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Abstract

The thesis Dynamic Factor Models for Heterogeneous Data has two major purposes: (1)
to investigate the advantages and disadvantages of different Dynamic Factor Model
(DFM) estimation methodologies and (2) to show DFM usefulness in real data applic-
ations. This thesis includes a literature review in the introduction. Chapter 2 presents
a new approach for the estimation of the number of factors using an eigenvalues ra-
tio test. Chapter 3 generalizes the proposed method in chapter 2 for the estimation of
the factor space. Chapter 4 studies the business cycles synchronization between Euro
Area countries by means of a DFM with known cluster structure and Chapter 5 analyses
international energy prices interrelations using DFM with unknown cluster structure.
Simulation results suggest that the new approach proposed in this thesis for finding the
number of factors and estimating them, based on lagged correlation matrices, provides
a good performance compared to methods already presented in the literature. Spe-
cially, when the data sample includes atypical series the proposed method outperforms
its competitors. This is also corroborated by real data examples.
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Resumen

La tesis Dynamic Factor Models for Heterogeneous Data tiene dos propósitos principales:
(1) investigar las ventajas y desventajas de diferentes metodologı́as de estimación del
Modelo de Factores Dinámicos (MFD) y (2) mostrar la utilidad del MFD en aplicaciones
de datos reales. Esta tesis incluye una revisión bibliográfica en la introducción. El
capı́tulo 2 presenta un nuevo enfoque para la estimación del número de factores util-
izando un test basado en el uso de valores propios. El capı́tulo 3 generaliza el método
propuesto en el capı́tulo 2 para la estimación del espacio factorial. El capı́tulo 4 estudia
la sincronización de los ciclos económicos entre los paı́ses de la Zona Euro mediante un
MFD con estructura de clúster conocida y el capı́tulo 5 analiza las interrelaciones exist-
entes entre los precios internacionales de la energá utilizando un MFD con estructura
de clúster desconocida. Los resultados de las simulaciones sugieren que el nuevo en-
foque propuesto en esta tesis para determinar el número de factores y para la estimació
de dichos factores, basado en matrices de correlación rezagadas, proporciona un buen
desempeño en comparación con los métodos ya presentados en la literatura. Especial-
mente, cuando la muestra de datos incluye series atı́picas, el método propuesto supera
a sus competidores. Esto también se corrobora con ejemplos de datos reales.
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Chapter 1

Introduction: Dynamic Factor
Models

One of the major limitations in classical econometric models and multivariate time
series models is that the number of parameters to estimate increases with the square
of the dimension of the vector of time series, with the consequently loss of degrees of
freedom. When addressing empirical issues, it is crucial to find simplified structures
which can be correctly estimated. As a solution to the problem of dimensionality, factor
models have become one of the most useful tools between researchers and practition-
ers. This section reviews the main characteristics of this methodology and its different
specifications along literature.

First applications of Dynamic Factor Models (DFM) to macroeconomic series were
originally proposed by Geweke (1977) and Sargent et al. (1977), as an extension of the
classical static factor models to the field of time series, and were initially known as index
models. Since then, an extensive literature, both theoretical and empirical, about them
has been developed. The main idea behind factor decomposition in time series analysis
is that the co-movements of a high-dimensional vector of observed variables, yt, are
driven by two mutually orthogonal components: a small number of latent dynamic
factors, Ft, and a vector of mean-zero idiosyncratic disturbances, et, that are specific
to an individual series. Let us consider the following factor model representation for
observation yit, with i = 1, ..., N where N is the number of cross-section units and
t = 1, ..., T where T is the number of time series observations:

yit = p′
iFt + eit, (1.1)

each component of the r × 1) vector pi, given by pij for i = 1, ..., N and j = 1, ..., r,
is known as the factor loading, where r is the number of latent factors, and p′

iFt is con-

1



2 CHAPTER 1. INTRODUCTION: DYNAMIC FACTOR MODELS

sidered as the common component for such observation. It is usually assume that the
latent factors follow autoregressive dynamics of order p, such as

Ft = ϕ1Ft−1 + ...+ ϕpFt−p + ηt, (1.2)

where ϕ1, ..., ϕp are the autoregressive coefficients and the factor innovation, ηt, is a
Gaussian white noise vector with positive and finite covariance matrix Γη, independ-
ently distributed for all leads and lags.

In vector representation, the DFM is defined by the two equations:

yt = PFt + et, (1.3)

Φ(L)Ft = ηt, (1.4)

where yt = (y1t, y2t, ..., yNt)
′ and et = (e1t, e2t, ..., eNt)

′ are N × 1, and Ft and ηt are
r × 1. The factor loading matrix given by P = (p1, ...,pN )′ is N × r and in equation
(1.4), Φ(L) = (I − ϕ1L− ...− ϕpL

p) is a polynomial of the lag operator L, which can be
of infinite order.

Given the advantages of these models for dimension reduction, the state-of-the-art
about DFM has distinguished different versions and implementations. Attending to the
literature, we consider here two possible classifications of the DFM: one depending on
the amount of observable time series, N , used for the estimation of the latent factors;
and the other depending on the assumptions made on Ft in order to be common and on
et in order to be idiosyncratic.

Depending on the number of series, N , included in yt, DFMs can be considered as
small scale or large scale. Methods applied in the estimation procedure will be differ-
ent depending on the size of N . Due to the small number of series to be included in
the estimation procedure in small scale DFMs, factors and parameters use to be estim-
ated by means of the Maximum Likelihood (ML) via the Kalman filter and smoother
(KFS), see e.g. Engle and Watson (1981, 1983), Stock and Watson (1989), Sargent (1989),
and Quah and Sargent (1993). Differently, large scale DFMs allow to include a larger
amount of information and Principal Component Analysis (PCA) is considered one
of the most useful methodologies in order to estimate the common factors, see Stock
and Watson (2002) and Forni et al. (2005) for a review of these methods. In past years,
hybrid approaches attracted the attention of researchers. These approaches combined
both methodologies, KFS and PCA, and were introduced in Doz et al. (2012) and ap-
plied for example in Giannone et al. (2008). Some studies have addressed the properties
of the estimation methodologies applied in small scale and large scale DFMs, see e.g.
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Alvarez et al. (2016) for DFMs that use aggregate and disaggregate data, and Poncela
and Ruiz (2016) which compare PC, KFS, 2SKF (Two Steps Kalman Filter) and QML
(Quasi-Maximum Likelihood) given the sample size of simulated and real data. Apart
from these methodologies, some authors have considered the Bayesian estimation ap-
proach based on Markov Chain Monte Carlo (MCMC) methods, see for example Otrok
and Whiteman (1998) for an estimation of the single factor model with application to
economic activity in Iowa, and Kose et al. (2003, 2008) and Crucini et al. (2011) for an
application of the multifactor model to illustrate global, regional and country business
cycles and shocks. The latter studies, address the drawback about the pervasiveness
of the factors in cross-country data sets, which is not a realistic assumption given that
some latent factors could summarize the co-movements in a given country while not
affecting others.

Depending on different characterizations of the idiosyncratic errors or disturbances,
et, there exist a variety of definitions of DFMs such as exact, approximate or strict. The
strict and exact DFMs make the assumption that idiosyncratic errors are cross-sectionally
strictly orthogonal to each other at all leads and lags. Nevertheless, while in the strict
DFM, see Chamberlain and Rothschild (1983), errors present also serial independence,
in the exact DFM of Sargent et al. (1977), this assumption is relaxed allowing serial
correlation in the errors. In the approximate or weak DFMs previous assumptions are
relaxed allowing serial correlation and ’limited’ cross-correlation between the idiosyn-
cratic errors, see Doz et al. (2012) for a detailed description of these models.

Along literature, two different representations of the DFM have been considered,
static and dynamic, depending on the way in which the dynamic of the common com-
ponent is introduced in the model. The word ’static’ implies that all common dynamics
features are introduced in (1.1) or (1.3) contemporaneously, although the static factors
contain current and past values of the dynamic factors. The DFM in (1.3) and (1.4) could
then be rewritten in dynamic form as:

yt = P(L)ft + et, (1.5)

ft = C(L)εt, (1.6)

where P(L) = (1−p1L− ...−psL
s) is a vector of dynamic factor loadings of order s, and

εt are iid errors.The vectors ft and εt have dimension q, with q equal to the number of
dynamic factors. The DFM previously described in (1.3) and (1.4) corresponds with the
case in which the number of lags, s, is finite. Instead, when s is allowed to be infinite
the model is the so called Generalized Dynamic Factor Model (GDFM) proposed in
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Forni et al. (2000). If there are q dynamic factors, the model in (1.5) and (1.6) could be
rewritten as a static model with r factors, where r = q(s + 1) ≥ q. It is worth noting
that the dimension of Ft in (1.3) is expected to be different from the dimension of ft

given that Ft will include all leads and lags of ft. In what follows, DFM means that the
latent common factors follow time series processes, and depending whether the factor
loadings are constant or follow a dynamic process, these models are considered to have
a ’static’ or ’dynamic’ representation, respectively.

Finally, the distinction existing between DFMs and GDFMs has to do also with the
assumptions related with the underlying data-generating process. As mentioned in
Hallin and Lippi (2013), most of the application of DFMs has the nature of ’statistics
models’ in the sense that they impose restrictions about the underlying data-generating
process. Usually, these models have assumed that all the processes in (1.3) and (1.4)
are stationary, as it is the case in Peña and Box (1987), Stock and Watson (1988), Bai
and Ng (2002), and Lam and Yao (2012). Alternatively, Peña and Poncela (2006a) as-
sumes nonstationarity for integrated process, Pan and Yao (2008) for general processes
and Motta et al. (2011), Motta and Ombao (2012) for locally stationary processes. Such
models which impose a structure in the underlying data-generating process have been
considered suitable along literature when restrictions could be satisfied by the observed
data or when they lead to good approximations. Nevertheless, when applied to real
data those assumptions can be misleading and difficult to prove from observations.
This drawback suggests to apply instead of the classical DFM the GDFM, which does
not restric the number of lags in the factors and allows a low correlation between idio-
syncratic components or noises, going further from the general structure assumptions
(like stationarity). Studies in this topic are Forni et al. (2015) which proposed a model
with possibly infinite-dimensional factor spaces and obtained a one-sided representa-
tion for the dynamic factor model, and Peña and Yohai (2016) which introduced Gener-
alized Dynamic Principal Components (GDPC) as a generalization of the pioneer work
of Brillinger (1981), showing how to reconstruct data set generated by GDPC.

Bai et al. (2008) provides a technical review dedicated mostly to the econometric
theory and the restrictions presented in different specifications of DFMs. They focus on
the use of estimated factors in subsequent estimation and inference, and differentiate
between the static and dynamic representations of the model, introducing the assump-
tions taken into account in classical factor analysis, which are relaxed in the so-called
new generation of ’large dimensional approximate factor models’. Stock and Watson
(2011) offers a review focusing on the applications and empirical findings in terms of
factor estimation, the determination of the number of factors and the uses of the es-
timated factors, as well as, some important extensions of DFMs. Finally, Hallin and



5

Lippi (2013) summarizes the methodological foundations of factor models, contrasting
concepts as commonality and idiosyncrasy, factors and common shocks, dynamic and
static factor models. The latter focuses on the GDFM, and defines the rest of factor
models (static-dynamic, exact-approximate) as particular cases of the GDFM under the
assumption of second-order stationarity.

The rest of the thesis is organized as follows: Chapter 2 presents a new eigenval-
ues ratio test for the number of factors with an empirical application to international
business cycles. Chapter 3 introduces an improved method for the estimation of the
common component with an empirical application to CO2 emissions. Chapters 4 and
5 deal with the Dynamic Factor Model with Cluster Structure (DFMCS): Chapter 4 ap-
plies a DFM with known cluster structure to macroeconomic data in order to evaluate
synchronization between business cycles in the Euro Area; Chapter 5 analyzes interna-
tional energy prices by means of a DFM with unknown cluster structure. At the end of
each chapter concluding remarks and future research extensions are given.
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Chapter 2

A new eigenvalues ratio test for the
number of factors

As we mention in the introduction, Dynamic Factor Models (DFM) are a useful ap-
proach to model and forecasts large sets of big dependent data. Nevertheless, an im-
portant problem in these models is to determine the number of common factors. First
procedures considered heuristic inspection of eigenvalues of the lagged covariance matrices,
see Peña and Box (1987), but three main approaches to solve this problem have been
proposed. The first one is based on canonical correlation analysis, Tiao and Tsay (1989)
used this technique to check the rank of some moment matrices with a chi-square stat-
istic. A similar test for finding the number of factors in a static or exact dynamic factor
model (EDFM) without lagged factor effects was proposed by Peña and Poncela (2006b).
These authors showed that the number of common factors is equivalent to the number
of non-zero canonical correlations between the vector of series and their lags. Jacobs
and Otter (2008) related this test to entropy and used them for DFM with lagged factor
effects. This type of test works well when the sample size, T , is much larger than the
number of series, N , but its power deteriorates when N is large. The second alternative
is to select the number of factors by an information criterion. As the BIC or AIC criteria
are not appropriate when N is large and close to T , Bai and Ng (2002) have provided
consistent model selection criteria that seem to work well in high dimensional cases. A
third approach is to used the ratios of consecutive eigenvalues (in a proper order) of
the covariance or spectral matrices. Hallin and Liška (2007) explored tests for the num-
ber of divergent eigenvalues in the spectral matrices to find the number of factors in a
DFM with lagged factor effects, Onatski (2010) and Ahn and Horenstein (2013) used the
covariance matrix, and Lam and Yao (2012) the cumulative sum of lagged covariance
matrices for the number of static factors, or factors without lagged effects. The main

7
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idea is that, under the DFM, the eigenvalues of these matrices can be separated into r

spike eigenvalues that diverge to infinity and N − r bounded eigenvalues. In addition
to this three main approaches other procedures have been proposed, as estimating the
number of factors in different subsamples and checking the stability of the results, see
Hallin and Liška (2007) and Alessi et al. (2010). Recently, Fan et al. (2019) based on the
random matrix theory have proposed an adjusted correlation threshold for determining
the number of common factors in high dimensional static factor models.

In this chapter we propose a criterion for the estimation of the number of static
factors, it can be seen like a test, as it is called by Ahn and Horenstein (2013), or like a
criterion or rule, as it is called by Lam and Yao (2012). The proposed criterion is based on
eigenvalue ratios and it combines the advantages of those proposed by Ahn and Horen-
stein (2013) and Lam and Yao (2012) (AH and LY from now on) and adds four others.
First, it is based on the correlation instead of the covariance matrices and, therefore, the
test is robust to a few atypical series with large variance that can dominate the results
of a test based on the eigenvalues of the covariance matrices. Second, the new test uses
all the information available about the dependency among the series as it incorporates
both the information about the lag zero dependency (as the AH test) and the positive
lagged dependency (as the LY criterion). Third, instead of adding the lagged covari-
ance matrices they are combined with weights that depend on the precision estimation
of each matrix. Fourth, when the series are heteroscedastic theoretical reasons are given
to justify that the ratios of eigenvalues of correlation matrices are expected to be more
powerful to detect the number of factors than those from the covariance matrices.

The rest of this chapter is organized as follows. In the next section we define the
notation and the background of the dynamic factor model. In Section 2 tests for the
number of factors based on the eigenvalues of covariance matrices are reviewed. In
particular, we analyze the pros and cons of the AH and LY criteria based on eigenval-
ues ratios. Section 3 presents the new test and justify some possible advantages of the
ratio of eigenvalues from correlation matrices to find the number of factor with hetero-
scedastic time series. Section 4 includes a Monte Carlo experiment to compare its per-
formance to AH and LY criteria. Section 5 discusses an example of finding the factors
with economic data where the proposed test leads to more interesting results than the
AH and LY criteria. Finally, Section 6 presents some concluding remarks.
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2.1 Theoretical framework

We consider here the static representation of the DFM. Let r represents the number of
common factors, a model for the observed data yt for t = 1, ..., T is:

yt = Pf t + et, (2.1)

where P is a (N × r) matrix of factor loadings, ft is a (r × 1) vector of common factors,
and et is a (N × 1) vector of idiosyncratic disturbances or errors. We assume for model
identification that P′P = Ir, and also that Γf (k) = cov(ft, ft−k) ̸= 0 for some k > 0,

meaning that the factors may present serial correlation. With the assumption that et is
a white noise process the model is identified in finite samples and is called the Exact
DFM or EDFM. However, this hypothesis is often unrealistic in practice. Nevertheless,
we can allow weak autocorrelation and cross-section correlation in the noise or idiosyn-
cratic term under assumptions that imply that this dynamic vanishes asymptotically,
whereas the factor dynamics remains. For instance, Stock and Watson (2002) assume
that 1

T

∑T
t=1 ftf

′
t

p→ Γf (0) > 0 for a r × r non-random diagonal matrix Γf (0) with diag-
onal elements γi(0) for i = 1, ...r and N−1P′P

p→ Ir. These two assumptions provide
that the factors are pervasive, affecting almost all the series, and that the average signal
provided for the factors does not disappear asymptotically. Note that, from (2.1), each
series is given by:

yit = p′
ift + eit, (2.2)

where p′
i is the ith row of P, and the variance of the series is p′

iΓf (0)pi + var(eit). The
average variance of the signal, or common part, is asymptotically

var(yt) =
1

N

N∑
i=1

p′
iΓf (0)pi = tr(Γf (0)

1

N

N∑
i=1

pip
′
i)

p→
r∑

i=1

γi(0).

The approximate DFM (ADFM) allows the errors, et, to be autocorrelated, heterosce-
dastic and with some weak cross-section correlation, but all this dynamics disappears
asymptotically, see Bai and Ng (2002). Given these assumptions, the estimation of the
factors by principal components provides consistent estimators of the common part, see
Bai and Ng (2013). Other estimators can be obtained by the eigenvectors of the cumu-
lative sum of lagged covariance matrices, see Lam et al. (2011) where they prove that
P (r̂ ≥ r) → 1, and also by maximun likelihood, see Bai and Li (2016).

The eigenstructure of the covariance matrices can be used to find the number of
factors. Note that from (2.1)
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Γy(k) = PΓf (k)P
′ + Γe(k), (2.3)

and the properties of Γy(k) depend on the hypothesis about the covariance matrices of
the noise Γe(k). Under the EDFM with white noise Γe(k) = 0 for k ̸= 0, and if Γe(0) =

σ2I, the homoscedastic case, the matrix Γy(0) has r large eigenvalues corresponding to
the variance of the factors, and N−r small eigenvalues σ2. The matrices Γy(k), for k > 0,

will have rank at most r with eigenvalues equal to the covariance of lag k of the factors.
If Γe(0) = D, where D is a diagonal matrix, then the number of large eigenvalues
in Γy(0) depends on the relative size of the minimum variance of the factors and the
maximum variance of the noises. If there is autocorrelation and Γe(k) ̸= 0 for k ̸= 0,

this will not affect the eigenvalues of Γy(0) but will affect those of Γy(k). Finally, in
the more general case, with heteroscedasticity and cross-sectional and auto correlation
in the errors, the eigenvalues of all the covariance matrices depend on the assumed
structure.

In this chapter we will concentrate on finding the number of factors in model (2.1) using
eigenvalues ratio tests. These tests are discussed in the next section.

2.2 Testing the number of factors with eigenvalues

A test on the number of factors in a DFM based on the properties of the eigenvalues of
some covariance matrices was proposed by Peña and Poncela (2006b), based on previ-
ous results by Tiao and Tsay (1989). Note that if in model (2.1) et is white noise for k > 0,
Γy(k) = PΓf (k)P

′ and there exists a N × (N − r) matrix P⊥, such that Γy(k)P⊥ = 0.

Thus, the N − r independent linear combinations of the observed series given by P′
⊥yt

are cross-sectionally and serially uncorrelated for all lags, and also uncorrelated with
P′

⊥yt−k. The N × N canonical correlation matrix between yt and yt−k assuming an
EDFM satisfying Γy(k) = Γy(−k), is

C(k) =
[
Γy(0)

−1Γy(k)
]2

.

As for k > 0 rank(Γy(k)) = rank(Γf (k)) = r, then rank[C(k)] = r, and the number of
zero canonical correlations between yt−k and yt is given by the number of zero eigenval-
ues of the C(k) matrix, that is N − r. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N be the ordered eigenvalues
of the estimated matrix Ĉ(k). If we have r factors, the eigenvalues λ̂r+1, ..., λ̂N are es-
timates of squared correlations equal to zero and have asymptotic variance 1/(T − k).

Therefore, for j > r the statistics −(T − k) log(1 − λ̂j) ≃ (T − k)λ̂j follow a Chi-square
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distribution and the statistics

SN−r = −(T − k)
N∑

j=r+1

log(1− λ̂j), (2.4)

can be shown to be asymptotically a χ2
(N−r)2 , see Peña and Poncela (2006b). The test is

applied sequentially, it starts with r = 0 and if the hypothesis is rejected the value r = 1

is tried and so on. The testing procedure stops when the hypothesis of r+1 eigenvalues
equal to zero cannot be rejected.

This test only works for the EDFM and in the frequent case in which idiosyncratic
terms have autocorrelation it cannot be applied. It has been generalized by Bolivar et al.
(2020) by finding a consistent estimate of the matrices Γe(k) and applying the test to the
corrected matrices Γ̂

∗
y(k) = Γ̂y(k)−Γ̂e(k). However, although this test works well when

T is much large than N , it deteriorates when N is large.

An useful alternative is, instead of checking the eigenvalues themselves, looking at
the ratios of consecutive eigenvalues (in a proper order) of the covariance matrix, or a
cumulative sum of lagged covariance matrices. Lam and Yao (2012) proposed to com-
pute the ordered estimated eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N of the pooled covariance
matrix

M1,k0 =

k0∑
k=1

Γ̂y(k)Γ̂y(k)
′, (2.5)

where k0 is a pre-specified positive integer, and select r as

r̂ = arg max
1≤i≤r∗

λ̂i

λ̂i+1

,

for some r∗ = αN , where N is the number of series and 0 < α < 1 such as α = 0.2.

Suppose that the first r eigenvalues are large and the remaining eigenvalues are small.
Then, the ratios λi+1/λi ≤ 1 would have a big decrease for i = r.

A similar test has been proposed by Ahn and Horenstein (2013) by using the ordered
estimated eigenvalues ν̂1 ≥ ν̂2 ≥ ... ≥ ν̂N of the covariance matrix Γ̂y(0). The criterion
is

r̂ = arg max
1≤i≤r∗

ν̂i
ν̂i+1

.

The LY criterion cannot be applied if some factors are white noise because then there
is no information about those factors in the lagged covariance matrices. However, the
AH test continues to work in these cases. Both criteria are consistent when both T and
N go to infinity under appropriate hypothesis so that the long run effect of the idiosyn-
cratic terms disappears. However, their properties in finite samples are very different
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depending on the structure of the idiosyncratic components. The advantage of the LY
criterion is to pool the information about the factors that is present in the lagged cov-
ariance matrices and with strong factors and white noise errors is expected to be more
powerful than the AH test. However, as the lagged covariance matrices also include the
information about the dynamics of the idiosyncratic components, and if this dynamic
exits and is different among the components, it will increase the noise in the estima-
tion of the factor effects and with weak factors using the lagged information may not
be useful. On the other hand, the covariance matrix is not affected by these dynam-
ics as it only contains contemporaneous information of the variances of the factors and
the idiosyncratic components. The situation is the opposite with heteroscedasticity: the
eigenvalues of the covariance matrix will be different and the AH test is expected to
be affected whereas the LY criterion will not. Thus the relative advantage of each test
depends on the dynamics of the idiosyncratic term.

