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Abstract

We use high-frequency data to study the dynamic relationship between volatility and equity
returns. We provide evidence on two alternative mechanisms of interaction between returns and
volatilities: the leverage effect and the volatility feedback effect. The leverage hypothesis asserts
that return shocks lead to changes in conditional volatility, while the volatility feedback effect
theory assumes that return shocks can be caused by changes in conditional volatility through a
time-varying risk premium. On observing that a central difference between these alternative
explanations lies in the direction of causality, we consider vector autoregressive models of
returns and realized volatility and we measure these effects along with the time lags involved
through short-run and long-run causality measures proposed in Dufour and Taamouti (2008), as
opposed to simple correlations. We analyze 5-minute observations on S&P 500 Index futures
contracts, the associated realized volatilities (before and after filtering jumps through the
bispectrum) and implied volatilities. Using only returns and realized volatility, we find a weak
dynamic leverage effect for the first four hours at the hourly frequency and a strong dynamic
leverage effect for the first three days at the daily frequency. The volatility feedback effect
appears to be negligible at all horizons. By contrast, when implied volatility is considered, a
volatility feedback becomes apparent, whereas the leverage effect is almost the same. We
interpret these results as evidence that implied volatility contains important information on
future volatility, through its nonlinear relation with option prices which are themselves forward-
looking. In addition, we study the dynamic impact of news on returns and volatility, again
through causality measures. First, to detect possible dynamic asymmetry, we separate good
from bad return news and find a much stronger impact of bad return news (as opposed to good
return news) on volatility. Second, we introduce a concept of news based on the difference
between implied and realized volatilities (the variance risk premium) and we find that a positive
variance risk premium (an anticipated increase in variance) has more impact on returns than a
negative variance risk premium.

Keywords: Volatility asymmetry, leverage effect, volatility feedback effect, return risk
premium, variance risk premium, multi-horizon causality, causality measure, high-frequency
data, realized volatility, bipower variation, implied volatility.

Journal of Economic Literature classification: G1; G12; G14; C1; C12; C15; C32; C51; C53.
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1. Introduction

One of the many stylized facts about equity returns is an asgtmic relationship between returns
and volatility. Volatility tends to rise following negagvreturns and fall following positive returns.
Two main explanations for volatility asymmetry have beeapmsed in the literature. The first
one is theleverage effect: a decrease in the price of an asset increases financiah{gva@nd the
probability of bankruptcy, making the asset riskier, heaéncrease in volatility; see Black (1976)
and Christie (1982). When applied to an equity index, thigioal idea translates into a dynamic
leverage effect. The second explanation is tie atility feedback effect, which is related to the time-
varying risk premium: if volatility is priced, an anticipat increase in volatility raises the required
rate of return, implying an immediate stock price declinerider to allow for higher future returns;
see Pindyck (1984), French, Schwert and Stambaugh (19@®pkell and Hentschel (1992), and
Bekaert and Wu (2000).

As mentioned by Bekaert and Wu (2000) and Bollerslev et 8062, the difference between
the leverage and volatility feedback explanations for tilitla asymmetry is related to eausality
issue. The leverage effect explains why a negative retwaksleads to higher subsequent volatility,
while the volatility feedback effect justifies how an anpiaied increase in volatility may result in
a negative return. Thus, volatility asymmetry may resutrfrvarious causal links: from returns to
volatility, from volatility to returns, instantaneous cality.

In order to quantify and compare the strength of dynamicrbeye and volatility feedback ef-
fects, we propose to use vector autoregressive (VAR) marfaisturns and various measures of
volatility at high frequency together with short and longyrcausality measures introduced in Du-
four and Taamouti (2008). Causality is defined as in Grant@89): a variablé” causes a variable
X if the variance of the forecast error &f obtained by using the past &f is smaller than the
variance of the forecast error &f obtained without using the past Bf. Using high-frequency data
increases the chance to detect causal links since aggnegaty make the relationship between
returns and volatility simultaneous. By relying on reatiamlatility measures we avoid the need to
specify a volatility model.

Using 5-minute observations on S&P 500 Index futures cotgrave first consider causality
measures based on a bivariate VAR involving returns andzeshvolatility. In this setting, we find

1The concept of leverage effect, which means that negativen® today increases volatility of tomorrow, was in-
troduced for individual stocks (or firms). However, it hasabeen applied to stock market indices; see Bouchaud,
Matacz and Potters (2001), Jacquier, Polson and Rossi \2Bf#hdt and Kang (2004), Ludvigson and Ng (2005), and
Bollerslev, Litvinova and Tauchen (2006).



a weak dynamic leverage effect for the first four hours in hodata and a strong dynamic leverage
effect for the first three days in daily data. The volatiligetiback effect appears to be negligi-
ble, irrespective of the horizon considered. These findargsconsistent with those of Bollerslev
et al. (2006), who also looked at these relationships usigig-fiequency data and realized volatil-
ity measures. Their empirical strategy consists in lookahghe correlation between returns and
realized volatility to measure and compare the magnitudéne@feverage and volatility feedback
effects. They found an important negative correlation leetwvolatility and current and lagged
returns lasting for several days, while correlations betweturns and lagged volatility are all close
to zero. However, correlation is a measure of linear assonidut does not necessarily imply a
causal relationship.

The importance of the distinction between correlation asugsality is underscored when con-
sidering horizons longer than one period: auxiliary vagabcan transmit causality between two
variables of interest at horizons strictly higher than aagen if there is no causality between the
two variables at the horizon one; see Dufour and Renault3)19@ studying the relationship be-
tween volatility and returngmplied volatility — derived from option prices — can be an interesting
alternative measure of volatility or constitute a usefutiary variable, because option prices may
capture additional relevant information as well as nodmeelations. Implied volatility can be
viewed as a forward-looking measure of volatility with arrihon corresponding to the maturity of
the option. We show that adding implied volatility to thednhation set to forecast returns pro-
vides statistical evidence for a sizable volatility feeclbaffect for a few days. It is about three
times smaller than the leverage effect but it lasts longéileathe leverage effect remains almost
the same. A key element of the volatility feedback mechangsiemn increase of expected future
volatility. Implied volatility certainly provides an omin market forecast of future volatility, which
is better than a forecast based on past realized volatiiopling the information contained in fu-
tures and options markets unveils an effect that cannot lredfevith one market alone. This is a
new potentially important result empirical finding.

Studies focusing on the leverage hypothesis concludehbdatter cannot completely account
for changes in volatility; see Christie (1982) and Schw&#89). However, for the volatility feed-
back effect, empirical findings conflict. French et al. (198Zampbell and Hentschel (1992) and
Ghysels, Santa-Clara and Valkanov (2004) find a positivetiozl between volatility and expected
returns, while Turner, Startz and Nelson (1989), Glostagadnathan and Runkle (1993) and Nel-
son (1991) find a negative relation. Often the coefficierkitig volatility to returns is statistically



insignificant. Ludvigson and Ng (2005) find a strong positemtemporaneous relation between
the conditional mean and conditional volatility and a sgroregative lag-volatility-in-mean effect.
Guo and Savickas (2006) conclude that the stock marketeiskn relation is positive, as stipulated
by the CAPM; however, idiosyncratic volatility is negatiyeelated to future stock market returns.
For individual assets, Bekaert and Wu (2000) argue thatdkeility feedback effect dominates the
leverage effect empirically.

The informational content of implied volatility does notae as a surprise. Several studies have
documented that implied volatility can be used to predicethibr a market is likely to move higher
or lower and help to predict future volatility; see Day andmMie (1992), Canina and Figlewski
(1993), Lamoureux and Lastrapes (1993), Fleming (1998gdPman (2000), Blair, Poon and Tay-
lor (2001), and Busch, Christensen and Nielsen (2006).

Another contribution of this paper consists in showing thatproposed causality measures help
to quantify the dynamic impact of bad and good return newsaatiity.> A common approach
for empirically visualizing the relationship between neawxl volatility is provided by the news-
impact curve originally studied by Pagan and Schwert (129@) Engle and Ng (1993). To study
the effect of current return shocks on future expected NityaEngle and Ng (1993) introduced the
News Impact Function (hereaftdf/ F'). The basic idea of this function is to consider the effect of
the return shock at timeon volatility at timet + 1 in isolation while conditioning on information
available at time and earlier. Engle and Ng (1993) explain that this curve,revfadl the lagged
conditional variances are evaluated at the level of thetast@n unconditional variance, relates
past positive and negative returns to current volatility.

We propose a new curve for capturing the impact of news ortilityldbased on causality mea-
sures. In contrast with th&¥ I F* of Engle and Ng (1993), our curve can be constructed for pattén
and stochastic volatility models and it allows one to coesall the past information about volatil-
ity and returns. We build confidence intervals using a baapstechnique around our curve, which
provides an improvement over usual asymptotic methodstébisscal inference. Further, we can
visualize the impact of news on volatility at different hmoms [see also Chen and Ghysels (2007)]
rather than only one horizon as in Engle and Ng (1993).

