
Analytical characterization of failure recovery in REAP

A. de la Oliva a,*, I. Soto a, A. García-Martínez a, M. Bagnulo a, A. Azcorra a,b

aDepartamento de Ingeniería Telemática, Universidad Carlos III de Madrid, Spain
b IMDEA Networks, Avda. Mar Mediterraneo, 22 Leganes, Madrid 28918, Spain

a r t i c l e i n f o

Article history:
Received 24 February 2009
Received in revised form 19 October 2009
Accepted 21 October 2009
Available online 25 October 2009

Keywords:
IPv6
SHIM6
Reachability
Failure
Robustness

a b s t r a c t

This paper characterizes analytically the performance of REAchability Protocol (REAP), a network layer
end-to-end recovery protocol for IPv6. REAP was developed by the IETF SHIM6 Working Group as part
of its multihoming solution. The behavior of REAP is governed by a small number of parameters: three
timers, a simple characterization of the application traffic, and the communication delay. The key figure
of merit of REAP performance is the time to recover from a path failure as seen by the upper layers, figure
that cannot be trivially obtained, despite the apparent simplicity of this reachability protocol. In this
paper we provide upper bounds for the recovery time of REAP for different deployment scenarios, apply-
ing these analytical results to two interesting case studies, TCP and VoIP traffic.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The SHIM6 (Site Multihoming by IPv6 Intermediation) Working
Group1 of the IETF has developed a framework that enables scalable
fault tolerance protection for on-going communications in IPv6 mul-
tihomed environments. Considering that the large address space of
IPv6 allows end hosts to configure as many addresses as available
providers, this framework aims to enable the use of these different
addresses for a single communication which enables the use of dif-
ferent paths. The address agility function is performed by a shim
sublayer, named SHIM6, defined inside the IPv6 layer. This SHIM6
sublayer manages the mapping between the addresses being ex-
posed to the upper layers, which remain constant during the com-
munication lifetime, and the addresses included in the packets
sent through the wire, that could vary and enforce the use of differ-
ent paths. The SHIM6 protocol [1] creates and manages these map-
pings between the SHIM6 sublayers of the two nodes involved in
the communication.

A fault tolerance solution requires a mechanism to detect fail-
ures across the communicating path, and a mechanism to discover
a valid path after a failure. In particular, the mechanism should al-
low transport layer survivality, to be fully transparent for trans-
port-layer sessions [2]. The SHIM6 Working Group defines such a
component, named REAP (REAchability Protocol, [3]), which de-

tects failures in any of the two unidirectional paths in use for a
communication, and explores different unidirectional paths to find
a valid one after an outage. Note that a bidirectional path is mod-
eled by REAP as two unidirectional paths.

The REAP instance of an endpoint detects a failure by monitor-
ing the packets received for a given communication. When a com-
munication involves a bidirectional exchange of data at a sufficient
rate, the availability of the path is determined without exchanging
REAP-specific packets. If one of the endpoints is not sending data
regularly or the if the rate at which data is being sent is too low,
its REAP entity generates Keepalive messages that prevent the
expiration at the other end of the timer used to detect failures.
When no party sends upper layer data for some time REAP stops
generating Keepalive messages and failure monitoring is
suspended.

When a failure is detected, REAP triggers the path exploration
function. The currently used unidirectional paths are initially
tested by sending REAP Probe messages. If this validation fails,
Probe messages with different combinations of source/destination
addresses are sent until a new pair of working addresses is found.
Note that SHIM6 and REAP support the use of paths defined by dif-
ferent source and destination address pairs in each direction.

Ideally, a failure detection mechanism should require as low re-
sources and bandwidth as possible. The amount of state required
for REAP operation is just three timers per communication and
per endpoint. Additionally, it is quite efficient in terms of the num-
ber of protocol-specific messages exchanged since Keepalive mes-
sages are only sent for unidirectional or low-rate communications.

REAP is a good solution to provide a failure detection and
path exploration mechanism to other protocols requiring such

0140-3664/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2009.10.014

* Corresponding author. Tel.: +34 916248803.
E-mail addresses: aoliva@it.uc3m.es (A. de la Oliva), isoto@it.uc3m.es (I. Soto),

alberto@it.uc3m.es (A. García-Martínez), marcelo@it.uc3m.es (M. Bagnulo), azcorra
@it.uc3m.es (A. Azcorra).

1 http://www.ietf.org/html.charters/SHIM6-charter.html

Computer Communications 33 (2010) 485–499

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom



functionality, because it has minimal requirements and it is inde-
pendent from the SHIM6 protocol. Examples of protocols that
could benefit from this functionality are Host Identity Protocol
(HIP) [4] [5], Mobile IPv6 with registration of multiple CoAs
(Care-of Address) [6], Mobike (IKEv2 Mobility and Multihoming
Protocol) [7] or combined SHIM6/Mobile IPv6 operation [8].

Although two simulation and experimental studies have been
previously published, focusing either on the path exploration pro-
cess [9] or on the impact of the transport protocol on the recovery
time [10], no analytical characterization of the time required to re-
cover from a failure has been provided so far. Note that this value is
a key figure of merit for determining the impact perceived by
upper layers. Too large recovery times can result in the communi-
cation being discarded by the upper layers. But even if the commu-
nication continues, the quality can be degraded if the recovery
process takes longer than the time required by the application.
Proper characterization of REAP performance would enable the
configuration on a per communication basis of the REAP timers
in order to comply with specific upper layer constraints.

However, despite the functional simplicity of the REAP mecha-
nism, the characterization of the recovery time is far from trivial. It
could be initially thought that the time required to detect a failure
by REAP depends only on the value of the three defined timers, the
Send Timer, the Keepalive Timer and the Retransmission Timer, but
this would obviate the relation of the time at which these timers
are started and the time at which the failure occurs. This relation
largely depends on the specificities of the communication. Without
a proper computation of this time it is not possible to provide an
upper bound which can be used by the applications to cope with
the failures in the communication.

In this paper we characterize analytically the upper bound of
the time required by REAP to detect a failure and recover from it
in different scenarios. These results are applied to different traffic
patterns and to the specific case of TCP as the transport protocol.

The remainder of the paper is organized as follows: Section 2
provides an insight on the REAP protocol. In Section 3 we present
the reference model used for the analysis, and we detail the defini-
tion of the Recovery Time. In Section 4 we start a top/down char-
acterization by analyzing the contributions to the Recovery Time
of the failure detection process and the exploration process. For
this analysis, different types of communication (bidirectional and
unidirectional) and failure (Two-Way and One-Way) are consid-
ered. Section 5 is devoted to characterize the s parameter, that de-
pends on the time elapsed between the transmit time of the first
lost packet in any node and the starting time of the Send Timer.
s is the main parameter to be considered when estimating the
duration of the detection process. To obtain the least upper bound
of s, the maximum value among several cases has to be considered.
The methodology followed to obtain the upper bound of s is veri-
fied by simulation results. Then, in Section 6, we provide more
compact expressions for the combination of the results obtained
in Sections 4 and 5. These expressions eliminate the dependency
on the failure type or location, and are the results to be used for
configuring REAP to comply with the specific requirements of an
application. An applicability example of the results is presented
in Section 7. To give further details of the applicability of the ana-
lytical results, we consider the variable rate traffic case and appli-
cations that use TCP as transport-layer in Section 8. Finally, in
Section 9 we present the conclusions and future work.

2. Failure detection and path exploration in REAP

In this section we describe in detail the two components of
REAP [3], the failure detection and the path exploration mecha-
nisms. The failure detection mechanism of REAP is used to monitor

the status of the pair of unidirectional paths active in a communi-
cation. Note that although SHIM6 is able to manage alternative
paths for a communication, REAP only tests the pair of paths in
use at a given time. To validate the current two unidirectional
paths of a communication, REAP relies on two timers in each node,
the Keepalive Timer and the Send Timer, and, when required, on
the exchange of a message, named the Keepalive message. The
Keepalive Timer is started each time a node receives a data packet
from its peer, and stopped and reset each time the node sends a
packet to the peer. When the Keepalive Timer expires, a Keepalive
message is sent to the peer. Note that the reception of Keepalive
messages does not modify the value of the Keepalive Timer at
the receiving node. The Send Timer is started each time the node
sends a packet, and stopped and reset each time the node receives
a packet from the peer, either a data packet, or a Keepalive mes-
sage. If the Send Timer expires, i.e. no packet has been received
during this period, a failure is assumed and the node starts the path
exploration process.

The Send Timer expiration indicates that no return traffic was
received for some time by a node that was sending data. On the
other hand, the Keepalive Timer is used to assure that return traf-
fic, in this case Keepalive messages, is generated in nodes that are
receiving data but have no data to send. Note that the values of the
Keepalive Timer and the Send Timer should allow at least one
Keepalive message to arrive to the destination to avoid false fail-
ures. The current specification suggests a default value of 15 s for
the Send Timer, while no value is proposed for the Keepalive Timer.
Note that neither experimental data nor analytical studies have
been considered to propose the values for any of the timers that
determine the performance of REAP.

