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Abstract 
 
This paper further explores the horizon effect in the optimal static and dynamic demand for 
risky assets under return predictability as documented by Barberis (2000). Contrary to the 
case of stocks, the optimal demand for long-term Government bonds of a buy-and-hold 
investor is not necessarily increasing in the investment horizon, and may in fact be decreasing 
for some initial levels of the predicting variable. The paper provides an analytical explanation 
based on the dependence of the mean variance ratio on the investor´s time horizon. Under 
stationarity of the predicting variable, unusually high or unusually low levels of the predictor 
tend to dissapear over time inducing the mean of cumulative returns to grow less or more than 
linearly as the investment horizon increases. If this effect dominates that on the variance, 
optimal demands can either be increasing or decresing in the investment horizon. On the other 
hand, the solution to the investor´s dynamic allocation problem in the presence of bonds 
indicates that long-term Government bonds do not provide a good hedge for adverse changes 
in the investor´s opportunity set: optimal dynamic demands for bonds do not differ from static 
portfolio choices at any horizon. 
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1 Introduction

Optimal portfolio selection is an old problem in Financial Economics. In a
single-period context, mean variance analysis predicts that the optimal portfolio
composition depends on the …rst two moments of asset returns. In the presence
of a risk free asset, investors will divide their investment between a portfolio of
risky assets –identical for all investors– and the riskless asset. The fraction of the
total portfolio that each investor will allocate to the risky asset will depend on
his or her attitude towards risk. However, making recommendations regarding
optimal portfolio choice is not an easy task.

First of all, mean variance analysis is consistent with expected utility max-
imization only under the assumption that the distribution of returns is multi-
variate normal or when the investor has quadratic preferences. But even under
those circumstances, there do not exist analytic results that completely charac-
terize the solution to the investor’s asset allocation problem in every possible
case.

Second, there is no direct relationship between predictability and optimal
portfolio choice even under the most simple preference characterization (prefer-
ences de…ned over the mean and variance of the distribution of asset returns).
Nevertheless, optimal portfolio policy must take predictability into account since
there exists a vast amount of empirical evidence in the literature that favors
the time-varying conditional moments hypothesis. See for instance Campbell
(1987), Campbell and Shiller (1988a, 1988b), Fama (1984), Fama (1990), Fama
and French (1988, 1989), or Hodrick (1992).

Third, closed-form solutions to the dynamic portfolio problem faced by an
investor with a general class of preferences are unknown when the investment
opportunity set changes over time.

Finally, in the real world investors never know exactly the true value of the
moments of the distribution of future returns and must therefore estimate them
from past realizations. An investor that recognizes estimation risk must take it
into account when deciding the composition of his portfolio.

Luckily, some recent contributions have addressed these di¢culties in a
straightforward way.

Kandel and Stambaugh (1996) extend Klein and Bawa’s (1976) optimal port-
folio analysis under parameter uncertainty to the context in which expected mo-
ments are not independently and identically distributed but can be predicted
by a set of variables. The investor in their model is aware of asset return pre-
dictability but is ignorant about the true value of the return generating model
parameters. Kandel and Stambaugh are able to characterize the single-period
optimal demand using a numerical method and in a Bayesian framework. How-
ever, return predictability does not only a¤ect its conditional distribution over
any given number of periods ahead, but it also potentially introduces a horizon
e¤ect on the optimal portfolio choice. Albeit di¤erent, that e¤ect is closely
related to the concept of intertemporal hedging demand, that is, the di¤erence
between the optimal demand for an asset by an investor with a long-term horizon
and the demand by a myopic investor. Intertemporal hedging demand is di¤er-
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ent from zero whenever investment opportunities are time-varying1 . If returns
are however not identically and independently distributed (i.i.d.), part of an
investor’s position is explained by his desire to hedge future averse predictable
changes (see Merton (1969, 1971, 1973) and Samuelson (1969)). Similarly, the
static demand (the demand of an investor who follows a buy-and-hold strategy)
depends on the investment horizon when the conditional distribution of returns
is time-varying. In this case, however, the reason is di¤erent. When returns are
not i.i.d., each period’s return increases the mean and variance of the cumulative
return up to that particular period in a di¤erent proportion. As a consequence
of the di¤erent impact on each moment, the optimal portfolio choice that solves
the investor’s problem depends on his or her investment horizon.

The horizon e¤ect on the optimal portfolio has been studied by Barberis2

(2000), who …nds that when stock returns are predictable, the optimal invest-
ment in stocks is increasing in the investment horizon both with and without
portfolio rebalancing. Barberis argues that predictability in stock expected re-
turns induces mean reversion which in turn makes the variance of cumulative
returns grow less than linearly as the horizon increases. As a result, a risk averse
long-term investor should allocate more to stocks than a short-term investor,
independently of the initial value of the predicting variable. As for the case of
an investor who periodically rebalances his portfolio Barberis’ results suggest
show that investors choose to hedge adverse changes in the investment opportu-
nity set by investing more in stocks since realized returns and expected returns
are negatively related. Nevertheless, when the investor takes estimation risk
into account, the e¤ect of the investment horizon on the optimal allocation may
decrease and even become negative.

This paper starts by exploring analytically the e¤ect of predictability on both
the variance and the mean of cumulative returns. The main …nding is that mean
reversion does not necessarily induce a positive horizon e¤ect on optimal asset
allocation. Intuitively, when the predictive variable is stationary, its e¤ect on
the mean of cumulative returns decays with time. If the predicting variable has
a positive e¤ect on future expected returns, its dilution with time may o¤set the
positive horizon e¤ect induced by mean reversion. The empirical analysis of the
optimal static demand for long-term Government bonds con…rms the theoretical
prediction: horizon e¤ects may actually be either positive or negative depending
on the initial value of the predicting variable(s) and, in any case, disappear as
the investment horizon grows to in…nity. This study suggests that Barberis’
(2000) results could be speci…c to the choice of the investable asset (a stock

1 Except for the case of an investor with logarithmic preferences.
2 Barberis’ paper is part of a long series of recent contributions to the asset allocation liter-

ature. Brennan, Schwartz and Lagnado (1997) …nd a numerical solution to the problem of a
long-term investor who rebalances his portfolio frequently. They …nd that long-term demand
for both bonds and stocks is higher than that of a single-period investor. Balduzzi and Lynch
(1999) emply an alternative numerical method to solve the intertemporal consumption and
portfolio choice in the presence of transaction costs. Brandt (1999) estimates nonparametri-
cally the values of consumption and portfolio choice that solve Euler’s intertemporal equation.
Finally, Campbell and Viceira (1999) obtain a log-linear approximation to the solution of the
investor’s dynamic problem.
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index) and the predicting variable (dividend yield) and not a consequence of
return predictability or mean reversion.