2In this study bad and good news are determined by negativpasitive innovations in returns and volatility. Another
literature considers the impact of macroeconomic news @megments on financial markets (e.g. volatility), see for
example Cutler, Poterba and Summers (1989), Schwert (188&hrce and Roley (1985), Hardouvelis (1987), Haugen,
Talmor and Torous (1991), Jain (1988), McQueen and Role93)19Balduzzi, Elton and Green (2001), Andersen,
Bollerslev, Diebold and Vega (2003), and Huang (2007).



We confirm by simulation that the new curve based on causal#gpsures detects well the
differential effect of good and bad news in various parammeulatility models. Then, we apply the
concept to the S&P 500 Index futures returns and volatikieg: find a much stronger impact from
bad news at several horizons. Statistically, the impactaof tews is significant for the first four
days, whereas the impact of good news is negligible at aizbos.

Our results on the informational value of implied volagilélso suggest that the difference be-
tween implied and realized volatility (called tlhariance risk premium) constitutes an interesting
measure of “news” coming to the market. So we compute caysakasures from positive and
negative variance risk premia to returns. We find a stronggact when the difference is positive
(an anticipated increase in volatility or bad news) thanmibés negative.

The plan of the paper is as follows. In Section 2, we definetNityameasures in high-frequency
data and we review the concept of causality at differentZoms and its measures. In Section 3,
we propose and discuss VAR models that allow us to measuezage and volatility feedback
effects with high-frequency data. In Section 4, we propasese implied volatility(/V) — in ad-
dition to realized volatility and returns — in order to me@sthe dynamic leverage and volatility
feedback effects. Section 5 describes the high-frequeatay; the estimation procedure and the em-
pirical findings regarding causality effects between vliatand returns. In Section 6, we propose
a method to assess the dynamic impact of good and bad retuenamevolatility. Simulation results
on the efficiency of this method are also presented. Our érapiesults on news effects in S&P
500 futures market appear in Section 7. We conclude in Se8tio

2. \Volatility and causality measures

To assess causality between volatility and returns at higgjuency, we need to build measures for
both volatility and causality. For volatility, we use vaummeasures of realized volatility introduced
by Andersen, Bollerslev and Diebold (2@)3see also Andersen and Bollerslev (1998), Andersen,
Bollerslev, Diebold and Labys (2001), Barndorff-NielsemdeShephard (20@8, and Barndorff-
Nielsen and Shephard (2062 For causality, we rely on the short and long run causaligasures
proposed by Dufour and Taamouti (2008).

Let us first set some notations. We denote the tinfmgarithmic price of the risky asset or
portfolio by p; and the continuously compounded returns from tin@t + 1 by 7.1 = pry1 — pr.
We assume that the price process may exhibit both stochamtlity and jumps. It could belong



to the class of continuous-time jump diffusion processes,
dpy = pydt + o dWy + kydqy, 0 <t < T, (2.1)

where 1, is a continuous and locally bounded variation processijs the stochastic volatility
process,W; denotes a standard Brownian motieify, is a counting process witllg; = 1 corre-
sponding to a jump at timeanddq; = 0 otherwise, with jump intensity;. The parametex, refers
to the size of the corresponding jumps. Thus, the quadratiation of returns from timetot + 1
is given by

41
[r, r]t+1:/ Jgds—i— E HE (2.2)
t

where the first component, called integrated volatilitynes from the continuous component of
(2.1), and the second term is the contribution from discj@teps. In the absence of jumps, the
second term on the right-hand-side disappears, and theajicadariation is simply equal to the
integrated volatility.

2.1. Volatility in high-frequency data: realized volatility, bipower variation, jumps

In this section, we define the various high-frequency messtimat we will use to capture volatility.
In what follows we normalize the daily time-interval to yndnd we divide it intoh periods. Each
period has lengthd = 1/h. Let the discretely sampled-period returns be denoted by, 1) =
pt — pt—A and the daily return by, = Z;L:I T(t+4.A,4)- The daily realized volatility is defined
as the summation of the correspondingigh-frequency intradaily squared returns:

h

RVigy1 =) 7hiia ) (2.3)
j=1
The realized volatility satisfies
lim RV = " 2d 2
t+1 — Og 5+ Z Kg, (24)
A—0 t 0<s<t

which means thaRV,, is a consistent estimator of the sum of the integrated veeid) ! o2ds
and the jump contribution; see Andersen and Bollerslev&},98ndersen, Bollerslev, Diebold and
Labys (2001), Andersen, Bollerslev and Diebold (2808arndorff-Nielsen and Shephard (2@02



2002), and Comte and Renault (1998Bimilarly, a measure of standardized bipower variation is

given by
h

™
BV = 5 Z | Teja, a) I Ter -4, ) | - (2.5)
=2

Under reasonable assumptions on the dynamics of (2.1)jpbever variation satisfies

t+1 )
lim B = ds; 2.6
Jim By = [ atas: (26)

see Barndorff-Nielsen and Shephard (2004) and Barnda€fsiih, Graversen, Jacod, Podolskij
and Shephard (2005). Equation (2.6) means &}, , provides a consistent estimator of the
integrated variance unaffected by jumps. Finally, as ndtgdBarndorff-Nielsen and Shephard
(2004), combining the results in equation (2.4) and (21&),dontribution to the quadratic variation
due to the discontinuities (jumps) in the underlying pricegess may be consistently estimated by

(RViy1 — BVip1) = > k2. (2.7)

0<s<t

lim
A—0
We can also define the relative measure

(RVig1 — BViga)

Ry = 2.8
t+1 RVinr (2.8)

or the corresponding logarithmic ratio
Jir1 = In(RVii1) — In(BViyq), (2.9)

Huang and Tauchen (2005) argue that these are more robustiresaf the contribution of jumps
to total price variation Since in practice/;;; can be negative in a given sample, we impose a
non-negativity truncation of the actual empirical jump s@@ments:

Jt+1 = max[ln(RVHl) — ln(BVt_H), O] 5 (210)

see Andersen, Bollerslev and Diebold (28Dand Barndorff-Nielsen and Shephard (2004).

3For a general discussion of integrated and realized vitlesilin the absence of jumps, see Meddahi (2002).



2.2.  Short-run and long-run causality measures

We study the causality at different horizons between rat(ry) and volatilities(o?). For that pur-
pose, it will be convenient to define finsbncausality in terms of orthogonality between subspaces
of a Hilbert space of random variables with finite second musie To give a formal definition
of noncausality at different horizons, we need to consitlerfollowing notations. We denote by
r(w,t], o?(w,t], andz(w,t] the information contained in the history of variables otiestr and

o2 and another auxiliary variable respectively up to time. The “starting point’w is typically
equal to a finite initial date (such as= —1, 0 or 1) or to —oco. In our empirical application the
auxiliary variablez is given by the implied volatility (hereaftdrl”). The information sets obtained
by “adding” z(w,t] to r(w,t], z(w,t] to 0?(w,t], r(w,t] to o%(w,t], and z(w,t] to r(w,t] and
o?(w, t] are defined as:

I.(t) = Iy + r(w, t] + z(w, t], L2,(t) =Iy+ o*(w, t] + 2(w, t], (2.11)

Ircr2 (t) =1y + T(‘”» t] + 02(&), t] ) ITUQZ(t) =1y + ’I”(UJ, t] + UQ(UJ, t] + Z(UJ, t] ) (212)

wherel, represents a fundamental information set available ineaiés (such as deterministic vari-
ables, a constant, etc.). Finally, for any given informatget B,, we denote bWar[r.,; | By
(respectivelyVar[o7,, | By]) the variance of the forecast errorqf,; (respectivelyo?, ,) based
on the information seB;.* Thus, we have the following definition of noncausality afetfiént hori-
zons [see Dufour and Renault (1998) and Dufour and Taam2Q®ig)].

Definition 2.1 Let h be a positive integer.
(i) r does not cause o at horizon h given I 2, (t), denoted r - o2 | I2,(t), iff

Var [0, | I,2.(1)] = Var [07,, | Lg2:(t)] ; (2.13)

(i) r does not cause o up to horizon h given I,2,(t), denoted r (73 02 | L2, (t), iff
r o2 | Lo, (t)fork=1,2,..., h; (2.14)

(iii) r does not cause o at any horizon given 1,2, (t), denoted e o | I2,(t), iff

7”—1?02 | L2, (t)forall k=1,2, ... (2.15)

4B, can be equal td,,.(t), I~ (t), or I, (t).



Definition 2.1 corresponds to causality fromto o2 and means that causess? at horizonh
if the past ofr improves the forecast of? ., given the information sef,,-.(t). We can similarly
define noncausality at horizdnfrom o2 to ». The presence of auxiliary variabtemay transmit
the causality between ando? at horizonh strictly higher than one even if there is no causality
between the two variables at horizbnHowever, in the absence of auxiliary variable, noncaysalit
at horizonl implies noncausality at any horizdnstrictly higher than one; see Dufour and Renault

(1998). In other words,

T o? | o*(w, t] = r (—H) o2 | La(t), (2.16)
o? T | r(w, t] = o? (—H) r| I.(t), (2.17)

wherel 2 (t) = Ip+0%(w,t] andl,.(t) = Iy+r(w,t]. Ameasure of causality fromto o2 at horizon
h, denotedC(r - a?), is given by following function [see Dufour and Taamouti (300

Cﬁﬂﬁjcﬂ):ln (2.18)

Var[crerh | I,2,(t)]
Var[ag-ph | ITUQZ(t)]

Similarly, a measure of causality froat to r at horizonh, denotedC (o - r), is given by:

(2.19)

Clo® — ) =1n [ Varlrn | Ira (1) }

Var[TtJrh | Irchz(t)] .
For example('(r - o2) measures the causal effect frerto o2 at horizonh given the past of>
andz. In terms of predictability, it measures the informationegivby the past of that can improve

the forecast ob7, ,. SinceVar[o7, ), | I,2,(t)] > Var[o7,, | I,,2,(t)], the functionC(r — o?)

t+h
is nonnegative. Furthermore, it is zero when when there isansality at horizork. However, as
soon as there is causality at horizon 1, causality meastidifexent horizons may considerably
differ.

