pay is possible, it will also be the solution to the board’s problem with

hidden pay. Since (w̄∗, π̄∗) is the board’s optimal payoff pair, it follows that yT (w̄∗) = 0. Therefore,

(w̄∗, π̄∗) is feasible, and, hence, optimal, in the board’s problem with hidden pay. It follows that the

optimal contract with hidden pay is the same as with no hidden pay and that the board pays no

hidden compensation. The efficiency of the contract follows from the fact that the board’s preferences

are increasing in π and w, so at the optimum w∗ + π∗ = s∗. The differences between the optimal

contracts of the two board types follow straightforwardly from θM > θI .

Equilibrium Definition. We incorporate the equilibrium condition that the labor market act opti-

mally given its belief µ into the function uR, which can be interpreted as the board’s expected utility if

the market plays its best response given µ.26 Thus, in our equilibrium definition we require only that

the market’s beliefs be consistent. We define an equilibrium as a Perfect Bayesian Equilibrium that

satisfies the Intuitive Criterion. Although this equilibrium concept is standard (see, e.g., Fudenberg

and Tirole (1991), page 452), we provide a definition applied to our model for the sake of clarity.

Let U
e
T denote the equilibrium payoff of a type-T board. Then, the labor market’s beliefs satisfy

the Intuitive Criterion if for any disclosed payoff pair (w, π) played with zero probability in equilibrium:

UM (w, π, 1) < U
e
M and U I(w, π, 1) > U

e
I ⇒ µ(w, π) = 1 (18)

UM (w, π, 1) > U
e
M and U I(w, π, 1) < U

e
I ⇒ µ(w, π) = 0 (19)

Thus, if a payoff pair (w, π) is dominated by the equilibrium payoff pair for board type T but not for

type T ′, if the market observes (w, π), then it believes that the board setting (w, π) is of type T ′.

Definition 1 A profile of board strategies ((wI , πI), (wM , πM )) and labor market beliefs µ(w, π) is a

26It is not necessary to assume that the market will play a best response in equilibrium, only that the board knows
the market’s response to belief µ.
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pure-strategy Perfect Bayesian equilibrium satisfying the Intuitive Criterion if:27

1. (wT , πT ) maximizes UT (w, π, µ) given µ(w, π) for T = I,M.

2. µ(wM , πM ) and µ(wI , πI) are derived from the equilibrium strategies using Bayes’ rule.

3. For any (w, π) /∈ {(wI , πI), (wM , πM )}, µ(w, π) satisfies the Intuitive Criterion.

We provide next a series of lemmas that we use repeatedly in the proofs of Propositions 3-6.

Lemma 3 Suppose that M plays (wM , πM ) with positive probability at a candidate equilibrium strategy

profile s, and let µ(wM , πM ) be derived from s using Bayes rule. If UM (wM , πM , µ(wM , πM )) ≥

UM (w∗M , π
∗
M , 0), then there are beliefs µ∗(w, π) that satisfy the Intuitive Criterion and such that, for

those beliefs, there are no profitable deviations for M to payoff pairs not played by I.

Proof of Lemma 3. Let (wT , πT ) be a payoff pair played with positive probability by T according to s

and let µT = µ(wT , πT ) be derived using Bayes rule from s. Now, let (w, π) be a payoff pair played with

probability zero by both board types and such that UM (w, π, 1) > UM (wM , πM , µM ). If U I(w, π, 1) <

U I(wI , πI , µI), the Intuitive Criterion requires µ(w, π) = 0. If U I(w, π, 1) ≥ U I(wI , πI , µI), the

Intuitive Criterion does not restrict µ(w, π). Thus, µ(w, π) = 0 satisfies the Intuitive Criterion.

For any (w, π), UM (w∗M , π
∗
M , 0) ≥ UM (w, π, 0). Thus, if UM (wM , πM , µM ) ≥ UM (w∗M , π

∗
M , 0),

then UM (wM , πM , µM ) ≥ UM (w, π, 0) for any (w, π). But for any (w, π) played with probability zero

by both board types and such that (w, π) could potentially be a profitable deviation for M , µ(w, π) = 0

satisfies the Intuitive Criterion, which completes the proof.28 �

It follows from Lemma 3 that to show that M is playing a best response to at least some be-

liefs that satisfy the Intuitive Criterion it is enough to check that for any (wM , πM ) played by M ,

UM (wM , πM , µ(wM , πM )) ≥ UM (w∗M , π
∗
M , 0) and UM (wM , πM , µ(wM , πM )) ≥ UM (wI , πI , µ(wI , πI))

for any (wI , πI) played by I, where µ(wT , πT ) is derived from the boards’ strategies using Bayes rule.

27A mixed-strategy equilibrium is defined analogously.
28We note that requiring µ(w, π) = 0 when the Intuitive Criterion does not pin down µ is not necessary to rule out

profitable deviations. Less extreme beliefs would also work as long as UI(wI , πI , 1) ≥ UI(w, π, µ). In the proofs below,
we choose µ(w, π) = 0 because it simplifies the derivations and because for some deviations, such beliefs would be in fact
required by more stringent refinements such as D1 (Fudenberg and Tirole, 1991).
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The second Lemma follows immediately from the definition of the Intuitive Criterion and the fact

that U is continuous and strictly increasing in its arguments:

Lemma 4 Let U
e
T denote the payoff of a type-T board at a candidate equilibrium e, and suppose that

for some feasible (w, π), UM (w, π, 1) ≤ U eM and U I(w, π, 1) > U
e
I . Then, there exists a feasible payoff

pair (w′, π′) such that UM (w′, π′, 1) < U
e
M , U I(w

′, π′, 1) > U
e
I , and such that the Intuitive Criterion

requires µ(w′, π′) = 1. Thus, e is not an equilibrium, since there exists a profitable deviation for I.

