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Abstract _ 

This paper proposes point and interval estimates of location and size of jumps in multiple 

regression curves or its derivatives. We are mainly concerned with time series models where 

structural breaks occur at a given period of time or they are explained by the value taken by some 

predictor (e.g. threshold models). No previous knowledge of the underlying regression function 

is required. Left and right limits of the function, with respect to the regressor explaining the 

break, are estimated at each data point using multivariate multiplicative kernels. The univariate 

kernel corresponding to the regressor explaining the break is one-sided, with all its mass at the 

right or left of zero. Since left and right limits are the same, except at the break point, the 

location of the jump is estimated as the observed regressor value maximizing the difference 

between left and right limit estimates. This difference, evaluated at the estimated location point, 

is the estimation of the jump size. A small Monte Carlo study and an empirical application to 

USA macroecomic data illustrates the performance of the procedure in small samples. The paper 

also discusses some extensions, in particular the identification of the coordinate explaining the 

break, the application of the procedure to the estimation of parametric models, and robustification 

of the method for the influence of outliers. 
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1. INTRODUCTION� 

This paper proposes point and interval estimates of location and size of jumps 

in multivariate regression curves or its derivatives. We consider dependent 

observations. Regressors can be strong mixing, possibly nonstationary, or 

fixed, possibly trends. Thus, the point break can happen at a given period of 

time or it can be explained by the value taken by some predictor, as is the 

case in threshold models. The underlying functional form of the regression 

function is left unspecified. 

Structural breaks produce inconsistent estimates, both in a parametric or in 

a nonparametric context, if they are not taken into consideration. Testing the 

presence of structural breaks and, more importantly, estimating its location 

is one of the first steps in model building. There is a large literature on 

testing structural breaks when the possible timing of the break is unknown. In 

parametric approaches, a parametric regression function is assumed before and 

after the jump. Page (1955), Quandt (1960), Hinkley (1969, 1970, Brown, 

Durbin and Evans (1975), Worsley (1979), and Kim and Siegmund (1989), among 

others, use independent and identically distributed observations (Hd), see 

also the survey papers by Zacks (1983) and Krishnaiah and Miao (1988). 

However, there is a lot of empirical evidence on structural breaks in time 

series dynamic models (see, e.g., Delong and Summers (1988), Perron (1989), 

and Hendry and Erickson (1991)). Testing structural breaks in linear dynamic 

models has been considered by Kramer, Ploberger and Alt (1988), and others. 

Recently, Andrews (1993) has proposed tests for general parametric models 

under weak dependent data. 

Parametric estimation methods for the break point are usually based on the 

maximum likelihood principle. Hinkley (1970, Hawkins (1977), Bhattacharya 

(987), and Yao (1987) consider a shift in location, and Feder (1975) a 

change in a segmented linear regression with fixed regressors and iid errors. 

Picard (1985) study the case of a stationary autorregressive process and Bai 

(1992) more general time series models. These papers deal with segmented, but 

continuous, linear models. 
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Parametric estimates can be inconsistent when the functional form of the 

regression functions before and after the break point are misspecified, and 

tests based on their estimates can yield very misleading consequences (see 

Hidalgo 1994). Break point estimates, computed without assuming any parametric 

specification of the underlying regression function, are interesting by 

themselves and as a first step in parametric model specification. Based on 

ideas of Eddy (1980, 1982) for estimating the mode of a density, MUller (1992) 

has proposed estimates of location and size of jumps in a nonparametric 

regression (or its derivatives) where the only regressor is time, under iid 

errors. The size of the jumps are computed as the difference between a left 

and right-sided kernel estimate. A one-sided kernel has all its mass at the 

right or left of zero. The method seems to work very well in practice. 

In this paper, we employ MUller's (1992) approach in a more general context, 

likely in econometric applications. We allow the regression function to depend 

on more than one regressor, and be stochastic, weakly dependent, or fixed, 

possibly trends. The break point is explained by the value taken by some of 

the regressors. If this regressor is time, the break point happens at a given 

period, because there is a change in the trend or because the general 

structure of the regression model has changed at this period. If the break is 

explained by some other predictor, the break point is the value of the 

predictor at which the regression function changes its structure, like in 

threshold models. 

The rest of the paper is organized as follows. In the next Section, we 

present the estimation method. Section 3 discusses the assumptions required 

and presents the main theorems of the paper. In Section 4, we report some 

Monte Carlo simulations. In Section 5, the estimation method is applied to 

macroeconomic USA data. Finally, in Section 6, we discuss extensions to other 

conditional location functionals, and suggests ways of further work. Proofs 

are confined to a mathematical appendix. 

2. ESTIMATING THE BREAK POINT AND THE SIZE OF THE BREAK 

Let HY ,X ),CY ,X ), ... ,(Y ,X )} be observations of a multivariate 
1 1 2 Z n n 

stochastic process, where Y is scalar and X = (Xtl,XtZ, ... ,Xtp)' is a 
t t 
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p-dimensional vector. Define E(Yt IX =a:)= m (a:). In order to provide asymptotic 
t t 

justification of our estimators, it is convenient to regard m (a:) as being
t 

generated from functions m(a:, t) with domain Xx(O,O, where PdXtE X)=l, That 

is, mt(a:)= m(a:,T ), where Tt=tln. Thus, the regressor "time" is defined on thet 
interval (0,0, and it becomes dense as the sample size increases. The 

regression function depends on the sample size, a device common in the 

nonparametric literature; see, e.g., Nadaraya (1964), Gasser et al (1985) or 

MUller (992). An excellent discussion on the interpretation of this device is 

in Robinson (1989). So, the regression function can be written compactly as 

E(Yt IXt)=m(Zt)' where Zt= (X~, Tt)'. We consider two different structural 

break models, 

(2.0 

and 

where HA) is the indicator function of the event A. 

Model (2.1) includes changes in the trend of the series as well as changes 

in the regression model at a given point of time. A special case is the trend 

model 

(2.3) 

considered by MUller (992). 

In model (2.2), the change is governed by the value taken by some of the 

regressors. This model is relevant both in time series and cross-sectional 

applications, being a classical example the threshold model. 

In what follows, we refer to models (2.1) and (2.2) compactly as, 

(2.4) 

where ':- = T , and ':- k= a: k for 1~ k~ p.
O,P+l 0 0 0 

Based on the sample, we first estimate 
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(2.5) 

(k) (k) •
where m+ (.;) and m_ (.;) are the left and right hand sIde limits of m(.;) 

with respect to the k-th regressor, i.e. 

m 
(k) 

(.;)= 1 tm m(.; + e d) and m~k)(.;)= 1 tm m(.; + e d), 
+.s: k d~ 0 kQ~ 0 

+ 

where e is a vector of zeros with a one in the k-th position.
k 

The break point may be in the first derivative of the regression function 

with respect to the s-th regressor, and it can be explained by the k-th 

regressor, that is, 

(2.6) 

where m (.;)= 8m(.;)/8.; . For instance, consider the trend break model 
(s) s 

Here, A(l)(T)= 0, all TElO,I], but A~~:(TO)= f3 • The jump may be in the 
3 

regression function as well as in the derivative. For instance, in the AR(I) 

model, 

Based on the sample, we first estimate 

(k) (k)where m (.;) and m (1) are the left and right hand side limits of m( (.;)
+(s) -(s) s) 

with respect to the k-th regressor, Le. 
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The analysis of higher order derivatives is identical but notationally much 

more cumbersome. without adding anything from a theoretical point of view; and 

therefore we will cincunscribe ourselves to the case where the jump is either 

in the conditional expectation or in its first derivative. 

The� function A(klC,) identifies the location of the break point If. k' Notice� 
(kl 0� 

that A CIf.)= 0 for all If. = CIf..If. .....If. ). such that tL. If. k' and 
(kl 1 2 p+l .. K 0 

A CIf.). 0 only when ~= If. for any value of If. • j. k. Therefore. whenever we ok j 
identify a point If. in IRP+ 

1 such that A(klCIf.). 0, we immediately identify 
1";ok' Let us introduce the real valued functions k: IR --+ IR and K:IRP 

+ ----+ IR 

such that KCu)= UP+ 
1 kCu ). u=Cu .... ,u )'. The classical kernel regression

k=l k 1 P+l 

estimator of mC..;) is defined as 

~=1 Yt K[CZt - If.)/a] 
C2.7) 

~=1 K[(Zt- ..;)/a] 

The kernel estimator depends on the smoothing number a= aCn). which 

converges to zero as the sample size does to infinity. More general kernel 

functions K(.) can be used. and different smoothing numbers can be employed 

for the different regressors; see. e.g. Robinson (983). We restrict ourselves 

to the above class of mUltiplicative kernels with the same smoothing number 

for each regressor for the sake of presentation and notational convenience. 
1Consistency of the estimator C2.7) requires. despite a + CaP+ nf1 

-....+ 0 as 

n ~ CIO. that both the conditional expectation m(..;) and the probability density 

function of the regressor X are smooth enough. t 

This requirement for consistency. Le. the smoothness of the conditional 

expectation m(.). will motivate the estimator of the break point. The 

estimator in C2.7) is inconsistent at points of discontinuity of the 

regression curve. and. therefore. it is useless for the estimation of the jump 

A(klC..;). On the other hand. if the regression function mC.) is sufficiently 

smooth before and after the break point. we should be able to estimate 

consistently m(.) at every other point. Furthermore. when only points before 

and after the break are used, we can expect that the kernel estimator will be 
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consistent for m(k) ( ....) and m(k) ( ....). e.g. the 'right and left hand side limits 
+ ­

of m(.;) with respect to the k-th variable. Let us define K(k'(.) and K(k)(.) 
- + 

as 

(2.8) 

where k (.) and k (.) are kernels with domain in IR and IR respectively. For 
- + - + 

instance, kt(u)= k(u) I(u : OllIk(U) I(u: 0) d u is a valid one-sided kernel 

to estimate m~k) ( ....). where. at least, k(.) integrates to one. However. more 

restrictive kernels must be used to estimate the location of the jump, as It 

will be seen in the next section. 

