-dNEsus

Network for Sustainable Ultrasca e Computing

Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)
Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.
(Editors)

September 10-11, 2015

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 107

Analyzing Power Consumption of
I/O Operations in HPC Applications

PasLo Lroris, MANUEL F. DoLrz,
JAVIER GARCIA-BLAS, FLORIN ISATILA,
JEsUs CARRETERO
University Carlos III, Spain
{pllopis,mdolz,fjblas,
florin, jcarrete}@arcos.inf.uc3m.es

MoHAMMAD REzZA HEIDARI,
MicHAEL Kunn

University of Hamburg, Germany
{heidari,kuhn}@informatik.uni-hamburg.de

Abstract

Data movement is becoming a key issue in terms of performance and energy consumption in high performance
computing (HPC) systems, in general, and Exascale systems, in particular. A preliminary step to perform 1/0
optimization and face the Exascale challenges is to deepen our understanding of enerqy consumption across the
I/O stacks. In this paper, we analyze the power draw of different I/O operations using a new fine-grained internal
wattmeter while simultaneously collecting system metrics. Based on correlations between the recorded metrics and
the instantaneous internal power consumption, our methodology identifies the significant metrics with respect to
power consumption and decides which ones should contribute directly or in a derivative manner. This approach has
the advantage of building I/O power models based on a previous set of identified utilization metrics. This technique
will be validated using write operations on an Intel Xeon Nehalem server system, as writes exhibit interesting

patterns and distinct power regimes.

Keywords HPC, 1/0O operations, power analysis, system metrics, statistical analysis.

I. INTRODUCTION

Modern scientific discoveries have been driven by an
insatiable demand for high computing performance.
However, as we progress on the road to Exascale sys-
tems, energy consumption becomes a primary obstacle
in the design and maintenance of HPC facilities. A
simple extrapolation shows that an Exascale platform
based on the current most energy efficient hardware
available in the Green500 [1] would consume 120 MW.
The power wall being set to 20 MW [2], this system
would still exceed this limit by a factor of five, thus
turning it economically unfeasible due to its projected
TCO. Indeed, systems will need to reach an energy
efficiency of 50 GFLOPS/Watt to face the Exascale chal-
lenge. Actually, hardware vendors are already trying
to provide more energy-efficient parts and software
developers are gradually increasing power-awareness

in the current software stack, from applications to op-
erating systems. For example, recent advances in pro-
cessor technologies have enabled operating systems
to leverage new energy efficient mechanisms such as
DVFS (Dynamic Voltage and Frequency Scaling) or
DCT (Dynamic Concurrency Throttling) to limit power
consumption of computing systems.

Data movement has been identified as an extremely
important challenge among many others on the way
towards the Exascale computing [2]. The low perfor-
mance of the I/O operations especially in I/O-intensive
scientific domains and simulations continues to present
a formidable obstacle to reaching Exascale comput-
ing in the future large-scale systems. CPU speed and
HDD capacity are boosted approximately by factors of
400 and 100 every 10 years, respectively. HDD speed,
however, develops at a slower pace and can only be
increased by a factor of 20 every 10 years. This issue

108 Analyzing power consumption of I/0 operations in HPC applications

triggers a special interest in optimizing storage sys-
tems in data centers, and motivates the need for more
research to improve the energy efficiency of storage
technologies. Therefore, a first step to develop 1/O
optimizations is to further understand how energy is
consumed in the whole I/O stack.

Due to the key role of power constraints, future Exas-
cale systems are expected to work with a limited power
budget, and be able to allocate power to different sub-
systems dynamically. In this scenario, the capability
of predicting power consumption based on data move-
ment and I/O operations is a useful resource. In this
paper, we take advantage of a new internal wattmeter
to deeply analyze the power drawn at every single
wire leaving the PSU and feeding the hardware com-
ponents of a server platform. While some existing
works have focused on studying power consumption
of system components such as storage devices, CPUs
and memory [3], we offer a detailed view of the whole
I/0 stack power usage across all system components,
from operating system mechanisms down to storage
devices.