In Dufour and Taamouti (2008), a measure of instantaneousatity between- and o2 at

horizonh is also proposed. It is given by the function

Var[TtJrh | Ira2z(t)] Var[af—i—h | Ircr2z(t)]
det (E [Tt-I—hy O'?Jrh | Irazz(t)])

Cw?a%:m (2.20)

wheredet (X [rin, 07, | 1,02.(t)]) represents the determinant of the variance-covarianceéxmat
2 [revns 07y | Loz, (t)] of the forecast error of the joint proceés 02), at horizonh given the



information setl,.2. (t). Note thato? may be replaced bin(c?). Since the logarithmic transfor-
mation is nonlinear, this may modify the value of the catgatieasure.

In what follows, we apply the above measures to study theatiysit different horizons from
returns to volatility (hereafter leverage effect), fromatdity to returns (hereafter volatility feed-
back effect), and the instantaneous causality and depeadsgtween returns and volatility. In
Section 3, we study these effects by considering a limitéatimation set which contains only the
past of returns and realized volatility. In Section 4, weeexied our information set by adding the
past of implied volatility.

3. Measuring leverage and volatility feedback effects in a AR model

In this section, we study the relationship between the metuand its volatility 2. The objective
is to measure and compare the strengtbyobmic leverage and volatility feedback effects in high-
frequency equity data. These effects are quantified witlércontext of a VAR model and by using
short and long run causality measures proposed by Dufoufaaahouti (2008). Since the volatility
asymmetry may be the result of causality from returns totilitye[leverage effect], from volatility
to returns [volatility feedback effect], instantaneousigality, all of these causal effects, or some
of them. We wish to measure all these effects and to compare th order to determine the most
important ones.

We suppose that the joint process of returns and logaritholatility, (14,1, In(o? H))/ follows

an autoregressive linear model

p
Tt+1 Tt41—5
= U+ oy ( > +u 3.1
(1n(0?+1) ) g g; T\ In(0f4;) . G-
where
as [ upyy > _ [ P11 Py ] .
= ;U1 = , D= , =1 ...,p, 3.2

Y, fors=t

0 fors #t (3-3)

E [u] = 0 andE [utu;] = {

In the empirical applicatiow?, ; will be replaced by the realized volatilitigV;.., or the bipower
variation BV; 1. The disturbance:; , is the one-step-ahead error when, is forecast from its
own past and the past bf(o7, ), and similarlyu?, , is the one-step-ahead error wheifo?, ) is



forecast from its own past and the pastgf; . We suppose that these disturbances are each serially
uncorrelated, but may be correlated with each other cortesmgously and at various leads and
lags. Sinceu, , is uncorrelated withl, = (t), the equation for;, ; represents the linear projection
of ri41 on1,,2(t). Likewise, the equation fam (o7, ;) represents the linear projectionlafc?, ;)
onl,,2(t).

Equation (3.1) allows one to model the first two conditionalments of the asset returns. We
model conditional volatility as an exponential functioropess to guarantee that it is positive. The
first equation of thé” AR(p) in (3.1) describes the dynamics of the return as

p p
Tir1 = My + Z Pr1jTe+1—5 + Z B1ojIn(07, 1 ;) +upy - (3.4)
j=1 j=1

This equation allows to capture the temporary componenaofdand French (1988) permanent and
temporary components model, in which stock prices are gaebby a random walk and a stationary
autoregressive process, respectively. #or; = 0, this model of the temporary component is the
same as that of Lamoureux and Lastrapes (1993); see alsdtBnach Kang (2004), and Whitelaw
(1994). The second equation BfAR(p) describes the volatility dynamics as

p p
In(0741) = e + D Porjreri—j + Y PagyIn(of ;) +ufy, (3.5)
j=1 j=1
and it represents the standard stochastic volatility mdemid,;; = 0, equation (3.5) can be viewed
as the stochastic volatility model estimated by Wiggins8{@)9 Andersen and Sgrensen (1996), and
many others. However, in this paper we consider tffqtl is not a latent variable and it can be
approximated by realized or bipower variations from higégliency data. We also note that the
conditional mean equation includes the volatility-in-meaodel used by French et al. (1987) and
Glosten et al. (1993) to explore the contemporaneous oektiip between the conditional mean
and volatility [see Brandt and Kang (2004)]. To illustrate ttonnection to the volatility-in-mean
model, we premultiply the system in (3.1) by the matrix

) B Cov(n-‘-;, In(c?, 1))
B Var[In(o7, 1)1, 2(t)]
L t . (3.6)

Var[n_‘_l ‘ITO_Q (t)}

Then, the first equation of_ ; is a linear function of the elements ofw, t], o%(w, t + 1], and the
Cov(riy1, In(o7))
Var[ln(o'%Jrl)\Iwg ®)]

disturbanceu;, | — u?, ;. Since this disturbance is uncorrelated with , it is
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uncorrelated withn(c7, ;) as well as with-(w, {] ando?(w, t 4 1]. Hence the linear projection of
re41 ON7(w, t] ando?(w, t + 1] is provided by the first equation of the new system:

p p
Tiy1 = Vp + Z Pr1jTt41—-5 + Z P12, ln(at2+1fj) + Ugyy - (3.7)
j=1 Jj=0
The new parametens,, ¢,q;, andgqy;, for j =0, 1,... ,p, are functions of parameters in the
vector 1o and matrix®;, for j = 1,...,p. Equation (3.7) is a generalized version of the usual
volatility-in-mean model, in which the conditional mearpédads contemporaneously on the con-
ditional volatility. Similarly, the existence of the linegrojection Ofln(0t2+1) onr(w,t+ 1] and
o (w, ],
p p
In(07,) = ve + Z Po1jTt41—5 + Z¢22j IH(UEH—J‘) + afy4 (3.8)
j=0 J=1
follows from the second equation of the new system. The neampeaters/,, ¢,;;, ande,,;, for
j =1,...,p, are functions of parameters in the vectoand matrix®;, for j = 1,... ,p. The
volatility model given by equation (3.8) captures the pesice of volatility through the terngs, ;.
In addition, it incorporates the effects of the mean on V¥itlgtboth at the contemporaneous and
intertemporal levels through the coefficienits ;, for j =0, 1,... , p.
Let us now consider the matrix

C g

2o¢
v 2 } ) (3.9)

where o2, and o2, represent the variances of the one-step-ahead forecass @fr return and
volatility, respectively. ¢ represents the covariance between these errors. Basedtems(s.1),
the forecast error ofr,In(07,,))" is given by:

h—1
e [(reen mo? ) | = 3 i, (3.10)
i=0
where the coefficients,, fori = 0,... ,h — 1, represent the impulse response coefficients of the
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M A(o0) representation of model (3.1). These coefficients are diyethe following equations:

wO = Ia
Py = Pripy = D1,
Yy = P1ipy + Potpy = B2 + Py, (3.11)

V3 = P11by + Potpy + Doty = D} + PPy + PPy + D3,

wherel is an identity matrix and
¢; =0, forj>p+1.
The covariance matrix of the forecast error (3.10) is given b
h—1
/ /
Var e[ (resn, In(07,)) 1] =D ¢y Suth;. (3.12)
1=0

We also consider the following restricted model:

D
Tt4+1 - 7 Tt+1—3 _
=p+ D +u 3.13
( In(c?, ;) ) H ; J ( 1n(0§+17j) > t+1 (3.13)
where
—_ [ B N @':[951” 0 } 1 _ 3.14
% < ﬂg > , Ut41 < ag+1 > ) 7 0 @22j y J y ooy Py ( . )
— [ &5, fors=t o [ Xu e
E [Ut] - 07 E |:utus:| - { 0 forS # t ) Eu — |: c Zﬂa :| . (315)

Zero values ind; mean that there is noncausality at horizofrom returns to volatility and from
volatility to returns. As mentioned in subsection 2.2, iniaabate system, noncausality at horizon
one implies noncausality at any horizarstrictly higher than one. This means that the absence of
leverage effect at horizon one (respectively the absencelafility feedback effect at horizon one)
which corresponds tds;; = 0, for j = 1,...,p, (respectivelybo; = 0, for j = 1,...,p,) is
equivalent to the absence of leverage effect (respectixabtility feedback effect) at any horizon
h > 1.