REAP does not include any mechanism for detecting congestion.
Severe congestion in the network is considered by REAP as a fail-
ure. If packets stop reaching the node for a Send Timer period,
due to congestion, REAP assumes a failure has occurred (a false po-
sitive) and starts the exploration mechanism. We argue that this is
an appropriate behavior when network congestion is such that the
time during which the path is unavailable exceeds the threshold
set by the application using it.

Once a node detects a failure, it starts the path exploration
mechanism by changing its state from Operational to Exploring.
First, a Probe Exploring message (a Probe message with the Explor-
ing flag set) is sent to test the current address pair. This allows
resuming the communication through the initial path after short
unavailability periods, due for example to light network congestion
or local route reconfiguration. In this case REAP completes the re-
quired handshake through the current path and returns to the
Operational state without disrupting the communication. How-
ever, if no response is obtained during a Retransmission Timer per-
iod, alternative outgoing paths, defined by different combinations
of source and destination addresses, are tested by sending Probe
Exploring messages and waiting for a response during a Retrans-
mission timer period. In the current specification, only one Probe
is sent at a time. After sending four Probe Exploring messages, an
exponential backoff algorithm increases the Retransmission Timer.
When a Probe Exploring is received, this means that a valid unidi-
rectional path has been discovered for the incoming path. The node
that has received the Probe Exploring message then changes its
state to Inbound_OK and uses Probe Inbound_OK messages to con-
tinue exploring outgoing valid paths. This type of Probe messages
includes an indication of the valid incoming path. If the other node
receives a Probe Inbound_OK, it can assume as valid the incoming
path through which the packet was received, and it can obtain
from the payload of the Probe Inbound_OK the valid outgoing path
to be used. Then, the node changes its state to Operational, and
sends a Probe Operational message in which it informs its peer
about the validity of the path through which it received the Probe

486 A. de la Oliva et al. / Computer Communications 33 (2010) 485–499



Inbound_OK message. A node that receives a Probe Operational
message changes its state to Operational. It is worth to highlight
that data is still being sent when the node is in the Exploring or
the Inbound_OK states using the source and destination addresses
in use when the node was in the Operational state. When the Oper-
ational state is reached again, the addresses in use are changed to
the ones resulting from the exploration process. Note that these
rules may lead to different state and message sending schedules:
for example, one node can detect a failure and send a Probe Explor-
ing that arrives to its peer before the peer detects a failure; or both
nodes can detect a failure before receiving a Probe from the other
endpoint. Fig. 1 presents the state machine diagram that formal-
izes the behavior described above, including some transitions that
occur only when a limited number of packets (either data, Keepa-
live or Probes) are lost, which could occur due to temporary path
unavailability. Although, as already mentioned, in the current
specification Probe messages for exploring alternative paths are
sent sequentially during the exploration phase, in [9] a concurrent
exploration mechanism of alternative paths is defined. This con-
current exploration is done after probing the current path.

It could be thought that we could reduce the time to recover
from failure by exploring the alternative paths also concurrently
with the probing of the current one when the REAP state changes
from Operational to Exploring. While this could be true, enforcing
the preference to select other locators only if the Probe of the cur-
rent path has failed at the same time at which other paths are
been concurrently probed may complicate slightly the state ma-
chine of the REAP entities. For this kind of operation, REAP should
store the addresses of the first received Probe (if different from
the current incoming path), and wait for a Probe for the current
incoming path until the Retransmission Timer expires. If the Probe
from the current incoming path arrives in time, the current path is
preserved, and otherwise the probing process continues with the
information of the first received Probe. In the rest of the paper we
do not consider this mode of operation (not mentioned also in the
REAP specification [3]), although the analysis could be easily
adapted to it.

3. Model for performance evaluation in REAP

In this section we present the reference model to be used in the
performance analysis for REAP. We first discuss the parameters in-
volved in the failure detection and recovery procedures. Then, we
define the figure of merit through which we evaluate the perfor-
mance of REAP, the Recovery Time.

3.1. Reference Model for REAP

Consider two nodes that are communicating. Packets traveling
from A to B, and from B to A, experience a fixed end-to-end delay
of cAB and cBA respectively which may change when the addresses
in use change. Note that cAB and cBA can be quite different for many
reasons. To name a few, they can be different because SHIM6 al-
lows each direction to be determined by unrelated source and des-
tination addresses, resulting in completely different unidirectional
paths, or because even if the same routers were traversed in both
directions, queuing delay can be different as a result of different
traffics being served for each segment on each direction. The
Round Trip Time at a given time is computed as RTT ¼ cAB þ cBA.
Upper layers periodically deliver data packets to the IPv6 layer.
The size of each packet is irrelevant for the analysis. Communica-
tion can be bidirectional, with node A sending data with a fixed in-
ter-packet interval of DA, and node B sending data with DB interval.
If the communication is unidirectional, we assume that it is node A
the one that sends traffic with inter-packet interval DA. The case in
which no packets are sent by neither of the peers is not considered,
since REAP does not perform failure detection in this case. For the
rest of the definition of the model we assume bidirectional traffic
without loss of generality.

A failure occurs at a given time Tfail. The failure could affect both
directions if it is caused by a failure in an element (router or link)
shared by both paths, or it can just affect to one direction (either
affecting the path from A to B, or from B to A). To precisely charac-
terize the location of the failure so that we can determine which
packets were able to go through before the failure and which pack-

Fig. 1. State machine of REAP.

A. de la Oliva et al. / Computer Communications 33 (2010) 485–499 487



ets were affected by it, we use a and a0 to define the fraction of the
end-to-end delay that a packet should experience until it reaches
the point at which the failure has occurred. The valid range for a
and a0 is ð0;1Þ. Extreme cases for a ða0Þ of 0 or 1 would mean that
the packet is dropped just when issued to be sent by the applica-
tion (0) or just when it is to be delivered to the remote application
(1). There are a number of reasons to have values close to these fig-
ures: a failure in the outgoing interface or in the remote incoming
interface, address configuration problems in the nodes, operating
system misconfiguration, etc. Note that in general a does not need
to be equal to 1� a0. Considering a bidirectional failure, a packet
sent by A would spend a � cAB until it reaches the failure point,
and a packet sent from B would spend a0 � cBA until it arrives to
the outage (see Fig. 2). Then, we can also state that packets sent
from peer A at a time T ¼ Tfail � acAB or later are dropped, as well
as packets sent from B later than T ¼ Tfail � a0cBA. Note that a and
a0 are unrelated because of the different properties of the commu-
nication paths in both directions.

The time at which the first lost packet from A is sent is named
TlostA. The time at which the first lost packet from B is sent is de-
noted as TlostB. The possible range of values for TlostA and TlostB are
presented in Eqs. (1) and (2).

Tfail � acAB 6 T lostA < Tfail � acAB þ DA ð1Þ
Tfail � a0cBA 6 TlostB < Tfail � a0cBA þ DB ð2Þ
Finally, we assume that the Send and Keepalive Timers of A and B
are equal for both nodes, with values TSend and TKA respectively.

3.2. Recovery time

The analysis presented in this paper aims to characterize the
impact of REAP on upper layers when an outage occurs. For this
purpose, we define the Recovery Time as the difference between
the time at which the first data packet lost (at any node) is sent,
and the time at which every peer willing to send traffic is ready
to send packets again (i.e. the peer or peers with traffic to send
have returned to the Operational state). In particular, for unidirec-
tional traffic only the peer sending traffic has to return to the Oper-
ational state to restore the original communication.

Fig. 3 shows the Recovery Time for a bidirectional data ex-
change with a failure affecting both directions. For the sake of clar-
ity, data packet exchanges during the exploration process have
been omitted. In the situation depicted, the Send Timer at B expires
before the Send Timer at A, so it is B the node that starts probing

the current path from B to A. Before any Probe Exploring arrives
to A, the Send Timer at A expires, so that it also starts testing the
current path from A to B. A Retransmission Timer time after the
first Probe was sent, B realizes that the current path is not valid,
and starts probing alternative addresses. The first alternative path
tested succeeds, so A receives the Probe Exploring message, and is-
sues a Probe Inbound_OK that includes information confirming the
validity of the new path from B to A. Upon the successful reception
of this message at B, B changes its state to Operational and data
packets can be sent again. Finally, a Probe Operational from B to
A is used to inform A that the path it had selected is valid. In the
example considered, the Recovery Time is the time since the first
packet sent by A was lost, until both peers return to Operational
state.

As discussed before, the operation of some upper layers may be
negatively affected by outages lasting for more than a given
threshold, threshold that may vary for different transport and
application layer combinations. Consequently, we are particularly
interested in being able to estimate the upper bounds for the
Recovery Time in any particular scenario determined by the type
of communication (bidirectional, unidirectional), the frequency at
which data packets are sent in both communicating peers, the Send
Timer and Keepalive Timer values, and the end-to-end delay at
both directions of the communication. Provided that the parame-
ters characterizing the communication were known, it could be
determined if a given configuration fulfills the requirements of
the upper layers regardless the particular execution details such
as the exact time at which packets are sent at each side or the fail-
ure details, i.e. regardless the failure affecting one or both direc-
tions or the physical location at which the failure occurs.

4. Characterization of the recovery time

In order to characterize the behavior of the Recovery Time
(Trecovery hereafter), we have to consider all possible communica-
tion scenarios that may result from the type of communication.Fig. 2. Reference model for the analysis of REAP.

