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1. INTRODUCTION

1.1 Our motivation

In the last four decades, the general theory of orthogonal polynomials has ex-
perienced a dramatic expansion, particularly so in connection with its analytic
theory. An updated account in the sole direction of orthogonal polynomials
on the unit circle may be obtained from [74], [75]. Potential theory [73], [77],
Riemann-Hilbert analysis [17], operator theory [75], Riemann surfaces [61], [4],
and the theory of boundary values of analytic functions [2], [3], have come into
play, which together with the classical methods of real and complex analysis
have produced deep and far reaching results within the standard theory of or-
thogonal polynomials.

Some examples of such outstanding results are: the theorem on the ratio
asymptotics of orthogonal polynomials on the unit circle and a segment of the
real line [62]-[65], [55], [16], the extension of Szegő’s theory of orthogonal poly-
nomials [54], [49]-[51], [65], the asymptotic behavior of orthogonal polynomials
corresponding to general classes of measures supported on unbounded intervals
of the real line [64], [52], [53], [35], and with it the solution of the Freud conjec-
ture [44], and the 1/9 conjecture [28], the accurate description of the asymptotic
behavior of orthogonal polynomials on the support of the measure and the com-
plete asymptotic expansion of the orthogonal polynomials for special classes of
measures [47], [48].

All this has been accompanied by a substantial advancement in the study
of non standard models of orthogonality relations as in: orthogonal rational
functions [11], polynomials orthogonal with respect to varying measures [38]-
[40], [78], Sobolev orthogonal polynomials [46], [25], [42], matrix orthogonal
polynomials [19], [79], [76], discrete orthogonal polynomials [66], [18], [7], and
multiple orthogonal polynomials [60], [2], [3], [5].

This thesis is inscribed in the attempt of bringing new light to the analytic
theory of orthogonal polynomials understood in a wide sense. More precisely, we
will study several types of asymptotic properties of a certain class of multiple or-
thogonal polynomials. Such types of orthogonal polynomials are connected with
vector rational approximation [60], [57], [12], simultaneous quadrature formulas
[20], analytic number theory [59], [71], [80], and more recently in integrable sys-
tems, random matrix theory, and brownian motions of non-intersecting paths,
[34], [15], [33]. Before describing our results, let us briefly review the sources
which inspired our research.

Let f denote a formal power series at ∞. For each n ∈ Z+ (the set of all
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non negative integers) there exist polynomials Qn, Pn satisfying:

i) deg Pn ≤ n− 1,deg Qn ≤ n,Qn 6≡ 0,

ii) (Qnf − Pn)(z) = O(1/zn+1), z →∞.

The quotient πn = πn(f) = Pn/Qn is uniquely determined and is called the
n-th diagonal Padé approximant of f .

Let s denote a finite positive Borel measure with compact support supp(s)
contained in the real line consisting of an infinite number of points. By

ŝ(z) =
∫

ds(x)
z − x

we denote the Cauchy transform of the measure. Obviously, ŝ is holomorphic in
the region C \ supp(s) and we write ŝ ∈ H(C \ supp(s)). The smallest interval
which contains supp(s) will be denoted by ∆.

It is easy to verify that when f = ŝ then Qn is an n-th orthogonal poly-
nomial with respect to the measure s and Pn is the corresponding second type
polynomial; that is,

0 =
∫

xνQn(x)ds(x), ν = 0, . . . , n− 1,

and

Pn(z) =
∫

Qn(z)−Qn(x)
z − x

ds(x).

Consequently,

(Qnŝ− Pn)(z) =
∫

Qn(x)ds(x)
z − x

=
1

Qn(z)

∫
Q2

n(x)ds(x)
z − x

. (1.1)

In the sequel, we assume that Qn is monic; that is, has leading coefficient equal
to 1.

A classical result of A. A. Markov [45] may be restated as follows (originally
it was expressed in terms of continued fractions).

Theorem (A. A. Markov). For any measure s, the corresponding sequence
of diagonal Padé approximants {πn}, n ∈ Z+, converges to ŝ uniformly on each
compact subset contained in C \∆.

We denote this by

lim
n

πn = ŝ, K ⊂ C \∆. (1.2)

(Throughout the thesis we will use this notation to express uniform convergence
of different sequences of functions on compact subsets of the specified region.)

Using the maximum principle, it is not hard to deduce that convergence
takes place with geometric rate on the indicated region measured in terms of
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the Green function gΩ(z;∞) of the region Ω = C \ supp(s) with singularity at
∞. For a large class of measures this rate of convergence is exact.

We say that s is regular, and denote this by s ∈ Reg, when

lim
n
‖Qn‖1/n

2 = cap(supp(s)),

where cap(·) denotes the logarithmic capacity of the set (·) and ‖ ∗ ‖2 is the L2

norm with respect to s of the function ∗. See [77, Section 3.1] for different forms
of defining regular measures. Let qn = Qn/‖Qn‖2 denote the n-th orthonormal
polynomial with respect to s. The regularity of s is equivalent to

lim
n
|qn(z)|1/n = egΩ(z;∞), K ⊂ C \∆.

Formulas of this type receive the name of logarithmic or n-th root asymptotics.
On account of (1.1), and trivial upper and lower bounds for the second integral
expression in that formula, it follows that s ∈ Reg implies

lim
n
‖ŝ− πn(ŝ)‖1/2n

K = e−κ(K)(< 1) (1.3)

for every compact subset K ⊂ C\∆, where ‖ ·‖K denotes the uniform norm and

κ(K) = min{gΩ(z;∞) : z ∈ K}.

In [26, Theorem 1] (see also pages 570-571 in that reference), A. A. Gonchar
devised a way of proving an analogue of Markov’s theorem for functions of the
form

f(z) =
∫ p1(x)

q1(x) ds(x)

z − x
+

p2(z)
q2(z)

, f(∞) = 0, (1.4)

where (p1, q1) = 1 and (p2, q2) = 1 (that is, are relatively prime), the zeros of
p1, q1 and q2 lie in C \ ∆, and the measure s is such that the corresponding
sequence of orthogonal polynomials satisfies what is called ratio asymptotics.

In a series of two papers [62] and [63], E. A. Rakhmanov proved a theorem
on ratio asymptotics.

Theorem (E. A. Rakhmanov). Suppose that s′ > 0 almost everywhere with
respect to the Lebesgue measure on ∆, then

lim
n

Qn+1(z)
Qn(z)

=
ϕ(z)

ϕ′(∞)
, K ⊂ C \∆ (1.5)

uniformly on each compact subset of C \∆, where ϕ(z) denotes the conformal
representation of C\∆ onto {w : |w| > 1} such that ϕ(∞) = ∞ and ϕ′(∞) > 0.

This result produced great impression because of its theoretical interest
within the general theory of orthogonal polynomials and its applications to
the theory of rational approximation of analytic functions. Simplified proofs of
Rakhmanov’s theorem may be found in [65] and [55].
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A point z0 ∈ C is said to be a d attraction point of zeros of a sequence of
functions {gn}, n ∈ Λ ⊂ Z+, if for each sufficiently small ε > 0 there exists N
such that for all n ∈ Λ, n > N, the number of zeros (counting multiplicity) of
gn in {z : |z − z0| < ε} is d. A set E is an attractor of the zeros of {gn}, n ∈ Λ,
if for each ε > 0 there exists N0 such that n > N0, n ∈ Λ, implies that all the
zeros of gn lie in the ε neighborhood of E.

Taking into account E. A. Rakhmanov’s theorem, we can state Gonchar’s
result as follows.

Theorem (A. A. Gonchar). Let f be as in (1.4). Assume that s′ > 0 almost
everywhere with respect to the Lebesgue measure on ∆. Then

lim
n
‖f − πn(f)‖1/2n

K = e−κ(K)(< 1) (1.6)

on each compact subset K ⊂ C \ (∆ ∪ {z : f(z) = ∞}). If Qn denotes the

n-th monic orthogonal polynomial with respect to s and Q̃n is the denominator
of πn(f) normalized to be monic, we have that deg Q̃n = n for all sufficiently
large n, each zero aν of q2 of multiplicity dν is a dν attraction point of the
zeros of {Q̃n}, n ∈ Z+, and ∆ ∪ {z : q2(z) = 0} is an attractor of the zeros of

{Q̃n}, n ∈ Z+. If p1(z) = C
∏N1

k=1(z − βk), C 6= 0, q1(z) =
∏N2

k=1(z − αk), and

q2(z) =
∏N3

k=1(z − ak), then

lim
n

Q̃n(z)
Qn(z)

= Φ1(z)Φ2(z), (1.7)

where

Φ1(z) =
N1∏

k=1

ϕ(z)ϕ(βk)
ϕ(z)ϕ(βk)− 1

N2∏

k=1

ϕ(z)ϕ(αk)− 1
ϕ(z) ϕ(αk)

,

and

Φ2(z) =
N3∏

k=1

ϕ(ak)(ϕ(z)− ϕ(ak))
ϕ(z)ϕ(ak)− 1

.

The expression given here for the functions on the right hand side of (1.7)
are equivalent to those used in [26].

Formula (1.7) is of relative asymptotics. In its general form, relative asymp-
totics deals with the question of obtaining the limit limn Q̃n/Qn in terms of
g, ds̃ = gds, where Q̃n is the n-th monic orthogonal polynomial with respect
to the measure s̃ and Qn is the n-th monic orthogonal polynomial with respect
to the measure s. The aim is to extend Szegő’s theory to classes of measures
not satisfying Szegő’s condition. With this general purpose, the question was
probably first raised by P. Nevai in [54]. The problem was later considerably de-
veloped by Maté, Nevai, and Totik in [49]-[51] and independently by Rakhmanov
in [65], (see also [31], [32], and [75, Chapters 9 and 13]).

Rakhmanov’s theorem has been extended in several directions. Orthogonal
polynomials with respect to varying measures (depending on the degree of the
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polynomial) arise in the study of multipoint Padé approximation of Markov
functions. In this context, in [38] and [39], an analogue of Rakhmanov’s theo-
rem for such sequences of orthogonal polynomials was proved. Recently, S. A.
Denisov [16] (see also [56]) obtained a remarkable extension of Rakhmanov’s
result for the case when the support of s verifies supp(s) = ∆̃ ∪ e ⊂ R, where
∆̃ is a bounded interval, e is a set without accumulation points in R \ ∆̃, and
s′ > 0 a.e. on ∆̃. A version for orthogonal polynomials with respect to varying
Denisov type measures was given in [14].

