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Abstract. In this note, we present a method that allows us to decide
when a Markov-perfect Nash equilibrium is not Pareto optimum, with-
out the explicit knowledge of the respective solutions. For that purpose,
we establish a sufficient condition in terms of an algebraic inequality
where the gradient of the value functions of the cooperative and non-
cooperative games as well as the state and control variables are
involved.
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1. Introduction

The characterization and comparison of the optimal policies, when
each player sets its policy in a noncooperative manner or when all players
coordinate their actions and set their policy jointly, are issues which have
received considerable attention in the differential game literature. The gains
from policy coordination have been shown in different applied contexts, for
example, environmental and economic problems. These results have been
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established after both cooperative and noncooperative games have been
solved completely.

In this note, we focus on the comparison of the total value obtained
by the players when they follow either a cooperative or a noncooperative
mode of play. More specifically, our objective is to see under which circum-
stances the total payoff under policy coordination is strictly greater than
the sum of the individual payoffs in the noncooperative game. The question
that we address is the following: Is there scope for cooperation in a particu-
lar differential game? In other words, is the cooperative surplus positive?
The main contribution of the paper is that this question can be answered
without the knowledge of explicit solutions to the Hamilton–Jacobi–Bell-
man (HJB) equations.

The question of the inefficiency of the noncooperative solution was
studied first by Lancaster (Ref. 1) and later by Hoel (Ref. 2) in a differential
game between workers and capitalists. In both papers, the open-loop equi-
librium qualifies also as a Markov-perfect equilibrium that depends on time
only, leading to a quite simple proof. Our aim in this paper is to provide a
general result, applicable to a wide class of differential games and for Mar-
kov strategies. We establish a sufficient condition in terms of the fulfillment
of an algebraic inequality involving the partial derivatives of the value func-
tions of the cooperative and noncooperative games as well as the state and
control variables. The main advantage of our approach is that it allows us
to deduce if the Pareto strategies are better than the closed-loop Nash equili-
bria without knowing the respective solutions of the HJB equations, but
only using the properties of the functions which satisfy these equations. The
method is applied to analyze the inefficiency of feedback Nash equilibria in
two different economic differential games.

2. Description of the Game

An N-person noncooperative differential game is determined by the
following expressions:

max
ui∈U ′

{Ji(t, x, u1, . . . , uN)G�
T

t

Li(s, y, u1, . . . , uN) dsCSi(T, x(T ))},

iG1, . . . , N, (1)

s. t. ẏGf (s, y, u1, . . . , uN), (2)

y(t)Gx, y∈X⊆�
n, Ui⊆�

mi, t0⁄ t⁄T, t0¤0, (3)
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where yG(y1, . . . , yn)© and uiG(ui1, . . . , uimi)© are the state and control vari-
ables for the ith player, respectively, and the superscript © denotes the
transposition operation. The time interval [t0 , T] is assumed to be fixed
(TG+S is allowed) and the functions Li, Si, f are continuous in their argu-
ments and continuously differentiable. The admissible strategies for the ith
player are of Markov type, that is, functions φ i: [t0 , T]BX→Ui continuous
almost everywhere and such that system (2)–(3) admits a unique absolutely
continuous solution.

We refer the reader to Refs. 3–4 for the definitions of Markov-perfect
Nash equilibrium and Pareto optimum, as well as for their characterizations
by means of the HJB equations.

It is well known that a sufficiency condition for Pareto optimality can
be stated in the following terms (Ref. 3). A profile of strategies
φ̃G(φ̃1, . . . , φ̃N) is Pareto optimal if there exist α i∈(0, 1), iG1, . . . , N,
∑N

iG1 α iG1, such that, for all N-tuple of strategies φG(φ1, . . . , φN),

∑
iG1

N

α i J
i(t, x, φ̃1, . . . , φ̃N)

¤ ∑
iG1

N

α iJ
i(t, x, φ1, . . . , φN), for all t, x admissible.

Hence, the solution to the cooperative game can be obtained by means of
the solution to the following optimal control problem:

max
u∈U

∑
iG1

N

α i J
i(t, x, u1, . . . , uN), (4)

s.t. ẏGf (s, y, u1, . . . , uN), (5)

y (t)Gx, x∈X⊆�n, Ui⊆�mi, (6)

where

UGU1B· · ·BUN, 0⁄α i⁄1, ∑
iG1

N

α iG1.