Fig. 3. Recovery time components.

488 A. de la Oliva et al. / Computer Communications 33 (2010) 485–499



First, we must separate the analysis of bidirectional and unidirec-
tional traffic. For bidirectional traffic we assume that the packet
rate is high enough, precluding a Keepalive messages exchange.
Additionally, we have to consider that on each peer runs a different
Send Timer, resulting in different event sequences. These event se-
quences cannot be modeled by considering two independent uni-
directional flows. The scope of the failure, either in both
directions, or just in one direction, also determines different
behaviors for the REAP entities involved.

Consequently, the cases that must be analyzed are:

� Bidirectional traffic, Two-Way failure.
� Bidirectional traffic, One-Way failure.
� Unidirectional traffic, Two-Way failure.
� Unidirectional traffic, One-Way data path failure.
� Unidirectional traffic, One-Way return path failure, (i.e. the path

through which Keepalive messages are exchanged). Although
this scenario is possible, it is not relevant for our work since this
kind of failure does not affect the data exchange.

Regarding the path exploration phase, we assume that after
checking the current path to confirm the failure, the possible alter-
native paths are explored concurrently (as recommended in [9]),
and that at least one path is working (Recovery Time is meaning-
less if no working path is available).

Concurrent path exploration is the fastest way of providing a
valid path through which the application can resume its operation,
which is required in the case of applications with tight constraints
in the required recovery time. However, our analysis is also valid
for sequential path exploration if the first alternative path explored
is working, and it can be easily extended to sequential path explo-
ration recovering in the nth path.

The REAP state machine (Fig. 1) includes some logic to recover
from REAP-specific packets lost due to short-lived congestion or
other transient effects. In our analysis, we simplify this state ma-
chine by taking into account only state transitions that conduct
to a recovery using a new path, i.e., ignoring state transitions in
which REAP decide that the original path is working and therefore
finally does not influence the application chosen path. So we can
assume the following:

� After a failure, a node in Exploring state never receives data
packets through the original path. Data packets could only be

received if the node had moved to the Exploring state due to a
transient loss of packets.

� Keepalives are only sent in the Operational state. If packets are
not lost unless a failure occurs, a node is in Exploring state only
if the original incoming path failed. Then, Keepalives should not
be received through the original incoming path (because it is not
available), nor through other path (because a Probe Inbound_OK
should have been received before the Keepalive).

� Similarly, Keepalives should not be received in Inbound_OK
state because Probe Inbound_OK or Probe Operational messages
should have been received before.

� A node can only send Probe Operational messages if it is in the
Inbound_OK state and has received a Probe Inbound_OK mes-
sage. A peer can only send Inbound_OK messages from the
Inbound_OK state. Therefore, a node in the Exploring state can-
not receive a Probe Operational message.

� As at least one of the explored paths after a failure is valid and
the Send Timer is large enough, this timer will not expire in
the Inbound_OK state.

Taking these assumptions into consideration, Fig. 4 presents the
simplified state machine of REAP. We use this state machine to de-
rive in the following subsections the feasible transitions for each of
the scenarios presented above. It is worth to note that when a fail-
ure occurs, the first event is always the expiration of the Send
Timer in any of the nodes, triggering the generation of a Probe
Exploring message. Then, only two possibilities are available for
the transitions on the peer node: the peer remains in Operational
state until it receives the Probe Exploring message, or, only in
the case of bidirectional communication with Two-Way failure,
the Send Timer could expire before receiving the Probe Exploring
message. For analyzing the rest of the possible state transitions,
we consider the type of traffic and the type of failure. For the sake
of clarity, in the following explanations we are only taking into ac-
count the messages exchanged with the peer through the alternate
fastest path (concurrent exploration), which is equivalent to as-
sume sequential exploration in which the first alternate path ex-
plored is valid.

4.1. Bidirectional traffic, Two-Way failure

On this scenario, the peers are exchanging bidirectional traffic
when both unidirectional paths in use are affected by an outage.

Fig. 4. REAP simplified state machine.

A. de la Oliva et al. / Computer Communications 33 (2010) 485–499 489



The restriction that a node can only reach the Inbound_OK state
when the peer is in the Exploring state defines three possible state
sequences in the peers until they return to the Operational state
(Fig. 5):

1. In the first case, presented in Fig. 5a (continuous lines), the node
discovering the failure after the expiration of the Retransmis-
sion Timer, A, sends a second Probe Exploring message that
arrives to its peer B when it is in Operational state. Note that
this message is able to reach node B since it is exchanged
through an alternative path. The reception of the Probe Explor-
ing results in a change to Inbound_OK in B. In this transition, B
sends a Probe Inbound_OK message, which after reception trig-
gers a transition in A from the Exploring state to the Operational
state. Hence, the peer which transits to Operational state sends
a Probe Operational message to alter the state of the corre-
sponding peer to Operational state. At this point both peers
are ready to resume the communication. Taking into account

this behavior, Eq. (3) presents the value of Trecovery for this
scenario.

Trecovery ¼ TRTx þ RTT þ cþ Tsend þminðsA; sBÞ ð3Þ
We define sA ðsBÞ as the time elapsed between the sending of
the first packet lost (in any node) and the starting time of the
Send Timer on A (B). In the case considered, we are interested
in the time at which the first node detecting the failure starts
its Send Timer (in Fig. 5a, node A), condition that is expressed
in general as minðsA; sBÞ. Then after Tsend time (the value of the
Send Timer), node A sends a Probe Exploring that is never re-
turned, so a new path is explored after TRTx (the value of the
Retransmission Timer) seconds. The new path is explored by
sending a Probe Exploring message, requiring cAB þ cBA þ cAB,
or in other words, RTT þ cAB. In order to make Eq. (3) independent
from the actual node detecting the failure, we express RTT þ cAB
in Eq. (3) as RTT þ c, being c the end-to-end delay from the node
discovering the failure to its peer.

2. The second case corresponds to Fig. 5a (dashed lines). In this
case, node A reaches the Exploring state before node B. The first
Probe Exploring message sent by B is lost since this message is
sent through the failed path. While node B is in the Exploring
state, node A sends a Probe Exploring message that reaches
node B, changing its state to Inbound_OK. In this transition,
node B sends a Probe Inbound_OK message. When this message
reaches node A, A changes its state to Operational, sending a
Probe Operational message, which after reception, changes
the state of node B to Operational. At this stage both peers are
ready to resume the communication. This state sequence yields
to the same equation as the first case (Eq. (3)).

3. The third case corresponds to Fig. 5b. In this case, peer B reaches
the Exploring state prior to receiving the Probe Exploring mes-
sage from A. In this scenario both peers perform the transition
Exploring!Inbound_OK!Operational and are able to resume
the communication once a Probe Inbound_OK is received (Eq.
(4)).

Trecovery ¼ TRTx þ RTT þ Tsend þmaxðsA; sBÞ ð4Þ
Now, the time at which the process is finished is driven by the
last node detecting the failure.

4.2. Bidirectional traffic, One-Way failure

Fig. 6 presents the only possible state sequence for path explo-
ration in a scenario where bidirectional traffic is affected by an out-
age on any unidirectional path (in this case, from A to B). As the
Send Timer is set each time a packet is sent, and stopped each time
a packet is received, the Send Timer in peer A never expires since
the path from B to A is not affected by the outage. On the other
hand, due to the outage, B does not receive packets from A so its
Send Timer expires triggering a transition to the Exploring State.
Then B sends a Probe Exploring message, which is received by A,
and A transits to the Inbound_OK state. This Probe Exploring mes-
sage reaches A using the current path, since the path from B to A is
not affected by the outage. In this transition, A sends a Probe In-
bound_OK to B, using the current path, which is lost. A new Probe
Inbound_OK message sent through other path succeeds in arriving
to B. As a consequence, B moves to the Operational state again,
sending an Operational Probe to A. Once received the Probe Oper-
ational, A transits to Operational. Eq. (5) presents the value of
Trecovery for this scenario.

Trecovery ¼ TRTx þ RTT þ cBA þ Tsend þ sB ð5Þ
Note that the state transition sequence presented above is the only
possible one, since the Send Timer can expire only in one of the
nodes.Fig. 5. Path exploration transitions: Bidirectional traffic, Two-Way failure.

490 A. de la Oliva et al. / Computer Communications 33 (2010) 485–499



4.3. Generic case for Bidirectional traffic

Given the equations for Trecovery presented in the previous sub-
sections, we now provide a general expression to be used for Bidi-
rectional traffic, regardless the type of failure.

Trecovery ¼ TRTx þ RTT þ Tsend þminðsþ c; scÞ ð6Þ
In Eq. (6), s corresponds to the peer whose Send Timer expires first
ðminðsA; sBÞÞ. c is the end-to-end delay between the node whose
Send Timer expires first and the peer. sc is the s of the node whose
Send Timer expires the last (i.e. sc ¼ maxðsA; sBÞ). The case
sþ c < sc corresponds to the first Probe Exploring message sent
through a valid path reaching the peer while it is still in the Oper-
ational state. The case sþ c > sc corresponds to the first Probe
Exploring message reaching the peer when it is in the Exploring
state. Finally it is worth to note that the Bidirectional traffic, One-
Way failure case (Eq. (5)) is just a particular case of expression (6)
in which maxðsA; sBÞ ¼ 1.