Therefore, the estimation of I:!(k'(....) will be based on 

(2.9) 

where 

~=l Yt K+[ (Zt- .... )/a] 
A 

~=l Y K_[(Zt- .;)/a](k) tand m_ (....) = 
~=l K+ [ (Zt - .;)/a] ~=l K_[ (Zt- .... )/a] 

and ll(k)( .... ) will be estimated by
(s) 

(2.10) 

These estimates are similar to those used in kernel regression at the boundary 

of the regressors domain, e.g. if ZtE [0.1] and we try to estimate E(YIZ= 0 

or 0, which are well known in the statistical literature; see. e.g.• Rice 

(984), and Gasser, MUller and Mammitzch (1985). Therefore. we can base our 

estimator of the point (time) of the structural break as the k-th coordinate 

of .... such that it maximizes the quantities IA(k)(....) I or 16::~(....)I 
respectively. Due to technical problems. which will become apparent in the 

following section. it is convenient to modify slightly the above criterium, 

when p> O. 

1For any positive continuous function W:lRp
+ ~ IR 

+ 
• W(.... ) I:!(k)(....) will be 

different that zero only for those values of .... such that ~= ....ok. The function 
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W(.) must satisfy. at least. that W('l)= 0 as hI! ~ CD. where 11.11 means 
p 1

Euclidean norm. In fact. we'll tries to avoid those regions of IR + where it 

is not likely to find data. This suggests to estimate 'lok by the k-th 

coordinate of the vector maximizing IA(k)('l) We'll I. Different weights will 

produce different vectors - with the same k-th coordinate - maximizing the 

objective function. In the next section. we will justify that the function 

minimizing the variance of the break point estimate corresponds to 

We'll = f (a:)r. r> 0, where 'l = (a:'. 'l )', and x P+1 

n 
fx(a:) 1 Lm .!. r f (a:).11: n x 

n -+m t=l t 

where f (.) is the probablilty density function (pdf) of X . Recall that 'l x t ~ 
t 

corresponds to the regressor "time". i.e. 'tt' which can be considered 

independent of X and achieves. asymptotically. a uniform pdf in the unit
t 

• • A (k)
mterval. Thus. we propose to estImate 'l k by 'l k ' where 

.00 
A(k) (A(k) A(k) A(k»)
'l = 'l • 'l , .....'l ando 01 02 O. p+1 

A ( k ) IA (k ) r I'lo = arg max ~ ('l) f x(a:) • r> O. (2.ll) 
'l=(a:'.'l ).

p+1 

A(k)
Notice that 'lo is an estimate of 

'l
(k ) = arg max I~(k) ('l) f x(a:)r I• r>O. (2.12)o 'l=(a:' • 'l ).

p+1 

since for any ~~ O. ~ (k)('l~k) + ek~)= O. Note that 'lOk is the k-th element of 
(kl (k) . 

the vector 'lo . If we assume that ~ ('l) 11: ~ H~S 'lok)' where ~ IS a 

constant, the point maximizing I~(kl('l)fx(a:n. r> O. is independent of r. In 

fact 

'l
(k)= arg max If (a:) I· 
o {'l=(a:' .'l ) , :'l ='l } x 

p+ 1 k Ok 

That is. we are maximizing the averaged joint density fixing ~='lok' 

Intuitively. we are choosing. among all the points 'l such that the jump is 

different than zero, the point 'l "more likely" - i.e. with greater density-. 
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Similarly. 't-() is estimated by ~(k) • where 
s k (s) k 

•� 
"(k) ("(k) "(k) "(k»)'t- = 't- • 't- ... ,N and

(a) (s)l (a) 2 7 (s )p+1 

"(k)
't-(a) = arg max (2.13) 

't-= (a:' • 't- )
p+l 

"(k) "(k)
where il(s) ('t-)= d il ('t-)/d't- . The break point is estimated by the k-th s

"(k) "(k) .... (k)
element of 't-( )' and the size of the jump by il ('t-( ).

s (s) s) 

Since f x(a:) is unknown. it is estimated by 

(2.14) 

where 

where 't-= (a:'. 't- )'. for any value of 't- . Note that the density of the
p+1 p+1 

regressor time. Zt 1= 'tt' is uniform on the interval [O.ll. and Zt is 
p+ P+l 

independent of the other regressors. This is why 1 ('t-) is in fact estimating
x 

f (a:) for any value of 't- . Taking r= 2 in (2.13). (2.14) is very convenient x p+1 

because it avoids the random denominator of the regression estimates in 

(2.12). Futhermore. any other density estimate choice. like the the usual 

kernel density estimator. will yield inefficient break point estimates. 

.bl It . t" (k ) d .... (k ) • bFeaSl e a ernatIves 0 't- an 't-(a) are gIven yo 

- ( k ) I" (k) - r't- = arg max il ('t-) f x('t-) I (2.16) 
o 't-E 7l 

n 

respectively. where 7l = {Z • Z •...• Z }. In the next section. it will be n I 2 n 
provided regularity conditions under which these estimates and those defined 

in (2.12) and (2.13) have the same limiting distribution. 
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3. ASYMPTOTIC RESULTS� 

We analyze here only the case where the only fixed regressor entering in the 

regression function is a trend. The case for other fixed regressors can be 

handled in a similar way as with trending regressors. It is only required that 

the observations become more and more dense in the domain of such a fixed 

regressor as the sample size increases. The stochastic regressors are serially 

dependent in the following sense. 

Definition: {X , t= 0, ± 1, ± 2, ... } is a strong mixing stochastic processt� 
with coefficients cdm) if LCm a(m) = 0, where� 

m~ 110 

1�sup IP(.4t\13)-P(IIt)PUB) I}� 
ClOa(m)= su {litEMt , fJEM } , 

t -110 t+m 

and .M~ is the er-algebra generated by {Zt' a:s t:s b}. 

We need the following assumptions on the data generating process, 

AI. The sequence {X , t= 0, ±1, ±2, ... } is a strong mixing process, witht 
s~p Eilm(X )I/cS+2( 110 for some cS> 0, and mixing coefficients a(m) satisfying

t� 
rco a(m)cS/(2+cS>= O(1/q).� 

m=q 

A2. {£t} is an independent sequence of random variables, with 
2E{£tIXs' s= 0, ± 1, ± 2, ... }= 0 and E{£~IXs' s= 0, ± I, ± 2, ... }= er ( 110. 

A3. The pdf f x (a:) of X has, at least, two continuous derivatives witht 
t 

respect to all its arguments, and the regression function m(.;) has, at least, 

two continuous derivatives with respect to all its arguments, except at the 

break point where ';k= ';ok' 

• •. i . !RP+!A4. m(.;)= m (.;) + !J. H';k :s ';ok) , where m (.;) IS cont nuous In • 

Assumption Al generalizes the a-mixing condition of short-range dependence 

of Rosenblatt (1956) (see also Rosenblatt (1991) for an excelent discussion on 

mixing conditions). Notice that Assumption Al allows nonstationary regressors. 

In particular, this assumption is needed when we have lags of the dependent 

variable as regressors. The rest of the assumptions are usual for the 
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asymptotic theory of kernel regression estimates under strong mixing; see 

Robinson (1983). Condition A2 can be relaxed, allowing conditional 

heteroskedasticity and autocorrelation but paying the price of assuming higher 

marginal moments for et and X , being the only difference the asymptotic
t 

variance of the estimator. In the last Section, we will further discuss this 

point. Condition A3, on smoothness of the regression and pdf of the 

regressors, is usual in kernel estimation. Condition A4 assumes that the 

regression function changes only in mean but the slopes are not altered. This 

assumption can be relaxed, but then we have to assume a different convergence 

rate for the bandwidth number in B4 below. 

Define k D (u)= dl k (u)/d }, k D (u)= l, k (u)/d },
+1(.) + -1(.) ­lk) p+l lk) p+l

K+ll)(u)= k+ll)(uk) U _ k k(u ) and K_ll)(u)= k_ll)(uk) U _ k k(u/ We make the 
r r r 

following assumptions on the kernel function and the smoothing number a= a(n),� 

when the jump or break is in the regression function m(.). Required� 

conditions will be given latter on, when the jump occurs in the first� 

derivative of the regression function.� 

BO. The kernel function k(.) is such that f k(u) d u= 1 and f Iuk(u) I d u < DJ. 
IR IR 

B1. The kernels k (.) and k (.) are such that k (0)= k (0)= 0, and 
+ - +­

k (-DJ)= k (DJ)= 0, and are continuously differentiable, such that k (0)_ O. 
- + +(1) 

B3. fur k (u) d u= cS ,r= 0, I, where cS is the Kronecker's delta and 
+ ro ro 

2
fu k=(U)-d u < DJ, flk±(i)(u)ldu < DJ, i=I,2. 

