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Abstract. Lazy learning methods have been proved useful when dealing with
problems in which the learning examples have multiple local functions. These
methods are related with the selection, for training purposes, of a subset of ex-
amples, and making some linear combination to generate the output. On the
other hand, neural network are eager learning methods that have a high nonlin-
ear behavior. In this work, a lazy method is proposed for Radial Basis Neural
Networks in order to improve both, the generalization capability of those net-
works for some specific domains, and the performance of classical lazy learn-
ing methods. A comparison with some lazy methods, and RBNN trained as
usual is made, and the new approach shows good results in two test domains, a
real life problem and an artificial domain.

1 Introduction

Lazy learning methods [1,2,3] are conceptually straightforward approaches to ap-
proximating real-valued or discrete-valued target functions. These learning algo-
rithms defer the decision of how generalize beyond the training data until a new sam-
ple or instance is encountered. When a new sample is received, a set of similar related
patters is retrieved from the available training patters and used to approximate the
new query sample. Similar patterns are chosen using a distance measured with nearby
points having high relevance.

Lazy methods that appear in the literature generally work by selecting the k least
distant input patters from the novel samples, often in terms of Euclidean distance.
Afterwards a local approximation using the selected samples is carried out with the
purpose of generalize the new sample. That local approximation can be constructed
using different strategies. The most basic form is the k- nearest neighbor method [4].
In this case, the approximation of the new sample is just the most common output
value among the k selected examples. A refinement of this method, called weighted
k-nearest neighbor [4], can be also used, which consists of weighting the contribution
of each of the k neighbors according to the distance to the new sample, giving greater
weight to closer neighbors. Other strategy to determine the approximation of the new
sample is the locally weighted linear regression [2] that constructs an explicit and
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linear approximation of the target function over a region around the new sample. The
coefficients regression is based on the k nearest input patterns to new sample.

When lazy learning techniques are used, the target function is represented by a
combination of many local approximations constructed in the neighborhood of the
new samples. On the other hand, eager learning methods construct global approxima-
tions and the generalization is carried out beyond the training data before observing
the new sample. That global approximation over the training data representing the
domain could lead to poor generalization properties, mainly if the target function is
complex. In these cases, lazy methods could be appropriate because the complex
target function could be described by a collection of less complex local approxima-
tions.

Artificial neural networks can be considered as eager learning methods because
they construct a global approximation that covers the entire sample space and all
future samples. Although Radial Basis Neural networks (RBNN) [5,6] use multiple
local approximations, they are also eager leaning methods because the network must
commit to the hypothesis before the query point is known. The local approximations
they create are not specially targeted to the query point to the same degree as in a lazy
learning methods. Instead, RBN networks are built eagerly from local approximations
centered around the training samples o around clusters of training samples, but not
around the unknown future query point. That could contribute to poor generalization
properties of RBNN.

The goal of this study is to improve the generalization capabilities of RBNN using
a lazy learning strategy. In this context, the most basic strategy should consist of
constructing local non-linear regression based on RBNN, this is, on approximating
the target function in the neighborhood surrounding the new sample using a RBNN.
In this case, parameters of the network —centers, width and weights- should be deter-
mined using the k nearest training patterns. However, the idea of selecting the k near-
est patterns might not be the most appropriate mainly because of one factor: the net-
work will always be trained with the same number of training data for each new sam-
ple. That may be a disadvantage in the context of artificial neural networks because
each new sample could require different training data.

In this paper a lazy learning strategy is proposed to improve the generalization ca-
pability of RBNN. The main idea is to recognize from the whole training data set, the
most similar patterns to each new pattern to be processed. This subset of useful pat-
terns is used to train a RBNN and the training is deferred until a test pattern is re-
ceived. The patterns retrieved from the available training data set to train the RBNN
and posterior approximation of the new sample are determined by using the inverse of
the Euclidean distance and a threshold distance or cut, which determines the exten-
sion of the neighborhood of the novel pattern. The number of retrieved patters will
depend on the localization of the new sample in the input space.