To compare the forecast error variance of model (3.1) wittt tf model (3.13), we assume
thatp = p. Based on the restricted model (3.13), the covariance matrtke forecast error of
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(re+n,In(02,,))" is given by:

Var el(resn, n(02,,)) 1] = Y- 0; St (3.16)
1=0
where the coefficients;, for i = 0,... ,h — 1, represent the impulse response coefficients of

the M A(~o) representation of model (3.13). They can be calculatedarséime way as in (3.11).
From the covariance matrices (3.12) and (3.16), we definéotlmsving measures of leverage and
volatility feedback effects at any horizdn whereh > 1,

ey oy [ D e Tates |

v D ) [Z?ol es(¥; Ezﬂ/};)eQ]’ =01, (317)
2y L) = Z?gol ell(lz)i 2@@;)61 _ /

“m“)h7°‘mkﬁgéwﬁmmqr€“*L”‘ (818)

The parametric measure of instantaneous causality atdmohizwhereh > 1, is given by the
following function

C(r < In(0?)) =In

- (3.19)

(0 ea(v; Zui)en) (12g €3 (1 Sutby)er)
det(30g i Zutb;) '

4. Implied volatility as an auxiliary variable

An important feature of causality is the information setgidered to forecast the variables of in-
terest. Until now, we have included only the past of returnd eealized volatility. Since the
volatility feedback effect rests on anticipating futureveaments in volatility it is natural to include
option-based implied volatility, an all-important measof market expectations of future volatility.
Formally, we “add” the past of implied volatility to the infmation set/, ,»(t) that we considered
in the previous section. The new information set is given bgw,. ., (t), wherez is an auxiliary
variable represented by implied volatility.

In this paper, we consider call options written on S&P 50Ceinéutures contracts. The data
come from the OptionMetrics data set which contains his&bron option prices, dating back to
January 1996. Given observations on the option pficand the remaining variableS, K, 7,
andr, an estimate of the implied volatilityl” can be obtained by solving the nonlinear equation
C = C(S, K, r,r, IVY?) for IV1/2, whereC(:) refers to the Black-Scholes formula. Each
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day, we extract the implied volatility corresponding to tiion that is closest to the money. This
selection criterion ensures that the option will be liquittaherefore aggregates the opinion of
many investors about future volatility. This appears manpartant than keeping a fixed maturity.
This choice is often made in the empirical literature onappricing [see for example Pan (2002)].

Therefore, we consider a trivariate autoregressive modtiding implied volatility, in addition
to the realized volatility (bipower variation) and returhs

T4l e p | P11y Do Pizj Tty1—j Upyq
RVZ ., | = | wry | + Z Po1j Pooj D3 RV, | + U% (4.1)
IV, fry i=1 | P31 P3z; D3 IViy Up{s

whereRV;* = In(RV;) andIV;* = In(IV}). The first equation of the above system

p p p
Pern = it ) Pugren—gt ) PRV ) Pul Vi g (4.2)
j=1 j=1 =1

describes the dynamics of the return, while the second iequat

p p p
RV} =pgy + Z Po1jTe1—5+ Z Do RV + Z Doz IV _j + ufth (4.3)
j=1 j=1 j=1

describes the volatility dynamics. It is well known that ileg volatility can be used to predict
whether a market is likely to move higher or lower and helpregdjct future volatility [see Day and
Lewis (1992), Canina and Figlewski (1993), Lamoureux anstiages (1993), Poteshman (2000),
Blair et al. (2001), and Busch et al. (2006)]. The forwardkimg nature of the implied volatility
measure makes it an ideal additional variable to capturdenpal volatility feedback mechanism.
Apart from using/ V" without any constraint in (4.2) and (4.3), we will also lodknaore restricted
combinations dictated by financial considerations. Ingdlkd difference betweehl and RV
provides an estimate of the risk premium attributable tostré&ance risk factor.

5. Causality measures for S&P 500 futures

In this section, we first describe the data used to measusalitguin the VAR models of the previous
sections. Then we explain how to estimate confidence intenfacausality measures for leverage
and volatility feedback effects. Finally, we discuss oudifys.

®Further, we consider an autoregressive model where we atjgsjand our results do not change.
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5.1. Data description

Our data consists of high-frequency tick-by-tick transaciprices for the S&P500 Index futures
contracts traded on the Chicago Mercantile Exchange, twepériod January 1988 to December
2005 for a total of 4494 trading days. We eliminated a few dalisre trading was thin and the
market was open for a shortened session. Due to the unushghyvolatility at the opening,
we also omit the first five minutes of each trading day [seedBslibv et al. (2006)]. For reasons
associated with microstructure effects we follow Bollevstt al. (2006) and the literature in general
and aggregate returns over five-minute intervals. We catiethe continuously compounded returns
over each five-minute interval by taking the difference lestwthe logarithm of the two tick prices
immediately preceding each five-minute mark to obtain al totar7 observations per day [see
Mauller, Dacorogna, Gencay, Olsen, and Pictet (2001) anteBsbev et al. (2006) for more details].
We also construct hourly and daily returns by summimigand 77 successive five-minute returns,
respectively.

Summary statistics for the five-minute, hourly, and dailnes and the associated volatilities
are reported in tables 2 - 3 of Appendix A. From these, we saietite unconditional distributions
of the returns exhibit high kurtosis and negative skewn€ls.sample kurtosis is much greater than
the Gaussian value of three for all three series. The negskiewness remains moderate, especially
for the five-minute and daily returns. Similarly, the uncibiohal distributions of realized and
bipower volatility measures are highly skewed and lept&uHowever, on applying a logarithmic
transformation, both measures approximately normal [sedefsen, Bollerslev, Diebold and Ebens
(2001)]. The descriptive statistics for the relative jumpasure,/;, 1, clearly indicate a positively
skewed and leptokurtic distribution.

It is also of interest to assess whether the realized andveipeolatility measures differ signif-
icantly. To test this, recall that

t+1
Jim (RVi) = [ s 3 (5.1)
—0 t 0<s<t
Whereftt+1 o2ds is the integrated volatility and o< 2 represents the contribution of jumps to

total price variation. In the absence of jumps, the secormd t the right-hand-side disappears,
and the quadratic variation is simply equal to the integramgatility: or asymptotically A — 0)
the realized variance is equal to the bipower variance. Méatjstics have been proposed to test for
the presence of jumps in financial data [see for example BeffAielsen and Shephard (2002
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Andersen, Bollerslev and Diebold (2083 Huang and Tauchen (2005), among others]. In this
paper, we test for the presence of jumps in our data by catirsipihe following test statistics:

RViy1 — BV

; _ ’ 5.2
L G T 9AQPm o
sopy = BV — n(BVisy) (5.3)

, = QP '
V(B2 + 7 —5) AT
In(RViy1) — In(BViy1) (5.4)

ZQP,Im,t = — P s
(G2 + 7 —5)Amax(1, G)

where@ P, is the realized Quad-Power Quarticity [Barndorff-Nielsamd Shephard (2083,
with
h
QPri1 = hpy™> I rrga, o) I 7erg-1.a, 2) | TerG-20.0,2) 1| Ta+G—3).4,2) |, (5.5)
j=4

andp, = \/g Under the assumption of no jumps and for each tiqie statisticsgp,; ¢, 2gp,¢,
andzgp, i, + follow a Normal distributionV (0, 1) asA — 0. The results of testing for jumps in
our data are plotted in Figure 10 of Appendix A. These gragisesent the quantile to quantile
plots (hereafter QQ plot) of the relative measure of jumpegby equation (2.8) and the QQ Plots
of the other statisticsigp, .+, 2qp,t, andzgp,im,+. When there are no jumps, we expect that the
cross line and the dotted line in Figure 10 will coincide. Hwer, as this figure shows, the two
lines are clearly distinct, indicating the presence of jenipour data. Therefore, we will present
our results for both realized volatility and bipower vaicat

5.2. Causality measures

We examine several empirical issues regarding the rekdtiprbetween volatility and returns. Until
recently, these issues have been mainly addressed in tiextaoi volatility models. The main
reason is that before high-frequencies data were not &l@itnd the concept of realized volatility
took root, volatility modeling was the main way to filter thealbservable volatility. Bollerslev et al.
(2006) looked at these relationships using high-frequelatg and realized volatility measures. As
they emphasize, the fundamental difference between tieedge and the volatility feedback expla-
nations lies in the direction of causality. The leveragedfexplains why a low return causes higher
subsequent volatility, while the volatility feedback effeaptures how an increase in volatility may
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cause a negative return. However, they studied only coioakabetween returns and volatility at
various leads and lags, not causality relationships.

Here, we apply short-run and long-run causality measuregiémtify the strength of the re-
lationships between return and volatility. We use OLS tineste the VARp) models described
above and the Akaike information criterion to specify tt@ilers. To obtain consistent estimates of
the causality measures, we simply replace the unknown messby their estimates. We calculate
causality measures for various horizans= 1, ... ,20. A higher value for a causality measure in-
dicates a stronger causality. We also compute the corrdsppnominald5% bootstrap confidence
intervals according to the procedure described in AppeBdi¥urther details on the consistency
and statistical justification of the procedures used her@waailable in Dufour and Taamouti (2008).