An additional problem of these two tests is their lack of robustness to a few atypical
series. Suppose that one of the series is affected by some large measurement errors, as
often happen in time series automatically collected by sensor devices. Then, the vari-
ance of this series will be much larger than the others. Also, the outliers due to the
measurement errors may destroy the cross-section correlation between this series and
the others. In the limit, the largest eigenvalue of the covariance matrix will be equal
to the variance of the atypical series and the corresponding eigenvector will have close
to the zero components in the rest of the uncontaminated series and a value close to
one in the outlying series. This problem will not appear if we work with autocorrel-
ation matrices. Of course, these matrices are not robust to other outliers and a more
powerful procedure with many contaminated series will be to compute robust correla-
tion matrices and this alternative will be explored in future works.

2.3 An eigenvalues test on the Pooled Correlation Matrices

We propose an eigenvalue test based on the weighted combination of the correlation
matrices of the observed data. We define the combined correlation matrix as

Rk0 =

k0∑
k=0

wkRy(k)Ry(k)
′, (2.6)

where k0 is a pre-specified positive integer, the coefficients wk > 0 are weights which
verify

∑k0
k=0wk = 1, and Ry(k) is the lag k correlation matrix of the series. Different

weights can be considered but a simple solution is to use the asymptotic variance of the
autocorrelation and cross correlation coefficients, rij for i, j = 1, ..., N , for white noise
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stationary process, var(rij(k)) ≈ (T − k)−1. Then, as in the Box-Ljung pormanteau test
of goodness of fit, we can standardize the squared correlations by their variance and
define the weights as (T − k)/c, where c is chosen so that the weights add up to one by

c =

k0∑
k=0

(T − k),

which implies c = (k0 + 1)(T − k0/2) and wk = (T − k)/ ((k0 + 1)(T − k0/2)) . Let
α̂1 ≥ α̂2 ≥ ... ≥ α̂N be the ordered estimated eigenvalues of the matrix Rk0 . The test
selects the number of factors as

r̂ = arg max
1≤i≤r∗

α̂i

α̂i+1
.

To compare this test with the two previous ones also based on ratios of eigenval-
ues let S =diag(Γy(0)) be the diagonal matrix of the variances of the series, M0 =

Γy(0)Γy(0)
′ and M1,k0 as given in (2.5). Then

Rk0 = w0S
−1/2M0S

−1/2 + (1− w0)S
−1/2M1,k0S

−1/2.

This equation shows that the pooled correlation matrix defined in (2.6) is a weighted
combination of the matrices used in the AH and LY criteria. The advantage of using
the correlation matrices instead of covariance matrices to check the ratio of the eigen-
values can be important when the series are heteroscedastic, as shown in the following
theorem.

Theorem 1. Let C = {cij} be a N × N symmetric and positive definite random
matrix with eigenvalues λC1 ≥ λC2 ≥ ... ≥ λCN ≥ 0, that are assumed to follow a
non-negative distribution with finite moments. The corresponding eigenvectors, uCj =

(uCj1, ...., uCjN )/qCj , where the uCji, are random variables with E(uCji) = 0 and E(u2Cji) =

1/N and qCj =
√∑N

i=1 u
2
Cji. Let V = C+ S where S = {sij} is, given C, a non random

matrix with s11 = σ2 − 1, s1j = sj1 = (σ − 1)c1j and sij = 0 otherwise, where σ > 1 and
m =

∑N
j=1 c1j > 0. The eigenvalues of the matrix V, λV 1 ≥ λV 2 ≥ ... ≥ λV N ≥ 0, are

related to those of matrix C, up to a first order approximation, by

E(λV j) ≃ E(λCj) + (σ − 1)((σ + E(λCj))/N +m).
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Proof of Theorem 1

The relationship between the eigenvalues of the matrices C and V with eigenvalues λCj

and λV j and eigenvectors uCj and uV j can be approximated by Stewart and Sun (1990)

λV j = λCj + u′
CjSuCj + o(∥S∥2),

where ∥S∥ is a norm of the matrix S. As, calling u′
Cj = (uj1, ..., ujN ),

⎡⎢⎢⎢⎢⎣
σ2 − 1 c12(σ − 1) ... c1N (σ − 1)

c12(σ − 1) 0 ... 0

... ... ... ...

c1N (σ − 1) 0 ... 0

⎤⎥⎥⎥⎥⎦uCj =

⎡⎢⎢⎢⎢⎣
(σ2 − 1)uCj1 + (σ − 1)

∑N
h=2 c1huCjh

(σ − 1)c12uCj2

...

(σ − 1)c1NuCjN

⎤⎥⎥⎥⎥⎦ ,

and as
∑N

h=1 c1juCjh = λCjuCj1 , we have

u′
CjSuCj = u′

Cj(σ − 1)

⎡⎢⎢⎢⎢⎣
(σ + λCj)uCj1

c12uCj2

...

c1NuCjN

⎤⎥⎥⎥⎥⎦ = (σ − 1)[u2Cj1(σ + λCj) +
N∑

h=1

c1ju
2
Cjh],

and assuming independence between the random variables uCj1 and λCj and taking
expected values with E(u2Cj1) = 1/N

E(u′
CjSuCj) = (σ − 1)((σ + E(λCj))/N +m),

where m = E(
∑N

h=1 c1ju
2
Cjh) =

∑N
h=1 c1j/N > 0, as the term c1j are constant numbers.

Thus, with a the first order approximation

E(λV j) ≃ E(λCj) + (σ − 1)((σ + E(λCj))/N +m).

Suppose that we have a set of N variables. The variance of the first one is σ2 > 1

and all the others have variance equal to one. Calling V to the covariance matrix of
these variables and C to their correlation matrix, they are related by V = C+ S, where
s11 = σ2 − 1, s1j = sj1 = (σ − 1)c1j and sij = 0 otherwise. Then, according to Theorem
1, the ratio between the expected values of the eigenvalues of these matrices is

rV (j) =
E(λV j)

E(λV j+1)
≃

E(λCj) + (σ − 1)((σ + E(λCj))/N +m)

E(λCj+1) + (σ − 1)((σ + E(λCj+1))/N +m)
=

E(λCj)(1 + a) + b

E(λCj+1)(1 + a) + b
,
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where a = (σ − 1)/N and b = (σ − 1)(σ/N +m). Thus

rV (j) ≃
E(λCj)(1 + a) + b

E(λCj+1)(1 + a) + b
=

E(λCj)(1 + b/(1 + a)E(λCj))

E(λCj+1)(1 + b/(1 + a)E(λCj+1))
<

E(λCj)

E(λCj+1)
= rC(j).

Therefore, when one of the series have a variance larger than the others the ratio
of eigenvalues in the correlation matrix is expected to be larger than in the covariance
matrix, and the difference between these ratios will increase with the heteroscedasticity
(the value of σ) and in the larger ratios in the covariance matrix. Thus, standardizing
the variables will increase the expected ratio in the correlation matrices when this ratio
is already large in the covariance matrices. On the other hand, when these ratios are
small in the covariance matrices the expected change will be small in the correlation
matrices. This result implies that the standardization of the variables when the series
are heteroscedastic is expected to increase the ratio of eigenvalues at the exact number
of factors in the correlation matrices with respect to the covariance matrices, increasing,
therefore, the power of the ratio of eigenvalues test. This result will be confirmed in the
Monte Carlo experiment presented in the next section.

2.4 Monte Carlo experiment of tests performance

We run a simulation exercise to compare three criteria for the number of factors: AH, LY,
and the one proposed in this chapter, CP. For this comparison we use different: (1) Data
generating processes (DGP) for the idiosyncratic component in model (1); (2) Numbers
of latent factors: two and three; (3) Signal to noise ratios, strong, medium and weak. The
data is generated by equation (2.2) with factor loading coefficients pi generated from the
U(-0.5, 0.5) distribution. Each common factor, ft, is generated as an AR(1) process, by
the following equation:

ft = ϕft−1 + ηt, (2.7)

We consider six DGP for the idiosyncratic component. The first three have serially un-
correlated noises with different idiosyncratic covariance matrices, Γe(0), and the next
three add serially correlated noises to the basic covariance structure. Thus, DGP1 has
homoscedastic errors and Γe(0) = σ2I, with σ2

ei = 1 for i = 1, ..., N, DGP2 has het-
eroscedastic uncorrelated noises with σei = 1 if i is odd and σei = 2 if i is even, and
DGP3 has heteroscedastic and cross-section correlated errors, with Γe(0) having diag-
onal elements σei = 1 if i is odd and σei = 2 if i is even, and non-diagonal elements
0.7|i−j|σeiσej . The next three DGP add to the three previous scenarios serially correl-
ated errors eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), uit ∼ N(0, 1) white
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noise, and uncorrelated noises with σ2
ei = 1 for i = N/2 + 1, ..., N. Thus, this modi-

fication of the first DGP, that will be called DGPC1, has Γe(0) with variances around
1/(1− .52) = 1.33 in half of the matrix and variances equal to one in the other half. Also
Γe(k) for k > 0 is a diagonal matrix different from zero. DGPC2 has heteroscedastic
variances around 1/(1 − .52) = 1.33 in half of Γe(0) and variances equal to two in the
other half, and non null diagonal lag covariance matrices. Finally DGPC3 has full rank
Γe(0) with different variances in half of the matrix and equal to two in the other half,
non-diagonal elements 0.7|i−j|σeiσej , and non null Γe(k) lagged covariance matrices.

Three signal to noise ratios (SN) are considered: Strong, with autoregressive coeffi-
cients ϕf1 = 0.9, ϕf2 = 0.8 and ηt white noise N(0, 1); Medium with ϕf1 = 0.6, ϕf2 = 0.5

and, as before, ηt independent N(0, 1); Weak with ϕf1 = 0.6, ϕf2 = 0.5 but errors ηt

independent N(0, 0.5) random variables. The errors ηt are independent of the idiosyn-
cratic errors et, such that E(ηte

′
t) = 0, for all data generating processes.

Finally, scenarios DGP4, DGP5, and DGP6 and DGPC4, DGPC5, and DGPC6 follow
the same idiosyncratic covariance structures as DGP1, DGP2, and DGP3, respectively,
but with three common factors (r = 3). Each common factor follows an AR(1) process
with ϕf1 = 0.9, ϕf2 = 0.8 and ϕf3 = 0.7 in scenarios with strong SN ratio, and ϕf1 = 0.6,
ϕf2 = 0.5 and ϕf3 = 0.4 in scenarios with medium and weak SN ratio. For the first two
scenarios errors ηt are generated as independent N(0, 1) random variables and for the
last scenario they are generated as independent N(0, 0.5) random variables.
The number of cross-section variables considered are N = 10, 50, 100, 200, and the num-
ber of time observations are T = 125, 250, 500, 1250. For each one of the different (N,T )

combinations we run 200 iterations and calculate the relative frequency estimates of the
true number of common factors, r̂. The number of lags considered in the cumulative
sum of lagged covariances matrices is k0 = 2. We just consider this value given that the
criterion is not sensitive to the choice of k0, as stated in Lam et al. (2011).

Tables 2.1 - 2.7 report the relative frequency estimates of the true number of common
factors r̂. We can see in all tables that the estimation of r demonstrates “the blessing
of dimensionality”, for fixed sample size T , the relative frequency estimates for r̂ = r

increase with N , and the differences depend on the number of series N , and the signal
to noise ratio. The last three columns in each table report the estimations when the
idiosyncratic terms are autocorrelated. Under this scenario, all of the estimators have a
decrease of power to detect the true number of factors. In broad terms autocorrelated
errors have a similar effect to decrease the SN ratio.

Tables 2.1 - 2.4 show the results for two factors and Tables 2.5 - 2.7 for three factors. We
have selected these 7 tables out of the 18 that have all the tested scenarios because the
message obtained is quite consistent and these seven table summarize it well, the rest
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of the tables are available in A.2 Tables section in the Appendix to Chapter 2. When
the idiosyncratic terms have approximately the same variance, as in Table 2.1, the three
tests are similar, but AH and CP are slightly better than LY. Only for small number of
series N = 10 and very large T = 1250 LY has the best performance. Table 2.2 presents
results for the two factor model with heteroscedastic errors and strong factors. In this
more realistic scenario the CP test clearly outperforms the other two tests both when
the errors are white noise and when they are correlated. For example, in Table 2.2 when
N = 100 the advantage of CP test over LY and AH is approximately of 30%. This
difference could be even larger than 100% when the SN ratio is weak, as shown in Table
2.3 for N = 100. For small number of series, AH has less power to detect the factors,
even with strong SN ratio, see Table 2.4. The performance of the CP test is less sensitive
than AH and LY to autocorrelated errors, see last three columns. Finally, if in addition
to heteroscedasticity we consider lag zero cross-section correlation, as in Table 2.4, with
medium SN ratio, LY and CP always provide better estimations than AH. For example,
for N = 200 and T = 125 the performance of the CP test without autocorrelated noise
is 60% more powerful than LY and larger than 100% than AH, and with autocorrelated
error the differences in power are even greater: for N = 200 and T = 500 CP gives the
right number of factors 78% more often than AH and 273% than LY. As expected, the
performance of the AH test is much more sensitive to cross-section correlation than CP
and LY criteria.
Tables 2.5 - 2.7 give some results for DFM with three factors. Table 2.5 is similar to Table
2.1 but now with three factors and weak signal to noise ratio. The best performance
correspond to AH test follows closely by CP and both are more powerful than LY. Table
2.6 presents the results for heteroscedastic time series and the advantages of the CP test
with respect to the other two are clear. Finally, Table 2.7 gives the performance with
heteroscedasticiy and cross-section correlation. When the noises are not autocorrelated,
see columns 1−3, the best performance correspond to LY criterion, but when the noises
are autocorrelated, see columns 4−6, CP is more powerful than the others. In summary,
we conclude that the CP test provides overall the more powerful performance for the
number of common factors when errors present heteroscedasticity and autocorrelation.
When the noises are homoscedastic white noises it has a performance close to the best
test in this case.
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Table 2.1: Relative frequency estimates of the true number of common factors r = 2.
Homoscedastic errors and medium signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.42 0.22 0.36 0.33 0.22 0.28 0.31
T=250 0.55 0.34 0.47 0.37 0.16 0.33 0.37
T=500 0.52 0.44 0.48 0.43 0.1 0.38 0.39
T=1250 0.6 0.62 0.51 0.52 0.02 0.5 0.46
N=50
T=125 0.96 0.56 0.8 0.86 0.4 0.74 0.72
T=250 0.99 0.84 0.98 0.96 0.64 0.93 0.89
T=500 1 0.97 1 1 0.75 0.99 0.95
T=1250 1 1 1 1 0.96 1 0.99
N=100
T=125 1 0.68 0.97 0.96 0.62 0.92 0.86
T=250 1 0.9 1 1 0.84 1 0.96
T=500 1 1 1 1 0.94 1 0.99
T=1250 1 1 1 1 1 1 1
N=200
T=125 1 0.82 0.98 1 0.76 0.96 0.92
T=250 1 0.94 1 1 0.98 1 0.99
T=500 1 1 1 1 1 1 1
T=1250 1 1 1 1 1 1 1
Mean 0.88 0.77 0.85 0.84 0.65 0.81
NOTES: Factor autoregressive coefficients ϕf1 = 0.6 and ϕf2 = 0.5,
and errors ηt are independent N(0, 1) random variables. Columns
1 − 3 idiosyncratic covariance matrix Γe = σeI . Columns 4 − 6
idiosyncratic errors, eit, present serial dependence such that eit =
θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diag-
onal with σui = 1 i = 1, ..., N .
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Table 2.2: Relative frequency estimates of the true number of common factors r = 2.
Heteroscedastic errors and strong signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.07 0.16 0.24 0.09 0.3 0.23 0.18
T=250 0.06 0.24 0.26 0.08 0.22 0.23 0.18
T=500 0.08 0.43 0.38 0.06 0.08 0.28 0.22
T=1250 0.06 0.63 0.32 0.08 0.08 0.27 0.24
N=50
T=125 0.43 0.46 0.66 0.32 0.3 0.55 0.45
T=250 0.59 0.7 0.86 0.43 0.4 0.76 0.63
T=500 0.74 0.9 0.96 0.57 0.55 0.92 0.77
T=1250 0.86 0.99 0.99 0.7 0.72 0.98 0.87
N=100
T=125 0.58 0.57 0.75 0.54 0.44 0.72 0.6
T=250 0.9 0.9 0.96 0.78 0.68 0.92 0.86
T=500 0.98 1 1 0.9 0.82 1 0.95
T=1250 1 1 1 0.98 0.96 1 0.99
N=200
T=125 0.86 0.76 0.92 0.68 0.5 0.83 0.76
T=250 0.96 0.92 1 0.92 0.76 0.96 0.92
T=500 1 1 1 0.98 0.94 1 0.99
T=1250 1 1 1 1 1 1 1
Mean 0.64 0.73 0.77 0.57 0.55 0.73
NOTES: Factor autoregressive coefficients ϕf1 = 0.9 and ϕf2 = 0.8,
and errors ηt are independent N(0, 1) random variables. Columns
1 − 3 idiosyncratic covariance matrix Γe is diagonal with σei = 1 if
i is odd and σei = 2 if i is even. Columns 4 − 6 idiosyncratic er-
rors, eit, present serial dependence such that eit = θei,t−1 + uit for
i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal with σui = 1
if i is odd and σui = 2 if i is even.
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Table 2.3: Relative frequency estimates of the true number of common factors r = 2.
Heteroscedastic errors and weak signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0 0.17 0.18 0.01 0.51 0.26 0.19
T=250 0 0.18 0.21 0 0.8 0.2 0.23
T=500 0 0.2 0.24 0 0.95 0.26 0.27
T=1250 0 0.16 0.22 0 0.99 0.24 0.27
N=50
T=125 0.08 0.12 0.2 0.14 0.22 0.18 0.16
T=250 0.01 0.14 0.23 0.05 0.19 0.22 0.14
T=500 0 0.08 0.4 0 0.1 0.24 0.14
T=1250 0 0.14 0.7 0 0 0.44 0.21
N=100
T=125 0.12 0.13 0.22 0.2 0.25 0.2 0.19
T=250 0.1 0.12 0.46 0.16 0.22 0.24 0.22
T=500 0.04 0.17 0.8 0.1 0.09 0.46 0.28
T=1250 0 0.26 0.98 0 0.06 0.78 0.35
N=200
T=125 0.15 0.14 0.35 0.16 0.18 0.21 0.2
T=250 0.26 0.16 0.76 0.24 0.2 0.46 0.35
T=500 0.54 0.36 0.96 0.25 0.21 0.74 0.51
T=1250 0.88 0.65 1 0.47 0.24 0.99 0.7
Mean 0.14 0.2 0.49 0.11 0.33 0.38
NOTES: Factor autoregressive coefficients ϕf1 = 0.6 and ϕf2 = 0.5,
and errors ηt are independent N(0, 0.5) random variables. Columns
1 − 3 idiosyncratic covariance matrix Γe is diagonal with σei = 1 if
i is odd and σei = 2 if i is even. Columns 4 − 6 idiosyncratic er-
rors, eit, present serial dependence such that eit = θei,t−1 + uit for
i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal with σui = 1
if i is odd and σui = 2 if i is even.
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Table 2.4: Relative frequency estimates of the true number of common factors r = 2.
Heteroscedastic and cross correlated errors, and medium signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.2 0.16 0.28 0.34 0.14 0.51 0.27
T=250 0.24 0.18 0.28 0.3 0.1 0.42 0.25
T=500 0.22 0.22 0.34 0.4 0.17 0.6 0.32
T=1250 0.26 0.16 0.25 0.45 0.16 0.63 0.32
N=50
T=125 0.08 0.14 0.13 0.08 0.31 0.1 0.14
T=250 0.05 0.18 0.02 0.08 0.27 0.03 0.11
T=500 0.03 0.26 0.01 0.1 0.29 0.04 0.12
T=1250 0 0.53 0.02 0.02 0.23 0 0.14
N=100
T=125 0.12 0.2 0.25 0.14 0.24 0.24 0.2
T=250 0.08 0.3 0.32 0.15 0.23 0.26 0.22
T=500 0.08 0.61 0.46 0.14 0.17 0.23 0.28
T=1250 0.14 0.86 0.53 0.1 0.07 0.39 0.35
N=200
T=125 0.32 0.24 0.51 0.23 0.22 0.44 0.33
T=250 0.56 0.52 0.87 0.3 0.2 0.66 0.52
T=500 0.76 0.83 0.94 0.46 0.22 0.82 0.68
T=1250 0.94 1 1 0.56 0.18 0.98 0.78
Mean 0.26 0.4 0.39 0.24 0.2 0.4
NOTES: Factor autoregressive coefficients ϕf1 = 0.6 and ϕf2 = 0.5,
and errors ηt are independent N(0, 1) random variables. Columns
1−3 idiosyncratic covariance matrix Γe has diagonal elements σei = 1
if i is odd and σei = 2 if i is even, and non-diagonal elements
0.7|i−j|σeiσej . Columns 4 − 6 idiosyncratic errors, eit, present serial
dependence such that eit = θei,t−1 + uit for i = 1, ..., N/2 with
θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if i is odd
and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table 2.5: Relative frequency estimates of the true number of common factors r = 3.
Homoscedastic errors and weak signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.12 0.18 0.11 0.12 0.18 0.12 0.14
T=250 0.13 0.14 0.1 0.16 0.11 0.16 0.13
T=500 0.08 0.1 0.08 0.14 0 0.13 0.09
T=1250 0.12 0.04 0.1 0.14 0 0.14 0.09
N=50
T=125 0.12 0.04 0.12 0.14 0.14 0.12 0.12
T=250 0.23 0.04 0.17 0.16 0.1 0.09 0.13
T=500 0.57 0.07 0.5 0.36 0.06 0.3 0.31
T=1250 0.84 0.32 0.8 0.64 0.04 0.63 0.55
N=100
T=125 0.31 0.06 0.16 0.13 0.08 0.09 0.14
T=250 0.82 0.22 0.68 0.32 0.08 0.21 0.39
T=500 0.98 0.38 0.96 0.74 0.1 0.59 0.63
T=1250 1 0.78 1 0.96 0.14 0.94 0.8
N=200
T=125 0.7 0.18 0.46 0.22 0.11 0.14 0.3
T=250 0.98 0.36 0.89 0.76 0.1 0.48 0.6
T=500 1 0.78 1 0.99 0.2 0.96 0.82
T=1250 1 0.98 1 1 0.57 1 0.93
Mean 0.56 0.29 0.51 0.43 0.13 0.38
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, ϕf2 = 0.5 and
ϕf3 = 0.4, and errors ηt are independent N(0, 0.5) random variables.
Columns 1 − 3 idiosyncratic covariance matrix Γe = σeI. Columns
4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is
diagonal with σui = 1 i = 1, ..., N .
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Table 2.6: Relative frequency estimates of the true number of common factors r = 3.
Heteroscedastic errors and medium signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.03 0.16 0.08 0.04 0.08 0.09 0.08
T=250 0 0.12 0.1 0.02 0.12 0.1 0.08
T=500 0 0.1 0.05 0.02 0.14 0.08 0.06
T=1250 0 0.06 0.08 0 0.07 0.09 0.05
N=50
T=125 0.1 0.08 0.43 0.16 0.14 0.21 0.19
T=250 0.23 0.06 0.72 0.13 0.1 0.4 0.27
T=500 0.36 0.16 0.9 0.18 0.06 0.73 0.4
T=1250 0.66 0.52 0.98 0.22 0.02 0.97 0.56
N=100
T=125 0.4 0.08 0.68 0.2 0.13 0.36 0.31
T=250 0.74 0.2 0.96 0.35 0.06 0.82 0.52
T=500 0.95 0.55 1 0.72 0.1 0.99 0.72
T=1250 0.99 0.91 1 0.95 0.16 1 0.83
N=200
T=125 0.8 0.17 0.85 0.37 0.1 0.64 0.49
T=250 1 0.52 1 0.84 0.16 0.96 0.75
T=500 1 0.86 1 1 0.28 1 0.86
T=1250 1 0.99 1 1 0.64 1 0.94
Mean 0.52 0.35 0.68 0.39 0.15 0.59
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, ϕf2 = 0.5 and
ϕf3 = 0.4, and errors ηt are independent N(0, 1) random variables.
Columns 1 − 3 idiosyncratic covariance matrix Γe is diagonal with
σei = 1 if i is odd and σei = 2 if i is even. Columns 4−6 idiosyncratic
errors, eit, present serial dependence such that eit = θei,t−1 + uit for
i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal with σui = 1
if i is odd and σui = 2 if i is even.
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Table 2.7: Relative frequency estimates of the true number of common factors r = 3.
Heteroscedastic and cross correlated errors, and strong signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.18 0.1 0.22 0.16 0.1 0.28 0.17
T=250 0.16 0.06 0.2 0.14 0.16 0.24 0.16
T=500 0.22 0.1 0.28 0.19 0.2 0.3 0.22
T=1250 0.14 0.16 0.21 0.14 0.12 0.26 0.17
N=50
T=125 0.05 0.04 0.03 0.06 0.12 0.05 0.06
T=250 0.02 0.07 0.02 0.06 0.06 0.01 0.04
T=500 0.01 0.28 0.02 0.06 0.04 0 0.07
T=1250 0 0.77 0.02 0.02 0.01 0 0.14
N=100
T=125 0.02 0.07 0.08 0.04 0.04 0.07 0.05
T=250 0.03 0.22 0.15 0.02 0.03 0.09 0.09
T=500 0.02 0.6 0.22 0.01 0 0.1 0.16
T=1250 0.02 1 0.28 0.02 0.02 0.09 0.24
N=200
T=125 0.15 0.22 0.3 0.1 0.06 0.2 0.18
T=250 0.29 0.48 0.6 0.1 0.07 0.41 0.32
T=500 0.54 0.92 0.87 0.24 0.2 0.63 0.56
T=1250 0.76 1 0.98 0.32 0.33 0.92 0.72
Mean 0.16 0.38 0.28 0.11 0.1 0.23
NOTES: Factor autoregressive coefficients ϕf1 = 0.9, ϕf2 = 0.8 and
ϕf3 = 0.7, and errors ηt are independent N(0, 1) random variables.
Columns 1 − 3 idiosyncratic covariance matrix Γe has diagonal ele-
ments σei = 1 if i is odd and σei = 2 if i is even, and non-diagonal ele-
ments 0.7|i−j|σeiσej . Columns 4 − 6 idiosyncratic errors, eit, present
serial dependence such that eit = θei,t−1 + uit for i = 1, ..., N/2 with
θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if i is odd and
σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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2.5 An application to real data: Business Cycles