4.4. Unidirectional traffic, Two-Way failure

In this scenario only one state sequence is possible. As the Send
Timer is set up each time a packet is sent, the Send Timer is only
running on the node sending the packets. Fig. 7 presents the state
sequence and the messages exchanged for the path exploration
mechanism when node A is the sending active peer. When the fail-
ure occurs, A stops receiving Keepalive messages and its Send
Timer expires, changing its state to Exploring and sending a Probe
Exploring message. Upon reception of the Probe Exploring mes-
sage, node B modifies its state to Inbound_OK and sends a Probe In-
bound_OK message to A. When this probe is received on A, its state
changes to Operational and a Probe Operational message is sent to
B. Once A reaches the Operational state again the application is
ready to resume the communication. Eq. (7) presents the value of
Trecovery for this scenario.

Trecovery ¼ TRTx þ RTT þ Tsend þ sA ð7Þ

4.5. Unidirectional traffic, One-Way failure in the data path

Due to the characteristics of REAP, this scenario corresponds ex-
actly to the same state machine transition sequence as in the pre-
vious subsection (Section 4.4). Note that the Trecovery value in this

case is different from the previous section, being s the difference
between both cases.

5. Characterization of s

Most of the components of the expressions presented in Sec-
tion 4 are simple to characterize. However, this is not the case
for the s parameter. In the following sections we provide a set of
equations to characterize s for each of the cases presented in Sec-
tion 4. The results are upper bounds of s that are always a supre-
mum (or least upper bound, i.e. the smallest real number that is
greater than or equal to every possible s). We use the termmaximal
for the case in which s equals the upper bound, leaving the term
supremum for the case in which s never reaches the upper bound.

5.1. Bidirectional traffic, Two-Way failure

The approach followed for characterizing s is to identify the
only four cases in which the maximum value for s can occur
regardless the starting times for sending packets at A and B and
the time of the failure:

� Case p: The first packet lost was sent by A, and sA reaches its
maximum value ðsApÞ.

� Case h: The first packet lost was sent by B, and sB reaches its
maximum value ðsBhÞ.

� Case q: The first packet lost was sent by A, and sB reaches its
maximum value ðsBqÞ.

� Case r: The first packet lost was sent by B, and sA reaches its
maximum value ðsArÞ.

Taking into account the values of sA and sB for each of the sce-
narios described above, the maximum value of s is:

smax ¼ max minðsAp; sBpÞ;minðsBh; sAhÞ;minðsBq; sAqÞ;minðsAr; sBrÞ
� �

ð8Þ
Note that cases p� h and q� r are symmetric but we need to keep
them as different cases because they depend on characteristics
ða=a0;DA=DB; cAB=cBAÞ that can be different in the two sides of the
bidirectional communication, but that have to be computed simul-
taneously. In the following subsections we analyze in depth cases p
and q, and present the final (symmetric) expressions for h and r, for
which DA; DB; a; cAB and cBA are exchanged respectively by
DB; DA; a0; cBA and cAB. Next we prove that it is impossible to find

Fig. 6. Path exploration transitions: Bidirectional traffic, One-Way failure.

Fig. 7. Path exploration transitions: Unidirectional traffic, Two-Way failure.

A. de la Oliva et al. / Computer Communications 33 (2010) 485–499 491



a case, l, in which minðsAl; sBlÞ > smax, demonstrating that the
maximum must occur in any of the four cases identified
ðp; q; h; rÞ. A more general expression, independent from the spe-
cific location of the point of failure, which is an upper bound of s
ðsuppÞ is provided in Section 6.

5.1.1. Case p
We first identify the case in which the maximum delay between

the loss of the first packet sent by A and the start of the Send Timer
on A occurs. Then we analyze the values of sA and sB for this spe-
cific scenario.

The worst case scenario in this situation (Fig. 8), that depends
on the timing of the packets sent at both nodes, corresponds to
the exchange of packets which leads to the greatest difference be-
tween TrecA (time at which the last packet sent by B arrives at A)
and TlostA (sending time of the first packet lost on A). This difference
achieves its maximum when TlostA is the lowest possible value and
TrecA to its highest value. Tsend will be started in A when the next
packet is sent by A after the last packet from B was received
(TrecA, see Fig. 8). Considering that A sends a new packet each DA

seconds, the value of sAp can be expressed using the ceil function

as TrecA�TlostA
DA

l m
DA.

In order for TrecA to be the highest value, the last packet which
arrived correctly to peer A must be sent at the latest possible time,
hence TlostB approaches to the highest limit imposed in Eq. (2). In
the same way, in order for TlostA to be the lowest value, it must
reach the lowest limit imposed by Eq. (1). Following the reasoning
presented above, Eq. (9) presents the values for TlostA; TlostB and
TrecA, with �! 0, representing the packet sent at B just � seconds
before the failure could drop the packet.

TlostA ¼ Tfail � acAB
TlostB ¼ Tfail � a0cBA þ DB � �
TrecA ¼ TlostB þ cBA � DB ð9Þ
Therefore

TrecA � TlostA ¼ ð1� a0ÞcBA þ acAB � �

Note that as � tends to zero, its contribution is irrelevant inside the
ceil approximation, hence sAp is a maximal of s.

sAp ¼ ð1� a0ÞcBA þ acAB
DA

� �
DA ð10Þ

We now characterize the corresponding value of s in peer B ðsBpÞ.
The Send Timer in peer B is started on the first packet sent after
the reception of the last packet from peer A (TrecB, see Figs. 9 and
10). By definition, sBp is

sBp 6 TsendB � TlostA ð11Þ

where TsendB is the sending time of the packet starting the Send
Timer at B.

Depending on the packet timing and the end-to-end delays, two
situations could occur: (i) TlostB 6 TrecB and (ii) TlostB > TrecB.

For TlostB 6 TrecB (see Fig. 9), Eq. (12) presents the relation be-
tween the end-to-end delays, a, and the packet timing of each
node, which makes TlostB < TrecB.

TrecB ¼ TlostA þ cAB � DA

TrecB ¼ Tfail þ ð1� aÞcAB � DA

TrecB P TlostB ) ð1� aÞcAB þ a0cBA P DA þ DB ð12Þ
Note that the values of TlostA and TlostB are the same of Eq. (9). To cal-
culate the moment at which the Send Timer is set on peer B, we
consider two steps. First the difference between TrecB and TlostB is
calculated. The next packet sent by B after TrecB is the packet setting
the Send Timer. In this way we know the instant at which the Send
Timer is started after TlostB. In the second step, the distance between
TlostB and TlostA is calculated. Adding these two values we obtain sBp.

sBp <
TrecB � TlostB

DB

� �
DB þ ðTlostB � TlostAÞ ð13Þ

From the TrecB expression presented at (12), we obtain:

TrecB � TlostB

DB

� �
DB ¼ ð1� aÞcAB þ a0cBA � DA � DB

DB

� �
DB ð14Þ

TlostB � TlostA can be computed as follows.

TlostB � TlostA ¼ acAB þ a0cBA þ DB � � ð15ÞFig. 8. Maximum sAp for first packet lost sent by A.

Fig. 9. Value of sBp when TlostB 6 TrecB for maximum sA and first packet lost sent by
A.

Fig. 10. Value of sBp when TlostB > TrecB for maximum sA and first packet lost sent by
A.

492 A. de la Oliva et al. / Computer Communications 33 (2010) 485–499



Note that TlostB > TlostA since we have defined in the scenario that the
first packet lost was sent by A. Combining expressions (13)–(15) in
Eq. (16),

sBp ¼ acAB � a0cBA þ DB þ ð1� aÞcAB þ a0cBA � DA � DB

DB

� �
DB ð16Þ

Now we solve Eq. (11) for the case TlostB > TrecB (see Fig. 10). TsendB

corresponds to the sending time of the next packet sent by B after
receiving the last packet from A ðTrecBÞ. Eqs. (17) and (18) present
the value of TlostB and TlostA for this case.

TlostB ¼ Tfail � a0cBA þ DB � � ð17Þ
TlostA ¼ Tfail � acAB ð18Þ
The distance between TlostB and TrecB can be calculated taking into
account the values of Eqs. (17) and (18).

TrecB ¼ TlostA þ cAB � DA

TrecB ¼ Tfail þ ð1� aÞcAB � DA

TlostB � TrecB ¼ �a0cBA � ð1� aÞcAB þ DA þ DB � � ð19Þ
TsendB can be obtained by considering the number of inter-packet
intervals at B (of duration DB) that fit into the distance between
TlostB and TrecB. The value of TsendB is presented in Eq. (20).