The concept of Granger causality requires an informatiouse is analyzed in the framework
of a model between the variables of interest. Both the stheofjthis causal link and its statistical
significance are important. A major obstacle to detectingsality is aggregation. Low frequency
data may mask the true causal relationship between vasiablegh-frequency data thus offer an
opportunity to analyze causal effects. In particular, we @tinguish with an exceptionally high
resolution between immediate and lagged effects. Fumtiren if one’s interest focuses on relation-
ships at the daily frequency, using higher-frequency datzohstruct daily returns and volatilities
can provide better estimates than using daily returns (as doprevious studies). Besides, since
measured realized volatility can be viewed as an approiamab the “true” unobservable volatility,
we consider both raw realized volatility and the bipoweriaton (which provides a way to filter
out possible jumps in the data); see Barndorff-Nielsen drepBard (2004).

With five-minute intervals we could estimate the VAR modethas frequency. However, if we
wanted to allow for enough time for the effects to develop veeild need a large number of lags
in the VAR model and sacrifice efficiency in the estimation.isTpproblem arises in many studies
of volatility forecasting. Researchers have use sevetaraes to group five-minute intervals, in
particular the HAR-RV or the MIDAS schemé&sWe decided to look both at hourly and daily
frequencies.

Our empirical results will be presented mainly through gsafEach figure reports the causality
measure as a function of the horizon. The main results arensuized and compared in figures 1 -

5The HAR-RV scheme, in which the realized volatility is paetarized as a linear function of the lagged realized
volatilities over different horizons has been proposed hylléf, Dacorogna, Davé, Olsen, Pictet and Von Weizsacker
(1997) and Corsi (2003). The MIDAS scheme, based on the ifldistoibuted lags, has been analyzed and estimated by
Ghysels, Santa-Clara and Valkanov (2002).
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4. Detailed results, including confidence bands on the tiguaseasures, are reported in Appendix
C.

Results based on bivariate models indicate the followingJfe 1; Table 4 and figures 11-12in
Appendix C]. When returns are aggregated to the hourly #rqy we find that the leverage effect
is statistically significant for the first four hours, whileetvolatility feedback effect is negligible at
all horizons. Using daily observations, derived from hfgiguency data, we find a strong leverage
effect for the first three days, while the volatility feedkaeffect appears to be negligible at all
horizons. The results based on realized volat{li}") and bipower variatiof BV") are essentially
the same [Figure 11 in Appendix C]. Overall, these resultsstihat the leverage effect is more
important than the volatility feedback effect [Figure 1].

If the feedback effect from volatility to returns is almagtn-existent, it is apparent that the
instantaneous causality between these variables exidtseamains economically and statistically
important for several days [see Figure 12 in Appendix C]. sTineans that volatility has a con-
temporaneous effect on returns, and similarly returns basentemporaneous effect on volatility.
These results are confirmed with both realized and bipoweati@ans. Furthermore, dependence
between volatility and returns is also economically antistieally important for several days.

Let us now consider a trivariate autoregressive model thoyimplied volatility in addition to
realized volatility (bipower variation) and returns, agigested in Section 4 [figures 2 - 4; figures
13-16 in Appendix C]. First, we see that implied volatilityV") helps to predict future realized
volatility for several days ahead [Figure 2; Figure 13 in Apgix C]. It is also interesting to note
that the difference betwedV and RV, which captures a variance risk premium, also helps predict
future volatility. Note that Bollerslev et al. (2006) do rmansider implied volatility in their analysis.

Second, there is an important increase in the volatilitglfeek effect when implied volatility
is taken into account [Figure 3; figures 14- 15 in Appendix @j. particular, it is statistically
significant during the first four days. The volatility feedkaeffect relies first on the volatility
clustering phenomena which means that returns shockgiveosi negative, increases both current
and future volatility. The second basic explanation of typothesis is that there is a positive
intertemporal relationship between conditional volatiland expected returns. Thus, given the
anticipative role of implied volatility and the link betweé¢he volatility feedback effect and future
volatility, implied volatility reinforces and increasesetimpact of volatility on returné. Figure 3

’Since option prices reflect market participants’ expeatetiof future movements of the underlying asset, the velatil
ity implied from option prices should be an efficient forecas future volatility, which potentially explains a better
identification of the volatility feedback effect.
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Figure 1. Leverage and volatility feedback effects in hpard daily data using a bivariate autoregressive madétV'). January
1988 to December 2005.
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Figure 2. Causality measures between implied volatility’) [or variance risk premiundV — RV] and realized volatilit RV),
using trivariate VAR models fofr, RV, IV') and(r, RV, IV — RV'). January 1996 to December 2005.
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Causality Measures

Causality Measure

Figure 3. \Volatility feedback effects, with implied voléty as auxiliary variable [trivariate models, RV, IV') and
(r, RV, IV — RV)] and without implied volatility [bivariate modél-, RV)]; different transformations of volatility considered.
Impact of vecto RV, IV — RV') on returns. January 1996 to December 2005.
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Figure 4. Leverage and volatility feedback effects, witlplied volatility as auxiliary variable [trivariate mode(s, RV, V') and

(r, RV, IV — RV')] and without implied volatility [bivariate modél-, RV")]. January 1996 to December 2005.

Leverage and

Causality Measure

©

o

]
T

0.01

0.04

0.03-

Volatility Feedback Effects in the presence of IV, 1996-2005

—+— Leverage Effect in the presence of IV
—— Volatility Feedback Effect in the presence of IV

&g g 8 o 88558 g5

S | S S SO S S S S

Leverage and Volatility Feedback Effects in the presence of variance risk premium, 96-05

0.06

0.05

0.04

0.03

Causality Measure

0.02

0.01

4 6 8 10 12 14 16 18 20

Horizon (Daily)

o —&— Leverage Effect in the presence of IV-RV
\ —*— Volatility Feedback Effect in the presence of IV-R
B—a—
L / = = = NS i
O—g -
/ [ =
=
—_————
5 10 15 20

Horizon (Daily)

0.07

0.06

0.05

0.04

0.03

Causality Measure

0.02

0.01

Leverage and Volatility Feedback Effects in the absence of 1V, 1996-2005

—+— Leverage Effect in the absence of IV
i —*— Volatility Feedback Effect in the absence of IV

0

&

o

B—E—B-—a—q

«

Horizon (Daily)

20



also compares volatility feedback effects with and withioytlied volatility as an auxiliary variable.
We see that the difference betweéld and RV has a stronger impact on returns than realized
volatility alone in the presence of implied volatility. Rher, different transformations of volatility
(logarithmic of volatility and standard deviation) are sa@ered: the volatility feedback effect is
strongest when the standard deviation is used to meastat!ivpl

Finally, we look at the leverage effects with and without iieg volatility as an auxiliary vari-
able [Figure 16 in Appendix C]. We see that there is almosthange in the leverage effect when
we take into account implied volatility. On comparing thedeage and volatility feedback effects
with and without implied volatility, we see that the diffeiee, in terms of causality measure, be-
tween leverage and volatility feedback effects decreasesvimplied volatility is included in the
information set. In other words, taking into account imghelatility allows to identify a volatility
feedback effect without affecting the leverage effect. sTilmiay reflect the fact that investors use
several markets to carry out their financial strategies,i@fiodmation is disseminated across several
markets. Since the identification of a causal relationsbkigetids crucially on the specification of the
information set, including implied volatility appears estial to demonstrate a volatility feedback
effect.

6. Dynamic impact of positive and negative news on volatilt

In the previous sections, we did not account for the fact thatrn news may differently affect
volatility depending on whether they are good or bad. Wendgll propose a method to sort out the
differential effects of good and bad news, along with a satioh study showing that our approach
can indeed detect asymmetric responses of volatility tormethocks.

6.1. Theory

Several volatility models capture this asymmetry and apboegd in Engle and Ng (1993). To study
the effect of current return shocks on future expected NityatEngle and Ng (1993) introduced
the News Impact Function (hereaft&f/F"). The basic idea of this function is to consider the
effect of the return shock at timeon volatility at timet + 1 in isolation while conditioning on
information available at time and earlier. Recently, Chen and Ghysels (2007) have exietheée
concept of news impact curves to the high-frequency datmgetnstead of taking a single horizon
fixed parametric framework they adopt a flexible multi-horizemi-parametric modeling [see also
Linton and Mammen (2005)].
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In what follows we extend our previous VAR model to capturedimamic impact of bad news
(negative innovations in returns) and good news (positiv@vations in returns) on volatility. We
guantify and compare the strength of these effects in omdetermine the most important ones.
To analyze the impact of news on volatility, we consider wiWwing model:

p

p p
(o} 1) = py + Z ¢7 (o7, ;) + Z Pjerijt Z 90;— 67“;;173' +ufy (6.1)
j=1 j=1 j=1

where

ery .y =min{ersyyj, 0}, erfy) ; =max{erri1j, 0}, erey1j = rep1j—Eej(rep1—j),
6.2)

(6.3)

E[uf] =0andE [uful] = { Yo fors=t

B 0 fors#t °
Equation (6.1) represents the linear projection of vatgton its own past and the past of centered
negative and positive returns. This regression model allome to capture the effect of centered
negative or positive returns on volatility through the dméénts ;" or @j respectively for j =
1,...,p. It also allows one to examine the different effects thatdaagpd small negative and/or
positive information shocks have on volatility. This willqwide a check on the results obtained in
the literature on GARCH modeling, which has put forward aueziming evidence on the effect of
negative shocks on volatility.