Our interest is to provide an estimate of the global business cycle from 1998 to 2019
using a DFM. Following literature in business cycles, see Kose et al. (2003) and Crucini
et al. (2011), we analyze the total GDP, the private consumption expenditure (CON) and
the gross fixed capital formation (INV) of 35 OECD countries, see Table 2.8. The data set
is available at OECD Statistics (https://stats.oecd.org). The complete data sample has
N=105 quarterly series (three per country) and T=88 time observations, from 1998:Q1
to 2019:Q4, and previous to the analysis we first difference the data that was already in
logs. We implement the three criteria considered in previous sections, AH, LY and CP,
in order to estimate the number of common factors r̂. Then, the factors are estimated
using the r̂ eigenvectors linked to the r̂ largest eigenvalues, in descending order, of
the matrices Γ̂y(0), M1,k0 and Rk0 . Chapter 3 presents a comparison of the estimated
eigenvectors of these three matrices. When using LY and CP criteria, the maximum
number of lags considered in the cumulative sum of covariance and correlation matrices
is k0 = 2, see Lam et al. (2011) where it is shown that the estimated factor model is not
sensitive to the choice of k0. The AH and LY criteria provide similar results and we just
show here those of the first of these tests. The AH ratio ν̂i/ν̂i+1 is plotted against i in the
left panel of Figure 2.1. It can be seen that the estimator leads to r̂ = 1.

Table 2.8: OECD countries included in the real data sample.

Australia Austria Belgium Canada Chile
Czech Republic Denmark Estonia Finland France
Germany Hungary Iceland Ireland Israel
Italy Japan Korea Latvia Lithuania
Luxembourg Mexico The Netherlands New Zealand Norway
Poland Portugal Slovak Republic Slovenia Spain
Sweden Switzerland Turkey United Kingdom United States

Figure 2.1: AH ratio of eigenvalues of Γ̂y(0) for the first and the second steps.
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The time series plot of AH estimated factor f̂t = ytP̂
′ and its corresponding loading

vector P̂ are plotted in Figures 2.2 and 2.3, respectively. The hidden x-axis labels after
GDP series correspond with consumption and investment series for each country. The
column vector of loadings plotted in Figure 2.3 is the normalized eigenvector of the
covariance matrix Γ̂y(0) corresponding to its largest eigenvalue. Both the AH and LY
criteria estimate one common factor which is mainly the series of Ireland INV. In fact,
the correlation between the factor and this series is 0.99. This situation appears because
the large variance of the Ireland INV series makes that the first principal component is
mostly generated by this series. Figure 2.4 shows a barplot of the variances of the series
and it can be seen that Ireland INV is outlying in terms of variance followed by The
Netherlands and Iceland investment series.

Figure 2.2: AH first estimated factor.

Figure 2.3: Estimated loadings corresponding to AH first common factor. In the x-
axis only the labels for gdp series are shown. The hidden labels after country gdp are
country con and country inv.
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Figure 2.4: Variances of each time series in the sample. In the x-axis only the labels
for investment series are shown. The hidden labels before country inv are country gdp
and country con.

The left panel of Figure 2.1 suggests that, in addition to the first strong factor, two
additional weaker factors may exist, see the second largest ratio ν̂3/ν̂4. In a second step
we remove the first estimated factor from the real data yt and apply the AH ratio test
to the resulting residuals. AH test estimates two additional factors, r̂ = 2, see the right
panel in Figure 2.1. We present the time series plot and the barplots of loadings in Fig-
ures 2.5, 2.6 and 2.7, respectively. Both factors are basically affected by the dynamics of
The Netherlands INV and Iceland INV, which are the second and third series with the
largest variances in the sample, see the barplot in Figure 2.4. The LY criterion estimates
the same number of factors in the second step, r̂ = 2: the second factor affects mainly
INV series of The Netherlands, Latvia, Estonia and Iceland, and the third factor influ-
ences the dynamics in The Netherlands INV, followed by Luxembourg INV, Lithuania
INV and Estonia INV to a lesser extent.

Figure 2.5: AH second (solid) and third (dashed) estimated factors.
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Figure 2.6: Estimated loadings corresponding to AH second common factor. In the x-
axis only the labels for gdp series are shown. The hidden labels after country gdp are
country con and country inv.

Figure 2.7: Estimated loadings corresponding to AH third common factor. In the x-
axis only the labels for gdp series are shown. The hidden labels after country gdp are
country con and country inv.

The CP ratio test estimates one common factor r̂ = 1 in the first step, see the left
panel in Figure 2.8. The column vector of loadings P̂ is the normalized eigenvector of
the matrix R̂k0 corresponding to its largest eigenvalue. Contrary to AH and LY criteria,
we can see in the barplot of Figure 2.10 how CP is able to capture the overall dynamics
of all the countries in the sample. The first latent factor plotted in Figure 2.9 represents
a global business cycle taking negative values during the worldwide financial crisis of
2008 and whose recovery did not reach pre-crisis levels. The largest factor loadings
correspond to France GDP and INV, Spain GDP and Czech Republic GDP.



29

Figure 2.8: CP ratios of eigenvalues of Rk0 for the first and the second steps.

Figure 2.9: CP first estimated factor.

The ratio of eigenvalues plot suggests the existence of weaker factors, see the second
largest ratio α̂3/α̂4, in Figure 2.8 left panel. In a second step, we subtract the first estim-
ated component from the real data yt and apply the CP ratio test to the resulting resid-
uals. The estimate is one additional common factor r̂ = 1. This second factor plotted in
Figure 2.11 presents two drops: taking negative values at the beginning of the sample
period and during the financial crisis of 2008. Differently from the estimated factor
in the first step, this factor impacts mainly the dynamics of countries whose recovery
reached pre-crisis levels or even superior. In terms of the percentage of the total vari-
ance of yt explained by the estimated common factors, the first factor computed from
the covariance matrix, called to simplify AH factor, accounts for the 50% of the total
variability. The factor computed from the LY matrix accounts for 90% of the variability
of the squared matrices and the factor computed from the correlation matrices accounts
for 74% of the variability of the standardized data.
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Figure 2.10: Estimated loadings corresponding to CP first common factor. In the x-
axis only the labels for gdp series are shown. The hidden labels after country gdp are
country con and country inv.

Figure 2.11: CP second estimated factor.

Figure 2.12: Estimated loadings corresponding to CP second common factor. In the x-
axis only the labels for gdp series are shown. The hidden labels after country gdp are
country con and country inv.
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2.6 Concluding remarks

The test proposed in this chapter has been evaluated in different scenarios depending
on the idiosyncratic error structure. It has shown a better overall performance than the
ones proposed by Ahn and Horenstein (2013) and Lam et al. (2011). The advantages of
the test appear mostly under a realistic error structure that includes heteroscedasticity
in the series and allows the errors to present cross-sectional and serial correlations. Also,
it has been illustrated in a real example that this test is less affected by atypical series
with large variability and, therefore, has clear advantages in empirical applications.
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Chapter 3

An improved estimation method
using correlation matrices

This chapter extends the proposed method introduced in Chapter 2, which is based on
the use of correlation matrices, for the estimation of the factor space. We focus on the
estimation of the DFM by means of non-parametric statistical tools. The most famous
technique in this topic is Principal Component Analysis (PCA) which takes into account
contemporaneous information about the data.
Up to our knowledge, little attention has been given to the estimation of the common
component having into account past information, previous work in this topic are Peña
and Box (1987), and Lam et al. (2011). We want to analyze how and in what degree
different idiosyncratic error structures, which are more realistic than the classical scalar
error structure, may affect to the estimation of the DFM. We compare the effect of differ-
ent error structures on the PC estimator considered in Stock and Watson (2002), Bai and
Ng (2002) and Bai and Ng (2006) between others; the pooling lagged estimator proposed
in Lam et al. (2011), called LY estimator in what follows; and the one proposed in this
chapter based on lagged correlation matrices, called CP in what follows. The main con-
tribution is a Monte Carlo analysis of different data error structures in finite samples,
where we analyze in deep the exact and the approximate DFM. Previous studies have
considered contemporaneous covariance across the errors but not serial correlation, see
Forni et al. (2005), or serial correlation and heteroscedasticity but not cross-correlation,
see Stock and Watson (2005) and Breitung and Tenhofen (2011). As a novelty, we include
the scenario where errors may present serial correlation and cross-section correlation for
different sample sizes. The key idea of the PC estimator is to consider the covariance
matrix of the observed data as a weighting average in order to estimate the factor space,
whereas the pooling lagged estimators (LY and CP) take into account the accumulated
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sum of lagged autocovariance/autocorrelation matrices of the observed data for the es-
timation. Therefore,we analyze the finite sample performances for the three estimators
under different scenarios, filling the gap in nonparametric averaging methods.
The chapter is organized as follows; Section 1 introduces the DFM notation and the
estimation methodologies. Section 2 illustrates the simulation exercise with the data-
generating processes, scenarios and results. Section 3 provides an empirical application
about CO2 emissions. Finally, some concluding remarks and potential extensions are
given in Section 4.

3.1 Theoretical framework: Nonparametric averaging methods

We consider the same DFM framework as in Chapter 2. The time series vector of ob-
served data, yt for t = 1, ..., T , is defined as:

yt = Pf t + et (3.1)

where P is the (N × r) matrix of factor loadings, with r being the number of common
factors, ft is the (r × 1) vector of common factors and et is a (N × 1) vector. Given
that Pf t = PAA−1f t, with A being any nonsingular matrix, we need to assume that
P′P = Ir and that the covariance matrix of the factors Γf (0) = E(ftf

′
t) is diagonal, in

order to uniquely define the factors. We also assume that the lag k covariance matrix
of the factors Γf (k) = E(ftf

′
t−k) ̸= 0, for some k > 0 to allow serial correlation in the

common factors.
Assuming that the number of factors r is given, we analyze two non-parametric

statistical tools for the estimation of model (3.1) in finite samples, and propose a new
approach which generalizes the idea behind the LY estimator. Let Γy(k) = cov(yt,yt−k),
Γf (k) = cov(ft, ft−k) and Γe(k) = cov(et, et−k) be the lag k covariance matrices of the
observed data yt, the common factors, ft, and the errors, et, respectively.

Given the DFM and the independence between factors and noises we have that

Γy(k) =PΓf (k)P
′ + Γe(k). (3.2)

Suppose the simplest EDFM, where Γe(0) = σ2I, then as

Γy(0)P = P(Γf (0) + σ2I) (3.3)

the columns of P are the r eigenvectors of Γy(0) corresponding to their r largest eigen-
values γfi(0)+σ2 and the columns of the null space of P given by the (N×(N−r)) mat-
rix P⊥ such that P′P⊥ = 0, are the eigenvectors of the common eigenvalue σ2. Based



35

on these results the PC estimator computes the first r leading eigenvectors, correspond-
ing to the r largest eigenvalues, of the lag zero covariance matrix as estimates of the
loadings P. Also, from (3.1) we have ft = P′yt−P′et and for the central limit theorem
the linear combination of the noises goes to zero and a natural estimate of the factors is
P′yt. Similar results can be obtained asymptotically when N,T → ∞ if Γe(0) = σ2D,
being D a diagonal matrix, assuming that the signal to noise s0 = γf (0)/σ

2 is large,
where γf (0) = mini∈r γfi(0), and σ2 = maxi∈N σ2

i . Again, in the ADFM, where Γe(0)

is general, assuming weak cross correlation structure, as shown in Stock and Watson
(2012) and Bai (2012) consistency can be obtained.

The second approach, proposed by Lam et al (2011) finds the r dominant eigen-
vectors of a combination of lagged covariance matrices given by

M1,k0 =

k0∑
k=1

Γy(k)Γy(k)
′, (3.4)

where k0 ≥ 1 is an arbitrary integer. Note that under the EDFM, as Γe(k) = 0 for k > 0,

we have

M1,k0 = P

(
k0∑
k=1

Γ2
f (k)

)
P′ (3.5)

and, therefore, the matrix M1,k0 has rank r with the r dominant eigenvectors given by
the columns of P and eigenvalues equal to

∑k0
k=1 γ

2
fi
(k). Calling γf = mini∈r

∑k0
k=1 γ

2
fi
(k)

the signal to noise ratio is sM = γf/σ
4. The larger this ratio is with respect to s0 the better

the performance of this method with respect to the covariance matrix when we have an
homocedastic EDFM. However, if the dynamics of the factor is weak and some of them
are white noise the advantages of this method may be worse than using the covariance
matrix. On the other hand, in the heteroscedastic case, when Γe(0) = σ2D, with D be-
ing a diagonal matrix with different diagonal elements, and in the ADFM when Γe(0) is
general, the eigenvectors of M estimate the loading matrix in finite samples whereas
those of Γy(0) does not. Thus, in this case if also the factors have strong dynamics this
procedure is expected to work better than using the covariance matrix.

As we introduced in Chapter 2, these two estimation methodologies present a lack of
robustness to the existence of a few atypical series. In order to overcome this limitation,
we consider the new approach which generalize the LY estimator. The combined dynamic
correlation matrix is

Rk0 =

k0∑
k=0

wkRy(k)Ry(k)
′ (3.6)

where Ry(k) = cor(yt,yt−k) is the lag k correlation matrix of the series in model (3.1),
and the coefficients wk > 0 are weights which verify

∑k0
k=0wk = 1. The weights, which
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were introduced in Chapter 2, are defined as wk = (T − k)/ ((k0 + 1)(T − k0/2)) using
the standardized squared correlations, rij for i, j = 1, ..., N , with asymptotic variance
var(rij(k)) ≈ (T − k)−1.

Note that we now incorporate in the Rk0 matrix the information in the lag zero
correlation matrix Ry(0), and the weights define the relative importance given by this
matrix and the M1,k0 matrix with correlation matrices Ry(k) instead of the variance
matrices Γy(k).

The factor space in model (3.1) is estimated using the eigen decomposition of the
combined correlation matrix Rk0 with standardized data. The r columns of P are the
eigenvectors associated to the r largest eigenvalues of Rk0 , in descending order. Finally,
the estimates of the common factors are obtained as ft = P′yt.

3.2 Monte Carlo experiment of estimation performance

In this section we compare the estimation performance of the three procedures con-
sidered in this chapter: PC, LY, and the one proposed in previous section, CP, for the es-
timation of the factor space. For this comparison we simulate data samples in a similar
manner to the ones generated in Chapter 2. We consider six different data generating
processes (DGP) depending on the error structure. The signal to noise ratios are strong,
medium and weak.

Each data point is generated following the equation

yit = p′
iFt + eit, (3.7)

where the factor loading coefficients pi are generated from the U(-0.5, 0.5) distribution,
and the common factor, ft, follows an autoregressive process of order 1, given by:

ft = ϕft−1 + ηt. (3.8)

The first three DGP have serially uncorrelated noises with different idiosyncratic co-
variance matrices, Γe(0), and the next three add serially correlated noises to the basic
covariance structure. Thus, DGP1 has homoscedastic errors and Γe(0) = σ2I, with
σ2
ei = 1 for i = 1, ..., N, DGP2 has heteroscedastic uncorrelated noises with σei = 1 if

i is odd and σei = 2 if i is even, and DGP3 has heteroscedastic and cross-section cor-
related errors, with Γe(0) having diagonal elements σei = 1 if i is odd and σei = 2 if i
is even, and non-diagonal elements 0.7|i−j|σeiσej . The next three DGP add to the three
previous scenarios serially correlated errors eit = θei,t−1 + uit for i = 1, ..., N/2 with
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θ ∼ N(0.5, 0.05), uit ∼ N(0, 1) white noise, and uncorrelated errors with σ2
ei = 1 for

i = N/2 + 1, ..., N. Thus, this modification of the first DGP, that will be called DGPC1,
has Γe(0) with variances around 1/(1 − .52) = 1.33 in half of the matrix and variances
equal to one in the other half. Also Γe(k) for k > 0 is a diagonal matrix different from
zero. DGPC2 has heteroscedastic variances around 1/(1 − .52) = 1.33 in half of Γe(0)

and variances equal to two in the other half, and non null diagonal lagged covariance
matrices. Finally DGPC3 has full rank Γe(0) with different variances in half of the mat-
rix and equal to two in the other half, non-diagonal elements 0.7|i−j|σeiσej , and non null
Γe(k) lagged covariance matrices.

Three signal to noise ratios (SN) are considered: Strong, with autoregressive coeffi-
cient ϕf1 = 0.9; Medium with ϕf1 = 0.6; Weak with ϕf1 = 0.3,. Errors ηt are independent
N(0, 1) random variables. The errors ηt are independent of the idiosyncratic errors et,
such that E(ηte

′
t) = 0, for all data generating processes.

Finally, scenarios DGP4, DGP5, and DGP6 and DGPC4, DGPC5, and DGPC6 follow
the same idiosyncratic covariance structures as DGP1, DGP2, and DGP3, respectively,
but with two common factors (r = 2). Each common factor follows an AR(1) process
with ϕf1 = 0.9, and ϕf2 = 0.6 in scenarios with strong SN ratio, and ϕf1 = 0.6 and
ϕf2 = 0.3 in scenarios with medium and weak SN ratio. For the first two scenarios er-
rors ηt are generated as independent N(0, 1) random variables and for the last scenario
they are generated as independent N(0, 0.5) random variables.
The number of cross-section variables considered are N = 10, 50, 100, 200, and the num-
ber of time observations are T = 125, 250, 500, 1250. For each one of the different (N,T )

combinations we run 200 iterations and calculate the mean of a similarity measure that
compares the linear space spanned by the columns of the theoretical loadings, M(P),
with the linear space spanned by the columns of the estimated loadings, M(P̂), using
the following expression

S(M(P),M(P̂)) =
tr(HPHP̂

)

r
(3.9)

where P is the theoretical loading matrix having rank r, P̂ is the estimated loading
matrix having rank r, and HP = P(P′P)−1P′ and H

P̂
= P̂(P̂′P̂)−1P̂′. This measure is

equal to 1 if and only if M(P̂) ⊂ M(P) or M(P) ⊂ M(P̂), and is equal to 0 if and only
if M(P) ⊥ M(P̂).
The number of lags considered in the sum of lagged covariances matrices is k0 = 2, see
Lam et al. (2011) where they shown that the method is not sensitive to the choice of k0.

We present the results for seven of the 18 scenarios considered in the Monte Carlo
exercise. These tables provide a general picture of the results and summarize the main
highlights from each method. The rest of the tables are available in the B.1 Tables section
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in the Appendix to Chapter 3. Tables 3.1 - 3.4 show the results for the scenarios with
one factor and Tables 3.5 - 3.7 for the scenarios with two factors. Results by columns
are the mean of the similarity measure between the original loading matrix P and the
estimated ones P̂ using Γ(0), M with k0 = 2, and the combined dynamic correlation
matrix R, respectively. In general, although the three methodologies provide similar
results under DGP1 when the errors are homocedastic, we identify big differences when
we assume a more realistic idiosyncratic error structure under DGP2 and DGP3. The
relative precision growth rate (RPG) of using lags over Γ(0) in the estimation is

RPG =
(S − S0)

S0
. (3.10)

.
where S is the mean of the similarity measure using the LY method with the M matrix
or the CP method with the R matrix, and S0 is the mean of the similarity measure using
PC with the variance-covariance matrix Γ(0).

We can see in all tables that the estimation of P demonstrates “the blessing of di-
mensionality”, for fixed sample size T , the mean of the similarity measure for P̂ = P

increase for N = 10, 50, 100, 200. In general, differences depend on the number of series
N , and the signal to noise ratio. The last three columns in each table report the estim-
ations when the idiosyncratic terms are autocorrelated. Under this scenario, all of the
estimators have a decrease of power to estimate the true factors. In broad terms auto-
correlated errors have a similar effect to decrease the SN ratio. When the idiosyncratic
terms have approximately the same variance, as in Table 3.1, the three methods are sim-
ilar, but PC and CP are slightly better than LY. Only for data samples with very large
number of observations T = 1250 LY has similar performance. Table 3.2 presents res-
ults for the one factor model with heteroscedastic errors and medium signal to noise
ratio. In this more realistic scenario the CP method clearly outperforms the other two
especially when the errors are correlated. When the errors are white noise we find large
differences for small number of series N = 10, 50. Similar results are presented in Table
3.3 for weak SN ratio. For example, when N = 50 the advantage of using CP over PC is
approximately of 57%, this difference could be even larger than 100% with respect to LY.
The performance of the CP method is less sensitive than PC and LY to autocorrelated
errors, see last three columns in Table 3.3. Finally, if in addition to heteroscedasticity
we consider lag zero cross-section correlation, as in Table 3.4, with medium SN ratio,
LY and CP always provide better estimations than PC. For example, for N = 100 and
T = 125 the performance of the CP method without autocorrelated noise is 95% more
powerful than PC, and with autocorrelated errors the differences in power are even
greater: for N = 100 and T = 125 CP gives a RPG of 139% with respect to PC and
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165% with respect to LY. As expected, the performance of PC is much more sensitive to
cross-section correlation than CP and LY methodologies.

