Universidad

ucdm | Carloslil -Archivo
de Madrid

This is a postprint version of the following published document:

Escobar, D.; Ahedo, E. Global stability analysis of azimuthal oscillations in
Hall thrusters, in IEEE Transactions on Plasma Science (Special issue IEPC
2013), 43(1), Nov. 2014, Pp. 149-157

DOI: https://doi.org/10.1109/TPS.2014.2367913

© 2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.


https://doi.org/10.1109/TPS.2014.2367913
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Global Stability Analysis of Azimuthal
Oscillations in Hall Thrusters

Diego Escobar and Eduardo Ahedo

Abstract— A linearized time-dependent 2-D (axial and
azimuthal) fluid model of the Hall thruster discharge is presented.
This model is used to carry out a global stability analysis of
the plasma response, as opposed to the more common local
stability analyses. Experimental results indicate the existence of
low-frequency long-wave-length azimuthal oscillations in the
direction of the E x B drift, usually referred to as spokes.
The present model predicts the presence of such oscillations
for typical Hall thruster conditions with a frequency and a
growth rate similar to those found in experiments. Moreover,
the comparison between the simulated spoke and the simulated
breathing mode, a purely axial low-frequency oscillation typical
in Hall thrusters, shows similar features in them. Additionally, the
contribution of this azimuthal oscillation to electron conductivity
is evaluated tentatively by computing the equivalent anomalous
diffusion coefficient from the linear oscillations. The results show
a possible contribution to anomalous diffusion in the rear part
of the thruster.

Index Terms—Plasma propulsion, plasma simulation, plasma
stability, plasma transport processes.

I. INTRODUCTION

ALL effect thrusters (HET) are a type of electric

propulsion device whose operation principle is as
follows: a radial magnetic field is imposed together with an
axial electric field inside a coaxial channel where a neutral gas,
typically xenon, is introduced as propellant. Three species of
particles are present in a HET: 1) neutrals, which are injected
from the rear part of the channel and flow axially toward the
thruster exit; 2) electrons, which are introduced by a cathode
located just outside the channel and flow upstream toward the
anode describing a collisional axial transport together with
an azimuthal E x B drift; and 3) ions, which are created
from ionization of neutrals due to collisions with the counter-
streaming electrons, are unmagnetized, and are accelerated
axially by the electric field in the channel and the near
plume. The main control parameters of a Hall thruster are
the discharge voltage, the magnetic field and the mass flow
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rate, with the discharge current an output of the dynamical
system. For a given magnetic field and mass flow rate, it is
possible to represent the evolution of the discharge current as
a function of the discharge voltage in the so-called current—
voltage (I-V) curve. This curve shows two distinct regimes:
1) a low ionization regime, where the discharge current
increases with the voltage and 2) a current saturated regime,
where the discharge current is fairly insensitive to changes in
the discharge voltage.

Hall thrusters have now become a mature alternative to
chemical propulsion in many space applications ranging
from orbital raising of satellites through north—south station-
keeping of geostationary satellites to low-thrust propulsion of
interplanetary probes. However, not all physical processes
inside Hall thrusters are fully understood, in particular, the
electron perpendicular conductivity. Since the early stages
of the Hall thruster technology development, it has been
clear that the cross-field electron mobility inside the channel
and in the plume is too high to be explained with classical
collisionality [1]. That is why the term anomalous diffusion
is normally used to refer to the higher than expected electron
axial current.

The main properties of the anomalous diffusion, experimen-
tally verified, may be summarized as: 1) it is present in the
channel as well as in the plume of the thruster [2], [3]; 2) there
is a dip of electron conductivity in the region of high magnetic
and electric fields [4], [5]; 3) according to experiments [6], [7],
the electron mobility scales as 1/B rather than as 1/B%, where
B is the magnetic field strength; and 4) the magnetic field
gradients affect greatly the electron conductivity [8].

Currently, there is no agreement within the Hall thruster
community about the mechanism of the anomalous diffusion,
but the most accepted explanations are: 1) plasma oscillations,
referred to as Bohm-type or turbulent diffusion, based on
the fact that correlated azimuthal oscillations of plasma
density and electric field would induce a higher electron
mobility [9], [10] and 2) near-wall conductivity, where
secondary electrons emitted by the walls would cause a net
axial current [11]. However, the anomalous diffusion seems
to follow a 1/B scaling [6], contrary to the 1/B? scaling
of the near-wall conductivity. In addition, many simulation
codes [12]-[14] that model the near-wall conductivity still
need Bohm diffusion to match the electron conductivity
measured experimentally. Thus, near-wall conductivity
does not seem to explain the anomalous diffusion. On the
other hand, several experiments have confirmed with
different techniques the presence of azimuthal oscillations.
These oscillations are normally grouped in low frequency



(5-30 kHz), low-to-medium frequency (30-100 kHz), and
high frequency (1-10 MHz) oscillations [15]. Some of those
experiments show the presence of low-frequency azimuthal
oscillations in the rear part of the thruster, in the ionization
region [10], [16]-[26]. The analysis of these oscillations,
referred to as spokes, is the topic of this paper.

This paper deals with the stability of the Hall discharge
from a global point of view, as opposed to the more common
local stability analyses. The latter are based on the analysis
of the fluid equations at a fixed axial location of the channel
and this requires freezing the macroscopic plasma variables
and their derivatives, whereas the former method does account
consistently for the axial variation of those variables and
their linear perturbations. Most of the stability analyses of
the Hall discharge in the azimuthal direction carried out so
far are local and can be grouped in those that do not account
for the ionization process [8], [27]-[31] and those that take it
into consideration in the model through particle source terms
and fluid equations for the neutral species [17], [32]-[35].
However, all these local stability studies suffer from the
problems mentioned above. On the other hand, the few studies
that do account globally for the axial variations of the inhomo-
geneous plasma focus on the high frequency range [36]-[40].
The current study fills the gap of global stability analyses in
the low frequency range, where the ionization process plays a
very important role.