Let Vi, with iG1, . . . , N, and let Wα , with αG(α1 , . . . , αN), be con-
tinuously differentiable functions, defined in the set [t0 , T]BX, which satisfy
the HJB equations and final conditions associated with the noncooperative
and cooperative games, respectively.

3. Inefficiency of Markov-Perfect Nash Equilibria

In this section, we center on the comparison of the global value that
the players obtain when they coordinate their strategies and when they do

3



not. More specifically, we study whether the global value associated with a
cooperative mode of play is strictly greater than that obtained when the
players play in a decentralized way, that is, whether ∑N

iG1 α i J
i(t, x, uα) is

strictly greater than ∑N

iG1 α iJ
i(t, x, u*), where uα is a feedback Pareto opti-

mum and u* denotes a Markov-perfect Nash equilibrium of the noncooper-
ative game. This is an important issue; indeed, if this holds, noncooperation
would lead to an inefficient result that would be improved if players cooper-
ate. The next theorem allows to answer this question for the Markov-perfect
Nash equilibria, without the explicit knowledge of the solutions to the HJB
equations.

In the next result, 〈 · , · 〉 denotes the usual scalar product in �n and ∇
is the gradient operator.

Theorem 3.1. Let Vi, iG1, . . . , N, and let Wα be continuously differ-
entiable functions for all i and for all (t, x)∈[t0 , T]BX. Assume that, for
t0⁄ t⁄T and x∈X, there exists a vector of strategies ûG(û1, . . . , ûN) such
that (2) admits a unique absolutely continuous solution X̌ and

�∇�WαA ∑
iG1

N

α iV
i�(s, y), (1, f (s, y, û))�⁄0, for all y∈X, (7)

with strict inequality for some subset Et ⊆ [t, T] of positive Lebesgue meas-
ure. If Wα(T, x̌ (T))¤∑N

IG1 Vi(T, X̌ (T)), then

∑
iG1

N

α i J
i(t, x, uα)H ∑

iG1

N

α iJ
i(t, x, u*). (8)

For all vectors ûG(û1, . . . , ûN), if (7) is an equality for all y and for almost
every s∈[t, T], then the Markov-perfect Nash equilibrium is a Pareto
optimum.

Proof. Let t¤t0 and x∈X, and let x̌ be the trajectory associated with
û, that is,

x̌(s)Gx̌(t)C�
s

t

f (r, x̌(r), û(r, x̌(r))) dr, x̌(t)Gx, s¤ t.

This function is absolutely continuous and therefore differentiable in almost
every point of [t, T]. Let us define the function

g(s)GWα (s, x̌(s))A ∑
iG1

N

α iV
i(s, x̌(s)), t⁄s⁄T.
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Let A be the subset of [t, T] such that either x̌ is not differentiable or con-
dition (7) is not satisfied. By hypothesis, this is a set of zero Lebesgue meas-
ure. In [t, T]AA, g′( · )⁄0 is satisfied, since the application of the chain rule
yields that the derivative of function g is the left-hand side expression of
inequality (7). On the other hand, since WαA∑N

iG1 Vi is continuously differ-
entiable and is locally Lipschitz, and since x̌ is absolutely continuous in the
compact interval [t, T], so is the function s > h(s)G(s, x̌(s)); therefore, the
composition (WαA∑N

iG1 α iV
i)°h, that is, the function g, is absolutely con-

tinuous (Ref. 5). But a function is absolutely continuous if and only if it
can be expressed as

g(s)Gg(t)C�
s

t

g′(r) dr,

for all s∈[t, T]. Applying the properties of the Lebesgue integral and taking
into account the above representation of function g, one can deduce that,
since g′ is defined and is not positive in almost all points of [t, T], the
function g is monotonous nonincreasing in such interval. In fact, g′F0 in
Et and then g(t)Hg(T), since g is strictly decreasing in a subset of positive
Lebesgue measure.

To conclude, let us observe that

g(t)GWα (t, x)A ∑
iG1

N

α iV
i(t, x)

G ∑
iG1

N

α i (J
i(t, x, uα)AJi(t, x, u*)),

g(T )GWα (T, x̌(T ))A ∑
iG1

N

α iV
i(T, x̌(T ))

G ∑
iG1

N

α i [S
i(T, x̌(T))ASi(T, x̌(T))]¤0.