Given the foregoing, this paper makes the following
contributions:

e Leveraging our power measurement and system
metrics frameworks, we can benefit from data ex-
ploration and analysis to provide insights into the
relation between power and data movement of
I/0O operations.

e We present a methodology that identifies key sys-
tem metrics which are greatly correlated with
power usage during data movement and I/0O op-
erations.

e Using our methodology, we conclude the most
useful metrics in practical terms and narrow
them down to a subset that can reflect the power
consumption resulting from the data movement
across the 1/0O stack.

The rest of this paper is structured as follows: In
the second section, we present some related works
about power analysis and modeling. In Section III, we
detail our data acquisition framework, which consists
of a power measurement and a system data collection
framework as well as a detailed description of our

new wattmeter. Section IV describes the proposed
methodology for analyzing the data acquired from
our software and hardware frameworks. Section V
presents the results of applying our methodology and
provides key insights into how the system consumes
power when performing write operations. Finally, the
conclusion section summarizes of our contributions
and suggests some future works.

II. RELATED WORK

Current approaches for analyzing power usage and
estimating energy consumption fall into different cat-
egories: power modeling at the hardware level [4, 5],
power modeling at the performance counters level [6],
and power modeling at the simulation level [7, 8, 9].
Simulation techniques are commonly used for eval-
uating both performance and energy consumption.
Prada et al. [8] describe a novel methodology that
aims to build fast simulation models for storage de-
vices. The method uses a workload as a starting point
and produces a random variate generator that can be
easily integrated into large-scale simulation models.
A disk energy simulator, namely Dempsey [10], reads
I/0 traces and interprets both performance and power
consumption of each I/O operation using the DiskSim
simulator. Dempsey was only validated on mobile
disk drives. This solution predicts energy consump-
tion using the simulated disks characteristics instead of
system metrics. Manousakis et al. [5] present FDIO, a
feedback-driven controller that improves DVES for I/O-
intensive applications. This solution relies on the node
being instrumented for obtaining fine-grained power
measurement readings. Their feedback controller de-
tects I/O phases, quickly switches the CPU frequency
to all possible states and then selects the optimal set-
ting regarding its power /performance ratio. El-Sayed
et al. [11] demonstrated that energy-optimized adap-
tive policies result in higher quality energy/runtime
tradeoffs than the static (constant) policies. While our
work also describes the physical instrumentation to
obtain fine-grained power readings, we use this instru-
ment to analyze data movement patterns and detect
power regimes. Our proposed model does not require
having this kind of invasive instrumentation in order
to predict energy consumption. Lewis et al. [6] uses

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 109

the node temperature to predict energy consumption.
The authors discuss the interaction of the different
components for their modeling. The authors propose
using read and writes per second metric (obtained by
iostat) for modeling I/O workloads. Allalouf et al. [4]
develop a scalable power modeling method that esti-
mates the power consumption of storage workloads
(STAMP). The modeling concept is based on identi-
fying the major workload contributors to the power
consumed by the disk arrays. Deng et al. [12] model
the flash memory based storage systems constructed as
a RAID by leveraging the semantic I/O. In a contribu-
tion similar to ours, the authors calculate the cost and
energy consumption of storage devices for running a
variety of workloads, categorized by their dominant re-
quirements [13]. In contrast, our solution predicts the
energy consumed by the complete I/O stack (including
CPU and memory consumption) for single/multi core
access patterns, in addition to the storage devices. For
estimating energy consumption, some works also fo-
cus on system performance counters [14, 15, 16]. These
works propose linear models that are able to provide
run-time power estimations, and are validated with
instrumented hardware. Other works concentrate on
reducing energy consumption of individual storage de-
vices. Zhu et al. [17] optimize disk energy consumption
by tuning cache-replacement strategies that increase
idle time and reduce disk spin-ups.

Our work focuses on exploring, analyzing, and mod-
eling the power consumption of the operating system'’s
I/0 stack across all components. Like Li et al. [18], we
aim to build models that help better understand and
reduce the energy consumption of the storage stack.
Unlike most works mentioned in this section, we do
not provide a generic power model for computation,
or limit our analysis to a single system component, but
focus on energy consumption caused by data move-
ment patterns across the memory hierarchy and I/O
stack.