The rest of this paper is organized as follows. In Section II,
the formulation of the linearized time-dependent 2-D model
used in this paper is presented. Section III shows and discusses
the results from the model, including a comparison against
the breathing mode. The possible link between the simulated
azimuthal oscillation and the electron cross-field mobility is
analyzed in Section IV. Finally, the conclusions are drawn
in Section V.

II. FORMULATION

This section presents the formulation used in this paper.
First, the 1-D model of Ahedo ef al. [41], upon which the
2-D model is based, is summarized. Then, the linearized time-
dependent 2-D formulation is presented.

A. 1-D Model

The hypotheses and equations of the 1-D stationary model
of Ahedo of the Hall discharge are reviewed in this section.
Each one of the species present in a HET (neutrals, electrons,
and ions) is accounted for with a separate set of macro-
scopic fluid equations based on conservation principles of
mass, momentum, and energy. Only single-charge ions are
considered as multiply charged ions are neglected. Quasi-
neutrality is assumed as the Debye length in Hall thrusters
is much smaller than the dimensions of the channel. Fur-
thermore, whereas electrons are highly magnetized, ions are
considered to be unmagnetized. On the other hand, due to
the very low mass of the electrons, electron-inertia terms are
neglected in the electron momentum and energy equations.
At the same time, ions and neutrals are modeled as

cold species. Wall energy losses and wall particle recombi-
nation are included in the model via equivalent frequencies.
A sink is introduced in the energy equation to account
for the ionization and radiation losses. Heat conduction is
neglected in the model. The induced magnetic field is
neglected and, consequently, the electric field derives from

a potential (E = —V¢). The resulting formulation may be
written as [41]
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where x is the axial coordinate along the thruster channel;
e, me, and m; are the electron charge, electron mass, and ion
mass, respectively; n, and n are the neutral and plasma particle
densities; vy, ey, and v;, are the fluid axial velocities of
neutrals, electrons, and ions, respectively; 7, and ¢ are the
electron temperature and electric potential, respectively; v, is
the effective electron collision frequency, v, = vp +Vym +Ven,
accounting for Bohm-type diffusion, vp, near-wall conductiv-
ity, vum, and electron-neutral collisions, ve,; vi, vy, and vy,
represent the frequencies for ionization, particle recombina-
tion, and energy losses at lateral walls, respectively; E; is the
energy loss per actual created ion; and a,, is the accommoda-
tion factor of the ions impacting the walls [41]. The expression
used for the Bohm-diffusion is vg = apw.., where @, is the
electron cyclotron frequency and op is a constant empirical
coefficient whose value is typically selected so as to match
experimental results (ap ~ 0.01). The electron momentum
equation in the azimuthal direction, vey = ey, Where v,y is
the electron azimuthal velocity (vex < 0,v.y < 0) and y is the
Hall parameter (y = w¢./ve > 1), has been used implicitly
in the axial electron momentum equation. The combination of
the previous equations allows obtaining an equation for the
plasma density as
P dn
ndx G ©
where P =T,/m; — (S/S)z)izx, G is a function of the macro-
scopic variables, but not of their derivatives, and P = 0 is a
sonic condition. It is possible to prove that there are two sonic
points in the domain, one singular, G # 0, at the anode sheath
transition, and another one regular, G = 0, inside the channel.
A detailed description of the boundary conditions associated
to the previous system of ordinary differential equations is
described in [41]. Expressions for the different frequencies
mentioned above (Vym, Ven, Vi, Ve, Vi, and vy,e) may also be
found elsewhere [12], [41]-[43].
Various versions of the model presented above have been
used in the past including different terms to character-
ize the Hall discharge [41], evaluate the influence of the



wall losses [12], carry out parametric investigations on the
operating parameters [43], model two-stage Hall thrusters [44]
and, even, analyze the stability of the discharge against
axial perturbations to study the properties of the breathing
mode [45]-[47].

B. General 2-D Formulation

A time-dependent 2-D model consistent with the equations
presented in Section II-A is described here. The model consid-
ers two dimensions in space (axial, x, and azimuthal, y) and
variations with time, # being the time variable. Under the same
hypotheses of the 1-D model, the governing time-dependent
2-D equations of the plasma discharge may be written in
nonconservative form as
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where v,, v;, and v, are the electron, ion, and neutral velocity
vectors, respectively, and the rest of the symbols are as above.

In this 2-D case, the radial variation of the variables is
neglected reducing the problem to two-dimensions. Moreover,
curvature effects in the azimuthal direction are also neglected
as the mean radius of the thruster is typically larger than the
width of the channel. Obviously, in the limit of a stationary
and axisymmetric solution, (7)—(11) reduce to (1)—(5).

Equations (7)—(11) can be rewritten in a form more adequate
to this paper. To this end, the partial derivatives with respect
to ¢+ and y, which will be Fourier transformed during the
linearization, are moved to the right-hand side of the equations.
In this manner, the left-hand side of the resulting equations
resemble (1)—(5). Those resulting equations can be combined
in order to obtain an equation for the plasma density as

P on
——=G+G;+G,
n ox
where P and G are functions identical to the ones derived
for the 1-D model and G, and G, are functions of the
macroscopic variables and proportional to their time and
azimuthal derivatives, respectively.

Apart from the sonic points mentioned above, it is important
to note that the azimuthal component of (9) has the peculiarity
of defining another special point along the channel. This
equation may be expressed as

(12)
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where v,,, and v;, are the azimuthal neutral and ion velocities,
respectively, and the rest of symbols are as above. This
equation requires a regular transition at the point separating the
ionization region and the ion back-streaming region (v;, = 0).
Thus, the right-hand side of the equation must be zero at the
same point as well. This fact has important consequences on
the way the equations are solved numerically.

C. Linearization

Equations (7)—(11) can be linearized around the steady-state
and axisymmetric solution (i.e., the zeroth-order background
solution). To this end, it is possible to assume that any
control parameter (say, w) of the Hall discharge (discharge
voltage, mass flow, neutral velocity at the anode, and electron
temperature at the cathode) may be written as the sum of
a constant zeroth-order value, wg, and a temporal-azimuthal
perturbation, w{(y,t). If the perturbation is expressed as a
Fourier expansion in y and ¢, then

w(y,t) = wo + R{w exp(—iwt + ikyy)} (14)
where w = w, + iw; is the angular frequency of the
perturbation, being @, and w; its real and imaginary parts, and
ky is the azimuthal wave number of the perturbation. Note that
ky only admits a discrete number of values due to continuity
conditions in the azimuthal direction, k, = —m/R, where
m is the integer mode number (m > 0 when the perturbation
travels in the E x B direction) and R is the mean radius of
the thruster.