Table 3.1: Mean of the similarity measures between P and P̂ when r = 1.
Homoscedastic errors and medium signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.866 0.725 0.839 0.772 0.486 0.753 0.74
T=250 0.937 0.863 0.925 0.864 0.605 0.86 0.84
T=500 0.971 0.933 0.962 0.913 0.694 0.921 0.9
T=1250 0.989 0.971 0.977 0.961 0.808 0.97 0.95
N=50
T=125 0.928 0.842 0.919 0.88 0.714 0.857 0.86
T=250 0.966 0.912 0.96 0.938 0.827 0.924 0.92
T=500 0.983 0.951 0.978 0.968 0.899 0.958 0.96
T=1250 0.993 0.98 0.989 0.987 0.955 0.981 0.98
N=100
T=125 0.934 0.845 0.924 0.889 0.727 0.861 0.86
T=250 0.967 0.913 0.961 0.942 0.841 0.926 0.93
T=500 0.983 0.953 0.978 0.971 0.912 0.96 0.96
T=1250 0.993 0.981 0.99 0.988 0.962 0.981 0.98
N=200
T=125 0.935 0.85 0.925 0.891 0.74 0.864 0.87
T=250 0.967 0.914 0.959 0.945 0.849 0.927 0.93
T=500 0.984 0.954 0.979 0.973 0.917 0.961 0.96
T=1250 0.994 0.981 0.99 0.989 0.964 0.981 0.98
Mean 0.96 0.91 0.95 0.93 0.81 0.92
NOTES: Factor autoregressive coefficients ϕf1 = 0.6 and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe = σeI . Columns 4 − 6 idiosyncratic errors, eit, present serial de-
pendence such that eit = θei,t−1+uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05),
and Γu is diagonal with σui = 1 i = 1, ..., N .
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Table 3.2: Mean of the similarity measures between P and P̂ when r = 1.
Heteroscedastic errors and medium signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.276 0.287 0.648 0.245 0.191 0.541 0.36
T=250 0.364 0.494 0.809 0.259 0.208 0.692 0.47
T=500 0.385 0.63 0.857 0.3 0.21 0.799 0.53
T=1250 0.468 0.852 0.915 0.276 0.2 0.868 0.6
N=50
T=125 0.672 0.634 0.801 0.442 0.261 0.682 0.58
T=250 0.807 0.772 0.859 0.666 0.432 0.808 0.72
T=500 0.873 0.871 0.891 0.777 0.569 0.861 0.81
T=1250 0.917 0.944 0.91 0.859 0.74 0.897 0.88
N=100
T=125 0.786 0.685 0.805 0.626 0.366 0.711 0.66
T=250 0.88 0.814 0.861 0.8 0.599 0.81 0.79
T=500 0.932 0.889 0.89 0.885 0.748 0.862 0.87
T=1250 0.965 0.952 0.908 0.939 0.871 0.895 0.92
N=200
T=125 0.829 0.719 0.81 0.723 0.512 0.727 0.72
T=250 0.908 0.823 0.862 0.844 0.675 0.811 0.82
T=500 0.951 0.895 0.889 0.917 0.804 0.861 0.89
T=1250 0.978 0.953 0.906 0.963 0.904 0.893 0.93
Mean 0.75 0.76 0.85 0.66 0.52 0.79
NOTES: Factor autoregressive coefficient ϕf1 = 0.6, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe is diagonal with σei = 1 if i is odd and σei = 2 if i is even.
Columns 4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal
with σui = 1 if i is odd and σui = 2 if i is even.
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Table 3.3: Mean of the similarity measures between P and P̂ when r = 1.
Heteroscedastic errors and weak signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.214 0.171 0.493 0.186 0.13 0.37 0.26
T=250 0.258 0.2 0.672 0.182 0.125 0.527 0.33
T=500 0.296 0.19 0.807 0.226 0.146 0.663 0.39
T=1250 0.361 0.334 0.892 0.241 0.136 0.823 0.46
N=50
T=125 0.472 0.262 0.74 0.227 0.066 0.585 0.39
T=250 0.656 0.378 0.829 0.422 0.101 0.772 0.53
T=500 0.781 0.556 0.875 0.56 0.1 0.844 0.62
T=1250 0.844 0.732 0.901 0.723 0.123 0.887 0.7
N=100
T=125 0.678 0.466 0.771 0.436 0.091 0.659 0.52
T=250 0.815 0.604 0.842 0.673 0.153 0.792 0.65
T=500 0.885 0.715 0.876 0.813 0.193 0.853 0.72
T=1250 0.937 0.816 0.9 0.898 0.306 0.887 0.79
N=200
T=125 0.764 0.603 0.785 0.627 0.182 0.705 0.61
T=250 0.87 0.698 0.847 0.793 0.284 0.805 0.72
T=500 0.927 0.762 0.879 0.889 0.451 0.857 0.79
T=1250 0.966 0.848 0.901 0.949 0.649 0.888 0.87
Mean 0.67 0.52 0.81 0.55 0.2 0.74
NOTES: Factor autoregressive coefficient ϕf1 = 0.3, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe is diagonal with σei = 1 if i is odd and σei = 2 if i is even.
Columns 4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal
with σui = 1 if i is odd and σui = 2 if i is even.
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Table 3.4: Mean of the similarity measures between P and P̂ when r = 1.
Heteroscedastic and cross correlated errors, and medium signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.126 0.213 0.134 0.11 0.141 0.114 0.14
T=250 0.121 0.323 0.125 0.123 0.117 0.126 0.16
T=500 0.131 0.408 0.13 0.12 0.133 0.13 0.18
T=1250 0.133 0.737 0.132 0.119 0.11 0.121 0.23
N=50
T=125 0.093 0.314 0.226 0.098 0.113 0.207 0.18
T=250 0.106 0.588 0.299 0.069 0.091 0.189 0.22
T=500 0.117 0.822 0.343 0.071 0.095 0.229 0.28
T=1250 0.126 0.932 0.36 0.065 0.091 0.251 0.3
N=100
T=125 0.315 0.544 0.614 0.184 0.166 0.44 0.38
T=250 0.425 0.762 0.749 0.202 0.206 0.607 0.49
T=500 0.529 0.872 0.807 0.227 0.25 0.711 0.57
T=1250 0.646 0.946 0.848 0.264 0.341 0.782 0.64
N=200
T=125 0.685 0.667 0.767 0.469 0.313 0.638 0.59
T=250 0.83 0.815 0.84 0.674 0.494 0.772 0.74
T=500 0.895 0.893 0.874 0.791 0.665 0.831 0.82
T=1250 0.934 0.953 0.896 0.88 0.839 0.874 0.9
Mean 0.39 0.67 0.51 0.28 0.26 0.44
NOTES: Factor autoregressive coefficient ϕf1 = 0.6, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe has diagonal elements σei = 1 if i is odd and σei = 2 if i is even,
and non-diagonal elements 0.7|i−j|σeiσej . Columns 4−6 idiosyncratic errors,
eit, present serial dependence such that eit = θei,t−1 + uit for i = 1, ..., N/2
with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if i is odd and
σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .

Tables 3.5 - 3.7 give some results for scenarios with two factors. Table 3.5 give the res-
ults under weak strength factors and homoscedastic series. This table is similar to Table
3.1 but now with two factors. The best performance correspond to PC followed closely
by CP and both being more powerful than LY. Table 3.6 presents the result for heterosce-
dastic time series and the advantages of CP with respect to the other two are clear espe-
cially when the errors are autocorrelated. Finally Table 3.7 gives the performance with
heteroscedasticiy and cross-section correlation. When the noises are not autocorrelated
the best performance correspond to LY, but when the noises are autocorrelated CP is
more powerful than the others. In summary, we conclude that the proposed CP method
provides overall the more powerful test for the number of common factors when errors
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present heteroscedasticity and autocorrelation and when the noises are homoscedastic
white noises have a performance close to the best test in this case.

Table 3.5: Mean of the similarity measures between P and P̂ when r = 2.
Homocedastic errors and weak signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.265 0.188 0.258 0.201 0.137 0.214 0.21
T=250 0.33 0.246 0.33 0.24 0.153 0.27 0.26
T=500 0.395 0.299 0.394 0.279 0.173 0.33 0.31
T=1250 0.457 0.379 0.45 0.352 0.203 0.405 0.37
N=50
T=125 0.344 0.272 0.334 0.243 0.126 0.229 0.26
T=250 0.412 0.351 0.41 0.337 0.182 0.327 0.34
T=500 0.453 0.404 0.451 0.411 0.268 0.41 0.4
T=1250 0.477 0.448 0.477 0.458 0.365 0.46 0.45
N=100
T=125 0.371 0.312 0.363 0.285 0.159 0.257 0.29
T=250 0.428 0.373 0.423 0.379 0.249 0.362 0.37
T=500 0.46 0.417 0.457 0.432 0.334 0.423 0.42
T=1250 0.482 0.456 0.48 0.469 0.41 0.465 0.46
N=200
T=125 0.384 0.33 0.376 0.312 0.2 0.281 0.31
T=250 0.436 0.384 0.43 0.393 0.29 0.372 0.38
T=500 0.466 0.425 0.462 0.441 0.364 0.429 0.43
T=1250 0.485 0.463 0.483 0.474 0.429 0.468 0.47
Mean 0.42 0.36 0.41 0.36 0.25 0.36
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, and ϕf2 = 0.3, and
errors ηt are independent N(0, 0.5) random variables. Columns 1 − 3 idio-
syncratic covariance matrix Γe is diagonal with σei = 1 for i = 1, ..., N .
Columns 4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal
with σui = 1 i = 1, ..., N .
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Table 3.6: Mean of the similarity measures between P and P̂ when r = 2.
Heteroscedastic errors and medium signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.21 0.203 0.376 0.174 0.139 0.32 0.24
T=250 0.242 0.271 0.426 0.181 0.134 0.381 0.27
T=500 0.264 0.331 0.446 0.214 0.147 0.428 0.3
T=1250 0.287 0.421 0.46 0.215 0.156 0.452 0.33
N=50
T=125 0.345 0.308 0.405 0.258 0.154 0.353 0.3
T=250 0.408 0.386 0.431 0.347 0.222 0.407 0.37
T=500 0.438 0.432 0.445 0.395 0.288 0.432 0.4
T=1250 0.457 0.466 0.455 0.433 0.375 0.451 0.44
N=100
T=125 0.399 0.356 0.408 0.335 0.222 0.363 0.35
T=250 0.44 0.402 0.433 0.401 0.3 0.407 0.4
T=500 0.466 0.443 0.446 0.442 0.377 0.433 0.43
T=1250 0.481 0.472 0.454 0.468 0.433 0.447 0.46
N=200
T=125 0.418 0.366 0.408 0.364 0.259 0.365 0.36
T=250 0.454 0.411 0.433 0.423 0.338 0.407 0.41
T=500 0.475 0.448 0.445 0.458 0.4 0.432 0.44
T=1250 0.488 0.475 0.455 0.48 0.451 0.447 0.47
Mean 0.39 0.39 0.43 0.35 0.27 0.41
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, and ϕf2 = 0.3, and er-
rors ηt are independent N(0, 1) random variables. Columns 1 − 3 idiosyn-
cratic covariance matrix Γe is diagonal with σei = 1 if i is odd and σei = 2 if
i is even. Columns 4 − 6 idiosyncratic errors, eit, present serial dependence
such that eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is
diagonal with σui = 1 if i is odd and σui = 2 if i is even.
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Table 3.7: Mean of the similarity measures between P and P̂ when r = 2.
Heteroscedastic and cross correlated errors, and medium signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.118 0.159 0.124 0.118 0.116 0.124 0.13
T=250 0.112 0.184 0.117 0.105 0.108 0.112 0.12
T=500 0.112 0.266 0.115 0.112 0.105 0.112 0.14
T=1250 0.106 0.399 0.11 0.1 0.108 0.099 0.15
N=50
T=125 0.089 0.19 0.171 0.063 0.064 0.114 0.12
T=250 0.082 0.296 0.167 0.059 0.059 0.123 0.13
T=500 0.092 0.408 0.198 0.061 0.065 0.148 0.16
T=1250 0.095 0.461 0.211 0.051 0.054 0.143 0.17
N=100
T=125 0.184 0.292 0.335 0.108 0.101 0.246 0.21
T=250 0.238 0.383 0.381 0.128 0.116 0.312 0.26
T=500 0.299 0.437 0.406 0.143 0.141 0.353 0.3
T=1250 0.324 0.47 0.425 0.156 0.171 0.393 0.32
N=200
T=125 0.357 0.349 0.39 0.259 0.175 0.328 0.31
T=250 0.414 0.404 0.42 0.343 0.26 0.388 0.37
T=500 0.447 0.446 0.439 0.4 0.342 0.418 0.42
T=1250 0.468 0.475 0.45 0.439 0.416 0.438 0.45
Mean 0.22 0.35 0.28 0.17 0.15 0.24
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, and ϕf2 = 0.3, and er-
rors ηt are independent N(0, 1) random variables. Columns 1−3 idiosyncratic
covariance matrix Γe has diagonal elements σei = 1 if i is odd and σei = 2 if
i is even, and non-diagonal elements 0.7|i−j|σeiσej . Columns 4 − 6 idiosyn-
cratic errors, eit, present serial dependence such that eit = θei,t−1 + uit for
i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if
i is odd and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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3.3 An application to real data: CO2 emissions

The primary driver of global climate change are the carbon dioxide emissions. We are
interested in evaluating the global behavior of CO2 emissions around the world given
its direct impact to global warming, threatening human and natural habitats. The data-
set which is available at www.worldbank.org includes information about emissions in
124 countries from 1960 to 2016. Each time series is in logs and first differenced previous
to the analysis. Then, the data matrix is (56× 124). We implement the three estimation
methodologies, PC, LY and the one proposed in this chapter, CP, in order to estimate the
common factors. First, we estimate the number of common factors, r̂, using eigenvalues
ratio tests, such as Ahn and Horenstein (2013) test for PC, Lam et al. (2011) criterion for
LY, and Caro and Peña (2020) test for CP. Each criterion estimates one common factor,
r̂ = 1. Given that PC and LY methodologies provide pretty similar results, we just
consider here the ones from PC. Figure 3.1 represents the estimated common factor,
f̂t = ytP̂

′, using PC (black line) together with the time series of Cameroon (red line). We
can see how this common factor which is the normalized eigenvector of the covariance
matrix Γ̂(0), associated to its largest eigenvalue, is mainly the series of Cameroon. This
happens because the large variability presented in Cameroon time series makes that the
first principal component is mostly generated by this series. The corresponding factor
loadings are plotted in Figure 3.2 top panel. It is clear that the CO2 emissions time series
from Cameroon is the one with largest effect in the estimated factor. Same result is ob-
tained using LY methodology given that the M̂ matrix also takes into account lagged
covariance matrices Γ̂(k).

Figure 3.1: PC first estimated factor (black line) and CO2 emissions in Cameroon (red
line).
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Figure 3.2: PC and CP estimated factor loadings.

We can see in the top panel of Figure 3.3 the first common factor using the proposed
approach, CP, which combine lagged information by means of the combined dynamic
correlation matrix R̂. Contrary to PC and LY methods, this common factor is able to cap-
ture the overall dynamics of CO2 emissions for all the countries included in the analysis
representing a decreasing trend at the end of the sample period. We plot together to
CP first common factor the series of CO2 emissions for Japan, Greece, The Netherlands
and Spain, which correspond with the four largest loadings coefficients, see the bottom
panel in Figure 3.2. In terms of the percentage of the total variance of yt explained by the
estimated common factors, the first factor computed from the covariance matrix, called
to simplify PC factor, accounts for the 14% of the total variability. The factor computed
from the LY matrix accounts for 23% of the variability of the sum of squared covariance
matrices and the factor computed from the correlation matrices accounts also for 23%
of the variability of the standardized data.

The empirical application has shown the lack of interpretability of PC and LY when
atypical series are presented, whereas the CP method overcomes this limitation provid-
ing interpretable results for researchers and practitioners.
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Figure 3.3: CP first estimated factor and CO2 emissions in Japan, Greece, The Nether-
lands and Spain.
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3.4 Concluding remarks

This chapter has evaluated the finite sample performances of the principal component
estimator, the estimator based on the eigenvectors of the pooling lagged matrices and
the proposed estimator based on the eigenvectors of the combined dynamic correla-
tion matrix. Some simulation experiments have been conducted to analyze for which
sample size, T , and dimension of time series, N , would be more advantageous to con-
sider the classical principal component estimator or the lagged estimators. Simulation
results comparing the three methodologies, under different idiosyncratic error struc-
tures, have shown that the Relative Precision Growth rate of using CP procedure with
the R matrix can be up to 140%, whereas the disadvantages would be as maximum of
3%. Furthermore, these gains would be obtain under a more realistic error structure
than the classical one with homocedastic errors, given that errors may present some
degree of serial and cross-sectional dependence.
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Chapter 4

DFM with known cluster structure:
An application to business cycles

The European Union (EU) was considered a successful process of integration, which
could contribute to the economic development and the creation of wealth among its
members. However, after the financial and the sovereign debt crises, the initial Euro-
enthusiasm was followed by doubts about the advantages of the union. The differences
in the economic performance of the EU members after these crises led to a phenomenon
known as the Two-Speed Europe with two groups of countries: Core countries, formed by
states with similar fiscal restraint and solid economic growth, and a second group of
Peripheral countries, with weaker economic performance and higher fiscal deficits and
public debt.

The collapse of the financial system after 2008, the sluggish economic recovery, and
the deflationary pressures forced the European Central Bank (ECB) to employ a set of
unconventional monetary policies. The disparity in the economic performance of the
members, which shared the common expansionary monetary policy, also raised new
concerns about the benefits of the existence of a monetary union. For these reasons, ana-
lyzing the characteristics of the European countries’ business cycles has been a source
of research in the literature. Among others, Camacho et al. (2006) and Borsi and Me-
tiu (2015) used a single country-specific indicator of aggregate economic activity as
the Industrial Production Index or the Gross Domestic Product (GDP) to evaluate the
economic convergence and business cycle synchronization across the members. Sim-
ilarly, Di Giorgio (2016) implemented Markov-switching (MS) models to estimate the
changes in the business cycle phases of the Euro Area (EA) and some Central and East-
ern European countries (CEECs) by using one series of GDP per each CEEC and a series
for the aggregate GDP of the EA. Nevertheless, as the author acknowledges, a univari-
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ate analysis may fail to capture some recessionary phases and, under the event of im-
perfect cyclical synchronization among macroeconomic categories, several variables per
country should be considered for the estimation of the business cycle.

With the aim of filling this gap, this chapter examines the disparities in the evolu-
tion of the business cycle synchronization across the members of the EA by proposing
the following two-step procedure. In the first step, we obtain EA and country specific
measures of aggregate economic activity by constructing a large dataset of cross-country
series from several macroeconomic categories, whose co-movements are captured by a
Dynamic Factor Model with Cluster Structure (DFMCS). In the case of Europe, previous
studies have relied in DFMs to describe macroeconomic interactions between CEECs
and some EA members, see Breitung and Eickmeier (2006) and Jiménez-Rodrı́guez et al.
(2013). Recently, Klaus and Ferroni (2015) estimate a DFM to analyze the business cycles
characteristics of the four largest EA countries. In our proposal, we use the DFM of Kose
et al. (2003) and Crucini et al. (2011) because it allows us to distinguish between com-
mon sources of variation in the Union and nation-specific factors.

In the second step, the measures of aggregate economic activities obtained in the
factor analysis are used in the Markov-switching framework developed by Leiva-Leon
(2017) to draw inferences about the synchronization of business cycles across the EA
members. In contrast to other standard approaches, which summarize the overall level
of synchronization in a single number for the entire sample period, this multivariate
Markov-switching approach allows us to compute a measure of pairwise synchroniza-
tion at each time observation along the sample. Therefore, we can examine the evolution
of the time-varying dynamic interactions across the business cycles of the EA members.
See Égert and Kočenda (2011) which examine the time-varying synchronization across
European stock markets.)

Using a recent dataset, which encompasses the financial and the sovereign debt
crises, we find that, overall, the degree of synchronization of the EA members remained
stable until the financial crisis, which implied a dramatic reduction in the degree of
synchronization due to the different effects of this shock on each country. Thereafter, all
the countries showed a progressive recovery in the synchronization to pre-crisis levels.
Notably, we find significant discrepancies in the recovery paths. Some countries have
been able to catch up their pre-crisis level of synchronization very fast, letting even some
countries to improve their initial levels. However, some EA members are still far from
recovering their pre-crisis degrees of business cycle synchronization. In an independent
proposal, based on GDP data at the regional level of the NUTS2 classification, Gadea-
Rivas et al. (2019) have also documented the different patterns in the synchronization
in Europe since the introduction of the euro. These findings support the existence of a
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Two-Speed Europe in terms of synchronization. The rest of the chapter is organized as
follows. Section 1 describes the DFM with cluster structure and Section 2 the measure
of synchronization between the common factor and each of the country-specific factors.
Section 3 examines the empirical results and Section 4 states the conclusions.

4.1 A model to examine synchronization

This section describes the procedure applied for the estimation of the latent factors that
summarize the common behavior of the economic indicators.

The estimation of the factors is based on the DFM proposed in Crucini et al. (2011).
This is a suitable framework to deal with the large dimension of the dataset and the
specific characteristic of the cross-country data. In particular, each macroeconomic in-
dicator in a given country is assumed to be explained by three components: a common
latent factor affecting all the series in the dataset; a second latent factor, which only
affects the group of series in a particular country; and an idiosyncratic term, which is
specific to each series. Hence, every data observation is decomposed according to the
following equation:

yi,t = αi + βEA,ifEA,t + βn,ifn,t + εi,t, (4.1)

where fEA,t is the EA factor; fn,t is the country factor; n = 1, . . . , N, where N is the num-
ber of countries; and εi,t is the idiosyncratic component. Observable series at period t

are denoted as yi,t for i = 1, ...,M ×N , where M is the number of macroeconomic series
per country. The factor loadings, βEA,i and βn,i, measure the amount of variation in yi,t

that is explained by each factor. The dynamic of the factors is assumed to follow an
autoregressive process of order pk:

fk,t = ϕfk,1fk,t−1 + ϕfk,2fk,t−2 + · · ·+ ϕfk,pfk,t−pk + ufk,t, (4.2)

where E
[
ufk,tufk,t

]
= σ2

fk
, k = 1, ...,K, and K is the number of latent factors. In ad-

dition, the idiosyncratic terms, εi,t, are assumed to follow autoregressive processes of
order qi:

εi,t = ϕi,1εi,t−1 + ϕi,2εi,t−2 + · · ·+ ϕi,qiεi,t−qi + ui,t, (4.3)

where E [ui,tuj,t−s] = σ2
i for i = j, s = 0, and 0 otherwise; E [ufk,tui,t−s] = 0 for all k, i,

and s. Following Kose et al. (2003) and Crucini et al. (2011), we set the lag length of
the autoregressive processes to three. The error terms ufk,t and ui,t are assumed to be
normally distributed variables with zero mean. In the empirical application, the dataset
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is formed by eighteen countries (N = 18), and there are nineteen dynamic unobserved
factors (K = N + 1) that represent the common interrelations that take place in the
cross-country dataset.

The estimation of the multifactor model (1) - (3) for a large set of countries requires
the estimation of the latent factors and a sizable number of parameters relating them
with the observable series. Moreover, given the short life of the EA, the temporal di-
mension of the dataset is relatively small with respect to cross section dimension. For
these reasons, we apply the Bayesian estimation procedure proposed by Kose et al.
(2003) and Crucini et al. (2011), which has been shown to work efficiently in this con-
text. PP4(Kose et al. (2003) estimate world, region and country factors for 60 countries
with 30 years of annual data.)

Let θ be the set of parameters to be estimated, F the vector of dynamic latent factors
(KT × 1) with Gaussian probability density pf (F ), and Y the vector of observable data
(MNT × 1). The Gaussian probability density for the observable series conditional on
the factors and the parameters is py(Y | θ, F ). According to the Bayes’ theorem, for
a given prior distribution of θ, p(θ), the joint posterior distribution for the factors and
parameters is the product of the likelihood and prior:

p(θ, F | Y ) ⊂ py(Y | θ, F )pf (F )p(θ). (4.4)

However, while the joint posterior is difficult to handle, a sample of θ and F can be
generated by means of Markov Chain Monte Carlo methods sampling from the condi-
tional density of the parameters given factors and data and the conditional density of
the factors given parameters and data. Specifically, the parameters and the factors are
generated by sampling both iteratively from the next two steps:

1. Sampling θ1 from the conditional density p
(
θ | F 0, Y

)
where F 0 is a starting value

in the support of the posterior distribution of F .

