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Abstract

In the context of Dynamic Factor Models (DFMs), one of the most popular procedures for

factor extraction is Principal Components (PC). Measuring the uncertainty associated to PC

factor estimates should be part of interpreting them. However, the asymptotic distribution

of PC factors could not be an appropriate approximation to the finite sample distribution

for the sample sizes and cross-sectional dimensions usually encountered in practice. The

main problem is that parameter uncertainty is not taken into account. We show that several

bootstrap procedures proposed in the context of DFM with goals related to inference are not

appropriate to measure the uncertainty of PC factor estimates. In this paper, we propose an

asymptotically valid subsampling procedure designed with this purpose. The finite sample

properties of the proposed procedure are analyzed and compared with those of the asymptotic

and alternative extant bootstrap procedures. The results are empirically illustrated obtaining

confidence intervals of the underlying factor in a system of Spanish macroeconomic variables.

Keywords: Bootstrap, Dynamic Factor Models, Parameter uncertainty, Resampling Proce-

dures, Unobserved Components.
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1 Introduction

Currently, large systems of macroeconomic variables are easily accessible, and the consequent

extraction of the underlying common factors is an important issue for econometricians and policy

decision makers. The latent factors are useful instruments for a wide range of applications: i) to

represent economic cycles, trends and structural shocks; see Arouba et al. (2009), Camacho et

al. (2015) and Breitung and Eickmeier (2016) for some references; ii) to serve as instrumental

variables; see Favero et al. (2005), Bai and Ng (2010) and Kapetanios and Marcellino (2010); iii)

as regressors for the construction of Factor-Augmented Vector Autorregresive models (FAVAR)

or Factor-Augmented Error Correction models (FECM); see, for example, Bernanke et al. (2005),

Banerjee et al. (2014), Abbate et al. (2016) and Bai et al. (2016) or iv) in the context of factor-

augmented predictive regressions; see, for example, Stock and Watson (2006), Ludvigson and Ng

(2007, 2009), Ando and Tsay (2014), Bräuning and Koopman (2014) and Neely et al. (2014).

In this context, Dynamic Factor Models (DFMs), originally introduced by Geweke (1977) and

Sargent and Sims (1977), have received a great deal of attention; see Breitung and Eickmeier

(2006), Bai and Ng (2008), Stock and Watson (2011), Breitung and Choi (2013) and Bai and

Wang (2016) for excellent surveys. The main goal of DFMs is to explain the dynamics of

the system using a reduced number of unobservable common factors. Although, several factor

extraction methods have been proposed in the DFM literature, the most popular procedures

for large data sets are still based on Principal Components (PC) techniques; see, for example,

Ludvigson and Ng (2007, 2009, 2010), Wang (2009), Foester et al. (2011), Ando and Tsay

(2014), Gonçalves and Perron (2014), Neely et al. (2014), Djogbenov et al. (2015), Fossati

(2016) and Jackson et al. (2016) just to name a few recent references. The popularity of PC

factor extraction relies on its good theoretical properties and on its computational simplicity

which allows dealing with very large systems of economic or financial variables. However, in

practice, it is crucial to obtain not only accurate point estimates of the latent factors, but also

of their associated uncertainty. For example, Bai (2003) remarks the importance of constructing

confidence intervals of the extracted factors in empirical applications in which they represent

economic indices. Boivin and Ng (2006) also pay attention to the uncertainty of factor estimates

in the context of predictive regressions while Bai and Ng (2006) argue about the importance of

measuring correctly the uncertainty of factors in FAVAR models. More recently, Jackson et al.

(2016) argue that measures of factor uncertainty should always accompany applied work in order

to establish the statistical legitimacy of the results.

The asymptotic distribution of the factors extracted using PC is derived by Bai (2003) assum-

ing weak dependence in the idiosyncratic term while Bai and Ng (2006) propose estimators of the

asymptotic covariance matrix of the factors. More recently, Bai and Ng (2013) derive the lim-
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iting distribution of the factors and its corresponding covariance matrix estimation for different

identification restrictions. However, results on the performance of the asymptotic distribution

to approximate the finite sample distribution of the estimated factors are scarce. Ouysse (2006)

shows that, if the factor is static, the asymptotic variance is underestimated while Poncela and

Ruiz (2016) show that PC intervals based on the asymptotic distribution could underestimate

the uncertainty of the extracted factors 1. The poor performance of the asymptotic distribution

could be attributed to the fact that parameter uncertainty is not considered. Alternatively, the

finite sample distribution of the estimated factors can be obtained using resampling procedures

which could incorporate parameter uncertainty. Several authors propose using bootstrap in the

context of DFMs with other objectives than obtaining the distribution of the underlying factors.

For example, Yamamoto (2016) obtains bootstrap bands for impulse response functions (IRF)

in the context of FAVAR models; see also Barigozzi et al. (2016) and Forni et al. (2014) for

empirical applications. Ludvigson and Ng (2007, 2009 and 2010), Gospodinov and Ng (2013),

Gonçalves and Perron (2014), Djogbenou et al. (2015), Jackson et al. (2016) and Gonçalves et al.

(2017) implement bootstrap procedures in the context of the parameters of factor-augemented

predictive regression models; see also Alonso et al. (2008) and Alonso et al. (2011) who use

bootstrap procedures for constructing forecasting intervals for population projections and elec-

tricity prices, respectively. Finally, Shintani and Guo (2015) also propose using bootstrap to test

about the autoregressive parameter governing the dependence of the latent factor. However, the

procedures proposed in these papers obtain either the marginal Mean Squared Errors (MSEs) of

the underlying estimated factors and/or do not incorporate parameter uncertainty. Furthermore,

none of these papers analyze the performance of the bootstrap procedures when they are used

to obtain confidence bands for the extracted factors.

This paper has three main contributions. First, we provide extensive Monte Carlo experi-

ments in order to asses the conditions under which the asymptotic distribution of the factors

extracted using PC is a good approximation of the finite sample distribution. In concordance

with the results in Poncela and Ruiz (2016), we show that the asymptotic confidence intervals of

the estimated factors are unrealistically tiny when the time series size is not large relative to the

cross-sectional size. However, if the temporal dimension is large relative to the cross-sectional

dimension with the latter being large enough, the asymptotic distribution is appropiate to ap-

proximate the finite sample distribution of PC factors. Note that, in this latter case, parameter

uncertainty is not relevant while a large cross-sectional dimension minimizes the disturbance

1In the context of inference for the OLS estimator of the parameters of factor-augmented predictive regression

models, Gonçalves and Perron (2014) show that the finite sample properties of the asymptotic approach proposed

by Bai and Ng (2006) can be poor, especially if the cross-sectional dimension is not sufficiently large relative to

the temporal dimension.
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noise. The presence of serial dependence or heteroscedasticity of the idiosyncratic noises only

have mild effects on the properties of asymptotic intervals. However, when the idiosyncratic

noises are cross-sectionally correlated, the undercoverage of asymptotic intervals could be very

severe if the signal to noise ratio is small. We also analyze the performance of the main avail-

able bootstrap methods mentioned above when implemented to obtain confidence bands of PC

factors. We show that, if they obtain the marginal distribution of the factors, the correspond-

ing intervals are too wide as to be informative. On the other hand, if they do not incorporate

parameter uncertainty, their performance is similar to that of asymptotic intervals.

The second and main contribution of this paper is to propose an asymptotically valid sub-

sampling procedure designed to construct conditional confidence bands for PC factors. The

proposed procedure takes into account parameter uncertainty incorporating simultaneously the

uncertainty attributed to the fact that the factors are unobserved. The finite sample performance

of the proposed procedure is analyzed and compared with that of the asymptotic approach and

alternative bootstrap procedures. We show that the converages of the intervals based on the

proposed procedure are very close to the nominal coverages.

Finally, the last contribution of this paper is an empirical illustration of the implications

of using different procedures to construct confidence intervals for the Spanish economic cycle

extracted using PC implemented to a system of macroeconomic variables.

The rest of the paper is organized as follows. Section 2 describes the PC factor extraction

procedure and its asymptotic distribution. Monte Carlo experiments are carried out to asses

the adequacy of the asymptotic distribution to approximate the finite sample distribution of

the factors. Section 3 describes available bootstrap procedures proposed for DFM and analyzes

their finite sample performance. In Section 4, the new resampling procedure is proposed and its

asymptotic validity and finite sample performance are analyzed. Section 5 illustrates the results

with an empirical illustration to compute the uncertainty associated with the Spanish economic

cycle. Finally, Section 6 concludes.

2 Factor extraction

In this section, we describe the DFM considered in this paper and introduce notation. We also

describe the asymptotic properties of PC factor estimates. Finally, we carry out Monte Carlo

experiments to analyze the finite sample performance of asymptotic confidence intervals for the

extracted factors.
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2.1 The Dynamic Factor Model

We consider the following stationary DFM in which the latent factors and the idiosyncratic

components are VAR(1) processes

Y·t = PFt + ε·t, (1)

Ft = ΦFt−1 + ηt, (2)

ε·t = Θε·t−1 + a·t (3)

where Y·t = (y1t, ..., yNt)
′ is the N × 1 vector of observed variables at time t for t = 1, ..., T ,

P is the N × r matrix of factor loadings, Ft = (f1t, ..., frt)
′ is the r × 1 vector of unobservable

factors and ε·t = (ε1t, ..., εNt)
′ is the N × 1 vector of idiosyncratic noises. To uniquely fix the

T × r matrix of factors, F = (F1, ..., FT )′, and P (up to a column sign change), we assume that
1
T F
′F = Ir and P ′P is a diagonal matrix with its main diagonal values ordered in decreasing

order; see Bai and Ng (2013) for an extensive discussion on identification issues. The disturbances

ηt = (η1t, ..., ηrt)
′ and a·t = (a1t, ..., aNt)

′ are mutually independent Gaussian white noise vectors

with finite covariance matrices Ση and Σa, respectively. The matrices Φ and Γ are diagonal with

their parameters restricted so that Y·t is stationary. The number of factors, r, is assumed to be

known and fixed as the cross-sectional and temporal dimensions, N and T , respectively, grow.