Similarly, a macroscopic variable, say u(x,y,t), may be
written as the sum of the axial zeroth-order solution, uq(x)
and a perturbation, i1 (x, y, t). The latter can also be Fourier
expanded in ¢ and y and, then, the complete solution may be
expressed as

u(x,y,t) =uo(x) +Rui(x; o, ky) exp(—icot +ikyy)}. (15)

The small perturbations hypothesis (w; <K wog, u1 <K ug)
allows linearizing (7)—(11) and decouple the evolution of
the zero-th order solution, which is given in (1)—(5), from
the evolution of the perturbations. Note that in order to
consider consistently the axial gradients of the variables in
this linearization, the zeroth-order solution and the coefficients
of the Fourier expansion of the perturbations must retain
the dependence on the axial coordinate. This is the main
difference with respect to local stability analyses such as the
one previously carried out in [48].

Applying (15) to (7)—(11), it is possible to obtain a linear
system of equations with variable coefficients describing the
evolution of the different perturbations along the channel.
The resulting equations contain source terms proportional
to the angular frequency, w, and to the azimuthal wave
number, ky, of the perturbations. These equations must be
solved several times, once for each fundamental mode asso-
ciated to the boundary conditions. Moreover, the zeroth-order
problem must also be solved together with the perturbation
problem in order to be able to compute the coefficients of the
perturbation equations.



The boundary conditions associated to the evolution
equations of the Fourier coefficients of the perturbations
are also derived linearizing the boundary conditions of the
1-D problem. This delicate linearization was detailed in [45].

D. Solution Method and Self-Excited Modes

The presence of a sonic point and a zero-ion-velocity
point inside the thruster channel makes the integration process
cumbersome. The solution is computed by concatenating the
fundamental modes obtained integrating the equations from
the anode and from those two internal points, whose location
is unknown too. Obviously, the solution must be continuous in
some intermediate points and this imposes more constraints to
the final solution. Additional initial conditions are necessary
to start the integration from the anode and those two internal
points. In the end, the weights of the fundamental modes in
the final solution are obtained from the following system of
equations:

Ax=b (16)

where X is a vector containing the weights of the fundamental
modes, b is a vector with the coefficients of the linearized
control parameters and constraints, and A is a matrix with
complex coefficients containing the partial derivatives of the
control parameters with respect to the initial conditions of
each of the fundamental modes. This matrix A depends on the
vector of control parameters of the zeroth-order solution, wy,
as well as on the angular frequency, @, and on the wave
number, k,, of the perturbations, that is, A = A(wo, @, ky).

In order for self-excited modes to exist, the previous alge-
braic system of equations must have nontrivial solutions for
the homogeneous problem (i.e., the case with b = 0). This
condition is equivalent to

det A(wo, w, ky) =0 a7

where det is the determinant function.

For each zeroth-order solution given by the control
parameters, Wo, and each wave number, ky, (17) provides a
condition to compute the complex angular frequency, w, of
the perturbation. If the resulting angular frequency verifies
the condition w; > 0, then the perturbation is self-excited.
In particular, the case k, = 0 corresponds to purely axial
oscillations studied in the past for the analysis of the breathing
mode [45]-[47].

III. RESULTS AND DISCUSSION
A. Reference Case and Background Solution

This section is devoted to the presentation of the results
of the linearized time-dependent 2-D model for typical
Hall thruster conditions. For this purpose, a SPT-100 thruster
model has been considered as reference case. The main
operating parameters of this case used in the simulation are
presented in Table I, where the following symbols are used:
m is the mass flow rate through the anode; V; is the discharge
voltage; Bmax is the maximum magnetic field; xpax is the
location of the maximum magnetic field with respect to the

TABLE I
MAIN OPERATING PARAMETERS OF THE SPT-100 HALL THRUSTER
USED AS REFERENCE CASE FOR THE SIMULATIONS

™m 4.85 mg/s Vy 300 V
Bmaz 237 G Tmaz 20 mm
Lch 25 mm LAE‘ 33 mm
he 15 mm R 42.5 mm
TeE 4.8 eV UnB 300 m/s
ap 0.01 D 0.16
TsEE 100 V aw 1.0
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Fig. 1. Axial profiles of the main macroscopic variables of the background
solution for the reference case. x is the axial location, n,q(x) is the plasma
density, n,0(x) is the neutral density, T,o(x) is the electron temperature,
¢o(x) is the electric potential, B(x) is the magnetic field, and [;p(x) is the
ion axial current. The left asterisk corresponds to the zero-ion-velocity point,
whereas the right asterisk corresponds to the regular sonic point inside the
channel. The space between both points corresponds roughly to the ionization
region of the thruster. The left vertical dashed line represents the channel exit,
whereas the right one represents the location of the cathode, this is, the end
of the simulation domain.

anode; Lag is the distance from anode to external cathode;
Lep, he, and R are, respectively, the length, the width, and the
mean radius of the channel; T,g is the cathode temperature;
v, p is the neutral velocity at injection; ap is the anomalous
diffusion coefficient; v,, is a dimensionless coefficient for the
wall losses model [12]; and Tsgg, which is also used in the
wall losses model, is the electron temperature yielding 100%
of secondary electron emission for the specific wall material.
The electron temperature at the anode, T,p, and the discharge
current, Iy, are outputs of the simulation. For this reference
case, these result in T,p = 1.2 eV and I; = 5.0A.

Fig. 1 shows the axial profiles of the main macroscopic
variables corresponding to the background solution of (1)—(5)
for the reference case described in Table 1.