Allowing for the presence of …xed income –and more speci…cally Government
debt– in the investor’s portfolio choice problem not only illustrates the theoret-
ical analysis of the relationship between predictability and investment horizon,
but it is also particularly relevant given the important role that this kind of
assets play in the investment industry. In the case of Spain, for instance, in-
vestment institutions manage 111 billion Euros worth of …xed income assets –53
per cent of total assets under management as opposed to 11 per cent invested
in stocks– most of which (83 per cent) corresponds to Government debt3 .

Next, the intertemporal hedging demand for long-term credit risk free bonds
is studied for investors with di¤erent investment horizons. The demand for
long-term bonds has been previously analyzed by Campbell and Viceira (1998)
through an approximate analytical solution to the dynamic problem4 . Taking
in‡ation risk into account, they …nd that the demand for long-term bonds is
explained especially by hedging demand. Campbell and Viceira’s (1998) model
assumes that the investor has an in…nite horizon, however, when conditional
moments are time-varying, the optimal portfolio choice of an investor with a
…nite horizon may in principle di¤er to a great extent from that of an in…nitely
lived investor. As opposed to Campbell and Viceira (1998), the framework used
in this paper makes it possible to analyze the e¤ect of the investment horizon
and the initial value of the predicting variables. The results suggest that in the
absence of in‡ation risk, the hedging demand for long-term bonds by investors
with di¤erent …nite horizons is zero. In other words, investing in bonds does
not provide a good hedge for changes in the predicting variable.

Finally, the paper studies optimal portfolio choice when both risky assets
are available for investment. Results show that:

1. changes in the initial values of the predictors alter the optimal portfolio
choice for any given horizon,

2. the corresponding reallocation between di¤erent assets also depends on
the investment horizon, and

3. estimation risk a¤ects the investor’s position in stocks to a greater extent
than his position in bonds.

The rest of the paper is divided in the following sections: section 2 presents
the portfolio choice framework employed by Barberis (2000); section 3 presents
the dataset employed for this research; section 4 deals with the static demand
for long-term bonds in the absence of stocks, section 5 shows the results for the
dynamic problem, section 6 explores the horizon e¤ect on the optimal asset mix
between long-term bonds and stocks; and …nally section 7 concludes.

3 Figures have been taken from the Spanish Security Market Committee report for the
…rst quarter of 1999 (”Informe trimestral de instituciones de inversión colectiva”, Comisión
Nacional del Mercado de Valores).

4 The method was also used by Restoy (1992), Campbell (1993), and Campbell and Viceira
(1999).
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2 Optimal portfolio choice when returns are pre-
dictable

Consider the problem at time T of an investor who derives utility from his
wealth at time T + T̂ . The investor can invest his wealth in three di¤erent
assets: one-month Treasury Bills; a representative portfolio (index) of stocks;
and a representative portfolio of Government Bonds with 10 years to maturity.
The investor does not rebalance his portfolio. It will be assumed that the
continuously compounded monthly real return on Treasury Bills, denoted by rf

is constant. In order to compare results to those obtained by Barberis (2000),
rf will also be taken to be 0:0036; or 4:32% in annual terms. Returns in excess
of the riskless interest rate on the stock index and the bond portfolio between
periods t ¡ 1 and t are denoted by rst and rbt respectively.

If initial wealth equals one, !s stands for the fraction of the investor’s initial
wealth allocated to stocks, and !b denotes the allocation to bonds, then the
investor’s terminal wealth is given by:

W
T +T̂

= (1 ¡ !s ¡ !b) exp(rf T̂ ) + !s exp(rf T̂ + R
s;T +T̂

) + !b exp(rf T̂ + R
b;T +T̂

);

(1)

where Rs;T +T̂ and Rb;T+ T̂ are cumulative excess returns between T and T + T̂ :

Rs;T+ T̂ = rs;T+1 + rs;T +2 + ¢ ¢ ¢ + rs;T +T̂ ; (2)

R
b;T +T̂

= rb;T +1 + rb;T+2 + ¢ ¢ ¢ + r
b;T +T̂

: (3)

Investor’s preferences can be represented by utility functions with constant
relative risk aversion:

u(W ) =
W 1¡A

1 ¡ A
; with A 6= 1: (4)

The problem can then be formally stated as follows:

max ET

½
[(1¡!s¡!b) exp(rf T̂ )+!s exp(rf T̂ +Rs;T+T̂ )+!b exp(rf T̂ +Rb;T+T̂)]

1¡A

1¡A

¾

!s ; !b

;

(5)

with portfolio weights constrained to be between zero and one.
As in Barberis (2000) the objective function is numerically evaluated as the

integral:
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Z
u(WT +T̂ )p(RT+ T̂ j ©T )dRT +T̂ ; (6)

where R is the return vector (Rs; Rb) and ©T is the investor’s information set
at T .

In order to compute the integral (6), …rst a large number of realizations of
future returns are simulated from the distribution de…ned by p(RT +T̂ j ©T ).
Next, for every simulated realization the value of the integral’s argument is
calculated and …nally the arithmetic mean of all values is obtained. The solution
to the optimization problem is the portfolio choice that maximizes the integral’s
numeric value.

Therefore, we …rst need to know the predictive distribution of future returns.
Excess returns are assumed to be generated by the following VAR model:

zt = a + Bxt¡1 + ²t; (7)

where z0
t = (rst;rbt;x0

t); xt = (x1t ; :::; xnt) 0 and ²t is identically and independently
distributed according to N (0; §). Vector xt is the vector of variables that predict
expected returns. Prior to Barberis (2000), a similar VAR model has been used
in the context of return prediction by Campbell (1991), and Hodrick (1992). It
is useful to rewrite (7) as:

zt = a + B0zt¡1 + ²t; (8)

where:

B0 =

2
64

0
B@

0 0
...

...
0 0

1
CA B

3
75 : (9)

The sum ZT +T̂ = zT+1 + zT +2 + ¢ ¢ ¢ + zT +T̂ is distributed as a multivariate
normal with mean ¹sum and variance §sum given by:

¹sum = T̂ a + (T̂ ¡ 1)B0a + (T̂ ¡ 2)B2
0a + ¢ ¢ ¢ + B T̂ ¡1

0 a (10)

+(B0a + B2
0a + ¢ ¢ ¢ + B T̂

0 )zT ;

§sum = § (11)