The following lemma proves the intuitive result that the board prefers an efficient disclosed payoff

pair over any disclosed payoff pair with a salary further away from its preferred salary (the proof is

in the Online Addendum):

Lemma 5 If w < w′ < w∗T and µ′ ≥ µ, then UT (w′, s∗−w′, µ′) > UT (w, π, µ) for any π ≤ s∗−w. If

w > w′ > w∗T and µ′ ≥ µ, then UT (w′, s∗ − w′, µ′) > UT (w, π, µ) for any π ≤ s∗ − w.

Lemma 5 has the implication that if (w, π) 6= (w∗T , π
∗
T ) then it is always possible to locally increase

the utility of a type T board (keeping µ constant), because if π < s∗ −w, then an increase in π alone

is feasible and it increases T ’s utility, and if π = s∗ − w, then moving along the efficient frontier of F

towards w∗T also increases T ’s utility.

Lemma 5 and the Intuitive Criterion lead to the next lemma, which implies that M ’s incentive

compatibility constraint is binding at any separating equilibrium in which (wI , πI) 6= (w∗I , π
∗
I ) (the

proof is in the Online Addendum):

Lemma 6 Suppose that I plays (wI , πI) with (wI , πI) 6= (w∗I , π
∗
I ) in equilibrium, and let µI = µ(wI , πI)

be derived by Bayes’ rule from equilibrium strategies. Then, if U
e
M denotes M ’s equilibrium payoff,

UM (wI , πI , µI) = U
e
M .

Next, we provide two important lemmas. The first one characterizes I’s equilibrium choices and

shows, intuitively, that: 1) reputational concerns do not lead I to increase pay, 2) I does not lower

pay below the level, w̃, that is sufficient to efficiently separate from M (unless w̃ > w∗I ), and 3) as
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long as there is room to lower total pay (wI > wM ), then I sets an efficient disclosed contract, since,

otherwise, it would be possible for I to profitably deviate by increasing π and lowering w in a way

that would not be profitable for M .

Lemma 7 If I plays (wI , πI) in equilibrium, then: 1) wI ≤ w∗I ; 2) if (wI , πI) 6= (w∗I , π
∗
I ), then wI ≥ w̃;

and 3) if wI > wM , then πI = s∗ − wI (i.e., the disclosed contract is efficient.)

Proof of Lemma 7. Assume that I plays (wI , πI) in equilibrium and let µI = µ(wI , πI) ≤ 1. First

note that if U
e
M denotes M ’s equilibrium utility, then Lemma 6 implies that if (wI , πI) 6= (w∗I , π

∗
I ),

then U
e
M = UM (wI , πI , µI).

Suppose that wI > w∗I . It follows from the definition of w∗I that U I(wI , πI , µI) < U I(w
∗
I , π
∗
I , 1). If

U
e
M = UM (wI , πI , µI) ≥ UM (w∗I , π

∗
I , 1), then Lemma 4 shows that there is a profitable deviation for

I. If U
e
M = UM (wI , πI , µI) < UM (w∗I , π

∗
I , 1), then one can find a sufficiently unattractive payoff pair

(w′, π′) ∈ F such that w′ ≤ w∗I and UM (w′, π′, 1) < UM (wI , πI , µI). But then the Intermediate Value

Theorem, continuity of UM , and connectedness of F ensure that one can find a payoff pair (w′′, π′′) ∈ F

with w′′ ≤ w∗I < wI and UM (w′′, π′′, 1) = UM (wI , πI , µI) = U
e
M . Therefore, w′′ ≤ w∗I < wI , w

∗
I > wM

and Lemma 2 imply that U I(w
′′, π′′, 1) > U I(wI , πI , µI), so Lemma 4 shows that there is a profitable

deviation for I. Thus, if I plays wI in equilibrium, then it has to be the case that wI ≤ w∗I .

Suppose that (wI , πI) 6= (w∗I , π
∗
I ), so U

e
M = UM (wI , πI , µI). Lemma 5 implies that if wI < w̃, then

U
e
M = UM (wI , πI , µI) < UM (w̃, s∗− w̃, 1) = UM (w∗M , π

∗
M , 0), so M would have a profitable deviation.

Thus, if (wI , πI) 6= (w∗I , π
∗
I ), then wI ≥ w̃.

Suppose that wI > wM . If πI < s∗ − wI , then (wI , πI) 6= (w∗I , π
∗
I ) (so that U

e
M = UM (wI , πI , µI))

and there exists a feasible (w, π) such that w < wI , π ≥ πI , and UM (w, π, 1) > UM (wI , πI , µI) =

U
e
M . But then (as above) one can find a sufficiently unattractive (w′′, π′′) ∈ F with w′′ ≤ w < wI

and UM (w′′, π′′, 1) = UM (wI , πI , µI) = U
e
M . Thus, it follows from Lemma 2 and wI > wM that

U I(w
′′, π′′, 1) > U I(wI , πI , µI), but Lemma 4 then implies that there is a profitable deviation for I,

which proves part 3. of the lemma. �
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The last lemma describes the range of parameter values for which there are no pooling equilibria

and the levels of disclosed pay that can be played by both types at a pooling equilibrium:

Lemma 8 If w̃ > wM , then there are no pooling equilibria. If both board types play (w, π) with positive

probability in equilibrium, then w + yI(w) = w + yM (w) = w, i.e., w ≤ wM .

Proof of Lemma 8. Suppose that there is pooling at (wp, πp), so µp ≡ µ(wp, πp) < 1, and that

wp > wM . µp < 1 implies that there are (w, π) ∈ F close to (wp, πp) with w < wp and UM (w, π, 1) >

UM (wp, πp, µp). But then (as in the proof of Lemma 7) one can find a payoff pair (w′′, π′′) ∈ F with

w′′ < wp and UM (w′′, π′′, 1) = UM (wp, πp, µp). Thus, it follows from Lemma 2 and wp > wM that

U I(w
′′, π′′, 1) > U I(wp, πp, µp), but Lemma 4 then implies that there is a profitable deviation for I.