B. Azimuthal Oscillations

As a result of the global stability analysis of the refer-
ence case described in Table I, a self-excited oscillation is
detected with an azimuthal mode number m = 1, a frequency
f = 11.1 kHz, an azimuthal phase velocity v, = 2.6 km/s,
a growth-rate w; /27 ~ 3 kHz, and an azimuthal wavelength
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Fig. 2. Oscillations of the main macroscopic variables as combinations of
the background solution and the perturbations shown as functions of x and ¢
at y = 0 for a self-excited unstable oscillation of the perturbation problem
for the reference case presented in Table I. The azimuthal mode number is
m = 1, the frequency is f = 11.1 kHz, and the growth-rate is w; /27 ~ 3 kHz.
Variables represented (from left to right and top to bottom): plasma density, n,;
neutral density, n,; electron temperature, T¢; electric potential, ¢; ion axial
flux, I';; electron axial flux, I'.. Perturbations artificially set to 30% of the
base solution.

ky = —0.023 mm~ 1, According to these values, the sim-
ulated azimuthal oscillation has properties similar to those
experimentally observed for the spoke. As it will be shown
later, its growth rate is similar to the corresponding one for
the breathing mode (m = 0). Thus, it is not clear from this
analysis which oscillation, the azimuthal one or the axial one,
dominates in the reference case.

It must be noted that other mode numbers (m = —2, —1,
and 2) have been analyzed looking for possible self-excited
solutions. However, for the reference case under consideration
the only mode numbers resulting in self-excited solutions are
m = 0 (breathing mode) and m = 1 (spoke). This is in line
with experimental results for normal-size thrusters, where the
spoke is normally detected as a single oscillation in the E x B
direction. In the case of larger thrusters, experiments show that
higher modes (m = 2, 3, 4) might become dominant [25]. The
scaling of the azimuthal oscillations simulated here to bigger
thrusters has not been investigated yet.

Fig. 2 shows the contour maps in the x — ¢ space (at the
meridian section y = 0) of the main macroscopic variables as
combinations of the background solution and the perturbations
for the self-excited oscillation mentioned above. As the size of
the perturbations does not result from the linear perturbations
problem, it must be chosen arbitrarily. Just for illustration
purposes, this size has been selected so that 7,1/ T,0 = 30%
at the location of the peak of the profile of the temperature
perturbation, and the exponential dependence exp (—iw;t) has
been omitted. This choice does not impact the results presented
in this section, where the focus is on the stable/unstable char-
acter of the linear oscillations and on the physical mechanism
behind them. The selected size is justified as nonetheless
typical saturated spoke oscillations have a size of similar
magnitude as the background state. In any case, it is true that
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Fig. 3. Oscillations of the main macroscopic variables as combinations of the
background solution and the perturbations shown as functions of x and y at
different values of ¢ (at t millisecond) for the same conditions used previously
in Fig. 2. Variables represented (from left to right): plasma density, n, and
neutral density, n,. Perturbations artificially set to 30% of the base solution.
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Fig. 4. Same as Fig. 3 for other macroscopic variables. Variables represented
(from left to right): electric potential, ¢ and electron axial flux, [e.

the saturation of the oscillation may occur and the real shape
of the saturated spoke oscillation may be different from the
one represented here.

Figs. 3 and 4 show contour maps in the x—y space for
different instants of time, 7, during one cycle of the azimuthal
oscillation under the same conditions as in Fig. 2. In this
figure, it is possible to observe how the oscillation travels in
the y-direction, this is, in the + E x B direction. As expected,
the same patterns shown in Fig. 2 are observed in Figs. 3 and 4
moving in the azimuthal direction.

According to Figs. 3 and 4, the azimuthal oscillation
is due to an azimuthal variation of the ionization process.
The connection between the spoke oscillation and the
ionization process had already been suggested theoretically
in [35] and [48], and, based on experiments, by other
researchers [49]. This fact is further analyzed in Section III-C,
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Fig. 5. Axial profiles of the coefficients of the Fourier-expanded perturbations
of the main macroscopic variables corresponding to the self-excited unstable
oscillation of the perturbation problem for the reference case presented
in Table I and the same conditions as in Fig. 2. Variables represented: x is
the axial location, n.j/neq is the perturbation of the plasma density over
the background plasma density, n,1/n,q is the perturbation of the neutral
density over the background neutral density, 7, is the perturbation of the
electron temperature, ¢ is the perturbation of the electric potential. Dashed
lines are used for the real part of the perturbation coefficients, dashed-dotted
lines are used for the imaginary part and continuous lines are used for the
modulus of the perturbation coefficients. In each plot, the left dashed vertical
line represents the channel exit and the right one the end of the simulation
domain. Perturbations artificially set to 30% of the base solution.

where the azimuthal oscillation is compared with the breathing
mode.

From Figs. 24, it is possible to compute the approximate
wavelength of the oscillation in the axial direction, k. This
is estimated to be k, ~ 1.7 mm~!, which is consistent with a
wave travelling forward in the axial direction (@, > 0, ky > 0)
at a fixed azimuth and in the + E x B direction (w, > 0,
ky < 0) at a fixed axial location as time increases.

However, the tilt angle with respect to the axis of the thruster
(tan f = ky/ky) is close to 90°, whereas in experiments, the
azimuthal oscillation is normally observed to have a tilt angle
around 15°-20° [10], [19]. The reason for this discrepancy is
believed to be related to the narrow ionization region seen in
the simulation, likely caused by the fact that heat conduction
effects are not considered in the model. The version of the 1-D
model of Ahedo et al. [42] that takes into consideration heat
conduction terms gives smoother temperature profiles, wider
ionization regions, and lower temperatures inside the thruster.
Thus, adding heat conduction effects to the model might
reduce the tilt angle of the azimuthal oscillation considerably.

For completeness, Fig. 5 shows the axial profiles of the
complex coefficients of the Fourier expansion of the perturba-
tion equations defined in (15). These are the variables resulting
from the integration of the linearized equations.

Based on Fig. 5, it is also interesting to point out that
the perturbed electric field has a roughly constant azimuthal
component upstream of the ionization region (see left column
of Fig. 4 and plot of ¢; in Fig. 5). This fact, together with the
plasma density variation, causes an oscillatory axial electron
current to the anode coming from the E x B drift associated
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Fig. 6. Oscillations as a function of x and ¢ for the breathing mode (m = 0).
The conditions and variables are similar to those shown in Fig. 2.

to the azimuthal electric field, as can be observed in the right
column of Fig. 4.