B4 The sat ISf' l t'm (n aP+1)-1= 0 and ~-n aP+5 <-. . sequence a= a n () · les llm 
n -+ DJ n -+ DJ 

Conditions on the one-sided kernels are similar to those imposed by MUller 

(1992). They rule out truncated kernels like truncated normal, Epanechnikov or 

uniform. However from any kernel function we can easily construct kernels with 

these properties. Let k(.) be a density function with domain in IR , then 
+ 

k (u) = u (c + c u) k(u)
+ 1 Z 
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where eland e 2 are chosen such that 

CIO u (e + e u) k(u) du = 1 and JCIO u2 (e + e u) k(u) du = 0,
1 2 1 2J o 0 

will satisfy BI and B3, being k (-u)= k (u). For instance, if k(u)= exp(-u) 
- + 

I(u~ 0), then k+(u)= u (3 - u) exp(-u) I(u~ 0). Condition B4 is satisfied by 
1 Vthe bandwidth choice a =C n- / for p+l< V:5 p+5, where C is a constant 

independent of n. 

Remark 3.1: If we do not assume A4, we need to change B4 by 

That is, the bandwidth sequence must converge to zero faster than the 

bandwidth sequence in B4. • 

Let us introduce the following notation, 

~( ) AA(k)( (k) ( P+l)-l/2» f-( (k) (naP+1)-I/2)r,
u V = ';0 + a v ek na ';0 + a v ek 

(3.0 

P+I~ (v)= na (5(v)- 5(0» and v·= arg max I~n(v) \. 
n n VEIR 

Since, by construction, 

(3.2) 

a Central Limit Theorem (CLT) for the left hand side of (3.2) is obtained from 

a CLT for ~ (v), which is provided by the following theorem. Let a:(k) and a:(k) 

be p-dimensi~nal vectors with components equal to the first p elem:nts of .;~~\ 
(k) . . (k) (k) (k) (k) (k) (k) o 

and.; respectIvely, I.e. .; =(a: ',,; )' and .;( ) =(a: ',.; )'.(s) 0 0 Op+1 s Is) (s)P+l 

Theorem 3.1. Assume that AI-A4 and BO-B4 hold, with VE [-M, M), M finite, and 

A(k)(.;(k») o. Then ~ (v) converges weakly to ~(v) on ~([-M, MD, where ~(.) 
o n 

is a continuous Gaussian process with moment structure 

E[t( »)= A(k)( (k»v2K(k) (0) f (a:(k»r/2 and 
... v ';0 -(1) x 0� 

2J (k) 2 (k) 2r-1 (k) (k)�
cov[~(VI)' ~(V2»)= 2V V (1' K_w(u) du fx(tr,o) • If A (';0 )< 0, replace

I 2
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K 
1k) (.) bY K 1k) (.)� everywhere. _
-ll) +ll) 

The proof of this theorem and any other result are in the Appendix. 

The above theorem implies that 

1kwhere V- N(O, 2o'2JK 1k 
»(u) du/f (tt »)). Moreover. using Whitt (1970) results, 

- 11 X 0 

the above weak convergence can be extended to ~(-co, CICl). Observing the limiting 

process ~(v), it is� easy to notice that it has a maximum at 

K1kv·= - V/(fl1k)( .... lk» ) (0». and, since the supremum is a continuous 
o -lll • d • 

function, by the continuous mapping theorem, v ---+ v . Hence, we obtain a CLT 
n 

for the left hand side of (3.2) as a Corollary. 

Corollary 3.1. Under the same conditions of Theorem 3.1. 

2 (1'2 J(K1k ) (u»2 d u 
-I 1 )� )

--:-:--=~~- . ­
(tt1k » (fl I k)( lk»� K1k ) (0»)2f x 0 ....0 -(1) 

Remark 3.2: In view of the asymptotic variance of the break point and A4, the 

weight function W( .... ) = f (trf , for any r >0. produce the point estimate with x
smaller asymptotic variance. Intuitively, using this weight function we are 

avoiding those points .... whose k-th component is ....~:), but the joint density 

function of the regressors is very small (Le. we are avoiding those points 

where observations are not very likely). In particular, among all the points 

....e !Rp+l with k-th component ....~~), we are choosing these points maximazing the 

density f (.).x 

lk) lk)� •
Remark 3.3: Under A4, fl (....0 )= fl a constant. However, thiS assumption can 

be relaxed by assuming the rate of convergence of the bandwidth sequence given 

in Remark 3.1, which is faster than the rate of convergence implied by B4, and 

in view of Corollary 3.1, the rate of convergence of the point estimate will 

be slower for p~ O. _ 

Remark 3.4: If we allow conditional heteroskedasticity (or/and 

autocorrelation) of Et' and we assume that higher marginal moments of m(Zt) 

and Et exist, it is straightforward to prove that Corollary 3.1. also follows 
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• • 

2 I (k) 2 (k) • •
but now tr must be replaced by E(Ct Xt=~Ok )= tr (~ok ) in the heteroskedastlc 

case (see Lemma 6 in the Appendix for further details). In the last Section, 

we will discuss how to deal with such problems. _ 

When the regression curve is continuous, but the first derivative with 

respect to some regressor is not, Le. model (2.6), we need the following 

assumptions. 

A3'.- The pdf f x (a:) of X has, at least, three continuous derivatives with 
t 

t 

respect to all its arguments. The regression function m(.) has, at least, 

three continuous derivatives with respect to all its arguments, except at the 

break point If. • 
(lI)k 

A4'. m(If.)/81f. = m( ) (If.) + ~ HIf. :s If.( ) ), where m (If.) is continuouss 11 s Ilk (11) 

in (RP+l. 

B2'.- k~I)(U) = (_1)i k~l)(-u), for i= 0, I, 2, 3. 

p+3 -1 p+7
B4'.- The sequence a= a(n) satisfies 1im (na ) = 0 and 1 im na < CIO. 

n -+ CIO n -+ CIO 

Remark 3.5: Assumption A4' implies that second derivatives of the regression 

function are constant with respect to all its arguments. We can avoid this 

condition by assuming that 

As in the previous case, we can construct kernels with the above properties 

very easily. For instance, let k(.) be a density function in (R+' Then 

k (u) = u 
3 

(c + c u) k(u),
+ 1 2 

where c and c are chosen such that 
1 2 

CIO 3 ICIO 4U (c +c u)k(u) du= 1 and u (c +c u)k(u) du = O. 
1 2 1 2I o 0 
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For instance, if k(u}= exp(-u}I(uit O}, then 

k+(u}= u3(3-u}exp(-u}/6 Huit O) (3.3) 

will satisfy Bl' and B3. 

Now we need the following notation, 

~,( .. )= ~(k)( (k) + (P+3)-1/6) f-( (k) ( P+3}-1/6}r 
g '" ~Cs) ~Cs) svek na ~Cs) + sv e k na , 

p+3 }213 A (A • I I~' ()v = (na (~' v)- ~'(O)} and v' = arg max ~'(v). 
n n v E [-M, M) n 

Theorem 3.2. Assume that AI-A2, A3' and Bl' ,B2', B3, B4', with v E [-M, M), M 

finite, hold, and I).::~(~::~}> o. Then ~~(v) converges weakly to ~'(v) on 

~(l-M, MD, where ~'(.) is a continuous Gaussian process such that 

Elt'(v)]= I).Ck)( Ck») v4 KCk)CO} f (<.eCk)}r/24 and 
~ Cs) -;Cs) -(3) x 0 

Covl~'(v ), ~'(v )] = 2v v fT2J (K Ck ) (u})2du f (<.e Ck )}2r-l.
1 2 1 2 -(2) X 0 

If I).Ck) ( Ck)} < 0, replace KCk ) (.) by KCk ) (.) everywhere.•
Cs) -;Cs) -(3) +(3) 

. • p+3 1/6 "Ck)
EmployIng same arguments as before, v' = (na ) «~ k - ~ k)la}.n Cs) Cs) 

Since, ~'(v) = I).Ck)(-;Ck)} v4 K(kC»(O} f (<.eCk»)r/24 + v V', where 
n 0 - 3 X 0� 

Ck�V'- N(O, 2cr2 J(K Ck ) (U}}2 d ulf (<.e »}, has a minimum at 
- C2) X 0 

- ( Ck) Ck) Ck) 1/3) . .v' = - 6 V' 1(1). (~ ») K ()(O)} ,by the contInUOUS mappIng theorem,
Cs) Cs - 3 

(v' -p ~ (v,-)3. This justifies the following Corollary. 
n 

Corollary 3.2. Under the same conditions as in Theorem 3.2. 

3 
p+3)1/2 ("Ck) _ }la) ~ N(0( N 

na -;Cs )k?'cs)k ' 

From Corollaries 3.1. and 3.2., it is immediate to obtain the limiting 

distribution of the feasible estimate defined in (2.13). 