+(I + B0)§(I + B0)
0

+(I + B0 + B2
0 )§(I + B0 + B2

0 )0

+(I + B0 + ¢ ¢ ¢ + B T̂ ¡1
0 )§(I + B0 + ¢ ¢ ¢ + B T̂ ¡1

0 )0:
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The investor could therefore estimate the parameters in (7) and take as the
predictive distribution of returns a multivariate normal distribution with mean
and variance ¹̂sum and §̂sum; respectively. Simulating a large sample of returns,
the investor could evaluate (6). This strategy however does not take into account
the fact that the investor does not know the true values of parameters in (7),
denoted by µ. On the other hand, if the investor decides to take estimation
risk into account, he will take as the predictive distribution that resulting from
integrating the joint distribution of future returns and the parameters in (7).
Namely, the investor will obtain the probability density function for returns as:

p(RT +T̂ j ©T ) ´ p(RT+T̂ j z) =
R

p(RT+ T̂ ; µ j z)dµ

=
R

p(RT +T̂ j µ; z)p(µ j z)dµ;
(12)

where z = z1; z2; :::; zT . The probability density p(RT+T̂ j µ; z) corresponds to
a multivariate normal distribution with mean and variance equal to ¹sum and
§sum. The density p(µ j z) can be obtained in a Bayesian fashion:

p(µ j z) _ p(z j µ)p(µ): (13)

Intuitively, after observing the data set z; the investor learns the likelihood
function p(z j µ) and will thus update his prior beliefs about the parameters
–which can be summarized as the prior density p(µ)– giving rise to the posterior
density p(µ j z):

An investor who takes parameter uncertainty into account can therefore
evaluate the following integral:

Z
u(WT +T̂ )p(RT+ T̂ j µ; z)p(µ j z)dµdRT +T̂ : (14)

In practical terms, a realization of the vector µ is …rst drawn from the pos-
terior distribution and next a possible realization of RT +T̂ is simulated using
the distribution of future returns conditional on those parameter values.

The posterior distribution p(µ j z) when z = z1; z2; :::; zT is obtained as
follows. First, the model can be written as:

0
B@

z 0
2
...

z 0
T

1
CA =

0
B@

1 z0
1

...
...

1 z0
T ¡1

1
CA

µ
a0

B0

¶
+

0
B@

²0
2
...

²0
T

1
CA (15)

or equivalently:

Z = XC + E; (16)

where Z is a (T ¡ 1; n + 2) matrix with vector z 0
2; :::; z

0
T as columns; X is a

(T ¡ 1; n + 1) matrix with vectors (1 x0
1); :::; (1 x0

T¡1) as rows, and E is a
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(T ¡ 1; n + 2) matrix with vectors ²0
2; :::; ²

0
T as rows. Matrix C has dimension

(n + 1; n + 2) and contains row a0 and matrix B 0:
Barberis (2000) uses Zellner’s (1971) Bayesian analysis of the multivariate

regression model with exogenous regressors, given that the form of the likelihood
function is the same when the distribution is conditioned on the sample’s …rst
observation z1. As in Barberis, it will be assumed that the investor has no pre-
vious information about the value of µ and hence a standard di¤use probability
density is used:

p(C; §) _j § j¡
n+2

2 :

The resulting posterior distribution p(C; §¡1 j z) is given by:

§¡1 j z » Wishart(T ¡ n ¡ 2; S¡1)

vec(C ) j §; z » N (vec(Ĉ); § ­ (X 0X)¡1)

where S = (Z ¡X Ĉ)0(Z ¡ XĈ ) with Ĉ = (X 0X)¡1X 0Z . Every simulated real-
ization of (C; §) can be obtained by …rst drawing from the marginal distribution
of §¡1 and then drawing from the distribution of C conditioned on §:

In particular, the size of the simulated sample is 100,000 in the case of no
parameter uncertainty and 10,000 when estimation risk is taken into account.

3 Data

The stock market return is proxied by the return on the value-weighted index
of the New York Stock Exchange, and the return on long-term bonds is proxied
by the return on a representative constant maturity portfolio of 10-year US
Government Bonds. Data were obtained with a monthly frequency for the
period covering January 1959 to December 1998. In order to compute excess
returns the series of returns on one-month Treasury Bills was also collected.

In order to predict expected returns on bonds and stocks, four variables are
selected:

1. The default spread, proxied by the yield di¤erence between Moody’s Baa
and Aaa rated corporate bonds.

2. The dividend yield on the stock index, computed as the sum of dividends
payed on the index over the previous 12 months divided by the current
index level. It is henceforth denoted by DP.

3. The term spread, proxied by the yield di¤erence between 10-year and
one-year US Government Bonds.

4. The trend of the stock index, de…ned as the di¤erence between the loga-
rithm of the index’s current level and the average level over the previous
12 months.
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The default spread and the term spread were obtained from the Internet site
maintained by the US Federal Reserve, whereas the rest of data were collected
from the CRSP (Center for Research in Security Prices) database.

These predictors have been previously used by Fama and French (1988,1989)
and Keim and Stambaugh (1986). Recently, Aït-Sahalia and Brandt (2001) have
used them to extend Brandt’s (1999) nonparametric optimal portfolio estimation
to the case of multiple predictors.

If the investor performed an OLS regression of monthly excess stock and
bond returns on the predictive variables in the previous month, he would obtain
the following estimated coe¢cients and their associated p-values (in parenthe-
ses):

rst+1 = ¡0:0077 +0:0066 x1t +0:0007 x2t

(0:2181) (0:1608) (0:4257)

+0:0054 x3t ¡0:0004 x4t +²st+1

(0:0071) (0:2291)
(17)

rbt+1= 0:0002 +0:0038 x1t ¡0:0008 x2t

(0:4814) (0:1333) (0:3288)

+0:0024 x3t ¡0:0009 x4t +²bt+1

(0:0140) (0:0010)
(18)

where rst and rbt stand for continuously compounded excess returns on the stock
and the 10-year bond indices respectively, and xit ; i = 1; 2; 3; and 4 denote the
value in month t of the default spread, DP, the term spread, and the stock index
trend.

In regression (17) only the term spread is signi…cantly di¤erent from zero,
whereas in regression (18) the term spread and especially the trend have a
signi…cant predictive power over next month’s expected return. On the other
hand, the R2 coe¢cient equals 0.0211 in the case of stocks and 0.0319 for bonds.
These results show the magnitude of the investor’s problem of deciding whether
he should consider the empirical evidence on predictability or whether he should
think that evidence is too weak to take the regression estimated coe¢cients as
the true model parameter values. The Bayesian approach can thus be seen as
an intermediate solution between both extreme attitudes.

Tables 1 and 2 summarize the main descriptive statistics of the data set, and
…gure 1 plots the predictors.

4 Portfolio problem with a single risky asset

Suppose that the investor’s problem amounts to simply choosing the fraction
of his portfolio to be invested in the riskless asset and in a mutual fund that
replicates returns on a risky asset (a stock or a 10-year bond index), so that

8



he maximizes his expected utility at a given time in the future. The investor’s
problem is next analyzed in the context of Barberis (2000), namely with a sin-
gle predicting variable and both from an empirical and theoretical perspective.
Results are then presented for the case of multiple predictors when a portfo-
lio of long-term bonds is the only risky asset available both with and without
parameter uncertainty.