The proposed lazy learning strategy to train RBNNs is validated in different do-
mains and compared with other lazy methods, as k-nearest neighbor, weighted k-
nearest neighbor, locally weighted linear regression and locally non-linear regression
based on RBNN. The proposed method is also compared against the traditional way
of training RBNN that uses the complete training data and construct a global ap-
proximation of the target function.



2 Lazy learning for Radial Basis Neural Networks

The lazy learning method studied in this work to train RBNN consists of selecting,
from the whole training data, an appropriate subset of patterns to improve the answer
of the RBNN for a novel sample. The general idea for the selection of patterns is to
only include, and one or more times, those near patterns -in terms of Euclidean dis-
tance- to the novel sample. This way, the network is trained with the most useful
information, discarding those patterns that not only provide no knowledge to the
network, but, besides, can confuse the learning process.

The amount of training data to be selected to approximate the new sample en-
countered is given by a relative n-dimensional volume, named V,, surrounding the test
pattern, where n is the dimension of the input space. This relative volume V. is a frac-
tion of the total volume from where training patterns are selected. In order to deter-
mine the training patterns included in that relative volume, a threshold distance or cut
r, (radius of the sphere) must be calculated before the learning algorithm is applied.
The relative »n -dimensional volume can be written as:

V.

V, =
5
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where V, is the volume of the sphere centered in the test pattern and radius r, — this
sphere contains the patterns that will be selected- and V_is the volume of the sphere
centered in the test pattern and radius equals to the maximum distance, . Since
V=k# where r is the radius of the sphere, 7 is the dimension of the space and k is a
constant, we can write:

A klif“sﬂ - Hence: =gV,
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The relative threshold distance, , calculated as the n-th root of the relative volume
will be used to select patterns in the fraction volume around the test pattern.

Given a test pattern g, described by a n-dimensional vector, g=(q,...., g,), the steps

to select the training set, named X, associated to the patterns, are the following:

Step 1. A real value, d,, is associated to each training pattern (x, y . That value is
defined in terms of the standard Euclidean distance as:

n
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Step 2. A relative distance, d, is calculated for each training pattern. Let 4, be the
maximum distance to the novel pattern ¢, this is d,,, = Max (d,, d,, ...d,). Then, the
relative distance is given by:

d,=d/d,,

Step 3. A new real value, f,=1/d,, where k=1,...,N is associated to each training pat-
tern (x,y,). These values f, are normalized in such a way that its sum is equal to the
number of training patterns in X. The relative values, named as fi,, are obtained by:
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Step 4. The relative distance, d,, calculated in step 2 and the relative threshold dis-
tance, r,, previously calculated as the n-th root of the relative volume V,, are used to
decide if the training pattern (x,, y) is selected:

If d, < r, then the pattern (x,, y,) is included in the training subset.

Value fn, calculated in step 4 is used to indicate how many times the training pat-
tern (x, y,) is going to be repeated in the new training subset. Hence, they are trans-
formed into natural numbers as:

n, =inl( fa,)+1

At this point, each training pattern in X that has been selected has an associated
natural number, #,, which indicates how many times the pattern (x,, y,} has been used
to train the RBNN when the new instance ¢ is reached.

Step 5. Once the training pattern subset associated to the test pattern g, X,, is built up,
the RBNN is trained with this new subset. As usual, training a RBNN involves to
determine the centers, the dilations or widths, and the weights. The centers are calcu-
lated in an unsupervised way using the K-means algorithm presented in [7]. After
that, the dilations coefficients are calculated as the square root of the product of the
distances to their two neighbors. Finally, the weights of the RBNN are estimated in a
supervised way to minimize the mean square error measured in the training subset X,

3 Experimental Validation

The lazy learning method described in section 2 has been applied to RBNN and the
generalization capability of the network has been measured in terms of the mean error
over the test data set. Different domains have been used with that purpose. The results
obtained with that lazy strategy have been compared, firstly, with the results provided
by the network when a global approximation over the whole training data set is con-
structed, this is when the network is trained as usual. Secondly, the results are also
compared with other lazy methods, as k-nearest neighbour, weighted k-nearest neigh-
bour, the weighted local linear regression and a weighted local nonlinear regression
methods.