2. Sampling F 1 from the conditional density p
(
F | θ1, Y

)
. In a first step, we sample

from the distribution of the EA factor conditional on the parameters and the spe-
cific country factors. In a second step, we sample from the distribution of each
country factor conditional on the EA factor and the parameters.

These two steps generate in each stage of the Markov Chain drawings
{
θj , F j

}
for

j = 1, . . . , J where θj ∼ p
(
θ | F j−1, Y

)
and F j ∼ p

(
F | θj−1, Y

)
. Given the proper

priors, this iterative process produces a realization of a Markov chain whose invari-
ant distribution is the joint posterior of the model parameters and the unobservable
factors (Otrok and Whiteman 1998). The posterior distribution for the parameters is
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built by computing the likelihood for the first pi observations, sequentially condition-
ing to compute the rest of the likelihood and using the usual prior densities which are
considered sufficiently uninformative. To be precise, the prior for the factor loadings is
(βEA,iβn,i)

′ ∼ N
(
0, (0.001 ∗ I2)−1

)
, where I2 is the 2× 2 identity matrix.

Autoregressive parameters for both, the factors and the idiosyncratic components,
ϕi = (ϕi,1, ϕi,2, ϕi,3)

′ and ϕfk = (ϕfk,1, ϕfk,2, ϕfk,3)
′ , follow a prior distribution N(0,Σ)

with

Σ =

⎡⎢⎣ 0.85 0 0

0 0.5 0

0 0 0.25

⎤⎥⎦ . (4.5)

This represents the belief that data in growth rates is not serially correlated and that the
impacts of the lags mitigate as the lag length increases. As in the previous literature, to
identify the scale of the latent factors, σ2

fk
are set equal to a constant. In addition, the

prior distribution for σ2
i is IG(6, 0.001).

Finally, the conditional distribution of the factors given the data and the parameters
is derived as in Otrok and Whiteman (1998). In particular, we compute the joint density
for the observable data and the latent factors given the parameters as the product of
NMK independent Gaussian densities. Then, we use this joint distribution to obtain the
conditional distribution of the factors given the data and the parameters. Next section
describes the process to measure the synchronization among the factors.

4.2 Synchronization between factors

This section describes the procedure followed to evaluate the potential variations in
the cyclical interdependencies between the EA factor and each of the country-specific
factors. Using the bivariate Markov-switching model proposed by Leiva-Leon (2017),
we obtain a full characterization of the regime inferences and inferences on the type
of synchronicity that the Euro Area factor and the specific-country factors bear at each
period of time. Following the previous notation, let fk,t be the unobservable dynamic
factors that describe the macroeconomic co-movements among the countries included
in the panel of cross-country data.

When index k = EA, the factor describes the evolution of the EA aggregate eco-
nomic activity, while it represents the country-specific economic activity when k = n,
where n = 1, ..., 18. Therefore, fk,t can be modeled using a MS model as proposed by
Hamilton (1989), where the dynamics of the factors depends on an unobserved state
variable (Sk,t) that controls the regime changes, an idiosyncratic component, ϵk,t, and
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a set of model parameters, Θk, where k = EA,n. Each of the state variables, SEA,t

and Sn,t evolve according to an irreducible two-state Markov chain, whose transition
probabilities are given by:

Pr (Sk,t = j | Sk,t−1 = i) = pk,ij . (4.6)

To compute inference on the interactions between the two state variables, we adopt
the following bivariate two-state Markov-switching specification:[

fEA,t

fn,t

]
=

[
µEA,0 + µEA,1SEA,t

µn,0 + µn,1Sn,t

]
+

[
ϵEA,t

ϵn,t

]
, (4.7)

[
ϵEA,t

ϵn,t

]
∼ N

([
0

0

]
,

[
σ2
EA σEA,n

σEA,n σ2
n

])
, (4.8)

for i, j = 0, 1 and k = EA,n. If the state variable Sk,t = 0, fk,t is in regime 0 with
mean equals to µk,0, while if Sk,t = 1, fk,t is in regime 1 with mean equals to µk,0 +

µk,1. If we assume µk,1 > 0, the latent variable Sk,t identifies periods of low and
high economic performance, which are interpreted as recessions and expansions, re-
spectively. Phillips (1991) was pioneering in evaluating the transmission of business
cycles between two countries in the context of bivariate Markov-switching processes.
Although there are two possible states for each separate country, modeling the inter-
actions would require a new unobservable state variable SEA,n,tthat encompasses the
four different combinations: SEA,n,t = 1 when (SEA,t = 0, Sn,t = 0) , SEA,n,t = 2 when
(SEA,t = 1, Sn,t = 0) , SEA,n,t = 3 when (SEA,t = 0, Sn,t = 1) , and SEA,n,t = 4 when
(SEA,t = 1, Sn,t = 1).

Regarding the case of business cycle interdependence between the business cycles of
two countries, Phillips (1991) describes two extreme cases. The first case characterizes
pairs of countries for which their individual business cycle fluctuations are completely
independent. In this case, the separate regime-shifting processes, SEA,t and Sn,t are
independent and

Pr (SEA,t = jEA, Sn,t = jn) = Pr (SEA,t = jEA) Pr (Sn,t = jn) , (4.9)

where jEA = 0, 1 and jn = 0, 1. In the opposite case of perfect synchronization (or
dependence), both countries share the state of the business cycle and the probabilities
of SEA,n,t are in fact those of one of the countries, implying that SEA,t = Sn,t = St and
that

Pr (SEA,t = jEA, Sn,t = jn) = Pr (St = j) , (4.10)
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where j = 0, 1. Bengoechea et al. (2006) proposed a new framework to measure the
degree of business cycle correlation between EA and country n. These authors realized
that independence and perfect synchronization are two extreme possibilities that never
occur in practice. For two countries, the actual probabilities will be a linear combination
of these two extremes:

Pr (SEA,t = jEA, Sn,t = jn) = δ Pr (St = j) + (1− δ) Pr (SEA,t = jEA) Pr (Sn,t = jn) .

(4.11)
Then, δ which is estimated by the data, measures the degree of overall pairwise business
cycle synchronization.

Leiva-Leon (2017) went one step further, although at the cost of complicating the
approach a bit. The contribution of this author was summarizing the information about
the relationship of dependency between the two separate latent variables, by defin-
ing another latent variable VEA,n,t that governs the transition between the two extreme
cases, independent cycles and perfect synchronization. This latent variable VEA,n,t is
equal to 1 if the business cycle phases are in a fully synchronized regime at time t, and
0 otherwise. To complete the statistical characterization of the model, VEA,n,t is also
assumed to evolve according to a two-state Markov chain with transition probabilities
given by

Pr (VEA,n,t = jv | VEA,n,t−1 = iv) = pv,ij , for iv, jv = 0, 1 (4.12)

The potential regimes of the model implies that the four cases of the regime-switching
variable SEA,n,t could appear either when VEA,n,t = 1 or when VEA,n,t = 0. The resulting
eight different states are summarized by the latent variable S∗

EA,nt for each period of
time t. In particular, the eight different regimes are

S∗
EA,n,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if SEA,t = 0, Sn,t = 0, VEA,n,t = 0

2, if SEA,t = 0, Sn,t = 1, VEA,n,t = 0

3, if SEA,t = 1, Sn,t = 0, VEA,n,t = 0

4, if SEA,t = 1, Sn,t = 1, VEA,n,t = 0

5, if SEA,t = 0, Sn,t = 0, VEA,n,t = 1

6, if SEA,t = 0, Sn,t = 1, VEA,n,t = 1

7, if SEA,t = 1, Sn,t = 0, VEA,n,t = 1

8, if SEA,t = 1, Sn,t = 1, VEA,n,t = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.13)

Finally, the joint dynamic of SEA,t and Sn,t is described by a weighted average
between the fully synchronized and fully independent scenarios as follows:
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Pr (SEA,t = jEA, Sn,t = jn) = Pr (VEA,n,t = 1)Pr (St = j)

+ (1− Pr (VEA,n,t = 1))Pr (SEA,t = jEA) Pr (Sn,t = jn) ,
(4.14)

where Pr (VEA,n,t = 1) = δt measures the dynamic synchronicity between SEA,t and
Sn,t and determines the weights attributed to each scenario. Leiva-Leon (2017) de-
scribes a Bayesian method to estimate the model parameters and to compute inferences
on the state variables. Therefore, in our empirical application, δt quantifies the time-
varying degree of synchronization between the business cycle of the EA and the par-
ticular macroeconomic fluctuations in each country included in the dataset along the
sample period.

4.3 Empirical results

Next sections describe the selected data, the results regarding the estimation of the
factors as a summary of the aggregate economic activity, and the characterization of
the evolution of the business cycle synchronization among the EA members.

The dataset is composed by several macroeconomic indicators for all the EA mem-
bers. As suggested by Kose et al. (2003) and Crucini et al. (2011), we select macroeco-
nomic series of production, consumption and investment for each country. In particular,
we use the demeaned growth rates of GDP, Household & NPISH Final Consumption
Expenditure, and Gross Fixed Capital Formation. The seasonally adjusted series were
downloaded from the Eurostat database at a quarterly frequency. Data availability dif-
fers for each of the EA members. Thus, to consider a balanced dataset, our effective
sample spans the period between the first quarter of 2000 to the last quarter of 2015 for
all the nineteen countries of the EA but Cyprus. The database from Eurostat has only
a few observations available for this country. Hence, our dataset is composed by three
economic indicators from 18 different countries and 64 quarterly observations, which
cover the last 16 years since the introduction of the euro as a single currency in 1999.

4.3.1 Aggregate economic activity

Macroeconomic co-movements along the eighteen countries in the dataset are estim-
ated through a common EA factor and the particular co-movements within each coun-
try through the country-specific factors. Figure 4.1 presents the results of the estimation
of the latent factors. For the sake of space, and due to the large amount of countries
composing the EA, the figure only depicts some illustrative examples. In particular, the
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figure represents the factors for the EA, Spain and Italy, along with 33 and 66-percent
quantile bands (doted lines); these tight bands show that the factors are accurately es-
timated. The upper graph describes the evolution of the EA factor together with the
periods defined by the Euro Area Business Cycle Dating Committee of the Center for
Economic Policy Research (CEPR) as recessions (shaded areas).

Figure 4.1: The estimated Euro Area (a), Spain (b) and Italy (c) factors.

The figure shows that the EA factor is able to track the economic evolution of the EA
according to the dating of the CEPR. Overall, the factor takes negative values during
the two recession periods between 2008.Q1-2009.Q2 and 2011.Q3-2013.Q1 and positive
values elsewhere. The estimates of the EA factor suggest that the downturn at the begin-
ning of 2008 was much severe than the recession that followed the European sovereign
debt crisis of 2011 and measures the economic recovery between the two recessions.
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However, the factor in Spain (middle graph) shows how the Spanish economy kept
a low economic performance between the two recessions and starts an expansion after
the second quarter of 2013. On the other hand, the factor in Italy (lower graph) shows
that this country was more affected by the sovereign debt crisis during the second re-
cession. These results provide an illustrative example of the different reactions of the
EA members to the economic events that affected Europe after 2008. Regarding others
country-specific factors not included in Figure 4.1, some countries recover earlier than
the Spanish economy from the first recession and show a stable improvement during
the following years, not being affected by the second recession severely. These results
are omitted to save space. This is the case of Belgium, Estonia, France, Germany, Latvia,
Lithuania, Slovenia and Slovakia factors. In the case of Greece, the estimated factor
shows that the Greek economy had a lower economic performance between the two
recessions as in the case of Spain. Finland and Portugal show a pattern similar to Italy,
being more affected by the second crisis. Finally, the factors corresponding to Luxem-
bourg, Ireland, Malta, Austria and the Netherlands remained relatively stable during
that period.

4.3.2 Business cycle synchronization

Once the latent factors are estimated, they are included in the Markov-switching spe-
cification described in Section 2. Figure 4.2 depicts the comparison of the regime switches
of the EA factor with those corresponding to the Spain factor. The upper and middle
graphs represent the MS filtered probabilities of regime switches in the EA and Spain
factors respectively. These estimated probabilities take values close to one during the
CEPR recession periods. Hence, they are interpreted as an accurate characterization of
the business cycle phases estimated with the information included in a large panel of
cross-country data. The filtered probabilities for the EA factor show a decrease between
the two recession periods. However, given that the Spanish economy showed a worse
economic performance at that dates (see Figure 4.1), its recession probabilities are higher
during that period and remain closer to one.

The lower graph depicts the probability of synchronization in the business cycle
phase changes of the EA and Spain factors. This probability shows high values and
a slight positive trend during the first part of the sample since the introduction of the
euro. In the period between the two recessions, synchronization decreases drastically
due to the poorer economic performance of Spain with respect to the EA. Then, the
degree of synchronization rises again as the EA economy enters into the second reces-
sion. After that, synchronization shows a slight decrease since the middle of the second
recession given that Spain needed more time to begin the economic recovery. Finally,
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synchronization increases again once Spain starts to recover in the second quarter of
2013 and reaches values like those observed at the beginning of the sample.

Figure 4.2: Filtered probabilities of regime switches for the EA factor (a) and the Spain
factor (b). Probability of synchronization between the regime changes of EA and Spain
factors (c).
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Figure 4.3 shows the estimated pairwise synchronization of the EA economic activ-
ity and Germany, Italy, France and Portugal. Germany shows a high level of synchron-
ization along the sample period. According to this figure, the German business cycles
become less synchronized after the financial shock and during the second CEPR reces-
sion. However, those drops take place with a delay with respect to the beginning of
the CEPR recessions. These facts highlight the robust connection of the German eco-
nomy to the EA fluctuations, especially during the first stages of the financial and the
debt crisis. Italy, France and Portugal present a lower level of synchronization during
the pre-recessions period at the beginning of the sample. In these three countries, syn-
chronization drops after the financial crisis and shows a significant increase after 2009.
In the case of France and Portugal, the high synchronization is only slightly reduced
during the second recession between 2011 and 2013. Notably, the level of synchroniza-
tion of these countries shows an improvement at the end of the sample with respect to
the period between the introduction of the euro and the first recession.

Figure 4.3: Probabilities of synchronization between the regime switches of the Euro
Area and the Germany (a), the France (b), the Italy (c), and the Portugal (d) factors.
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Figure 4.4 describes the evolution of the synchronization of EA and Greece, Austria,
Finland, Slovakia, and Slovenia. As in Figure 4.3, there is a fall in synchronization that
took place close to the financial crisis. The lack of synchronization in Greece, Finland
and Austria started earlier while macroeconomic fluctuations in Slovakia and Slovenia
decoupled once the recession had started. However, the effects of the recessions were
more persistent in the second set of countries. Synchronization remains at low values
for a longer time after 2008 and does not improve before the second recession (Finland
and Slovenia) or falls again after 2011 (Greece, Austria and Slovakia). Furthermore,
these countries show higher levels of synchronization before the recessions than at the
end of the sample, suggesting that they will require more time to reconnect their mac-
roeconomic behavior with the EA fluctuations.

Figure 4.4: Probabilities of synchronization between the regime switches of the Euro
Area and the Greece (a), the Finland (b), the Austria (c), the Slovakia (d), and the Slove-
nia (e) factors.
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The results for Ireland, the Netherlands, Latvia and Luxembourg are presented in
Figure 4.5. In contrast to the analysis of the EA members showed by Figures 4.3 and
4.4, this set of countries shows a progressive decrease of synchronization and reaches
the maximum level of desynchronization during the 2011-2013 recession. This decline
starts earlier in the case of Ireland and the Netherlands while it is more abrupt in Latvia
and Luxembourg. Although Ireland, the Netherlands and Latvia show an increasing
trend in their estimates at the end of the sample, only Luxembourg reaches a degree of
synchronization as high as the one observed before the recessions.

Figure 4.5: Probabilities of synchronization between the regime switches of the Euro
Area and the Ireland (a), the Latvia (b), the Netherlands (c), and the Luxembourg (d)
factors.

Finally, Figure 4.6 incorporates the results corresponding to Belgium, Estonia, Malta
and Lithuania. In the case of Malta, the figure depicts an increasing trend in its syn-
chronization since the beginning of the sample until the start of the first recession. After
that date, it decreases constantly and reaches a minimum in 2013. Once the second
recession ended, synchronization improves until the end of the sample. As in the ana-
lysis of the countries included in Figure 4.3, Belgium, Estonia and Lithuania suffer from
a drastic decrease in their synchronization during the first recession, while it recovers
quickly after this period. In particular, Belgium and Estonia react very fast in terms of
synchronization after the financial crisis and required a short period to recover from
that shock. Instead, Lithuania desynchronizes some quarters later after the start of the
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first recession although, thereafter, its synchronization rises sharply before the second
recession. Nevertheless, the main difference between these countries and those depic-
ted in Figure 4.3 is that none of them shows an increase in its degree of synchronization
after the recessions with respect to the beginning of the sample.

Figure 4.6: Probabilities of synchronization between the regime switches of the Euro
Area and the Belgium (a), the Malta (b), the Estonia (c), and the Lithuania (d) factors.

4.4 Concluding remarks

The global effects of the financial crisis and its resulting consequences on government
debt levels forced central bankers to implement unconventional monetary stimuli to
avoid an economic collapse. In the case of EA, this was particularly challenging because
a single and highly expansionary monetary policy was applied to a large set of coun-
tries in different phases of their respective business cycles. This chapter evaluates the
consequences of these historic events on the evolution of the business cycle synchron-
ization among all the members of the EA using a large panel of cross-country data. The
analysis focuses on combining the dimension reduction properties of DFMCSs with a
MS specification that provides a time-varying measure of synchronization for each ob-
servation along the sample. Our results show that, although the countries exhibit an
overall decline in the synchronization in the financial crisis, they recover the levels of
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synchronization that characterized the pre-recessions period. However, we also find
that there are notable differences in the magnitude of the fall in synchronization and in
the period of time required to recover the pre-recessions synchronization levels. Hence,
the findings provided here support the presence of a Two-Speed Europe after the financial
crisis in terms of economic synchronization. Countries as Germany, France, Italy, Spain,
Portugal, Belgium, Estonia and Lithuania recover quickly their level of synchronization
after the first recession and some of them even improve it with respect to the period
before 2008. On the contrary, Ireland, the Netherlands, Luxembourg, Latvia and Malta
suffered a larger desynchronization after 2011 and show a slower recovery. Greece, Aus-
tria, Slovakia, Slovenia and Finland keep a decrease on their levels of synchronization
during a larger period between the two recessions. Therefore, we fail to find evidence
suggesting that the recent implementation of the unconventional monetary stimuli ap-
plied by the ECB amplified the desynchronization of the EA members. By contrast,
these countries show an increasing degree of synchronization after 2013, some of which
reached an improvement with respect to their pre-recession synchronization levels.



Chapter 5

DFM with unknown cluster
structure: An application to energy
prices

Energy economics and energy policy are two important concerns for the development
of countries. Governments and investors have to pay close attention to international
energy prices given that they affect not only the competitiveness of industry yet house-
holds. Recently, the intervention of governments in the regulation of energy is gaining
even more importance, since the environment is suffering the consequences of the im-
proper use of energy fuels.

We already know that there exist differences in the energy market structures across
countries due to production and transportion costs, trade restrictions, and contractual
terms, between others factors. Nevertheless, after taking into account these differences,
in this chapter we are interested in the existence of common factors that describe a
global behavior in the international energy market, together with group-specific factors
explaining energy prices related to regions, countries or industrial sectors.

After three decades since the pioneering work of Griffin (1980) about energy eco-
nomics and policy, research in this topic has increased considerably according to the
economic events. The lack of data about international energy prices has been an obstacle
for researchers, nevertheless, the establishment of statistical agencies and developments
in data storage and the internet have provided new tools which are capable to analyze
big data sets about energy. Previous works have analyzed energy prices paying atten-
tion to individual fuel types, for example Brown et al. (2008) studies what affects natural
gas and crude oil prices in USA, and Nick and Thoenes (2014) pays attention to natural
gas prices in Germany. International oil prices have been considered by Van Benthem
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and Romani (2009) and Aastveit et al. (2015) together with domestic end-use energy
and demand, respectively. How energy prices relate to energy comsumption and in-
vestment was examined in Mahadevan and Asafu-Adjaye (2007) and Bretschger (2015)
using the consumer price index and energy use as proxies for energy price. Only a few
of these articles consider different fuel types together in their analysis of energy prices,
and in such cases they are used as control variables.

Up to our knowledge, we are pioneers in analyzing the co-movements of interna-
tional energy prices in a bigdata scenario of 30 countries and 12 industrial sectors. The
data set is from Sato et al. (2019). We consider for the analysis the Dynamic Factor
Model with Cluster Structure (DFMCS) which allows us to investigate if there exists a
group structure between international energy prices, to characterize the heterogeneity
of the global energy market based on industry, country or region, to quantify the extent
to which “crisis” affected the global energy prices, and to identify the sources that ex-
plain the cross-section variations in energy prices through control variables which are
country-specific.

We extend the methodology proposed in Alonso et al. (2020) in order to study the
effect of control variables, which are country specific, over energy prices. We also run
a Monte Carlo simulation to evaluate the performance, in finite samples, of Alonso
et al. (2020) clustering procedure when we take into account control variables. Results
provide useful interpretations about the existence of trading groups of countries in the
global energy market.

The rest of the chapter is organized as follows. Section 1 introduces the model. The
estimation method and the Monte Carlo experiment are described in Section 2. Section 3
presents the data and Section 4 contains the empirical results. Finally, some concluding
remarks and future extensions are given in Section 5.

5.1 Theoretical framework

In this section we introduce an extension of the DFMCS framework to analyze what
drives energy prices for 12 industrial sectors and over 30 OECD and non-OECD coun-
tries. It consists in including in the DFMCS an ’observed’ component of macroeconomic
variables which are country-dependent.

Let t = 1, ..., T represents the time index and i = 1, ..., N the cross-section index, the
unknown and fixed number of groups is S and G = g1, ..., gN is the group membership
with gi ∈ 1, ..., S. The number of countries is Q and C = c1, ..., cN represent the country
membership with ci ∈ 1, ..., Q. There are Nj units within group j (j = 1, ..., S) such that
N =

∑S
j=1Nj . The response variable of the ith unit, observed at time t, yit, is defined as
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yit = x′itβci + f ′
0,tλ0,i + f ′

gi,tλgi,i + εit. (5.1)

where xit is a p × 1 vector of observable variables, f ′
0,t is a r0 × 1 vector of unobserved

global factors affecting all the N series in the sample, f ′
gi,t is a rj × 1 vector of unob-

served group-specific factors that affect only the units in group gi, βci is a p × 1 vector
of unknown regression coefficients for country q (q = 1, ..., Q), λ0,i and λgi,i are the cor-
responding factor loadings, and εi,t is the unit specific error. Here βci is common for all
i units belonging to country q.

In line with Wang (2008) identifying conditions for large dimensional factor models,
we consider the following assumptions to identify the model and make possible the
estimation. Let Λ0 and Λj be the corresponding matrix of factor loadings, then we
assume that Λ′

0Λ0 = Ir0 , Λ′
jΛj = Irj for j = 1, ..., S, the r =

∑S
j=0 rj covariance matrices

of the factors are diagonal, Λ′
0Λj = 0r0×rj and Λ′

jΛi = 0rj×ri for j ̸= i.

5.2 Estimation method

The model is estimated using the procedure introduced in Alonso et al. (2020). This
method works well and seems to be better than the one in (Ando and Bai, 2017) in
terms of estimation of factors and loadings, as shown by their Monte Carlo simulation
results.