4.1 Single predictor

Suppose that the investor believes that there exists a single variable with pre-
dictive power over future monthly excess returns. In the presence of a single
risky asset, the return generating model can be written as:

rt+1 = ® + ¯xt + "1t+1

xt+1 = ° + Áxt + "2t+1µ
"1t+1

"2t+1

¶
» N

�
0;

µ
¾2

1 ¾12

¾12 ¾2
2

¶¸ (19)

where rt ´ rst , and xt ´ DPt in the case of stocks and rt ´ rbt, xt ´ T rendt

for bonds. The …xed values of the model parameters in both cases are shown
on table 4.3 and are obtained from the OLS estimation of (19).

Figure 2 shows the investor’s optimal allocation to stocks when parameter
uncertainty is not taken into account. A utility maximizing investor should al-
locate a larger fraction of his wealth to stocks the higher the value of DP and
the longer the investment horizon. Both e¤ects can only be attributed to pre-
dictability. If stock returns where i.i.d., the distribution of future returns would
be independent of the current value of the predicting variable. Furthermore,
in the i.i.d. case, both the mean and the variance of cumulative excess returns
would grow linearly in the horizon so the ratio of both would be constant across
all investment horizons.

The interesting question is why the optimal demand for stocks is increasing
in the investment horizon.

Brennan, Schwartz and Lagnado (1997) and Barberis (2000) provide the
same explanation: predictability induces mean reversion in monthly excess stock
returns which in turn makes the variance of cumulative excess returns grow less
than linearly as the investment horizon increases. Intuitively, a sudden shock to
the stock return at a given period is most likely to happen when the predictor
experiences a shock of opposite sign because ¾12 < 0. Since ¯ > 0; the shock
in DPt translates to rt+1 resulting in negative serial correlation in returns. As
a consequence, the risk of investing in the stock grows less than linearly as the
horizon increases which makes stocks more attractive as a long-term investment.

The above reasoning seems to suggest that negative serial correlation in
returns justi…es by itself a positive horizon e¤ect as that found by Barberis and
shown on …gure 2. Accordingly, it would be reasonable to expect the demand
for long-term bonds to also increase in the investment horizon when variable
trend is the only predictor, since in this case ¾12 > 0 and ¯ < 0. However none
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of the previous conclusions is true. First of all, the fact that ¾12 and ¯ have
di¤erent signs is not a su¢cient condition for the variance of cumulative returns
to be concave in the horizon, as shown below. Furthermore, the fact that the
variance grows less than linearly with the investment horizon does not imply
that the investor prefers to allocate more to stocks the longer the horizon. The
reason is that the evolution of optimal demand with the horizon depends upon
the joint variation of both the variance and the mean of cumulative returns.

The forthcoming paragraphs deal with the above questions by analyzing the
dependence of the mean variance ratio of cumulative returns on the horizon in
the context of model (19) and trying to answer the following questions:

1. What are the conditions under which the variance and the mean of cumu-
lative returns are concave or convex in the investment horizon?

2. How can the answer to the previous question be exploited in order to
analytically characterize the dependence of the mean variance ratio on
the horizon?

First, the variance of the cumulative return between periods t and t + n is
analyzed. Applying the general result (11) to model (19) it follows that:

vn ´ vart(Rt+n ) = vn¡1 + ¾2
1 + (¯ + ¯Á + ¢ ¢ ¢ + ¯Án¡2)¾12 +

+(¾12 + (¯ + ¯Á + ¢ ¢ ¢ + ¯Án¡2)¾2
2)(¯ + ¯Á + ¢ ¢ ¢ + ¯Án¡2)

= vn¡1 + ¾2
1 + 2¯

1 ¡ Án¡1

1 ¡ Á
¾12 + ¯ 2

µ
1 ¡ Án¡1

1 ¡ Á

¶2

¾2
2: (20)

which holds for n = 1; 2; ¢ ¢ ¢; 1; with v0 = 0: If rt+n were unpredictable, i.e.
¯ = 0; then vn = n¾2

1. The variance in that case would be linear and …rst-order
homogeneous in n.

In order to know if one-period changes in the variance of the cumulative
return are increasing or decreasing in the horizon, it is necessary to calculate
the …rst derivative of vn ¡ vn¡1 with respect to n :

@ (vn ¡ vn¡1)

@n
=

@

µ
¾2

1 + 2¯¾12
1¡Án¡1

1¡Á
+ ¯2¾2

2

³
1¡Án¡1

1¡Á

´2
¶

@n

= 2¯¾12Á
n¡1 lnÁ

¡1 + Á
+ 2¯ 2¾2

2

1 ¡ Án¡1

1 ¡ Á
Án¡1 ln Á

¡1 + Á
:(21)

Under the assumption that the predictive variable is stationary, i.e., jÁj <
1; it follows that the variance grows more than linearly in n if the following
condition holds:

¯¾12 > ¡¯2¾2
2

1 ¡ Án¡1

1 ¡ Á
: (22)
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Given that the right hand side of (22) is always negative, when ¯ and ¾12

have the same sign the above condition is always met. However, when ¯ and
¾12 have opposite signs, it is not possible to assert whether their joint e¤ect is
enough to make the variance grow less than linearly. In other words, negative
serial correlation does not imply that vn is concave in n:

On the other hand since jÁj < 1; as the horizon grows to in…nity one-period
increments in the cumulative variance become constant:

lim (vn ¡ vn¡1) = ¾2
1 + 2¯¾12

1¡Á +
¯2¾2

2

(1¡Á)2

n ! 1
: (23)

It follows that in the limit the variance of cumulative returns becomes linear
in the investment horizon.

As for the mean of excess cumulative returns, its growth between n ¡ 1 and
n is simply the mean of the monthly return between periods t+n ¡1 and t+n :

mn ´ Et(Rt+n) = Et(Rt+n¡1) + Et(rt+n)

= mn¡1 + ® + ¯° + ¯°Á + ¯°Á2 + ¢ ¢ ¢ + ¯°Án¡2 + ¯Án¡1xt :

= mn¡1 + ® + ¯°
1 ¡ Án¡1

1 ¡ Á
+ ¯Án¡1xt ; (24)

which holds for n = 1; 2; ¢ ¢ ¢; 1; with m0 = 0: Again, unpredictability implies
that mn = nm1. Di¤erentiating mn ¡ mn¡1 with respect to n gives:

@ (mn ¡ mn¡1)

@n
=

@
³
® + ¯° 1¡Án¡1

1¡Á
+ ¯Án¡1xt

´

@n
(25)

= ¯Án¡1 ln Á

¡1 + Á
(° ¡ xt(1 ¡ Á)) : (26)

So, when ¯ > 0; the mean of cumulative returns mn grows more than linearly
with n if:

xt <
°

1 ¡ Á
; (27)

i.e., if the predictor’s initial value is below its long-run mean, and less than
linearly otherwise.