In this section, the features of different domains and the conditions of the experi-
ments carried out are described. Finally, the results obtained with the different lazy
learning methods are presented and compared.

3.1 Experimental definition

Different domains have been used to compare the different lazy strategies: one-
dimensional theoretical approximation problem, a piecewise-defined function, and a
n-dimensional (n>1) real life problem, defined by means of a time-series describing
the behaviour of the water level at Venice Lagoon. In the next, the characteristics of
both of them are presented.

¢ Theoretical problem: A piecewise-defined function approximation
The function is given by the equation:



—2.186x —12.864 if —-10<x <=2

fix) =q4.246x if -2<x<0

10e =09 [0.03x +07x] if 0<x <10

The original training set is composed by 120 input-output points randomly
generated by an uniform distribution in the interval [-10,10]. The test set is composed
by 80 input-output points generated in the same way as the points in the training set.
Both sets have been normalized in the interval [0,1]

¢ Real life problem: Prediction of water level at Venice Lagoon

Unusually high tides, result from a combination of chaotic climatic elements in
conjunction with the more normal, periodic, tidal systems associated with a particular
area. The prediction of such events have always been subjects of high interest. The
water level of Venice Lagoon is a clear example of these events. That phenomenon is
known as "high water". Ditferent approaches have been developed for the purpose of
predicting the behavior of sea level at Venice Lagoon [8].

In this work, a training data set of 3000 points, corresponding to the level of water
measured each hour has been extracted from available data in such a way that both
stable situations and high water situations appear represented in the set. The test set
has also been extracted from the available data and it is formed by 50 samples in-
cluding the high water phenomenon. A nonlinear model using the six previous sam-
pling times seems appropriate because the goal is to predict only the next sampling
time.

3.2 Experimental conditions

As it has been previously mentioned, different lazy learning strategies have been used
to deal with different problems. Now, the conditions of the experiment run are de-
scribed. The k-nearest neighbour, the weighted k-nearest neighbour and the local
weighted linear regression methods [2] have been run for different values of k pa-
rameter (number of patterns selected). For the piecewise- defined function, k is varied
from 1 to 23 and for the prediction of the water level at Lagoon Venice k is varied
form 1 to 75, because more data are available.

A local nonlinear regression method based on RBNN is also tested. In this case,
when the test sample is encountered the k nearest input training patterns are retrieved
and a RBNN is trained with those patterns. The initial centers of the RBNN are fixed
around the geometric medium of the k training patters selected, and the training of the
network is carried out as usual. The value of k is also varied in the same range that for
the other lazy methods, but in this case the k value is incremented by 5 units. RBNNs
with different number of hidden neurons have been proven. After several experiments
it has been verified that the number of hidden neurons depends on the value of k, for
instance int(k/r)>+1, where r=2,3,4,5.... In this work, the best results are obtained
using int(k/2)+1 hidden neurons, although significant differences do not exist.

The lazy learning method described in section 2 is used to train RBNNS. In this
case different relative volumes (V) have been used to run the experimental simula-
tions. As in the previous case, the results do not depend significantly on the number of



hidden neurones. The results shown in the next section are obtained using 19 hidden
neurones for the piecewise-defined function and 15 hidden neurones for the time se-
ries prediction domain. Finally, by comparative reasons, the RBNN have also been
trained as usual, this is, the network is trained using the whole training data set. When
the lazy strategy involves the use of a RBNN, the training is carried out until the con-
vergence of the network is reached, that is, when the derivative of the training error is
near zero.