14 
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Remark 3.6: Remarks 3.2., 3.3. and 3.4. after Corollary 3.1. applies also 

here. _ 

Corollary 3.3. (a) Under the same conditions of Theorem 3.1., 

A(k) -(k) ( p+l -112)....ok - ....ok = 0p (n a) . (b) Under the same conditions of Theorem 3.2., 

A (k) -(k) ( P+3)-1/2) 
.... - .... =0 na .

(s)k (s)k P 

This Corollary forms a basis to construct confidence intervals on the location 

of the break point. The variance f1'2 is estimated by 

where 

m_(.;)= 

and K(.) is not necessarily a one sided kernel. 

Next Corollary justifies interval estimates for .... (k) and I1(k)C....(k». Let 
o 0 

-(k) -(k). -(k) -(k) • 
(l. and (l. be the first p components of.... and .... ) respectIvely. o (s) 0 (s 

Corollary 3.4. (a) Under the same conditions as in Theorem 3.1. 

)/a) ~ N(O, 1>, 

d 
~ N(O,}). 
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(b) Under the same conditions as in Theorem 3.2. 

4. MONTE CARLO EXPERIMENTS 

We will consider two models. The first one is the single threshold model 

(4.I) 

where X - iid NW, I) and £t - iid N(O, I), X and £t are independent, fort t 
sample sizes n= 50, 100 and 200. The second one is a trend model, where 

(4.2) 

where £t - Bd NW, I), for sample sizes n= 50, 100 and 200. 

Monte Carlo biases and root mean squared errors (RMSE) based on 5,000 

replications for models (4.I) and (4.2) are reported in Tables I and 11 
1/5respectively, for a= 0.5, 1 and 2. In all experiments we choose a= Cn- for 

C= I, 2, 3 and 4. The simulations were run in FORTRAN 77 Double Precision on 

an Apollo Workstation HP 715, using the IMS library for generating the random 

numbers. 

In both models, the estimator behaves well and does not seem to be very 

sensitive to the bandwidth choice. As expected, the biases increase with C, 

but the variances decreases as C increases. Even for the smallest sample size, 

the estimator biases and RMSEs are quite small, decreasing rapidly as the 

sample size increases. 

16 



As it should be expected. results for the trend model (4.2) are better than 

for model (4.I> where a stochastic regressor determines the break. 

TABLE 1 AND 2 ABOUT HERE 

5. AN EMPIRICAL APPLICATION 

We have applied the estimator to some USA macroeconomic time series used in 

the influential paper by Nelson and Plosser (1982) which have been used 

afterwards for illustration of other statistical procedures related to 

structural break point analysis (see, for instance Zivot and Andrews (1992) or 

Perron (989». The series considered are: annual nominal wages (1900-1979). 

annual common stock prices (1871-1970) and quarterly real gross national 

product (GNP) (1947: 1-1986: Ill). All these series are in logs and we also 

consider the rate of growth of GNP (Le. the first differences of the series 

in logs). 

We consider a model where the regressor explaining the break is "time" ('tt)' 

and the other stochastic regressors are lags of the dependent variable. That 

is 
•m(Zt) = ~ H'tt:5 't ) + m (Y • Y .....Y ). (5.l>

o t -1 t -2 t -p 

•with p= 1. 2 and 3. where m (.) is an unknown function. 

In Table 3 to 7. we report point estimates and 957. confidence intervals of 

the location of the break point in the different series. Figures 1 to 4 report 

plots of ~(Zt)lx(Xt ). t=I ....n. where 1x(Xt ) is computed according to (2.15). 

Results for Nominal Wages are in Table 3 and Figure 1. The point estimate is 

around the 1929 crash and the interval estimates contain around the 67. of the 

sample. The year 1929 has been suggested as possible break point in Nominal 

Wages by several authors (e.g. Perron 1989). Figure 1 shows a clear peak of 

17 
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the scaled jump function in 1929. This function does not change a lot with 

respect to the bandwidth choice. For the choice C= I, the function is too 

erratic , suggesting that this choice may be too small. As the number of lags 

increases, the confidence intervals become narrower. Probably, the errors are 

correlated and as we introduce more lags, the autocorrelation decreases. The 

autocorrelation is expected to be positive and, therefore, the confidence 

interval will become smaller as lags values of Yt are introduced into the 

model. 

TABLE 3 AND FIGURE 1 ABOUT HERE 

The point estimates for the common stock prices are around the First World 

War 0914-1917). Other authors (e.g. Perron 1989) have suggested the great 

crash of 1929 as the possible break point. Looking at the original series, 

there is a clear peak in 1929, which could be interpreted as an additive 

outlier. Figure 2 shows that the jump function suddenly decreases to zero at 

1929. Our method is not robust to outlying observations and such outliers can 

spoil our estimates. Table 4 shows that the confidence intervals are too 

wide, and they become wider as the sample size increases. It may be an 

indication of the bad performance of our estimator when outliers are present 

in the sample. It is expected that robust versions proposed in Section 6.3. 

will work better in these situations. 

TABLE 4 AND FIGURE 2 ABOUT HERE 

Table 5 and Figure 3 report results for the Quarterly Real GNP series. The 

point estimate is around 1967 (the Vietnam War). Authors differ about the 

location of the break point for this series. While Perron (989) suggests the 

oil crisis of 1973 as a possible location and no unit roots, Zitov and Andrews 

(992) defend that there is a unit root, and the possible structural break, if 

it exists, occurs at the second quarter of 1972. The confidence intervals are 

quite narrow containing typically less that the 67. of the sample. Table 6 and 

Figure 4 report results for the Growth Rate of Quarterly GNP. The break point 

estimate is still around 1967 but the confidence intervals are much wider. 

18 
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There are several arguments for explaining this fact. On one hand, after 

taking first differences the series becomes much more volatile, the residual 

variance increases, and then the variance of the point estimates. There is 

also observed negative correlation in the series and, since this 

autocorrelation is not taken into account, the confidence intervals become 

wider. It may be also the case that model (5.U is not valid here and the 

derivatives of m(.) change before and after the break. Then, after taking 

differences of the original series, the jump in the transformed series could 

be smaller. That is. the model for the GNP series may be 

m(Zt) '"' m (Tt' Y • Y .....Y ) I(TtS T ) 
- t -1 t -2 t -p 0 

+ m (Tt' Y • Y •...•Y ) I(T > T ).
+ t~ t ~ t~ t

instead of (5.U. So, the jump size can be smaller after taking differences. 

and the variance of the break point estimate increases (note that the size of 

the jump is in the denominator of the asymptotic variance). Moreover, our 

results may indicate together with Zitov and Andrews (1989) results. that the 

series may have a unit root but the rate of growth have change around 1967. 

TABLES 4 AND 5 AND FIGURES 3 AND 4 ABOUT HERE 

6. SUGGESTIONS FOR FURTHER WORK 

We indicate some extensions and applications of the above procedure that are 

of possible econometric interest. 

6.1. Estimating the structural break under error autocorrelation. 

For the sake of simplicity. we have assumed in the main theorems that the 

errors are uncorrelated. This assumption seems to be too strong in a time 

series context but it can be easily removed. Let us define 1'.= E[£'£j .l, j=
J 1 +1 

-1 ~ 1,2, ... as the autocovariance and f (0) = (2n) L: 1'. as the spectral
• J=-1lO J 

density function evaluated at zero. Then. it is reasonably straightforward to 
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prove that, under suitable conditions, 

Moreover, a consistent estimator of f (0) is given by 
• 

i (0) = (2nr1 t? w(j/m) r.,
•� J --m J 

where wC.) is a weighting function with w(O)=l and w(a:)=O when Ia: I>1, and 
- 1 ~-j - ­r.=� --. k £k£k j estimates r., whereJ n-J =1 + J 

(6.1) 

6.2.� Estimating the structural break point under heteroskedasticity of 

unnknown form. 

In cross-sectional applications, it is restrictive to assume conditional 

homoskedasticity. If E(£t IX =a:)= 0'2(a:), under suitable regularity conditions,
t

it is easy to prove that 

The conditional variances can be estimated from (6.1) by 

"'2 ~-2 
0' (a:)= L I £. W.(a:),

J=l J J 

where W.(a:) are nonparametric probabilistic weights.
J 

6.3.� finding the regressor explaining the break. 

It may be the case that the break is explained by more than one regressor. 

We have in mind the model 
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where gL) is an unknown function. It is interesting to estimate the 

functional form of gL). However. we are unable to identify this function 

using the methodology presented above. Suppose. for the sake of simplicity. 

that gL) depends only on the first two regressors. We could estimate 

mij(Zt)" 1Lm 
a -~ a

1 

a -~ a
2 

and 

Applying the method developed in Section 2. we could estimate the value 

maximizing the above function. but it is not very useful. 

We may be interested in finding the regressor explaining the break. We could 
•conclude that the regressor k explains the break. where 

• "'(k) ... (k) Ik == arg max 1/1 ('fa ) • 
keO •...• p} 

6.4. Two step estimation of parametric models 

Suppose that the regression function is parameterized. but there is a 

structural break with unknown location. Suppose that the regression function 

before and after the break is linear. That is. 