The DFM in equations (1) to (3) has been frequently considered in the related literature; see,

for example, Jungbacker and Koopman (2015), Alvarez et al. (2016) and Jackson et al. (2016)

for some recent references.

Note that, according to (2) and assuming that E (FtF
′
t) = Ir, the point-wise marginal (uncon-

ditional) distribution of the factors is given by

Ft ∼ N(0, Ir), (4)

and, consequently, one can always construct confidence intervals for the unobserved factors using

this distribution. However, the corresponding confidence intervals will be uninformative. Con-

fidence intervals with less uncertainty can be constructed conditional on Y·t. Also, it is obvious

that the marginal MSE in (4) is not appropriate when the intervals are not centered at the

marginal mean (zero) but in a estimation of the factor based on Y·t.

2.2 Principal Components Factor Extraction

In the context of iid data, PC is justified because it is optimal in the sense that is the best

linear MSE dimension reduction from N to r generating mutually orthogonal factors. However,
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in a time series context, PC fails to exploit the information contained in the leads and lags of

Y·t. It still provides the best static r-dimensional approximation but has not minimum MSE

as alternative linear procedures involving the past will have smaller MSE. Furthermore, in a

dynamic context, PC factors will still be mutually orthogonal at lag zero but correlated at other

lags. Consequently, the resulting PC factors cannot be analysed component-wise but need to be

considered as vector time series, which are less easy to handle and interpret; see Brillinger (1981).

However, PC is still among the most popular factor extraction procedures due to its simplicity and

low computational burden when dealing with very large systems of macroeconomic or financial

variables. The method of PC minimizes the following sum of squares:

V (r) = (NT )−1
N∑
i=1

T∑
t=1

(
yit − P

′
iFt

)2
, (5)

where P ′i is the i′th row of P . Mechanically speaking, the factor estimates can be obtained

in one of two ways. The first solution is obtained concentrating out the matrix of weights P .

Using the normalization F ′F/T = Ir, the estimated factors, f̃ , are
√
T times the eigenvectors

corresponding to the r largest eigenvalues of Y Y ′ and P̃ ′ = 1
T f̃
′Y ′, with P̃ ′P̃ being diagonal and

Y being theN×T matrix of observations. The second solution is obtained after concentrating out

the factors, F . Then, P is
√
N times the eigenvectors corresponding to the r largest eigenvalues

of Y ′Y . Using the normalization 1
NP

′
P = Ir, yields

f =
1

N
Y ′P . (6)

Note that the matrices Y Y ′ and Y ′Y have identical nonzero eigenvalues and, consequently,

1

T
f
′
f =

1

N
P̃ ′P̃ = Ṽ , (7)

where Ṽ is the r × r diagonal matrix consisting of the first r eigenvalues of the matrix 1
TN Y Y

′

arranged in decreasing order. Then, f = f̃ Ṽ 1/2 and P̃ = PṼ 1/2; see Bai and Ng (2008). Let

f̂ = f
(

1
T f
′
f
)1/2

= fṼ 1/2. From the results above, we can see that f̂ = 1
N Y

′PṼ 1/2 = 1
N Y

′P̃ ,

and, consequently,

f̂t =
1

N
P̃ ′Y·t. (8)

The interest in expression (8) relyes on the fact that the factor estimates are expressed as a

linear filter of the original observations as in (6) while, simultaneously, they satisfy the restriction
1
T f̂
′f̂ = Ir.

It is well known that the extracted factors, f̂t, estimate only a rotation of the true factors,

HFt, where H =
(
P ′P
N

)
. Given that the filter used to estimate the factors at time t is based
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on Y·t, the MSE should also be computed conditional on this information. The MSE of the

estimated factors can be obtained as follows:

E
t

[(
f̂t −HFt

)(
f̂t −HFt

)′]
=

E
t

[(
f̂t − ft

)(
f̂t − ft

)′]
+ E

t

[
(ft −HFt) (ft −HFt)′

]
+ 2E

t

[(
f̂t − ft

)
(ft −HFt)′

]
, (9)

where ft is the factor extracted if the loadings were known, i.e.

ft =
1

N
P ′Y·t, (10)

and the t bellow the expectation means that it is conditional on Y·t. Note that the total MSE

of f̂t in expresion (9) is decomposed into the uncertainty due to parameter estimation which

represents the difference between the estimates PC factors obtained with known and unknown

parameters, the disturbance uncertainty which is due to the process of separating signal and noise

and it is inherent to the factor extraction and the cross-product between both. First, using (8)

and (10), we can obtain the following expression of the MSE attributed to parameter uncertainty

E
t

[(
f̂t − ft

)(
f̂t − ft

)′]
=

1

N2
E
t

[(
P̃ − P

)′
Y·tY

′
·t

(
P̃ − P

)]
. (11)

On the other hand, from equation (1) we can obtain the following expression for the rotated

true factors

HFt =
1

N
P ′Y·t −

1

N
P ′ε·t (12)

and, consequently, the disturbance uncertainty is given by

E
t

[
(ft −HFt) (ft −HFt)′

]
=

1

N2
E
t

[
P ′ε·tε

′
·tP
]
. (13)

Finally, the expectation of the cross-product in (9) is zero under the assumption of conditional

Normality; see Rodriguez and Ruiz (2012).

2.3 Asymptotic distribution of PC factors

The first asymptotic result on PC factor estimates in the context of strict DFM, is due to Connor

and Korajczyk (1986) who prove consistency of PC factors when N goes to infinity and T is fixed.

Bai (2003) shows that, in this case, consistency requires to assume asymptotic orthogonality

and homoscedasticity of the idiosyncratic components. Only under large N and T , Bai (2003)

establishes consistency in the presence of serial correlation and heteroscedasticity; see also Stock

and Watson (2002) who show that the space spanned by the estimated factors is consistent when

both N and T tend simultaneously to infinity if the serial and cross-sectional correlations of
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the idiosyncratic noises are weak and the factors are pervasive. Furthermore, if
√
N
T → 0, Bai

(2003) derives the limiting distribution of the factors. Under the restrictions 1
T F
′F = Ir and the

diagonal elements of P ′P being distinct and positive and arranged in decreasing order, Bai and

Ng (2013) show that
√
N
(
f̃t − Ft

)
d→ N

(
0,Σ−1p ΓtΣ

−1
p

)
, (14)

where Σp = lim
N→∞

1
NP

′P and 1√
N

N∑
i=1

Piεit
d→ N (0,Γt). Furthermore, Bai (2003) shows that, if

the idyosincratic noises are serially uncorrelated, the limiting distributions are asymptotically

independent across t. From (14), the asymptotic MSE can be estimated as follows

MSEt =

(
P̃ ′P̃

N

)−1
Γ̃t
N

(
P̃ ′P̃

N

)−1
, (15)

where, according to Bai and Ng (2006), Γ̃t can be estimated assuming that the idyiosincratic

errors are cross-sectionaly uncorrelated, as follows 2,

Γ̃t =
1

N

N∑
i=1

P̃iP̃
′
i ε̃

2
it (16)

where, P̃i is the i− th row of the estimated factor loading matrix P̃ and ε̃it = yit − P̃
′
i F̃t.

In the single factor model, when r = 1, approximated (1− α)% asymptotic confidence bands

for Ft can be constructed as follows

[Lt, Ut] =
[
f̃t − zα/2MSE

1/2
t , f̃t + zα/2MSE

1/2
t

]
(17)

where zα/2 is the α/2 quantile of the standard normal distribution. Given that f̂ = f̃ Ṽ =

f̃ 1
N P̃

′P̃ , (1− α) % confidence bands can also be written in terms of f̂ as follows

[Lt, Ut] =

( P̃ ′P̃
N

)−1
f̂t − zα/2MSE

1/2
t ,

(
P̃ ′P̃

N

)−1
f̂t + zα/2MSE

1/2
t

 . (18)

On the other hand, if r ≥ 2 the asymptotic (1− α)% ellipsoids are given by

( P̃ ′P̃
N

)−1
f̂t

MSE−1t

( P̃ ′P̃
N

)−1
f̂t

′ ≤ χ2
α(r), (19)

where χ2
α(r) is the α quantile of a Chi-squared distribution with r degrees of freedom.

As an illustration, we have generated a system of N = 100 variables of size T = 50 by the DFM

in equations (1) to (3) with idiosyncratic errors being serial and cross-sectionally uncorrelated,

2Bai and Ng (2006) propose this estimator of the asymptotic covariance matrix arguing that, if the cross-

correlation in the errors is small, assuming that they are zero could be convenient because the sampling variability

from their estimation could cause an efficiency loss.
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i.e. Γ = 0 and Σa = σ2aI with σ2a = 1. The number of factors is r = 1 with φ = 0.7 and

σ2η = (1 − φ2). Finally, the weights, P , have being generated by an U(0, 1) distribution with∑N
i=1 p

2
i1 = 31.27. The top left panel of Figure 1 plots the simulated factor, Ft, together with

the factor extracted by PC, f̂t, and the corresponding point-wise 95% asymptotic confidence

bands computed as in (18). We can observe that, in this particular realization, the asymptotic

bands are rather thin with the true factor being outside the intervals more often than expected.