Given that g(t)Hg(T ), inequality (8) is deduced.
For all vectors ûG(û1, . . . , ûN), when (7) is an equality for all x and for

almost every s∈[t, T], along the previous line it can be proved that g′G0
and then

∑
iG1

N

α i J
i(t, x, uα)G ∑

iG1

N

α iJ
i(t, x, u*).

Therefore, the Markov-perfect Nash equilibrium is a Pareto optimum. �
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Remark 3.1.

(i) Since in (7) only the partial derivatives of Wα, Vi, and the func-
tion f are involved, the relationship between the cooperative and
noncooperative games can be studied without the explicit knowl-
edge of the solutions to the HJB equations. It is only necessary
to know the behavior of the partial derivatives with respect to x,
since the partial derivatives with respect to the time variable are
related to the previous ones by means of these equations.

(ii) Notice that vector ûG(û1, . . . , ûN) is not restricted to the set of
admissible controls, whenever the state equation admits a unique
absolutely continuous solution.

(iii) The result is also applicable if TG+S and

lim inf
T→S

�Wα (T, x̌(T))A ∑
iG1

N

α iV
i(T, x̌(T))�¤0.

In this case,

lim inf
t→S

g(t)¤0

and the same proof applies.
(iv) The hypotheses about the differentiability of Vi and Wα can be

weakened to the requirement of local Lipschitz continuity.

4. Application to Economic Games

In this section, we apply the result of Theorem 3.1 to two economic
differential games: a slight extension of the well-known Lancaster model
and a transboundary pollution problem. These models show that our theor-
etical result can be applied to different types of games. The first game pre-
sents bang-bang solutions, while the second game corresponds to a linear-
quadratic specification.

Example 4.1. As in the Lancaster model (Ref. 1), we assume an econ-
omy which produces a unique output, with only two different economic
agents, workers and firms. The production Y depends on two factors, the
capital K and labor L, by means of a first-degree homogeneous Cobb–
Douglas function,

YGKαLβ, where α , βH0 and αCβG1.

The workers (first player) decide the portion of the output which they con-
sume sY, where 0⁄s1⁄s⁄s2F1. On the other hand, the firms (second
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player) control which portion θY of the product they invest and also decide
the labor supply L. We consider that

0⁄θ⁄1 and 0⁄L⁄µK,

where the positive constant µ depends on the technology of the productive
process. The objective of both players is to maximize their own consumption
over a fixed period of time [0, T], taking into account the time evolution of
the capital K. The game is specified completely by

max
s

	J1(s, θ , L)G�
T

0

sKαLβdt
 , (9)

max
θ ,L

	J2(s, θ , L)G�
T

0

(1As)(1Aθ )KαLβdt
 , (10)

s.t. K̇G(1As)θKαLβ, K(0)GK0H0, (11)

0⁄s1⁄s⁄s2F1, 0⁄θ⁄1, 0⁄L⁄µK,
(12)

αH0, βH0, αCβG1.

It can be proved that, in the optimal solution,

LGµK.

The HJB equation for the first player reads

V1
tCµβK(s*CV1

K (1As*)θ*)G0,

where

s*G	
s1 , if θ*V 1

KH1,

d1 , if θ*V 1
KG1,

s2 , if θ*V1
KF1,

d1∈[s1 , s2 ] and V1 denotes the value function of this player. The equation
for the second player is

V2
tCµβK [(1As*)(1Aθ*CV2

K (1As*)θ*)]G0,

where

θ*G	
0, if V2

KF1,

d2 , if V2
KG1,

1, if V2
KH1,
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d2∈[0, 1], and V2 denotes the value function of the second player. Both
equations have to satisfy the final condition

Vi(T, K )G0, iG1, 2.

From the optimality conditions, one can show the following: First,
singular controls s*Gd1 and θ*Gd2 can be excluded from the optimal solu-
tion; second, following a similar reasoning as in Lancaster (Ref. 1), one can
assert that, close to the final time, [t*, T], the optimal strategy is

(s*(t), θ*(t))G(s2 , 0).

We get three pairs of optimal strategies:

(s1 , 1), if V1
KH1, V2

KH1;

(s2 , 0), if V2
KF1, no matter what V1

K is;

(s2 , 1), if V1
KF1, V2

KH1,

knowing that this second case either applies always for all the time horizon
or at least during a final subinterval.