The break can affect to the intercept (13 - 13 and 13 .= 13 •• all j> 1) or the 
11 21 IJ 2J 

slopes (13 = 13 and 13 .- 13 •• all j> 1). Feder (975) proposed an estimation 
11 Zl IJ zJ 

method for a segmented (but continuous) regression model with a fixed 

regressor and iid errors. Bai (992) also consider the same model but with 

autocorrelated errors where the break occurs in the trend. A two step 
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procedure permits to estimate (3 and (3 even when the regression is not 
1 2 

continuous. In a first step.; is estimated by'; using the method developed 
o� 0 

in Section� 2. Then (3 and (3 are estimated by 
1 2 , -1 

~l= [Et ZtZt HZkt:S ';0)] Et Yt Zt HZkt:S ';0)' 

and 

respectively. It is expected that these estimates will be, under suitable 

regularity conditions, asymptotically equivalent to estimates computed when ';0 

is perfectly known. 

6.5. Robustness 

Outliers can produce very misleading consequences in our estimation 

method, as it has been illustrated in Section 5. One sided kernels are more 

sensitive to outliers than symmetric kernels because more weight is put on the 

outlying observations. The influence of outliers can be bounded by using a 

M-type version of the usual kernel method as proposed by Tsybakov (1993), 

Robinson (}984) and Hardle (}984), to mention only a few. Instead of 

estimating m(a:) as the functional of conditional location, we can estimate a 

robust conditional location functional r(a:) defined as the solution to 

where q,(.) is a bounded real function. So, we can estimate 

r (.;) = Bm r(.; + e a) and r_(.;) = Um rC.; + ea), 
+ a--..+ 0 k� a--..+ 0 k 

+ 

by r (.;) and r (.;), defined as the solution to 
+ ­

respectively. Then, we estimate the jump as 
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MATHEMATICAL APPENDIX 

Remark: The proofs below are for the case where regressors are stationary for 

notational simplicity. In the general case, notice that instead of 

IhCa:)/x(a:) da: we will have 1Lm n-l~ IhCa:)fx (a:) da:.� 
n ~CIO t� 

Proof of Theorem 3.1. 

• •� (k) p+l 1/2
Let us Introduce some notatIon. Hereforth, T = 1- ' g ., (na ) • e= e • o n k 
A(\I)= A(k)(\I), 1(\1)= I (\I), K (\1)= tk)(\I), 1("(\1)= K(k) (\I), K (\1)= K(k)(\I). 

x + + + +(.) - ­

• (k) [1 2 ­K (\1)= K (\I), r= K (w) d w, 1<t(\I)= K ((X - (T+ a\le/g »/a), _ _(.) +� - t n 
o 

1<;(\1)= K+((X - (T+ a\le/gn)}/a), P+(\I)= g:2~ Y 1<;(\1), P_(\I)= g:2~ Y 1<~(\I),
t t t 

[ (\1)= g-2r 1<t+(\I), [ (\1)= g-2r 1<t-(\I), tp (\1)= P (\1)- P (0),
+ n~ - n~ + + + 

tp (\1)= P (\1)- P (0), e(\1)= [ (\1)- [ (0), e(\I)- [ (\1)- [ (0). 
- - - + + + - - -

It is easily seen that, 
,. ,. 4 
15(\1)- 15(0) = Li A.(\I) + a(\I),

=1� 1 

where 

A = [tp (\I) - tp (\1)][[ (\I)-/(T)], A (\1)= tp (\1)[[ (\1)- [ (\I)],
1 + - - 2 - - + 

A (\1)= - e(\I) [P (0) -m (T)/(T)J, A (\1)= - e(\I) IP (0) -m (T)/(T)J,
3 + + + 4 - - ­

a(\I)= [tp (\I)-tp (\I)J/(T) - e(\I)m (T)/(T) + m (T)e (\I)/(T). 
+ - + + --

Thus, the theorem follows by Propositions 1 to 5, which are based on results 

proved in the Lemmata. 

PROPOSITION 1: A (\1)= 0 (g-3).
1 P n -2

Proof.- By lemmas 5 and 7, tp (\I)-tp (\1)= 0 (g ), while by Lemma 2 
+ - p n 

,. -1 2 •� 2 -2 -3[I (\I)-/(T)J= 0 (g + a ), noting that, by B4, 0 (a g )= 0 (g ). _ pn� P n pn 

2
PROPOSITION 2: A (\1)= 0 (ag- ).

2 p n� 

Proof.- Notice that� 

A (\1)= Itp (\I)-tp (\I)J[e (\1)- e(\I)J + [tp (\I)-tp (\1)][[ (0)- [ (O)J
2 - + - + - + - + 

+� tp (\lHe (\1)- e(\I)] + tp (\1)[[ (0)- [ (O)J 
+ - + + - +

2= 0 (ag- ),
p n 

23 



1 2by lemmas 2, 4, 5 and 7, noting that, by B4, 0 (a3g- )= 0 (ag- ).
p n p n 

PROPOSITION 3: A (v)= 0 (ag- 2
)

3 p n 
Proof.- e(v)= 0 (ag-1) by lemmas 6 and 9 and [~ (0) -m (T)/(T»)= 0 (g-l+ a2)

+ p n + + pn 
by Lemma 1. 

PROPOSITION 4: A (v)= 0 (ag- 2
)

4 p n 

Proof.- Applying Lemma 1, 6 and 9 as in Proposition 3. 

PROPOSITION 5: g2a (v) .. ((v) 
n 

1 2Proof.- By lemmas 4 to 12, E[g2 a(v»)= t1(T) I(T)2 K (0) v /2 + 0(1), and 
n -

Cov(l a(v ), g2 a(v»= 2 (1'2 V V '¥/(T)3 + 0(1). Define 
n 1 n 2 12 

- 2 •a(v )= gn (a(v )- E(a(v ))}· Then, for fIxed VI' V ' ••• , Vt E [-M, M),
k k k 2 

(s(v ), s(v ), ••• , s(v )} ~ N(O, :E),
1 2 t

by Robinson (983) Lemma 7.1, where :E= ((1'. J, and (1'..= 2v.v. I(T)3 m (T)2 '¥. 
IJ IJ 1 J + 

Thus, the proposition follows by showing that the sequence a(v) is tight. 

According to Billingsley (968), it suffices to prove that 

EHs(v )- s(v »2} s e(v _ V )2,
1 2 1 2 

where e is a generic constant, what follows by Lemmas 13 and 14. But, by Whitt 

(970), we can extend the result to (-co, co). Therefore, 

d 1 2 2
t1(T) KJO) I(T) V 12 + V Z 

weakly 
1 2 2 2 

E - t1(T) K (0) I(T) V 12 + V Z I(T) ,
+ 

where Z - N(O' 2 (1'2 '¥II(T») . •. 

Proof of Theorem 3.2. 
3We need to introduce some extra notation. Hereforth, h = (n a P

+ )1/6, 

(k) ± 1 n 1 
t1 (v)= t1 (V), Xt(v)= K+((X - (T+ avelh »/a), Xt+(v)= Kt((Xt-T+eavlh )/a),

(s) (s) _ t n - n 
Al -6 1 Al -6) 1 1 "'I ll.1
P±(v)= ah ~YtKt±(v), I ±(v)= ahn wt Xt±(v), tpt(v)= P±(v)- r t(O),n

1 AI'" 1 '" p+1 -1 t '" p+1 -1 t
e±(v)= I ±(v)-It(O), where Pt(v)=(na ) ~ YtXt (v), I t(v)= (na ) ~ Xt (v). 

It is easily seen that, 
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8'(v) - 8'(0) =~ B.(v) + b(v),
Li=1 1 

where 

Then the Theorem follows from the following propositions. 

-4
PROPOSITION 1.6.: B (v)= ° (h ). 

. 1 P, n 
Proof.- By consistency of [~(O) to i(T) and lemmas 5 and 7. 

-2 2 p+l -112 -4
B (v)=O(g + a /g ). But g = (na ) . So by B4' B (v)=o(h ).

1 n n n 1 n 

4
PROPOSITION 1.7.: B (v)= ° (h- ).

2 P n 
-2 2 "'I "'IProof.- By Lemma 4, 'P (v)= o(g + a /g ), and by Lemma 18, ([ (v)-[ (v»= 

- n n - + 
2O(a2+ (naP+ fll2). So by B4' B (v)=o(h- 4 

).
1 n 

-4
PROPOSITION 1.8.: B (v)= ° (h ).

3 P n 
Proof.- Use lemmas 6 and 9 for e(v) and that [1>1(0)_1>1(0)]= 0 (l) by similar 

- + - p 
arguments to Lemma 1. Then apply B4'. 

4
PROPOSITION 1.9.: B (v)= ° (h- >.

4 p n 
Proof.- 1>1(0)= 0 (l) by similar arguments to Lemma 1 and [e (v)-e (v»)=

- p + ­
-4° (h ) by lemmas 6 and 9 and B4'. 

P n 

PROPOSITION 1.10: B (v)= ° (h -4). 
s p?

Proof.- Apply Lemma 19 for 'P_ (v), Lemma 2 for [/_(v)-f)v)] and then B4'. 

PROPOSITION 1.11: B (v)= ° (h -4). 
6 P nIl '" -1

Proof.- Apply lemmas 20 and 21 for ['P (v)- 'P (v»), and [+(0)= [(T) + 0p(gn ) _+ ­

by Lemma 2, then apply B4'. 

-4
PROPOSITION 1.12: B (v)= 0p(h ).