In this thesis we obtain results on the logarithmic, ratio, and relative asymp-
totics of multiple orthogonal polynomials for Nikishin systems of measures. In
the following section we define such systems of measures and their corresponding
multiple orthogonal polynomials.

1.2 Nikishin systems, mixed multiple orthogonal polynomials,
and normality

The notion of a Nikishin system of measures was introduced by E.M. Nikishin
in [57]. He called them MT systems.

Let σα, σβ be two measures with constant sign and support contained in R.
Let ∆α, ∆β denote the smallest intervals containing their supports, supp(σα)
and supp(σβ), respectively. We write Co(supp(σα)) = ∆α. Assume that ∆α ∩
∆β = ∅ and define

d〈σα, σβ〉(x) :=
∫

dσβ(t)
x− t

dσα(x).

Therefore, 〈σα, σβ〉 is a measure with constant sign and support equal to that
of σα.

For a system of bounded intervals ∆0, . . . , ∆m contained in R satisfying
∆j ∩ ∆j+1 = ∅, j = 0, . . . , m − 1, and finite Borel measures σ0, . . . , σm with
constant sign in Co(supp(σj)) = ∆j , such that each one has infinitely many
points in its support, we define recursively

〈σ0, σ1, . . . , σj〉 = 〈σ0, 〈σ1, . . . , σj〉〉, j = 1, . . . , m.

This special notation was introduced by Gonchar, Rakhmanov, and Sorokin in
[29].

Definition 1.2.1. We say that (s0, . . . , sm) = N (σ0, . . . , σm), where

s0 = 〈σ0〉 = σ0, s1 = 〈σ0, σ1〉, . . . , sm = 〈σ0, . . . , σm〉,

is the Nikishin system of measures generated by (σ0, . . . , σm).

Throughout this thesis, the generating measures of the Nikishin systems
considered are understood to have constant sign, to be compactly supported on
the real line, the supports contain infinitely many points, and ∆j∩∆j+1 = ∅, j =
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0, . . . , m− 1,. We will not repeat this each time. The results of Chapter 2 may
be easily deduced when the support of the generating measures are unbounded
and have finite moments, but for the rest of the work compactness is an essential
assumption.

Notice that all the measures in a Nikishin system have the same support,
namely supp(σ0). We will denote (sj,j = σj)

sj,k = 〈σj , . . . , σk〉, 0 ≤ j ≤ k ≤ m.

For simplicity, in what follows we use the notation ŝj,k (instead of ŝj,k) to
indicate the Cauchy transform of sj,k.

Take two systems S1 = (s1
0, . . . , s

1
m1

) = N (σ1
0 , . . . , σ1

m1
), S2 = (s2

0, . . . , s
2
m2

) =
N (σ2

0 , . . . , σ2
m2

) generated by m1 + 1 and m2 + 1 measures, respectively. The
two systems need not coincide, but we will always assume that σ1

0 = σ2
0 ; that

is, both systems stem from the same basis measure. The smallest interval con-
taining supp(σi

j) will be denoted Co(supp(σi
j)) = ∆i

j .
Let Z+ denote the set of non-negative integers. Fix two multi-indices n1 =

(n1,0, n1,1, . . . , n1,m1) ∈ Zm1+1
+ and n2 = (n2,0, n2,1, . . . , n2,m2) ∈ Zm2+1

+ . Set
|n1| = n1,0 + · · ·+n1,m1 , |n2| = n2,0 + · · ·+n2,m2 , and n = (n1;n2). We always
assume that |n2|+ 1 = |n1|.

Let |n1| ≥ 1. The system of polynomials an,0, an,1, . . . , an,m1 satisfying

i) deg(an,j) ≤ n1,j − 1, j = 0, . . . , m1, not all identically equal to zero.

ii) For k = 0, . . . , m2 and ν = 0, . . . , n2,k − 1,

∫
xν

(
an,0(x) +

m1∑

j=1

an,j(x)ŝ1
1,j(x)

)
ds2

0,k(x) = 0, (1.8)

(deg(an,j) ≤ −1 means that an,j ≡ 0) is called a system of mixed type multiple
orthogonal polynomials associated to n = (n1;n2) and (S1, S2). In the context
of pairs of Nikishin systems, this concept was first introduced by V.N. Sorokin
in [70] (see also [69] for the general definition).

Finding an,0, . . . , an,m1 reduces to solving a homogeneous linear system of
|n2| equations on |n1| unknowns. Since |n2| = |n1| − 1, a non-trivial solution
is guaranteed. If we multiply all the polynomials giving a solution by the same
constant, the new set of polynomials also solves the problem. Nevertheless, it is
not a trivial fact to determine whether or not the class of all solutions is formed
by collinear polynomial vectors. In more general settings this is known to be
false. Recently, U. Fidalgo and G. López have claimed that the statement is
true for mixed multiple orthogonal polynomials of two Nikishin systems.

In the particular case m2 = 0, the polynomials (an,0, . . . , an,m1) are called
type I multiple orthogonal polynomials. If m1 = 0, an,0 is called a type II multiple
orthogonal polynomial. The case m1 = m2 = 0 reduces to the usual definition
of orthogonal polynomial.
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We remark that in [57] Nikishin obtained a generalization of the classical
Markov theorem for Nikishin systems consisting of two measures and multi-
indices with two equal components for type II approximants. Later, J. Busta-
mante and G. López extended in [12] the theorem to arbitrary Nikishin systems
and multi-indices whose components are “nearly” equal also in type II approxi-
mation. A substantial improvement, for quite general systems of multi-indices,
was produced in [24].

In [57], E.M. Nikishin introduced the following definition.

Definition 1.2.2. A set of real continuous functions u0(x), . . . , um(x) defined
on an interval ∆, is called an AT-system for n = (n0, . . . , nm) ∈ Zm+1

+ , if
for any polynomials P0, . . . , Pm such that deg(Pi) ≤ ni − 1, i = 0, . . . , m, not
simultaneously identically equal to zero, the function

P0(x) u0(x) + · · ·+ Pm(x)um(x),

has at most |n| − 1 zeros on ∆ (deg(Pj) ≤ −1 means that Pj ≡ 0).

We will consider several classes of multi-indices. Given an integer m ≥ 1,
we define

Zm
+ (•) = {n ∈ Zm

+ : n1 ≥ · · · ≥ nm}, (1.9)

Zm
+ (∗) = {n ∈ Zm

+ : 6 ∃ i < k < j such that ni < nj < nk}. (1.10)

More classes of multi-indices will be specified later. The following result was
obtained by U. Fidalgo, J. Illán, and G. López in [20], and will be applied several
times throughout the thesis.

Lemma 1.2.3. Let n ∈ Zm+1
+ (∗) and (s1, . . . , sm) = N (σ1, . . . , σm), then the

system of functions (1, ŝ1, . . . , ŝm) defines an AT-system for n = (n0, . . . , nm)
on any interval disjoint from Co(supp(σ1)).

We associate to the system of polynomials (an,0, . . . , an,m1) the following
functions (ŝ1

j+1,j(z) ≡ 1,An,m1 ≡ an,m1)

An,j(z) :=
m1∑

k=j

an,k(z)ŝ1
j+1,k(z), j = 0, . . . , m1, (1.11)

An,−j−1(z) :=
∫ An,−j(x)

z − x
dσ2

j (x), j = 0, . . . , m2, (1.12)

the latter being defined recursively. Notice that (1.8) indicates thatAn,0 satisfies
orthogonality conditions. We will show that in fact all the linear forms An,j ,
−m2 ≤ j ≤ m1, satisfy certain orthogonality conditions and we will describe
their logarithmic and ratio asymptotic properties.

For j = 0, . . . , m1, let Qn,j be the monic polynomial whose zeros are those of
the linear form An,j in the region C\∆1

j+1, counting multiplicities (∆1
m1+1 = ∅).

In particular, An,m1 = an,m1 = Qn,m1 . In the hypothetical case that An,j had
infinitely many zeros in the specified region, then Qn,j denotes a formal infinite
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product. In fact, on the basis of Lemma 1.2.3, in Proposition 2.1.5 we will show
that if n ∈ Zm1+1

+ (•)× Zm2+1
+ (•) then

deg Qn,j = N1,j = N1,j(n) = n1,j + · · ·+ n1,m1 − 1, j = 0, . . . , m1,

all the zeros of Qn,j are simple and lie in the interior of the interval ∆1
j .

Analogously, for j = 1, . . . , m2, we let Qn,−j be the monic polynomial whose
zeros are those of An,−j in the region C \∆2

j−1, counting multiplicities. We will
also prove in Proposition 2.1.7 that if n ∈ Zm1+1

+ (•)× Zm2+1
+ (•) then

deg Qn,−j = N2,j = N2,j(n) = n2,j + · · ·+ n2,m2 , j = 0, . . . ,m2,

all the zeros of Qn,−j are simple and lie in the interior of ∆2
j . In this thesis

we describe the logarithmic and ratio asymptotics of the polynomials Qn,j ,
j = −m2, . . . , m1.

A multi-index n = (n1;n2) is said to be normal if every solution to i)-ii)
satisfies deg an,j = n1,j −1, j = 0, . . . , m. If n is normal, it is easy to verify that
the vector (an,0, . . . , an,m1) is uniquely determined except for a constant factor,
and in that case we normalize it to be “monic” meaning by this that its last
entry different from zero has leading coefficient equal to 1.

1.3 Main results

The results of this thesis appear in three papers: Chapters 2 through 4 are con-
tained in [21], Chapter 5 corresponds to [37], and Chapter 6 develops the results
of [36]. They have been exposed at various international meetings on orthog-
onal polynomials and their applications, as for instance: OPSFA, Luminy’07;
Appopt, San Andres’08; and FoCM, Hong Kong’08. The methods employed are
inscribed in the theory of functions of a real and complex variable as developed
in [1] and [68], with elements of more advanced topics of logarithmic potential
theory [67], and compact Riemann surfaces [9].

Let us describe briefly our main contributions. We will specify more details
in the beginning of each chapter.

