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Abstract
Given a data set in the multivariate Euclidean space, we study regions of central

points built by averaging all their subsets with a fixed number of elements. The aver-
aging of these sets is performed by appropriately scaling the Minkowski or elementwise
summation of their convex hulls. The volume of such central regions is proposed as a
multivariate scatter estimate and a circular sequence algorithm to compute the central
regions of a bivariate data set is described.

Keywords: convex hull, depth function, depth-trimmed regions, Minkowski sum, multivari-
ate scatter estimate

1 Introduction

The lack of a natural order in the multivariate Euclidean space is an obstacle to translate
a number of univariate data analytic tools to the multivariate setting. Several authors have
overcome this problem introducing a center-outward ordering with respect to a multivariate
probability distribution or a data cloud. Depth functions are a key issue in this approach,
they assign a point its degree of centrality with respect to a probability distribution or a
data cloud. They were first proposed by Tukey (1975) and have been extensively studied
in the last years, see Liu (1990) for a depth proposal based on random simplices, Liu et
al. (1999) for statistical applications of depth functions and Zuo and Serfling (2000a) for a
comprehensive treatment of several notions of data depth.

The level sets of a depth function constitute the so-called depth-trimmed regions. They
are nothing but sets of central points with respect to a data cloud or a probability distri-
bution. Among others, Massé and Theodorescu (1994), Koshevoy and Mosler (1997) and
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Cascos and López-Dı́az (2005) have proposed and studied particular instances of families
of central regions. Meanwhile, Zuo and Serfling (2000b) systematically obtain properties of
several families of depth-trimmed regions from the ones of their generating depth functions.

We will propose a new family of central regions. Given a sample x1, . . . xn ∈ Rd, its mean
value x is the sum of all the points from the sample multiplied by n−1. Imagine we want to
obtain a set that contains x and is central with respect to the data cloud. We can build a
natural candidate taking all the segments that join two distinct points from the sample and
averaging them. The way we average them is by taking their Minkowski (or elementwise)
sum weighted by the inverse of the number of segments, that is, we multiply the sum by(

n
2

)−1
. Such a procedure can be generalized from the set of all pairs of points to the set of

all k-tuples for any 1 ≤ k ≤ n.
In Section 2, we will introduce the expected convex hull trimmed regions of a sample,

describe its main properties and characterize its extreme points. In Section 3, the volumes of
the expected convex hull regions are proposed as multivariate scatter estimates. We use the
classical method of the circular sequence to develop an algorithm of complexity O(n2 log n) to
compute arbitrary expected convex hull trimmed regions of a bivariate data set in Section 4.
Some concluding remarks, including alternative central regions, are presented in Section 5.

2 Expected convex hull trimming

Before introducing the new central regions, we will briefly recall some definitions that are
needed as well as some notation.

Points in Rd will be denoted with boldface characters and square brackets are used to
specify their components, i.e., x ∈ Rd is alternatively given by x = (x[1], . . . , x[d]).

Given a set of points x1, . . . , xn ∈ Rd, we denote its convex hull, the smallest convex
set that contains them, by co{x1, . . . , xn}. For two sets F, G ⊂ Rd, its Minkowski sum or
elementwise sum is given by

F ⊕G := {x + y : x ∈ F, y ∈ G} .

The Minkowski sum of two segments centred at the origin is plotted in Figure 1 below.
For λ ∈ R, we define λF := {λx : x ∈ F}. Finally, relation ≤ is understood componen-

twisely, i.e. x ≤ y if x[i] ≤ y[i] for all 1 ≤ i ≤ d.

Definition 1. Given x1, . . . , xn ∈ Rd and 1 ≤ k ≤ n, their expected convex hull trimmed
region of level k is given by

CDk(x1, . . . , xn) :=

(
n

k

)−1 ⊕
1≤i1<...<ik≤n

co{xi1 , . . . , xik} ,

that is, the Minkowski summation of the convex hulls of all the subsets of k elements of
{x1, . . . , xn} multiplied by the inverse of the number of all such subsets.
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Figure 1: Minkowski sum (shaded area) of two segments centred at the origin.

The reason we name these sets expected convex hull trimmed regions is that through the
Minkowski sum and the multiplication by a scalar, we are averaging (finding expectations of)
convex hulls. Whenever it is possible, we will write CDk shortly instead of CDk(x1, . . . , xn).