C. Comparison With the Breathing Mode

Similar to Fig. 2, Fig. 6 shows the contour maps in the
x—t space of the main variables for an unstable oscillation with
m = 0 for the very same reference case presented in Table I.
The frequency of the unstable oscillation is f = 9.1 kHz,
whereas the growth-rate is w;/2x ~ 3 kHz, similar to the
spoke by chance. The frequency of the simulated breathing
mode is smaller than for the azimuthal oscillation presented
previously, as normally observed in experiments [15], [19].

In the azimuthal oscillation (see plot of neutral density
in Fig. 2), the ionization front moves back and forth, as in the
breathing mode (Fig. 6). Moreover, the m = 1 oscillation also
shows a travelling wave of neutral density, as in the breathing
mode. The similarity with the breathing mode, thus, seems
clear. The fact that both modes are recovered with the very
same model reinforces this idea. Moreover, as in the case of the
m = 1 oscillation, the region where the ionization front moves
back and forth is rather thin compared to what is normally seen
experiments for the breathing mode.

Similarly, Smith and Cappelli [21] present experimental
results, giving evidence of a complex helical oscillation in
plasma potential, which seems to be caused by an interaction
between the breathing mode and the spoke oscillations. This
gives additional support to the idea of a similar mechanism for
the breathing mode and the azimuthal spoke. Note, however,
that the oscillation from [21] is observed in the thruster plume
rotating in the opposite direction to what is observed in this
paper.

Another interesting property common to both oscillations is
the nonuniformity, in space and time, of the neutral density
at the anode plane. This seems in contradiction with the
imposed anode boundary conditions that enforce uniform
neutral velocity and mass flow rate. The reason for the neutral
density to be nonuniform at the anode resides in the neutral



recombination at the back wall of the thruster. Indeed this may
be one of the reasons why the breathing mode and the spoke
oscillation are unstable as it is explained next. Part of the ions
generated in the ionization region are attracted to the anode
through the ion-backstreaming region and are recombined into
neutrals. These neutrals travel downstream and are available
for subsequent ionization cycles and, thus, more ions than in
previous ionization cycles are generated and sent back to the
anode. The complete process is repeated again and, hence, the
growing character of this mechanism.

IV. ANOMALOUS DIFFUSION AND
AZIMUTHAL OSCILLATIONS

The formulation presented above has mostly focused on the
analysis of the linear stability of the Hall discharge against
azimuthal perturbations. In case a self-excited oscillation
is detected, then unstable oscillations grow and eventually
saturate. The linear growth phase is the only one modeled
with the 2-D model presented here, whereas the saturation is
a nonlinear process. Anomalous diffusion related to saturated
azimuthal oscillations cannot be determined self-consistently
here. Nonetheless, some insight can be obtained if we accept
the following postulate. The shape and relative strength of
the saturated oscillations are those corresponding to the linear
perturbations solution. Of course the postulate is less true the
higher is the strength of the saturated oscillation, a parameter
totally outside of the scope of the linear model used here.

Equation (10) is indeed the Ohm’s law for electrons and
can be expressed as

en,ve = —p(en.E + V(n.T,)) (13)
where p is the electron mobility tensor and the rest of symbols
as above. In the directions x and y, we have

on.T, on.T,
eNelexy = — | \en.Eyx + x + umg\en.Ey +

oy
(19)
on.T, oneTe
enevey = —puy \en.Ey + oy — ug|en.Ex + ox
(20)

where the components of the mobility tensor are defined as

e Ve 1
HlL = - 2 =5

— 21
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1
HH :){/lJ_ZE- (22)

For an axisymmetric solution, the last term of (19) and (20)
is zero. However, if small azimuthal oscillations are present,
and because of upy > wu,, the last term in (19) may
be important, thus providing an extra contribution to axial
(i.e., perpendicular) transport. The azimuthal oscillations are
not expected to modify significantly the rest of equations.
Next, the effect of that oscillation-based transport on the
1-D steady-state solution will come out from averaging its
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Fig. 7.  Axial profiles of the equivalent anomalous diffusion coefficient,
a4 (x), as computed from the linear perturbation with a size of 30% of the
zeroth-order solution. Symbols are as in Fig. 4.

effect over ¢ and y. This yields

on,T, E,
ne e) 4 (ene )1) (23)
ox ) B

€NeOVex) = —H 10 (eneEx +

on.T,
eneOVey0 = —uH | eneEx + (24)
0

ox
where (z)(x) is the temporal-azimuthal average of a
function z(¢, x, y).
The strength of the oscillation-based transport, measured as
the azimuthal force relative to the axial one, is expressed as

(n1Ey1)
aa(x) = —— (25)
nOUeyOB
so that we can rearrange (23) and (24) as
,
VeyO) = #Uexo (26)
Ue
with v, = v + aa (x)wce. 27)

The last expression for v, resembles the definition of the
Bohm-diffusion frequency (vg = apwc) highlighting the
relation between the anomalous transport and the oscillation-
based transport. If this additional transport were all the anom-
alous contribution, then ap = a4 (x), however, there may be
other contributors to the anomalous diffusion. From a practical
point of view, given the perturbations of plasma density and
azimuthal electric field, (25) allows obtaining the equivalent
anomalous diffusion coefficient associated to the perturbations.

Note in any case that term is a nonlinear effect and thus it
is not accounted for in the formulation used in the previous
sections, where the zeroth- and first-order problems are solved.
In order to close the loop and have a self-consistent linear
model of the oscillation-based transport it would be necessary
to impose ap = a4(x) and iterate until the same profile used
in the zeroth-order solution results from the corresponding
linear perturbation problem.