Additionally, a system of variables with the same structure than that described above but with

r = 2 factors, φ11 = φ22 = 0.7 and T = 25 has also been generated with
∑N

i=1 p
2
i1 = 29.39 and∑N

i=1 p
2
i2 = 4.92. Figure 2 plots the simulated factor, and the corresponding 95% confidence

contours constructed as in (19) for t = 1, ..., 25. We can observe that the asymptotic contours

are too narrow, and leave the factors outside more often than they should.

Note that the estimated finite sample approximation of the asymptotic covariance matrix of

f̃t (and, consequently, of f̂t) in expression (15) is asymptotically equivalent to that of a least

squares (LS) estimator in which P is treated as if it were known explanantory variables. This

asymptotic approximation underestimates the covariance of f̃t as it does not take into account the

MSE attributed to parameter uncertainty in (11). Consequently, unless T is very large relative

to N , the asymptotic MSE will underestimate the finite sample MSE and the corresponding

coverage of the confidence regions of Ft will be bellow the nominal; see, for example, Poncela

and Ruiz (2016).

2.4 Finite sample performance

We carry out Monte Carlo experiments in order to assess the finite sample adequacy of the

asymptotic distribution when constructing confidence regions for the latent unobserved factors.

These experiments complement those carried out by Poncela and Ruiz (2016) and are carried

out for the shake of completeness 3. The Monte Carlo experiments are performed using DFM

of increasing complexity. The first model considered is the ubiquitous single factor model with

temporal and cross-sectionally independent idiosyncratic components. Then, we consider the

single factor model with the idiosyncratic components being either cross-correlated, temporally

dependent or heteroscedastic. Finally, we generate simulated systems by a DFM with r = 2. We

consider N,T = 20, 50 and 100 and the number of Monte Carlo replicates is R = 1000.

The first data generating process considered (DGP1) is the DFM in equations (1)-(3) with

r = 1, and the idiosyncratic noises being homoscedastic and cross-sectionally uncorrelated white

noises. The matrix of factor loadings, P , is generated once from a uniform distribution in

3Note that our Monte Carlo design is different from that in Ouysee (2006) as she considers Ft as fixed.



Maldonado & Ruiz 10

[0,1] with
∑N

i=1 p
2
i = 6.62, 15.87 and 33.91 for N = 20, 50 and 100, respectively. In order to

analyze the effect of the temporal dependence of the factor, we consider several values of the

autorregresive parameter, φ = 0.3, 0.5 and 0.7. In each case, the noise in equation (2), ηt,

has variance such that V ar (Ft) = 1. Finally, the covariance matrix of the idiosyncratic noises

is given by Σa = q−1I. Note that, given V ar (Ft) = 1, the signal to noise ratio is given by

qN−1
∑N

i=1 p
2
i . We consider q = 2, 1 and 0.5 and, consequently, regardless of N , the signal

to noise ratios are approximately given by 0.66, 0.33 and 0.16, respectively; see Breitung and

Eickmeier (2016) who point out that the accuracy of factor estimates can depend on the signal

to noise ratio. For each replicate, i = 1, ..., R, and moment of time, t = 1, ..., T , we construct

asymptotic point-wise intervals,
(
L
(i)
t , U

(i)
t

)
as in (18) with nominal coverages 70% and 95%

4. Then, at each moment of time, the empirical coverage is computed by counting how many

true factors, F (i)
t , i = 1, ..., R, lie inside the corresponding interval through the Monte Carlo

replicates as Ct = 1
R

∑R
i=1 I

(
F

(i)
t ∈

[
L
(i)
t , U

(i)
t

])
where I(·) is the indicator function. We should

mention that, in our Monte Carlo experiments, regardless of N and T , the coverages are rather

constant over time. Finally, we also compute the length of each interval at each moment of time

and for each replicate. Table 1 reports the average coverage across time and the average length

across time and Monte Carlo replicates for different temporal and cross-sectional dimensions

when φ = 0.7 and q = 15. We also report the Monte Carlo average of the scoring rule proposed

by Gneiting and Raftery (2007) to measure interval accuracy which is given by

SR
(i)
t = (U

(i)
t − L

(i)
t ) +

2

α
(L

(i)
t − F

(i)
t )I(F

(i)
t < L

(i)
t ) +

2

α
(F

(i)
t − U

(i)
t )I(F

(i)
t > U

(i)
t ). (20)

Table 1 shows that, regardless the cross-sectional and temporal dimensions, N and T re-

spectively, the coverages of the asymptotic bands are always well bellow the nominal coverages.

Furthermore, we can observe that, for fixed T , the undercoverage is larger as N increases. On

the other hand, for fixed N , increasing T reduces the undercoverage.

In order to analyze the role of q in the performance of the asymptotic bands, Table 2 reports

the coverages, lengths and SRs when the systems are generated by DGP1 with φ = 0.7 and

q = 2, 1 and 0.5 when N = T = 50. Note that, although the coverages are approximately

constant (around 0.6 and 0.85 when the nominals are 0.7 and 0.95, respectively), the length and

SRs of the asymptotic intervals increase when q decreases. This result could be expected given

that, when q is small, the uncertainty around the estimated factors is larger.

Finally, to have a better understanding of the finite sample properties of the asymptotic

PC confidence bands with more realistic structures of the idiosincratyc components, we also

4Forni et al. (2014) and Barigozzi et al. (2016) construct 64% confidence bands for IRFs. Forni et al. (2014)

also consider a nominal coverage of 90% while Bai (2003) considers 95%.
5Results for other values of φ and q are similar. They are available upon request.
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simulate systems with the same parameters as DGP1 but with serially dependent idiosyncratic

components generated by equation (3) with Γ = γIN and γ = 0.5 and 0.7 (DGP2) 6,7, cross-

sectionally heteroscedastic idiosyncratic components with Σa = diag
[
q−1U (0.1, 2)

]
(DGP3) and

cross-correlated idiosyncratic components with Σa being a Toeplitz matrix with parameter 0.5

(DGP4). Table 2 reports the Monte Carlo coverages, the average lengths and SRs for DGP2

with γ = 0.7, DGP3 and DGP4. We can observe that the results when the idiosyncratic terms

are heteroscedastic8 are quite similar to the results when the systems were generated by DGP1.

When the idiosyncratic component is serially correlated, the coverages reported in Table 2 are

slightly smaller than those reported for iid idiosyncratic components. Note that this further

undercoverage is more pronounced when q is small. Finally, when the idiosyncratic components

are cross-sectionally correlated, the asymptotic coverages are extremely low when q is small.

Recall that the asymptotic covariance matrix of the factors is computed as recommended by

Bai and Ng (2006) assuming that the idiosyncratic noises are cross-sectionally uncorrelated.

According to the results in Table 2, this wrong simplifying assumption may badly affect the

construction of confidence intervals for the factors when q is small.

Jackson et al. (2016) show that the conclusions for r = 1 could not always be generalized to

cases with r > 1. Consequently, we also perform Monte Carlo experiments in a DFM in equations

(1)-(3) with r = 2 where Φ = diag (0.7, 0.7) and Ση is diagonal and such that E (FtF
′
t) =

I. The idiosyncratic noises are defined as in DGP1 being homoscedastic and serial and cross-

sectionally uncorrelated. Finally, the matrix of factor loadings, P , is generated once from a

uniform distribution in [0,1] with P ′P being diagonal. The sums of squared loadings of the

first factor are 11.40, 28.54 and 58.53 when N = 20, 50 and 100, respectively, while the sums

corresponding to the second factor are 2.41, 4.24 and 8.65. Consequently, regardless of N , the

signal to noise ratios of the first factor are approximately 1.14, 0.57 and 0.29 when q = 2, 1 and

0.5 while for the second factor, the corresponding signal to noise ratios are 0.2, 0.1 and 0.05.

For each Monte Carlo replicate and moment of time, the asymptotic ellipsoid is computed as in

(19). Then, at each moment of time, we compute the coverage of the ellipsiods by counting how

many realizations
(
F

(i)
1,t , F

(i)
2,t

)
ly within the corresponding ellipsoids. Table 3, which reports the

average across time of these coverages, shows that the coverages of the asymptotic ellipsoids can

be extremelly low. If q = 1, even when T = 100, the average coverages are around 0.34 and

0.65 when the corresponding nominals are 0.7 and 0.95, respectivelly. The undercoverage when

q = 0.5 is even more severe.

6According to Bai (2003), the limiting distributions are only asymptotically independent if the idiosyncratic

noises are serially uncorrelated. However, we still analyze the performance of point-wise intervals as an approxi-

mation.
7The signal to noise ratio is given by q

(
1− γ2

)
N−1∑N

i=1 p
2
i .

8Results for other sample sizes and idiosyncratic structures are available from the authors upon request.
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Finally, note that, according to our experience in simulations with DFMs with r = 1, only

when both T and N are larger than 100 and the ratio T/N is larger than 2.5, the asymptotic

coverages are close to the nominal. We expect that for r > 1 the sample sizes should be even

larger for the asymptotic distribution of the factors to be appropriate to approximate their finite

sample distribution.