1.3.1 Logarithmic asymptotics

One of the main results in this thesis concerns the |n1|-root asymptotics of the
linear forms An,j , j = −m2 − 1, . . . ,m1, under mild conditions on the sequence
of multi-indices and the measures generating both Nikishin systems. We remind
the reader that a measure σ is said to be regular if

lim
n→∞

κ1/n
n = 1/cap(supp(σ)),

where cap(·) denotes the logarithmic capacity of the Borel set (·) (see [77] or
Section 3.1 for the definition of logarithmic capacity) and κn denotes the leading
coefficient of the n-th orthonormal polynomial with respect to σ. For different
equivalent forms of defining regular measures, see sections 3.1 to 3.3 in [77]
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(in particular Theorem 3.1.1). For short, we write (S1, S2) ∈ Reg to mean
that all the measures which generate both Nikishin systems are regular and
their supports are regular compact sets. Recall that a compact set K is said to
be regular with respect to the Dirichlet problem when the Green function with
singularity at infinity of the unbounded connected component of the complement
of K can be extended continuously to all C. Let us introduce some notation
and results from potential theory which we need to formulate our findings of
Chapter 3.

If E is a compact subset of the complex plane, we denote by M(E) the class
of all finite, positive, Borel measures with support consisting of an infinite set
of points contained in E, and M1(E) is the subclass of probability measures of
M(E).

Let Ek, k = −m2, . . . ,m1, be (not necessarily distinct) compact subsets of
the real line and C = (cj,k),−m2 ≤ j, k ≤ m1, a real, positive definite, symmetric
matrix of order m1 + m2 + 1. C will be called the interaction matrix. Set

M1 = M1(E−m2)× · · · ×M1(Em1) .

Given a vector measure µ = (µ−m2 , . . . , µm1) ∈M1 and j ∈ {−m2, . . . ,m1},
we define the combined potential

Wµ
j (x) =

m1∑

k=−m2

cj,kV µk(x) , (1.13)

where
V µk(x) =

∫
log

1
|x− t| dµk(t) ,

denotes the standard logarithmic potential of µk. We denote

ωµ
j = inf{Wµ

j (x) : x ∈ Ej} , j = −m2, . . . , m1 .

In [60, Chapter 5] the following important lemma is proved (we state the
result in a form convenient for our purpose).

Lemma 1.3.1. Assume that the compact sets Ek, k = −m2, . . . ,m1, are regular
with respect to the Dirichlet problem. Let C be a real, positive definite, symmetric
matrix of order m1 + m2 + 1. If there exists µ = (µ−m2

, . . . , µm1
) ∈ M1 such

that for each j = −m2, . . . , m1

Wµ
j (x) = ωµ

j , x ∈ supp(µj) ,

then µ is unique. Moreover, if cj,k ≥ 0 when Ej ∩ Ek 6= ∅, then µ exists.

For details on how this lemma is derived from [60, Chapter 5] see [10, Section
4]. The vector measure µ ∈M1 is called the equilibrium solution for the vector
potential problem determined by the interaction matrix C on the system of
compact sets Ej , j = −m2, . . . ,m1 .
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Let Λ = Λ(p1,0, . . . , p1,m1 ; p2,0, . . . , p2,m2) ⊂ Zm1+1
+ (•) × Zm2+1

+ (•) be an
infinite sequence of distinct multi-indices such that

lim
n∈Λ

n1,j

|n1| = p1,j ∈ (0, 1), j = 0, . . . ,m1, lim
n∈Λ

n2,j

|n1| = p2,j ∈ (0, 1), j = 0, . . . , m2.

Obviously, p1,0 ≥ · · · ≥ p1,m1 , p2,0 ≥ · · · ≥ p2,m2 , and
∑m1

j=0 p1,j =
∑m2

j=0 p2,j =
1. Set

Pj =
m1∑

k=j

p1,k, j = 0, . . . ,m1, P−j =
m2∑

k=j

p2,k, j = 0, . . . ,m2.

Let us define the interaction matrix C which is relevant in this thesis. Take
the tri-diagonal matrix

C =




P 2
−m2

−P−m2P−m2+1

2 0 · · · 0
−P−m2P−m2+1

2 P 2
−m2+1 −P−m2+1P−m2+2

2 · · · 0
0 −P−m2+1P−m2+2

2 P 2
−m2+2 · · · 0

...
...

...
. . .

...
0 0 0 · · · P 2

m1




.

(1.14)
This matrix satisfies all the assumptions of Lemma 1.3.1 on the compact sets
Ej = supp(σ1

j ), j = 0, 1, . . . , m1, Ej = supp(σ2
−j), j = 0,−1, . . . ,−m2, including

cj,k ≥ 0 when Ej ∩ Ek 6= ∅ (recall that σ1
0 = σ2

0), and it is positive definite
because the principal section Cr, r = 1, . . . , m1 + m2 + 1, of C satisfies

det(Cr) = P 2
−m2

· · ·P 2
−m2+r−1 det




1 − 1
2 0 · · · 0 0

− 1
2 1 − 1

2 · · · 0 0
0 − 1

2 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 − 1

2
0 0 0 · · · − 1

2 1




r×r

> 0.

Let µ(C) be the equilibrium solution for the corresponding vector potential
problem.

Let {µl} ⊂ M(E) be a sequence of positive measures and µ ∈ M(E). We
write

∗ lim
l

µl = µ ,

if for every continuous function f ∈ C(E)

lim
l

∫
fdµl =

∫
fdµ ;

that is, when the sequence of measures converges to µ in the weak star topology.
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Given a polynomial ql of degree l ≥ 1, we denote the associated normalized
zero counting measure by

µql
=

1
l

∑

ql(x)=0

δx ,

where δx is the Dirac measure with mass 1 at x (in the sum the zeros are
repeated according to their multiplicity).

Frequently we will make use of the following renumbering of intervals and
measures

∆j = ∆1
j , σj = σ1

j , j = 0, 1, . . . , m1,

∆j = ∆2
−j , σj = σ2

−j , j = 0,−1, . . . ,−m2,

and

Nn,j =





N1,j(n)− 1, j = 0, 1 . . . ,m1,

N2,−j(n), j = 0,−1, . . . ,−m2.

We have

Theorem 1.3.2. Let S1 = N (σ1
0 , . . . , σ1

m1
), S2 = N (σ2

0 , . . . , σ2
m2

), (S1, S2) ∈
Reg, and Λ = Λ(p1,0, . . . , p1,m1 ; p2,0, . . . , p2,m2) ⊂ Zm1+1

+ (•) × Zm2+1
+ (•), be

given. Then
∗ lim

n∈Λ
µQn,j = µj , j = −m2, . . . , m1, (1.15)

where µ = µ(C) ∈M1 is the vector equilibrium measure determined by the ma-
trix C in (1.14) on the system of compact sets Ej = supp(σ1

j ), j = 0, . . . ,m1, Ej =
supp(σ2

−j), j = −m2, . . . , 0. Moreover,

lim
n∈Λ

(∫
Q2

n,j(x)
|Qn,j−1(x)|

|An,j(x)|
|Qn,j(x)|d|σj |(x)

)1/2|n1|

= exp


−

m1∑

k=j

ωµ
k /Pk


 , (1.16)

where the ωµ
k denote the corresponding equilibrium constants.

The previous result is demonstrated in Section 3.2. Concerning the logarith-
mic asymptotics of the functions An,j , in Section 3.3 we obtain

Theorem 1.3.3. Let S1 = N (σ1
0 , . . . , σ1

m1
), S2 = N (σ2

0 , . . . , σ2
m2

), (S1, S2) ∈
Reg, and Λ = Λ(p1,0, . . . , p1,m1 ; p2,0, . . . , p2,m2) ⊂ Zm1+1

+ (•) × Zm2+1
+ (•), be

given. Let {An,j},n ∈ Λ, j = −m2−1, . . . , m1, be the sequences of “monic” lin-
ear forms associated with the corresponding mixed type orthogonal polynomials.
Then, for each j = −m2 − 1, . . . , m1

lim
n∈Λ

|An,j(z)|1/|n1| = Gj(z), K ⊂ C \ (∆j ∪∆j+1) (1.17)

(∆−m2−1 = ∆m1+1 = ∅), where

Gj(z) = exp


Pj+1V

µj+1(z)− PjV
µj (z)− 2

m1∑

k=j+1

ωµ
k

Pk


 , (1.18)
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(P−m2−1 = Pm1+1 = 0) when j = −m2 − 1, . . . ,m1 − 1, and

Gm1(z) = exp
(−Pm1V

µm1 (z)
)
. (1.19)

µ = µ(C) = (µ−m2
, . . . , µm1

) and (ωµ
−m2

, . . . , ωµ
m1

) are the equilibrium vector
measures and the system of equilibrium constants, respectively, for the vec-
tor potential problem determined by the interaction matrix C defined in (1.14)
on the system of regular compact sets Ej = supp(σ1

j ), j = 0, . . . , m1, Ej =
supp(σ2

−j), j = −m2, . . . , 0.

In [58], E. M. Nikishin proved a similar result for type I multiple orthogonal
polynomials (m2 = 0) and in Section 5.7 of [60] (see also [43]) the analogue
for type II multiple orthogonal polynomials (m1 = 0) is stated. V. N. Sorokin
considered the mixed case in [70] where he stated the result in general but
proved it only when m1 = m2 = 1. In these papers a stronger assumption is
made on the generating measures. Namely, it is required that |σ′k| > 0, a.e. on
∆i

k, k = 0, . . . ,mi, i = 1, 2. (As usual, by σ′ we denote the Radon–Nikodym
derivative of the measure σ.) We preserve this more restrictive hypothesis for
the stronger Theorem 1.3.4. Weakening the hypothesis to class Reg is made
possible using finer results from potential theory.

Regarding [70] we wish to point out the following. We arrived at the con-
struction of mixed multiple orthogonal polynomials with respect to two Nikishin
systems and the results in Chapters 2 to 4 without any knowledge of the exis-
tence of [70]. In a last attempt to update the references in [21] before submitting
the paper, we discovered [69] and [70] and asked V. N. Sorokin to join the rest
of us as co-author in due recognition for his contributions to the subject and he
kindly accepted.

1.3.2 Ratio asymptotics

For the next result, we assume that supp(σi
j) = ∆̃i

j ∪ ei
j , j = 0, . . . ,mi, i = 1, 2,

where ∆̃j = [ai
j , b

i
j ] is a bounded interval of the real line, |(σi

j)
′| > 0 a.e. on ∆̃i

j ,
and ei

j is a set without accumulation points in R \ ∆̃i
j . We denote this writing

S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

).
We need to introduce a Riemann surface that arises in the analysis of the

ratio asymptotics of the family of polynomials {Qn,j}m1
j=−m2

. Let us renumber
the intervals ∆̃i

j as follows

∆̃j =

{
∆̃1

j , j = 0, . . . ,m1,

∆̃2
j , j = −m2, . . . , 0.