TsendB ¼ TlostB � �a0cBA � ð1� aÞcAB þ DA þ DB � �
DB

� �
DB ð20Þ

Combining Eqs. (17) and (18) the relationship between TlostA and
TlostB is

TlostB � TlostA ¼ acAB � a0cBA þ DB � � ð21Þ
Including Eqs. (20) and (21) into Eq. (11), we can find a supremum
(due to the presence of the �) to the value of sB as shown in Eq. (22).

sBp ¼ acAB � a0cBA þ DB � �a0cBA � ð1� aÞcAB þ DA þ DB

DB

� �
DB

ð22Þ
A summary of the values for sBp is provided next:

� if ð1� aÞcAB þ a0cBA P DA þ DB

sBp ¼ acAB � a0cBA þ DB þ ð1� aÞcAB þ a0cBA � DA � DB

DB

� �
DB

� if ð1� aÞcAB þ a0cBA < DA þ DB

sBp ¼ acAB � a0cBA þ DB � �a0cBA � ð1� aÞcAB þ DA þ DB

DB

� �
DB

ð23Þ
being sBp a supremum of s. Note that for the second case,
sB < sBp < sB þ DB.

5.1.2. Case h
Due to the symmetry of the system, s on B when the first packet

lost is sent by B corresponds to the same scenario as sAp swapping
node A by node B. The equations defining sBh can be obtained fol-
lowing the procedure used in Section 5.1.1 after exchanging DA by
DB;DB by DA, a by a0; cAB by cBA and cBA by cAB in Eqs. (9) and (10):

sBh ¼ ð1� aÞcAB þ a0cBA
DB

� �
DB ð24Þ

As in the case of sAp; sBh is a maximal of s.
Correspondingly, sAh is symmetric to sBp, so

� if ð1� a0ÞcBA þ acAB P DA þ DB

sAh ¼ a0cBA � acAB þ DA þ ð1� a0ÞcBA þ acAB � DA � DB

DA

� �
DA

� if ð1� a0ÞcBA þ acAB < DA þ DB

sAh ¼ a0cBA � acAB þ DA � �acAB � ð1� a0ÞcBA þ DA þ DB

DA

� �
DA

ð25Þ

As in the case of sBp; sAh is a supremum of
sAðsA < sAh < sA þ DAÞ.

5.1.3. Case q
In this section, we discuss the situation in which the maximum

delay between the loss of the first packet sent by A and the start of
the Send Timer on B occurs. Then we analyze the values of sA and
sB for this specific scenario. Fig. 11 presents the worst case scenario
for setting the Send Timer on B ðsBqÞ when the first lost packet cor-
responds to A. The time at which B receives the last packet from A
ðTrecBÞ is stated in Eq. (26).

TrecB ¼ TlostA þ cAB � DA ð26Þ
The time when the Send Timer is set on B corresponds to the next
packet sent after receiving the last packet from A. Regardless of
the sending time of the last packet from A, the worst possible case
occurs when B sends a packet DB seconds after TrecB, being this time
TsendB. The value of s for this case, that is a maximal, is presented in
Eq. (27).

sBq ¼ TsendB � TlostA ¼ TrecB þ DB � TlostA

sBq ¼ cAB � DA þ DB: ð27Þ
Note that the worst possible case of sB in this scenario corresponds
to the arrival of the last packet successfully sent by A just after the
sending of a packet by B.

In Fig. 12 we detail the relevant parameters for this case on
node A. The Send Timer on A is started when A sends the next
packet after the last packet sent from B to A arrives ðTrecAÞ.
Therefore

sAq ¼ dTrecA � TlostA

DA
eDA ð28Þ

We estimate the time at which the last packet from B arrives ðTrecAÞ
considering the time at which this packet was sent, TsB, plus the
end-to-end delay from B to A.

TrecA ¼ TsB þ cBA ð29Þ

Fig. 11. Maximum sBq for first packet lost sent by A.

Fig. 12. Value of sAq for maximum sB and first packet lost sent by A.

A. de la Oliva et al. / Computer Communications 33 (2010) 485–499 493



We can set a relation between TsB and TlostA by analyzing the rela-
tionship among the time at which the last packet received at B ar-
rived ðTrecBÞ and TsB through a new positive integer parameter n.

TsB ¼ TlostA þ cAB � DA � nDB ð30Þ
To find the value of n we know that TsB must be the greatest possi-
ble value lower than TlostB in order to be received on A
ðTsB < Tfail � a0cBAÞ.
TlostA þ cAB � DA � nDB < Tfail � a0cBA
TlostA ¼ Tfail � acAB
nDB > a0cBA þ ð1� aÞcAB � DA

n ¼ a0cBA þ ð1� aÞcAB � DA

DB

� �
ð31Þ

Eq. (32) shows the time at which the first packet sent from B is re-
ceived on A and combines Eqs. (28)–(31) to find the final value for
sAq.

sAq ¼
RTT � DA � a0cBAþð1�aÞcAB�DA

DB

l m
DB

DA

2
666

3
777DA ð32Þ

being sAq a maximal of s.

5.1.4. Case r
Due to symmetry considerations, sAr corresponds to the same

scenario as sBq, after swapping node A by node B. The equations
can be obtained following the same procedure used in Section 5.1.3,
i.e. exchanging DA by DB, DA by DB, a by a0, cAB by cBA and cBA by cAB
in Eq. (26).

sAr ¼ cBA � DB þ DA ð33Þ
being sAr a maximal of s. The corresponding case in B ðsBrÞ is

sBr ¼
RTT � DB � acABþð1�a0 ÞcBA�DB

DA

l m
DA

DB

2
666

3
777DB

being sBr a maximal of s.

5.1.5. Proof of the Maximality of smax

For a given case (two nodes communicating, and a failure
among them), Trecovery depends on the minimum value of s in side
A and s in side B. Therefore, to obtain the worst case for Trecovery, we
should look for the worst case, i.e. the maximum case, of this
minðsA; sBÞ. Eq. (8) assumes that this maximum of s happens in
one of four particular cases. These cases are defined by considering
the situation at which s is maximum for one side, and which is the
side sending the first packet lost.

However, it could be thought that other cases different than
these could lead to a greater value ofminðsA; sBÞ, since the assump-
tions made to build the four cases (when a maximum value of tau
in one side occurs) did not stressed the maximality of minðsA; sBÞ.

In the following paragraphs we prove that smax (Eq. (8)) pro-
vides a maximum for all possible combinations of sA and sB, i.e.
8hsAl; sBli;minðsAl; sBlÞ 6 smax. This means that we prove that
the maximum occurs in any of the specific cases ðp; q; h; rÞ.
Due to the symmetry inherent to Eq. (8) we focus on proving, for
the case in which the first packet lost is sent by A, that

8sAl; sBl=s ¼ minðsAl; sBlÞ ) s 6 max minðsAp; sBpÞ;minðsBq; sAqÞ
� �

ð34Þ
for every possible case of sAl and sBl when the first packet lost is
sent by A. An analogous demonstration can be done for the cases
when the first packet lost is sent by B.

To prove Eq. (34), we consider the four possible combinations of
the values of sAp; sBp; sAq and sBq:

1. sAp < sBp and sAq < sBq ) s 6 maxðsAp; sAqÞ
2. sBp < sAp and sBq < sAq ) s 6 maxðsBp; sBqÞ
3. sAp < sBp and sBq < sAq ) s 6 maxðsBq; sApÞ
4. sBp < sAp and sAq < sBq ) s 6 maxðsBp; sAqÞ

Note that, as explained in Section 5.1, by definition sAp > sAq
and sBq > sBp, since sAp and sBq are the worst possible cases for
sA and sB respectively.

Consider the combination 1. We have to show that
8s; s 6 maxðsAp; sAqÞ. As sAp > sAq the maximum is sAp, it should
be proved that 8sAl; sBl; s ¼ minðsAl; sBlÞ 6 sAp. We know that
8sAl; sAl < sAp. For every value of sAl and sBl; s ¼ minðsAl; sBlÞ at
least is as small as sAl, and this is smaller than sAp, proving that
s 6 sAp for all possible combination of sAl and sBl with the con-
strains imposed by the first combination.

The same reasoning can be applied to the second case, combina-
tion 2, to show that, in this case, s 6 maxðsBp; sBqÞ ¼ sBq.

The third case (combination 3), imposes sBq < sAq and
sAp < sBp, hence sAp < sAq. Since sAp > sAq by definition, this case
is not possible.

Finally for the fourth case (combination 4), we have to show
that for all combinations of sAl and sBl, s 6 maxðsBp; sAqÞ.
s ¼ minðsAl; sBlÞ so we have to prove that there is not a value of
sAl and sBl for which minðsAl; sBlÞ > maxðsBp; sAqÞ. This is equiva-
lent to prove that the values of sAl and sBl are not within the inter-
vals ðsBp; sBqÞ and ðsAq; sApÞ at the same time. On the following
lines we prove that this situation is not possible by showing that
given sAl within ðsAq; sApÞ there is not a value of sBl greater than
sBp.

Proof. Suppose an arbitrary value of sAl and the corresponding
sBl value, for all possible values of TlostA and TlostB. Eqs. (35) and
(36) show the value of sAl and sBl calculated as in Section 5.1.1.

sAl ¼ TlostB � TlostA þ cBA � DB

DA

� �
DA ð35Þ

sBl ¼ TlostB � TlostA þ TlostB � TlostA þ cBA � DB

DA

� �
DA ð36Þ

Now we find the constraints imposed by the range of possible val-
ues of sA.