3 Extant bootstrap procedures for PC factors

Several alternative bootstrap procedures have been proposed in the context of DFMs with other

objectives than constructing confidence bands for extracted factors 9. In this section, we de-

scribe these extant bootstrap algorithms and carry out Monte Carlo experiments to assess their

adequacy when implemented to construct confidence bands for extracted PC factors. The extant

algorithms can be classified into two main groups: i) Block bootstrap and ii) residual bootstrap.

3.1 Block bootstrap

Gospodinov and Ng (2013) propose a moving block bootstrap of the original vector of observa-

tions. Denoting by Bt,m = (Y·t, Y·t+1, ..., Y·t+m−1) a block of m (1 ≤ m < T ) consecutive obser-

vations of Y·t, bootstrap replicates Y ∗(b)·t are obtained by drawing with replacement K = T/m

blocks from (B1,m, B2,m, ..., BT−m+1,m), for b = 1, ..., B, and m growing at a slower rate than

T . PC estimates f̃∗t
(b)

are obtained as
√
T times the eigenvectors corresponding to the r largest

eigenvalues of Y ∗(b)Y ∗(b)′. Denote by G̃∗t (x) the empirical distribution of f̃∗(b)t given by

G̃∗t (x) = #
(
f̃∗t

(b)≤x
)
/B. (21)

For each t = 1, ..., T and r = 1 10, (1− α) % block bootstrap confidence bands for the extracted

factors can be constructed as follows

[Lt, Ut] =
[
q̃∗(α/2)t, q̃

∗
(1−α/2)t

]
, (22)

where q̃∗it is the ith empirical quantile of G̃∗t (x). Alternatively, it is possible to compute the

bootstrap MSE at time t, as follows

MSEt =
1

B

B∑
b=1

(
f̃∗t

(b) − 1

B

B∑
b=1

f̃∗t
(b)

)2

. (23)

9Several authors propose implementing resampling techniques in the context of PC for iid observations; see,

for example, Beran and Srivastra (1985), Stauffer et al. (1985), Timmerman et al. (2007), Babamoradi et al.

(2013), Van Aelst et al. (2013) and Fisher et al. (2015).
10Scenarios with r > 1 are not considered since we will see that even when r = 1, this procedure is not

appropriate to construct confidence intervals for the estimated factors.
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Assuming normality of the factors, (1 − α)% block bootstrap confidence intervals are con-

structed by

[Lt, Ut] =
[
f̃t − zα/2MSE

1/2
t , f̃t + zα/2MSE

1/2
t

]
. (24)

It is important to note that, when bootstrapping Y ∗(b)·t as proposed by Gospodinov and Ng

(2013), one obtains replicates of the marginal distribution of {Y·t} and, consequently, of the

marginal distribution of Ft in (4). If confidence bands are constructed as in (22), they will be

centered at zero with MSE given by (23). Although, they will have the correct coverages, they

are uninformative. On the other hand, when the intervals are computed as in (24), the MSE

is marginal while the intervals are centered at f̃t. Note that these intervals will be too wide

with coverages expected to be above the nominal. As an illustration, we consider again the

same simulated system described above and construct confidence bands for the factor using (22)

and (24) with, as suggested by Gospodinov and Ng (2013), m = 4 and B = 1000 bootstrap

replicates; see Ludvigson and Ng (2007, 2009, 2010) for B = 1000. Figure 1 plots the true

and PC estimated factors together with 95% confidence bands. We can observe that, when the

bands are constructed as in (22), they are approximately constant around ±2 as expected given

that the factor is normally distributed with zero mean and variance 1. As mentioned above,

these bands have the assumed coverage but they are not informative about the evolution of the

factor. On the other hand, when the bands are constructed as in (24), they are much wider than

those based on the asymptotic approximation and the true factor is always within the bands.

Obviously, these bands are too wide.

The finite sample performance of the block bootstrap bands are analyzed by Monte Carlo

experiments using DGP1 described above. Even this idealized setting is sufficient to demonstrate

that the block bootstrap has a poor performance when implemented to obtain confidence intervals

for the factors. Consequently, we do not consider any of the other DGPs considered in the

previous section. Table 1 reports the coverages through Monte Carlo experiments, average lengths

and SRs for 70% and 95% block bootstrap confidence intervals constructed as in (22) and (24)

and denoted by block bootstrap 1 and block bootstrap 2, respectively. Consider first the intervals

constructed as in (22). Regardless of N and T , the coverages are close to the nominal but the

lengths and SRs are extremely large. The intervals are conservative to the point of being non-

informative. On the other hand, when the intervals are constructed as in (24), they are not

appropiate with coverages close to 1 even when the nominal coverage is 0.7. Observe that the

length is similar to that observed for the confidence intervals in (22). Furthermore, the average

SR measure of the block bootstrap intervals for the factors is larger than those of the asymptotic

intervals except when N = T = 20 and 95% confidence intervals are considered.

Regardless of whether they are based on (22) or (24), the block bootstrap intervals are not
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appropriate to obtain a measure of the uncertainty of the estimated PC factors.

3.2 Residual bootstrap

Bootstrapping DFM using residual bootstrap schemes is very popular. Ludvigson and Ng (2007,

2009 and 2010) obtain bootstrap replicates of Y·t as follows

Y ∗·t
(b) = P̃ f̃t + ε̃

∗(b)
·t (25)

where ε̃∗(b)·t are random extractions with replacement from G̃ε
11, the empirical distribution of

ε̃·t = Y·t − P̃ f̃t. PC estimates of the factors, f̃∗t
(b)
, are obtained as

√
T times the eigenvectors

corresponding to the r largest eigenvalues of Y ∗(b)Y ∗(b)′ . The residual bootstrap confidence in-

tervals can be constructed as in (22) or as in (24) based on the corresponding empirical bootstrap

density or MSE, respectively. When the intervals are constructed as in (24), they are called time-

residual bootstrap intervals. It is important to note that all bootstrap replicates of Y·t in equation

(25) are centered in the estimated common factor P̃ f̃t and incorporate uncertainty about the

idiosyncratic noises but not about the parameters. Consequently, although the corresponding

intervals are adequately centered, they are expected to have coverages bellow the nominal. As an

illustration, we consider again the same simulated factor described when constructing asymptotic

and block bootstrap intervals. Figure 1, which plots the factor together with 95% point-wise

time-residual bootstrap intervals12, shows that they are very similar to the asymptotic intervals

with the true factor lying very often outside their limits.

Table 1, which reports the Monte Carlo results of the time-residual bootstrap confidence

intervals for the same designs described above, shows that the average coverages are even lower

than those of the asymptotic intervals. Furthermore, they decrease when T increases. This is due

to the fact that, as T increases, the PC factor estimate is consistent and therefore the bootstrap

factors are very similar in all bootstrap replicates.

Shintani and Guo (2015) propose two alternative residual bootstrap procedures. For i =

1, ..., N , Yi· = (Yi1, Yi2, ..., YiT ) is the ith row of Y and ε̃i· = (ε̃i1, ε̃i2, ..., ε̃iT ) the correspond-

ing vector of residuals. The first algorithm proposed by Shintani and Guo (2015) is based on

generating bootstrap replicates of Yi·, for i = 1, ..., N , as follows

Y ∗i·
(b) = P̃

∗(b)
i f̃ + ε̃

∗(b)
i· (26)

where
(
P̃
∗(b)
i , ε̃

∗(b)
i·

)
are joint random extractions with replacement from pairs

(
P̃i, ε̃i·

)
. PC

11Gonçalves and Perron (2014) and Djogbenou et al. (2015) propose a wild bootstrap algorithm to obtain

replicates of ε∗·t
(b) that take into account potential heteroscedasticity while Breitung and Eickmeier (2016) propose

a block bootstrap scheme to account for the serial correlation of the idiosyncratic noises.
12The results when the residual bootstrap intervals are constructed as in (22) are almost identical.
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estimates of the factors, f̃∗t
(b)
, are obtained as

√
T time the eigenvectors corresponding to the r

largest eigenvalues of Y ∗(b)·t Y
∗(b)′
·t . Note that the bootstrap replicates in (26) are based on random

draws obtained from the cross-sample pairs of weights and residuals instead of bootstrapping in

the time dimension as in (25). This procedure is called cross-residual bootstrap. Given that the

estimated weights are also bootstrapped, the corresponding bands for the factors are expected to

be larger than those obtained using the time residual bootstrap in (25). However, all replicates

of Yi· are constructed based on the same estimated factors. Therefore, given that they do not

incorporate the uncertainty associated with the estimation of the factors, it is expected that the

coverages of cross-residual bootstrap intervals will be bellow the nominal. As an illustration, we

consider again the same simulated factor described above. Figure 1 plots the factor together with

its PC estimation and 95% cross-residual bootstrap intervals constructed as in (24) 13. We can

observe that, as explained before, the confidence bands are slightly larger than those obtained

using the asymptotic approach and the time-residual bootstrap. However, there are still too

many moments of time in which the true factors are outside the bands. Table 1 reports the

Monte Carlo results of the cross-residual bootstrap confidence intervals. We can observe that

the coverages are better than when the time-residual bootstrap is implemented but still well

bellow the nominal. Table 1 also reports the average SR interval accuracy measures when the

intervals are constructed using the cross-residual bootstrap. We can observe that the average

values of the SR statistic are even larger than those observed for the asymptotic intervals.

The second bootstrap algorithm proposed by Shintani and Guo (2015). Consider that r = 1.