Consider the (m1 + m2 + 2)-sheeted Riemann surface

R =
m1⋃

k=−m2−1

Rk ,
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formed by the consecutively “glued” sheets

R−m2−1 := C \ ∆̃−m2 , Rk := C \ (∆̃k ∪ ∆̃k+1), k = −m2, . . . , m1 − 1,

Rm1 := C \ ∆̃m1 ,

where the upper and lower banks of the slits of two neighboring sheets are
identified. It is easy to see that the surface R is orientable, compact, and has
genus zero, the latter meaning that it is homeomorphic to the Riemann sphere.

Fix l = (l1, l2), 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2. Let ψ(l) be a single valued
function defined on R onto the extended complex plane satisfying

ψ(l)(z) =
C1

z
+O

( 1
z2

)
, z →∞(−l2−1),

ψ(l)(z) = C2 z +O(1), z →∞(l1),

where C1 and C2 are nonzero constants. Since the genus of R is zero, ψ(l)

exists and is uniquely determined up to a multiplicative constant. Consider the
branches of ψ(l), corresponding to the different sheets k = −m2 − 1, . . . , m1 of
the surface R

ψ(l) := {ψ(l)
k }m1

k=−m2−1 .

We normalize ψ(l) so that

m1∏

k=−m2−1

|ψ(l)
k (∞)| = 1, C1 ∈ R \ {0}. (1.20)

In fact there are only two ψ(l) verifying this normalization. To see this, assume
that φ : R −→ C is a single valued function satisfying

φ(z) =
D1

z
+O

(
1
z2

)
, z →∞(−l2−1),

φ(z) = D2 z +O(1), z →∞(l1),

where D1 and D2 are nonzero constants, and φ also satisfies (1.20). The func-
tions φ and ψ(l) have the same divisor; consequently, there exists a constant C
such that φ = C ψ(l). This implies that D1 = C C1 and C ∈ R. From

1 =
m1∏

k=−m2−1

|φk(∞)| =
m1∏

k=−m2−1

|C ψ
(l)
k (∞)| = |C|m1+m2+1

it follows that C = ±1.
Since the product of all the branches

∏m1
k=−m2−1 ψ

(l)
k is a single valued ana-

lytic function in C without singularities, by Liouville’s theorem we know that∏m1
k=−m2−1 ψ

(l)
k is constant and because of the normalization (1.20) this constant

is either 1 or −1.
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The fact that C1 ∈ R \ {0} implies in particular that

ψ(l)(z) = ψ(l)(z), z ∈ R.

To justify this, let φ(z) := ψ(l)(z). φ and ψ(l) have the same divisor and
therefore there exists a constant C such that φ = C ψ(l). Comparing the leading
coefficients of the Laurent expansion of these functions at∞(−l2−1), we conclude
that C = 1 since C1 ∈ R \ {0}.

In terms of the branches of ψ(l), the symmetry formula above means that
for each k = −m2 − 1, . . . ,m1,

ψ
(l)
k : R \ (∆̃k ∪ ∆̃k+1) −→ R

(∆̃−m2−1 = ∆̃m1+1 = ∅); therefore, the coefficients (in particular, the leading
one) of the Laurent expansion at ∞ of these branches are real numbers, and

ψ
(l)
k (x±) = ψ

(l)
k (x∓) = ψ

(l)
k+1(x±), x ∈ ∆̃k+1. (1.21)

Given an arbitrary function F (z) which has in a neighborhood of infinity
a Laurent expansion of the form F (z) = Czk + O(zk−1), z → ∞, C 6= 0, and
k ∈ Z, we denote

F̃ := F/C .

C is called the leading coefficient of F . When C ∈ R, sg(F (∞)) will represent
the sign of C.

Given n = (n1;n2) and l = (l1, l2), we associate a new multi-index nl :=
(n1+el1 ;n2+el2) = (nl1

1 ;nl2
2 ), where eli denotes the unit vector of length mi+1

with all components equal to zero except the component (li + 1) which equals
1.

We are ready to state the main result of Chapter 4.

Theorem 1.3.4. Let S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

) be given,
and let n ∈ Λ ⊂ Zm1+1

+ (•)× Zm2+1
+ (•) be an infinite sequence of distinct multi-

indices such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞, sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞.

Let us assume that there exists l = (l1; l2), 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, such that
for all n ∈ Λ we have that nl ∈ Zm1+1

+ (•)×Zm2+1
+ (•). Let {Qn,j}m1

j=−m2
, n ∈ Λ,

be the corresponding sequences of polynomials defined in Section 1.2. Then, for
each fixed j ∈ {−m2, . . . , m1}, we have

lim
n∈Λ

Qnl,j(z)
Qn,j(z)

= F̃
(l)
j (z), z ∈ K ⊂ C \ supp(σj) (1.22)

where

F
(l)
j := sg




m1∏

k=j

ψ
(l)
k (∞)




m1∏

k=j

ψ
(l)
k . (1.23)
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An interesting feature is that the functions F
(l)
j are completely determined

by the system of boundary conditions (4.14) (see Lemma 4.4.2 in Section 4.4
and the proof of Theorem 1.3.4 in Section 4.5). When m1 = m2 = 0, this result
reduces to the Denisov–Rakhmanov Theorem.

For type II multiple orthogonal polynomials (m1 = 0) and measures such
that |σ′k| > 0 on the whole interval ∆k, k = −m2, . . . , 0, this result was estab-
lished in [5]. Later (also for type II multiple orthogonal polynomials), in [36]
we improved the result to measures of Denisov type and more general classes
of multi-indices than those considered here. The treatment of more general
sequences of multi-indices introduces substantial technical difficulties. For this
reason, we revisit ratio asymptotic for type II multiple orthogonal polynomials
separately in Chapter 6. There we prove Theorem 6.5.2, which is an analogue
of Theorem 1.3.4. The present result is already new when m2 = 0 and m1 ≥ 2
since ratio asymptotics had not been proved before for liner forms (except the
one that gives the remainder of Padé approximation).

Chapter 4 also contains results on the ratio asymptotic of the forms and the
second type functions defined by them.

1.3.3 Relative asymptotics

In Chapters 5 and 6, we focus on type II multiple orthogonal polynomials. Now,
the construction of the multiple orthogonal polynomials depends of only one
Nikishin system so we drop the supra index on the generating and generated
measures. Since we have no need to match systems at an initial measure as
we did before (σ1

0 = σ2
0), the basis measure will be σ1, following the notation

employed in [36] and [37].
Given the collection of polynomials (p1, . . . , pm), we define

Zm
+ (~; p1, . . . , pm) = {n ∈ Zm

+ : j < k ⇒ nk + deg(pj+1 · · · pk) ≤ nj + 1} .

In particular,

Zm
+ (~) = {n ∈ Zm

+ : j < k ⇒ nk ≤ nj + 1} .

Recall that a point z0 ∈ C is said to be a d attraction point of zeros of a
sequence of functions {ϕn},n ∈ Λ ⊂ Zm

+ , if for each sufficiently small ε > 0
there exists N such that for all n ∈ Λ, |n| > N, the number of zeros (counting
multiplicity) of ϕn in {z : |z− z0| < ε} is d. A set E is an attractor of the zeros
of {ϕn},n ∈ Λ, if for each ε > 0 there exists N0 such that |n| > N0,n ∈ Λ,
implies that all the zeros of ϕn lie in the ε neighborhood of E. In Section 5.4,
we prove

Theorem 1.3.5. Let S = N ′(σ1, . . . , σm). Consider the perturbed Nikishin
system N (p1

q1
σ1, . . . ,

pm

qm
σm), where pk, qk denote relatively prime polynomials

whose zeros lie in C \ ∪m
k=1∆k. Let Λ ⊂ Zm

+ (~; p1q1, . . . , pmqm) be a sequence
of distinct multi-indices such that for all n ∈ Λ, n1 − nm ≤ C, where C is
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a constant. Let Q̃n be the monic multiple orthogonal polynomial of smallest
degree relative to the Nikishin system N (p1

q1
σ1, . . . ,

pm

qm
σm) and n. Then

lim
n∈Λ

Q̃n(z)
Qn(z)

=
F(z; p1, . . . , pm)
F(z; q1, . . . , qm)

, K ⊂ C \ supp(σ1) . (1.24)

For all sufficiently large |n|,n ∈ Λ, deg Q̃n = |n|, supp(σ1) is an attractor of
the zeros of {Q̃n},n ∈ Λ, and each point in supp(σ1)\∆̃1 is a 1 attraction point
of zeros of {Q̃n},n ∈ Λ. When the polynomials pk, qk, k = 1, . . . ,m, have real
coefficients, the statements remain valid for Λ ⊂ Zm

+ (~).

An expression for F(z; p1, . . . , pm) is given in (5.43) at the end of the proof of
Theorem 1.3.5 in Section 5.4. Formula (1.24) reduces to (1.7) when m1 = m2 =
0 and p2 ≡ 0. Relative asymptotics of type II multiple orthogonal polynomials
of Nikishin systems had not been considered before. In Chapter 5 we also
obtain the relative asymptotic behavior of the second type functions associated
with the two Nikishin systems (the initial and perturbed ones). When the
polynomials pk, qk, k = 1, . . . ,m, have real coefficients an analogue of Theorem
1.3.5 is obtained in Section 5.6 for sequences of the form {Q̃n,j/Qn,j}n∈Λ.



2. PRELIMINARY RESULTS

In this chapter, we prove a number of results which are later applied to derive
the main asymptotic properties of the multiple orthogonal polynomials studied
in this thesis. Section 2.1 describes the orthogonality relations satisfied by the
linear forms An,j defined through (1.11)-(1.12), as well as the location of their
zeros (Propositions 2.1.5, 2.1.6 and 2.1.7). Here, it is also proved that all the
multi-indices belonging to the class Zm1+1

+ (•)× Zm2+1
+ (•) are normal (Proposi-

tion 2.1.2). Section 2.2 is devoted to the deduction of interlacing properties of
the zeros of the functions An,j ,−m2 ≤ j ≤ m1, (see Theorem 2.2.5).

2.1 Orthogonality properties of the functions An,j and their zeros

Recall the notation Co(supp(σi
j)) = ∆i

j . We start this section by proving the
following result.