� sAl > sAq

TlostA � TlostB þ cAB < a0cBA þ ð1� aÞcAB � DB ð37Þ
� sAl < sAp

TlostB � TlostA < acAB � a0cBA þ DB ð38Þ

Supposing there is a sBl > sBp, then Eq. (39) must be true.

TlostB � TlostA þ TlostB � TlostA þ cBA � DB

DA

� �
DA

> acAB � a0cBA þ DB þ ð1� aÞcAB þ a0cBA � DA � DB

DB

� �
DB ð39Þ

Imposing the constraints defined in Eqs. (37) and (38) into sBp we
obtain Eq. (40).

sBp > TlostB � TlostA þ TlostB � TlostA þ cBA � DB

DA

� �
DA ð40Þ

Eq. (40) combined with Eq. (36) imposes that sBp > sBl so the con-
dition sBl > sBp cannot be fulfilled. This ends the proof. h

494 A. de la Oliva et al. / Computer Communications 33 (2010) 485–499



5.2. Bidirectional traffic, One-Way failure

In this section, we consider scenarios in which node A and B ex-
change bidirectional traffic and a failure occurs in only one of the
directions of the communication. As it will be presented, this case
is a particularization of the analysis performed for the Bidirectional
traffic, Two-Way failure, in Section 5.1.

5.2.1. Failure in the path from A to B
Eq. (8), showed the expression which provides smax for a bidirec-

tional traffic and Two-Way failure. This equation applies when the
first packet lost was sent by either A or by B. In the current sce-
nario, B does not suffer any packet loss since there is no failure
in the path from B to A, hence sBh, sAh, sAr and sBr are not consid-
ered for this scenario. In the same way, equations in which the
Send Timer is set on A are not considered, since A is always receiv-
ing packets and the Send Timer is being stopped and reset regu-
larly. Therefore equations sAp; sBp and sAq are not considered.
This reasoning yields to the fact that the smax for this scenario is
equal to sBq. Eq. (41) shows the equation to consider in this
scenario.

smax ¼ cAB � DA þ DB ð41Þ
being this value of s a maximal.

5.2.2. Failure in the path from B to A
Following the same reasoning as in Section 5.2.1, for this sce-

nario only sAr must be considered. Hence Eq. (42) shows the value
of smax to consider in this scenario.

smax ¼ cBA � DB þ DA ð42Þ
being this value of s a maximal.

5.3. Unidirectional traffic, Two-Way failure

Fig. 13 presents the worst case for a unidirectional traffic flow
affected by a bidirectional failure. This case occurs when a Keepa-
live message is sent in the latest possible instant before the failure.
Therefore, the activation of the Send Timer when the next packet is
sent produces the highest delay on s. It is important to note that
the time at which the Keepalive message is sent depends on the
time at which node B receives a packet, hence the Keepalive mes-
sage sending time on B depends on the traffic of the peer. Eq. (43)
presents the value of smax for this scenario.

smax ¼ TRKA � TlostA

DA

� �
DA ð43Þ

Due to the dependence between the Keepalive timer and the traffic
sent by the peer, in order to calculate the value of smax we proceed
in several stages. First we calculate the time at which peer A sends
the packet which activates the Keepalive Timer on B (T1, see

Fig. 13). When the Keepalive timer expires on B, at time TSKA, a
Keepalive message is sent. TSKA can be derived from T1 by adding
the end-to-end delay and the TKA. Then we can obtain the relation-
ship between TlostA and TSKA. Once the relation between TlostA and
TSKA is found, the calculation of smax is done by finding the time at
which the Keepalive message was received by A ðTRKAÞ.

Eq. (44) presents these relationships.

TSKA ¼ Tfail � a0cBA � �
T1 ¼ TSKA � TKA � cAB
TlostA ¼ T1 þ nDA ð44Þ
The time at which the first lost packet is sent by A ðTlostAÞ occurs a
given positive integer number (n) of DA periods after the packet that
started the Keepalive at B was sent ðT1Þ. Note that TlostA is related
with Tfail by the following equation:

Tfail � acAB 6 TlostA < Tfail � acAB þ DA ð45Þ
Then

TlostA P Tfail � acAB
nDA P Tfail � acAB � T1

nDA P ð1� aÞcAB þ a0cBA þ TKA ð46Þ
TlostA < Tfail � acAB þ DA

nDA < Tfail � acAB þ DA � T1

nDA < ð1� aÞcAB þ a0cBA þ TKA þ DA ð47Þ
Combining both equations, we obtain the value for TlostA.

TlostA ¼ T1 þ ð1� aÞcAB þ a0cBA þ TKA

DA
þ 1

� �
DA ð48Þ

The time at which the Keepalive is received is expressed as

TRKA ¼ TSKA þ cBA ð49Þ
smax corresponds to the difference between TRKA and TlostA, taking
into account that the Send Timer starts when the next packet is
sent, as shown in Eq. (50).

TSKA ¼ Tfail � a0cBA � �
TRKA ¼ TSKA þ cBA
T1 ¼ TSKA � TKA � cAB
TRKA ¼ Tfail þ ð1� a0ÞcBA � �
T1 ¼ Tfail � a0cBA � �� TKA � cAB

smax ¼
RTT þ TKA � bð1�aÞcABþa0cBAþTKA

DA
þ 1cDA

DA

& ’
DA ð50Þ

This value of smax is a maximal.

5.4. Unidirectional traffic, One-Way failure in data path

Fig. 14 presents the worst case for a unidirectional traffic flow
affected by a failure in the data path. This case occurs when the
Keepalive Timer in peer B is started by the latest possible data
packet sent by peer A. After a Keepalive Timer period, a Keepalive
message is sent from B to A, resetting the Send Timer at A.

TRKA ¼ Tfail � acAB þ cAB þ TKA þ cBA � �
TlostA ¼ Tfail � acAB þ DA � �

smax ¼ TRKA � TlostA

DA

� �
DA ð51Þ

Eq. (52) shows the value of smax for this case, being this value of smax

a maximal.

s ¼ RTT þ TKA � DA

DA

� �
DA ð52ÞFig. 13. Worst Case scenario for Unidirectional traffic affected by a Two-Way

failure.

A. de la Oliva et al. / Computer Communications 33 (2010) 485–499 495



5.5. s simulation results

In order to validate the results presented before, an extensive
search of maximum values for s has been performed. The objective
of the simulation is to sample systematically the continuous space
of starting times for a given communication scenario, to measure
the corresponding value of s, in order to check if the upper bounds
obtained in our previous analysis hold.

Therefore, we set some values for the parameters that a given
specific application could find in two particular nodes: DA (and DB

for bidirectional communication), resulting from the own nature
of the application; cAB and cBA resulting from the initial path used.

Then we assume a type of failure, the details of this failure, i.e.
the values of a and/or a0 depending on the type of failure, that de-
scribe the failure position, and the time at which the failure occurs.
The set of experiments is defined by setting different starting times
for the periodic data transmission in A (B). With this, we aim to test
all the different combinations of the defined starting times at A and
B. When an experiment is defined (the communication to test, type
of failure and starting times for the data exchanged), we use Mat-
lab to simulate all the packets that would be exchanged among the
communicating nodes, and as a result of this simulation, we obtain
the value of s for the experiment. The maximum value of s for each
experiment related with a communication scenario is the worst
case value of s for the communication, which is compared with
the expected theoretical result, in particular, the results provided
by equations:

� Eq. (8) for the Bidirectional traffic, Two-Way failure case.
� Eqs. (41) and (42) for the Bidirectional traffic, One-Way failure

case.
� Eq. (50) for the Unidirectional traffic, Two-Way failure.
� Eq. (52) for the Unidirectional traffic, One-way failure in the data

path respectively.

For each of the communication scenarios, the numerical param-
eters that define an experiment (DA;DB; cAB; cBA, a and a0) have been
generated using two approaches. In the first approach, we have
generated a set of values for each parameter by defining a starting
value that is incremented by a fixed step. Then, we have simulated
all the configurations resulting from the combinations of these val-
ues (around 5500 samples for each Bidirectional traffic scenario
and 1400 sample for each Unidirectional traffic scenario). In the
second approach, we have generated randomly the values of the
parameters (200 samples for each scenario), supposing a uniform
distribution among fixed initial and final values with increments
of 1 ms (Table 1). In order to obtain a more precise value for the
maximum of s, further simulations were performed with starting
points close to the ones in which the higher s value was obtained,
using in this time smaller variations. Fig. 15 shows the percentage

of error, for each sample, between the theoretical value of s pro-
vided by our analysis and the value of s measured in the simulator
for the Bidirectional traffic, Two-Way failure scenario and 200 ran-
dom samples. The configuration of the REAP timers is set as de-
fined in the specification [3]. We only present these results due
to length considerations, although the complete set of results2

show similar behavior. In all cases, the difference between the theo-
retical analysis and the simulated model is 0 when the value of s cor-
responds to a maximal, showing that the theoretical model is able to
compute without error the value of smax. When the theoretical result
is a supremum, the simulator provides results whose differences with
the theoretical predictions can be made arbitrarily small by reducing
the step used for the variation of the sending times at A and B.