In this case, bootstrap replicates are obtained as follows

F̃
∗(b)
t = φ̂F̃

∗(b)
t−1 + η̃

∗(b)
t (27)

Y ∗·t
(b) = P̃ ∗(b)F̃

∗(b)
t + ε̃

∗(b)
·t (28)

where φ̂ is the OLS estimator of the autorregresive parameter of an AR(1) model fitted to f̃t

and η̃∗t are random extractions with replacement from the empirical distribution function of the

centered residuals, η̂t = f̃t − Φ̂f̃t−1 and P̃ ∗(b) and ε̃∗(b)·t are defined as in (26). The bands, based

on the factors extracted using Y ∗(b)·t defined as in (28), are marginal given that they are based

on bootstrap replicates of the factors in (27) which are not based on the available information

set. Therefore, we expect a similar behaviour as that of the bands constructed using the block

bootstrap procedure 14.

Finally, Yamamoto (2016) considers two further residual-based bootstrap procedures. The

first one is based on factor estimation based on bootstrap replicates generated as in (25) while

13The results when the residual bootstrap intervals are constructed as in (22) are almost identical.
14Monte Carlo results are available upon request.
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the second one treats the original factor as in (27) 15. The performance of the first procedure is

the same as that of the residual bootstrap procedure proposed by Ludvigson and Ng (2007, 2009

and 2010) and, therefore, we do not consider it further in this paper. The second one obtain

marginal bands. Therefore, we expect a similar behaviour as that of the bands constructed using

the block bootstrap algorithm 16.

Summarizing the results in this section, we can conclude that none of the residual bootstrap

procedures available in the context of PC factor extraction in DFM, are adequate to construct

confidence bands of the factors with coverages close to the nominal ones.

4 Conditional Subsampling for Factors

Given that the asymptotic and bootstrap procedures described in previous sections are not ade-

quate when the aim is to construct confidence intervals of the underlying factors, in this section,

we propose a resampling strategy designed for this purpose. Its asymptotic validity is stablished

and its finite sample performance is analyzed through extensive Monte Carlo experiments.

4.1 Subsampling Procedure

In previous sections, we have seen that neither the asymptotic approximation nor the available

bootstrap procedures are adequate to measure the uncertainty associated with factors extracted

using PC when the temporal and cross-sectional sizes are not large enough. The main problem

associated with asymptotic intervals and regions is that they do not incorporate the parameter

estimation uncertainty. On the other hand, there are two main problems associated with the

failure of boostrap procedures. First, as explained above, these procedures either compute the

marginal MSE of the factors and/or do not incorporate paramater uncertainty. Second, there

is evidence about the bootstrap being fraught with problems when implemented in models with

high dimensions. For example, El Karoui and Purdom (2015) show that both residual bootstrap

and pairs bootstrap give poor inference on the LS estimator of the parameters of a regression

model when the number of regressors is large relative to the sample size. They show that the

residual bootstrap tend to give anti-conservative estimates while the pairs bootstrap gives very

conservative estimates as the ratio between the number of regressors and the sample size grows.

Recall that the PC estimator is related to the LS estimator and, as such, we expect the same

problems observed in regression models to affect PC factor extraction.

15Alonso et al. (2008 and 2011) propose a bootstrap with the same structure for forecasting purposes.
16Monte Carlo results are available upon request.
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First, to solve the problem of incorporating parameter uncertainty, in this paper, we propose to

compute the uncertainty associated with PC factor extraction by considering the decomposition

of the total MSE into the noise uncertainty and the parameter estimation uncertainty as in

(9). While the noise uncertainty can be computed using the asymptotic covariance in (16), we

propose computing the parameter estimation uncertainty in (11) by first computing the MSE of

f̂t conditional on the parameter estimates and then computing the average of this conditional

MSE over the distribution of the parameter estimator; see Hamilton (1986), Pfeffermann and

Tiller (2005) and Rodriguez and Ruiz (2012) for the same strategy in the context of state space

models. Consequently, the MSE attributed to parameter uncertainty is given by

E
P̃

[
E
t

[(
f̂t − ft

)(
f̂t − ft

)′
|P̃
]]

=
1

N2
E
P̃

[(
P̃ − P

)′
Y·tY

′
·t

(
P̃ − P

)]
, (29)

where the expected value E
P̃

is taken over the sampling distribution of P̃ . Note that because the

MSE in (29) depends on Y·t, it is conditional on the particular observed sample and it is not

marginal with respect to all possible realizations of Y·t.

Second, in order to deal with the lack of adequacy of the bootstrap in the context of high-

dimensional LS problems, we propose to estimate the sampling distribution of P̃ using sub-

sampling as proposed by Politis and Romano (1994); see Politis (2003) for the advantages of

subsampling. The basic idea is to approximate the sampling distribution of P̃ based on esti-

mates of the loadings computed over subsets of data of cross-sectional size N∗ < N . Under

weak hypothesis, the sample distribution of the PC estimator of the loadings based on N∗ and

that based on N should be close. Consequently, using subsampling, it is possible to accurately

estimate the sampling distribution of the PC estimator of the loadings.

The subsampling algorithm is given next. For b = 1, ..., B, obtain the N∗× T matrix Y ∗(b) by

drawingN∗ vectors randomly without replacement from Yi· = (yi1, yi2, ..., yiT ), whereN∗ = p×N

with 0 ≤ p ≤ 1. Using Y ∗(b), obtain PC estimates P̃ ∗(b) and compute

f̂
∗(b)
t =

1

N∗
P̃ ∗(b)′Y

∗(b)
·t . (30)

The subsampling analog of the MSE due to parameter uncertainty conditional on the param-

eter estimates given by E
t

[(
f̂t − ft

)(
f̂t − ft

)′
|P̃
]
is given by

(
f̂
∗(b)
t − f̂t

)(
f̂
∗(b)
t − f̂t

)′
and,

consequently,

E
P̃

[
E
t

[(
f̂t − ft

)(
f̂t − ft

)′
|P̃
]]

=
1

B

B∑
b=1

((
f̂
∗(b)
t − f̂t

)(
f̂
∗(b)
t − f̂t

)′)
. (31)

Finally, the subsampling analog of the MSE∗t of f̂t is given by
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MSE∗t =

(
P̃ ′P̃

N

)−1(
1

B

B∑
b=1

((
f̂
∗(b)
t − f̂t

)(
f̂
∗(b)
t − f̂t

)′)
+ Γ̃t

)(
P̃ ′P̃

N

)−1
, (32)

where Γ̃t is defined as in (16).

Subsampling works well under weak assumptions because each subset of sizeN∗ (taken without

replacement from the original data (Y1·, ..., YN ·) is indeed a sample of size N∗ from the true DGP

and, consequently, the sampling distributions of P̃ based on samples of size N∗ and N should

be close. As a result, choosing an adequate subsampling size, N∗, is very important for both the

asymptotic and finite sample validity of the procedure. Note that if N∗ is too large, there is not

enough variability in the estimated loadings as all of them will be obtained using similar samples.

On the other hand, if N∗ is too small, the variability could be too large and not similar to that

corresponding to the estimator based on the cross-sectional dimension N . For the asymptotic

validity of the subsampling estimator, P̃ ∗, N∗

N → 0 and N∗ → ∞ when N → ∞; see Politis et

al. (2001). However, the optimal block size is unknown in practice. In finite samples, we carry

out extensive simulation experiments and conclude that if q = 1 and p = 0.8 + 0.09 log10
(
T
N

)
,

the coverages of the estimated factors are optimal. On the other hand if q < 1, i.e. the signal

to noise ratio decreases, then p should be smaller while if q > 1 then p should be larger for the

subsampling coverages to be optimal.

The proposed procedure is computationally very simple 17. Furthermore, its asymptotic valid-

ity can be stablished by using the results in Politis et al. (2001) who show that under extremely

weak conditions, which include dependent data, if N
∗

N → 0 and N∗ →∞ when N →∞, the sub-

sampling distribution of the estimated loadings reproduce the sampling distribution. Therefore,

when computing the expectation in (31) for all posible values of P̃ , the parameter uncertainty is

properly approximated.

In the context of Gaussian DFM, as that considered in this paper, the PC extracted factors

are normally distributed. Consequently, when r = 1, the corresponding subsampling (1− α) %

point-wise confidence interval for the true factor, Ft,, is given by

[Lt, Ut] =

( P̃ ′P̃
N

)−1
f̂t − zα/2MSE

∗1/2
t ,

(
P̃ ′P̃

N

)−1
f̂t + zα/2MSE

∗1/2
t

 , (33)

where MSE∗t is defined as in (32). When r > 1, the subsampling regions are given by

17For B = R = 500 and N = T = 50, it takes 6 minutes and 52 seconds to compute the subsampling MSE on

Intel i7-6700 (4 cores - 2.6 GHz).
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( P̃ ′P̃
N

)−1
f̂t

MSE∗−1t

( P̃ ′P̃
N

)−1
f̂t

′ ≤ χ2
α(r). (34)

Bai (2003) shows that normality of the factors holds even without assuming normality. Con-

sequently, we guess that the coverages of the intervals and regions given by (33) and (34) can be

close to the nominals even in the context of non-Gaussian DFMs.

As an illustration of the behaviour of the subsampling intervals in (33), Figure 1 plots the

same simulated and PC estimated factor considered above together with the corresponding 95%

point-wise subsampling confidence bands.18 When compared with the asymptotic or the (time)

(cross) residual bootstrap bands, we can observe that the subsampling bands are wider. On the

other hand, the subsampling bands are more informative than the marginal bootstrap bands and

than the wrong bands constructed using the block bootstrap MSEs and centered in the estimated

factors.