7 n 
1 '" Proof.- Apply lemmas 20 and 21 for e(v) and [P (0)- m(T)[(T)]= 
- + 

m(T)[(T) + 0 (g-1) by Lemma 1. 
+ P n 
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PROPOSITION 1.13: B Cv)= 0 Ch-4).
8 P n 

Proof. - Same as Proposition 1.12. 

PROPOSITION 1.14: h
2 

bCv) .. ~Cv). 
n 

Proof: Using similar arguments as in Proposition 1.5. 

Proof of Corollary 3.3. 
• -ek)We only prove Ca) since Cb) is identical. By definition of v and ';ok' we 

should show that 

P J I • -ek) I > ~ Cn aP- 1)-1/2l = O.1,,m r, v - ';ok g , 

n-~CD 

• • • nTake v fixed, the above probability is bounded by [1- FCx+v )-FC-x+v ») , 
p-1 -1/2 -ek)

where x = a Cn a) and FC.) is the distribution function of ';ok' Then, 

the probability is of an order of magnitude 

n --+ CD n-~ CD 
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LEMMATA 

This Lemma is used for the proof of Theorem 3.1.� 

Notation: From now on, ~ few) dw lE ~ [IIR few) UJ:;l:k dWJ]dWk•� 
P 

Define A±(a:, tJ) = K±(a: -(T-atJ/gn))/a)-K±(a:-TVa), m(a:)= m(a:)/(a:), 

m±(a:)= m±(a:)/(a:), m;(a:)= flm±(a:VfJa:l , S~(tJ)= [X~(tJ)- X~(o)]. 

2Lemma 1.- P+(0)= m±(T)/(T) + 0 (g -1+ a ). _ p n 

Proof.- Applying Robinson's (1983) Theorem 5.1. c 

.. -1 2
Lemma 2.-1+(0)= I(T) + 0 (g + a ). _ p n 

Proof.- Applying Robinson's (1983) Theorem 4.1. c 

Proof: The l.h.s. of the above expression is bounded by 

c I IA±(w, tJ )Icx dw,
IRP+1 1 

where, hereforth, C is a generic constant, (in this case C bounds the density 

function I C)). By a change of variable and taking into account that K_(w)=
x 

0, for all w it: 0, 

P+1/ 1+CX P+1/ cx)= O(a g +a g ,n n 

by applying a mean value theorem (mvt) argument. The other cases are 

symmetrical. c 

For the next two lemmas, we suppose that tJ) O. The results for tJ( 0 are 

identical, and therefore ommited. 
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Lemma 4.- E[l'+(v)]= O(a g-I). 
- n 

Proof: By a change of variable and a Taylor expansion w.r. t the k-th 

coordinate, 

m 

E[l' (v)]= J {m(aw + aevlg + T)- m(aw + T)} K (w) dw 
+ n + o 

Then, apply condition B4. E[" (v)]= O(a g-I) using the same arguments. c 
- n 

I 2 2Lemma 5.- E[" (v)-" (v)]= -t1(T) f(T) K (O)v /2i + 0(a 1g ). 
+ - - n n 

Proof: In this Lemma, without loss of generality, we will assume that T=O. 

Moreover, we will define m(a:)= f(a:)m(a:) and v= vlg . 
n 

E["+(V)-l'_(v)]= (aP+lfIJm(a:) {K+((a:+aeV)/a») - K}a:la)} f(a:) da: 

- (aP+lfIJm(a:) {K_((a:+aeV)/a») - K_(a:la)} f(a:) da: 

=(xCv) - «(0). 

where 

By the change of variable u=(a:+aev)la), 

a(vl= MOlf(Ol + J:{m+(a(U-eV))- m}O)} K}u) du + J: m_(a(U-eV»)K+(U) du 

- J:m{m_(a(u-ev»)- m_CO)} K_(u) du - m+(O)J: K+(u) duo 

After applying a Taylor expansion w.r. t. the k-th coordinate, and using the 
-I -I J�facts that, by A4, m_(O)= m}O) and u K±(u) du = 0, we can write 
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where ~, hereforth, is a generic constant such that ~E(O,l). Since 
v 

2I 2 2 3a (u- ev) K.(u) du = O(a v), we have� 
o� 

IlO 0 
-2 2 2 -2 2 2I Iex(v)= m.(O) a (u-v) K.(u)du + m_(O) a (u-v) K_(u)du + [1(0)/(0) 

o -00 

1 2 -2 -2 2 2
-[1(O)/(O)K.(O)v + IvOO{m. (~a(u-ev)) - m}O)} a (u- ev) K.(u) du 

-2( ) -2 } 2 2 2 3 + V m_ ~a(u-ev) - m_(O) a (u- ev) K_(u) du+ + OCa v ).[{

Thus, 
-2 2 2 1 2 2 3a(v)-ex(O)= m (0) a v /2 - [1(O)/(O)K (O)v /2 + T + T + O(a v ),

• • 1 2 

where 

Thus, it suffices to prove that T.= 0(a
2v), i=1,2. After the change of 

1 

variable v= u-v, 
oo 

2
T = a

2 I {m2(~av)-m2(0)} V {K (v+v)-K (V)} dv= T + T 
1 •• • • 11 12 

o 

where 

T = a2 IIlO {m2(~av)-m2(0)} v
2
{v K 1(v)+ V2K2(~V)} dv. 

12 •• • • 
M 

Because m(.) and /(.) are continuous - and thus uniformly continuous in a 

compact interval-, for an arbitrary c> 0, 

2 2T = c a2 J"d Iv K:(v)v2IdV + c a v
2 J"d Iv

2 K~(~v)1 dv = 0(a v), 
11 J Joo 

For M large enough, I
00

m-2(v) v2 K2(v)dv < 00, then T = o(a2
v). Using similar 

•• 12 
M 

arguments, it is also proved that T =0(a
2
v). c 

2 

29 



Lemma 6.- E[&+(v)]= O(a g 
-1 

). _ n 

Proof: Identical to the proofs of lemmas 4.0 

- 4 l 2() 2] -4Lemma 7.- (a) Cov{1> (v), 1> (v )} =g I(T) v v m T + (J" r + o(g ).
+ 1 + 2 n 12 + n 

Proof: We only prove (a), the other is identical. Without loss of generality, 

we only consider the case 0< v < v . Because of independence of £t' the above 
1 2 

covariance is equal to 

2 -4 + +Cov{1> (v), 1> (v )} = (J" n g Cov {S (v), S (v )} +
+1 +2 n 1112 

+ -2 +-2By Lemma 4, E[S (v )]= o(g ), and E[m(X )S (vjH= o(g ). By Lemma 3,
1 j nIl n 

L L {covlm(Xt)S+t(V ), m(X )S+(v )]} .. O(n a2(P+l)Il)= 0(1), 
t~s 1 s S 2 n 

by using similar arguments as Robinson (1983). 

Therefore, 

2.- -4Cov{1> (v), 1> (v )} = (J" 1 + T + 0 (g ),
+1 +2 12 pn 

where 

-4 2 + +
T = n g Elm(X ) St(v ) St(v H,

2 n t 1 2 

It suffices to prove the convergence of T2' Note that, after the change of� 

variable x- T = U,� 
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OIl 

T = n g 
-4 

m(u + T)
2 f (u + T)J 

1 n I xav g{ 2 n 

00 U-aVIg )-J m(u + T)2 f (u + T) K (ula) K ( 1 n d U 
x + + a 

av Ig
1 n 

00 ( u - av I g )
m(u + T)2 f (u + T) K (ula) K 2 n d u 

- X + + aJav Ig
2 n 

= T + T ,
21 22 

where 

u - av Ig )
+ T) K 2 nT 

21 + ( a 

u - av1I g n ) } 
x K+ a - K+(ula) du,({ 

00 { av I g )-J m(u + T)2 f (u + T) K (ula) K (U -
2_..;..n 

X + + a 
av I g

1 n 

rv Ig
-4 1 n 2 2 

T = n g m(u + T) f (u + T) K (ula) duo 
22 n x + o 

Using a Taylor expansion for K+(ula) around zero, as we did in Lemma 5, 

T = O(g -5)= o(g-4). On the other hand, T = B + B , where 
22 n n 21 1 2 

av Ig ) }a 1 n - K+(ula)B= n 
1 
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rv I g { v I g ) }(u - aB = n g-4 2 n m(u + T)2 f (U + T) K (u/a) K 1 n - K (u/a) du 
2 n I x + + a + av g

1 n 

By a mvt argument and the change of variable X= u/a, for some ~E (0, 1), 

v Ig x V 

B = g -4 I 2 n m(ax + T)2 f (ax + T) K (x) K
1 (x + ~v Ig )

1 dx 
+ 1 n2 n I x + 

VI gn 

-5 -4=O(g ) = o(g ). 
n n 

03 

B = g-2 I m(ax + T)2 f (ax + T) {K (x - VI ) - K (X)}
1 n I x + 19 + 

v gn n
2 

-2 2 1 2 2 2 = g m(ax + T) f (ax + T) V K (x)lg + V K x + ~v Ig IgI03 { () }
n I X 1+ n 1+ In n 

V g
2 n 

Lemma 8.- Cov{1' (v), l' (v )}= O(g-4). 
+ 1 - 2 n 

Proof: As in Lemma 7, by A2 and A3,� 

Cov{1' (v), l' (v )}= (1'2 n g-2 Cov {S+(v), S-(v )} +� 
+1 -2 n 1112 
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Using the same arguments as in Lemma 7, 

COv<~ (v ), ~ (v H= er 
2-
1 + T + O(g

-4
),

+1 -2 12 n 

where 

-4 2 + ­
T = n g Elm(X ) St(v) St(v )],

2 n t 1 2 

We consider, without loss of generality the case 0< v < v . Using the fact
1 2 

I:that K (w)= 0 if w::s 0 and K (w)= 0 if w~ 0, T T + T ,where
+ - 2 21 22 

V Ig
2 n U - av /g 

T = n g-4 m(u + T)2 f (u + T) K ( 2 n) K (u/a) duo 
22 n [ x - a + 

o 

-4 -4
Using same arguments as in Lemma 7, T = o(g ) and T = o(g ).