Lemma 7 implies that either wI = w∗I or wI ≥ w̃. By definition, w∗I ≥ w > wM so w∗I cannot be

a pooling salary. Therefore, if there is pooling at wI , it has to be the case that wI ≥ w̃. But, as we

show in the previous paragraph, there can be pooling at wI only if wI ≤ wM . If w̃ > wM , the last

two conditions cannot hold simultaneously. �

Proof of Proposition 3. First, note that if w̃ > wM , Lemma 8 shows that there are no pooling

equilibria, so we restrict attention to separating equilibria. Thus, if (wT , πT ) is the equilibrium payoff

pair set by a type-T board, then Proposition 2 implies that wM = w∗M , πM = π∗M = s∗ − w∗M , and

U(wM , πM , 0) = U
∗
M . We describe the equilibria for different values of w̃:

1. w̃ ≥ w∗I . If wI 6= w∗I , then part 1 of Lemma 7 implies that wI < w∗I . At the same time, part

2 of Lemma 7, wI 6= w∗I , and w̃ ≥ w∗I imply that wI ≥ w̃ ≥ w∗I , a contradiction. Therefore, if

there is an equilibrium, wI = w∗I . Part 3 of Lemma 7 and w∗I > wM then imply that πI = π∗I .

But if (wI , πI) = (w∗I , π
∗
I ), then it follows from the definition of (w∗I , π

∗
I ) that there are no profitable

deviations for I. It also follows from w∗I ≤ w̃ and Lemma 4 that there are beliefs that satisfy the

Intuitive Criterion such that there are no profitable deviations for M either.

2. wyI ≤ w̃ < w∗I . In this case, I cannot play (w∗I , π
∗
I ) at a separating equilibrium, since w∗I > w̃

and π∗I = s∗ − w∗I imply that M would imitate. Then, Lemma 7 implies that wI ≥ w̃ and (since
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w̃ ≥ wyI > wM ) πI = s∗ − wI . It follows that if wI > w̃, then M would imitate. Thus, if there is a

separating equilibrium, wI = w̃ and πI = s∗− w̃. We check next that such separating equilibria exist.

Lemma 5, wI = w̃ < w∗I , and πI = s∗ − w̃ imply that no (w, π) with w < w̃ can be a profitable

deviation for I. Consider now (w, π) with w > w̃ and U I(w, π, 1) > U I(w̃, s
∗− w̃, 1). Since w̃ ≥ wyI >

wM , Lemma 2 implies that UM (w, π, 1) > UM (w̃, s∗ − w̃, 1) = U
∗
M . Thus, the Intuitive Criterion

does not restrict µ(w, π) for any such (w, π), so we can let µ(w, π) = 0. Hence, if U I(w̃, s
∗ − w̃, 1) ≥

U I(w
∗
I , π
∗
I , 0), then there are no profitable deviations for I. Now, optimality of (w∗M , π

∗
M ) and the

definition of w̃ imply that UM (w̃, s∗ − w̃, 1) = UM (w∗M , π
∗
M , 0) > UM (w∗I , π

∗
I , 0). Thus, Lemma 2 and

w̃ < w∗I imply that U I(w̃, s
∗ − w̃, 1) > U I(w

∗
I , π
∗
I , 0), so there are no profitable deviations for I.

Finally, wI = w̃ and Lemma 3 imply that there are beliefs satisfying the Intuitive Criterion such

that there are no profitable deviations for M . �

Proof of Proposition 4. The proof is identical to the proof of the case in which wyI ≤ w̃ < w∗I and

is omitted. The only difference is that w̃ < wyI implies that yI(w̃) > 0. �

Proof of Proposition 5. First note that (w∗I , π
∗
I ) cannot be played by I at a separating equilibrium,

since w∗I ∈ (w̃, w∗M ) and π∗I = s∗ − w∗I imply that M would imitate. Thus, Lemma 7 implies that

wI < w∗I and wI ≥ w̃. Now, if wI > wM , then part 3 of Lemma 7 would imply that πI = s∗ − wI ,

so wI > wM ≥ w̃ and Lemma 5 would imply that M would imitate I. It follows that, in equilibrium,

wI ∈ [w̃, wM ]. Moreover, if we let πf (w) be defined implicitly by UM (w, πf (w), 1) = UM (w∗M , π
∗
M , 0),

then (wI , πI) 6= (w∗I , π
∗
I ) and Lemma 7 imply that πI = πf (wI).

Thus, let wI ∈ [w̃, wM ] and πI = πf (wI). The definition of πf implies that (wI , πI) is not

a profitable deviation for M and Lemma 3 implies that there are beliefs that satisfy the Intuitive

Criterion such that there are no other profitable deviations for M . Therefore, it is enough to check

that there are no profitable deviations for I.

Consider a feasible (w, π) with w > wM . Since w > wM ≥ wI , Lemma 2 implies that we can let

µ(w, π) = 0, since it cannot be the case that the deviation is dominated for M but not for I. Thus,

by definition of w∗I , if U I(wI , πI , 1) ≥ U I(w
∗
I , π
∗
I , 0), then there are beliefs that satisfy the Intuitive
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Criterion such that there are no profitable deviations for I with w > wM . Now, it follows (as in the

proof of Proposition 3) from UM (wI , πI , 1) = UM (w∗M , π
∗
M , 0) > UM (w∗I , π

∗
I , 0), wI < w∗I , and Lemma

2 that U I(wI , πI , 1) > U I(w
∗
I , π
∗
I , 0). Thus, there are no profitable deviations for I with w > wM .