We also illustrate the new proposed procedure to construct regions for estimated PC factors

when r = 2. With this purpose, we consider the factors simulated by the same DFM with r = 2

described in subsection 2.3 when dealing with the asymptotic confidence regions. Figure 2 plots

the point-wise subsampling and asymptotic 95% contours obtained for t = 1, ..., 25. It can be

observed that the subsampling regions are considerably wider than the asymptotic ones and

contain the true factors in a larger proportion of times.

It is important to note that subsampling is carried out in the cross-sectional dimension. Con-

sequently, the information on the temporal dependence is keeped. This is why this procedure can

be valid even if the factors are non-stationary as far as the idiosyncratic noises are stationary;

see Bai (2004) for the consistency of PC non-stationary factors.

Finally, note that the subsampling procedure proposed in this paper could also be easily

extended to compute the parameter uncertainty of the common component if it were of interest.

4.2 Finite Sample Performance

We carry out Monte Carlo experiments in order to asses the adequacy of the propose subsampling

procedure to approximate the MSEs of PC factors and, consequently, to construct confidence

intervals and regions. The Monte Carlo experiments are performed using the same DGPs consid-

ered above. The number of subsampling replicates is B = 1000. For each Monte Carlo replicate,

18The subsampling has been carried out with B = 500. The asymptotic results in Politis et al. (2001) are

stablished for all possible samples of size N∗. However, in practice, it is unfeasible to estimate the loadings for

all possible samples as its number is too large. The results based on B = 500 are already very reliable.
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i = 1, ..., R, we construct point-wise intervals as in equation (33). Table 1 reports, for nominal

coverages of 70% and 95%, the average coverage across time and the average length across time

and Monte Carlo replicates for different temporal and cross-sectional dimensions when φ = 0.7

and q = 119. Observe that, regardless N and T , the proposed subsampling procedure estimates

correctly the uncertainty of PC factors with coverages always close to the nominal. Further-

more, the SR measure of the subsampling intervals is also considerably smaller than those of the

asymptotic intervals and of the extant bootstrap procedures.

Table 2 reports the Monte Carlo results when T = N = 50 for DGP2, DGP3 and DGP4

described before, with serial (γ = 0.7), cross-sectional heteroscedasticity and cross-sectional

dependence in the idiosyncratic term, respectively. It can be observed that, the presence of serial

correlation and heteroscedasticity of the idiosyncratic term does not affect the finite sample

performance of the proposed subsampling procedure. Regardless of the signal to noise ratio, the

coverages are rather close to the nominal and much larger than those obtained when using the

asymptotic approximation. The same is true when there is cross-dependence and the signal to

noise ratio is large enough, q = 1, 2. However, when the signal to noise ratio is small (q = 0.5),

the proposed procedure has smaller coverages than the nominal. This could be due to the way

the covariance matrix is computed.

DFMs with r = 2 have also been considered. In particular, we consider the same DGP1

described when dealing with asymptotic regions. For each Monte Carlo replicate, we construct the

point-wise subsampling regions as in equation (34). Table 3, which reports the average coverages

across time, shows that, regardless the system dimensions and the value of q, the subsampling

coverages are very close to the nominal ones. Therefore, the new procedure estimates correctly

the uncertainty for more than one factor.

5 Empirical Illustration

In this section, we illustrate the importance of a proper measurement of the uncertainty asso-

ciated with PC estimates of the factors by analyzing a system of N = 60 seasonally adjusted

macroeconomic Spanish variables observed quarterly from the first quarter of 1980 to the last of

2015 with T = 144 20. The variables are converted to stationary. The list of all variables and their

stationary transformations are reported in the Appendix. After centering and standardizing each

of the variables in the system, the number of common factors is determined using the criteria by

19For brevity, we give only brief descriptions of the simulations in what follows. Detailed descriptions are

available upon request.
20The Database considered is built by the Ministry of Treasure and Public Administration, "Base de datos

trimestrales de la economía española".
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Ahn and Horenstein (2013) as one. The factor is extracted by PC and confidence intervals are

constructed using the asymptotic approximation and the subsampling procedure proposed in this

paper. The sum of squared weights is
∑N

i=1 p̃
2
i = 9.71 with estimated weights larger than 0.8 in

absolute value corresponding to: gross capital formation, capital stock, imports, unemployment

rate, rest of the word clients’ GDP and total resources of public administrations. The estimated

autorregressive parameter is φ̂ = 0.6, σ̂2a = [0.29, 0.99] with the mode close to 0, and serial depen-

dence with γ̂ = [−0.75, 0.96] distributed uniformly in this interval. Figure 3 plots the estimated

PC factor together with 95% confidence bands constructed using the asymptotic approach and

the subsampling procedure proposed in this paper. Additionally, a line representing a scenario of

zero-growth has been included in order to facilitate the interpretation of the cycles. As expected,

the asymptotic confidence intervals are narrower than those constructed following the procedure

proposed in this paper. Figure 4 plots the asymptotic and the subsampling MSEs. It can be

seen how the uncertainty estimated under both methods is fairly similar, with the exception of

periods of economic crisis (1993, 2001 and 2008). It can also be observed that the new procedure

detects phases of high macroeconomic uncertainty several periods in advance. If practitioners

and policy decision makers use the asymptotic approximation for constructing confidence bands

for the latent factors, it could lead to a wrong interpretation of the economic reality -cycles and

recessions-. The conclusion of a favourable economic situation could be drawn when both the

extracted factor and its confidence intervals have positive values. However, when the intervals

are constructed using subsampling, they include negative values. Consequently, it is not possible

to confirm a period of economic growth at the established level of confidence.

6 Conclusions

This paper explores different methods for computing the uncertainty associated to factors ex-

tracted using PC in DFMs. By means of extensive Monte Carlo experiments, the finite sample

performance of the asymptotic approximation is investigated. We show that it does not incor-

porate parameter uncertainty and, consequently, underestimates the uncertainty of PC factors,

causing narrower confidence intervals and regions than desired. Moreover, we show that the

extant bootstrap procedures proposed in the context of PC extraction in DFM are not capable

of measuring correctly the uncertainty associated to the factors. Some of them compute the

marginal MSE instead of the conditional one, while others do not take into account the parame-

ter uncertainty. We propose a subsampling algorithm to compute the uncertainty of PC factors

and to construct confidence intervals. The subsampling intervals and regions are computationally

very simple and asymptotically valid. Furthermore, they have better finite sample coverages than

those constructed using the asymptotic approximation or the bootstrap procedures available in
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the literature. Finally, we construct confidence intervals for the factor extracted from a system

of Spanish macroeconomic variables and show the importance of having adequate intervals when

interpreting wether the growth is truly positive.



Maldonado & Ruiz 23

References

[1] Abbate, A., Eickmeier, S., Lemke, W., Marcellino, M. (2016). The changing international

transmission of financial shocks: evidence from a classical time-varying FAVAR. Journal of

Money, Credit and Banking 48(4):573-601.

[2] Ahn, S., Horenstein A. (2013). Eigenvalue ratio test for the number of factors. Econometrica

81(3):1203-1227.

[3] Alonso, A.M., Peña, D., Rodríguez, J. (2008). A methodology for population projections: an

application to Spain. Statistics and Econometrics Series 12. WP 08-45. Universidad Carlos

III de Madrid.

[4] Alonso, A.M., Rodriguez, J., Sanchez, M. J., García-Martos, C. (2011). Dynamic factor

analysis and bootstrap inference: application to electricity market forecasting. Technometrics

53(2):137-151.

[5] Alvarez, R., Camacho, M., Perez-Quiros, G. (2016). Aggregate versus disaggregate informa-

tion in dynamic factor models. International Journal of Forecasting 32:680-694.

[6] Ando, T., Tsay, R.S. (2014). A predictive approach for selection of diffusion index models.

Econometric Reviews 33(1-4):68-99.

[7] Arouba, S.B., Diebold, F.X., Scotti, C. (2009). Real-time measurement of business conditions.

Journal of Business and Economic Statistics 27(4):417-427.

[8] Babamoradi, H., Van den Berg, F., Rinnan, A. (2013). Bootstrap based confidence limits

in principal component analysis - A case study. Chemometrics and Intelligent Laboratory

Systems 120:97-105.

[9] Bai, J. (2003). Inferential theory for factor models of large dimension. Econometrica

71(1):135-171.

[10] Bai, J. (2004). Estimating cross-section common stochastic trends in nonstationary panel

data. Journal of Econometrics 122(1):137-183.

[11] Bai, J., Ng, S. (2006). Confidence intervals for diffusion index forecast and inference for

factor-augmented regressions. Econometrica 74(4):1133-1150.

[12] Bai, J., Ng, S. (2008). Large dimensional factor analysis. Foundations and Trend in Econo-

metrics 3: 89-163.

[13] Bai, J., Ng, S. (2010). Instrumental variable estimation in a data rich enviroment. Econo-

metric Theory 26:1577-1606.



Maldonado & Ruiz 24

[14] Bai, J., Ng, S. (2013). Principal components estimation and identification of static factors.

Journal of Econometrics 176:18-29.

[15] Bai, J., Kunpeng, L., Lina, L. (2016). Estimation and inference of FAVAR models. Journal

of Business & Economic Statistics 34(4):620-641.

[16] Bai, J., Wang, P. (2016). Econometric analysis of large factor models. Annual Review of

Economics 8: 53-80.

[17] Banerjee, A., Marcellino, M., Masten, I. (2014). Forecasting with factor-augmented error

correction models. International Journal of Forecasting 30(3):589-614.