Given the DFMCS in (5.1), we just have information about the left hand side and the
control variables included in matrix X . The unknown parameters to be estimated are
the number of groups, S, the number of common and group-specific factors, r0 and rj ,
the corresponding factors and its loadings, F̂0, F̂1, ..., F̂S , Λ̂0, Λ̂1, ..., Λ̂S , the membership
of each variable to a given group, gi, and the sensitivity to observable factors, βci . We
need to modify Alonso et al. (2020) procedure, AGP in what follows, because they do
not consider exogenous variables and we want to take into account the effect of mac-
roeconomic variables, which are country-specific, over energy prices.

AGP includes a prior step in which the observed time series, yit, are cleaned from
additive outliers and level shifts, see Alonso et al. (2020) for more details about the
cleaning procedure. We extend AGP to consider the estimation of the regression coeffi-
cients, βci and divide the estimation of model (5.1) in five steps:

1. Estimate the country-dependent regression coefficients, βci , by minimizing

L(βci) =

N∑
i=1

∥ yi −Xiβci ∥2 +T

N∑
i=1

pi(βci). (5.2)
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where

pi(βci) ≡ pκci ,γ
(βci) =

pci∑
ci=1

pκci ,γ
(| βci |),

is the SCAD (smooth clipped absolute deviation) penalty of (Fan and Li, 2001) as sug-
gested in Ando and Bai (2017), with κci > 0 and γ = 3.7, which minimize a
Bayesian risk criteria for the regression coefficients. The size of the penalty which
is control by κci , for ci ∈ 1, ..., Q, is the same for those cross-sectional units related
to country q with q = 1, ..., Q in the sample. Given β̂ci , we subtract the corres-
ponding ’observed’ component from each time series, yi, obtaining

y∗i = yi −Xiβ̂ci .

2. Estimate an initial set of global factors F0 and their corresponding loadings Λ0.
The number of global factors r0 is obtained using the test proposed in Caro and
Peña (2020) and introduced in Chapter 2. The factors are estimated by f̂0t = λ̂0y

∗
t ,

and the common component by ct = Λ̂0Λ̂
′
0y

∗
t , where Λ̂0 is the estimated matrix

of factor loadings which columns are the eigenvectors of the combined dynamic
correlation matrix of the observed data, Rk0 , introduced in Chapter 2, associated
to the r0 largest eigenvalues.

3. Apply the clustering algorithm proposed in Alonso and Peña (2019), based on
similar linear dependency measures between time series, to the estimated com-
mon component Λ̂0f̂0,t. Once the optimal number of groups S is calculated using
a modification of the Silhouette algorithm proposed by Rousseeuw (1987), the
memberships gi for i = 1, ..., N are obtained.

4. Obtain the number of group-specific factors rj for j = 1, .., S using the CP test
taking into acount the time series yi,t belonging to each group. The corresponding
factors F1, ..., FS and their loadings Λ1, ...,ΛS are estimated as describe in step (2)
for the global factors. In this step, all the global and group-specific factors from
steps 2 and 4 are compared and classified according to the decision rules in Alonso
et al. (2020) based on empirical canonical correlations.

5. As suggested in Alonso et al. (2020), it must be verified that the groups are a
consequence of specific factors and not due to different loadings corresponding to
global factors. Therefore, group-specific residuals vt = y∗t − Λ̂0f̂0,t are obtained
and used to re-estimate the group-specific factors. Finally, each group must be
analyzed to check the existence of at least one specific factor.
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Our objective in the rest of the chapter is, by means of a Monte Carlo simulation, to
evaluate the clustering performance of AGP under different data generation processes,
and to applied the proposed extention to the analysis about international energy prices.

5.2.1 Monte Carlo experiment

In this section we simulate a data structure similar to the one in our data set about
energy prices and evaluate the clustering performance of AGP procedure. We consider
three data-generating processes (DGP) and we set the number of countries in each DGP
to be three, such that ci ∈ 1, 2, 3. Each variable yi for i = 1, ..., N is generated as

yi = Xiβci + F0λ0,i + Fgiλgi,i + εi, (5.3)

where the r-dimensional global common factor f0,t is a vector of U(0, 1) variables and
the corresponding elements of the loading matrix Λ0 follow U(−2, 2) distribution, the
rj-dimensional group-specific factor fgi,t (j = 1, ..., S), is a vector of N(0, 1) variables,
and each element of the factor loading matrix Λj is generated from the N(0.5j, 1) distri-
bution.

The number of columns of Xi is set to p = 30, while the true number of predictors is
q = 3. Each of the elements of Xi is generated from N(0, 1) distribution. The non-zero
true parameter values of βci are set to be (4, 3.5, 3) for country 1, (−2.5,−2,−2.5) for
country 2, and (1, 0.5, 1.5) for country 3. These non-zero elements are put into the first
three elements of βci , for example, the true parameter vector is β1 = (4, 3.5, 3, 0, 0, ..., 0)′

for country 1. We set the number of groups S = 3. We assume that each country has 99
series, the first 33 series of each country belong to group 1, the second 33 series, from
34 to 66, of each country belong to group 2, and the last 33 series, from 67 to 99, of
each country belong to group 3. We consider the sample sizes N = {297, 594} and the
number of time observations T = {100, 200}.

First DGP assumes that the N-dimensional vector εt has a multivariate normal distri-
bution with mean 0 and covariance matrix σ2

eIN . Second DGP has non-homoscedastic
errors with cross-sectional dependence such that εit = 0.2e1it + δte

2
it, where δt = 1

if t is odd and zero if t is even, and the N-dimensional vectors e1t = (e11t, ..., e
1
Nt)

′

and e2t = (e21t, ..., e
2
Nt)

′ follow multivariate normal distributions with mean 0 and co-
variance matrix S = (sij) with sij = 0.3|i−j|σ2

e and e1t and e2t are independent. The
third DGP presents errors which are serial and cross-sectional correlated such that,
εit = 0.2εi,t−1 + eit, where t = 1, ..., T , the N-dimensional vector et = (e1t, ..., eNT )

′

follows multivariate normal distributions with mean 0 and covariance matrix S = (sij)

with sij = 0.3|i−j|σ2
e . We consider the noise variances σ2

e = 1, 2.
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We generate 100 replications using each of the three data-generating process. In
each replication the proposed procedure is applied to the simulated data in order to
select, simultaneously, the number of groups, the number of global common factors, the
number of group-specific pervasive factors and the size of the regularization parameter.
We set the possible numbers of group-specific and global factors to range from zero to
eight. The number of groups ranges from two to twelve. Possible candidates for the
regularization parameter κi are κi = 10–3+0.25k for k = 0, ..., 12.

Table 5.1 shows the mean of the selected number of clusters for the 100 iterations,
and below each mean the total number of iterations out of 100 where the true number
was selected.

Table 5.1: Mean of the selected number of clusters (first row) and number of iterations
out of 100 where the true number of clusters was selected (second row).

DGP1 DGP2 DGP3

(T, N) σ2 = 1 σ2 = 2 σ2 = 1 σ2 = 2 σ2 = 1 σ2 = 2

(100, 297) 2.96 2.08 2.98 2.89 2.92 2.51
97 29 98 89 93 62

(100, 594) 3.00 2.17 3.00 2.90 3.00 2.72
100 25 100 91 100 72

(200, 297) 3.00 2.58 3.01 2.99 3.00 2.95
100 60 99 99 100 95

(200, 594) 3.00 2.88 3.00 3.00 3.00 3.00
100 88 100 100 100 100

We see how AGP tends to underestimate the number of groups, S. The method suffers
with the increase of variance under DGP1, over all when T = 100. Under DGP2 and
DGP3, where errors are allowed to present serial and limited cross-section correlation,
AGP provides very accurate results.

The similarity between the original data clustering and the estimated one is meas-
ured by the Adjusted Rand Index in Hubert and Arabie (1985) using the Permutation
Model,

ARI(C,C ′) =

∑S
i=1

∑S′

j=1

(
#(Ci∩C′

j)

2

)
−
∑S

i=1

(
#(Ci)

2

)∑S′

j=1

(
#(C′

j)

2

)
/
(
n
2

)(∑S
i=1

(
#(Ci)

2

)
+
∑S′

j=1

(
#(C′

j)

2

))
/2−

∑S
i=1

(
#(Ci)

2

)∑S′

j=1

(
#(C′

j)

2

)
/
(
n
2

) ,
where C is the original partition with S groups, and C ′ the estimated one with S′

groups, and it represents the probability that C and C ′ will agree on a randomly chosen
pair. Table 5.2 reports the mean of the Adjusted Rand Index (ARI) for the 100 iterations.
The closer the index is to 1 the better the agreement between the real partition and the
estimated one.
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Table 5.2: Clustering performance evaluation using the Adjusted Rand Index.

DGP1 DGP2 DGP3

(T, N) σ2 = 1 σ2 = 2 σ2 = 1 σ2 = 2 σ2 = 1 σ2 = 2

(100, 297) 0.8392 0.3195 0.8690 0.7511 0.8269 0.6399
(100, 594) 0.9248 0.3140 0.9172 0.8898 0.9372 0.7387
(200, 297) 0.9251 0.5508 0.9144 0.9027 0.9074 0.8658
(200, 594) 0.9792 0.8887 0.9738 0.9204 0.9393 0.9727

In general, AGP procedure shows pretty good allocation performance. Nevertheless, as
we mention before for Table 5.1, AGP is very sensitive to the increase of variance under
homoscedastic errors and time dimension T = 100.

5.3 Data

We analyze the Energy Price Index with fixed weights (FEPI) constructed in Sato et al.
(2019). The data set includes 30 OECD and non-OECD countries and 12 sectors for
the time period 1995-2015. Countries and sectors included in the sample are listed in
Table 5.3. The cross-section dimension is N = 30× 12 = 360 and the time-series dimen-
sion is T = 21 years. Previous to the analysis the data are first differenced in order to
achieve stationarity. Using subscripts i = 1, ..., 30 for the country, s = 1, ..., 12 for the
sector and t = 1, ..., 21 for time, the FEPIist is defined as

FEPIist =
∑
j

wj
is · log(P

j
it) (5.4)

where wj
is =

∑
j

F j
is∑

j F
j
is

is the time invariant weight with F j
is being the input quantity of

fuel type j in tons of oil equivalent for sector s in country i, and P j
it denotes the real price

of fuel type j per toe of aggregate industry in country i at time t in constant 2010 USD.
In our case, we choose the weights to be the average of the weights from 1995-2015. The
FEPI captures only energy price changes that come from changes in fuel prices, and not
through changes in the mix fuel inputs. The fuel types considered are electricity, natural
gas, coal and oil.

From a general point of view, there are many factors that influence directly or in-
directly energy prices, for example Dahl (2015) enumerates the following: population
growth, demographic shifts and elongation of human life, income growth, environ-
mental concerns, technology (investment capital available), renewable energies, waste
storage and proliferation, government intervention, transportation/travel (moving freight,
commuting, recreation and tourism, socializing, shopping, other services, industry travel),
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Table 5.3: Countries and sector coverage

Countries Sectors
Australia Japan Chemical & petrochemical
Austria Korea, Republic of Construction
Belgium Mexico Food & tobacco
Brazil Netherlands Iron & steel
Canada New Zealand Machinery
Croatia Norway Mining & quarrying
Cyprus Poland Non-Ferrous metals
Czech Republic Portugal Non-metallic minerals
Denmark Romania Paper, pulp & print
Finland Slovakia Textile & leather
France Sweden Transport equipment
Germany Switzerland Wood & wood products
Greece Turkey
Hungary United Kingdom
Italy United States of America

household heating, cooling, transport, and nuclear energy. We consider the effect of
some of these factors over energy prices in our analysis. Having into account the data
scarcity, we just include those control variables which are available for all the countries
in the sample. Table 5.4 describes the control variables together with their transforma-
tions.

Table 5.4: Control variables

Transformation
Energy imports 1
Energy intensity level of primary energy 1
GDP per unit of energy use 1
Renewable energy consumption 1
Inflation rate 0
Population growth 0
Electricity production from renewable sources 1
Combustible renewables and waste 1
NOTES: Transformation = 1 denotes that the series is in growth rates.

Transformation = 0 denotes no transformation is needed.

Figure 5.1 plots 12 time series, each one corresponding to the FEP of an industrial
sector of Australia, the first country in the sample. We observe that Textile & leather,
Transport equipment and Wood & wood products sectors are the ones with less variabil-
ity, whereas Construction, Iron & stell and Mining & quarrying are the ones with largest
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variability. It is clear that FEP for Construction sector was the most affected by the fin-
ancial crisis in 2008, followed by FEP in Mining and Quarrying sector, both of them
have not yet recover since then. This analysis gives the intuition that it may exists a
cluster structure in the data given by group-specific factors related to industrial sectors.
Figure 5.2 represents the construction sector for each of the 30 countries in the sample.
The most different country is Turkey, which FEP experiment large decreases around
1998 and 2004, and the one having positive values at the end of the sample period is
Brazil. We observe different patterns and magnitudes between countries which could
be interpreted as the existence of group-specific factors related to countries.

We implement the DFMCS to the FEP data set in order to analyze whether there
exits a cluster structure describing FEP based on countries/industrial sectors, or just
global factors. Empirical results are given in next section.
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5.4 Empirical results

The Monte Carlo simulations clearly show that AGP procedure performs well when
estimating the number of groups S and the allocations within groups. Previous to the
analysis, the observed time series yi, are cleaned from additive outliers and level shifts
as proposed in Alonso et al. (2020).

First, we run the SCAD-penalized regression, in order to evaluate the effect of con-
trol variables in international FEP. The penalization parameter κci is optimized using
a BIC criterion and the function penalized, in the MATLAB toolbox: ’penalized’, see
McIlhagga (2016). The estimation results show one relevant coefficient for each country.
Given the close relation between prices and inflation, it is the control variable which
affects the FEPs in a larger number of countries: Japan, Switzerland, USA, Australia,
Austria, Belgium, Cyprus, Czech Republic and Denmark. Energy imports affect en-
ergy prices in Greece, Sweden and United Kingdom; Energy intensity level of primary
energy is significant in Korea and Norway; GDP per unit of energy use in Romania; Re-
newable energy consumption in Italy, the Netherlands and Brazil; Population growth in
Finland and Germany; Electricity production from renewable sources in France, Mex-
ico, New Zealand and Slovakia; and Combustible renewables and waste in Croatia,
Hungary, Poland and Turkey. Once we estimate β̂ci we subtract the observed compon-
ent from the observed data, yi, obtaining y∗i = yi −Xiβ̂ci .

Second, we estimate the number of common factors in y∗i using the CP eigenvalue
ratio test based on correlation matrices. As suggested by Lam and Yao (2012) we applied
the test twice for the possible existence of weak factors. The estimated number of global
factors is r0 = 2, see the CP ratio of eigenvalues in Figure 5.3. Each factor explains 72.7%
and 7.3% of the total variability, respectively. The time series plots of CP estimated
factors and its corresponding loadings are plotted in Figures 5.4 and 5.5, respectively.
Loadings corresponding to the first global factor take negative values for all the series
in the sample with the exception of Brazil FEP. This factor is able to capture the global
dynamic of the differenced series, for example taking negative values during the 2000s
energy crisis and the global recession in 2008. The loadings of the second factor takes
positive and negative values across countries with differences in magnitude. The largest
positive ones correspond to Slovakia, New Zealand and Poland FEP, and the largest
negative ones to Greece and Cyprus.

Third, we apply the algorithm proposed in Alonso and Peña (2019), based on the
Generalized Cross Correlation (GCC) measure of linear dependency between time series,
to the common component. After applying a hierarchical clustering with average link-
age to the dissimilarity matrix obtained from ĜCC measure, we consider a modification
of the Silhouette algorithm proposed by Rousseeuw (1987), which give us the num-
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Figure 5.3: CP ratio of eigenvalues for the estimation of the initial factors.

1996 1999 2002 2005 2008 2011 2014

-3

-2

-1

0

1

2

3

Factor1

Factor2

Figure 5.4: Estimated initial factors.

ber of groups S = 6 together with the allocation of each series to one of the groups,
G = g1, ..., gN .

Results from the clustering are available in C.1 Empirical Section in the Appendix
to Chapter 5. First of all, we observe that groups are classified according to countries
instead to industrial sectors. For example, group 1 includes over all FEP of Cyprus,
Mexico, USA, Switzerland, Greece, Romania and the Netherlands. Given that USA is
the largest trading partner of Mexico it was expected that both of them were in the
same cluster. We also observe that series of Construction from different countries are
clustered in this group. Group 2 contains principally FEP of United Kingdom, Czech
Republic, Poland, Austria, Germany, Slovakia and Denmark. This cluster is repres-
entative of countries with high industrial electricity prices according to the study of
International industrial energy prices from the Department for Business, Energy & In-
dustrial Strategy at the government of the UK (https://www.gov.uk). From this study
we also conclude that group 3 represents mainly FEP of countries with high indus-
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trial gas prices, for example Finland, Japan, Korea, France, Italy, Sweden, and Portugal
between others. Group 4 includes over all FEP from Hungary, Norway, Belgium and
New Zealand. Finally, group 5 represents FEP from Austria and Brazil, and group 6
contains three series which may be consider atypical.
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Fourth, once we have the membership of each series to the corresponding group,
we estimate the group-specific factors and their corresponding loadings using the time
series in each group. The test estimates 3, 2, 3, and 10 factors in groups 1, 2, 3 and 4
respectively. Groups 5 and 6 do not have common factors. These specific-group factors
may contain some of the global factors, for these reason all the ’global’ and ’group-
specific’ factors are classified following the rules proposed by Alonso et al. (2020) based
on the empirical canonical correlation between each global factor from step (2) and the
group-specific factors from step (4). The first factor from the common component is
classified as global, given that it is highly correlated with two or more groups, and the
second factor is classified as specific because it is highly correlated with group 1.

Finally, we subtract the global common component from y∗i and re-estimate the
group-specific factors. The new estimates are 1, 2, 3, and 5 factors in groups 1, 2, 3
and 4, respectively. Group 4 is the group with largest number of factors, this is because
each factor is representative of the FEPs in a specific country. For example, see upper
plot in 5.6, the first group-specific factor represents the dynamics in Hungary, whereas
the second group-specific factor, bottom plot, is representative of FPE in Norway. The
rest of the bar plots representing the group-specific factor loadings are available in C.1
Empirical section in the Appendix to Chapter 5.

In summary, our DFM with cluster structure has 5 groups, 4 of them with group-
specific factors and one group only only affected by the global factor.

5.5 Concluding remarks

This chapter has three main contributions: first, we have presented an extension of the
methodology proposed by Alonso et al. (2020) for DFMCS. The goodness of fit from
this extension has been evaluated in a Monte Carlo experiment and has allowed us to
evaluate the effect of macroeconomic variables which are country-specific over a large
sample of international energy prices; second, the number of global and group-specific
factors are estimated using the test proposed in Caro and Peña (2020) and introduced in
Chapter 2; third, the factors and their corresponding loadings are estimated following
the approach presented in Chapter 3 based on correlation matrices.

Results from the application of international energy prices have provided useful
interpretations about the existence of co-movements between energy prices related to
group of countries instead of groups related to industrial sectors. Country connections
within groups may be also explained by the high price of a specific fuel type. This ana-
lysis gives new insights for public policy decision making, to formulate and implement
environmental policies, and for energy market investors to diversify their portfolios.
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Chapter 6

Conclusions

This research aimed to improve the way dynamic factor models (DFMs) are built and
shows its applications to large databases. Results from this thesis may be useful for
economic policy decisions and for analyzing high dimensional heterogeneous dynamic
data.

The main contributions of the thesis are as follows: First, this thesis presents a new
approach for finding the number of factors in a DFM and estimating them. Second, it
extends the methodology proposed by (Alonso et al., 2020) to build DFM with cluster
structure by introducing the effect of macroeconomic variables. Third, it shows how
DFM can contribute to the analysis of macroeconomic variables which are representat-
ive of the business cycles, to the study of CO2 emission, to the evaluation of the syn-
chronization of Euro Area business cycles and to investigate co-movements between
international energy prices.

The first drawback that researchers encounter when estimating the DFM is to select
the number of common factors. In this thesis a new eigenvalue ratio test is proposed and
theoretical reasons for the advantages of the proposal are presented, especially when the
error structures include heteroscedasticity and serial and cross-sectional dependencies.
These properties have been confirmed by Monte Carlo simulations and by an applica-
tion to real macroeconomic data.

Furthermore, we extend the proposed approach to the estimation of the common
component of the model. Using Monte Carlo simulations improvements in the estim-
ation of common factors with respect to other alternative methods are observed. This
happens especially when the errors are heteroscedastic and present serial and cross-
sectional correlation. We show in an application with real data, on CO2 emissions, that
our proposal provides interpretable results which are more meaningful than alternative
methods.
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Next, we analyze the usefulness of DFMs with cluster structure (DFMCS) in two
empirical applications: one on the synchronization of Euro Area business cycles and
the other on international energy prices.

The first application, on the synchronization of Euro Area business cycles, shows the
advantages of considering DFMCS when analyzing economic relations between coun-
try members, evaluating the effect of expansionary monetary policies and studying the
effect of the financial crisis in 2008 and the European sovereign debt crisis in 2011. Res-
ults conclude that, although the countries experience a generalized fall in synchroniz-
ation in the financial crisis, they recover the levels of synchronization that character-
ized the pre-recessive period. Furthermore, results support the presence of a Two-speed
Europe after the financial crisis in terms of economic synchronization.

Finally, we include an extension in the methodology proposed by (Alonso et al.,
2020). In the thesis a penalized regression is proposed to estimate the coefficients as-
sociated to explanatory variables. The effect of this estimation method on the group
factor structure has been evaluated with Monte Carlo simulations under different data
generating processes. This new proposal has been applied to a large data set of interna-
tional energy prices with country-specific explanatory variables. Results from the ana-
lysis identify the existence of co-movements between energy prices related to groups of
countries and highlight the effect of some macroeconomic variables.