III. DatA AcCQUISITION FRAMEWORK

In this section, we describe the power performance
measurement framework that we use to instrument
our platform to perform the I/O analysis in detail.
Specifically, we leverage our pyprocstat tool for trac-

Gathering
System Metrics

pyprocstat pmlib
rocfs svsfs ArduPower LMG
P 4 Meter Meter
Hardware Operating
System

Figure 1: Ontology of system metrics used in our measure-
ment framework.

ing procfs and sysfs system metrics and the PM-
L1s framework to support both external and internal
wattmeter devices. However, we will focus on the data
obtained from the internal wattmeter, as this device
provides more fine-grained measurements and is able
to detect rapid power variations. We use the external
wattmeter only for validation purposes. Figure 1 de-
picts the ontology of our framework, divided in both
system and power measurement categories with their
corresponding tools.

III.1 System metrics collection framework

We instrument our platform to gather live system met-
rics in order to analyze workload behaviours and de-
tect the correlation of the system activities with power
consumption. These data traces can be easily correlated
with power consumption traces for further exploration
and analysis, as demonstrated in Section V.

While common UNIX tools such as top and iostat
are able to gather live system information, they are
not well-suited for our purposes. Our goal is to obtain
traces that are aggregated into a time series consisting
of different system metrics. Scripting existing tools
in order to generate the resulting data traces is not
very practical, since this method ends up launching
processes several times and causing unnecessary over-
heads. Similarly, data stemming from performance
counters gathered with the Linux perf framework are
limited because their main objective is timing function

110 Analyzing power consumption of I/0 operations in HPC applications

calls and counting function calls, with limited support
for inspecting runtime values. Hence, they are better
suited to other tasks such as profiling and performance
debugging.

Instead, we develop pyprocstat [19], an easy to use,
low-overhead, modular and flexible tool specifically
built for our purposes. This tool consists of different
modules, each of which is in charge of gathering infor-
mation from different parts of the system. These mod-
ules usually collect information directly from kernel-
provided interfaces such as procfs and sysfs, providing
system data with a low overhead. In this paper, we
collect system information from I/O devices, virtual
memory, interrupts and per-CPU utilization, adding
up to a total of 120 different system metrics.

II11.2 Power measurement framework

To measure power consumption, we leverage the PM-
Lis framework, a well-established package for inves-
tigating power usage in HPC applications [20]. Its
implementation provides a general interface to utilize
a wide range of wattmeters, including 7) external de-
vices, such as commercial PDUs, WattsUp? Pro .Net,
ZES Zimmer LMG450, etc., i) internal wattmeters, di-
rectly attached to the power lines leaving from PSU,
such ARDUPOWER, iii) commercial DAS from National
Instruments (NI) and iv) integrated power measure-
ment interfaces such as Intel RAPL, NVIDIA NVML,
IPMI, etc. The PMLIB client side provides a C library
with a set of routines in order to measure the applica-
tion code. The traces obtained can be easily integrated
into existing profiling and tracing frameworks such as
Extrae+Paraver [21] or VampirTrace+Vampir [22].

II1.2.1 ARrRDUPOWER as a low-cost internal wattmeter

In this section, we describe our new internal
ARDUPOWER wattmeter in detail. ARDUPOWER has been
conceived as a low-cost DAS to measure the instanta-
neous DC power consumption of the internal compo-
nents in computing systems wherever the PSU output
power lines are accessible [23]. In general, it offers a
spatially fine-grained power measurement by provid-
ing 16 channels to monitor the power consumption of
several parts, e.g., mainboard, HDD and GPU cards
etc., simultaneously, with a sampling rate varying from

Power tracing External wattmeter
server ZES Zimmer LMG450

=TT
- L
- L)

Power

__|supply
“pp
...Ethernet

Power tracing Internal wattmeter

Application node

Computer

Mainboard

daemon Arduino + Sensing shield

Figure 2: Power measurement setup combining both internal
ARDUPOWER and external Lmc450 wattmeters.