[18] Barigozzi, M., Lippi, M., Luciani, M. (2016). Non-stationary dynamic factor models for

large datasets, Finance and Economics Discussion Series; Division of Research and Statistics

and Monetary Affairs, Federal Reserve Bank: Washington, DC.

[19] Beran, R., Srivastra, M.S. (1985). Bootstrap tests and confidence regions for functions of a

covariance matrix. Annals of Statistics 13:95-115.

[20] Bernanke, B.S., Boivin, J., Eliasz, P. (2005). Measuring the effects of monetary policy: a

factor-augmented vector autoregressive (FAVAR) approach. The Quarterly Journal of Eco-

nomics 120:387-422.

[21] Boivin, J., Ng, S. (2006), Are more data always better for factor analysis?, Journal of

Econometrics, 132, 169-194.

[22] Bräuning, F., Koopman, S.J. (2014). Forecasting macroeconomic variables using collapsed

dynamic factor analysis. International Journal of Forecasting 30:573-584.

[23] Breitung, J., Choi, I. (2013). Factor Models. In: Handbook of Research Methods and Appli-

cations in Empirical Macroeconomics. Cheltenham:Edwar Elgar, pp. 249-265.

[24] Breitung, J., Eickmeier, S. (2006). Dynamic Factor Models. In: Modern Econometric Anal-

ysis. Heidelberg: Springer, pp. 25-40.

[25] Breitung, J., Eickmeier, S. (2016). Analyzing international business and financial cycles

using multi-level factor models: A comparison of alternative approaches. In: Advances in

Econometrics. Bingley: Emerald Group Publishing Limited, pp. 177-214.

[26] Brillinger, D.R. (1981). Time Series Data Analysis and Theory. San Francisco: Holden-Day.

[27] Camacho, M., Perez-Quiros G., Poncela, P. (2015). Extracting nonlinear signals from several

economic indicators. Journal of Applied Econometrics 30:1073-1089.



Maldonado & Ruiz 25

[28] Connor, G., Korajczyk, R.A. (1986). Performance measurement with arbitrage pricing the-

ory: A new framework for analysis. Journal of Financial Economics 15:373-394.

[29] Djogbenou, A., Gonçalves, S., Perron, B. (2015). Bootstrap inference in regressions with

estimated factors and serial correlation. Journal of Time Series Analysis 36: 481-502.

[30] El Karoui, N., Purdom, E. (2015). Can we trust the bootstrap in high-dimension?.

Manuscript.

[31] Favero, C.A., Marcellino M., Neglia F. (2005). Principal components at work: the empirical

analysis of monetary policy with large datasets. Journal of Applied Econometrics 20(5):603-

620.

[32] Fisher, A., Caffo, B., Schwartz, B., Zipunnikov, V. (2015). Fast, exact bootstrap princi-

pal component analysis for p > 1 million. Journal of the American Statistical Association

111(514):846-860.

[33] Foester, A., Sarte, P.D.G., Watson M.H. (2011). Sectoral vesus aggregate shocks: a struc-

tural factor analysis of industrial production. Journal of Political Economy 119:1-38.

[34] Forni, M., Gambetti, L., Sala, L. (2014). No news in business cycles. Economic Journal

124(581):1168-1191.

[35] Fossati, S. (2016). Dating US business cycle with macroeconomic factors. Studies in Non-

linear Dynamics of Econometrics 20(5):529-549.

[36] Geweke, J. (1977). The dynamic factor analysis of economic time series. In: Latent Variables

in Socio-Economic Models. North-Holland:Amsterdam, pp. 365-382.

[37] Gneiting, T., Raftery A.E. (2007). Strictly proper scoring rules, prediction and estimation.

Journal of the American Statistical Association 102(477):359-378.

[38] Gonçalves, S., Perron, B. (2014). Bootstrapping factor-augmented regression models. Jour-

nal of Econometrics 182:156-173.

[39] Gonçalves, S., Perron, B., Djogbenou, A. (2017). Prediction intervals for factor models.

Journal of Business & Economic Statistics 35(1):53-69.

[40] Gospodinov, N., Ng, S. (2013). Commodity prices, convenience yields and inflation. The

Review of Economics and Statistics 95(1):206-219.

[41] Hamilton, J.D. (1986). A standard error for the estimated state vector of a state-space

model. Journal of Econometrics 33(3):387-397.



Maldonado & Ruiz 26

[42] Jackson, L.E., Kose, M.A., Otrok, C., Owyan, M.T. (2016). Specification and estimation

of bayesian dynamic factor models: A monte Carlo analysis with an application to global

house price comovement. In: Advances in Econometrics. Bingley:Emerald Group Publishing

Limited, pp. 361 - 400.

[43] Jungbacker, B., Koopman, S. J. (2015). Likelihood-based dynamic factor analysis for mea-

surement and forecasting. Econometric Journal 18:1-21.

[44] Kapetanios, G., Marcellino, M. (2010). Factor-GMM estimation with large sets of possibly

weak instruments. Computational Statistics and Data Analysis 54(11): 2655-2675.

[45] Ludvigson, S.C., Ng, S. (2007). The empirical risk-return tradeoff: A factor analysis ap-

proach. The Journal of Financial Economics 83:171-222.

[46] Ludvigson, S.C., Ng, S. (2009). Macro Factors in Bond Risk Premia. The Review of Financial

Studies 22(12): 5027-5067.

[47] Ludvigson, S.C., Ng, S. (2010). A Factor Analysis of Bond Risk Premia. In: Handbook of

Empirical Economics and Finance. Boca Raton: Chapman and Hall, pp. 313 - 372.

[48] Neely, C.J., Rapach, D.E., Tu, J., Zhan, G. (2014). Forecasting the equity risk premium:

the role of technical indicators. Management Science 60(7):1772-1791.

[49] Ouysse, R. (2006). Approximate factor models: finite sample distribution. Journal of Sta-

tistical Computation and Simulation 76(4):279-303.

[50] Pfeffermann, D., Tiller, R. (2005). Bootstrap approximation to prediction MSE for state-

space models with estimated parameters, Journal of Time Series Analysis 26:893-916.

[51] Politis, D.N. (2003). The impact of bootstrap methods on time series analysis. Statistical

Science 18(2):219-230.

[52] Politis, D. N., Romano J. P. (1994). Large sample confidence regions based on subsamples

under minimal assumptions. Annals of Statistics 22:2031-2050.

[53] Politis, D. N., Romano J. P., Wolf, M. (2001). On the asymptotic theory of subsampling.

Statistica Sinica 11:1105-1124.

[54] Poncela, P., Ruiz, E. (2016). Small versus big data factor extraction. In: Advances in Econo-

metrics. Bingley:Emerald Group Publishing Limited, pp. 401-434.

[55] Rodriguez, A., Ruiz, E. (2012). Bootstrap prediction mean squared errors of unobserved

states based on the Kalman filter with estimated parameters. Computational Statistics and

Data Analysis 56:62–74.



Maldonado & Ruiz 27

[56] Sargent, T.J., Sims, C.A. (1977). Business cycle modeling without pretending to have too

much a-priori economic theory, New Methods in Business Cycle Research. Federal Reserve

Bank of Minneapolis: Minneapolis.

[57] Shintani, M., Guo, Z. (2015). Improving the finite sample performance of autoregression

estimators in dynamic factor models: A bootstrap approach. Econometric Reviews, forth-

coming.

[58] Stauffer, D. O., Garton, E.O., Kirk Steinhorst R. (1985). A comparison of Principal Com-

ponents from real and random Data. Ecology, 66(6):1693-1698.

[59] Stock, J.H., Watson, M.W. (2002). Forecasting using Principal Components from a large

number of predictors. Journal of the American Statistical Association, 97(460):1167-79.

[60] Stock, J.H., Watson, M.W. (2006). Forecasting with many predictors. In: Handbook of

Economic Forecasting. Elsevier, pp. 515-554.

[61] Stock, J.H., Watson, M.W. (2011). Dynamic factor models. In:The Oxford Handbook of

Economic Forecasting. Oxford: Oxford University Press.

[62] Timmerman, M.E., Kiers, H.A.L., Smilde, A. K. (2007). Estimating confidence intervals for

principal component loadings: a comparison between the bootstrap and asymptotic results.

British Journal of Mathematical and Statistical Psychology 60:295-314.

[63] Van Aelst, S., Willems, G. (2013). Fast and robust bootstrap for multivariate inference: the

R package FRB. Journal of Statistical Software 53(3):1-32.

[64] Wang, M-C. (2009). Comparing the DSGE model with the factor model: An out of sample

forecasting experiment. Journal of Forecasting 28:167-182.

[65] Yamamoto, Y. (2016). Bootstrap inference for impulse response functions in factor-

augmented vector autoregressions. HIAS Discussion Paper E-26.



Maldonado & Ruiz 28

Table 1: Monte Carlo coverages (C), lengths (L) and Scoring Rule (SR) of asymptotic, ex-

tant bootstrap procedures and new resampling bands when the idiosyncratic component is ho-

moscedastic and serial and cross-sectionally uncorrelated with r = 1, φ = 0.7 and q = 1.