Note that the e¤ect of the predictor’s initial value on @ (mn¡mn¡1 )
@n

has an
opposite sign to that on Et(rt+n). As a consequence, when xt a¤ects Et(rt+n)
positively, its increments decrease as the horizon becomes longer if the predictor
is initially above its long-run mean. Intuitively, when the predicting variable is
stationary, the in‡uence of the predictor’s initial value on each period’s return
decays with time. The larger the initial e¤ect of the predicting variable, the
larger the loss in the cumulative expected return as n increases.
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Taking limits in mn ¡ mn¡1; it follows that:

lim (mn ¡ mn¡1) = ® + ¯ °
1¡Á

n ! 1 ; (28)

so just as happens with the variance, as the horizon grows to in…nity the mean
of cumulative returns grows linearly in n.

Conditions (22) or (27), and (??) determine whether the mean and vari-
ance of the cumulative return are linear functions in the investment horizon or
whether they exhibit concavity or convexity. Next question is what conclusions
can be drawn from the previous analysis regarding the evolution of the mean
variance ratio with the investment horizon.

Between two di¤erent horizons n1 and n2; the mean variance ratio grows if
the mean increases more than the variance in relative terms. For the case in
which mn1 > 0:

mn2

vn2

>
mn1

vn1

() mn2

mn1

>
vn2

vn1

: (29)

If m0s homogeneity order in n is higher than one and v0s is lower than one,
then:

mkn

mn

> k >
vkn

vn

; (30)

in that case the mean variance ratio is always increasing in n.
On the other hand, if m is a convex function in n and v is concave, then:

mkn ¡ m0

mn ¡ m0
> k >

vkn ¡ v0

vn ¡ v0
: (31)

Since m0 = v0 = 0; it can be concluded that the mean variance ratio is
increasing in n when the mean grows more than linearly in n and the variance
grows less than linearly. The converse reasoning could be used to show that
when m is concave and v is convex in n, the ratio is decreasing in the horizon.
Of course, the …nal e¤ect when both the mean and variance are either concave
or convex in n is ambiguous.

Finally, note that in the limit the mean variance ratio is constant and the
horizon e¤ect on the optimal demand vanishes. Of course, this result is only
true when jÁj < 1:

Consider next the static portfolio choice problem when the long-term bond
portfolio is the only risky investable asset. Suppose that the investor believes
that the return on that portfolio evolves according to model (19) and thinks
that the true parameter values are those from table 3. Optimal asset allocation
must be higher for a lower initial value of the predictor since ¯ < 0. According
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to condition (22) it is possible to verify that v grows less than linearly with
the investment horizon. Additionally, condition (??) does not hold when the
predictor’s initial value equals ¡1 since ° > 0; so in that case the mean grows
less than linearly. When the trend’s initial value equals 2, the mean is almost
linear in n; and …nally for an initial value of 5 condition (??) is met, so the
mean of cumulative returns grows more than linearly.

Figure 3 shows graphically the results from solving the investor’ problem
of allocating his investment between the risk free asset and the bond portfolio
. When trend initially equals ¡1; the investor’s position in the 10-year bond
portfolio is larger than when the trend’s initial value equals 2 and double his
optimal position when it equals 5. This is simply a consequence of ¯ being neg-
ative. More interestingly, the predictor’s initial value not only a¤ects the level
of the investor’s optimal demand but it also determines the sign of the horizon
e¤ect. In particular, optimal demand decreases when trend is initially ¡1; and
increases when trend equals 5. This result is consistent with the theoretical
analysis. Since ¯ < 0; increases in Et(rt+n ) are growing in the investment hori-
zon when the predictor’s initial value is above its long-run mean, and decreasing
otherwise. This e¤ect dominates that on the cumulative variance, so the horizon
e¤ect can be either increasing or decreasing depending on the predictor’s initial
value. This is in striking contrast to what happens as the investment horizon
increases when investment in stocks is considered. In that case, given the pa-
rameter estimates the horizon e¤ect on the variance is dominant and makes the
optimal demand for stocks to be increasing in the investment horizon regardless
of the predictor’s initial value.

4.2 General Model

Next, a general model that includes both stocks and long-term bonds as well as
the four predicting variables is estimated and the investor’s portfolio problem
is solved when the long-term bond portfolio is the only risky investable asset.
When the investor does not recognize estimation risk, it will be assumed that
he takes as the true parameter values the means of C and § from the posterior
distribution given by p(C; § j z); as shown on tables 4.4 and 4.5.

Figures 4, 5, 6, and 7 display the solution the investor’s problem when
returns are assumed to be generated by a general model with four predicting
variables with parameter values as shown on tables 4 and 5. Each graph plots the
solution to the maximization problem for di¤erent investment horizons and three
di¤erent cases that correspond to three di¤erent initial values of one particular
predictor. The values considered are the 25th sample percentile, the sample, and
the 75th sample percentile of the predicting variable chosen in each case. The
initial values for the rest of variables are taken to be their sample means. This
way, it is possible to study the isolated e¤ect of the initial value of each predictor
on the evolution of the demand with the horizon. In each case a similar pattern
is found: when the coe¢cient in the regression equation for a given variable
is positive, optimal demand is larger but decreasing in the investment horizon
for initial values above the predictor’s sample mean, and smaller but increasing
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for lower initial values. On the other hand, when the regression coe¢cient is
negative, the situation is inverted. Consistently with the theoretical analysis,
the horizon e¤ect disappears at long horizons. As opposed to the case when
only stocks are available, horizon e¤ects arise only when the initial values of the
predicting variables depart from their historical average.

When the in‡uence of the trend alone is considered (…gure 7), an investor
with a relative risk aversion coe¢cient of 5 doubles his allocation into bonds
when his investment horizon increases from 2.5 years to 10 years if the trend’s
initial value is high. Interestingly, including multiple predictors in the model
does not alter the conclusions drawn from the single predictor case as long as the
rest of variables are initially about their historical means. It thus would seem
that, at least for the case of Government Bonds, model risk is negligible as long
as the investor considers the only predictor whose initial value departs from its
sample average. On the other hand, …gure 5 shows that optimal demand lines
converge less rapidly for di¤erent initial values of DP. This is explained by the
high persistence in the dividend yield series, which makes the in‡uence of the
predictor’s initial value last for a long number of periods. As a consequence,
important di¤erences in the investor’s position due to the initial value persist
even when the investment horizon is 10 years apart.