480 to 5,880 Sa/s, depending on the number of selected
channels. The total production cost of the wattmeter is
approximately 100 €, so it can be easily accommodated
in moderate-/large-scale HPC platforms in order to in-
vestigate power consumption of scientific applications.
As shown in Figure 3, ARDUPOWER wattmeter consists
of two basic hardware components: a shield of 16 cur-
rent sensors and an Arduino Mega 2560 processing
board detailed below.

Sensing shield ARDUPOWER comprises a self-
designed shield, responsible for sensing the DC
currents passing through the wattmeter and
providing the outputs to the processor board of
the Arduino. It consists of 16 Allegro ACS713
current sensors [24], each of them converting the
DC current passing through it to a proportional
voltage. The Hall-effect elements provide a
highly accurate, low noise output voltage signal
proportional to the applied DC current, sensing
up to 20 A with a total output error of £1.5% and
a low internal resistance of 1.2 m().

Microcontroller ARDUPOWER also comprises an Ar-
duino Mega 2560 processing board that is con-
nected directly to the power sensing shield. It ben-
efits from one Atmel ATmega2560 [25] as a high-
performance low-power 8-bit AVR RISC-based mi-
crocontroller running at 16 MHz and combining
256 KiB ISP flash memory, 8 KiB SRAM and 4 KiB
EEPROM. The complete board of Arduino Mega
2560 has 16 analog inputs supported by a 10-bit
ADC, 4 UARTs (hardware serial ports) and a USB
link.

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 111

Figure 3: ARDUPOWER wattmeter, power sensing shield and
Arduino Mega 2560 processing board.

The sensing shield is placed on the top of Arduino
Mega 2560 to let an analog to digital converter (ADC)
read the outputs of the 16 current sensors and trans-
form them into digital values. The Arduino board
communicates with the target tracing server through
a serial USB link and sends the measured DC current
values to a PMLIB server in order to calculate the in-
stantaneous power consumption.

IV. Data EXPLORATION AND METHODOLOGY

Our goal is to explore the data to understand how the
electrical power is consumed in a computing system
to perform I/O operations. The analysis should re-
veal the system metrics which are correlated with the
specific I/O operations and are useful for modeling
the power usage related to data movement and 1/0O
operations. In order to measure data movement, we
perform simple sequential write I/O operations while
collecting data as detailed in section III. To carry out
this micro benchmark, we leverage fio [26], which is a
commonly used micro benchmarking tool developed
by the lead developer and maintainer of the Linux
block IO subsystem.

In spite of the apparent simplicity of these opera-
tions, write I/O operations exhibit interesting irregular
patterns due to the way the operating system manages
data while it moves across the I/O stack, as depicted in
Figure 4. However, read 1/O operations do not exhibit
these patterns and, therefore, this is why this work
entirely focuses on write I/O operations.

We identify different power and performance

Power (W)
110 120 130 140 150 160

0 10 20 30
Time (s)

Figure 4: Power regimes during a sequential write of a 4 GiB

file.

regimes that correspond to temporal regions in these
I/O operations. Figure 4 shows that for a simple
write I/O operation, the power consumption can vary
significantly. This is due to the fact that the system
transitions between different power and performance
regimes while data moves from main memory and is
written to disk. This shows that a simple straw-man
approach to modeling writes using average power and
write duration as input would not be sufficient, espe-
cially for short write operations. This also motivates
the need to have a way for estimating the power con-
sumption of I/O operations.

Using the data collected as a time series, we design
a methodology in order to detect highly correlated
metrics with regard to power consumption, follow-
ing a similar approach as in [27]. Identifying these
metrics is important for developing new power usage
models that are more sophisticated than the afore-
mentioned straw-man approach. This methodology
leverages the Pearson’s correlation and consists of the
following steps:

1. For each collected system metric, we calculate its
correlation with power consumption.

2. For each collected system metric, we compute the
derivative and calculate its correlation with power
consumption.

3. Every correlation whose absolute value is below
than an empirically determined threshold ¢ is dis-
carded.

4. The union from both correlations results in a table
of system metrics that are relevant for power usage

112 Analyzing power consumption of I/0 operations in HPC applications

during data movement of I/O operations.