Consider now a deviation (w, π) with w ≤ wM . Lemma 2 and the definition of πf imply that:

U I(w, π, 1)− U I(wI , πI , 1) = UM (w, π, 1)− UM (wI , πI , 1) = UM (w, π, 1)− UM (w∗M , π
∗
M , 0), (20)

so the Intuitive Criterion does not restrict µ(w, π). If we let µ(w, π) = 0, (w, π) is not a profitable devi-

ation for I, since U I(w, π, 0) < U I(w
∗
I , π
∗
I , 0) and we showed above that U I(wI , πI , 1) > U I(w

∗
I , π
∗
I , 0).

Since wI ≤ wM < wI , then wI + yI(wI) = w at any separating equilibrium. Moreover, the

definitions of w̃ and πf imply that if wI > w̃, then πI = πf (wI) < s∗ − wI . �

Proof of Proposition 6. Lemma 8 implies that if there is pooling at (wp, πp), then wp ≤ wM .

If we let µp = µ(wp, πp), then wp ≤ wM implies that I cannot play with positive probability any

(w′, π′) with w′ > wM , since U I(w
′, π′, µ′) = U I(wp, πp, µp), w

′ > wM , and Lemma 2, would imply

UM (w′, π′, µ′) > UM (wp, πp, µp), so M would have a profitable deviation. Since w∗I > wM , it follows

that wI 6= w∗I , so Lemma 7 implies that if I plays (wI , πI) with positive probability at a pooling

equilibrium, then wI ∈ [w̃, wM ]. But this, in turn, implies that if M plays (w, π) with w > wM with

positive probability at a pooling equilibrium, then µ(w, π) = 0. Thus, if M plays such (w, π) with

positive probability, then (w, π) = (w∗M , π
∗
M ).

Let µ(w, π) be defined by: UM (w, π, µ(w, π)) = U(w∗M , π
∗
M , 0). Thus, for M to play (w, π) 6=

(w∗M , π
∗
M ), µ(w, π) ∈ [µ(w, π), 1]. Further, if M plays (w∗M , π

∗
M ) with positive probability, then

µ(w, π) = µ(w, π) for any (w, π) also played by M . If we let µM ≡ µ(wM , s
∗ − wM ), then w̃ ≤ wM

implies that µM ≤ 1. Further, it follows from Lemma 5 that for any µ, any feasible payoff pair

(w, π) 6= (wM , s
∗ − wM ) with w ≤ wM , and any board type T , UT (wM , s

∗ − wM , µ) > UT (w, π, µ),

so for any such (w, π), µ(w, π) > µM . Thus, if µM > q, then at any pooling equilibrium M must play

(w∗M , π
∗
M ) with positive probability. If µM ≤ q, then there may exist pooling equilibria at which both
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board types play with positive probability only payoff pairs with w ≤ wM .

Now, it follows from the definition of w̃ that µ(w̃, π) ≥ 1 for any feasible π. Thus, (wp, πp) can be

played with positive probability by both types only if wp ∈ (w̃, wM ] and πp ∈ (πf (wp), s
∗ − wp] (for

πf as defined in the proof of Proposition 5). Take one such (wp, πp) and assume that I plays (wp, πp)

with probability one and M plays (wp, πp) with probability σ ∈ (0, 1] and (w∗M , π
∗
M ) with probability

1− σ. If µ(wp, πp) ≤ q, then the equilibrium must be fully pooling (σ = 1). If µ(wp, πp) > q, then M

must play (w∗M , π
∗
M ) with positive probability. We prove the existence of partly pooling equilibria for

the latter case. The proof for the case µ(wp, πp) ≤ q is analogous, so we omit it.

Assume that µ(wp, πp) > q and let σ ∈ (0, 1) be such that, applying Bayes’ rule, µ(wp, πp) =

µ(wp, πp). By definition of µ(w, π), M is indifferent between (w∗M , π
∗
M ) and (wp, πp) if µ(wp, πp) =

µ(wp, πp). Then, it follows from Lemma 3 that there are beliefs that satisfy the Intuitive Criterion and

for which there are no profitable deviations for M for any (w, π) 6= (wp, πp). Further, for these beliefs

there is no profitable deviation for I either. On the one hand, for any deviation with w′ > wM > wp,

Lemma 2 implies that if there is no profitable deviation for M , there is no profitable deviation for

I either. On the other hand, for any deviation with w′ ≤ wM , Lemma 2 and wp ≤ wM imply that

the deviation is profitable for I if and only if it is profitable for M . Since there are no profitable

deviations for M , this implies that there are no profitable deviations for I either. Finally, it follows

from wp ≤ wM that yI(wp) = yM (wp) = w − wp.

The previous paragraph fully characterizes pooling equilibria at which I chooses a single payoff

pair with probability one. It can be shown analogously that there also exist pooling equilibria at

which wI randomizes between several payoff pairs with w ∈ [w̃, wM ] and π ∈ (πf (w), s∗ − w) and M

randomizes between those payoff pairs and (w∗M , π
∗
M ). �

Proofs of propositions 7-10. The proofs of propositions 7-10 consist mostly of straightforward, yet

somewhat tedious, implicit differentiation of the equations that define w̃, wT and wyT (for T = I,M).

Therefore, we relegate these proofs to the Online Addendum.
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Appendix B Compensation Contracts, Managerial Actions and Pay-

off Pairs: A Simple Example

Suppose that revenues r are determined by the manager’s action e ∈ R+ and a random shock ε:

r = e + ε, with ε ∼ N(0, σ2). Both e and ε are unobservable for the board. The board offers

the manager a disclosed compensation contract that makes pay, t, linear in revenues. We let (α, β)

represent the compensation contract such that t = α+ βr.