In Figure 2, we have plotted the expected convex hull region of a data set of level k = 2.
In three different frames, we have respectively depicted n = 5 points in the plane, the 10
segments joining them and CD2.

Figure 2: Building CD2.

2.1 Main properties of the expected convex hull trimmed regions

We will briefly summarize the main properties of the expected convex hull trimmed regions.

Theorem 2. Given x1, . . . , xn ∈ Rd, the expected convex hull regions satisfy

(i) affine equivariance: for any nonsingular matrix A ∈ Rd×d and any point b ∈ Rd, we
have CDk(Ax1 + b, . . . , Axn + b) = ACDk(x1, . . . , xn) + b ;

(ii) nested: if k1 ≤ k2, then CDk1 ⊂ CDk2 ;

(iii) convex: CDk is convex ;
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(iv) compact: CDk is compact ;

(v) if k = 1: CD1 = {x} ;

(vi) if k = n: CDn = co{x1, . . . , xn} .

Properties (i)–(iv) in Theorem 2 are similar to those studied for depth-trimmed regions in
Theorem 3.1 in Zuo and Serfling (2000b), except for the fact that the inclusion of the nesting
property (ii) is here reversed with respect to the order relation in parameter k. Properties
(iii) and (iv) follow from the fact that CDk is the Minkowski sum of a finite number of
polytopes and thus, it is a polytope.

Theorem 2 (i) holds true if instead of a square nonsingular matrix, any A ∈ Rm×d and
b ∈ Rm are taken. As a consequence, the projection of the expected convex hull regions on
any subset of coordinates equals the expected convex hull regions of the projected data (on
the same set of coordinates).

In Figure 3 we have depicted the contour plots of the expected convex hull regions of
some real data. The data corresponds to the results of the 30 athletes that competed in the
2004 Olympics Decathlon in long jump (in meters, axis X) and in the 100m race (in seconds,
axis Y) and has been obtained from http://www.athens2004.com.
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Figure 3: Contour plots of the expected convex hull trimmed regions of the decathlon data
set with k ranging from 1 to 30.
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Depth function. It is possible to define a depth function in terms of the new regions. For
a fixed data set {x1, . . . , xn} and any x ∈ Rd, we can define the function

CD(x) :=

{
min{k : x ∈ CDk}−1 if x ∈ co{x1, . . . , xn}
0 otherwise

.

The function CD is a bounded, non-negative mapping and from Theorem 2 it follows that it
satisfies the properties of affine invariance, maximality at x, in fact CD(x) = 1, decreasing
in arrays from the mean value and vanishing at infinity. Therefore, CD is a depth function in
the sense of Definition 2.1 in Zuo and Serfling (2000a). See Figure 4 for a graphical example
of the new depth function.
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Figure 4: Inverse of the expected convex hull depth for the 30 points in the decathlon data
set.

2.2 Additional properties

Monotonicity. Depth-trimmed regions are set-valued location estimates and thus the
affine equivariance considered in Theorem 2 (i) is an important requirement. Among other
classical requirements for location estimates, it is also important to analyze their behaviour
when considered on two ordered data sets, see condition (i) for a univariate location param-
eter in Bickel and Lehmann (1975).

Let Rd
+ be the positive orthant and Rd

− the negative orthant. That is, x ∈ Rd
+ (resp.

x ∈ Rd
−) if x[i] ≥ 0 (resp. x[i] ≤ 0) for all 1 ≤ i ≤ d.

Proposition 3. If xi ≤ yi for 1 ≤ i ≤ n, the following two relations hold for any 1 ≤ k ≤ n,

(i) CDk(y1, . . . , yn) ⊂ CDk(x1, . . . , xn)⊕Rd
+ ;
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(ii) CDk(x1, . . . , xn) ⊂ CDk(y1, . . . , yn)⊕Rd
− .

From Proposition 3 (i) it follows that given any point y ∈ CDk(y1, . . . , yn) there is always
a point x ∈ CDk(x1, . . . , xn) such that x ≤ y, meanwhile from (ii) it follows that given any
point x ∈ CDk(x1, . . . , xn) there is always a point y ∈ CDk(y1, . . . , yn) such that x ≤ y.