Lemma 2.1.1. Let n ∈ Zm1+1
+ (•) × Zm2+1

+ (•), S1 = N (σ1
0 , . . . , σ1

m1
), and

S2 = N (σ2
0 , . . . , σ2

m2
), be given. Then we have:

a) For each j = 0, . . . ,m1, the linear form An,j has at most N1,j − 1 zeros
on any interval disjoint from ∆1

j+1 (∆1
m1+1 = ∅), where

N1,j = N1,j(n) = n1,j + · · ·+ n1,m1 . (2.1)

b) An,0 has at least |n1| − 1 = |n2| sign changes on the interval ∆1
0 = ∆2

0.

Proof. For each j = 0, . . . , m1 − 1, we have that

(s1
j+1,j+1, . . . , s

1
j+1,m1

) = N (σ1
j+1, . . . , σ

1
m1

).

Since n1 = (n1,0, . . . , n1,m1) ∈ Zm1+1
+ (•) ⊂ Zm1+1

+ (∗), applying Lemma 1.2.3
it follows that (1, ŝ1

j+1,j+1, . . . , ŝ
1
j+1,m1

) forms an AT-system with respect to
(n1,j , . . . , n1,m1) on any interval disjoint from ∆1

j+1. Therefore

An,j(x) = an,j(x) + an,j+1(x)ŝ1
j+1,j+1(x) + · · ·+ an,m1(x)ŝ1

j+1,m1
(x)

has at most N1,j − 1 zeros on any such interval. Obviously, the same is true for
the polynomial An,m1 ≡ an,m1 . This proves a).

Notice that ds2
0,k(x) = ŝ2

1,k(x) dσ2
0(x). On the other hand, we can replace xν

by any polynomial of degree ≤ n2,k − 1 inside the integral in (1.8). Set

Bn2(z) =
m2∑

k=0

bn2,k(z)ŝ2
1,k(z), deg bn2,k ≤ n2,k − 1, k = 0, . . . ,m2,
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(ŝ2
1,0(z) ≡ 1). Then (1.8) is equivalent to

∫
Bn2(x)An,0(x) dσ2

0(x) = 0, (2.2)

for all Bn2 as indicated.
Suppose that An,0 has N < |n1| − 1 = |n2| sign changes on the interval ∆2

0.
Choose polynomials bn2,k conveniently so that Bn2 changes sign exactly at those
points where An,0 changes sign on ∆2

0 and has a zero of order |n2| − 1 −N at
one of the extreme points of ∆1

0 = ∆2
0. By Lemma 1.2.3, the linear form Bn2

has on ∆2
0 at most |n2| − 1 zeros, thus it can only have those zeros which we

have assigned to it. The continuous function Bn2An,0 has constant sign on ∆2
0.

This contradicts (2.2). ¤
We have proved that An,0 has |n1| − 1 zeros with odd multiplicity in the

interior of ∆2
0 = ∆1

0. In short, we shall see that An,0 has no other zeros in C\∆1
1

and that they are all simple. Before proving this, let us turn to the question of
normality.

Proposition 2.1.2. Let n ∈ Zm1+1
+ (•)×Zm2+1

+ (•), S1 = N (σ1
0 , . . . , σ1

m1
), and

S2 = N (σ2
0 , . . . , σ2

m2
), be given. Then, n is normal and (an,0, . . . , an,m1) is

uniquely determined except for a constant factor.

Proof. Assume that there exists j ∈ {0, . . . ,m1} such that deg an,j ≤ n1,j − 2.
Then n1− ej ∈ Zm1+1

+ (∗), where ej denotes the m1 +1 dimensional unit vector
with all components equal to zero except the component j + 1 which equals
1. According to Lemma 1.2.3 applied to n1 − ej , the linear form An,0 has at
most |n1| − 2 zeros on ∆1

0, but from Lemma 2.1.1, we know that An,0 has at
least |n1|−1 sign changes on this interval. This contradiction yields that for all
j ∈ {0, . . . ,m1}, deg an,j = n1,j − 1, which implies normality.

Now, let us assume that (an,0, . . . , an,m1) and (a∗n,0, . . . , a
∗
n,m1

) solve i)-ii)
and these vectors are not collinear. According to what we just proved, for all
j ∈ {0, . . . , m1}, deg an,j = deg a∗n,j = n1,j − 1. Take λ ∈ C \ {0} such that
deg(an,0 − λ a∗n,0) ≤ n1,0 − 2. The vector (an,0 − λ a∗n,0, . . . , an,m1 − λa∗n,m1

) is
not identically equal to zero and also solves i)-ii). This is not possible since all
non-trivial solutions must have all components of maximal degree. ¤

Proposition 2.1.2 allows us to determine the “monic” (an,0, an,1, . . . , an,m1)
uniquely and we impose this normalization. The next lemma will be used on
several occasions.

Lemma 2.1.3. Let sk, k = 1, . . . , m, be finite signed Borel measures such that
Co(supp(sk)) = ∆ ⊂ R. Let F (z) = f0(z) +

∑m
k=1 fk(z)ŝk(z) ∈ H(C \ ∆),

where fk ∈ H(V ), k = 0, . . . , m, and V is a neighborhood of ∆. If F (z) =
O(1/z2), z →∞, then

m∑

k=1

∫
fk(x) dsk(x) = 0 (2.3)
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and F (z) = O(1/z), z →∞, implies that

F (z) =
m∑

k=1

∫
fk(x) dsk(x)

z − x
. (2.4)

Proof. Let Γ ⊂ V be a closed smooth Jordan curve that surrounds ∆. If F (z) =
O(1/z2), z → ∞, from Cauchy’s theorem, Fubini’s theorem and Cauchy’s inte-
gral formula, it follows that

0 =
∫

Γ

F (z) dz =
m∑

k=1

∫

Γ

fk(z) ŝk(z) dz

=
m∑

k=1

∫ ∫

Γ

fk(z) dz

z − x
dsk(x) = 2πi

m∑

k=1

∫
fk(x) dsk(x),

and we obtain (2.3). On the other hand, if F (z) = O(1/z), z → ∞, and we
assume that z is in the unbounded connected component of the complement of
Γ, Cauchy’s integral formula and Fubini’s theorem render

F (z) =
1

2πi

∫

Γ

F (ζ) dζ

z − ζ
=

1
2πi

m∑

k=1

∫

Γ

fk(ζ) ŝk(ζ) dζ

z − ζ
=

m∑

k=1

∫
1

2πi

∫

Γ

fk(ζ) dζ

(z − ζ)(ζ − x)
dsk(x) =

m∑

k=1

∫
fk(x) dsk(x)

z − x

which is (2.4). ¤

Remark 2.1.4. If we assume that n ∈ Zm1+1
+ (•) × Zm2+1

+ (•) and n1,m1 ≥ 1,
then by Proposition 2.1.2 we know that all the polynomials an,j, j = 0, . . . , m1,
are nonzero. Therefore ∞ is not a zero of any of the linear forms An,j, j =
0, . . . , m1. Though it is not the case, in principle, some of these linear forms
may have an infinite number of zeros which accumulate on the boundary of the
corresponding region of meromorphy.

Recall that for j ∈ {0, . . . , m1}, Qn,j denotes the monic polynomial whose
zeros are those of the linear form An,j in the region C \∆1

j+1, counting multi-
plicities (∆1

m1+1 = ∅), and in the case that An,j had infinitely many zeros then
Qn,j denotes a formal infinite product. The next proposition is adapted from
[43].

Proposition 2.1.5. Let n ∈ Zm1+1
+ (•) × Zm2+1

+ (•) be a multi-index such that
n1,m1 ≥ 1, and let S1 = N (σ1

0 , . . . , σ1
m1

), S2 = N (σ2
0 , . . . , σ2

m2
) be given (recall

that σ1
0 = σ2

0). Then, deg Qn,j = N1,j − 1, j = 0, 1 . . . ,m1, where N1,j is given
by (2.1), and all the zeros of Qn,j are simple and lie in the interior of ∆1

j . If I
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denotes the closure of a connected component of ∆1
j \ supp(σ1

j ), then Qn,j has
at most one zero in I. Moreover,
∫

xνAn,j(x)
dσ1

j (x)
Qn,j−1(x)

= 0, ν = 0, . . . , N1,j − 2, j = 1, . . . ,m1, (2.5)

and for any polynomial q, deg q ≤ N1,j+1 − 1,

q(z)An,j(z)
Qn,j(z)

=
∫

q(x)An,j+1(x)
Qn,j(x)

dσ1
j+1(x)
z − x

, j = 0, . . . ,m1 − 1. (2.6)

Proof. Using induction on j, we will prove simultaneously the general statement
concerning the zeros and (2.5). Then, we prove that on any interval I there is
at most one zero of Qn,j . Finally, we obtain (2.6). For j = 0, we already know
by Lemma 2.1.1 that An,0 has N1,0−1 = |n1|−1 sign changes in the interior of
∆1

0 = ∆2
0. Therefore, deg Qn,0 ≥ N1,0 − 1. If deg Qn,0 = N1,0 − 1 we conclude

with the initial step.
Suppose that deg Qn,0 ≥ N1,0 (including the possible case that deg Qn,0 =

∞). It is easy to see that An,0(z) = An,0(z), so the zeros of Qn,0 come in
conjugate pairs. Therefore, we can choose N1,0 (or N1,0 + 1 if necessary) zeros
of Qn,0 in such a way that the monic polynomial Q∗n,0 with this set of zeros has
constant sign on ∆1

1 (∆1
1 ∩∆1

0 = ∅). Notice that

An,0

Q∗
n,0

∈ H(C \∆1
1)

is analytic in the indicated region and

zνAn,0

Q∗n,0

= O
(

1
z2

)
, z →∞, ν = 0, . . . , N1,1 − 1.

From (2.3), we get

0 =
∫

xνAn,1(x)
dσ1

1(x)
Q∗

n,0(x)
, ν = 0, . . . , N1,1 − 1.

This implies that An,1 has at least N1,1 zeros on ∆1
1. According to Lemma 2.1.1

this linear form can only have N1,1−1 zeros on this interval. Consequently, our
initial assumption is false and deg Qn,0 = N1,0 − 1.

Suppose that we have proved that for some j ∈ {0, . . . , m1 − 1}, deg Qn,j =
N1,j − 1, all its zeros are simple and lie in the interior of ∆1

j . Let us show that
then, (2.5) and the statement concerning the zeros are valid for j + 1.

Indeed, the induction hypothesis implies that

An,j

Qn,j
∈ H(C \∆1

j+1),
zνAn,j

Qn,j
= O

(
1
z2

)
, z →∞, ν = 0, . . . , N1,j+1 − 2.