Note that in the design of the methodology, we have
taken several aspects into account. First, some metrics
are cumulative values, and therefore monotonically
increasing with time, e.g, number of interruptions oc-
curred since boot. Others are defined as a rate or
instantaneous value and might vary with time accord-
ingly, e.g., power consumption varies depending on the
load of the machine. Therefore, a methodology should
be aware of this fact in order to avoid correlations of
metrics of different nature, and convert cumulative
time series to instantaneous values so all metrics can
be compared. The transformation from accumulated
to instantaneous values is normally performed by sub-
tracting the previous observation r;_; from the current
one 7; at the time ¢.

Second, since data movement has a direct impact
on the power consumption, metrics that are measured
in quantities of data should be transformed into the
rates of movement by computing their corresponding
derivatives. For example, as shown in Figure 5, the
dirty memory metric measures the number of bytes
in memory that must be written back to the disk at a
given time!. However, the page dirtying rate (or speed)
needs to be derived from the dirty memory metric in
order to be compared with the power consumption
properly. By calculating the dirtying rate, it is possible
to measure the amount of data that any user-space
application is writing to main memory. Information
closely related to data movement can be obtained from
the available system metrics. We believe this is a fun-
damental step when developing a methodology that
identifies most correlated metrics with regard to the
power usage.

V. ANALYSIS OF SYSTEM I/O OPERATIONS

In this section, we perform an analysis of 1/O op-
erations using our measurement framework and the
proposed methodology described in Section IV for se-
quential I/O writes. First, we describe the hardware

INote that the absolute value of the derivative is computed in
order to superimpose positive and negative rates on a single normal-
ized plot.

1.0

= Power
= Dirty memory
" |d/dt(Dirty)|

0.8

0.6

Normalized Power vs dirty memory
0.4
|

0.2
1
S5

: thEn

T T T T T
0 50 100 150 200

0.0
1

Time (s)

Figure 5: Dirty memory, |d/dt(dirty memory)| and power
consumption of a sequential write of a 20 GiB file.

setup and the software configuration that have been
used for this work in detail.

V.1 Configuration setup

Target platform. The analysis and evaluation have
been carried out on a server platform, denoted as NE-
HALEM, equipped with 2x Intel Xeon X5560 (total of
8 physical cores) running at 2.80 GHz, 12 GB of RAM
memory, and a Seagate Barracuda 500 GB S-ATA 1I
HDD, equipped with a Supermicro PSU 720W 80+
Gold (~=82% energy efficiency).

Software instrumentation framework. We use
pyprocstat [19] to gather system metrics and obtain
time series that describes live system information.
We configure this tool to use the following built-in
modules: meminfo (collects data from /proc/meminfo),
stat (collects CPU utilization data, interrupts, context
switches, etc from /proc/stat), vmstat (collects
virtual memory data from /proc/vmstat), and io
(collects I/O data from sysfs).

Power measurement framework. As mentioned be-
fore, we use the PMLIB software package to investigate
power usage of HPC applications. Power measurement
can be controlled by the applications using a collection
of routines that allow the user to query information on
the power measurement units, create counters associ-
ated with a device where power data is stored, start,
continue and terminate power sampling, etc. All this

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 113

information is managed by the PMLis tracing server,
which is in charge of acquiring data from the devices
and sending back the appropriate answers to the invok-
ing client application via the proper PMLiB routines
(see Figure 2).

Wattmeters. We use the ARDUPOWER wattmeter con-
nected to all the power lines leaving from the PSU
and feeding the different components of the server
machine. We leverage 16 channels of ARDUPOWER to
measure the 3.3V, 5V and 12V lines from a 24 ATX
motherboard connector, 2x 4-pin connectors, and a
4-pin Molex connector. We avoid ground and negative
voltage lines. On the other hand, we also employ an
external ZES Zimmer LmMG450 wattmeter measuring
NEHALEM in order to verify that the internal measure-
ments are well correlated with the external ones. This
wattmeter can measure up to 20Sa/s.