Minkowski subadditivity. The convex hull satisfies a special type of subadditivity. Given
two data sets with the same size, x1, . . . , xn, y1, . . . , yn ∈ Rd it holds

co{x1 + y1, . . . , xn + yn} ⊂ co{x1, . . . , xn} ⊕ co{y1, . . . , yn} .

An immediate consequence of such subadditivity is that.

Proposition 4. For any 1 ≤ k ≤ n,

CDk(x1 + y1, . . . , xn + yn) ⊂ CDk(x1, . . . , xn)⊕ CDk(y1, . . . , yn) .

In order to obtain a graphical explanation of Proposition 4, we have simulated a sample
(x1,y1), . . . , (x20,y20) ∈ R4 and present two frames in Figure 5. On the frame on the left,
we have plotted two data sets x1, . . . , x20 (as +) and y1, . . . , y20 (as M) together with the
contours of their respective expected convex hull regions of level k = 10. On the frame on
the right, we have plotted the data set x1 + y1, . . . , x20 + y20 together with the contour of
CD10(x1 + y1, . . . , x20 + y20) and a shaded region that corresponds to CD10(x1, . . . , x20)⊕
CD10(y1, . . . , y20).
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Figure 5: Central region of the sum of two samples and Minkowski sum of two central regions.

The subadditivity in the Minkowski sense has important implications when using depth-
trimmed regions to quantify the financial risk of a vector portfolio, see Cascos and Molchanov
(2006).
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Characterization result.

Proposition 5. The family of sets CDk for 1 ≤ k ≤ n determine the set of points x1, . . . , xn.

In the univariate case, d = 1, the set CDn is an interval whose upper extreme is the
greatest point from the sample. In general, the upper extreme of CDn−k+1 is a linear combi-
nation of the k greatest points from the sample and thus all the points from the sample can
be retrieved in a simple way.

In the multivariate case, we have all univariate projections of the points from the sample
and thus it is possible to retrieve the original data.

2.3 Extreme points

Since the set CDk is a polytope, it is the convex hull of a finite number of its boundary
points. The minimal set of such points is constituted by its extreme points. These can be
expressed in terms of summations of the extreme points of each of the Minkowski summands
co{xi1 , . . . , xik}.

For any set F ⊂ Rd, its support function is defined as h(F, u) := sup{〈x,u〉 : x ∈ F}
for any u ∈ Rd. Since the support function is linear on the set-valued argument and
h(co{x1, . . . , xn}, u) = max{〈x1,u〉, . . . , 〈xn, u〉}, we obtain

h(CDk,u) =

(
n

k

)−1 ∑
1≤i1<...<ik≤n

max{〈xi1 ,u〉, . . . , 〈xik ,u〉} .

Let x1, . . . , xn be pairwise distinct.
Directions in the d-dimensional Euclidean space can be interpreted as elements of Sd−1,

the unit sphere in Rd. If u ∈ Sd−1 \ L where L is the set of directions that are orthogonal
to the line through any two points xi and xj with i 6= j, then there is πu a permutation of
{1, . . . , n} with

〈xπu(1),u〉 < 〈xπu(2), u〉 < . . . < 〈xπu(n),u〉 .
We will characterize the extreme point of CDk in the direction of u. Given j ≥ k, the number
of sets of k points such that 〈xπu(j), u〉 is greater than any other 〈xi,u〉 is

(
j
k

)− (
j−1
k

)
where(

k−1
k

)
= 0. Since (

j

k

)
−

(
j − 1

k

)
=

(
j − 1

k − 1

)
,

the point

x(u) =

(
n

k

)−1 n∑

j=k

(
j − 1

k − 1

)
xπu(j)

is the extreme point of CDk such that h(CDk,u) = 〈x(u),u〉. It can alternatively be written
as

x(u) =
k

n(k)

n∑

j=k

(j − 1)(k−1)xπu(j) , (1)
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where n(k) =
∏k−1

j=0(n − j) if n < k and k(k) = k!. Notice that the same notation is used in

(j − 1)(k−1).

Theorem 6. Let x1, . . . , xn ∈ Rd be pairwise distinct, the set of extreme points of CDk is
{x(u) : u ∈ Sd−1 \ L}.