Again, in our empirical applications;;,?+1 will be replaced by realized volatility?V; 1 or
bipower variationBV,;. Furthermore, the conditional mean return will be approxedaby the
following rolling-sample average:

m

- 1
Ey(reer) = — > rerige

j=1
where we take an average around= 15, 30, 90, 120, and240 days. Now, let us consider the
following restricted models:

In(0711) = 0o+ > @F In(opi_y) + > @ erfiy j + el (6.4)

D D
n(o2,,) =0, Z (071 ) + > @5 erg_ +vfy. (6.5)
i=1 =1
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Equation (6.4) represents the linear projection of vatgtin(c7, ;) on its own past and the past
of centred positive returns. Similarly, equation (6.5)resents the linear projection of volatility
In(o? ,1) on its own past and the past of centred negative returns. ifpace the forecast error
variances of model (6.1) with those of models (6.4) and (&v&8)assume that = p = p.

In our empirical application, we also consider a model witltentered negative and positive

returns:

P p V4
In(0f) =we+ Y @TI(ofy )+ D b5 ri; + > ¢ i +ey  (6.6)
j=1 j=1 j=1

- -
wherer, ; ; =min{ry1-;, 0}, 0y ; = max{r1_;, 0},

o1 o o1 Eea fOI’ s=1
E[et]—OandE[etes]—{ 0 fors£t (6.7)
and the corresponding restricted volatility models:
P P -
(o,) = Ay + Z ¢; In(07s1_) + Z Oi Te1oi T UL, (6.8)
i=1 i=1
— p e p Pyp—
(o) = Ay + Z ¢ (07s_) + Z Gi Tiy1; + - (6.9)
=1 =1

Thus, a measure of the impact of bad news on volatility atzioorh, whereh > 1, is given by the
following equation:

Var [e7,, | o®(w, 1], er®(w, t
Cler™ —In(0?) = In il [€t+\’; o c(r” ), er”(w, 1] (6.10)
ar [uf,, | J(2)]
Similarly, a measure of the impact of good news on volatdityrorizonh is given by:
Var [v7,, | 0?(w, t], er~(w, t]
Cler® 7111(02)) =1In [ t+\?ar[ 0 } (6.11)
uyp, | J( )]
where
er (w, t] = {er;s, s> 0}, (6.12)
ert(w, t] = {ertts, s> 0}, (6.13)

and.J(t) is the information set obtained by “adding®(w, ¢] to er~(w,t] ander™ (w, t]. We also
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define a function which allows us to compare the impact of batignod news on volatility. This
function can be defined as follows:

Var (€7, | 0%(w, 1], ert(w, t]]
Var [vf | 02(w, t], er—(w, t]]

C(er™Jer™ - In(o?)) =In (6.14)
WhenC'(er~ /er™ > In(o?)) > 0, this means that bad news have more impact on volatility than
good news. Otherwise, good news will have more impact ortilildhan bad news. Compared to
Chen and Ghysels (2007), our approach is also multi-hoamhbased on high-frequency data but
is more parametric in nature. Before applying these new ureago our S&P 500 futures market,
we conduct a simulation study to verify that the asymmetiaction of volatility is well captured

in various models of the GARCH family that produce or not sanfasymmetry.

6.2. Simulation study on news asymmetry detection

We will now present an exploratory simulation study on thditgibof the causality measures to
detect asymmetry in the impact of bad and good news on \itlgitagan and Schwert (1990),
Gouriéroux and Monfort (1992), Engle and Ng (1993)]. To dis,thve consider that returns are
governed by a process of the form:

Tir1 = \/OiEe41 (6.15)

wheree; 11 ~ N(0,1) and o, represents the conditional volatility of returp,;. Since we are
only interested in studying the asymmetry in leverage &ffeguation (6.15) does not allow for a
volatility feedback effect. Second, we assume thafiollows one of the following heteroskedastic
models:

1. GARCH(, 1) model:

oy =w+ Boi_1 + ag? | ; (6.16)
2. EGARCH1, 1) model:
Et—1 \ Et—1 \ }
log(oy) = w+ Blog(oi—1) + +a|—— —2/7|; 6.17
g(ot) Blog(oi-1) Y o [ﬁﬁ? V2/ (6.17)

3. nonlinear NL-GARCH1, 1) model:

or=w+ Por1 +ale—1|7; (6.18)
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4. GJR-GARCH]1, 1) model:
oy =w+ Boy1 4+ agi_y + 167, (6.19)

where

=177 0, otherwise;

5. asymmetric AGARCKIL, 1) model:

o =w+ Bor1 + (e +7)7; (6.20)
6. VGARCH(1, 1) model:
e 2
oy =w+ foi1 +a < i 7) ; (6.21)
o1

7. nonlinear asymmetric GARGH, 1) model[NGARCH(1,1)] :

or =w+ Bor_1 +a (-1 +7/T1) (6.22)

GARCH and NL-GARCH models are, by construction, symmefficus, we expect that the curves
of causality measures for bad and good news will be the sammla8y, because EGARCH, GJR-

GARCH, AGARCH, VGARCH, and NGARCH are asymmetric we expéeit these curves will be

different. The parameter values considered are given ireTeb

To see whether the asymmetric structures gets translatedhia causality patterns, we then
simulate returns and volatilities according to the abovel@®and we evaluate the causality mea-
sures for bad and good news as described in Section 6.1. ffaetfsom statistical uncertainty, the
models are simulated with a large sample siZe= 40000).

The results obtained in this way are reported in Figure 5. &efiom these that symmetry and
asymmetry are well represented by causality measure pgtteor the symmetric models [GARCH
and NL-GARCH], bad and good news have the same impact onilitglatin contrast, for the
asymmetric models [EGARCH, GJR-GARCH, AGARCH, VGARCH, NR&H], bad and good
news exhibit different impact curves.

It is also interesting to observe for the asymmetric mod®s Ibad news have a greater impact

8These parameters are the results of an estimation of diffgr@rametric volatility models using the daily returns
series of the Japanese TOPIX index from January 1, 1980 terDleer 31, 1988. For details, see Engle and Ng (1993).
We also considered other values based on Engle and Ng (1B88Yesults are similar to those presented here.
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Figure 5. Causality measures of the impact of bad and good navgymmetric and asymmetric GARCH volatility models.
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Figure 5 (continued). Causality measures of the impact dfdval good news on symmetric and asymmetric GARCH volatility
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Figure 5 (continued). Causality measures of the impact dfdval good news on symmetric and asymmetric GARCH volatility

models.
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Table 1. Parameter values of different GARCH models

w IG5} « v
GARCH 2.79107° 0.86695 | 0.093928 | —
EGARCH —0.290306 | 0.97 0.093928 | —0.09

NL-GARCH | 2.79107° 0.86695 | 0.093928 | 0.5, 1.5, 2.5
GJR-GARCH| 2.7910° 0.8805 | 0.032262 | 0.10542
AGARCH 2.7910° 0.86695 | 0.093928 | —0.1108
VGARCH 2.79107° 0.86695 | 0.093928 | —0.1108
NGARCH 2.79107° 0.86695 | 0.093928 | —0.1108

Note: This table summarizes the parameter values for paranvelatility models considered in our simula-
tions study.

on volatility than good news. The magnitude of the volatiliesponse is largest for NGARCH
model, followed by the AGARCH and GJR-GARCH models. Thedffe negligible in EGARCH
and VGARCH modelsThe impact of good news on volatility is more noticeable inA&8CH and
NGARCH models. Overall, causality measures appear to mapjuite well the effects of returns
on volatility, both qualitatively and quantitatively.

7. News effects in S&P 500 futures market

We now apply the good news and bad news measures of causaB§&R 500 futures returns. To

carry out our analysis, we consider two alternative measafenews: (1) positive and negative
deviations of returns from average past returns, and (dj)iymand negative variance risk premia.
An important feature of our approach comes from the factahsptecific volatility model need not

be estimated, which can be contrasted with previous rekiteties [see, for example Bekaert and
Wu (2000), Engle and Ng (1993), Glosten et al. (1993), Cathphd Hentschel (1992), and Nelson
(1991)].

7.1. Return news

Our empirical results on return news effect are summarizedc@mpared in Figure 6. Detailed
results (with confidence intervals) are available in Apperi@ [tables 5-7 and figures 17-C]. We
find a much stronger impact of bad news on volatility for saldays. Statistically, the impact of
bad news is significant for the first four days, whereas theathpf good news is negligible at all
horizons. So our central finding is that bad news have moradtngn volatility than good news at
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all horizons.

7.2. Variance risk premium

Let us now look at the reaction of future returns to the sigrihaef difference between implied
volatility and realized volatility (bipower variation).His difference is a measure of the variance risk
premium since the option-implied volatility includes thekrpremium that investors associate with
expected future volatility [see Bollerslev and Zhou (20@6y Drechsler and Yaron (2008)]. We
will therefore assess whether a positive variance risk pnenias an impact of similar magnitude
on expected returns than a negative variance risk premianthel case of a positive variance risk
premium, we expect an increase in the expected returnsriregk premium), and in the opposite,
we expect a decrease in expected returns.