One of the consequences of the azimuthal oscillation may
thus be enhanced electron conductivity inside the channel.
In order to evaluate the net effect on the electron current,
it is convenient to compute the equivalent anomalous diffusion
coefficient, a4 (x), associated to the perturbations computed
with the linear model. Fig. 7 shows the axial variation of
a4 (x) based on (25). It is possible to observe that the net effect
of the oscillation on the electron conductivity is concentrated



in the rear part of the thruster, more precisely, in the ion-
backstreaming region. The values reached by a4 (x) in this
region are of the same order of magnitude to that used for ap
in the simulation of the background solution of the reference
case (Table I). In fact, for the case under analysis the average
value of a4 (x) in the rear part of the thruster is a4, ave & 0.01,
a value very similar to the one used in the zeroth-order
solution. However, this is only true for the selected size of
linear oscillations that, as mentioned above, is such that the
maximum temperature perturbation is 30% of the background
temperature.

Another relevant aspect is the fact that a4 (x) reaches
negative values in some regions of the channel. This negative
value of aa(x) is linked to the tilt angle close to 90° of
the plasma density perturbation, which causes a change of
phase between the perturbations of the plasma density and
the azimuthal electric field. Moreover, the large variations
of ax(x) anticipate important changes in the background
solution, where so far a g has been considered constant, in case
the profile of a4 (x) is used in the resolution of the zeroth-order
problem. Anyway, no contribution to electron conductivity is
seen downstream of the ionization region, where experiments
also show a higher than expected electron mobility. Nonlinear
effects affecting the low-frequency azimuthal oscillation might
resolve this contradiction. Another possible explanation is that
high-frequency oscillations (1-10 MHz) [50]-[54] might play
a role in that region.

V. CONCLUSION

A linearized time-dependent 2-D model has been used
for the analysis of the global azimuthal stability of the
Hall discharge. Contrary to more common local analyses, this
approach takes into account consistently the axial variation
of the plasma variables. Results show an unstable self-excited
azimuthal oscillation travelling in the + E x B direction with
a mode number m = 1, a phase velocity v, = 2.6 km/s and a
frequency around 11 kHz. These features are similar to those
experimentally observed for the so-called spoke. The analysis
of the oscillation and the comparison with the breathing mode
reveal that the ionization might be a driver for the azimuthal
variation of the plasma and neutral densities. Moreover, first
estimates of the electron conductivity caused by the azimuthal
linear oscillation show a non-negligible contribution in the
rear part of the thruster, but not in the acceleration region.
It is important to note that even though the unstable/stable
character of the small azimuthal oscillations presented here
is not altered by the linear hypothesis on which the study
is based, the latter conclusion about the modified electron
conductivity is indeed affected.

As part of future work, the main activity to be carried out
is the understanding of the mechanism of the azimuthal oscil-
lation and the scaling with the thruster size and the different
operating parameters. Beyond this, we identify the following
areas of research. First, a comparison between the stability
criteria derived from the local stability analyses of [29]-[31]
and [35] and the results from the global stability presented
here seems very appealing. This can be achieved by analyzing
the local stability of the axial profiles of the reference case and

comparing the results against the global ones presented here.
This should allow us to identify the local stability analysis
that best matches the global one, if any. Second, we intend to
extend the linearized time-dependent 2-D model to high fre-
quency (1-10 MHz) so that electron drift oscillations [50]-[53]
in the azimuthal direction can be analyzed numerically. This
paper would continue the theoretical work already carried out
in previous studies [36], [39]. Finally, the introduction of heat
conduction effects should be considered to analyze its impact
on the azimuthal oscillation simulated here. A further step
on the analysis of the spoke would consist in considering
nonlinear effects in order to model properly the saturation of
the oscillations and reproduce consistently real-size spokes.

REFERENCES

[1]1 A. I Morozov, Y. Esipchuk, G. N. Tilinin, A. V. Trofimov, Y. A. Sharov,
and G. Y. Shchepkin, “Plasma accelerator with closed electron drift and
extended acceleration zone,” Soviet Phys.-Tech. Phys., vol. 17, no. 1,
pp. 3845, 1972.

[2] N. B. Meezan and M. A. Cappelli, “Electron density measurements
for determining the anomalous electron mobility in a coaxial Hall
discharge plasma,” in Proc. 36th Joint Propuls. Conf. Exhibit, 2000,
Art. ID. ATAA-2000-3420.

[3] J. A. Linnell and A. D. Gallimore, “Hall thruster electron motion
characterization based on internal probe measurements,” in Proc. 31st
Int. Electr. Propuls. Conf., 2009, Art. ID. IEPC-2009-105. [Online].
Auvailable: http://www.erps.spacegrant.org

[4] N. B. Meezan, W. A. Hargus, Jr., and M. A. Cappelli, “Anomalous
electron mobility in a coaxial Hall discharge plasma,” Phys. Rev. E,
vol. 63, no. 2, p. 026410, Jan. 2001.

[5] M. A. Cappelli, N. B. Meezan, and N. Gascon, “Transport physics in
Hall plasma thrusters,” in Proc. 40th AIAA Aerosp. Sci. Meeting Exhibit,
2002, Art. ID AIAA-2002-0485.

[6] C. Boniface, L. Garrigues, G. J. M. Hagelaar, J. P. Boeuf, D. Gawron,
and S. Mazouffre, “Anomalous cross field electron transport in a Hall
effect thruster,” Appl. Phys. Lett., vol. 89, no. 16, p. 161503, 2006.

[7]1 D. Gawron, S. Mazouftre, and C. Boniface, “A Fabry—Pérot spectroscopy
study on ion flow features in a Hall effect thruster,” Plasma Sour. Sci.
Technol., vol. 15, no. 4, pp. 757-764, 2006.

[8] A. I Morozov, Y. V. Esipchuk, A. M. Kapulkin, V. A. Nevrovskii, and
V. A. Smirnov, “Effect of the magnetic field on a closed-electron-drift
accelerator,” Soviet Phys.-Tech. Phys., vol. 17, no. 3, pp. 482-487, 1972.

[9]1 S. Yoshikawa and D. J. Rose, “Anomalous diffusion of a plasma

across a magnetic field,” Phys. Fluids, vol. 5, no. 3, p. 334, 1962.

G. S. Janes and R. S. Lowder, “Anomalous electron diffusion and

ion acceleration in a low-density plasma,” Phys. Fluids, vol. 9, no. 6,

p.- 1115, 1966.