6. Upper bound for the recovery time regardless of the location
and type of the failure

In this section we simplify the analytical results obtained in
Section 5 to obtain an upper bound for Trecovery independently of
the failure point and type of failure for both the Bidirectional and
Unidirectional traffic. This is the result expected to be useful for
the configuration of REAP in a real deployment.

First an upper bound for smax regardless the point of failure is
obtained for the scenarios that depended on the a and a0 parame-
ters, that were the Bidirectional traffic, Two-Way failure, and the
Unidirectional traffic Two-Way failure. Then, we provide an upper
bound for Trecovery in the Bidirectional traffic and in the Unidirec-
tional traffic scenarios independent from the failure type or
location.

Fig. 14. Worst Case scenario for Unidirectional traffic affected by a failure in data
path.

Table 1
Traffic characteristics for random exploration.

Parameter Initial value Ending value

DA 1 ms 200 ms
DB 1 ms 200 ms
cAB 1 ms 100 ms
cBA 1 ms 100 ms
a 0 1
a0 0 1

Fig. 15. Percentage of error between the theoretical and experimental results for
200 random samples, Bidirectional traffic, Two-Way failure case.

2 The complete results data set can be obtained from http://enjambre.it.uc3m.es/
aoliva/reap.html.

496 A. de la Oliva et al. / Computer Communications 33 (2010) 485–499



6.1. Upper bound for s regardless the location of the failure:
Bidirectional traffic, Two-Way failure

A supremum for s for Bidirectional traffic, Two-Way failure, was
provided in Eq. (8). In order to obtain a compact expression for an
upper bound that does not depend on the location of the failure
(i.e. on a or on a0), we first apply the inequalities xþ 1 P dxe and
x� 1 6 bxc to obtain the following equation:

max minðacAB þ ð1� a0ÞcBA þ DA; cAB þ DB � DAÞ;½
minða0cBA þ ð1� aÞcAB þ DB; cBA þ DA � DBÞ;
minðcAB þ DB � DA;RTT � a0cBA � ð1� aÞcAB þ DAÞ;
minðcBA þ DA � DB;RTT � acAB � ð1� a0ÞcBA þ DBÞ� ð53Þ
In order to provide an upper bound, we maximize the values of each
term in Eq. (53). For each term, we choose the values of a and a0

maximizing it. For the cases p and r, s reaches its maximum value
at node A so the values maximizing these terms are a ¼ 1; a0 ¼ 0.
For the cases h and q, s reaches its maximum at node B, hence
the values maximizing these terms are a ¼ 0; a0 ¼ 1. Therefore

supp ¼ max minðRTT þ DA; cAB þ DB � DAÞ;½
minðRTT þ DB; cBA þ DA � DBÞ;minðcAB þ DB � DA;RTT þ DAÞ;
minðcBA þ DA � DB;RTT þ DBÞ� ð54Þ
Eliminating the terms that are duplicated, we obtain

supp ¼min maxðcBAþDA�DB;cABþDB�DAÞ;maxðRTT þDA;RTT þDBÞ½ �
ð55Þ

In the same way, an upper bound for the value of sc (s on the cor-
respondent node) is shown in Eq. (56).

suppC ¼max maxðcBAþDA�DB;cABþDB�DAÞ;maxðRTT þDA;RTT þDBÞ½ �
ð56Þ

Note that the simplifications done to calculate the upper bound and
the conditions of the supremum in Eqs. (23) and (25) state that
smax 6 supp 6 smax þmaxðDA;DBÞ.

6.2. Upper bound for s regardless the location of the failure:
Unidirectional traffic, Two-Way failure

In a similar way to Section 6.1, we can obtain upper bound Eq.
(50), which provided a maximum for s for Unidirectional traffic,
Two-Way failure to obtain an equation that does not depend on
the location of the failure.

supp < RTT � ðð1� aÞcAB þ a0cBAÞ þ DA ð57Þ
On this case, Eq. (57) is maximized by setting a ¼ 1 and a0 ¼ 0. Fi-
nally the upper bound value for the s for this case is presented in
Eq. (58).

supp < RTT þ DA ð58Þ

6.3. Upper bound for the recovery time for bidirectional traffic

We now aim to provide an expression for the Recovery Time
regardless the type and location of the failure for Bidirectional traf-
fic. In Section 6.1 we have obtained an expression for s for Bidirec-
tional traffic, Two-Way failure, that is independent of the location
of a failure. We had also obtained two expressions that character-
ize s for the case of Bidirectional traffic, One-Way failure (Eqs. (41)
and (42)) that already were independent of the location of the fail-
ure. The maximum of these expressions correspond to the One-
Way failure case. Therefore the upper bound for s for Bidirectional
traffic is

supp ¼ maxðcBA þ DA � DB; cAB þ DB � DAÞ ð59Þ

Combining Eqs. (59) and (6), we obtain the upper bound for the
Recovery Time:

Trecovery < TRTx þ RTT þmaxðcAB; cBAÞ þ TSend þ supp ð60Þ

6.4. Upper bound for the recovery time for unidirectional traffic

From Section 6.2, the upper bound of s for the case of Unidirec-
tional traffic, Two-Way failure corresponds to Eq. (58). The value of
s for Unidirectional traffic, One-Way failure does not depend on
the point of failure and is presented in Eq. (52). Then, the upper
bound of Trecovery for the Unidirectional traffic case is

supp ¼ RTT þ TKA � DA

DA

� �
DA 6 RTT þ TKA ð61Þ

Trecovery < TRTx þ 2RTT þ Tsend þ supp ð62Þ

7. A case study of the applicability of the results

Eqs. (59)–(62), provide the appropriate values for the timers of
REAP to comply with a target Recovery Time given the characteris-
tics of an application and a scenario. We show how the previous re-
sults can be applied with a case study: Suppose a bidirectional VoIP
(Voice over IP) application for which we require a Trecovery value of
2 s, considering that this time is short enough not to make the user
think that the call has been disconnected, using a codec which gen-
erates a packet each 30 ms. The end-to-end delay available for the
communication is upper bounded by 150 ms (symmetrical case),
being this value the typical upper bound of the mouth-to-ear delay
as specified in [11]. In this scenario, Eq. (59) provides an upper
bound for the time required to start the Send Timer (s) of 150 ms
for the first peer detecting the failure. Supposing concurrent path
exploration, the time required to recover from a failure corresponds
to Eq. (60) and it is equal to TRTx þ 0:3þ TSend þ 0:15þ 0:15 s. The
specification of REAP recommends TRTx ¼ 0:5 s, although the only
constrain imposed to the TRTx value is that it must be higher than
the RTT (Round Trip Time). Now the Send Timer can be set according
to the requirements imposed by the application, i.e. assuming the
previous Trecovery value of 2 s, the Send Timer must be set to 0.9 s.
A final check should be performed to be sure that the loss of a small
number of packets for reasons such as light congestion does not
trigger the exploration process, i.e. check that Tsend

DA
and Tsend

DB
are larger

than a certain small value such as 3 or 4, so that 3 or 4 data packets
should be discarded before the exploration process is started. The
main idea behind requiring at least 3 or 4 packets to be lost before
entering in the exploration process is to prevent triggering this pro-
cess as a result of a very small number of uncorrelated events. Or, in
otherway, this 3 or 4 packets are used to check by sampling that the
path has been unavailable during the whole Tsend period, which is a
good criteria to decide that the path should be changed.

Now we analyze a communication with the same characteris-
tics as the example presented above but with a delay of 400 ms.
This value is the maximum one-way delay for network planning
recommended by [11]. Taking into account the same computations
as in the previous example Trecovery < 2:1þ TSend s. In this case the
previous assumption of a Trecovery value of 2 s is impossible to fulfill,
being the closest achievable value around 2.4 s, taking for example,
TSend ¼ 10 � D.

By these simple examples we provide a way for the application
to configure the REAP timers according to the desired failure
Recovery Time.

8. Generalization for variable rate traffic and TCP

The previous results have been derived on the assumption of
constant rate traffic. This section is devoted to analyze the impact

A. de la Oliva et al. / Computer Communications 33 (2010) 485–499 497



of variable rate traffic, and to analyze the specific case of TCP, that
can be considered for our purpose as a specific case of constrained
variable traffic pattern. The main results of this paper are Eqs. (60)
and (62), which present the upper bound for the Recovery Time for
Bidirectional and Unidirectional traffic respectively. If we focus on
the Unidirectional traffic case (Eq. (62)), the Recovery Time does
not depend on the sending inter-packet interval (D) of any of the
nodes, but only on the characteristics of the link and the configura-
tion of the REAP timers. Hence, it is straightforward that it can be
applied to variable rate unidirectional traffic without any addi-
tional consideration. However, the Bidirectional traffic case (Eq.
(60)) depends on the rates of both nodes. In the case of variable
rate traffic, the worst possible condition which yields to the higher
Recovery Time occurs when the difference between both traffic
rates is the highest possible. In order to obtain the worst possible
difference between both traffic rates, it is required to compute
DA � DB and DB � DA for the maximum and minimum values of
DA and DB respectively, which applied to Eq. (60) results in the
upper bound for the Recovery Time.

8.1. TCP

We now discuss how to apply the results for Bidirectional traffic
(Section 6.3) to TCP traffic. In the next paragraphs we consider two
cases: when only one node is transmitting a large chunk of data,
and when both nodes are transmitting a large amount of data.