By considering all possible orderings of {x1, . . . , xn}, we obtain

CDk = co

{
k

n(k)

n∑

j=k

(j − 1)(k−1)xπ(j) : π ∈ Pn

}
, (2)

where Pn is the set of permutations of {1, . . . , n}. Unfortunately formula (2) is not efficient
to compute the extreme points of CDk since many of the points described are not extreme
points.

In R2, the number of directions involved in Theorem 6 is at most n(n−1) and the circular
sequence algorithm built in Section 4 will take advantage of this.

3 Multivariate scatter estimates

The expected convex hull regions provide us with information about the scatter of the data.
The bigger the regions are, the more scattered the sample is. Consequently, their volume can
be used to define multivariate scatter estimates. Although the volume of the central region
of any level is valid as a scatter estimate, we will specialize our discussion to the central
regions of level k = 2 because of the ease of the computation of their volume. We will use
notation V for such scatter estimate,

V(x1, . . . , xn) := vold
(
CD2

)
.

The set CD2, see Definition 1, is a Minkowski sum of segments, i.e., a zonotope. Zonotopes
have already been studied in connection with data analysis by Koshevoy and Mosler (1997)
and Mosler (2002). In the construction of CD2 it is possible to perform the Minkowski
summation over all i 6= j, in such a case the overall sum must be rescaled and we obtain

CD2 =
1

n(n− 1)

⊕

i6=j

co{xi, xj} . (3)

Notice that the possibility that i = j in equation (3) would not change the volume of the
resulting set. Finally, the d-dimensional volume of the set CD2, is derived from (3) and the
formula of the volume of a zonotope, see Mosler (2002),

V(x1, . . . , xn) =
1

d!nd(n− 1)d

n∑
i1=1

n∑
j1=1

· · ·
n∑

id=1

n∑
jd=1

∣∣det(xi1 − xj1 , . . . , xid − xjd
)
∣∣ , (4)

where det(xi1 − xj1 , . . . , xid − xjd
) is the determinant of the matrix whose columns are

xi1 − xj1 , . . . , xid − xjd
.

Let us now see how the scatter estimate changes if a new system of coordinates is taken.
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Proposition 7. For any matrix A ∈ Rd×d and any point b ∈ Rd,

V(Ax1 + b, . . . , Axn + b) = det(A)V(x1, . . . , xn) .

In particular, for a ∈ R we have that V(ax1 +b, . . . , axn +b) = |a|dV(x1, . . . , xn), which,
in the univariate case, means that V is a measure of dispersion in the sense of Bickel and
Lehmann (1976).

Proposition 7 plays also an important role when comparing the scatter of normalized
samples. Such is the case for two data sets in Rd

+ whose coordinates are measured in different
units. It is usually more reasonable to normalize each data set dividing each coordinate by
its mean value. In such a case, A would be a diagonal matrix whose non-trivial elements are
(1/x[1], . . . , 1/x[d]). The comparison would be possible using formula (4) and multiplying
each volume by the determinant of the corresponding matrix.

Remark 8. Proposition 7 holds true if the central regions of any other level k > 2 are used
in order to quantify the scatter.

Remark 9. A consequence of the expected convex hull trimmed regions of level 2 being
zonotopes, see equation (3), is that they will always be centrally symmetric. Nevertheless,
we understand that CD2 has interest of its own as a descriptive statistic although we are
working with skewed data. Notice that, in such a case, the central regions of higher levels
will not be symmetric.

4 Algorithm

Given a bivariate data set, it is possible to consider all the orderings of its 1-dimensional
projections in an efficient way. This can be done through a circular sequence, see Chapter
2 in Edelsbrunner (1987). Ruts and Rousseeuw (1996) and Dyckerhoff (2000) have used
circular sequences to build algorithms to compute the extreme points of the halfspace and
zonoid trimmed regions for a bivariate data set. The algorithm we present here is based on
that of Dyckerhoff (2000), where we have modified Step 5 to obtain our family of central
regions.

Step 1. Store the x-coordinates of the data points in an array X and the y-coordinates in an
array Y, so that each point of the data cloud can be written as (X[i], Y[i]) for certain i.
These arrays must be ordered in such a way that X[i] ≤ X[i + 1] and if X[i] = X[i + 1],
then Y[i] > Y[i + 1]. Initialize the arrays ORD and RANK with the values from 1 to
n. Initialize the arrays EXT1 and EXT2 to store the extreme points.