A. 1. Morozov, “Conditions for efficient current transport by near-wall

conduction,” Soviet Phys. Tech. Phys., vol. 32, no. 8, pp. 901-904, 1987.

E. Ahedo, J. M. Gallardo, and M. Martifiez-Sanchez, “Effects of

the radial plasma-wall interaction on the Hall thruster discharge,” Phys.

Plasmas, vol. 10, no. 8, p. 3397, 2003.

L. Garrigues, G. J. M. Hagelaar, C. Boniface, and J. P. Boeuf,

“Anomalous conductivity and secondary electron emission in Hall effect

thrusters,” J. Appl. Phys., vol. 100, no. 12, p. 123301, 2006.

F. 1. Parra, E. Ahedo, J. M. Fife, and M. Martinez-Sanchez, “A two-

dimensional hybrid model of the Hall thruster discharge,” J. Appl. Phys.,

vol. 100, no. 2, p. 023304, 2006.

E. Y. Choueiri, “Plasma oscillations in Hall thrusters,” Phys. Plasmas,

vol. 8, no. 4, p. 1411, 2001.

Y. B. Esipchuk, A. I. Morozov, G. N. Tilinin, and A. V. Trofimov,

“Plasma oscillations in closed-drift accelerators with an extended ac-

celeration zone,” Soviet Phys. Tech. Phys., vol. 18, no. 7, pp. 928-932,

1974.

P. J. Lomas and J. D. Kilkenny, “Electrothermal instabilities in a Hall

accelerator,” Plasma Phys., vol. 19, no. 4, p. 329, 1977.

W. A. Hargus, N. B. Meezan, and M. A. Cappelli, “A study of a low

power Hall thruster transient behavior,” in Proc. 25th Int. Electr. Propuls.

Conf., 1997, pp. 351-358.

E. Chesta, C. M. Lam, N. B. Meezan, D. P. Schmidt, and M. A. Cappelli,

“A characterization of plasma fluctuations within a Hall discharge,” IEEE

Trans. Plasma Sci., vol. 29, no. 4, pp. 582-591, Aug. 2001.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

N. Gascon and M. Cappelli, “Plasma instabilities in the ionization
regime of a Hall thruster,” in Proc. 29th Joint Propuls. Conf., 2003,
Art. ID ATAA-2003-4857.

A. W. Smith and M. A. Cappelli, “Time and space-correlated plasma
potential measurements in the near field of a coaxial Hall plasma
discharge,” Phys. Plasmas, vol. 16, no. 7, p. 073504, 2009.

Y. Raitses, A. Smirnov, and N. J. Fisch, “Effects of enhanced cathode
electron emission on Hall thruster operation,” Phys. Plasmas, vol. 16,
no. 5, p. 057106, 2009.

J. B. Parker, Y. Raitses, and N. J. Fisch, “Transition in electron
transport in a cylindrical Hall thruster,” Appl. Phys. Lett., vol. 97, no. 9,
pp. 091501-1-091501-3, Aug. 2010.

C. L. Ellison, Y. Raitses, and N. J. Fisch, “Fast camera imaging
of Hall thruster ignition,” IEEE Trans. Plasma Sci., vol. 39, no. 11,
pp. 2950-2951, Nov. 2011.

M. S. McDonald and A. D. Gallimore, “Parametric investigation of the
rotating spoke instability in Hall thrusters,” in Proc. 32nd Int. Electr.
Propuls. Conf., 2011, Art. ID IEPC-2011-242. [Online]. Available:
http://www.erps.spacegrant.org

D. Liu, Two-Dimensional Time-Dependent Plasma Structures
of a Hall-Effect Thruster, Ph.D. dissertation, Graduate School Eng.
Manage., Air Force Inst. Technol., Wright-Patterson AFB, OH, USA,
2011.

Y. V. Esipchuk and G. N. Tilinin, “Drift instability in a Hall-current
plasma accelerator,” Soviet Phys.-Tech. Phys., vol. 21, no. 4,
pp. 417423, 1976.

A. Kapulkin and M. Guelman, “Low frequency instability and enhanced
transfer of electrons in near-anode region of Hall thruster,” in Proc.
30th Int. Electr. Propuls. Conf., 2007, Art. ID IEPC-2007-079. [Online].
Available: http://www.erps.spacegrant.org

A. Kapulkin and M. M. Guelman, “Low-frequency instability in near-
anode region of Hall thruster,” IEEE Trans. Plasma Sci., vol. 36, no. 5,
pp. 2082-2087, Oct. 2008.

W. Frias, A. 1. Smolyakov, I. D. Kaganovich, and Y. Raitses,
“Long wavelength gradient drift instability in Hall plasma devices. 1.
Fluid theory,” Phys. Plasmas, vol. 19, no. 7, p. 072112, 2012.

A. I. Smolyakov, W. Frias, Y. Raitses, and N. J. Fisch, “Gradient
instabilities in Hall thruster plasmas,” in Proc. 32nd Int. Electr. Propuls.
Conf., 2011, Art. ID IEPC-2011-271.

E. Chesta, N. B. Meezan, and M. A. Cappelli, “Stability of a magnetized
Hall plasma discharge,” J. Appl. Phys., vol. 89, no. 6, pp. 3099-3107,
Mar. 2001.

J. Gallardo and E. Ahedo, “On the anomalous diffusion mechanism in
Hall-effect thrusters,” in Proc. 29th Int. Electr. Propuls. Conf., 2005,
Art. ID. IEPC-2005-117.

H. K. Malik and S. Singh, “Resistive instability in a Hall plasma
discharge under ionization effect,” Phys. Plasmas, vol. 20, no. 5,
p. 052115, 2013.

D. Escobar and E. Ahedo, “Low frequency azimuthal stability of the
ionization region of the Hall thruster discharge. I. Local analysis,” Phys.
Plasmas, vol. 21, no. 4, p. 043505, 2014.

A. A. Litvak and N. J. Fisch, “Rayleigh instability in Hall thrusters,”
Phys. Plasmas, vol. 11, no. 4, p. 1379, 2004.

A. M. Kapulkin and V. F. Prisnyakov, “Dissipative method of sup-
pression of electron drift instability in SPT,” in Proc. 24th Int. Electr.
Propuls. Conf., 1995, pp. 302-306, Art. ID IEPC-95-37.