21 n 22 n 

Lemma 9.­
-4 -4

Cov<I±(v ), 1±(v
2
H= gn fX(T) '( v

1
V 

2 
+ o(gn ).

1�
Proof.- Identical to Lemma 7. c� 

Lemma 10.­

Cov<l+(v), I (v H I: 0(g-2),
1 - 2 n 

Proof.- Identical to Lemma 8. c� 

Remark: Lemmas 9 and 10 imply that� 
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Lemma 11.- (a) Cov{1> (v), e (v )} = 0(g-4), 
+ 1 - 2 '1 

(b) Cov{1> (v), e (v )} = o(g- ). 
- 1 + 2 n 

Proof: Identical to Lemma 8. c 

Lemma 12.- Cov{1> (v), e (v )}= g-4 f (T) m (T) v v + 0(g-4).
+ 1 + 2 n X + 12 n 

Proof: Identical to Lemma 7. c 

Remark: By lemmas 7 to 12, 

Cov(s(v), s(v »= 2 ,,,2 g-4 V v '1 f(T) + 0(g-4).
1 2 n 12 n 

Lemma 13.- g4 E[(1) (v ) - 1> (v )- (1) (v ) - 1> (v »)j $ C(v - v )2 + 0(1).n +1 -1 +2 -2 12 
Proof: The left hand side of the above inequality is bounded by 

2 g4 {var (1) (v ) - 1> (V») + Var (1) (v ) - 1> (V»)}.n +1 +2 -1-2 

Now, applying same arguments as in the proof of Lemma 7, 

var(1) (v) - 1> (V») = g-4 f (T) (v - v )2 {m (T)2 + cr2} '1 + 0(g-4). C
+1 +2 n X 12+ n 

Lemma 14.- g4E [(e (v )- e(v »)z, $ C(v - v )2 + 0(1).
n +1 +2 J 12 

Proof: Identical to Lemma 14. c 

The lemmas below are applied in propositions 1.6. to 1.13, which are used 

for proving Theorem 3.2. Therefore, we are assuming than conditions for 

Theorem 3.2. hold. Without loss of generality, we will assume that T=O, also 

v= v/h.n 

Lemma 15.­
E[1> (v)- 1> (v)]= O(h-4).� 

+ - n 

Proof.- Since fe.) and me.) are continuous everywhere, 

E[1> (v)- 1> (v)]= E[1> (v) - m(-~ae)f(-~ae) + m(O)f(O)] 
+ - + 

- E[1>_(v) - m(-Tse)f(-Tse) + m(O)f(On 

We only discuss the convergence of the first term, the second term converges 

using the same arguments. After standard kernel estimation algebra, the first 

34 



term is asymptotically equivalent to 
2-2 Jal 2 2-2 Jal 2a m (-av) u K+(u)du - a m (0) u K+(u)du 

o 0 
2 -2 -2 Sal 2= a (m (-av) - m (0» u K}u)du 

o 

by B4'. 

Lemma 16.­
-I

(a) Cov[:'P+(v ), :'P±(v »)= o(h ). 
_ 1 2 n 

(b) Cov[:'P (v), :'P (v »)= o(h-I). 
+ 1 - 2 n 

Proof.- We only prove (a). The other cases are identical. Without loss of 

generality, we only consider the case o(v (v . By identical arguments as in 
1 2 

Lemma 7, we need only to consider the order of magnitude of 

2 1
cr (naP 

+ f2 ~E{ [K+((X +aev )1a)-K+(Xla)] [K+ ((X +aev2)/a)-K+(Xla)]}t 1 t 

1+ (naP+ f2 ~E{m(Xt)2[K+((X +aev )1a)-K+(Xla)] [K+((Xt +aev2)/a)-K+(Xla)]}.t 1

It suffices to prove the convergence of the first term (note that m(.) is 

differentiable everywhere. After a change of variable, the first term in the 

above expression is equal to 

o -V}
+ J f(au) K (u-ev )K (u-ev )du + J 1 f(au) K (u-ev )du . 

+ 1 + 2 + 2 
-v -v 

1 2 

Applying the mean value theorem, around u for the first term and around 0 for 

the last two terms (recall again that K (0)=0), we have that the above 
2

+ 
8�

expression is O(h-2/(naP+ 
1»= O(h-1 a ) =o(h- )••� 

n n n 

These last two lemmas show that :'P (v)-:'P (v)= 0 (h -4).
+ - p n 

Lemma 17.­
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Proof.- It suffices to prove (a), being (b) completely identical. 

/ (v)-/ (v)= [I (v) - 1 (v)] + [/ (0) - / (0)]. 
- + - + - + 

Now, [I (v) - 1 (v)]= 0 (h -4) by the previous two lemmas, and 
- + p n 

3 )1+1 -1/2 • •1A 

+(0)-/(0)= 0 (a + (na ) ) by standard kernel manIpulatIons. 
- p 

Lemma 19.­
1 2 -1 -1-2

'P (v)= 0 (a h + a h ).
- p n n 

Proof.­

1 +2 -1 -av - [ 1 1 ] P+2 -1 0 1
E['P_(V)]= (aP ) J m(x) K_(x+aevI)/a)-K_(xla) dx- (a ) J K_(xla) dx. 

_ ~v 

IBy Bl', the second term is O(h-2a- ). With regard to the first term, it is 
n 

equal to 

Using the fact that both m_and 1 are three times continuously differentiable, 

KI(U)dU=O and Bl', B2' and B3, the last expression is O(a
2
h -1+ h -2). With _ n nJ

regard to its variance, by similar arguments as lemma 6 or 16, taking v
1
=v

2
, 

it is of an order of magnitude 

(naP+2)-I(aP+2)-I E{KI(X )1 ) KI(X I )}2 O(h- 4 
) _ t+aev1 a - _ t a = n·· 

Lemma 20.­

Proof.- El']>1(v)-']>1(v)]= o:.(v) - 0:.(0), where 
+ ­

2+p -1 J { 1 1 }o:.(v)= (a ) m(x)/(x) K+«x+aev)/a) - K_«x+aev)/a) dx. 

By similar algebra as in lemma 5, 0:.(v) = T + T + T + 0 (h - 4), where 
1 2 3 P n 
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Using A4, Bl' and B3 and after some algebra, very similar to Lemma 5, 

Lemma 21.­

1 1 -8 2 2 J 3 2 -8Ca) Cov[" Cv l, " Cv )]= h CmCO) + t1' l fCOl v v CK Cul) du + oCh ),
+� 1 + 2 n 12 + n 

o 
1 1 -8 2 2 J 3 2 -8Cb) Cov[" Cv l, " Cv )]= h CmCO) + t1' l fCOl v v CK Cul) du + oCh l, 
- 1 - 2 n� 12 - n-CD 

1 1 -8
Ccl Cov[" Cv), " Cv )]= oCh l. 

+ 1 - 2 n 

Proof.-We only prove Ca). The other cases are identical. Without loss of 

generality, we only consider the case O<v <v . By identical arguments as in 
1 2 

Lemma 6, we need only to consider the order of magnitude of 

p+3 -1 p+l -1{ 2J [ 1 1] [ 1� 1]Cna ) Ca l t1' K+((x+aev l1a)-K+Cxlal K+CCx+aev )/al-K+Cxlal fCxldx 
1� 2

+ JmCxl2 [K:CCx+aeV l1a)-K:Cxlal] [K:CCx+aeV l1al-K:Cxla)] fCXldX}.
1� 2

We only consider the second term, which� is asymptotically equivalent to 

where 

A =JCD mCxl2 [K1CCx+aev )/al-K1Cxlal] [K
1
CCx+aev lI4l-K

1
Cxlal]fCxldX,

1� + 1 + + 2 + 

av: = _Jav2 mCxl2 [K1CCx+aev lI4l-K1Cxlal] K1Cxl4)fCxldx,
2� + 1 + + 

av 
1 v 

A = ~ 1 mCxl2 K1Cxlal K1Cxla) fCx)dx. 
3 JA + + o 

By repeating the same steps as in the proof of Lemma 7, we get the desired 

result. Observe that me.) is differentiable. 
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TABLE 1� 

Biases and RMSE of change point est imates based on model (4.1) 
and 5000 replications for different sample and jump sizes. 