When the investor acknowledges that the true values of the model parame-
ters may depart from those on tables 3 and 4, he must incorporate estimation
risk into his portfolio decision problem. Figure 8 shows the investor’s optimal
position in long-term bonds when parameter uncertainty is taken into account.
Just as happens with stocks (Barberis (2000)), introducing estimation risk in-
creases dispersion in the possible realizations of the future cumulative return
which makes the risky asset appear riskier to the long-term investor’s eyes.
However, the investor’s position as well as its evolution with the horizon is af-
fected as dramatically as in the case studied by Barberis. In fact, estimation
risk is higher for stocks than for Government Bonds as can be seen from the R2

coe¢cients obtained in the predictive regressions. Besides, it is consistent with
Elton’s (1999) argument that estimation of future expected returns from past
realized returns are better for Government bonds than for other assets since
Government Bonds contain little speci…c information that can a¤ect their price.
Elton provides …ve reasons to support his argument: the factors that a¤ect
Government Bond prices can be found in the form of aggregated economic in-
formation; there exists wide consensus on what economic variables should a¤ect
bond prices; potentially important variables a¤ect all agent; the moment when
information about these variables is known and …xed; and …nally, the impact of
the unexpected component of these announcements is rapidly incorporated into
prices.

5 Dynamic allocation

Barberis (2000) observes that as the predicting variable changes over time, it
also changes the investment opportunity set faced by the investor, namely it
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changes the investor’s expected future return. Since shocks to the dividend
yield are highly negatively correlated with shocks to stock returns, then higher
realized returns will occur when the dividend yield –and hence future expected
return– is relatively low. Therefore, allocating an extra amount to stock returns
can be a good way to hedge periods of poor investment opportunities. Solving
the Bellman equation numerically by backward induction, Barberis is able to
characterize the solution to the asset allocation problem of an investor who
rebalances his portfolio every year when the stock index is the only investable
risky asset. Barberis …nds that Merton’s intertemporal hedging demand for
stocks is positive and increasing in the investment horizon. Does this result
extend to the case of long-term Government bonds?

Note from table 3, that shocks to bond returns most likely occur when the
predicting variable –trend– is a¤ected by shocks of the same sign. Since a higher
current level of the predictor implies a lower future expected return, long-term
bonds in principle appear to be a good way to hedge adverse changes in the
investment opportunity set. Figure 9 shows optimal portfolio weights of an
investor who believes that bond returns are predicted by current trend levels
and who rebalances his portfolio every month. It seems clear that contrary
to the optimal hedging demand for stocks, in the absence of in‡ation risk, the
investor’s hedging demand for long-term bonds is zero for all investment horizons
and initial values of the predictor5 . Although not reported, results for the rest
of predictors do not alter this conclusion.

6 Portfolio choice with two risky assets

This section considers the problem of an investor who can invest in the riskless
asset as well as in the stock index and the 10-year bond portfolio. Figure 10
summarizes the results graphically for two cases: when the trend’s initial value
is at its 25th sample percentile and when it is at its 75th sample percentile.
Graphs show that the horizon e¤ect on the investor’s position in long-term
bonds extends to the two risky asset case, namely, the investor increases his
position in bonds with the horizon if the trend’s initial value is unusually high
and viceversa. However, comparing …gure 10 with …gure 7, it can be veri…ed
that the horizon e¤ect on the bond demand in the presence of stocks does not
exhibit the same degree of symmetry. Since the appeal of stocks increases so
rapidly with the investment horizon, the investor’s position in bonds decreases
more when the trend’s initial value is low and increases less when the trend’s
initial value is high than when only bonds are available. A similar observation
can be made when estimation risk in‡uences the investor’s decision (…gure 11).
In this case, however, estimation risk severely penalizes the investor’s position

5 The approach employed for solving Bellman’s equation recursively is basically that pro-
posed by Barberis except for the fact that splines have been used to interpolate between
consecutive elements of the discretized state space. The advantage is that fewer design points
are needed and hence precious computing time can be used to increase the rebalancing fre-
quency.
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in stocks, so the negative in‡uence on the horizon e¤ect of his position in bonds
is more likely a result of parameter uncertainty alone.

Changes in the trend’s initial value a¤ect expected returns on stocks and
bonds in the same direction. In the following paragraphs, changes in the divi-
dend yield’s initial value are considered since this predictor’s e¤ect is opposite
for each asset’s future returns.

The upper graph of …gure 12 corresponds to the case when DP is initially
at its 25th sample percentile, the central graph corresponds to a situation in
which all predictors initially take on their mean values, and …nally the lower
graph shows the evolution of the investor’s portfolio with the horizon when DP
is initially at its 75th sample percentile. Two main conclusions can be drawn
from …gure 12.

First, as the investment horizon increases, the investor increases his position
in stocks and decreases the portfolio weight in the riskless asset. Changes in
the predictor’s initial value do not substantially alter the horizon e¤ect on the
investment in stocks or the levels of investment for every horizon. However, a
higher initial value of DP decreases the investor’s position in long-term bonds
and decreases the negative horizon e¤ect.

Second, it is interesting to note that predictability makes asset substitution
–as a response to changes in the predictor’s initial value– depend on the in-
vestment horizon. In particular, when the investment horizon is short, a higher
initial value of the DP induces the investor to decrease his position in bonds
and increase his position in the riskless asset. On the other hand, when the
investment horizon is long, when DP increases, the investor allocates less to
bonds and more to stocks.

Figure 13 shows that under parameter uncertainty the investor’s position in
stocks is practically constant in the investment horizon for any initial value of
the predicting variable. As for bonds, under parameter uncertainty there is a
negative horizon e¤ect for any of the predictor’s initial values. As a consequence,
as the horizon increases, the investor always increases his position in the riskless
asset at the expense of long-term bonds. Comparing with the previous …gure,
for long horizons introducing estimation risk has a dramatic impact on the po-
sition in stocks: when predictors are initially at their mean levels, the investor’s
optimal position in stocks falls by half. Again, the impact of estimation risk on
the weight in bonds is less evident.

Another interesting question is how optimal asset allocation varies with the
investor’s degree of risk aversion for a …xed investment horizon. Figure 14 shows
results for this analysis. Just as in Campbell and Viceira (1988) the demand for
long-term bonds arises when the degree of risk aversion surpasses a given level
and from that level on it slowly decreases as the risk aversion coe¢cient becomes
larger. Besides, a more risk averse investor allocates less resources to stocks and
more to the riskless asset. It must be noted that the investor’s optimal position
in bonds is sensibly higher than the “myopic” demand found by Campbell and
Viceira (1998). Given the small horizon e¤ect detected for long-term bonds in
the presence of stocks, this di¤erence cannot be attributed to the horizon e¤ect,
but rather to the absence of in‡ation risk in the present analysis.