A. Kapulkin, J. Ashkenazy, A. Kogan, G. Appelbaum, D. Alkalay,
and M. Guelman, “Electron instabilities in Hall thrusters: Modelling
and application to electric field diagnostics,” in Proc. 28th Int. Electr.
Propuls. Conf., 2003, Art. ID IEPC-2003-100.

A. Kapulkin and M. Guelman, “Lower-hybrid instability in Hall
thruster,” in Proc. 29th Int. Electr. Propuls. Conf., 2005, Art. ID IEPC-
2005-088. [Online]. Available: http://www.erps.spacegrant.org

H. K. Malik and S. Singh, “Conditions and growth rate of Rayleigh
instability in a Hall thruster under the effect of ion temperature,” Phys.
Rev. E, vol. 83, no. 3, p. 036406, 2011.

E. Ahedo, P. Martiiez-Cerezo, and M. Martinez-Sanchez, “One-
dimensional model of the plasma flow in a Hall thruster,” Phys. Plasmas,
vol. 8, no. 6, p. 3058, 2001.

E. Ahedo, J. M. Gallardo, and M. Martifiez-Sanchez, ‘“Model of
the plasma discharge in a Hall thruster with heat conduction,” Phys.
Plasmas, vol. 9, no. 9, p. 4061, 2002.

E. Ahedo and D. Escobar, “Influence of design and operation parameters
on Hall thruster performances,” J. Appl. Phys., vol. 96, no. 2, p. 983,
2004.

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

E. Ahedo and F. I. Parra, “A model of the two-stage Hall thruster
discharge,” J. Appl. Phys., vol. 98, no. 2, pp. 023303-1-023303-11,
Jul. 2005.

E. Ahedo, P. Martinez, and M. Martinez-Séanchez, “Steady and linearly-
unsteady analysis of a Hall thruster with an internal sonic point,” in
Proc. 36th AIAA/ASME/SAE/ASEE Joint Propuls. Conf. Exhibit, 2000,
Art. ID ATAA-2000-3655.

R. Noguchi, M. Martinez-Sénchez, and E. Ahedo, “Linear 1-D
analysis of oscillations in Hall thrusters,” in Proc. 26th Int. Electr.
Propuls. Conf., 1999, Art. ID IEPC-99-105. [Online]. Available:
http://www.erps.spacegrant.org

S. Barral, V. Lapuerta, A. Sanch, and E. Ahedo, “Numerical investigation
of low-frequency longitudinal oscillations in Hall thrusters,” in Proc.
29th Int. Electr. Propuls. Conf., 2005, Art. ID IEPC-2005-120. [Online].
Available: http://www.erps.spacegrant.org

D. Escobar and E. Ahedo, “Tonization-induced azimuthal oscillation in
Hall effect thrusters,” in Proc. 32nd Int. Electr. Propuls. Conf., 2011,
Art. ID IEPC-2011-196.

A. Vesselovzorov, E. Dlougach, E. Pogorelov, A. A. Svirskiy, and
V. Smirnov, “Low-frequency wave experimental investigations, transport
and heating of electrons in stationary plasma thruster SPT,” in Proc.
32nd Int. Electr. Propuls. Conf., 2011, Art. ID IEPC-2011-060. [Online].
Available: http://www.erps.spacegrant.org

G. Guerrini and C. Michaut, “Characterization of high frequency os-
cillations in a small Hall-type thruster,” Phys. Plasmas, vol. 6, no. 1,
p- 343, 1999.

A. A. Litvak, Y. Raitses, and N. J. Fisch, “Experimental studies of high-
frequency azimuthal waves in Hall thrusters,” Phys. Plasmas, vol. 11,
no. 4, p. 1701, 2004.

A. Lazurenko, V. Krasnoselskikh, and A. Bouchoule, “Experimental
insights into high-frequency instabilities and related anomalous electron
transport in Hall thrusters,” IEEE Trans. Plasma Sci., vol. 36, no. 5,
pp- 1977-1988, Oct. 2008.

A. K. Knoll and M. A. Cappelli, “Experimental characterization of high
frequency instabilities within the discharge channel of a Hall thruster,”
in Proc. 31st Int. Electr. Propuls. Conf., 2009, Art. ID IEPC-2009-099.
[Online]. Available: http://www.erps.spacegrant.org

S. Tsikata, C. Honore, D. Gresillon, A. Heron, N. Lemoine, and
J. Cavalier, “The small-scale high-frequency ExB instability and its
links to observed features of the Hall thruster discharge,” in Proc. 33rd
Int. Electr. Propuls. Conf., 2013, Art. ID IEPC-2013-261. [Online].
Available: http://www.erps.spacegrant.org

Diego Escobar received the M.Sc. and M.A.S.
degrees in aeronautical engineering from the Univer-
sidad Politécnica de Madrid, Madrid, Spain, in 2005
and 2007, respectively. He is currently pursuing the
Ph.D. degree from the Universidad Politécnica de
Madrid, Madrid, Spain.

He was an Aerospace Engineer with the European
Space Operations Centre, Darmstadt, Germany, from
2007 to 2011. He is currently the Project Manager
with GMYV, Madrid. His current research interests
include modeling and simulation in Hall thrusters

and satellite orbital dynamics and navigation in the professional field.

Eduardo Ahedo received the M.Sc. and Ph.D.
degrees in aeronautical engineering from the Uni-
versidad Politécnica de Madrid, Madrid, Spain, in
1982 and 1988, respectively.

He was a Fullbright Post-Doctoral Scholar with the
Massachusetts Institute of Technology, Cambridge,
MA, USA, from 1989 to 1990. He is currently
a Professor of Aerospace Engineering with the
Universidad Carlos III de Madrid, Leganés, Spain.
His current research interests include modeling and
simulation in plasma propulsion, electrodynamic

tethers, plasma contactors, plasma-surface interactions, plasma instabilities,
and plasma-laser interactions.



	portadilla_postprint_IEEE
	esco15 -- Global Stability Analysis of Azimuthal Oscillations in Hall Thrusters.pdf