n = 50 n = 100 n = 200 

Bias RMSE Bias RMSE Bias RMSE 

«= 

«= 

«= 

0.5 
c= 1 
c= 2 
c= 3 
c= 4 

1 
c= 1 
c= 2 
c= 3 
c= 4 

2 
c= 1 
c= 2 
c= 3 
c= 4 

-0.098 
-0. 146 
-0. 160 
-0.166 

-0.057 
-0.102 
-0. 123 
-0.135 

-0.011 
-0.054 
-0.078 
-0.092 

0.337 
0.294 
0.287 
0.287 

0.244 
0.231 
0.238 
0.245 

0.143 
O. 163 
O. 180 
O. 190 

-0.087 
-0. 135 
-0.152 
-0.159 

-0.037 
-0.084 
-0. 109 
-0. 122 

-0.003 
-0.037 
-0.061 
-0.077 

0.270 
O. 235 
O. 233 
0.232 

O. 162 
O. 169 
O. 182 
O. 190 

0.081 
O. 103 
O. 125 
O. 138 

-0.071 
-0.114 
-0.136 
-0.150 

-0.019 
-0.062 
-0.090 
-0.108 

-0.001 
-0.023 
-0.047 
-0.063 

0.212 
O. 189 
0.190 
O. 195 

O. 101 
0.120 
O. 137 
O. 150 

0.046 
0.067 
0.087 
O. 101 

TABLE 2 

Biases and 
and 5000 

RMSE of change point est imates based on model (4.2) 
rep I ications for differen t sample and jump si zes. 

n = 50 n = 100 n = 200 

Bias RMSE Bias RMSE Bias RMSE 

a= 0.5 
c= 1 -0.005 O. 117 -0.005 0.089 0.001 0.053 
c= 2 -0.019 O. 115 -0.021 0.090 -0.016 0.057 
c= 3 -0.024 O. 116 -0.026 0.091 -0.022 0.058 
c= 4 -0.026 O. 115 -0.029 0.092 -0.026 0.059 

«= 1 
c= 1 0.020 0.071 0.012 0.041 0.011 0.023 
c= 2 0.006 0.077 0.001 0.045 -0.000 0.025 
c= 3 0.001 0.080 -0.003 0.046 -0.005 0.026 
c= 4 -0.002 0.081 -0.006 0.047 -0.008 0.027 

«= 2 
c= 1 0.033 0.032 0.020 0.018 0.009 0.011 
c= 2 0.025 0.034 0.012 0.020 0.003 0.012 
c= 3 0.022 0.035 0.009 0.021 -0.001 0.013 
C= 4 0.020 0.036 0.007 0.021 -0.003 0.014 
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TABLE 3 

Point estimates and confidence intervals for the location of the 
break point ~f series of Nominal Wages (1900-1970). The bandwidth choice is 
h= C n-11 

p+S for C= 1,2,3, and 4. The 't estimates are in parenthesis. 
o 

Point estimate 957. Confidence Interval 

One Lag (p= 1) 

C= 1 1930 1929.57 to 1930.43 
(0.443) (0.436 to 0.489) 

C= 2 1930 1928.89 to 1931.10 
(0.443 ) (0.427 to 0.459) 

C= 3 1930 1928.49 to 1931.51 
(0.443) (0.421 to 0.464) 

C= 4 1931 1929.24 to 1932.75 
(0.457) (0.432 to 0.482) 

Two Lags (p= 2) 

C= 1 
1930 

(0.493) 
1929.65 to 1930.34 
(0.444 to 0.454) 

C= 2 1929 1928.01 to 1929.98 
(0.434) (0.420 to 0.449) 

C= 3 1930 1928.56 to 1931.43 
(0.449) (0.428 to 0.470) 

C= 4 1930 1928.25 to 1931.74 
(0.449) (0.424 to 0.474) 

Three Lags (p= 3) 
1929� 1928.76 to 1929.24 

C= 1 (0.441)� (0.437 to 0.445) 

1929 1928.14 to 1929.85 
C= 2 (0.441)� (0.428 to 0.454) 

1927.36 to 1930.66C= 3� 1929 
(0.441)� (0.417 to 0.466) 

1926.56 to 1931.43C= 4� 1929 
(0.441)� (0.405 to 0.477) 
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TABLE 4 

Point estimates and confidence intervals for the location of the 
break point of series of Common Stock Prices 0871-1970). The bandwidth 

lIlp Schoice is h= C n- + ) for C= 1,2,3, and 4. The 't estimates are in . 0 

parenthesis. 

Point estimate 957. Confidence Interval 

One Lag (p= 1) 
1915 1911. 87 to 1918 . 13

C= 1 (0.455)� (0.422 to 0.486) 

1915 1908.40 to 1921.60
C= 2 (0.455)� (0.388 to 0.521) 

C= 3� 1916 1904.51 to 1927.49 
(0.465) (0.348 to 0.580) 

C= 4 1916 1900.38 to 1931.62 
(0.465)� (0.306 to 0.622) 

Two Lags (p=� 2) 
1914 1910.82 to 1917.18

C= 1 (0.454)� (0 . 421 to O. 486) 

1914 1908.15 to 1919.85 
C= 2 (0.454)� (0.393 to 0.514) 

C= 3� 1915 1905.08 to 1924.92 
(0.464) (0.361 to 0.566) 

C= 4 1916 1902.12 to 1929.88 
(0.474)� (0 .331 to O. 617 ) 

Three Lags (p= 3) 
1922 1919.78 to 1924.22

C= 1 (0.536)� (0.513 to 0.558) 

1913 1906.83 to 1919.16
C= 2 (0.443)� (0.380 to 0.507) 

C= 3� 1915 1902.82 to 1927.18 
(0.464)� (O. 338 to O. 589) 

1915 1894.55 to 1935.45C= 4 
(0.464)� (O. 253 to O. 675 ) 
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TABLE 5 

Point estimates and confidence intervals for the location of the 
break point of series of Quarterly Real Gross Nati09~1 ~roduct 
0947: 1-1986: Ill). The bandwidth choice is h= C n-1 

p+5 for C= 1,2,3, and 
4. The 't'0 estimates are in parenthesis. 

Point estimate 957. Confidence Interval 

One Lag (p= 1) 
1965: IV 1965.90 to 1966.10 

C= 1 (0.475)� (0.472 to 0.477) 

1966: III 1966.61 to 1966.88 
C= 2 (0.490) (0.490 to 0.497) 

C= 3 1966: IV 1966.84 to 1967.16 
(0.500) (0.496 to 0.503) 

C= 4 1967: I 1967.07 to 1967.42 
(0.502)� (0.501 to 0.512) 

Two Lags (p= 2) 
1967: 11 1967.40 to 1967.60 

C= 1 (0.516)� (0.513 to 0.518) 

1966: III 1966.61 to 1966.89 
C= 2 (0.497) (0.493 to 0.500) 

C= 3 1966: III 1966.59 to 1966.91 
(0.497)� (0.493 to O. SOl) 

1966: IV 1966.81 to 1967.18C= 4 
(0.503)� (0.498 to 0.508) 

Three Lags (p= 3) 
1970:11 1970.43 to 1970.57 

C= 1 (0.603)� (0.600 to 0.604) 

1966:11 1966.36 to 1966.64 
C= 2 (0.500)� (0.496 to 0.504) 

C= 3� 1966: 11 1966.29 to 1966.71 
(0.500)� (0.495 to 0.505) 

1966: 11 1966.22 to 1966.77C= 4 
(0.500)� (0.493 to 0.507) 
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TABLE 6 

Point estimates and confidence intervals for the location of the 
break point of series of Rate of Growth of Quarterly Real Gr.0~~ National 
Product 0947:1-1986:11I). The bandwidth choice is h= C n-11 

P+ for C= 
1,2,3, and 4. The T estimates� are in parenthesis. 

Point estimate 957. Confidence Interval 

One Lag (p= 1) 

1967: IV 1963.05 to 1972.44
C= 1 (0.522)� (0.403 to 0.642) 

1967:1II 1962.12 to 1972.87
C= 2 (0.516) (0.379 to O. 653 ) 

C= 3 1967: 11 1961. 09 to 1973.40 
(0.509) (0.353 to 0.666) 

C= 4 1967: 11 1960.37 to 1974.12 
(0.509)� (0.334 to 0.684) 

Two Lags (p=� 2) 
1967:1II 1962.63 to 1972.36

C= 1 (0.519)� (O. 394 to O. 644 ) 

1967: 11 1961.50 to 1972.99
C= 2 (0.513) (0.365 to 0.660) 

C= 3 1967: 11 1960.61 to 1973.88 
(0.513) (0.342 to 0.683) 

C= 4 1967: 11 1959.80 to 1974.69 
(0.513)� (0.322 to 0.704) 

Three Lags (p= 3) 
1967: I 1963.47 to 1970.52

C= 1 (0.516) (O. 425 to O. 607 ) 

1966: IV 1960.78 to 1972.71
C= 2 (0.509)� (0.356 to 0.663) 

C= 3� 1966: IV 1958.27 to 1975.22 
(0.509) (0.291 to 0.728) 

C= 4 1966: IV 1955.76 to 1977.74 
(0.509)� (0 . 226 to O. 793) 
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Figure 1 

Jump Function for Nominal Wages (1 900-1970). 
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Figure 2� 

Jump Function for Common Stock Prices (1871 -1 970).� 
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Figure 3� 

Jum p Function for Quo rterly GNP (1 947: 1,1 986: Ill)� 
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Figure 4� 

Jump Function for Growth Rote in Quarterly GI\J P (1 947:1,1 986: Ill) 
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