From (2.3), it follows that

0 =
∫

xνAn,j+1(x)
dσ1

j+1(x)
Qn,j(x)

, ν = 0, . . . , N1,j+1 − 2.
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We have obtained (2.5) for j + 1.
Formula (2.5) for j + 1 implies that Qn,j+1 has at least N1,j+1 − 1 sign

changes in the interior of ∆1
j+1. If deg Qn,j+1 = N1,j+1 − 1, we have finished

the proof (for example, this is the case when j + 1 = m1 because An,m1 ≡
an,m1). Let us suppose that deg Qn,j+1 ≥ N1,j+1 (including the possible case
that deg Qn,j+1 = ∞, and of course j ≤ m1 − 2). Since An,j+1(z) = An,j+1(z),
we can choose N1,j+1 (or N1,j+1 + 1 if necessary) zeros of Qn,j+1 so that the
monic polynomial Q∗n,j+1 with this set of zeros has constant sign on ∆1

j+2. Then

An,j+1

Q∗n,j+1

∈ H(C \∆1
j+2),

zνAn,j+1

Q∗
n,j+1

= O
(

1
z2

)
, z →∞, ν = 0, . . . , N1,j+2 − 1.

Using (2.3), it follows that

0 =
∫

xνAn,j+2(x)
dσ1

j+2(x)
Q∗n,j+1(x)

, ν = 0, . . . , N1,j+2 − 1.

This implies thatAn,j+2 has at least N1,j+2 zeros on ∆1
j+2. According to Lemma

2.1.1 this linear form can only have N1,j+2−1 zeros on this interval. This implies
that our initial assumption is false; therefore, deg Qn,j+1 = N1,j+1−1 as stated.

Suppose that the interval I contains two zeros x1, x2 of Qn,j ; that is, of An,j .
According to (2.5)

∫
xν An,j(x)

(x− x1)(x− x2)
(x− x1)(x− x2) dσ1

j (x)
Qn,j−1(x)

= 0, ν = 0, . . . , N1,j − 2.

The function An,j(x)/(x− x1)(x− x2) has N1,j − 3 sign changes on supp(σ1
j ),

but notice that the measure (x− x1)(x− x2) dσ1
j (x)/Qn,j−1(x) has constant

sign on supp(σ1
j ). This is impossible because of the number of orthogonality

relations.
Formula (2.6) follows from (2.4) since for any polynomial q such that deg q ≤

N1,j+1 − 1, we have

qAn,j

Qn,j
∈ H(C \∆1

j+1),
qAn,j

Qn,j
= O

(
1
z

)
, z →∞.

With this we conclude the proof. ¤
Now we turn to the analysis of the orthogonality relations satisfied by the

linear forms An,−j , j = 0, . . . , m2. We start with the following result.

Proposition 2.1.6. Let n ∈ Zm1+1
+ (•) × Zm2+1

+ (•) be a multi-index such that
n1,m1 ≥ 1, and let S1 = N (σ1

0 , . . . , σ1
m1

) and S2 = N (σ2
0 , . . . , σ2

m2
) be given.

Then, for each j = 0, . . . ,m2

∫
xνAn,−j(x) ds2

j,k(x) = 0, k = j, . . . , m2, ν = 0, . . . , n2,k − 1. (2.7)
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Proof. When j = 0 the statement reduces to the relations ii) which define
An,0. If m2 = 0 we are done. Therefore, let us assume that m2 ≥ 1, that (2.7)
holds for some j ∈ {0, . . . , m2 − 1}, and prove that it is also satisfied for j + 1.

Fix j ∈ {0, . . . , m2−1}, k ∈ {j+1, . . . , m2}, and ν ∈ {0, . . . , n2,k−1}. Using
the definition (1.12) of An,−j−1, Fubini’s theorem, and the induction hypothesis,
we obtain∫

xνAn,−j−1(x) ds2
j+1,k(x) =

∫
xν

∫ An,−j(t)
x− t

dσ2
j (t) ds2

j+1,k(x) =

∫
An,−j(t)

∫
xν ∓ tν

x− t
ds2

j+1,k(x) dσ2
j (t) =

∫
pν(t)An,−j(t) dσ2

j (t)−
∫

tνAn,−j(t) ds2
j,k(t) = 0

since pν is a polynomial of degree ≤ n2,k − 2, and n2,j+1 ≥ n2,k. ¤
Observe that taking linear combinations of the relations (2.7), we obtain

∫
Bn2,j(x)An,−j(x) dσ2

j (x) = 0, j = 0, . . . , m2,

where Bn2,j is an arbitrary linear form of type

Bn2,j(x) =
m2∑

k=j

bk(x) ŝ2
j+1,k(x), deg bk ≤ n2,k − 1.

Arguing exactly as in the proof of part b) from Lemma 2.1.1, it follows that
An,−j has at least N2,j sign changes on ∆2

j = Co(supp(σ2
j )), where

N2,j = N2,j(n) = n2,j + · · ·+ n2,m2 , j = 0, . . . , m2. (2.8)

Recall that for j = 1, . . . ,m2, Qn,−j was defined as the monic polynomial whose
zeros are those of An,−j in the region C \ ∆2

j−1. Consequently, deg Qn,−j ≥
N2,j , j = 1, . . . , m2. Also recall that for j = 0 we proved in Proposition 2.1.5
that deg Qn,0 = N2,0 = |n2| = |n1| − 1, that the zeros of Qn,0 are simple, and
lie in the interior of ∆2

0 = ∆1
0.

Proposition 2.1.7. Let n ∈ Zm1+1
+ (•) × Zm2+1

+ (•) be a multi-index such that
n1,m1 ≥ 1, and let S1 = N (σ1

0 , . . . , σ1
m1

), S2 = N (σ2
0 , . . . , σ2

m2
) be given. Then,

deg Qn,−j = N2,j , j = 0, . . . , m2, where N2,j is given by (2.8), all the zeros of
Qn,−j are simple and lie in the interior of ∆2

j , and Qn,−m2−1 ≡ 1. If I denotes
the closure of a connected component of ∆2

j \ supp(σ2
j ) then Qn,−j has at most

one zero in I. Moreover, for each j = 0, . . . , m2, and ν = 0, . . . , N2,j − 1,
∫

xνAn,−j(x)
dσ2

j (x)
Qn,−j−1(x)

= 0, (2.9)

and for any polynomial q, deg q ≤ N2,j−1,

q(z)An,−j(z)
Qn,−j(z)

=
∫

q(x)An,−j+1(x)
Qn,−j(x)

dσ2
j−1(x)
z − x

, j = 1, . . . ,m2 + 1. (2.10)
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Proof. Fix j ∈ {0, . . . , m2}. From (2.7) we have that for each q, deg q ≤ n2,j ,

∫
q(z)− q(x)

z − x
An,−j(x) dσ2

j (x) = 0.

It follows that

An,−j−1(z) =
1

q(z)

∫
q(x)
z − x

An,−j(x) dσ2
j (x) = O (

1/zn2,j+1
)
, z →∞.

We have shown that deg Qn,−j−1 ≥ N2,j+1(N2,m2+1 = 0). The zeros of
Qn,−j−1 come in conjugate pairs since An,−j−1 is also symmetric with respect to
the real line. If deg Qn,−j−1 > N2,j+1 take N2,j+1+1 (or N2,j+1+2 if necessary)
zeros from Qn,−j−1 so that the monic polynomial Q∗

n,−j−1 with these zeros
has constant sign on ∆2

j . If deg Qn,−j−1 = N2,j+1 take Q∗n,−j−1 = Qn,−j−1.
Therefore,

An,−j−1

Q∗n,−j−1

= O
(
1/zn2,j+deg Q∗n,−j−1+1

)
∈ H(C \∆2

j ).

It follows that for all ν = 0, . . . , n2,j + deg Q∗n,−j−1 − 1,

zνAn,−j−1

Q∗
n,−j−1

= O (
1/z2

) ∈ H(C \∆2
j ), z →∞.

Using (2.3), we obtain

0 =
∫

xνAn,−j(x)
dσ2

j (x)
Q∗n,−j−1(x)

, ν = 0, . . . , n2,j + deg Q∗n,−j−1 − 1.

This formula implies that An,−j has at least n2,j + deg Q∗n,−j−1 ≥ N2,j sign
changes on ∆2

j . In particular, we have proved that if for some j ∈ {0, . . . ,m2},
deg Qn,−j−1 > N2,j+1 then deg Qn,−j > N2,j . Going downwards on the index
j we would obtain that deg Qn,0 > N2,0 = |n2| = |n1| − 1, which is false accor-
ding to Proposition 2.1.5. Consequently, for all j ∈ {0, . . . , m2},deg Qn,−j−1 =
N2,j+1 (in particular, Qn,−m2−1 ≡ 1). Hence, Q∗

n,−j−1 = Qn,−j−1 and (2.9)
follows. The proof that I contains at most one zero of Qn,−j is the same as in
Proposition 2.1.5.

Now, fix j ∈ {1, . . . , m2 + 1}. Notice that for any q, deg q ≤ N2,j−1,

qAn,−j

Qn,−j
∈ H(C \∆2

j−1),
qAn,−j

Qn,−j
= O

(
1
z

)
, z →∞.

Using (2.4), (2.10) readily follows. ¤

2.2 Interlacing properties of the zeros of the functions An,j

Fix a vector l := (l1; l2) where 0 ≤ l1 ≤ m1 and 0 ≤ l2 ≤ m2. Given n =
(n1;n2), recall that nl := (n1 + el1 ;n2 + el2) = (nl1

1 ;nl2
2 ), where eli denotes
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the unit vector of length mi + 1 with all components equal to zero except the
component (li + 1) which equals 1. In this section it is always assumed that
both n and nl belong to Zm1+1

+ (•)× Zm2+1
+ (•).

Fix real constants A,B such that |A|+ |B| > 0 and define

Gn,j := AAn,j + BAnl,j , j = 0, . . . , m1.

Before proving the interlacing property satisfied by the zeros of An,j and Anl,j ,
we need to analyze the zeros of these functions Gn,j . Since deg anl,l1 = deg an,l1+
1 it is obvious that Gn,j 6≡ 0, j ≤ l1. In particular, this is always true for Gn,0.

Lemma 2.2.1. Assume that A,B ∈ R, |A| + |B| > 0, and n1,m1 ≥ 1. Then
for all j ∈ {0, . . . , m1} such that n1,j ≥ 2, deg Aan,j + Banl,j ≥ n1,j − 2 and
Gn,j 6≡ 0.