When the same weight (α iG1�2, iG1, 2) is assigned to each player, the
HJB equation for the cooperative game is given by

WtCµβK(1�2spC(1�2)(1Asp)(1Aθp)CWK (1Asp)θp)G0,

where

spG	
s1 , if WKθ pH(1�2)θp,

dp
1 , if WKθpG(1�2)θp,

s2 , if WKθ pF(1�2)θp,

and

θpG	
0, if WKF1�2,

dp
2 , if WKG1�2,

1, if WKH1�2,

dp
1∈[s1 , s2 ], d

p
2∈[0, 1], and W denotes the value function for the cooperative

game.
As in the noncooperative game, the singular control θpGdp

2 , can be
excluded. Only two possibilities are feasible:

(s1 , 1), if WKH1�2,

and

(dp
1 , 0), if WKF1�2.
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When (s2 , 0) is played in the noncooperative game, while (s1 , 1) is
played in the cooperative game, inequality (7) can be written as

(12AWK (1As1)C(WKA
1
2V

1
KA

1
2V

2
K)(1As)θ⁄0.

Choosing any value of s and θG0 in [0, T ], the left-hand side of the last
inequality becomes (1�2AWK)(1As1), which is strictly lower than zero,
since WKH1�2 and s1F1. Then, satisfaction of inequality (8) is guaranteed.

On the other hand, when (s2 , 0) is still played in the noncooperative
game, but (dp

1 , 0) is played in the cooperative game, inequality (7) reads

(WKA
1
2V

1
KA

1
2V

2
K)(1As)θ⁄0.

Again choosing any value of s and θG0 in [0, T ] the left-hand side becomes
identically null.

To sum up, in both cases, an efficient solution leading to a global con-
sumption greater or equal than that associated with the Nash equilibrium
can be guaranteed.

Example 4.2. We consider now the following N-country transbound-
ary pollution differential game borrowed from Ref. 6:

max
Yi

	Ji(Yi , Yj)G�
S

0

e−rt[B(Yi)AD(S )] dt
 , iG1, . . . , N,

s.t. ṠG(α�N ) ∑
jG1

N

YjAδS, S(0)GS0 ,

where

B(Yi)GβYiA(1�2)Y2
i

is the net social benefits of the production Yi of country i and

D(S )G(1�2)γ S 2

is the social damage caused by the stock of pollution S. The constants α
and δ denote the emission-output ratio and the depreciation rate of the
pollution concentration.

Let Vi denote the value function of the ith player. The HJB equation
for this player reads

−rViCβY*i A(1�2)(Y*i )2A(1�2)γ S2CVi
S�α�N ∑

jG1

N

Y*j AδS�G0,

where

Y*i GβCα�NVi
S .
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Let W denote the value function for the cooperative game when the same
weight α iG1�N, iG1, . . . , N, is assigned to each player. For this game, the
HJB equation is

−r WCβYpA(1�2)(Yp)2A(1�2)γ S2CWS(αYpAδS )G0,

where

YpGYp
i GβCαWS , for all iG1, . . . , N.

It is straightforward to show that the conditions in Remark 3.1 (iii) apply.
Since the game is symmetric, we focus on symmetric solutions. Denot-

ing VGVi, VSGVi
S , and YGYi , iG1, . . . , N, inequality (7) can be written

as

ArWCrVC(WSAVS)(αYAδS )⁄0.

Using the HJB equations for the cooperative and noncooperative cases, the
last inequality reads

−αβ (WSAVS)A(α 2�2)(WS)
2

+ [(2NA1)�(2N2)]α2(VS)
2C(WSAVS)αY⁄0. (13)

If WSGVS , inequality (13) reads

Aα2[(NA1)2�(2N2)](VS)
2F0.

If WS ≠VS , the left-hand side of inequality (13) can be bounded by

(WSAVS)[−αβA(α 2�2)(WSCVS)CαY ].

Therefore, to apply Theorem 3.1, it is sufficient to show that

(WSAVS)[−αβA(α 2�2)(WSCVS)CαY ]⁄0.

If WSHVS , the last inequality is fulfilled if and only if

Y⁄βC(α�2)(WSCVS).

If WSFVS , the above inequality is satisfied if

Y¤βC(α�2)(WSCVS).

Therefore, in any case it can be proved that the cooperative solution gives a
larger welfare than the global welfare derived following a Nash equilibrium
strategy.
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