The manager is risk averse with exponential utility u(t, e) = −e−ρ(t−g(e)), where t is the manager’s

pay and g(e) = 1
2e

2 is the personal cost to the manager of taking action e. Therefore, the man-

ager’s certainty equivalent to contract (α, β) if the manager exerts effort e is simply E(t(α, β, r)|e)−

ρ
2V ar(t(α, β, r)|e) −

e2

2 = α + βe − ρβ2σ2

2 − e2

2 . It is immediate to show that the manager’s choice of

effort is e(α, β) = β. Therefore:

w(α, β) = α+
β2

2
(1− ρσ2); π(α, β) = (1− β)β − α, (21)

s(β) = β − β2

2
(1 + ρσ2). (22)

It follows from (21)-(22) that total surplus depends only on the level of incentives β and that, if there

are no restrictions on α, for any given β, any disclosed pair (w, π) such that w + π = s(β) can be

attained. Further, one can make s(β) arbitrarily low by setting a high enough β.

In this example, s has a unique maximum at β∗ = 1
1+ρσ2 , so s∗ = s(β∗) = 1

2(1+ρσ2)
. Thus, the set

of feasible payoffs is:

F =

{
(w, π) : w + π ≤ 1

2(1 + ρσ2)

}
. (23)

The fact that there is a unique level of beta that maximizes surplus implies that if two different

disclosed payoff pairs are efficient, then both have the same level of incentives β∗ and differ only in

the base salary.
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Appendix C Online Addendum to “Board Independence, CEO Pay,

and Camouflaged Compensation”

Proof of Lemma 1. We prove Parts 1 and 2 in Appendix A of the article. We prove parts 3 and

4 below. Throughout the proof, Problem (Y), the first order condition (FOCy), and the Lagrange

multipliers λT and νT are as defined in Appendix A of the article.

Part 3. The first inequality in Assumption 3 ensures that for w′ large enough:

θT v
′(w′)− z′(0) < 0, (24)

so yT (w′) = 0. On the other hand, for any w′′ < w, yT (w′′) > 0. Thus, it follows from continuity of

yT and the fact that yT is nonincreasing that there exists a wyT such that yT (wyT ) = 0, yT (w) = 0 for

w > wyT , and yT (w) > 0 for w < wyT , which proves part (a).

Part 1 implies that wyM ≥ w
y
I . Now, θMv

′(wyM )− z′(0) ≤ 0 implies that for some w′ ∈ (w,wyM ):

θIv
′(w)− z′(0) < 0, for any w ∈ (w′, wyM ). (25)

Now, νI = νM = 0 for w > w and Assumption 3 implies that wyM > w. Thus, (25) ensures that for

w ∈ (w′, wyM ), λI > 0 and yI = 0, so wyI < wyM , which proves part (b).

Part 4. Let w′ > w and assume that w′ + yT (w′) > w and w′ + yT (w′) ≤ w + yT (w). Then,

yT (w) > yT (w′) ≥ 0 and w + yT (w) > w, so yT (w) is an interior optimum and:

θT v
′(w + yT (w))− z′(yT (w)) = 0. (26)

But z′′ > 0, v′′ < 0 and the facts that yT (w) > yT (w′) and w′ + yT (w′) ≤ w + yT (w) then imply that

θT v
′(w′ + yT (w′))− z′(yT (w′)) > 0, (27)
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which is not possible, since yT (w′) is optimal, which requires θT v
′(w′ + yT (w′)) − z′(yT (w′)) ≤ 0.

Thus, if w′ > w and w′ + yT (w′) > w, it is not possible that w′ + yT (w′) ≤ w + yT (w), which proves

statement (a).

Now, suppose that w′+yT (w′) = w. Then, an analogous argument shows that it is not possible that

w′+yT (w′) < w+yT (w). Thus, it follows that if w′+yT (w′) = w, then w′+yT (w′) = w+yT (w) = w,

which proves statement (b).

Proof of Proposition 1. We can write the type-T board’s problem as:

max
w̄,π̄

π̄ + θT v(w̄)

s.t. w̄ ≥ w (28)

(w̄, π̄) ∈ FT , (29)

where FT ≡ {(w̄, π̄) : w̄ = w + yT (w), π̄ = π − z(yT (w)), for some (w, π) s.t. w + π ≤ s∗}.

Now, w+ π ≤ s∗ and z′ > 1 imply that π̄+ w̄ ≤ s∗. Thus, we can rewrite the board’s problem as:

max
w̄,π̄

π̄ + θT v(w̄)

s.t. w̄ ≥ w (30)

π̄ + w̄ ≤ s∗ (31)

(w̄, π̄) ∈ FT . (32)

Consider now the relaxed problem:

max
w̄,π̄

π̄ + θT v(w̄)

s.t. w̄ ≥ w (33)

π̄ + w̄ ≤ s∗. (34)
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This relaxed problem corresponds to the board’s problem if hidden pay is not possible, since, in this

case, one can define (w̄, π̄) = (w, π). To find the optimum of the board’s problem, we first find the

optimum of the relaxed problem (w̄∗T , π̄
∗
T ) and then show that (w̄∗T , π̄

∗
T ) ∈ FT , so that (w̄∗T , π̄

∗
T ) is an

optimum of the board’s problem.

Since the board’s objective is strictly increasing in π̄ and w̄, at the optimum payoff pair (w̄∗T , π̄
∗
T )

of the relaxed problem: w̄∗T + π̄∗T = s∗. Thus, the relaxed problem of a type-T board becomes:

max
w̄

(s∗ − w̄) + θT v(w̄)

s.t. w̄ ≥ w.

The concavity of v guarantees that the solution to this problem is given by the FOC:

−1 + θT v
′(w̄∗T ) + ιT = 0. (35)

where ιT ≥ 0 is the multiplier associated with the manager’s participation constraint. Assumption 3

guarantees that w̄∗M > w (ιM = 0). Therefore, v′′ < 0 and θM > θI imply that w̄∗M > w̄∗I , which, in

turn, implies that π̄∗M < π̄∗I , since w̄∗ + π̄∗ = s∗.