16



Consistently with mean variance analysis, the fraction of 10-year bonds in
the risky asset portfolio is stable for di¤erent degrees of risk aversion (31.5 per
cent approximately), except for, of course, when the short sale restriction is
e¤ective. When the investor takes estimation risk into account (lower graph)
although returns are no longer normally distributed, the fraction of the risky
portfolio invested in long-term bonds is constant for all risk aversion coe¢cients
considered and equals 1=3. Since estimation risk increases investment in the
riskless asset, in terms of proportion relative to the total portfolio, parameter
uncertainty has a larger impact on the investor’s position in stocks than on the
investor’s allocation to bonds. For instance, when the risk aversion coe¢cient
equals 10, stocks capture 47.5 per cent of the total portfolio without estimation
risk and 32.5 percent with estimation risk, whereas investment in bonds reduces
from 22.5 per cent to 17.5 per cent of the total portfolio.

7 Conclusions

This study addresses for the …rst time the question of horizon e¤ect on the
demand for Government debt when returns are predictable. It is well known that
just as happens with stocks, bond returns also exhibit negative serial correlation.
If negative serial correlation were a su¢cient condition for the positive horizon
e¤ect found in stocks, then it would be reasonable to expect the same e¤ect
on the demand for long-term bonds. Numerical results however do not support
this hypothesis. Horizon e¤ects can either be positive or negative depending
on whether the predictor’s initial value is lower (higher) or higher (lower) than
its historical mean when the regression coe¢cient is positive (negative). In the
very long term horizon e¤ects disappear, just as happens when the predictors’
initial values are around their sample means. These results are supported by
a theoretical analysis of the mean variance ration of cumulative returns for the
case of a single risky asset and a single predictor. Intuitively, the in‡uence
(positive or negative) of the predictor’s initial value tends to decay with time
when the explaining variable is stationary. Stationarity thus induces optimal
demands for di¤erent initial values of the predictor to converge in the limit
whenever the mean horizon e¤ect dominates that on the variance. This may
thus imply both positive and negative horizon e¤ects.

Introducing parameter uncertainty in the investor’s problem decreases both
the level of investment for every horizon as well as its growth as the horizon
increases. Estimation risk seems to have a larger impact on the demand for
stocks than on that for Government Bonds.

The dynamic allocation problem shows that optimal hedging demands for
long-term bonds are negligible at all investment horizons.

Finally, optimal asset allocation when both risky assets are available seems
to be highly consistent with the single risky asset case.

The results of the analysis have consequences both in terms of further ap-
proximating to the e¤ect of predictability on optimal portfolio choice, as well
as in more practical terms given the weight of investment by mutual funds in
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…xed income assets.
An interesting extension, already pointed out by Kandel and Stambaugh

(1996) is the problem of incorporating conditional heteroscedasticity in the
model, which is likely to a¤ect the way predictability a¤ects optimal portfo-
lio choice.

On the other hand, and in the context of parameter uncertainty, the use of
informative prior probability density functions would enable us to see how opti-
mal asset allocation varies for di¤erent degrees of con…dence in di¤erent models.
Related to this point, Avramov (1999) has studied model risk in portfolio choice
with stock portfolios.

Finally, it should be remembered that the implications of optimal portfo-
lio choice under predictability in a general equilibrium context are yet to be
explored.
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Tables

Table 1. Returns and predictors.
This table shows descriptive statistics of the return on the New York Stock Exchange
index, the return on the 10-year US Government Bonds, the return on the one-month
Treasury Bills, the default spread, the dividend yield on the stock index, the term spread
and the stock index trend. Returns and observation frequency are monthly. Data cover
the period from January 1959 to December 1998. The sample size is 468 since 12 obser-
vations are lost.

Mean Median St. Dev. Assyimetry Kurtosis Min Max
Stocks 0.009 0.012 0.043 -0.709 3.256 -0.246 0.152

10-yr. Bonds 0.006 0.003 0.022 0.382 1.386 -0.069 0.095
1-month Bill 0.005 0.004 0.002 1.295 2.324 0.000 0.015
Def. Spread 0.997 0.850 0.450 1.246 1.404 0.32 2.690

DP 3.480 3.361 0.881 0.368 -0.124 1.544 6.123
Term Spread 0.696 0.738 0.970 -0.117 0.198 -2.686 3.135

Trend 1.712 2.295 3.961 -0.810 1.106 -16.434 11.012
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Table 2. Correlations.
This table shows correlation coe¢cients in the sample between the
variables (panel A), as well as the serial autocorrelation coe¢cients
for 1, 3, 6, and 12 lags (panel B).

Panel A

Bonds Def. Spread DP Term Spread Trend.
Stocks 0.2803 0.0979 -0.1313 0.1515 0.4621
Bonds 1 0.1129 -0.0032 0.1336 0.0211

Def. Spread 1 0.6635 0.0932 0.0617
DP 1 -0.1800 -0.3314

Term Spread 1 0.2277
Trend 1

Panel B

½1 ½3 ½6 ½12

Stocks 0.0601 -0.0027 -0.0662 0.0217
10-year Bonds 0.0755 -0.0685 0.0670 0.0096
Def. Spread 0.9720 0.9055 0.8287 0.6813

DP 0.9812 0.9439 0.8812 0.7720
Term Spread 0.9609 0.8441 0.7189 0.5348

Trend 0.8783 0.6180 0.2483 -0.1530
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Table 3. Single predictor VAR parameters.
Parameter estimates on this table correspond to model:

rt+1 = ® + ¯xt + "1t+1

xt+1 = ° + Áxt + "2t+1µ
"1t+1

"2t+1

¶
» N

�
0;

µ
¾2

1 ¾12

¾12 ¾2
2

¶¸

where rt is the continuously compunded monthly excess return on the
risky asset (stocks or 10-year bonds) and xt is the predictive variable (DP
or Trend, respectively).

Regression coe¢cients

Constant DP
Stocks -0.0044 0.0025

DP 0.0477 0.9862

Constant Trend
10-year Bonds 0.0025 -0.0007

Trend 0.2121 0.8787

Covariance of residuals.

Stocks. DP
Stocks 0.0019 -0.9296¤

DP 0.0290

10-year Bonds Trend
10-year Bonds 0.0005 0.2690¤

Trend 3.5932

(Values marked with * are correlation coe¤…cients).
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Table 4.4. Posterior mean of C.

Constant Def. spread DP Term Spread Trend
Stocks -0.0076 0.0066 0.0007 0.0053 -0.0004

10-year Bonds 0.0003 0.0038 -0.0008 0.0024 -0.0009
Def. spread -0.0039 0.9499 0.0208 -0.0142 -0.0047

DP 0.0475 -0.0462 1.0014 -0.0195 0.0022
Term spread 0.0452 0.1522 -0.0416 0.9581 -0.0126

Trend -0.5764 0.3902 0.0791 0.1989 0.8705

Table 4.5. Posterior mean of matrix §.
Values above the main diagonal are correlation coe¢cients.