Since implied volatility is a predictor of future volatiitwe write:

In(RViyp) = f(In(IVy), In(IVi-1), ...) + €4n, Vh 2 1, (7.1)

eiph = M(RViyp) — f (In(IV;), n(IVia), ... ), (7.2)

wheref (In(IV;), In(IV;_1), ...)is afunction of the past observations on implied volatfifhe
term on the right-hand side of equation (7.2) can be viewethagpproximation of volatility shocks
or volatility news. To measure empirically tldynamic impact of volatility news on returns, we
consider the following model:

p p p
Tt41 = My + Z Pirt41—5 + Z w; VP + Z wf VPL_j+upy (7.3)
j=1 j=1 j=1
whereV P, ; =min{V Py, 0}, VP, ; =max{VFy, j, 0} and

VP j = Viy1-5) —In(RVip1-5), j=1,...,p. (7.4)

Equation (7.3) represents a linear projection of returngoown past and the past of negative and
positive variance risk premia. This regression model al@ne to capture the effect of volatility
news on returns through the coefficiemi; or goj, forj=1,...,p.Italso allows one to examine
different effects that large and small negative and/ortpesiolatility shocks have on return risk
premium. When implied volatility is bigger than realizedatdity (bipower variation), we expect

°f (In(IV;), In(IVi—1),...) represents the optimal forecast, in the sense of mininizatf the mean squared error,
of In(RV;4 ) based on the past observations of implied volatility.
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Figure 6. Causality measures of the impact of bad and good nawolatility, based on realized volatilifyn(RV')] and bipower
variation[ln(BV)]. January 1988 to December 2005.
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an increase in future volatility followed by an increase e texpected returns. In the opposite
situation, we expect a decrease in future volatility fokmihby a decrease in the expected returns.

The empirical results on the impact of volatility news oruras are given in Figure 7. The latter
shows the impact of negative and positive variance risk pnenon returns and the comparison
between them. We see that a positive variance risk premiwgmitaie impact on expected returns
than a negative variance risk premium, which means thatipesihocks on volatility have more
impact on returns than negative shocks. The impact is twsdaigon the first day and shrinks to
zero after about five days. By looking at the sign of coefﬁts}'q(v;.r and ®5, forj =1,...,p,
we find thatgp;r are positive, whereas; are negative, as expected. Consequently, the increase in
expected returns tends to be higher than the decrease fovermeat in the variance risk premium
of the same magnitude but of opposite signs.

8. Conclusion

In this paper we analyze and quantify the relationship betweolatility and returns with high-
frequency equity returns. Within the framework of a vectatosegressive linear model of re-
turns and realized volatility or bipower variation, we gtinthe dynamic leverage and volatility
feedback effects by applying short-run and long-run céiysaieasures proposed by Dufour and
Taamouti (2008). These causality measures go beyond stoplelation measures used recently
by Bollerslev et al. (2006).

Using 5-minute observations on S&P 500 Index futures cotdrave measure a weak dynamic
leverage effect for the first four hours in hourly data andrangt dynamic leverage effect for the
first three days in daily data. The volatility feedback effisdfound to be negligible at all horizons.
Interestingly, when we remeasure the dynamic leverage alatllity feedback effects using implied
volatility (1V'), we find that a volatility feedback effect appears, while ltherage effect remains
almost the same. This can be explained by the power of impbility to predict future volatility
and by the fact that volatility feedback effect is relatedhe latter. We also use causality measures
to quantify and test statistically the dynamic impact of g@md bad news on volatility. First, we
assess by simulation the ability of causality measures tiecti¢he differential effect of good and
bad news in various parametric volatility models. Then, eicglly, we measure a much stronger
impact for bad news at several horizons. Statistically,itmgact of bad news is significant for the
first four days, whereas the impact of good news is negligablall horizons. We introduce a new
concept of news based on volatility. This one is defined bydtfierence between implied volatility
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Figure 7. Causality measures of the impact of positive awgetiee variance risk premium on returns. January 1996 tebber

2005.
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and realized volatility (bipower variation). When impligdlatility is bigger than realized volatility
(bipower variation) it means that the market is expectingharease in future volatility with respect
to current volatility. Our empirical results show that suah expected increase in volatility has a
stronger impact on return risk premium than an expectededserof a similar magnitude.
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Appendix

A. Summary statistics and data graphics

We present here basic summary statistics and graphs foatheuded in this paper.

Table 2. Summary statistics for S&P 500 futures returns318&05

Variables Mean St.Dev. | Median Skewness | Kurtosis
Five-minute | 6.9505¢ — 006 | 0.000978 | 0.00e — 007 —0.0818 73.9998
Hourly 1.3176e — 005 | 0.0031 0.00e — 007 —0.4559 16.6031
Daily 1.4668¢ — 004 | 0.0089 1.1126e — 004 | —0.1628 12.3714

Note: This table summarizes the five-minute, hourly, and daitymres distributions for the S&P
500 index contracts. The sample covers the period from 1®@8&tember 2005 for a total of 4494
trading days.

Table 3. Summary statistics for daily volatilities, 198808

Variables | Mean St.Dev. Median Skewness | Kurtosis
RV, 8.1354e — 005 | 1.2032¢ — 004 | 4.9797e — 005 | 8.1881 120.7530
BV, 7.6250e — 005 | 1.0957e — 004 | 4.6956e¢ — 005 | 6.8789 78.9491
In(RV;) —9.8582 0.8762 -9.9076 0.4250 3.3382
In(BV;) —9.9275 0.8839 —9.9663 0.4151 3.2841
Ji+1 0.0870 0.1005 0.0575 1.6630 7.3867

Note: This table summarizes the daily volatilities distribuofor the S&P 500 index contracts.
The sample covers the period from 1988 to December 2005 fitahdf 4494 trading days.
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Figure 8. Daily prices and returns of the S&P 500 futuresudan1988 to December 2005.
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Figure 9. Daily realized volatility and bipower variatiohtbe S&P 500 futures. January 1988 to December 2005.
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Figure 10. Quantile to quantile plots (QQ plot) of the refatimeasure of jumpsR.J), zgp,i. ¢, 2Qp,t, andzgp, im, . January 1988
to December 2005.
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B. Bootstrap confidence intervals for causality measures

We compute the nomin&l5% bootstrap confidence intervals of the causality measurésllas/s
[see Dufour and Taamouti (2008)]:
(1) Estimate by OLS th& AR(p) process given by equation (3.1) and save the resitfuals

p
~ o Tt . =z Tt—j _
a(t) = ( In(RV)) > i quj < n(RV._) ) for t=p+1,...,T, (B.1)

Jj=1

whereji andéj are the OLS regression estimateq:.aind®;, for j = 1,... ,p.
(2) Generate(T-p) bootstrap residualg*(¢) by random sampling with replacement from the
residualsu(t), t=p+1,... ,T.

(3) Generate a random draw for the vectopahitial observations
w(0) = [(ri, M((RV1))', ..., (rp, In(RV})) ] (B.2)

(4) Givenju andiij, forj=1,...,p, 4*(t), andw(0), generate bootstrap data for the dependent
variable(r;, In(RV;)*)" from equation:

(mugtv; > Zi: <1n}§tvjj) >+f&*(t), t=p+1,...,T. (B.3)

(5) Calculate the bootstrap OLS regression estimates

T
= (i, B, 5. ) =TT, Zh= ) an(hat(t) /(T - p), (B.4)
t=p+1
A T ! A p T /
I = (T-p)" Y ww @), IY =T -p)" Y w(®)(rf, n(BVit)")(B.5)
t=p+1 t=p+1
wherew* (t) = [(rf,In(RV})*)', ..., (i pi1s In(RV;_p11)*)'] and
T p

A~ sk o ~x% _ ~ % _ Tt
0 =)= 3 E0/T ). ()= ( (v ) i34, ( W ) |

(B.6)

YWhen we “add” the past of implied volatility to the informatti setZ,..» (t), then we consider th& AR(p) process
given by equation (4.1).
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(6) Estimate the constrained model of the marginal proegasdIn(RV;) using the bootstrap sam-
ple {(rf, m(RV))'}

(7) Calculate the causality measures at horizbn denoted C'V)*(r - In(RV)) and
C@*(In(RV) - r), using equations (3.17) and (3.18) respectively and thésbap sample.

(8) ChooseB such}a(B + 1) is an integer and repeat ste@3-(7) B times!?

(9) Finally, calculate thex and1-« percentile interval endpoints of the distributionsﬁdff)*(r —
In(RV)) andC'@*(In(RV') — r).12

A proof of the asymptotic validity of the bootstrap confidenatervals of the causality measures is
provided in Dufour and Taamouti (2008).