Future extensions of this research are: first, to develop the theoretical framework
behind the estimation of the factor space for the proposed new approach. Second, build
up the theoretical assumptions associated to the effect of including exogenous vari-
ables that are country-specific in the DFMCS. Third, to evaluate the performance of
the new approach under different models specifications for the common latent factors.
Fourth, to extend the new approach to the analysis of nonstationary data and time-
varying parameters. Fifth, to evaluate the potential of the proposed estimation method
for forecasting large data bases.
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Table A.1: Relative frequency estimates of the true number of common factors r = 2.
Homoscedastic errors and strong signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.375 0.38 0.35 0.395 0.345 0.355 0.37
T=250 0.545 0.675 0.485 0.385 0.355 0.395 0.47
T=500 0.61 0.795 0.555 0.54 0.5 0.51 0.58
T=1250 0.715 0.95 0.605 0.605 0.57 0.52 0.66
N=50
T=125 0.94 0.85 0.89 0.865 0.685 0.795 0.84
T=250 0.98 0.97 0.97 0.97 0.875 0.975 0.96
T=500 0.995 1 0.995 0.99 0.965 0.98 0.99
T=1250 1 1 1 1 0.995 0.995 1
N=100
T=125 0.96 0.885 0.92 0.93 0.805 0.9 0.9
T=250 1 0.99 0.99 0.995 0.915 0.985 0.98
T=500 1 1 1 1 1 1 1
T=1250 1 1 1 1 1 1 1
N=200
T=125 0.995 0.92 0.96 0.995 0.865 0.945 0.95
T=250 1 0.995 0.995 1 0.985 0.995 1
T=500 1 1 1 1 1 1 1
T=1250 1 1 1 1 1 1 1
Mean 0.88 0.9 0.86 0.85 0.8 0.83
NOTES: Factor autoregressive coefficients ϕf1 = 0.9 and ϕf2 = 0.8, and er-
rors ηt are independent N(0, 1) random variables. Columns 1 − 3 idiosyn-
cratic covariance matrix Γe = σeI. Columns 4 − 6 idiosyncratic errors, eit,
present serial dependence such that eit = θei,t−1 + uit for i = 1, ..., N/2 with
θ ∼ N(0.5, 0.05), and Γu is diagonal with σui = 1 i = 1, ..., N .
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Table A.2: Relative frequency estimates of the true number of common factors r = 2.
Homoscedastic errors and weak signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.225 0.135 0.205 0.285 0.23 0.295 0.23
T=250 0.22 0.15 0.255 0.215 0.09 0.22 0.19
T=500 0.2 0.125 0.2 0.2 0 0.27 0.17
T=1250 0.365 0.16 0.32 0.135 0 0.205 0.2
N=50
T=125 0.37 0.185 0.29 0.26 0.195 0.235 0.26
T=250 0.57 0.275 0.495 0.36 0.2 0.33 0.37
T=500 0.83 0.505 0.79 0.525 0.23 0.505 0.56
T=1250 0.95 0.815 0.955 0.835 0.22 0.84 0.77
N=100
T=125 0.535 0.235 0.425 0.29 0.215 0.255 0.33
T=250 0.87 0.61 0.835 0.615 0.27 0.485 0.61
T=500 0.995 0.765 0.99 0.905 0.315 0.825 0.8
T=1250 1 0.955 1 0.99 0.565 0.995 0.92
N=200
T=125 0.785 0.41 0.575 0.475 0.17 0.32 0.46
T=250 1 0.765 0.95 0.835 0.415 0.765 0.79
T=500 1 0.935 1 0.995 0.615 0.965 0.92
T=1250 1 1 1 1 0.945 1 0.99
Mean 0.68 0.5 0.64 0.56 0.29 0.53
NOTES: Factor autoregressive coefficients ϕf1 = 0.6 and ϕf2 = 0.5, and er-
rors ηt are independent N(0, 0.5) random variables. Columns 1 − 3 idiosyn-
cratic covariance matrix Γe = σeI. Columns 4 − 6 idiosyncratic errors, eit,
present serial dependence such that eit = θei,t−1 + uit for i = 1, ..., N/2 with
θ ∼ N(0.5, 0.05), and Γu is diagonal with σui = 1 i = 1, ..., N .
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Table A.3: Relative frequency estimates of the true number of common factors r = 2.
Heteroscedastic errors and medium signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.015 0.155 0.215 0.035 0.43 0.25 0.18
T=250 0 0.14 0.265 0.005 0.675 0.265 0.22
T=500 0 0.155 0.26 0.01 0.78 0.295 0.25
T=1250 0 0.25 0.365 0.01 0.865 0.295 0.3
N=50
T=125 0.365 0.2 0.695 0.215 0.235 0.47 0.36
T=250 0.445 0.345 0.865 0.305 0.26 0.69 0.48
T=500 0.665 0.57 0.95 0.41 0.145 0.935 0.61
T=1250 0.825 0.925 1 0.495 0.08 0.965 0.72
N=100
T=125 0.675 0.435 0.79 0.39 0.205 0.615 0.52
T=250 0.865 0.655 0.98 0.71 0.28 0.94 0.74
T=500 0.965 0.87 1 0.86 0.36 0.985 0.84
T=1250 0.99 0.99 1 0.97 0.555 1 0.92
N=200
T=125 0.885 0.565 0.93 0.68 0.31 0.81 0.7
T=250 1 0.78 1 0.955 0.475 0.985 0.87
T=500 1 0.975 1 0.995 0.695 1 0.94
T=1250 1 1 1 1 0.955 1 0.99
Mean 0.61 0.56 0.77 0.5 0.46 0.72
NOTES: Factor autoregressive coefficients ϕf1 = 0.6 and ϕf2 = 0.5, and errors
ηt are independent N(0, 1) random variables. Columns 1−3 idiosyncratic co-
variance matrix Γe is diagonal with σei = 1 if i is odd and σei = 2 if i is even.
Columns 4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal
with σui = 1 if i is odd and σui = 2 if i is even..
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Table A.4: Relative frequency estimates of the true number of common factors r = 2.
Heteroscedastic and cross correlated errors and strong signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.26 0.135 0.215 0.26 0.355 0.25 0.25
T=250 0.265 0.21 0.19 0.27 0.405 0.2 0.26
T=500 0.21 0.345 0.195 0.28 0.33 0.18 0.26
T=1250 0.24 0.455 0.17 0.23 0.265 0.14 0.25
N=50
T=125 0.065 0.27 0.17 0.18 0.185 0.17 0.17
T=250 0.07 0.495 0.27 0.11 0.155 0.205 0.22
T=500 0.07 0.805 0.275 0.1 0.17 0.215 0.27
T=1250 0.085 0.965 0.24 0.075 0.08 0.18 0.27
N=100
T=125 0.245 0.385 0.41 0.14 0.23 0.39 0.3
T=250 0.31 0.66 0.58 0.19 0.3 0.525 0.43
T=500 0.415 0.945 0.765 0.215 0.32 0.56 0.54
T=1250 0.415 1 0.845 0.255 0.545 0.745 0.63
N=200
T=125 0.485 0.58 0.695 0.42 0.44 0.62 0.54
T=250 0.65 0.825 0.855 0.525 0.51 0.805 0.7
T=500 0.86 0.98 0.975 0.72 0.755 0.91 0.87
T=1250 0.965 1 1 0.86 0.955 0.995 0.96
Mean 0.35 0.63 0.49 0.3 0.38 0.44
NOTES: Factor autoregressive coefficients ϕf1 = 0.9 and ϕf2 = 0.8, and errors
ηt are independent N(0, 1) random variables. Columns 1−4 idiosyncratic co-
variance matrix Γe has diagonal elements σei = 1 if i is odd and σei = 2 if
i is even, and non-diagonal elements 0.7|i−j|σeiσej . Columns 5 − 8 idiosyn-
cratic errors, eit, present serial dependence such that eit = θei,t−1 + uit for
i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if
i is odd and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table A.5: Relative frequency estimates of the true number of common factors r = 2.
Heteroscedastic and cross correlated errors and weak signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.105 0.245 0.43 0.195 0.11 0.54 0.27
T=250 0.055 0.22 0.485 0.115 0.175 0.66 0.28
T=500 0.035 0.25 0.425 0.145 0.215 0.86 0.32
T=1250 0.005 0.17 0.53 0.05 0.555 0.925 0.37
N=50
T=125 0.07 0.155 0.09 0.085 0.3 0.055 0.13
T=250 0.04 0.13 0.04 0.03 0.315 0.07 0.1
T=500 0.025 0.135 0.02 0.025 0.29 0.035 0.09
T=1250 0.005 0.165 0.01 0.03 0.235 0.01 0.08
N=100
T=125 0.11 0.155 0.09 0.18 0.285 0.2 0.17
T=250 0.075 0.15 0.05 0.165 0.255 0.105 0.13
T=500 0.025 0.155 0.03 0.12 0.2 0.07 0.1
T=1250 0.01 0.145 0 0.17 0.125 0.02 0.08
N=200
T=125 0.14 0.175 0.15 0.205 0.235 0.22 0.19
T=250 0.09 0.135 0.11 0.21 0.205 0.18 0.16
T=500 0.045 0.175 0.09 0.215 0.235 0.175 0.16
T=1250 0.005 0.14 0.04 0.135 0.13 0.08 0.09
Mean 0.05 0.17 0.16 0.13 0.24 0.26
NOTES: Factor autoregressive coefficients ϕf1 = 0.6 and ϕf2 = 0.5, and errors
ηt are independent N(0, 0.5) random variables. Columns 1 − 4 idiosyncratic
covariance matrix Γe has diagonal elements σei = 1 if i is odd and σei = 2 if
i is even, and non-diagonal elements 0.7|i−j|σeiσej . Columns 5 − 8 idiosyn-
cratic errors, eit, present serial dependence such that eit = θei,t−1 + uit for
i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if
i is odd and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table A.6: Relative frequency estimates of the true number of common factors r = 3.
Homoscedastic errors and strong signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.18 0.09 0.08 0.14 0.11 0.12 0.12
T=250 0.315 0.34 0.21 0.16 0.11 0.09 0.2
T=500 0.315 0.45 0.195 0.18 0.13 0.155 0.24
T=1250 0.325 0.71 0.205 0.25 0.19 0.195 0.31
N=50
T=125 0.805 0.505 0.65 0.625 0.315 0.485 0.56
T=250 0.97 0.91 0.905 0.87 0.58 0.8 0.84
T=500 1 1 1 0.98 0.86 0.97 0.97
T=1250 1 1 0.995 1 0.995 0.99 1
N=100
T=125 0.975 0.715 0.855 0.87 0.52 0.735 0.78
T=250 0.995 0.96 0.99 0.985 0.835 0.965 0.96
T=500 1 1 1 1 0.985 1 1
T=1250 1 1 1 1 1 1 1
N=200
T=125 1 0.735 0.895 0.96 0.585 0.77 0.82
T=250 1 0.995 0.995 1 0.95 1 0.99
T=500 1 1 1 1 1 1 1
T=1250 1 1 1 1 1 1 1
Mean 0.8 0.78 0.75 0.75 0.64 0.7
NOTES: Factor autoregressive coefficients ϕf1 = 0.9, ϕf2 = 0.8 and ϕf3 = 0.7,
and errors ηt are independent N(0, 1) random variables. Columns 1− 3 idio-
syncratic covariance matrix Γe is diagonal with σei = 1 for i = 1, ..., N .
Columns 4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal
with σui = 1 i = 1, ..., N .
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Table A.7: Relative frequency estimates of the true number of common factors r = 3.
Homoscedastic errors and medium signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.145 0.045 0.11 0.11 0.195 0.115 0.12
T=250 0.225 0.05 0.145 0.195 0.1 0.125 0.14
T=500 0.32 0.15 0.27 0.145 0.015 0.145 0.17
T=1250 0.295 0.23 0.21 0.185 0.02 0.205 0.19
N=50
T=125 0.875 0.18 0.77 0.69 0.16 0.49 0.53
T=250 0.995 0.565 0.965 0.955 0.23 0.86 0.76
T=500 1 0.81 1 0.99 0.435 0.98 0.87
T=1250 1 0.985 1 1 0.735 0.995 0.95
N=100
T=125 0.995 0.365 0.895 0.935 0.285 0.78 0.71
T=250 1 0.735 0.995 1 0.485 0.985 0.87
T=500 1 0.96 1 1 0.855 1 0.97
T=1250 1 0.995 1 1 0.995 1 1
N=200
T=125 1 0.51 0.965 0.99 0.435 0.885 0.8
T=250 1 0.86 1 1 0.805 1 0.94
T=500 1 0.99 1 1 0.985 1 1
T=1250 1 1 1 1 1 1 1
Mean 0.8 0.59 0.77 0.76 0.48 0.72
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, ϕf2 = 0.5 and ϕf3 = 0.4,
and errors ηt are independent N(0, 1) random variables. Columns 1− 3 idio-
syncratic covariance matrix Γe is diagonal with σei = 1 for i = 1, ..., N .
Columns 4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal
with σui = 1 i = 1, ..., N .
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Table A.8: Relative frequency estimates of the true number of common factors r = 3.
Heteroscedastic errors and strong signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.055 0.04 0.035 0.045 0.18 0.03 0.06
T=250 0.025 0.045 0.04 0.03 0.23 0.03 0.07
T=500 0.015 0.045 0.045 0.045 0.22 0.04 0.07
T=1250 0.01 0.21 0.05 0.035 0.18 0.055 0.09
N=50
T=125 0.095 0.07 0.29 0.06 0.03 0.135 0.11
T=250 0.26 0.29 0.675 0.095 0.045 0.395 0.29
T=500 0.375 0.615 0.85 0.165 0.08 0.72 0.47
T=1250 0.58 0.98 0.975 0.26 0.16 0.93 0.65
N=100
T=125 0.345 0.21 0.605 0.21 0.075 0.37 0.3
T=250 0.61 0.54 0.885 0.395 0.145 0.76 0.56
T=500 0.91 0.93 0.995 0.685 0.46 0.955 0.82
T=1250 0.99 1 1 0.905 0.715 1 0.94
N=200
T=125 0.67 0.41 0.715 0.35 0.15 0.54 0.47
T=250 0.94 0.8 0.97 0.745 0.395 0.925 0.8
T=500 1 1 1 0.975 0.8 0.995 0.96
T=1250 1 1 1 1 0.985 1 1
Mean 0.49 0.51 0.63 0.38 0.3 0.56
NOTES: Factor autoregressive coefficients ϕf1 = 0.9, ϕf2 = 0.8 and ϕf3 = 0.7,
and errors ηt are independent N(0, 1) random variables. Columns 1− 3 idio-
syncratic covariance matrix Γe is diagonal with σei = 1 if i is odd and σei = 2
if i is even. Columns 4− 6 idiosyncratic errors, eit, present serial dependence
such that eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is
diagonal with σui = 1 if i is odd and σui = 2 if i is even..
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Table A.9: Relative frequency estimates of the true number of common factors r = 3.
Heteroscedastic errors and weak signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.005 0.155 0.18 0.01 0.025 0.1 0.08
T=250 0 0.2 0.175 0.005 0.02 0.12 0.09
T=500 0 0.16 0.115 0 0.005 0.135 0.07
T=1250 0 0.205 0.085 0 0 0.1 0.06
N=50
T=125 0.05 0.06 0.06 0.065 0.225 0.12 0.1
T=250 0 0.08 0.06 0.02 0.105 0.135 0.07
T=500 0 0.09 0.18 0 0.07 0.06 0.07
T=1250 0 0.02 0.455 0 0 0.16 0.11
N=100
T=125 0.04 0.095 0.055 0.105 0.11 0.1 0.08
T=250 0.08 0.055 0.15 0.13 0.135 0.085 0.11
T=500 0.015 0.015 0.525 0.025 0.1 0.1 0.13
T=1250 0.005 0.04 0.935 0 0.075 0.585 0.27
N=200
T=125 0.035 0.03 0.155 0.1 0.14 0.1 0.09
T=250 0.1 0.02 0.51 0.085 0.095 0.145 0.16
T=500 0.255 0.025 0.94 0.17 0.105 0.465 0.33
T=1250 0.76 0.185 1 0.15 0.055 0.98 0.52
Mean 0.08 0.09 0.35 0.05 0.08 0.22
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, ϕf2 = 0.5 and ϕf3 = 0.4,
and errors ηt are independent N(0, 0.5) random variables. Columns 1−3 idio-
syncratic covariance matrix Γe is diagonal with σei = 1 if i is odd and σei = 2
if i is even. Columns 4− 6 idiosyncratic errors, eit, present serial dependence
such that eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is
diagonal with σui = 1 if i is odd and σui = 2 if i is even.
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Table A.10: Relative frequency estimates of the true number of common factors r = 3.
Heteroscedastic and cross correlated errors and medium signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.125 0.23 0.115 0.06 0.045 0.15 0.12
T=250 0.075 0.145 0.09 0.02 0.035 0.085 0.08
T=500 0.085 0.13 0.095 0.035 0.03 0.06 0.07
T=1250 0.085 0.185 0.075 0.045 0.015 0.075 0.08
N=50
T=125 0.095 0.065 0.095 0.045 0.145 0.095 0.09
T=250 0.05 0.08 0.05 0.065 0.2 0.07 0.09
T=500 0.07 0.055 0.05 0.085 0.17 0.075 0.08
T=1250 0.055 0.115 0.03 0.06 0.2 0.04 0.08
N=100
T=125 0.065 0.05 0.095 0.09 0.15 0.12 0.1
T=250 0.045 0.025 0.105 0.055 0.13 0.115 0.08
T=500 0.05 0.075 0.135 0.065 0.14 0.07 0.09
T=1250 0.045 0.435 0.215 0.085 0.12 0.06 0.16
N=200
T=125 0.145 0.055 0.32 0.12 0.165 0.175 0.16
T=250 0.33 0.17 0.73 0.145 0.09 0.325 0.3
T=500 0.585 0.42 0.915 0.185 0.11 0.62 0.47
T=1250 0.79 0.88 0.995 0.3 0.01 0.89 0.64
Mean 0.17 0.19 0.26 0.09 0.11 0.19
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, ϕf2 = 0.5 and ϕf3 = 0.4,
and errors ηt are independent N(0, 1) random variables. Columns 1− 3 idio-
syncratic covariance matrix Γe has diagonal elements σei = 1 if i is odd and
σei = 2 if i is even, and non-diagonal elements 0.7|i−j|σeiσej . Columns 4− 6
idiosyncratic errors, eit, present serial dependence such that eit = θei,t−1+uit

for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1
if i is odd and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table A.11: Relative frequency estimates of the true number of common factors r = 3.
Heteroscedastic and cross correlated errors and weak signal to noise ratio.

AH LY CP AH LY CP Mean
N=10
T=125 0.035 0.185 0.145 0.025 0.035 0.06 0.08
T=250 0.02 0.175 0.075 0.005 0.045 0.08 0.07
T=500 0.005 0.175 0.085 0.005 0.005 0.045 0.05
T=1250 0 0.15 0.03 0 0 0.005 0.03
N=50
T=125 0.06 0.12 0.11 0.065 0.18 0.11 0.11
T=250 0.05 0.11 0.11 0.045 0.18 0.055 0.09
T=500 0.045 0.11 0.07 0.02 0.23 0.06 0.09
T=1250 0.015 0.12 0.035 0.04 0.235 0.035 0.08
N=100
T=125 0.095 0.095 0.13 0.1 0.15 0.085 0.11
T=250 0.03 0.115 0.055 0.06 0.145 0.04 0.07
T=500 0.01 0.11 0.02 0.055 0.145 0.02 0.06
T=1250 0 0.105 0 0.055 0.125 0.005 0.05
N=200
T=125 0.05 0.105 0.09 0.12 0.135 0.145 0.11
T=250 0.05 0.08 0.085 0.1 0.12 0.1 0.09
T=500 0.02 0.095 0.04 0.14 0.11 0.09 0.08
T=1250 0.005 0.005 0.01 0.12 0.07 0.045 0.04
Mean 0.03 0.12 0.07 0.06 0.12 0.06
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, ϕf2 = 0.5 and ϕf3 = 0.4,
and errors ηt are independent N(0, 0.5) random variables. Columns 1−3 idio-
syncratic covariance matrix Γe has diagonal elements σei = 1 if i is odd and
σei = 2 if i is even, and non-diagonal elements 0.7|i−j|σeiσej . Columns 4− 6
idiosyncratic errors, eit, present serial dependence such that eit = θei,t−1+uit

for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1
if i is odd and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table B.1: Mean of the similarity measures between P and P̂ when r = 1.
Homoscedastic errors and strong signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.965 0.96 0.952 0.931 0.9 0.917 0.94
T=250 0.984 0.981 0.968 0.966 0.949 0.951 0.97
T=500 0.994 0.993 0.978 0.985 0.978 0.972 0.98
T=1250 0.998 0.997 0.98 0.993 0.988 0.979 0.99
N=50
T=125 0.975 0.966 0.962 0.95 0.929 0.935 0.95
T=250 0.989 0.985 0.977 0.976 0.966 0.964 0.98
T=500 0.995 0.993 0.982 0.988 0.984 0.977 0.99
T=1250 0.998 0.997 0.986 0.996 0.994 0.983 0.99
N=100
T=125 0.976 0.967 0.964 0.949 0.925 0.932 0.95
T=250 0.99 0.986 0.977 0.977 0.968 0.964 0.98
T=500 0.995 0.993 0.984 0.989 0.985 0.977 0.99
T=1250 0.998 0.998 0.986 0.996 0.994 0.984 0.99
N=200
T=125 0.975 0.964 0.962 0.951 0.929 0.935 0.95
T=250 0.99 0.986 0.978 0.977 0.968 0.964 0.98
T=500 0.995 0.994 0.984 0.989 0.985 0.977 0.99
T=1250 0.998 0.997 0.987 0.996 0.994 0.984 0.99
Mean 0.99 0.98 0.98 0.98 0.96 0.96
NOTES: Factor autoregressive coefficient ϕf1 = 0.9, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe = σeI. Columns 4 − 6 idiosyncratic errors, eit, present serial de-
pendence such that eit = θei,t−1+uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05),
and Γu is diagonal with σui = 1 i = 1, ..., N .
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Table B.2: Mean of the similarity measures between P and P̂ when r = 1.
Homoscedastic errors and weak signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.796 0.426 0.781 0.668 0.254 0.662 0.6
T=250 0.879 0.556 0.861 0.793 0.289 0.795 0.7
T=500 0.952 0.694 0.937 0.858 0.295 0.876 0.77
T=1250 0.979 0.827 0.968 0.915 0.429 0.942 0.84
N=50
T=125 0.899 0.719 0.896 0.854 0.375 0.834 0.76
T=250 0.949 0.787 0.947 0.923 0.523 0.915 0.84
T=500 0.974 0.845 0.972 0.961 0.663 0.956 0.9
T=1250 0.989 0.911 0.988 0.983 0.802 0.98 0.94
N=100
T=125 0.908 0.753 0.905 0.869 0.476 0.851 0.79
T=250 0.952 0.8 0.95 0.932 0.641 0.923 0.87
T=500 0.976 0.854 0.975 0.965 0.746 0.96 0.91
T=1250 0.99 0.919 0.989 0.986 0.857 0.981 0.95
N=200
T=125 0.912 0.765 0.909 0.872 0.549 0.856 0.81
T=250 0.956 0.815 0.955 0.937 0.688 0.929 0.88
T=500 0.978 0.863 0.976 0.968 0.784 0.963 0.92
T=1250 0.991 0.921 0.99 0.987 0.876 0.982 0.96
Mean 0.94 0.78 0.94 0.9 0.58 0.9
NOTES: Factor autoregressive coefficient ϕf1 = 0.3, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe = σeI. Columns 4 − 6 idiosyncratic errors, eit, present serial de-
pendence such that eit = θei,t−1+uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05),
and Γu is diagonal with σui = 1 i = 1, ..., N .
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Table B.3: Mean of the similarity measures between P and P̂ when r = 1.
Heteroscedastic errors and strong signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.691 0.841 0.87 0.589 0.64 0.822 0.74
T=250 0.762 0.947 0.917 0.653 0.76 0.89 0.82
T=500 0.822 0.978 0.931 0.746 0.837 0.92 0.87
T=1250 0.875 0.992 0.939 0.786 0.878 0.931 0.9
N=50
T=125 0.912 0.911 0.883 0.849 0.828 0.848 0.87
T=250 0.961 0.964 0.915 0.921 0.912 0.89 0.93
T=500 0.978 0.983 0.926 0.958 0.956 0.912 0.95
T=1250 0.989 0.994 0.932 0.979 0.982 0.925 0.97
N=100
T=125 0.935 0.922 0.889 0.868 0.833 0.84 0.88
T=250 0.97 0.964 0.913 0.933 0.917 0.886 0.93
T=500 0.985 0.983 0.925 0.97 0.963 0.912 0.96
T=1250 0.993 0.993 0.93 0.986 0.985 0.923 0.97
N=200
T=125 0.939 0.921 0.887 0.876 0.837 0.84 0.88
T=250 0.971 0.964 0.912 0.939 0.919 0.886 0.93
T=500 0.987 0.983 0.924 0.97 0.961 0.91 0.96
T=1250 0.995 0.994 0.931 0.988 0.985 0.922 0.97
Mean 0.92 0.96 0.91 0.88 0.89 0.89
NOTES: Factor autoregressive coefficient ϕf1 = 0.9, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe is diagonal with σei = 1 if i is odd and σei = 2 if i is even.
Columns 4 − 6 idiosyncratic errors, eit, present serial dependence such that
eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal
with σui = 1 if i is odd and σui = 2 if i is even.
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Table B.4: Mean of the similarity measures between P and P̂ when r = 1.
Heteroscedastic and cross correlated errors and strong signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.234 0.815 0.358 0.214 0.464 0.331 0.4
T=250 0.252 0.942 0.366 0.189 0.471 0.33 0.42
T=500 0.251 0.976 0.437 0.222 0.537 0.371 0.47
T=1250 0.244 0.992 0.427 0.222 0.594 0.377 0.48
N=50
T=125 0.686 0.904 0.847 0.541 0.699 0.765 0.74
T=250 0.825 0.962 0.897 0.734 0.874 0.862 0.86
T=500 0.883 0.982 0.914 0.778 0.933 0.893 0.9
T=1250 0.931 0.994 0.927 0.856 0.97 0.91 0.93
N=100
T=125 0.881 0.917 0.878 0.784 0.805 0.826 0.85
T=250 0.943 0.963 0.909 0.886 0.902 0.88 0.91
T=500 0.97 0.982 0.922 0.941 0.955 0.907 0.95
T=1250 0.983 0.994 0.931 0.97 0.982 0.921 0.96
N=200
T=125 0.923 0.917 0.881 0.848 0.824 0.834 0.87
T=250 0.967 0.965 0.912 0.926 0.916 0.884 0.93
T=500 0.983 0.983 0.924 0.964 0.961 0.91 0.95
T=1250 0.992 0.994 0.931 0.984 0.984 0.922 0.97
Mean 0.75 0.96 0.78 0.69 0.8 0.75
NOTES: Factor autoregressive coefficient ϕf1 = 0.9, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe has diagonal elements σei = 1 if i is odd and σei = 2 if i is even,
and non-diagonal elements 0.7|i−j|σeiσej . Columns 4−6 idiosyncratic errors,
eit, present serial dependence such that eit = θei,t−1 + uit for i = 1, ..., N/2
with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if i is odd and
σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .



110 APPENDIX B. CHAPTER 3

Table B.5: Mean of the similarity measures between P and P̂ when r = 1.
Heteroscedastic and cross correlated errors and weak signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.118 0.135 0.119 0.112 0.113 0.11 0.12
T=250 0.127 0.141 0.126 0.129 0.113 0.124 0.13
T=500 0.1 0.136 0.102 0.114 0.118 0.114 0.11
T=1250 0.102 0.194 0.112 0.11 0.091 0.118 0.12
N=50
T=125 0.056 0.072 0.103 0.053 0.035 0.083 0.07
T=250 0.06 0.095 0.108 0.047 0.034 0.086 0.07
T=500 0.07 0.151 0.123 0.044 0.033 0.089 0.09
T=1250 0.066 0.341 0.123 0.043 0.03 0.078 0.11
N=100
T=125 0.127 0.125 0.311 0.064 0.036 0.177 0.14
T=250 0.15 0.202 0.432 0.062 0.03 0.228 0.18
T=500 0.19 0.37 0.55 0.065 0.03 0.317 0.25
T=1250 0.244 0.674 0.627 0.088 0.03 0.428 0.35
N=200
T=125 0.46 0.328 0.675 0.186 0.058 0.438 0.36
T=250 0.624 0.498 0.777 0.322 0.061 0.642 0.49
T=500 0.765 0.657 0.834 0.436 0.055 0.77 0.59
T=1250 0.846 0.806 0.866 0.639 0.05 0.832 0.67
Mean 0.26 0.31 0.37 0.16 0.06 0.29
NOTES: Factor autoregressive coefficient ϕf1 = 0.3, and errors ηt are inde-
pendent N(0, 1) random variables. Columns 1 − 3 idiosyncratic covariance
matrix Γe has diagonal elements σei = 1 if i is odd and σei = 2 if i is even,
and non-diagonal elements 0.7|i−j|σeiσej . Columns 4−6 idiosyncratic errors,
eit, present serial dependence such that eit = θei,t−1 + uit for i = 1, ..., N/2
with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if i is odd and
σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table B.6: Mean of the similarity measures between P and P̂ when r = 2.
Homoscedastic errors and strong signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.468 0.458 0.458 0.454 0.436 0.447 0.45
T=250 0.476 0.47 0.467 0.469 0.457 0.461 0.47
T=500 0.479 0.475 0.469 0.474 0.465 0.466 0.47
T=1250 0.477 0.473 0.467 0.479 0.473 0.47 0.47
N=50
T=125 0.481 0.476 0.474 0.469 0.457 0.461 0.47
T=250 0.487 0.484 0.48 0.481 0.476 0.474 0.48
T=500 0.49 0.489 0.484 0.488 0.485 0.482 0.49
T=1250 0.491 0.49 0.485 0.49 0.489 0.484 0.49
N=100
T=125 0.484 0.479 0.477 0.472 0.461 0.464 0.47
T=250 0.49 0.488 0.485 0.484 0.48 0.478 0.48
T=500 0.493 0.492 0.488 0.491 0.489 0.485 0.49
T=1250 0.496 0.495 0.49 0.493 0.492 0.487 0.49
N=200
T=125 0.486 0.48 0.479 0.473 0.461 0.464 0.47
T=250 0.493 0.491 0.487 0.487 0.482 0.48 0.49
T=500 0.495 0.494 0.49 0.492 0.49 0.486 0.49
T=1250 0.497 0.497 0.491 0.496 0.495 0.49 0.49
Mean 0.49 0.48 0.48 0.48 0.47 0.47
NOTES: Factor autoregressive coefficients ϕf1 = 0.9, and ϕf2 = 0.6, and er-
rors ηt are independent N(0, 1) random variables. Columns 1−3 idiosyncratic
covariance matrix Γe is diagonal with σei = 1 for i = 1, ..., N . Columns 4− 6
idiosyncratic errors, eit, present serial dependence such that eit = θei,t−1+uit

for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal with σui = 1
i = 1, ..., N .
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Table B.7: Mean of the similarity measures between P and P̂ when r = 2.
Homoscedastic errors and medium signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.452 0.39 0.445 0.415 0.282 0.41 0.4
T=250 0.473 0.429 0.466 0.452 0.324 0.454 0.43
T=500 0.484 0.45 0.477 0.467 0.374 0.468 0.45
T=1250 0.492 0.472 0.486 0.48 0.404 0.479 0.47
N=50
T=125 0.463 0.418 0.458 0.443 0.357 0.431 0.43
T=250 0.48 0.45 0.476 0.47 0.415 0.462 0.46
T=500 0.489 0.47 0.485 0.483 0.448 0.477 0.48
T=1250 0.493 0.483 0.49 0.49 0.472 0.486 0.49
N=100
T=125 0.467 0.425 0.461 0.446 0.365 0.433 0.43
T=250 0.482 0.456 0.478 0.471 0.419 0.462 0.46
T=500 0.489 0.473 0.486 0.484 0.455 0.478 0.48
T=1250 0.494 0.486 0.492 0.491 0.477 0.487 0.49
N=200
T=125 0.469 0.429 0.463 0.449 0.377 0.435 0.44
T=250 0.483 0.457 0.479 0.473 0.428 0.464 0.46
T=500 0.491 0.476 0.487 0.485 0.457 0.479 0.48
T=1250 0.495 0.488 0.493 0.493 0.48 0.488 0.49
Mean 0.48 0.45 0.48 0.47 0.41 0.46
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, and ϕf2 = 0.3, and er-
rors ηt are independent N(0, 1) random variables. Columns 1−3 idiosyncratic
covariance matrix Γe is diagonal with σei = 1 for i = 1, ..., N . Columns 4− 6
idiosyncratic errors, eit, present serial dependence such that eit = θei,t−1+uit

for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is diagonal with σui = 1
i = 1, ..., N .
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Table B.8: Mean of the similarity measures between P and P̂ when r = 2.
Heteroscedastic errors and strong signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.355 0.42 0.427 0.302 0.311 0.4 0.37
T=250 0.408 0.454 0.445 0.352 0.381 0.436 0.41
T=500 0.414 0.468 0.453 0.386 0.415 0.444 0.43
T=1250 0.423 0.472 0.454 0.399 0.43 0.451 0.44
N=50
T=125 0.454 0.452 0.441 0.415 0.401 0.417 0.43
T=250 0.472 0.473 0.451 0.455 0.448 0.441 0.46
T=500 0.482 0.484 0.459 0.473 0.471 0.452 0.47
T=1250 0.487 0.489 0.462 0.482 0.482 0.458 0.48
N=100
T=125 0.463 0.457 0.443 0.429 0.41 0.418 0.44
T=250 0.481 0.478 0.456 0.464 0.455 0.442 0.46
T=500 0.488 0.487 0.461 0.48 0.476 0.454 0.47
T=1250 0.492 0.492 0.464 0.489 0.488 0.461 0.48
N=200
T=125 0.468 0.46 0.445 0.439 0.42 0.421 0.44
T=250 0.484 0.481 0.457 0.469 0.46 0.444 0.47
T=500 0.491 0.489 0.462 0.483 0.479 0.455 0.48
T=1250 0.495 0.495 0.466 0.492 0.491 0.462 0.48
Mean 0.46 0.47 0.45 0.44 0.44 0.44
NOTES: Factor autoregressive coefficients ϕf1 = 0.9, and ϕf2 = 0.6, and er-
rors ηt are independent N(0, 1) random variables. Columns 1 − 3 idiosyn-
cratic covariance matrix Γe is diagonal with σei = 1 if i is odd and σei = 2 if
i is even. Columns 4 − 6 idiosyncratic errors, eit, present serial dependence
such that eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is
diagonal with σui = 1 if i is odd and σui = 2 if i is even.
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Table B.9: Mean of the similarity measures between P and P̂ when r = 2.
Heteroscedastic errors and weak signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.134 0.106 0.189 0.114 0.101 0.151 0.13
T=250 0.116 0.11 0.226 0.11 0.107 0.179 0.14
T=500 0.13 0.134 0.294 0.115 0.102 0.222 0.17
T=1250 0.135 0.148 0.37 0.109 0.095 0.291 0.19
N=50
T=125 0.069 0.067 0.2 0.047 0.044 0.126 0.09
T=250 0.093 0.087 0.308 0.056 0.043 0.187 0.13
T=500 0.111 0.145 0.378 0.058 0.04 0.298 0.17
T=1250 0.162 0.288 0.423 0.077 0.048 0.393 0.23
N=100
T=125 0.087 0.089 0.251 0.045 0.032 0.139 0.11
T=250 0.142 0.153 0.336 0.064 0.036 0.236 0.16
T=500 0.221 0.255 0.392 0.107 0.055 0.335 0.23
T=1250 0.33 0.382 0.429 0.173 0.089 0.406 0.3
N=200
T=125 0.148 0.145 0.279 0.071 0.044 0.165 0.14
T=250 0.258 0.246 0.353 0.116 0.063 0.269 0.22
T=500 0.353 0.335 0.399 0.232 0.111 0.352 0.3
T=1250 0.421 0.41 0.431 0.358 0.231 0.411 0.38
Mean 0.18 0.19 0.33 0.12 0.08 0.26
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, and ϕf2 = 0.3, and er-
rors ηt are independent N(0, 0.5) random variables. Columns 1 − 3 idiosyn-
cratic covariance matrix Γe is diagonal with σei = 1 if i is odd and σei = 2 if
i is even. Columns 4 − 6 idiosyncratic errors, eit, present serial dependence
such that eit = θei,t−1 + uit for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu is
diagonal with σui = 1 if i is odd and σui = 2 if i is even.
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Table B.10: Mean of the similarity measures between P and P̂ when r = 2.
Heteroscedastic and cross correlated errors and strong signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.162 0.391 0.204 0.139 0.267 0.201 0.23
T=250 0.148 0.455 0.224 0.149 0.275 0.214 0.24
T=500 0.153 0.468 0.233 0.147 0.291 0.227 0.25
T=1250 0.167 0.473 0.242 0.152 0.311 0.219 0.26
N=50
T=125 0.355 0.45 0.421 0.286 0.362 0.389 0.38
T=250 0.42 0.475 0.446 0.351 0.432 0.429 0.43
T=500 0.442 0.484 0.454 0.397 0.462 0.444 0.45
T=1250 0.46 0.49 0.459 0.429 0.477 0.453 0.46
N=100
T=125 0.444 0.458 0.44 0.392 0.4 0.411 0.42
T=250 0.471 0.479 0.455 0.445 0.452 0.44 0.46
T=500 0.481 0.487 0.46 0.467 0.473 0.452 0.47
T=1250 0.488 0.492 0.464 0.48 0.486 0.459 0.48
N=200
T=125 0.461 0.459 0.443 0.427 0.416 0.419 0.44
T=250 0.481 0.48 0.457 0.463 0.458 0.444 0.46
T=500 0.49 0.49 0.463 0.48 0.478 0.455 0.48
T=1250 0.494 0.495 0.466 0.49 0.49 0.462 0.48
Mean 0.38 0.47 0.4 0.36 0.41 0.38
NOTES: Factor autoregressive coefficients ϕf1 = 0.9, and ϕf2 = 0.6, and er-
rors ηt are independent N(0, 1) random variables. Columns 1−3 idiosyncratic
covariance matrix Γe has diagonal elements σei = 1 if i is odd and σei = 2 if
i is even, and non-diagonal elements 0.7|i−j|σeiσej . Columns 4 − 6 idiosyn-
cratic errors, eit, present serial dependence such that eit = θei,t−1 + uit for
i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1 if
i is odd and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table B.11: Mean of the similarity measures between P and P̂ when r = 2.
Heteroscedastic and cross correlated errors and weak signal to noise ratio.

PC LY CP PC LY CP Mean
N=10
T=125 0.089 0.096 0.087 0.1 0.104 0.102 0.1
T=250 0.095 0.095 0.097 0.094 0.1 0.096 0.1
T=500 0.099 0.112 0.098 0.105 0.109 0.103 0.1
T=1250 0.091 0.112 0.095 0.103 0.098 0.101 0.1
N=50
T=125 0.029 0.03 0.033 0.026 0.028 0.033 0.03
T=250 0.03 0.036 0.034 0.024 0.026 0.028 0.03
T=500 0.025 0.038 0.032 0.026 0.027 0.029 0.03
T=1250 0.028 0.076 0.034 0.027 0.027 0.032 0.04
N=100
T=125 0.021 0.027 0.028 0.018 0.02 0.028 0.02
T=250 0.019 0.032 0.029 0.019 0.019 0.027 0.02
T=500 0.022 0.047 0.032 0.016 0.016 0.027 0.03
T=1250 0.022 0.177 0.036 0.018 0.018 0.028 0.05
N=200
T=125 0.021 0.041 0.056 0.017 0.018 0.038 0.03
T=250 0.023 0.075 0.081 0.018 0.019 0.048 0.04
T=500 0.025 0.158 0.111 0.017 0.018 0.061 0.07
T=1250 0.033 0.358 0.162 0.016 0.018 0.081 0.11
Mean 0.04 0.09 0.07 0.04 0.04 0.05
NOTES: Factor autoregressive coefficients ϕf1 = 0.6, and ϕf2 = 0.3, and er-
rors ηt are independent N(0, 0.5) random variables. Columns 1 − 3 idiosyn-
cratic covariance matrix Γe has diagonal elements σei = 1 if i is odd and
σei = 2 if i is even, and non-diagonal elements 0.7|i−j|σeiσej . Columns 4− 6
idiosyncratic errors, eit, present serial dependence such that eit = θei,t−1+uit

for i = 1, ..., N/2 with θ ∼ N(0.5, 0.05), and Γu has diagonal elements σui = 1
if i is odd and σui = 2 if i is even, and non-diagonal elements 0.7|i−j|σuiσuj .
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Table C.1: Fixed energy prices series included in Cluster 1.

Cluster 1
”CYP.Che” ”CYP.Cons” ”CYP.Food” ”CYP.Iron” ”CYP.Mach” ”CYP.Min” ”CYP.Nfer”
”CYP.Nmet” ”CYP.Pap” ”CYP.Tex” ”CYP.Trans” ”CYP.Wood”
”MEX.Che” ”MEX.Cons” ”MEX.Food” ”MEX.Iron” ”MEX.Mach” ”MEX.Min” ”MEX.Nfer”
”MEX.Nmet” ”MEX.Pap” ”MEX.Tex” ”MEX.Trans” ”MEX.Wood”
”USA.Che” ”USA.Cons” ”USA.Food” ”USA.Iron” ”USA.Mach” ”USA.Min” ”USA.Nfer”
”USA.Nmet” ”USA.Pap” ”USA.Tex” ”USA.Trans” ”USA.Wood”
”CHN.Che” ”CHN.Cons” ”CHN.Food” ”CHN.Iron” ”CHN.Mach” ”CHN.Min” ”CHN.Nfer”
”CHN.Nmet” ”CHN.Tex” ”CHN.Wood”
”GRC.Che” ”GRC.Cons” ”GRC.Food” ”GRC.Iron” ”GRC.Min” ”GRC.Nfer” ”GRC.Nmet”
”GRC.Pap” ”GRC.Tex” ”GRC.Trans”
”ROU.Che” ”ROU.Cons” ”ROU.Food” ”ROU.Mach” ”ROU.Min” ”ROU.Nfer” ”ROU.Nmet”
”ROU.Pap” ”ROU.Tex” ”ROU.Wood”
”NLD.Che” ”NLD.Cons” ”NLD.Food” ”NLD.Mach” ”NLD.Nmet” ”NLD.Tex”
”FRA.Che” ”FRA.Cons” ”FRA.Min” ”FRA.Nmet”
”CAN.Cons” ”CAN.Min” ”CAN.Tex” ”CAN.Wood”
”PRT.Cons” ”PRT.Food” ”PRT.Min” ”PRT.Nmet”
”DNK.Cons” ”DNK.Min” ”DNK.Nmet”
”FIN.Cons” ”FIN.Trans”
”KOR.Iron” ”KOR.Nmet”
”NZL.Cons” ”NZL.Min”
”AUS.Cons”
”AUT.Cons”
”CZE.Cons”
”DEU.Cons”
”ITA.Nmet”
”POL.Cons”
”CHE.Cons”
”TUR.Mach”
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Table C.2: Fixed energy prices series included in Cluster 2.

Cluster 2
”UK.Che” ”UK.Cons” ”UK.Food” ”UK.Iron” ”UK.Mach” ”UK.Nfer” ”UK.Nmet” ”UK.Pap”
”UK.Tex” ”UK.Trans” ”UK.Wood”
”CZE.Che” ”CZE.Food” ”CZE.Iron” ”CZE.Mach” ”CZE.Nfer” ”CZE.Nmet” ”CZE.Pap”
”CZE.Tex” ”CZE.Trans” ”CZE.Wood”
”POL.Che” ”POL.Food” ”POL.Mach” ”POL.Nfer” ”POL.Nmet” ”POL.Pap” ”POL.Tex”
”POL.Trans” ”POL.Wood”
”AUS.Che” ”AUS.Food” ”AUS.Iron” ”AUS.Nfer” ”AUS.Nmet” ”AUS.Pap” ”AUS.Tex”
”AUS.Wood”
”DEU.Che” ”DEU.Iron” ”DEU.Min” ”DEU.Nfer” ”DEU.Pap” ”DEU.Tex” ”DEU.Trans”
”DEU.Wood”
”SVK.Che” ”SVK.Cons” ”SVK.Iron” ”SVK.Min” ”SVK.Nfer” ”SVK.Nmet” ”SVK.Wood”
”DNK.Che” ”DNK.Iron” ”DNK.Nfer” ”DNK.Pap” ”DNK.Tex” ”DNK.Trans”
”JPN.Iron” ”JPN.Nfer” ”JPN.Nmet” ”JPN.Pap” ”JPN.Trans”
”TUR.Che” ”TUR.Min” ”TUR.Nfer” ”TUR.Pap” ”TUR.Tex”
”KOR.Che” ”KOR.Mach” ”KOR.Pap” ”KOR.Tex”
”NOR.Che” ”NOR.Cons” ”NOR.Min” ”NOR.Nmet”
”BEL.Che” ”BEL.Food” ”BEL.Nmet”
”ITA.Nfer” ”ITA.Pap” ”ITA.Trans”
”CAN.Iron” ”CAN.Nfer”
”FIN.Nfer” ”FIN.Pap”
”HUN.Iron” ”HUN.Nmet”
”CHE.Che” ”CHE.Pap”
”BRA.Iron”
”FRA.Iron”
”GRC.Wood”
”NLD.Iron”
”NZL.Nmet”
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Table C.3: Fixed energy prices series included in Cluster 3.

Cluster 3
”SWE.Che” ”SWE.Cons” ”SWE.Food” ”SWE.Iron” ”SWE.Mach” ”SWE.Min” ”SWE.Nfer”
”SWE.Nmet” ”SWE.Pap” ”SWE.Tex” ”SWE.Trans” ”SWE.Wood”
”FIN.Che” ”FIN.Food” ”FIN.Iron” ”FIN.Mach” ”FIN.Min” ”FIN.Nmet” ”FIN.Tex”
”FIN.Wood”
”ITA.Che” ”ITA.Cons” ”ITA.Food” ”ITA.Iron” ”ITA.Mach” ”ITA.Min” ”ITA.Tex”
”ITA.Wood”
”PRT.Che” ”PRT.Iron” ”PRT.Mach” ”PRT.Nfer” ”PRT.Pap” ”PRT.Tex” ”PRT.Trans”
”PRT.Wood”
”FRA.Food” ”FRA.Mach” ”FRA.Nfer” ”FRA.Pap” ”FRA.Tex” ”FRA.Trans” ”FRA.Wood”
”CHE.Food” ”CHE.Mach” ”CHE.Min” ”CHE.Nmet” ”CHE.Tex” ”CHE.Trans” ”CHE.Wood”
”CAN.Che” ”CAN.Food” ”CAN.Mach” ”CAN.Nmet” ”CAN.Pap” ”CAN.Trans”
”KOR.Cons” ”KOR.Food” ”KOR.Min” ”KOR.Nfer” ”KOR.Trans” ”KOR.Wood”
”JPN.Che” ”JPN.Cons” ”JPN.Food” ”JPN.Mach” ”JPN.Min” ”JPN.Tex”
”NLD.Min” ”NLD.Nfer” ”NLD.Pap” ”NLD.Trans” ”NLD.Wood”
”AUS.Mach” ”AUS.Min” ”AUS.Trans”
”DNK.Food” ”DNK.Mach” ”DNK.Wood”
”DEU.Food” ”DEU.Mach” ”DEU.Nmet”
”TUR.Cons” ”TUR.Nmet” ”TUR.Trans”
”HUN.Cons” ”HUN.Min”
”ROU.Iron” ”ROU.Trans”
”BEL.Cons”
”CHN.Trans”
”CZE.Min”
”GRC.Mach”
”NZL.Wood”
”POL.Min”
”UK.Min”
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Table C.4: Fixed energy prices series included in Clusters 4, 5 and 6.

Cluster 4
”HUN.Che” ”HUN.Food” ”HUN.Mach” ”HUN.Nfer” ”HUN.Pap””HUN.Tex” ”HUN.Trans”
”HUN.Wood”
”NOR.Food” ”NOR.Iron” ”NOR.Mach” ”NOR.Pap” ”NOR.Tex” ”NOR.Trans” ”NOR.Wood”
”BEL.Iron” ”BEL.Mach” ”BEL.Min” ”BEL.Nfer” ”BEL.Pap” ”BEL.Tex”
”NZL.Che” ”NZL.Food” ”NZL.Iron” ”NZL.Nfer” ”NZL.Pap” ”NZL.Trans”
”SVK.Food” ”SVK.Mach” ”SVK.Pap” ”SVK.Tex” ”SVK.Trans”
”TUR.Food” ”TUR.Iron” ”TUR.Wood”
”CHE.Iron” ”CHE.Nfer”
”AUT.Food” ”AUT.Nmet”
”BEL.Trans” ”BEL.Wood”
”BRA.Nfer”
”JPN.Wood”
”POL.Iron”
Cluster 5
”AUT.Che” ”AUT.Iron” ”AUT.Mach” ”AUT.Min” ”AUT.Nfer” ”AUT.Pap” ”AUT.Tex”
”AUT.Trans” ”AUT.Wood”
”BRA.Cons” ”BRA.Food” ”BRA.Mach” ”BRA.Min” ”BRA.Pap” ”BRA.Tex” ”BRA.Trans”
”BRA.Wood”
”NZL.Mach” ”NZL.Tex”
”NOR.Nfer”
Cluster 6
”BRA.Che” ”BRA.Nmet”
”CHN.Pap”
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