3.3 Experimental results

Figure 1 shows the behaviour of the different lazy strategies in both studied domains.
The mean error over the test data sets for each value of k is represented. In figure 2,
the behaviour of the lazy strategy proposed in section 2 to train RBNN is shown. In
this case, the mean error over the test data is evaluated for every value of relative
volume.
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Figure 1. Evolution of the test mean errors for k-NN Weighted k-NN, linear and nonlinear
local regression methods

In figure 1 it is observed that for the piecewise-defined function, the performance
of classical lazy strategies is in general influenced by the value of k, increasing the
error as the k value increases, although when a nonlinear local approximation is
made, that influence is smaller. However when a weighted method is used, weighted
k-NN, the influenced of the parameter k almost disappears, as expected. Moreover the
error decreases reaching the best values of all traditional methods.

For the prediction problem, the behaviour of the traditional methods is very differ-
ent. On the one hand, there is a stabilization of the error after a certain value of k, but
only when using regression methods. On the other hand, however for the k-NN algo-
rithms the error has a worse behaviour. It increases when k increases, and even the
best results, in k, are very bad. This is due to the local influence of data in the Venice
lagoon domain. Any way, it seems clear that the influence of the domains in the results
when using traditional lazy approaches is very high.

The performance of the lazy method proposed in this work (see figure 2) does not
depends significantly on the value of relative volume for both domains. In this case,
the mean error is more or less the same for every relative volume, once a certain



amount of data are selected. It can also be seen that similar results can be found in
both domains, the proposed method seems to be less domain dependent. The new
method takes advantage of the property of selecting a different set, in number and
elements, of learning patterns. It is able to discover the most appropriate set of exam-
ples for each new test pattern.
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Figure 2. Evolution of the test mean errors for the proposed lazy method to RBNN

The best mean errors in test obtained by the different methods and the different
domains are shown in tables 1 and 2. Table 2 shows also the mean error obtained
when a global approximation of the target function using RBNN is made. As it is
observed in both tables, the mean error over the test set in all domains is significantly
reduced when the lazy strategy proposed in this work is used. When k patterns are
selected and a nonlinear local regression is made, the results do not improve with
respect to linear regression. However, when the training patterns are selected based
on the new test sample received, better generalization capabilities are obtained. In
addition, the RBNN has poor generalization capabilities if the network is trained with
the whole training patterns, that is when a global approximation is built up.

Table 1. Best mean error for k-NN, Weighted k-NN, linear and nonlinear local methods

Mean Error k-nearest Weighted k- Local linear | Local nonlinear regres-
(k value) neighbor | nearest neighbor | regression sion based on RBNN
Piecewise- 0.01113 0.00793 0.02513 0.01120
defined function (k=2) (k=4) (k=3) (k=5)
Lagoon Venice 0.05671 0.05610 0.0323 0.02334
k=2) (k=3) ke[50,70] k=19)

Table 2. Best mean error for the proposed lazy method to RBNN

Mean Error Lazy Traditional
(relative volume) method method
Piecewise-defined 0.002085 0.0396
function
Lagoon Venice 0.019 0.055




4  Conclusions

The idea of representing the target function by a combination of many local approxi-
mations constructed in the neighbour of the new sample could provide better perform-
ance of those learning methods than construct global approximation, mainly if the
target function is complex. However, the performance of lazy methods is influenced
by the criterion of selecting the patterns that determine each local approximation.
When local approximation are built up using the lazy strategies based on the selection
of k patterns -as the k-nearest neighbour, weighted k-nearest neighbour and locally
weighted regression- for every test sample, the same amount of patterns are selected.
The results presented in the previous section show that those lazy strategies have poor
generalization capabilities when approximation and prediction problems are formu-
lated, even if nonlinear local approximations are made.

The lazy method presented in this work makes an automatic selection of training
patterns for each test samples allowing that number of training patterns is variable
depending on the position in the input space. In addition, the performance of the lazy
method presented in this work is higher than those lazy strategies selecting the k near-
est patterns.

On the other hand, the lazy strategy presented in that work to train RBNN improve
the generalization capabilities of those type of artificial neural network. In this paper
is also shown that the selection of the most relevant training patterns, the neighbours
of the novel pattern, helps to obtain RBNN‘s able to better approximate complex
functions.
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