H1-a is the considered level of confidence interval.
2\We follow the same steps to compute the bootstrap confidenesals of instantaneous causality and dependence
measures.
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C. Detailed empirical results

Table 4. Hourly and daily volatility feedback effects

Hourly volatility feedback effects using(RV)

C(In(RV) - r)

h=1

h =2

h=3

h=4

Point estimate

0.00016

0.00014

0.00012

0.00012

95% Bootstrap interval

[0.0000, 0.0007]

[0.0000, 0.0006]

[0.0000, 0.0005]

[0.0000, 0.0005]

Hourly volatility feedback effects usirig(BV)

C(In(BV) > T)

h=1

h =2

h=3

h=4

Point estimate

0.00022

0.00020

0.00019

0.00015

95% Bootstrap interval

[0.0000, 0.0008]

[0.0000, 0.0007]

[0.0000, 0.0007]

[0.0000, 0.0005]

Daily volatility feedback effects using(RV")

Cn(RV) — 1) h=1 h=2 h=3 h=4

Point estimate 0.0019 0.0019 0.0019 0.0011

95% Bootstrap interval| [0.0007, 0.0068] | [0.0005, 0.0065] | [0.0004, 0.0061] | [0.0002, 0.0042]
Daily volatility feedback effects using(BV)

Cn(BV) — ) h=1 h=2 h=3 h=4

Point estimate 0.0017 0.0017 0.0016 0.0011

95% Bootstrap interval

[0.0007, 0.0061]

[0.0005, 0.0056]

[0.0004, 0.0055]

[0.0002, 0.0042]

Note: This table summarizes the estimation results of causal@gsures from hourly realized volatility
[lIn(RV)] to hourly returnsi), hourly bipower variationlh(BV)] to hourly returns, daily realized volatility
to daily returns, and daily bipower variation to daily retsy respectively. The second row in each small
table gives the point estimate of the causality measuresradnsh = 1, ..., 4. The third row gives th85%
corresponding percentile bootstrap interval.
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Table 5. Measuring the impact of good news on volatility gdin( RV") [centered positive returhs

Er(resn) = 5 30,20 reg1—
C(er*‘?ln(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0007 0.0007 0.0007 0.0004

95% Percentile bootstrap inte

rval[0.0003, 0.0043]

[0.0002, 0.0039]

[0.0001, 0.0034]

[0.0000, 0.0030]

—

30
Et(req1) = % E]‘:l Tt+1—j

Cler™ - In(RV))

h=1

h=2

h=3

h=4

Point estimate

0.0010

0.0007

0.0007

0.0005

95% Percentile bootstrap interval [0.0004, 0.0051]

[0.0003, 0.0039]

[0.0003, 0.0036]

[0.0000,0.0032]

L —

90
Ee(re+1) = g5 20 jm1 Te+1—3

Cler™ - In(RV))

h=1

h=2

h=3

h=4

Point estimate

0.0013

0.0008

0.0008

0.0008

95% Percentile bootstrap interval [0.0004, 0.0059]

[0.0003,0.0044]

[0.0002,0.0041]

[0.0001, 0.0039]

- 120
Er(riv1) = 155 2o jm1 Tet1-

C’(er+7>ln(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0011 0.00076 0.00072 0.00074
95% Percentile bootstrap interval [0.0004, 0.0054] | [0.00029, 0.0041] | [0.00024,0.00386] | [0.0000,0.00388]
Et(TH—l) = ﬁ Z?iol Ttr1—j
C(erJ“?ln(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0011 0.0006 0.0006 0.0007
95% Percentile bootstrap interval [0.0004,0.0053] | [0.0003,0.0041] | [0.0002,0.0035] | [0.0000,0.0034]

Note: This table summarizes the estimation results of causakgsures from centered positive returest() to realized volatility[ln(RV')] us-
ing five estimators of the conditional mean, far = 15, 30, 90, 120, 240. In each of the five small tables, the second row gives thetpoin
estimate of the causality measures at horiZogs1, ..., 4. The third row gives th&5% corresponding percentile bootstrap interval.
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Table 6. Measuring the impact of good news on volatility gdin( BV') [centered positive returns]

Er(resn) = 5 30,20 reg1;
C(er*‘?ln(BV)) h=1 h=2 h=3 h=4
Point estimate 0.0008 0.0008 0.0006 0.0006

95% Percentile bootstrap interval [0.0003,0.0045]

[0.0002, 0.0041]

[0.0002, 0.0035]

[0.0000, 0.0034]

—

30
Et(req1) = % E]‘:l Tt+1—j

Cler™ - In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0012

0.0007

0.0007

0.0007

95% Percentile bootstrap interval [0.0005, 0.0053]

[0.0003,0.0041]

[0.0002, 0.0039]

[0.0001, 0.0038]

L —

90
Ee(re+1) = g5 20 jm1 Te+1—3

Cler™ > In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0018

0.0009

0.0008

0.0010

95% Percentile bootstrap interval [0.0006, 0.0065]

[0.0003,0.0044]

[0.0002,0.0041]

[0.0001, 0.0042]

—

120
Et(T’t+1) = %20 2‘7‘:1 Tt41—5

Cler™ - In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0016

0.0008

0.0007

0.0009

95% Percentile bootstrap interva

a1 [0.0006, 0.0063]

[0.0002, 0.0047]

[0.0002, 0.0042]

[0.0001, 0.0044]

L —

240
Et(ri41) = g5 2oyt Ttt1—j

Cler™ > In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0015

0.0007

0.0006

0.0008

95% Percentile bootstrap interva

0.0005, 0.0057]

[0.0002, 0.0044]

[0.0002, 0.0038]

[0.0001,0.0037]

Note: This table summarizes the estimation results of causaktgsures from centered positive returaist) to bipower variationlh(BV)] us-
ing five estimators of the conditional mean, far = 15, 30, 90, 120, 240. In each of the five small tables, the second row gives thetpoin
estimate of the causality measures at horiZogs1, ..., 4. The third row gives th&5% corresponding percentile bootstrap interval.
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Table 7. Measuring the impact of good news on volatility jemered positive returns]

usingln(RV)
C(r+7ln(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0027 0.0012 0.0008 0.0009
95% Percentile bootstrap interval [0.0011, 0.0077] | [0.0004, 0.0048] || [0.0002, 0.0041] || [0.0001, 0.0038]

usingln(BV)
Clr™ —(BV)) h=1 h=2 h=3 h=4
Point estimate 0.0035 0.0013 0.0008 0.0010
95% Percentile bootstrap intervall [0.0016, 0.0087] | [0.0004, 0.0051] || [0.0002, 0.0039] || [0.0001, 0.0043]

Note: This table summarizes the estimation results of causaltgsures from uncentered positive returris)(to realized volatility[In(RV)]

[bipower variationln(BV')]. The second row of each small table gives the point estimftee causality measures at horizdns- 1,... , 4.
The third row gives th®5% corresponding percentile bootstrap interval.
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Figure 11.
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Figure 12. Instantaneous causality and dependence betlaédgmeturns and volatility using bivariate models ferln(RV')) and
(r,In(BV)). January 1988 to December 2005.
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Figure 13. Causality measures between implied volatflifiy) [or variance risk premiundV — RV'] and realized volatility RV),
using trivariate VAR models fofr, RV, IV') and(r, RV, IV — RV'). January 1996 to December 2005.
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Figure 14. \olatility feedback effects, with implied valdy as auxiliary variable [trivariate modél, RV, IV')] and without
implied volatility [bivariate mode(r, RV')]. January 1996 to December 2005.
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Figure 15. Other volatility feedback effects using varemnisk premium(IV — RV') and impact of RV, IV — RV') on returns.
January 1996 to December 2005.
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Figure 16. Leverage effects, with implied volatility as diaxy variable [trivariate mode{r, RV, IV) or (r, RV, IV — RV)] and
without implied volatility [bivariate mode(r, RV')]. January 1996 to December 2005.
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Figure 17. Causality measures of the impact of bad news @iy using 5 estimators of the conditional mean = 15, 30, 90,
120, 240), realized volatility[ln(RV')] and bipower variatiofiin(BV')]. January 1988 to December 2005.
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Figure 17 (continued). Causality measures of the impacadfriews on volatility, using 5 estimators of the conditiomalan
(m = 15, 30, 90, 120, 240), realized volatility[ln(RV')] and bipower variatiofin(BV')]. January 1988 to December 2005.
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Figure 17 (continued). Causality measures of the impacadfriews on volatility, using 5 estimators of the conditiomalan
(m = 15, 30, 90, 120, 240), realized volatility[ln(RV')] and bipower variatiofin(BV')]. January 1988 to December 2005.

Causality Measure

Causality Measure

0.08

0.07

0.06

0.05

0.04

0.08

0.07

o
o
a

o©
o
K

o
o
)

Impact of bad news on volatility, In(RV), m=240, 1988-2005

—*— 95% percentile bootstrap interval
Point estimate

—

Horizon (Daily)

20

Impact of bad news on volatility, (In(RV), uncentered returns, 1988-2005

—%— 95% percentile bootstrap interval
Point estimate

—

— %

T 100 15
Horizon (Daily)

¥
E
E
¥

20

Causality Measure

Causality Measure

0.08

0.07

0.06

0.05

0.04

0.08

0.07

0.06

0.05

0.04

0.02

0.01

Impact of bad news on volatility, In(BV), m=240, 1988-2005

—*— 95% percentile bootstrap interval
Point estimate

—

Horizon (Daily)

Impact of bad news on volatility, In(BV), uncentered returns, 1988-2005

T T T
—%— 95% percentile bootstrap interval
Point estimate

—

— %

N 15 20
Horizon (Daily)