V.2 Analysis of write operations

Applying our proposed methodology, we obtain one
power usage time series and 120 system metric time
series for every benchmark run. Figure 6 depicts the
correlations of all the 120 system metrics with power
consumption during a sequential write of a 4 GiB file
on NEHALEM. The top plot shows the direct correla-
tions, while the bottom plot takes the derivative of
the data before computing the correlation with power.
Indeed, the bottom plot clearly shows that only one
system metric is highly correlated with power (B4)
and the rest have a very low correlation. Table 1 lists
the most significant system metrics. As it is shown
in the table, those metrics which have values below
our empirically obtained threshold of 0.75 have been
discarded.

Where cpu_systen is the system CPU utilization,
Dirty is the number of dirty memory pages, softirq
is the number of Linux software IRQs, procs_running
is the number of running processes, and cpu_user is
the user mode CPU utilization. Not surprisingly, CPU
utilization is highly correlated with power usage since
the CPU is the most power intensive component during
these operations. Interrupts are also highly correlated
with the I/O power usage. However, we argue that
the most relevant system metric for write operations

1.0

® Power
= Dirty memory
= softirq

= cpu_system

0.8
1

Normalized Power vs dirty memory

=
=]

Time (s)

Figure 7: Power consumption vs. dirty memory for the
sequential write of a 4 GiB file.

is the derivative of the number of dirty pages. While
the system CPU utilization shows a slightly higher
correlation, we can hardly use this metric to reflect the
level of power consumption used by I/O operations
since the system CPU utilization correlates with the
power consumption of other workloads running on the
machine and, in consequence, this metric is not useful
for decoupling I/O from other workloads. Similarly,
the number of running processes cannot be considered
a good metric due to its nature. Therefore, we conclude
that the page dirtying rate, d/dt(Dirty), is the best
system metric to reflect the I/O-related power usage.
Figure 7 clearly shows how well the Dirty system
metric describes data movement with regard to power
consumption.

VI. CONCLUSIONS

In this paper, we leverage a power and system tracing
framework in order to deeply analyze power usage due
to data movement across the I/O stack. Among power
consumption measurements collected in this frame-
work, we also gather system metrics obtained from
the procfs and sysfs file systems. Next, we present
a new methodology to determine which system met-
rics are highly correlated to power consumption. We
validate this technique by performing write operations
on an Intel Xeon Nehalem server system instrumented
with ARDUPOWER and Lmc450, a fine-grain internal DC
wattmeter and one external AC wattmeter, respectively.

Several aspects are taken into account in designing

114

Analyzing power consumption of I/0 operations in HPC applications

Table 1: Correlation of system metrics to power for a sequential write.

Metric Corr(data) Corr(d/dt(data)) Corrplot Tile
cpu_system 0.94 -0.20 D16
Dirty 0.08 0.92 B4
softirq 0.87 -0.12 C27
procs_running 0.84 -0.17 B27
cpu_user 0.77 -0.12 D22
- N ®m b o~ ® o 2 Y2 FT2eRER 2R 3883888882 8 ;
A [J 0%
B ® 82
¢ [® o 2
0 osc@ ® O ® i
(a) Raw system metrics.
- N ®m % b o~ o 2 Y2222 2R 58§33 Q8888 ;
A 0%
: ® 4
C _85
: 58

(b) Derivative system metrics w.r.t. time.

Figure 6: Correlation plot between power usage and system metrics for a 4 GiB write.

the methodology. First, some of the metrics measured
are reported as accumulated values, e.g., number of
interruptions occurred since last read of a counter or
the number of dirty pages at a given time. Due to
their nature, some metrics do not appear to have direct
impact on the power consumption; however, if their
derivatives are computed, their instantaneous rates of
change can correlate better with power consumption.
In other words, the presented methodology can deter-
mine if a metric is highly correlated to power in the
direct or derivative mode.