First, let’s consider a TCP application that is transferring data
(bulk transfer) from one end host (let’s call it A) to the other (let’s
call it B), i.e., data traffic goes in one direction ðA ! BÞ and the re-
turn path ðB ! AÞ is used only for ACKs. We must consider the
worst case for this scenario for Eq. (59) to calculate an upper bound
to the Recovery Time. To do so, we analyze the two terms inside
the maximum operator separately: cAB þ DB � DA and
cBA þ DA � DB. In each term the worst case is given by the values
of DA and DB maximizing the difference between them.

ThemaximumofDB � DA happenswhenDA isminimumandDB is
maximum. The value of DA, the inter-packet interval in the sending
side, depends in practice on the minimum value allowed by the
operating system and MAC access methods, so zero is the worst
(minimum) case.DB is the time used by TCP for DelayedACKs.While
TCP ACKs can be sent just when a TCP segment is received, they can
be delayed until the Delayed ACK Timer expires, so the value of this
timer is the largest value for the inter-packet rate of the node receiv-
ing data traffic (see Fig. 16). Therefore, the value of this timer can be
used to estimate the worst case for the difference of DB and DA:

max cAB þ DB � DAð Þ ¼ cAB þ TdelayedACK ð63Þ
This timer is in the order of few hundreds of milliseconds, as recom-
mended in [12] (200 ms in Windows XP3).

Now, we calculate the maximum of DA � DB. In the worst case
DA could be close to the RTT of the communication, if the sending
side has sent all the data allowed by its transmission window in
negligible time compared to the RTT , and has to wait for an
acknowledgement to a previous packet before sending the next
packet. Although DB will be usually greater than zero in that case,
we can again use zero as a worst case. Therefore:

maxðcBA þ DA � DBÞ ¼ cBA þ RTT ð64Þ
Now, by applying 63 and 64 in (59), we obtain an expression for the
worst case of the supp for a TCP application that sends bulk traffic
from A to B:

supp ¼ maxðcAB þ TdelayedACK ; cBA þ RTTÞ ð65Þ
Using this result in Eq. (60) we get an upper bound for Trecovery.

The second case considered is a TCP application exchanging
bulk traffic in both directions of the communication. Applying
the same reasoning as above, we have to consider the two terms
in the maximum of Eq. (59). In each of the terms the worst case
for the difference between DA and DB and vice versa is given by
the Delayed ACK Timer, and occurs when one host is sending pack-
ets at an inter-packet interval close to zero and the other end host
is waiting the maximum time any of the peers can wait to send a
packet. This is a worst case scenario, far from normal operation be-
cause the difference between DA and DB will be typically close to
zero. Therefore:

supp ¼ maxðcBA þ TdelayedACK ; cAB þ TdelayedACKÞ ð66Þ

Then, by introducing (66) in (60), we obtain an expression for the
worst case of the Trecovery for a TCP application that exchanges bulk
bidirectional traffic between A and B.

In conclusion, Eqs. 65, 66, and 60, allow the configuration of
REAP timers to achieve objective Recovery Times for worst case
scenarios for TCP traffic.

It must be noted that although these results give us the time re-
quired by REAP to detect the failure and find a valid path, TCP may
need an additional time to start using the new path. This was
shown in previous work by the authors [10]. The cause of this mis-
match is the congestion control mechanism implemented by TCP.
When a failure is detected the time at which the subsequent trans-
mission of segments occurs is driven by the expiration of the
Retransmission Timeout (RTO) timer, to reduce the congestion of
the network. This timer follows a backoff mechanism, increasing
its value when a retransmission occurs. In case REAP detects a fail-
ure and finds a suitable path, TCP does not start using the new path
immediately, rather it waits until the RTO expires to retransmit the
packet.

In [10] the authors proposed a mechanism which, using a cross-
layer technique, allowed REAP to reset the RTO of TCP when a new
path was found and ready to use. This mechanism has been
adopted in a public domain Linux SHIM6 distribution [13]. By the
use of this mechanism, the recovery time at TCP level can be mod-
eled as presented in this section.

9. Conclusion

In this paper we have presented an exhaustive analytical study
of the time required by REAP to recover from a path failure. We
have focused on characterizing the time since the first data packet
is lost in any node and the time at which a peer willing to send a
packet can do so again, i.e. the Trecovery figure of merit. The analysis

Fig. 16. Exchange of data for TCP application when only one node is transmitting
data and the sending site has exhausted its transmission window before receiving
an ACK.

3 http://support.microsoft.com/kb/328890

498 A. de la Oliva et al. / Computer Communications 33 (2010) 485–499



has considered all the possible situations that may occur for each
communication type (bidirectional or unidirectional traffic ex-
change), different types of failure (One-Way, Two-Way), locations
of the failure, transmit start time for each peer, etc. Besides the
analysis performed, in which we have proven that some of the
expressions provided are optimal upper-bounds (i.e. supremum
values) for any possible operational scenario, simulations have
been used to validate the expressions obtained for several cases.
The final result of this process has been two expressions for the
upper bound Trecovery for bidirectional communication – expression
(60) – and unidirectional communication – expression (62) – that
are independent of the parameters that cannot be known in ad-
vance about the failure that may occur: type and location of the
failure. Consequently, these are the most valuable expressions for
understanding REAP behavior. These expressions depend on the
end-to-end delay of the paths involved, on the values of the timers
of REAP (Send Timer and Transmission Timer) and on the inter-
packet sending rates of the application. If the traffic pattern gener-
ated by an application exchange can be modeled properly, and
some assumptions (or real-time measures) about the end-to-end
delay can be made, it is easy to configure the REAP timers to assure
that communication is restored in a certain time in case of a failure.
Such exercise has been presented in Section 7 for a VoIP traffic ex-
change as a case of study. The use TCP as transport-layer has also
been considered, since TCP impose several restrictions to the traffic
exchange that can be taking into account by the REAP model. We
note that the results obtained are general enough to apply the
methodology devised in our work to other failure detection proto-
cols with some similarities to the failure detection module of REAP,
such as Bidirectional Forwarding Detection (BFD) [14], Neighbor
Unreachability Detection (NUD) [15] or the failure detection mech-
anism of SCTP [16].

Acknowledgments

The authors would like to thank Jose Felix Kukielka for his help-
ful contributions to this paper. The research leading to these re-

sults has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement 214994 (CARMEN project). It was also partly funded
by the Ministry of Science and Innovation of Spain through Project
CONPARTE (TEC2004-05622-C04-03) and project T2C2 (TIN2008-
06739-C04-01).

References

[1] E. Nordmark, M. Bagnulo, Shim6: Level 3 Multihoming Shim Protocol for IPv6,
IETF RFC 5533, 2009 June.

[2] J. Abley, B. Black, V. Gill, Goals for IPv6 Site-Multihoming Architectures, IETF
RFC 3582, 2003 August.

[3] J. Arkko, I. van Beijnum, Failure Detection and Locator Pair Exploration Protocol
for IPv6 Multihoming, IETF RFC 5534, 2009 June.

[4] R. Moskowitz, P. Nikander, Host Identity Protocol (HIP) Architecture, IETF RFC
4423, 2006 May.

[5] T.R. Henderson, Host mobility for IP networks: a comparison, IEEE Networks,
2003 November.

[6] R. Wakikawa, T. Ernst, K. Nagami, Multiple Care-of Addresses Registration, IETF
draft; draft-ietf-monami6-multiplecoa-01, October 2006.

[7] T. Kivinen, H. Tschopfening, Design of the IKEv2 Mobility and Multihoming
Protocol, IETF RFC 4621, 2006 August.

[8] Marcelo Bagnulo, Alberto Garcia-Martinez, Arturo Azcorra, IPv6 multihoming
support in the mobile Internet, IEEE Wireless Communications Magazine 14
(5) (2007) 92–98. October.

[9] S.Barre, O. Bonaventure, Improved path exploration in shim6 based
multihoming, in: Proc. ACM SIGCOM Workshop on IPv6 and the Future of
the Internet, August 2007.

[10] A. de la Oliva, M. Bagnulo, A. Garcia-Martinez, I. Soto, Performance analysis of
the REAchability protocol for IPv6 multihoming, NEW2AN 2007, in:
Conference on Next Generation Teletraffic and Wired/Wireless Advanced
Networking, September 2007.

[11] R. ITU-T, I. Recommend, G. 114, One-way transmission time 18.
[12] R. Braden, Requirements for Internet Hosts-Communication Layers, IETF RFC

1122, October 1989.
[13] Sebastien Barre, Olivier Bonaventure, Implementing SHIM6 using the Linux

XFRM framework, in: Routing In Next Generation workshop, Madrid, Spain,
2007.

[14] D. Katz, D. Ward, Bidirectional Forwarding Detection, IETF draft; draft-ietf-bfd-
base-07, January 2008.

[15] T. Narten, E. Nordmark, W. Simpson, H. Soliman, Neighbor Discovery for IP
Version 6, IETF RFC 4861, September 2007.

[16] R. Stewart, Stream Control Transmission Protocol, IETF RFC 4960, September
2007.

A. de la Oliva et al. / Computer Communications 33 (2010) 485–499 499