Stocks Bonds Def. spread DP Term spread Trend.
Stocks 0.0019 0.2695 0.0783 -0.9379 0.1399 0.9903
Bonds 0.0005 0.2485 -0.2827 0.1620 0.2624

Def. spread 0.0102 -0.0990 0.1634 0.0723
DP 0.0289 -0.1935 -0.9325

Term spread 0.0704 0.1318
Trend 3.5845
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Figures
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Figure 1. Predictors. This …gure shows the serial plot of the four variables
chosen as predictors of the returns on the stock index and the 10-year bond
index. The frequency of observation is monthly and data cover the period
from January 1959 to December 1998. The sample size is 468 since 12
observations are lost.
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Figure 2. Allocation to stocks in the absence of Government Bonds
as a function of the investment horizon when dividend yield is the only
predictive variable. The graph plots the solution to the investor’s static
portfolio choice problem when the investment opportunity set contains
the riskless asset and a stock index whose excess return is assumed to
be generated by a VAR model that includes the dividend yield as the
single predictor. The dash-dot line corresponds to an initial value of DP
equal to 3.5, the solid line to 4, and the dash line 4.5.
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Figure 3. Allocation to long-term bonds in the absence of stocks as a
function of the investment horizon when trend is the only predictor.
The graph plots the solution to the investor’s static portfolio choice
when the investment opportunity set only contains the riskless asset
and a 10-year bond portfolio whose excess return is assumed to be
generated by a VAR model that includes trend as the single predictor.
The dash-dot line corresponds to an initial value of trend equal to -1,
the solid line corresponds to 2, and the dash line corresponds to 5. The
risk aversion coe¢cient is 10.
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Figure 4. Allocation to bonds as a function of the investment horizon and
the default spread. The graph plots for di¤erent horizons the allocation to
10-year bonds in the absence of stocks when returns are assumed to be
generated by a VAR model with four predictors. The initial values of the
default spread are 0.69 (dash-dot line), 0.99 (solid line), and 1.21 (dash line).
In every graph, the initial values for the rest of variables are their sample means.28
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Figure 5. Allocation to bonds as a function of the investment horizon and
the dividend yield. The graph plots for di¤erent horizons the allocation to
10-year bonds in the absence of stocks when returns are assumed to be gen-
erated by a VAR model with four predictors. The initial values of the divi-
dend yield are 2.88 (dash-dot line), 3.48 (solid line), and 4.07 (dash line).
In every graph, the initial values for the rest of variables are their sample
means.
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Figure 6. Allocation to bonds as a function of the investment horizon
and the term spread. The graph plots for di¤erent horizons the alloca-
tion to 10-year bonds in the absence of stocks when returns are assumed
to be generated by a VAR model with four predictors. The initial values
of the term spread are 0.09 (dash-dot line), 0.69 (solid line), and 1.39
(dash line). In every graph, the initial values for the rest of variables are
their sample means.
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Figure 7. Allocation to bonds as a function of the investment horizon and
the trend. The graph plots for di¤erent horizons the allocation to 10-year
bonds in the absence of stocks when returns are assumed to be generated
by a VAR model with four predictors. The initial values of the term spread
are -0.7 (dash-dot line), 1.71 (solid line), and 4.5 (dash line). In every graph,
the initial values for the rest of variables are their sample means.31
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Figure 8. Allocation to bonds as a function of the investment horizon
and the trend under parameter uncertainty. The graph plots for di¤-
erent horizons the allocation to 10-year bonds in the absence of stocks
when returns are assumed to be generated by a VAR model with four
predictors. The initial values of the term spread are -0.7 (dash-dot line),
1.71 (solid line), and 4.5 (dash line). In every graph, the initial values
for the rest of variables are their sample means. The investor takes esti-
mation risk into account.
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Figure 9. Dynamic allocation to stocks and bonds as a function of
the investment horizon, and the dividend yield and trend respectively.
The top graph plots for di¤erent horizons the allocation to stocks when
returns are assumed to be predicted by the dividend yield. The initial
values of the dividend yield equal 1, 2, ¢¢¢, 7 (from bottom to top).
The bottom graph plots for di¤erent horizons the allocation to stocks
when returns are assumed to be predicted by the trend. The initial
values of the trend equal -2, -1, ¢¢¢, 3 (from top to bottom).
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Figure 10. Allocation to bonds and stocks for di¤erent initial values of trend.
The graph plots the static allocation to the riskless asset (light shade) 10-year
bonds (medium shade) and stocks (dark shade) for di¤erent horizons when re-
turns are assumed to be generated by a VAR model with four predictors. The
initial values of trend are -0.7 (upper graph) and 4.5 (lower graph). The rest of
initial variables are initially at their mean levels. The investor does not take par-
ameter uncertainty into account. The risk aversion coe¢cient is 10.
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Figure 11. Allocation to bonds and stocks for di¤erent initial values of trend
under parameter uncertainty. The graph plots the static allocation to the risk-
less asset (light shade) 10-year bonds (medium shade) and stocks (dark shade)
for di¤erent horizons when returns are assumed to be generated by a VAR mo-
del with four predictors. The initial values of trend are -0.7 (upper graph) and
4.5 (lower graph). The rest of variables are initially at their mean levels. The
investor takes parameter uncertainty into account. The risk aversion coe¢cient is 10.

35



0%

20%

40%

60%

80%

100%

30 60 90 120

0%

20%

40%

60%

80%

100%

30 60 90 120

0%

20%

40%

60%

80%

100%

30 60 90 120

horizon (months)

Figure 12. Allocation to bonds and stocks for di¤erent initial values of
dividend yield. The graph plots the static allocation to the riskless asset
(light shade) 10-year bonds (medium shade) and stocks (dark shade) for
di¤erent horizons when returns are assumed to be generated by a VAR
model with four predictors. The initial values of DP are 2.88 (upper graph)
3.44 (middle graph) and 4.07 (lower graph). The rest of variables are in-
itially at their mean levels. The investor does not take parameter uncer-
tainty into account. The risk aversion coe¢cient is 10.
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Figure 13. Allocation to bonds and stocks for di¤erent initial values of
dividend yield under parameter uncertainty. The graph plots the optimal
allocation to the riskless asset (light shade) 10-year bonds (medium shade)
and stocks (dark shade) for di¤erent horizons when returns are assumed
to be generated by a VAR model with four predictors. The initial values
of DP are 2.88 (upper graph) 3.44 (middle graph) and 4.07 (lower graph).
The rest of variables are initially at their mean levels. The investor takes
parameter uncertainty into account. The risk aversion coe¢cient is 10.
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Figure 14. Portfolio choice and risk aversion. The graphs plot the optimal
allocation to the riskless asset (light shade), 10-year bonds (medium shade)
and stocks (dark shade) for a 5 year investment horizon and when predictors
are initially at their sample means.
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