Let disclosed payoff pair (w∗T , π
∗
T ) be defined as (w∗T , π

∗
T ) = (w̄∗T , π̄

∗
T ). Since (w̄∗T , π̄

∗
T ) satisfies (34),

it follows that (w∗T , π
∗
T ) is a feasible disclosed payoff pair. Now, (35), ιT ≥ 0, and z′ > 1, imply that:

−z′(0) + θT v
′(w∗T ) < 0. (36)

But, then, the first order condition of Problem (Y), (FOCy), implies that, in that problem, either

λT > 0, so yT (w∗T ) = 0, or νT > 0, so w∗T + yT (w∗T ) = w. But, in the latter case, yT (w∗T ) = 0 as well,

since w∗T ≥ w. Thus, it follows from (w∗T , π
∗
T ) = (w̄∗T , π̄

∗
T ), yT (w∗T ) = 0, and feasibility of (w∗T , π

∗
T )

that (w̄∗T , π̄
∗
T ) ∈ FT , so (w̄∗T , π̄

∗
T ) is the board’s optimal payoff pair net of hidden pay. Disclosed payoff

pair (w∗T , π
∗
T ) generates net-of-hidden-pay payoff pair (w̄∗T , π̄

∗
T ), and one can immediately show that no

54



other feasible disclosed payoff pair leads to (w̄∗T , π̄
∗
T ). Thus, (w∗T , π

∗
T ) is the unique optimal disclosed

payoff pair of a type-T board. w̄∗M > w̄∗I and π̄∗M < π̄∗I imply that w∗M > w∗I and π∗M < π∗I . �

Proof of Lemma 5. Consider problem (Y) with the additional restriction that π = s∗−w, and let

VT (w) ≡ UT (w, s∗−w, µ) be the value function of this problem (as a function of w). The Lagrangean

of this problem is LT = (s∗ − w − z(yT )) + θT v(w + yT ) + ηµ+ λ̂T yT + ν̂T (w + yT − w), so applying

the Envelope Theorem:

V ′T =
∂LT
∂w

= θT v
′(w + yT (w))− 1 + ν̂T . (37)

Let w > w∗T . Then, it follows from Lemma 1 and w∗T ≥ w that w + yT (w) > w∗T ≥ w, so ν̂T = 0.

Further, the first order condition (35) implies that θT v
′(w∗T ) − 1 ≤ 0. Thus, v′′ < 0 implies that

θT v
′(w + yT (w)) − 1 < 0, so V ′T (w) < 0. Therefore, if w > w′ > w∗T , then for any µ′ ≥ µ and

π ≤ s∗ − w, UT (w, π, µ) ≤ VT (w) < VT (w′) ≤ UT (w′, s∗ − w′, µ′).

Let w < w∗T . If w∗T > w, then Lemma 1 implies that w + yT (w) < w∗T . Further, the first order

condition (35) implies that θT v
′(w∗T )−1 = 0. Thus, since ν̂T ≥ 0 and v′′ < 0, it follows from (37) that

V ′T (w) > 0. If w∗T = w (which can happen only for I), then w + yT (w) = w∗T = w for any w < w∗T .

Thus, z′ > 1 implies that V ′T (w) > 0. Therefore, if w < w′ ≤ w∗T , then for any µ′ ≥ µ and π ≤ s∗−w,

UT (w, π, µ) ≤ VT (w) < VT (w′) ≤ UT (w′, s∗ − w′, µ′). �

Proof of Lemma 6. If M sets (wI , πI) with positive probability (there is pooling at (wI , πI)), then

it has to be the case that UM (wI , πI , µI) = U
e
M . Now suppose that, in equilibrium, only I sets (wI , πI)

with positive probability (so µI = 1) and (wI , πI) 6= (w∗I , π
∗
I ). If UM (wI , πI , 1) > U

e
M , then (wI , πI)

would be a profitable deviation for M . If UM (wI , πI , 1) < U
e
M , then Lemma 5 and (wI , πI) 6= (w∗I , π

∗
I )

imply that there is a feasible (w′, π′) close enough to (wI , πI) such that U I(w
′, π′, 1) > U I(wI , πI , 1)

and UM (w′, π′, 1) < U
e
M . Therefore, the Intuitive Criterion would require µ(w′, π′) = 1, and (w′, π′)

would be a profitable deviation for I. Thus, it has to be the case that UM (wI , πI , 1) = U
e
M . �
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Proof of Proposition 7. Let VT (y, w, κ) ≡ UT (w+y, π−z(y;κ), µ) and yT (w;κ) = arg maxy∈S V (y, w, κ),

where S = {y ∈ R+ : w + y ≥ w}. As in the proof of Lemma 1, it follows from ∂2VT
∂y∂κ = −zyκ < 0 and

Theorem 5 in Milgrom and Shannon (1994) that yT (w;κ) is nonincreasing in κ.