The analysis results demonstrate that only a small
portion of the metrics, such as the CPU utilization,
the rate of change in the number of dirty pages, soft-
ware interruptions and number of processes running,
have direct impacts on the power consumption and,
due to their strong correlation, they can eventually be
incorporated into I/O power models.

For future works, we plan to refine our methodol-

ogy in order to analyze the correlations at the PSU
wire levels, as obtained from the internal ARDUPOWER
wattmeter, and extend our benchmark suite to com-
prise more I/O operations with different configura-
tions. We also aim to automatically build 1/O power
models using the methodology presented in this pa-

per.

ACKNOWLEDGEMENTS

The work presented in this paper has been partially
supported by the EU Project FP7 318793 “EXA2GREEN”
and partially supported by the EU under the COST
Programme Action IC1305, “Network for Sustainable
Ultrascale Computing (NESUS)” and by the grant
TIN2013-41350-P, Scalable Data Management Techniques
for High-End Computing Systems from the Spanish Min-
istry of Economy and Competitiveness.

—_

—_—

—_

—

REFERENCES

[1] The Green500 Editors. Green500. http://www.

green500.org/, 6 2015. Last accessed: 2015-8.

[2] US Department of Energy. Top Ten Exascale Re-

search Challenges. Technical report, Department
of Computer Science, Michigan State University,
February 2014. http://science.energy.gov/
~/media/ascr/ascac/pdf/meetings/20140210/
ToplOreportFEB14.pdf.

Anne-Cecile Orgerie, Marcos Dias de Assuncao,
and Laurent Lefevre. A survey on techniques for
improving the energy efficiency of large-scale dis-
tributed systems. ACM Comput. Surv., 46(4):47:1-
47:31, March 2014.

Miriam Allalouf, Yuriy Arbitman, Michael Factor,
Ronen I. Kat, Kalman Meth, and Dalit Naor. Stor-
age modeling for power estimation. In Proceedings
of SYSTOR 2009: The Israeli Experimental Systems
Conference, SYSTOR "09, pages 3:1-3:10, New York,
NY, USA, 2009. ACM.

Ioannis Manousakis, Manolis Marazakis, and An-
gelos Bilas. Fdio: A feedback driven controller for
minimizing energy in i/o-intensive applications.
In Proceedings of the 5th USENIX Conference on Hot
Topics in Storage and File Systems, HotStorage’13,
pages 1616, Berkeley, CA, USA, 2013. USENIX
Association.

Adam Lewis, Soumik Ghosh, and N.-F. Tzeng.
Run-time energy consumption estimation based
on workload in server systems. In Proceedings of
the 2008 Conference on Power Aware Computing and
Systems, HotPower’08, pages 44, Berkeley, CA,
USA, 2008. USENIX Association.

Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin
Niu, Yuan Xie, Yiran Chen, and Hai Li. A hy-
brid solid-state storage architecture for the per-
formance, energy consumption, and lifetime im-
provement. In 2010 IEEE 16th International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 1-12, Jan 2010.

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 115

[8] Laura Prada, Javier Garcia, Alejandro Calderon,
J. Daniel Garcia, and Jesus Carretero. A novel
black-box simulation model methodology for pre-
dicting performance and energy consumption in
commodity storage devices. Simulation Modelling
Practice and Theory, 34(0):48 — 63, 2013.

[9] Timo Minartz, JulianM. Kunkel, and Thomas Lud-
wig. Simulation of power consumption of energy
efficient cluster hardware. volume 25, pages 165-
175. Springer-Verlag, 2010.

[10] John Zedlewski, Sumeet Sobti, Nitin Garg,
Fengzhou Zheng, Arvind Krishnamurthy, and
Randolph Wang. Modeling hard-disk power con-
sumption. In Proceedings of the 2Nd USENIX Con-
ference on File and Storage Technologies, FAST "03,
pages 217-230, Berkeley, CA, USA, 2003. USENIX
Association.