Proof. Assume that there exists j ∈ {0, . . . , m1} such that n1,j ≥ 2 and
deg Aan,j + Banl,j ≤ n1,j − 3 (n1,j − 3 = −1 means that Aan,j + Banl,j ≡ 0).
Then nl1

1 −2 ej ∈ Zm1+1
+ (∗), where ej denotes the m1+1 dimensional unit vector

with all components equal to zero except the component j + 1 which equals 1.
According to Lemma 1.2.3 the linear form Gn,0 has at most |n1|−2 zeros on ∆1

0,
but Gn,0 satisfies the same orthogonality relations (1.8) as An,0 and, therefore,
it has at least |n1| − 1 sign changes on this interval. This contradiction implies
the statement. ¤

From this lemma it follows that if n1,m1 ≥ 2 then Gn,j 6≡ 0, j ∈ {0, . . . ,m1}.
Lemma 2.2.2. Assume that A,B ∈ R and Gn,j = AAn,j + BAnl,j 6≡ 0, for
some j ∈ {0, . . . , m1}. If j ≤ l1 then Gn,j has at most N1,j zeros, counting
multiplicities, on any interval disjoint from ∆1

j+1(∆
1
m1+1 = ∅). If j > l1 then

Gn,j has at most N1,j − 1 zeros, counting multiplicities, on any interval disjoint
from ∆1

j+1.

Proof. We have

Gn,j(z) =
m1∑

k=j

(Aan,k(z) + Banl,k(z))ŝ1
j+1,k(z),

where deg an,k = n1,k−1 and deg anl,k = nl1
1,k−1. By Lemma 1.2.3, the functions

(1, ŝ1
j+1,j+1, . . . , ŝ

1
j+1,m1

) form an AT-system with respect to (nl1
1,j , . . . , n

l1
1,m1

) on
any interval disjoint from ∆1

j+1, and the result follows immediately. ¤
Notice that for each j ∈ {0, . . . , m1}, Gn,j is a real function when it is

restricted to the real line.

Proposition 2.2.3. Let n1,m1 ≥ 1. Assume that A,B ∈ R, |A|+ |B| > 0, and
let κ = max{k′ : Gn,k′ 6≡ 0} ≤ m1. Then, κ ≥ l1 and Gn,j ≡ 0, κ < j ≤ m1.
If j ≤ l1 then Gn,j has at most N1,j zeros in C \∆1

j+1, counting multiplicities,
and at least N1,j − 1 sign changes in the interior of ∆1

j . If l1 < j ≤ κ then Gn,j

has at most N1,j − 1 zeros in C \∆1
j+1 and at least N1,j − 2 sign changes in the

interior of ∆1
j . Therefore, all the zeros of Gn,j in C \∆1

j+1 are real and simple.



2. Preliminary results 28

Proof. If j ≤ l1, since deg anl,l1 > deg an,l1 it follows that Gn,j 6≡ 0. Conse-
quently, κ ≥ l1. Obviously, from the definition of κ, Gn,j ≡ 0, κ < j ≤ m1.

Assume that Gn,j , j ≤ l1, has at least N1,j + 1 zeros in C \∆1
j+1, counting

multiplicities. Select N1,j +1 or N1,j +2 zeros of Gn,j which are symmetric with
respect to the real axis, and let Q∗

n,j be the monic polynomial whose zeros are
those prescribed. If j < l1 then

zνGn,j

Q∗n,j

= O
( 1

z2

)
, z →∞, ν = 0, . . . , N1,j+1.

From (2.3), it follows that

0 =
∫

xνGn,j+1(x)
dσ1

j+1(x)
Q∗

n,j(x)
, ν = 0, . . . , N1,j+1.

These orthogonality relations imply that Gn,j+1 has at least N1,j+1 +1 zeros on
∆1

j+1. Since Gn,j+1 6≡ 0 we obtain a contradiction with Lemma 2.2.2.
If j = l1 and j < κ, then

zνGn,l1

Q∗
n,l1

= O
( 1

z2

)
, z →∞, ν = 0, . . . , N1,l1+1 − 1.

Arguing as before, it follows that Gn,l1+1 has at least N1,l1+1 zeros on ∆1
l1+1,

contradicting Lemma 2.2.2. If j = l1 = κ then Gn,l1+1 ≡ 0 and Gn,l1 =
Aan,l1 + Banl,l1 is a polynomial of degree at most n1,l1 < N1,l1 + 1 and thus it
is identically equal to zero which is impossible. Consequently, when j ≤ l1, Gn,j

has at most N1,j zeros in C \∆1
j+1 counting multiplicities.

Let l1 < j ≤ κ and assume that Gn,j has at least N1,j zeros in C \ ∆1
j+1,

counting multiplicities. If j = m1 we get immediately a contradiction because
in this case Gn,m1 is a polynomial of degree at most N1,m1 − 1. If l1 < j < m1,
then there exists a polynomial Q∗

n,j with real coefficients and degree at least
N1,j such that

zνGn,j

Q∗
n,j

= O
( 1

z2

)
, z →∞, ν = 0, . . . , N1,j+1 − 1.

This implies that Gn,j+1 has at least N1,j+1 zeros on ∆1
j+1 contradicting Lemma

2.2.2.
Now, let us analyze the sign changes. Notice that Gn,0 6≡ 0. Assume that

Gn,0 has N < N1,0 − 1 = |n1| − 1 = |n2| sign changes on ∆1
0 = ∆2

0, choose a
nonzero linear form

Bn2(z) =
m2∑

k=0

bn2,k(z)ŝ2
1,k(z) , deg bn2,k ≤ n2,k − 1 , k = 0, . . . ,m2 ,

such that Bn2 has a simple zero at each point where Gn,0 has a sign change, and
a zero of order |n2| − 1 − N at one of the extreme points of ∆2

0. By Lemma
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1.2.3, Bn2 has at most |n2| − 1 zeros on ∆2
0. Thus, Bn2 has exactly those zeros

prescribed. By definition,
∫
Bn2(x)Gn,0(x) dσ2

0(x) = 0,

which contradicts the fact that Bn2(x)Gn,0(x) has constant sign on ∆2
0.

Let us prove by induction that for all j ≤ l1, Gn,j has at least N1,j − 1 sign
changes in the interior of ∆1

j . For j = 0 this was proved above and if l1 = 0 we
are done. Let us assume that for some j < l1, Gn,j has at least N1,j − 1 sign
changes on ∆1

j , and let us show that Gn,j+1 has at least N1,j+1− 1 sign changes
on ∆1

j+1.
Let Q∗n,j be a monic polynomial whose zeros are N1,j − 1 points where Gn,j

has a sign change. Then

zνGn,j

Q∗
n,j

= O
( 1

z2

)
, z →∞, ν = 0, . . . , N1,j+1 − 2 .

Using (2.3), this implies that

0 =
∫

xνGn,j+1(x)
dσ1

j+1(x)
Q∗

n,j(x)
, ν = 0, . . . , N1,j+1 − 2 .

Thus, Gn,j+1 has at least N1,j+1 − 1 sign changes in the interior of ∆1
j+1 as

claimed.
Finally, we prove that Gn,j , l1 < j ≤ κ, has at least N1,j − 2 sign changes in

the interior of ∆1
j . Let Q∗n,l1

be a monic polynomial of degree N1,l1 − 1 whose
zeros are points where Gn,l1 changes sign in the interior of ∆1

l1
, then

zνGn,l1

Q∗
n,l1

= O
( 1

z2

)
, z →∞, ν = 0, . . . , N1,l1+1 − 3.

From here we get orthogonality conditions that imply that Gn,l1+1 has at least
N1,l1+1 − 2 sign changes in the interior of ∆1

l1+1. One proceeds the same way
until we arrive to j = κ.

From the upper bound on the number of zeros and the lower bound on the
number of sign changes it follows that all the zeros are simple and lie on the
real line. ¤

Let j ∈ {0, . . . , m2 + 1}. Given two real constants A,B, we define

Gn,−j := AAn,−j + BAnl,−j .

Thus, by (1.12),

Gn,−j−1(z) =
∫ Gn,−j(x)

z − x
dσ2

j (x), j = 0, . . . , m2. (2.11)

If |A| + |B| > 0 then Gn,0 6≡ 0 and from (2.11) it follows that Gn,−j 6≡ 0 for all
j ∈ {1, . . . ,m2 + 1}.
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Proposition 2.2.4. Let A, B ∈ R, |A| + |B| > 0. For every j ∈ {1, . . . , m2},
Gn,−j has at most N2,j + 1 zeros on C \ ∆2

j−1, counting multiplicities, and at
least N2,j sign changes in the interior of ∆2

j . Hence, all the zeros of Gn,−j on
C \∆2

j−1 are real and simple.

Proof. Let j ∈ {0, . . . , m2}. By (2.7) we know that
∫

xνAnl,−j(x) ds2
j,k(x) = 0, k = j, . . . , m2, ν = 0, . . . , nl2

2,k − 1.

Since n2,k ≤ nl2
2,k, it follows that

∫
xνGn,−j(x) ds2

j,k(x) = 0, k = j, . . . , m2, ν = 0, . . . , n2,k − 1. (2.12)

Using the same arguments employed in the previous section to show that An,−j

has at least N2,j sign changes in the interior of ∆2
j (see the comments before

Proposition 2.1.7), one obtains the same conclusion for Gn,−j .
If q is a polynomial with deg q ≤ n2,j , then from (2.12) we have

∫
q(z)− q(x)

z − x
Gn,−j(x) dσ2

j (x) = 0.

Hence, for every j ∈ {0, . . . , m2},

Gn,−j−1(z) =
1

q(z)

∫
q(x)
z − x

Gn,−j(x) dσ2
j (x) = O

( 1
zn2,j+1

)
, z →∞.

Assume that for some j ∈ {0, . . . , m2 − 1}, Gn,−j−1 has at least N2,j+1 + 2
zeros, counting multiplicities, on C \ ∆2

j . Select at least N2,j+1 + 2 zeros of
Gn,−j−1, symmetric with respect to the real axis, and denote by Q∗n,−j−1 the
monic polynomial whose zeros are the points selected. Then,

zνGn,−j−1

Q∗
n,−j−1

= O
( 1

z2

)
, z →∞, ν = 0, . . . , N2,j + 1.