Now, let w̃(κ) denote the value of w̃ as a function of κ, defined implicitly as:

s∗ − w̃(κ)− z(yM (w̃(κ);κ);κ) + θMv(w̃(κ) + yM (w̃(κ);κ)) + η = s∗ − w∗M + θMv(w∗M ). (38)

Implicit differentiation of this expression yields:

w̃′(κ) =
zκ(yM (w̃;κ);κ)− ∂yM

∂κ (w̃;κ) [θMv
′(w̃ + yM (w̃;κ))− zy(yM (w̃;κ);κ)]

θMv′(w̃ + yM (w̃;κ))− 1 + ∂yM
∂w (w̃;κ) [θMv′(w̃ + yM (w̃;κ))− zy(yM (w̃;κ);κ)]

. (39)

First note that w̃ < w∗M , w∗M > w and Lemma 1 imply that w̃ + yM (w̃;κ) < w∗M , so θMv
′(w̃ +

yM (w̃;κ))−1 > θMv
′(w∗M )−1 = 0. Further, (FOCy) implies that θMv

′(w̃+yM (w̃;κ))−zy(yM (w̃;κ);κ) ≤

0. Finally, ∂yM
∂w ≤ 0. Therefore, the denominator in (39) is strictly positive.

Now, if w̃ > wyM , then yM (w̃;κ) = 0, ∂yM
∂w (w̃;κ) = 0, and zκ(0;κ) = 0. Therefore, w̃′(κ) = 0.

If w̃ ∈ (wM , w
y
M ), then yM (w̃;κ) is interior, so θMv

′(w̃ + yM (w̃;κ)) − zy(yM (w̃;κ);κ) = 0. Thus,

since zκ(y;κ) > 0 for y > 0, w̃′(κ) > 0.

Finally, if w̃ < wM , then yM (w̃;κ) = w − w̃, so ∂yM
∂κ (w̃;κ) = 0. Thus, since zκ(y;κ) > 0 for y > 0,

w̃′(κ) > 0.

We consider first the case w̃ ≥ wM . In this case, there are only separating equilibria with wI =

min{w̃, w∗I} and wM = w∗M . w∗I and w∗M do not depend on κ, and w̃′ ≥ 0, so wI is nondecreasing

in κ. The equilibrium level of hidden pay is 0 if wI = w∗I and equal to yI(w̃;κ) if wI = w̃. From

∂yI
∂w (w̃;κ) ≤ 0, ∂yI

∂κ (w̃;κ) ≤ 0, and w̃′(κ) ≥ 0, it follows that:

dyI
dκ

(w̃;κ) =
∂yI
∂κ

(w̃;κ) +
∂yI
∂w

(w̃;κ)
dw̃

dκ
≤ 0. (40)

Consider now the case w̃ < wM . In this case, there are multiple equilibria, so we provide compar-
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ative statics concerning the maximum and minimum levels of disclosed and hidden pay that I may set

in equilibrium. If w̃ < wM , it follows from propositions 5 and 6 that the set of possible equilibrium

levels of disclosed pay for I is [w̃, wM ] and the set of possible equilibrium levels of hidden pay for

I is [yI(wM ), yI(w̃)]. We have already shown that w̃′ ≥ 0 and dyI
dκ (w̃;κ) ≤ 0. Thus, we need only

determine how wM and yI(wM ) change with κ. Now, wM (κ) is given by the FOC:

θMv
′(w)− zy(w − wM (κ);κ) = 0. (41)

Implicit differentiation of this expression yields:

w′M (κ) =
zyκ(w − wM ;κ)

zyy(w − wM ;κ)
> 0. (42)

Therefore, since yI(wM ) = w − wM for any κ, yI(wM ) is decreasing in κ. �

Proof of Proposition 8. As a preliminary step, we derive how wyT changes with κ. For any T , κ,

wyT (κ) ≥ w. Now, if θT v
′(w) − zy(0;κ′) ≤ 0 for some κ′ (which can happen only for T = I), then

wyT (κ′) = w. But then it follows from zyκ > 0 that θT v
′(w) − zy(0;κ) ≤ 0 and wyT (κ) = w for any

κ > κ′, so
dwy

T
dκ = 0. If wyT (κ) > w, then θT v

′(wyT (κ))− zy(0;κ) = 0. Thus, zyκ > 0 and v′′ < 0 imply

that
dwy

T
dκ < 0.

Therefore, since w̃′(κ′) ≥ 0, if w̃(κ) > wyT (κ) for some κ, then w̃(κ′) > wyT (κ′) for any κ′ > κ. Now,

since limκ→K yM (w) = 0, it follows that:

lim
κ→K

[UM (w, s∗ − w, 1)− UM (w, s∗ − w, 1)] = 0. (43)

Thus, if (11) holds, then (43) implies that for κ < K large enough:

UM (w, s∗ − w, 1) < UM (w∗M , π
∗
M , 0) = UM (w∗M , π

∗
M , 0), (44)
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so w̃(κ) > w. Now, for κ large enough, it follows from part 1 of Assumption 4 that wyI (κ) = w. Thus,

(11) implies that for κ < K large enough w̃(κ) > wyI (κ). Further, part 2 of Assumption 4 implies that

for κ > 0 low enough, w̃ < w ≤ wyT for any T . Therefore if we define κ̄ ≡ inf{κ : w̃(κ) > wyI (κ)},

then 0 < κ̄ < K. By continuity of wyI and w̃, wyI (κ̄) = w̃(κ̄). Thus, since wyM > wyI for any κ < K, it

follows that wyM (κ̄) > w̃(κ̄) and there is a κ0 ∈ (κ̄,K] such that κ ∈ [κ̄, κ0)⇒ w̃(κ) < wyM (κ).

Assume that w∗I > w Then, wyI (κ) < w∗I for any κ > 0, so w̃(κ̄) = wyI (κ̄) implies that there is a

κ1 ∈ (κ̄,K], such that w̃(κ) < w∗I for κ ∈ [κ̄, κ1). Letting κ2 = min{κ0, κ1}, it, thus, follows that if

κ ∈ (κ̄, κ2), then w∗I > w̃ and wyM > w̃ > wyI .