[11

—_—

Nosayba El-Sayed and Bianca Schroeder. To check-
point or not to checkpoint: Understanding energy-
performance-i/o tradeoffs in hpc checkpointing.
In IEEE International Conference on Cluster Comput-
ing (CLUSTER), pages 93-102. IEEE, 2014.

[12] Yuhui Deng, Lijuan Lu, Qiang Zou, Shugiang
Huang, and Jipeng Zhou. Modeling the aging
process of flash storage by leveraging semantic
i/o. Future Generation Computer Systems, 32(0):338
— 344, 2014.

[13] Yan Li and D.D.E. Long. Which storage device
is the greenest? modeling the energy cost of i/0
workloads. In IEEE 22nd International Symposium
on Modelling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 100—-
105, Sept 2014.

[14

—_—

Gilberto Contreras and Margaret Martonosi.
Power prediction for intel XScale® processors
using performance monitoring unit events. In
Low Power Electronics and Design, 2005. ISLPED’05.
Proceedings of the 2005 International Symposium on,
pages 221-226. IEEE, 2005.

[15

—_

Dimitris Economou, Suzanne Rivoire, Christos
Kozyrakis, and Partha Ranganathan. Full-system

116

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

Analyzing power consumption of 1/0 operations in HPC applications

power analysis and modeling for server environ-
ments. International Symposium on Computer
Architecture-IEEE, 2006.

Tao Li and Lizy Kurian John. Run-time model-
ing and estimation of operating system power
consumption. In Proceedings of the 2003 ACM SIG-
METRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS
‘03, pages 160-171, New York, NY, USA, 2003.
ACM.

Qingbo Zhu, EM. David, C.E. Devaraj, Zhenmin
Li, Yuanyuan Zhou, and Pei Cao. Reducing En-
ergy Consumption of Disk Storage Using Power-
Aware Cache Management. In In Proceedings of
IEE Software, pages 118-118, Feb 2004.

Jing Li, Anirudh Badam, Ranveer Chandra, Steven
Swanson, Bruce Worthington, and Qi Zhang. On
the energy overhead of mobile storage systems. In
Proceedings of the 12th USENIX Conference on File
and Storage Technologies, FAST’14, pages 105-118,
Berkeley, CA, USA, 2014. USENIX Association.

Pablo Llopis. A powerful and modular tool for
gathering live system information as time series.
https://github.com/pllopis/pyprocstat.

S. Barrachina, M. Barreda, S. Catalan, M.F. Dolz,
G. Fabregat, R. Mayo, and E.S. Quintana-Orti.
An integrated framework for power-performance
analysis of parallel scientific workloads. In EN-
ERGY 2013, The 3rd International Conference on
Smart Grids, Green Communications and IT Energy-
aware Technologies, pages 114-119, 2013.

Paraver: the flexible analysis tool. http://www.
cepba.upc.es/paraver. [Last access: June 2015].

The vampir performance analysis tool-set. https:
//www.vampir.eu/. [Last access: June 2015].

Manuel F. Dolz, Mohammad Reza Heidari,
Michael Kuhn, and German Fabregat. ArduPower:
a low-cost wattmeter to improve energy efficiency
of HPC applications. In 5th International Green &
Sustainable Computing Conference, Las Vegas, NV,
USA, December 2015. To appear.

[24]

[25]

[26]

[27]

LLC Allegro MicroSystems. ACS713: Fully In-
tegrated, Hall Effect-Based Linear Current Sen-
sor IC with 2.1 kVRMS Voltage Isolation and a
Low-Resistance Current Conductor. http://wuw.
allegromicro.com, 2015. [Last access: June 2015].

Atmel Corporation. ATmega2560: 8-bit At-
mel Microcontroller with 16/32/64KB In-System
Programmable Flash. http://www.atmel.com/
devices/atmega2560.aspx, 2015. [Last access:
June 2015].

Jens Axboe. Flexible i/o tester. http://freecode.
com/projects/fio.

M. FE Dolz, J. Kunkel, K. Chasapis, and S. Catalan.
An analytical methodology to derive power mod-
els based on hardware and software metrics. Com-
puter Science - Research and Development, 2015.