T=20 T=50 T=100

N=20 N=50 N=100 N=20 N=50 N=100 N=20 N=50 N=100

Asymptotic

70% C 0.50 0.50 0.47 0.59 0.59 0.54 0.61 0.62 0.62

L 0.73 0.50 0.35 0.77 0.52 0.36 0.77 0.51 0.37

SR 1.87 1.27 1.05 1.49 1.03 0.84 1.41 0.91 0.7

95% C 0.77 0.78 0.74 0.86 0.87 0.83 0.88 0.90 0.90

L 1.38 0.94 0.67 1.45 0.98 0.67 1.46 0.96 0.64

SR 4.02 2.77 2.55 2.67 1.86 1.72 2.41 1.48 1.21

Block Bootstrap 1

70% C 0.77 0.77 0.79 0.76 0.76 0.76 0.74 0.74 0.75

L 2.01 2.01 2.01 2.04 2.02 2.04 2.06 2.05 2.03

SR 2.59 2.61 2.58 2.74 2.72 2.8 2.89 2.82 2.78

95% C 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

L 3.55 3.52 3.58 3.74 3.68 3.73 3.8 3.74 3.76

SR 3.67 3.65 3.69 3.85 3.79 3.86 3.93 3.86 3.85

Block Bootstrap 2

70% C 0.93 0.97 0.98 0.98 0.99 0.99 0.98 0.99 0.99

L 1.97 1.96 1.97 2.03 2.00 2.03 2.05 2.04 2.04

SR 1.97 1.99 1.99 2.05 2.01 2.03 2.07 2.04 2.04

95% C 0.99 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00

L 3.73 3.71 3.74 3.85 3.79 3.85 3.89 3.86 3.85

SR 3.79 3.71 3.74 3.85 3.79 3.85 3.89 3.86 3.85

Time-Residual Bootstrap

70% C 0.48 0.5 0.59 0.37 0.39 0.39 0.35 0.37 0.33

L 0.66 0.51 0.50 0.39 0.3 0.23 0.33 0.27 0.16

SR 1.66 1.18 0.98 1.44 1.06 0.84 1.35 1.01 0.75

95% C 0.76 0.78 0.85 0.64 0.66 0.66 0.61 0.64 0.58

L 1.24 0.97 0.95 0.75 0.57 0.44 0.63 0.52 0.31

SR 3.57 2.5 1.98 3.77 2.76 2.24 3.79 2.63 2.27

Cross-Residual Bootstrap

70% C 0.63 0.61 0.54 0.65 0.66 0.62 0.67 0.67 0.64

L 1.61 1.48 1.26 1.67 1.28 1.06 1.43 1.18 0.83

SR 2.64 2.57 2.36 2.66 1.99 1.98 2.27 1.69 1.43

95% C 0.86 0.85 0.82 0.83 0.87 0.87 0.91 0.91 0.88

L 2.84 2.68 2.38 2.84 2.45 2.03 2.89 2.24 1.50

SR 3.14 3.00 2.72 3.05 2.56 2.24 2.91 2.35 1.69

Subsampling

70% C 0.68 0.71 0.71 0.72 0.71 0.70 0.73 0.73 0.71

L 1.12 0.80 0.62 1.02 0.67 0.50 100 0.64 0.46

SR 1.71 1.18 0.95 1.47 1.00 0.79 1.39 0.90 0.69

95% C 0.93 0.94 0.93 0.94 0.94 0.94 0.95 0.96 0.95

L 2.12 1.51 1.17 1.93 1.26 0.95 1.89 1.22 0.87

SR 2.73 1.92 1.54 2.35 1.62 1.34 2.23 1.4 1.07
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Table 2: Monte Carlo coverages (C), lengths (L) and Scoring Rule (SR) of intervals based on the

asymptotic approximation and on subsampling for different idiosyncratic structures with r = 1,

T = N = 50.

q Nominal Independence Serial Dependence Cross-Dependence Heteroscedasticity

A
sy

m
p
to

ti
c

2 70 C 0.57 0.55 0.58 0.58

L 0.38 0.37 0.38 0.53

SR 0.81 0.83 0.81 0.83

95 C 0.84 0.83 0.85 0.85

L 0.72 0.70 0.72 0.73

SR 1.58 1.49 1.39 1.47

1 70 C 0.58 0.55 0.56 0.58

L 0.51 0.48 0.5 0.52

SR 1.03 1.04 1.01 1.05

95 C 0.86 0.83 0.85 0.86

L 0.96 0.91 0.95 1.01

SR 1.86 1.85 1.89 1.84

0.5 70 C 0.58 0.52 0.39 0.57

L 0.67 0.61 0.58 0.71

SR 1.38 1.44 1.87 1.35

95 C 0.86 0.81 0.66 0.85

L 1.26 1.16 1.10 1.34

SR 2.45 2.65 4.91 2.53

S
u
b
sa

m
p
li
n
g

2 70 C 0.69 0.68 0.69 0.69

L 0.5 0.49 0.49 0.5

SR 0.81 0.78 0.75 0.79

95 C 0.93 0.93 0.94 0.94

L 0.94 0.92 0.93 0.95

SR 1.27 1.15 1.09 1.47

1 70 C 0.7 0 0.69 0.70 0.70

L 0.65 0.64 0.66 0.69

SR 1.03 0.99 0.96 1.00

95 C 0.93 0.92 0.93 0.94

L 1.24 1.21 1.25 1.31

SR 1.62 1.57 1.62 1.55

0.5 70 C 0.71 0.67 0.58 0.71

L 0.88 0.88 0.98 0.97

SR 1.38 1.35 1.59 1.30

95 C 0.95 0.93 0.86 0.94

L 1.66 1.66 1.84 1.83

SR 2.1 0 2.16 2.69 2.21
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Table 3: Monte Carlo averages of coverages of asymptotic and subsampling ellipsoids when the

idiosyncratic component is homoscedastic and serial and cross-sectionally uncorrelated.

T=20 T=50 T=100

q Nominal N=20 N=50 N=100 N=20 N=50 N=100 N=20 N=50 N=100

A
sy

m
p
to

ti
c

2 70 0,22 0,19 0,15 0,33 0,32 0,30 0,40 0,40 0,41

95 0,45 0,37 0,28 0,59 0,58 0,55 0,69 0,71 0,70

1 70 0,17 0,16 0,10 0,31 0,27 0,25 0,34 0,34 0,35

95 0,45 0,33 0,23 0,54 0,51 0,48 0,65 0,66 0,68

0,5 70 0,17 0,11 0,08 0,19 0,15 0,16 0,20 0,21 0,24

95 0,44 0,23 0,17 0,47 0,31 0,29 0,47 0,46 0,48

S
u
b
sa

m
p
li
n
g

2 70 0,72 0,71 0,70 0,71 0,70 0,70 0,70 0,70 0,70

95 0,91 0,91 0,90 0,89 0,90 0,90 0,91 0,90 0,91

1 70 0,70 0,70 0,71 0,70 0,7 0,71 0,70 0,71 0,71

95 0,94 0,95 0,92 0,94 0,93 0,93 0,95 0,93 0,91

0,5 70 0,70 0,70 0,73 0,71 0,71 0,71 0,70 0,70 0,70

95 0,92 0,89 0,89 0,91 0,91 0,93 0,92 0,92 0,92
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Figure 2: Factor generated by a DFM (black points) together with 95% confidence contours

constructed using the asymptotic approximation (blue lines) and the subsampling procedure

(red line) for every t = 1, ..., 25.

Figure 3: Asymptotic (blue continous lines) and resampling 95% intervals (red discontinous lines)

for estimated economic cycle in Spain (black line).
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Figure 4: Asymptotic (blue lines) and resampling MSE (red lines) for estimated economic cycle

in Spain.
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Table 4: List of the macroeconomic Spanish variables and their stationary transformations.

Variable Stationarity

Gross Domestic Product mp I(2)

Non-Market Servive Sector GAV I(2)

Private GDP I(2)

Households and non-profit institutions serving households final consumption expenditure I(1)

Final consumption expenditure of Public Administrations I(2)

Gross Capital Formation I(1)

Gross Fixed Capital Formation I(2)

Stock variations I(0)

Exports of goods and services I(1)

Imports of goods and services I(1)

Imports of goods I(1)

Imports of consumer goods I(1)

Imports of capital goods I(1)

Imports of intermediate goods I(1)

Capital stock I(2)

GDPmp deflator I(2)

Labour market I(2)

Workers in employment I(2)

Workers in employment: full-time job equivalents I(2)

Ratio full-time job equivalents/workers in employment I(1)

Employees I(2)

Employees: full-time job equivalents I(2)

Workers in non-market services I(2)

Workers in non-market services: full-time job equivalents I(2)

Unemployment rate I(2)

Number of hours worked I(2)

Total compensation of employees (cp) I(2)

Net taxes on products I(2)

Private GDP at basic prices I(2)

GDP deflator at basic prices (2010=1) I(1)

Energy prices index I(1)

Spain’s Monetary Supply (M1) I(1)

Spain’s Monetary Supply (M3) I(2)

US 3-month interest rates I(1)

Vacancies I(2)

Nominal exchange rate I(1)

Debt of public administrations I(2)

Net financial assets national economy I(2)

Total resources of the public administrations I(1)

Market production (P. 11) I(1)

Non-market payments I(1)

Taxes on production and imports I(1)

Property income I(1)

Current taxes on income, wealth, etc. I(1)

Social contributions I(2)

Other current transfers I(1)

Capital transfers I(1)

Overall employement in public administrations I(2)

Intermediate consumption I(2)

Other taxes on production I(1)

Subsidies I(1)

Social benefits other than transfers in kind I(2)

Social transfers in kind related to the expenses in products supplied to households by market producers I(1)

Purchases minus Transfers of non-financial Assests I(0)

Lending (+)/Borrowing (-) capacity I(1)

Unemployment benefits I(2)

Stock of public capital I(2)

Current taxes onincome I(1)

3-month yields I(1)