If there is a unique separating equilibrium, let π̂I(κ) ≡ s∗−wI(κ)− z (yI(wI(κ);κ);κ). Therefore:

π̂′I(κ) = −w′I(κ)− zκ(yI(wI ;κ);κ)− zy(yI(wI ;κ);κ)

[
∂yI
∂κ

(wI ;κ) +
∂yI
∂w

(wI ;κ)w′I(κ)

]
. (45)

Suppose now that κ ≥ κ̄. Since wyI (κ) ≥ w for any κ, and wM < w for any κ < K, it follows

from w̃(κ) ≥ wyI (κ) that w̃(κ) > wM , so there is a unique separating equilibrium with wI(κ) =

min{w̃(κ), w∗I}. Now, if κ > κ̄, then yI = 0 and π̂′I(κ) = −w′I(κ). If w̃(κ) > w∗I , then wI(κ) = w∗I and

π̂′I = 0. If w̃(κ) < w∗I , then wI(κ) = w̃(κ), so w̃′ ≥ 0 implies that π̂′I ≤ 0. Therefore, κ > κ̄⇒ π̂′I ≤ 0.

Further, if κ ∈ (κ̄, κ2), then w∗I > w̃ and wyM > w̃ > wyI , so (39) implies that w̃′ > 0 and π̂′I < 0.

Therefore π̂I(κ̄) > π̂I(κ) for any κ > κ̄. �

Proof of Proposition 9. The definition of wM implies that wM is unaffected by η. Abusing

notation, let w̃(η) be defined implicitly by:

[s∗ − w̃(η)− z(yM (w̃(η)))] + θMv(w̃(η) + yM (w̃(η))) + η = (s∗ − w∗M ) + θMv(w∗M ). (46)

Implicit differentiation of the above expression yields:

w̃′(η) = −
(

1

θMv′(w̃ + yM (w̃))− 1 + y′M (w̃) [θMv′(w̃ + yM (w̃))− z′(yM (w̃))]

)
< 0, (47)
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since we show in the proof of Proposition 7 that the denominator is positive for any w̃.

For given w, yT (w) is unaffected by η. Therefore, since w̃′(η) < 0, y′T (w) ≤ 0, and y′T (w) < 0 if

yT (w) > 0, it follows that yI(w̃) is nondecreasing in η and is increasing if yI(w̃) > 0. It also follows

from Lemma 1 that w̃ + yI(w̃) is nonincreasing in η (and decreasing if w̃ + yI(w̃) > w).

To prove part 3, let {(w1, π1), . . . , (wn, πn)}, with wi ≤ wM , be the set of payoff pairs played with

positive probability by I at a pooling equilibrium, and let (σT1, . . . , σTn) denote the probabilities with

which T plays the corresponding payoff pairs. Let µi denote the equilibrium beliefs for (wi, πi). It

follows from Bayes’ rule that for a given σIi and for µi ∈
[

qσIi
qσIi+(1−q) , 1

]
:

σMi = σIi

(
q

1− q

)(
1− µi
µi

)
∈ [0, 1]. (48)

Let σM be the probability with which M pays hidden compensation at a given pooling equilibrium:

σM ≡
n∑
i=1

σMi =

(
q

1− q

) n∑
i=1

σIi

(
1− µi
µi

)
. (49)

It follows from the proof of Proposition 6 that at any pooling equilibrium µi ≥ µ(wi, πi) ≥ µ(wM , s
∗−

wM ) = µM and µ(wi, πi) > µM for (wi, πi) 6= (wM , s
∗ − wM ). We also show in that proof that∑

i σIi = 1. Therefore:

σ̄ ≡
(

q

1− q

)(
1− µM
µM

)
≥
(

q

1− q

) n∑
i=1

σIi

(
1− µi
µi

)
. (50)

Now, if µM ≥ q, then σ̄ can be attained if σI((wM , s
∗ − wM )) = 1, σM ((w, π)) = 0 for any (w, π) /∈

{(wM , s∗−wM ), (w∗M , π
∗
M )} and σM ((wM , s

∗−wM )) is such that by Bayes’ rule one obtains µ(wM , s
∗−

wM ) = µM . Thus, σ̄ is the maximum value of σM possible at a pooling equilibrium. Then, from the

definition of µM , it follows immediately that µM is decreasing in η, so σ̄ is increasing in η. For any

µM < q, the maximum σM is one (since a fully pooling equilibrium is possible), so the maximum

probability with which M pays hidden pay is nondecreasing in η. �
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Proof of proposition 10. For any η, it follows from Lemma 1, Proposition 1, and Assumption 3

that w∗M > wyM > wyI ≥ w ≥ wI > wM .

Let ηyT be defined by wyT = w̃(ηyT ). Similarly, let ηT be defined by wT = w̃(ηT ). It follows from

Proposition 9 that ηyM < ηyI ≤ ηI < ηM . Now, w̃(η)→ w∗M as η → 0. Therefore, for η > 0 low enough

w̃(η) > wyM > wyI ≥ w ≥ wI > wM . Thus, ηyM > 0, so all the regions described in the statement of

the proposition are nonempty. Hereafter, we assume that η < ηM .

Let π̂I(η) ≡ s∗ − w̃(η)− z(yI(w̃(η))). Then:

dπ̂I
dη

= −dw̃
dη

(
1 + zy(yI)

dyI
dw

)
. (51)

Since dw̃
dη < 0, it follows that

dπ̂I
dη

> 0 ⇐⇒ 1 + zy(yI(w̃(η)))
dyI
dw

(w̃(η)) > 0 (52)

Assume that η < ηyI , so that w̃(η) > wyI . It follows that dyI
dw (w̃(η)) = 0 and, therefore, dπ̂I

dη > 0.

Therefore, for η < ηyI profits are increasing in η.

Assume now that η > ηI , so that w̃(η) < wI . It follows that dyI
dw (w̃(η)) = −1. Therefore:

1 + zy(yI(w̃(η)))
dyI
dw

(w̃(η)) = 1− zy(yI(w̃(η))) < 0, (53)

since zy > 1. Therefore, for η > ηI profits are decreasing in η. �
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