Step 2. In an array ANGLE of length
(

n
2

)
, store the angle between the first coordinate axis

and the normal vector of the line through the points (X[i], Y[i]) and (X[j], Y[j]), take
always angles in [0, π). This array is finally sorted in an increasing way.

Step 3. Find all successive entries of the array ANGLE with the same value, these will corre-
spond to sets of collinear points.
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Step 4. Reverse the order of each set of collinear points in the arrays ORD and RANK. If
(X[i], Y[i]) and (X[j], Y[j]) are collinear, interchange the values of ORD[RANK[i]]
and ORD[RANK[j]] and afterwards RANK[i] and RANK[j]. If further (X[p], Y[p]),
(X[q], Y[q]) and (X[r], Y[r]) with p < q < r are collinear, interchange the values of
ORD[RANK[p]], ORD[RANK[q]] and ORD[RANK[r]] with the ones of ORD[RANK[r]],
ORD[RANK[q]] and ORD[RANK[p]] respectively and further RANK[p], RANK[q] and
RANK[r] with RANK[r], RANK[q] and RANK[p]. Continue so forth with sets of more
than three collinear points.

Step 5. If any RANK[i] ≥ k has been modified in Step 4, append

n∑

j=k

(j − 1)(k−1)(X[ORD[j]], Y[ORD[j]]) (5)

at the end of the array EXT1.

If any RANK[i] ≤ n− k has been modified in Step 4, append

n∑

j=k

(j − 1)(k−1)(X[ORD[n + 1− j]], Y[ORD[n + 1− j]]) (6)

at the end of the array EXT2.

Notice that each new entry of EXT1 or EXT2 can be computed in terms of the previous
one and the entries modified in the array ORD in Step 4 and thus it is not necessary
to perform the summation of n− k + 1 terms.

Step 6. If there is any angle left in the array ANGLE continue with Step 3.

Step 7. Multiply the entries of EXT1 and EXT2 by k/n(k) and concatenate both arrays to
obtain the sequence of extreme points in counterclockwise order.

The sorting of the array ANGLE in Step 2 has complexity O(n2 log n) and it determines
the overall complexity of the algorithm.

5 Conclusion

5.1 Alternative central regions

The set CDk is build as a U -statistic, i.e., we consider all subsets from the sample with a
fixed size. An alternative family of central regions is obtained if the points from the sample
are selected at random and with replacement, that is, for k ≥ 1 we consider all combinations
of k integers 1 ≤ i1, i2, . . . , ik ≤ n,

1

nk

n⊕
i1=1

· · ·
n⊕

ik=1

co{xi1 , . . . , xik} . (7)
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For k = 1, applying (7), we obtain again the singleton {x} and for other values of k we
obtain central regions that are different to the expected convex hull ones. The extreme
points would be now

x(u) =
1

nk

n∑
j=1

(
jk − (j − 1)k

)
xπu(j) . (8)

If we replace (j−1)(k−1) with jk− (j−1)k in equations (5) and (6) of Step 5 and k/n(k) with
n−k in Step 7, the algorithm from Section 4 can be used to compute the extreme points of
(7). These changes are due to the differences between the extreme points in equations (1)
and (8).

5.2 Financial application

In Section 2.2 it has been mentioned that depth-trimmed regions can be applied to asses
the financial risk of a vector portfolio. This is discussed in detail in Cascos and Molchanov
(2006). The Minkowski subadditivity plays a crucial role when producing coherent, i.e.,
subadditive risk measures, see Artzner et al. (1999) for univariate coherent risk measures
and Jouini et al. (2004) for coherent risk measures of vector portfolios.

5.3 Final remarks

The aim of this paper is building central regions of a data sample by averaging convex
hulls of subsets of its points through Minkowski summation. Our effort has focused on
the description of the expected convex hull regions and the development of an algorithm
for efficiently finding their extreme points for a bivariate data set. However, the set of
extreme points described in Theorem 6 holds in any dimension. It is thus possible to built
an approximate algorithm for dimensions greater than 2 considering only a random subset
of all directions as Dyckerhoff (2000) briefly discusses for the zonoid trimming. With respect
to the population counterparts of these central regions, they can be defined in terms of the
selection expectation for random sets, see Molchanov (2005), and they will be the issue of
future research.
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