As before, this implies that Gn,−j has at least N2,j + 2 zeros in the interior
of ∆2

j . Going downwards on the index j, we obtain that Gn,0 has at least
N2,0 + 2 = N1,0 + 1 zeros, which is impossible by Proposition 2.2.3. Therefore,
for all j ∈ {1, . . . , m2 + 1}, Gn,j has at most N2,j + 1 zeros in C \ ∆2

j−1 and,
therefore, they must be real and simple. ¤

We are now ready to prove the interlacing property satisfied by the zeros of
An,j and Anl,j .

Theorem 2.2.5. Let n,nl ∈ Zm1+1
+ (•) × Zm2+1

+ (•), n1,m1 ≥ 2. Then, for all
j ∈ {−m2, . . . , m1} the zeros of An,j and Anl,j interlace; that is, between two
consecutive zeros of An,j there is one zero of Anl,j and viceversa.
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Proof. Since n1,m1 ≥ 2, from Lemma 2.2.1 we know that for all j ∈ {0, . . . , m1}
and for all A,B real such that |A|+|B| > 0, the linear form Gn,j is not identically
equal to zero. This is always true for j ∈ {−m2, . . . ,−1}. Therefore, from
Propositions 2.2.3 and 2.2.4 we know that for all real A,B, such that |A|+|B| > 0
the zeros of Gn,j , j ∈ {−m2, . . . , m1}, are real and simple. This is the basic fact
we will use in the proof.

Fix y ∈ R \ ∆1
j+1. It cannot occur that An,j(y) = Anl,j(y) = 0. If so, y

would be a simple zero of An,j and Anl,j . Thus, A′n,j(y) 6= 0 and A′nl,j(y) 6= 0.
Take A = 1 and B = −A′n,j(y)/A′nl,j(y) and consider Gn,j = AAn,j + BAnl,j .
With this choice of A and B, we have

Gn,j(y) = G′n,j(y) = 0 ,

and we obtain a contradiction because the zeros of Gn,j are simple.
Now, taking A = Anl,j(y) and B = −An,j(y), we have that |A| + |B| > 0.

Since
Anl,j(y)An,j(y)−An,j(y)Anl,j(y) = 0 ,

and the zeros on R \∆1
j+1 of Anl,j(y)An,j(x)−An,j(y)Anl,j(x) with respect to

x are simple, it follows that

Anl,j(y)A′n,j(y)−An,j(y)A′nl,j(y) 6= 0 .

But Anl,j(y)A′n,j(y)−An,j(y)A′nl,j(y) is a continuous real function on R\∆1
j+1

in y so it must have constant sign on each one of the connected components of
R \∆1

j+1. In particular, its sign on ∆1
j is constant.

Evaluating Anl,j(y)A′n,j(y) − An,j(y)A′nl,j(y) at two consecutive zeros of
Anl,j , since the sign of A′nl,j at these two points changes, the sign of An,j

must also change. Using Bolzano’s theorem we find that there must be an
intermediate zero ofAn,j . Analogously, one proves that between two consecutive
zeros of An,j on ∆1

j there is one of Anl,j . Thus, the interlacing property has
been proved. ¤



3. LOGARITHMIC ASYMPTOTICS

Here, we treat the logarithmic asymptotic of mixed type multiple orthogonal
polynomials generated by two Nikishin systems. The first section is dedicated
to the introduction of the main concepts of potential theory and some results
from the scalar case which will be needed for our work. In Section 3.2, we
study the asymptotic distribution of the zeros of the sequences of polynomials
{Qn,j}n∈Λ, j ∈ {−m2, . . . , m1}, proving Theorem 1.3.2. This paves the way to
obtain Theorem 1.3.3 in Section 3.3 on the logarithmic asymptotics of the mixed
type multiple orthogonal polynomials and their associated linear forms. The
final section of this chapter considers some application of the results obtained
to the asymptotic behavior of mixed type Hermite-Padé approximants.

3.1 Preliminaries and notation

If E is a compact subset of the complex plane, recall that M(E) denotes the
class of all finite, positive, Borel measures with support consisting of an infinite
set of points contained in E, and M1(E) is the subclass of probability measures
of M(E).

Recall that given a polynomial ql of degree l ≥ 1, we denote the associated
normalized zero counting measure by

µql
=

1
l

∑

ql(x)=0

δx ,

where δx is the Dirac measure with mass 1 at x (in the sum the zeros are
repeated according to their multiplicity).

If µ ∈M(E), the logarithmic potential associated to µ is given by

V µ(z) =
∫

log
1

|z − x| dµ(x) ,

whereas the logarithmic energy of µ is defined as

I(µ) =
∫

V µ(z) dµ(z) =
∫ ∫

log
1

|z − x| dµ(x) dµ(z) .

The quantity
I(E) := inf{I(µ) : µ ∈M1(E)}
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is known as the energy of E, and

cap(E) := e−I(E)

is known as the logarithmic capacity of E. For an arbitrary set A, the interior
capacity of A is by definition

cap(A) := sup{cap(E) : E ⊂ A, E compact} .

We will only use the interior logarithmic capacity of a set; therefore, in the
sequel we will refer to it simply as the capacity.

Lemma 3.1.1. Let E ⊂ C be a compact set which is regular with respect to
the Dirichlet problem and φ a continuous function on E. Then there exists a
unique µ ∈M1(E) and a constant w such that

V µ(z) + φ(z)
{ ≤ w, z ∈ supp(µ) ,
≥ w, z ∈ E .

If the compact set E is not regular with respect to the Dirichlet problem then
the second part of the statement is true except on a set e such that cap(e) = 0.
Theorem I.1.3 in [77] contains a proof of this lemma in this context. When
E is regular, it is well known that this inequality except for a set of capacity
zero implies the inequality for all points in the set. µ is called the equilibrium
measure in the presence of the external field φ on E and w is the equilibrium
constant.

Recall that a measure σ ∈M(E) is regular if

lim
n→∞

κ1/n
n =

1
cap(supp(σ))

,

where κn is the leading coefficient of the n-th orthonormal polynomial with
respect to σ.

In order to determine the asymptotic zero distribution of the polynomials
Qn,j we use the following lemma. Different versions of it appear in [13], [27],
and [77]. In [27], it was proved assuming that supp(σ) is an interval on which
σ′ > 0 a.e. Theorem 3.3.3 in [77] and Theorem 1 in [13], do not cover the type
of external field we consider here. So, we will sketch a proof.

Lemma 3.1.2. Let σ be a regular measure, supp(σ) ⊂ R, where supp(σ) is
regular with respect to the Dirichlet problem. Let {φl}, l ∈ Λ ⊂ Z+, be a sequence
of positive continuous functions on supp(σ) such that

lim
l∈Λ

1
2l

log
1

|φl(x)| = φ(x) > −∞, (3.1)

uniformly on supp(σ). By {ql}, l ∈ Λ, denote a sequence of monic polynomials
such that deg ql = l and

∫
xkql(x)φl(x)dσ(x) = 0, k = 0, . . . , l − 1. (3.2)
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Then
∗ lim

l∈Λ
µql

= µ, (3.3)

and

lim
l∈Λ

(∫
|ql(x)|2φl(x)dσ(x)

)1/2l

= e−w, (3.4)

where µ and w are the equilibrium measure and equilibrium constant in the
presence of the external field φ on E := supp(σ). We also have that

lim
l∈Λ

(
|ql(z)|

‖qlφ
1/2
l ‖E

)1/l

= exp (w − V µ(z)), K ⊂ C \ Co(supp(σ)). (3.5)

Proof. On account of (3.1) and Lemma 3.1.1, it follows that for any ε > 0
there exists l0 such that for all l ≥ l0, l ∈ Λ, and z ∈ supp(µ) ⊂ supp(σ) = E

1
l

log
|pl(z)|

‖plφ
1/2
l ‖E

≤ 1
2l

log
1

|φl(z)| ≤ φ(z) + ε ≤ w − V µ(z) + ε,

where {pl}, l ∈ Λ, is any sequence of monic polynomials such that deg pl = l

and ‖plφ
1/2
l ‖E = maxz∈E |(plφ

1/2
l )(z)|. Hence,

ul(z) := V µ(z) +
1
l

log
|pl(z)|

‖plφ
1/2
l ‖E

≤ w + ε, z ∈ supp(µ), l ≥ l0.

Since ul is subharmonic in C \ supp(µ), by the continuity and maximum prin-
ciples, we have

ul(z) ≤ w + ε, z ∈ C, l ≥ l0.

In particular,

ul(∞) =
1
l

log
1

‖plφ
1/2
l ‖E

≤ w + ε.

The last two relations imply

lim sup
l∈Λ

(
|pl(z)|

‖plφ
1/2
l ‖E

)1/l

≤ exp (w − V µ(z)), K ⊂ C, (3.6)

and
lim inf

l∈Λ
‖plφ

1/2
l ‖1/l

E ≥ exp (−w). (3.7)

In particular, these relations hold for the sequence of polynomials {ql}, l ∈ Λ.
Let tl be the weighted Fekete polynomial of degree l for the weight e−φ on

supp(σ) and |σ| be the total variation of σ. From the minimality property in
the L2 norm of ql, we have

‖qlφ
1/2
l ‖2 :=

(∫
|ql(x)|2φl(x)dσ(x)

)1/2

≤ ‖tlφ1/2
l ‖2 ≤ |σ|1/2‖tlφ1/2

l ‖E ≤
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|σ|1/2‖tle−lφ‖E‖φ1/2
l elφ‖E .

Then, using (3.1) and Theorem III.1.9 in [77], we obtain that

lim sup
l∈Λ

‖qlφ
1/2
l ‖1/l

2 ≤ e−w. (3.8)

Since supp(σ) is regular with respect to the Dirichlet problem, Theorem
3.2.3 vi) in [77] yields

lim sup
l∈Λ

(
‖qlφ

1/2
l ‖E

‖qlφ
1/2
l ‖2

)1/l

≤ 1,

which combined with (3.7) (with pl = ql) and (3.8) implies

lim
l∈Λ

(
‖qlφ

1/2
l ‖E

‖qlφ
1/2
l ‖2

)1/l

= 1. (3.9)

Thus, we obtain (3.4) since (3.7), (3.8), and (3.9) give

lim sup
l∈Λ

‖qlφ
1/2
l ‖1/l

E = lim sup
l∈Λ

‖qlφ
1/2
l ‖1/l

2 = e−w. (3.10)

All the zeros of ql lie in Co(supp(σ)) ⊂ R. The unit ball in the weak star
topology of measures is compact. Take any subsequence of indices Λ′ ⊂ Λ such
that

∗ lim
l∈Λ′

µql
= µΛ′ .

Then,

lim
l∈Λ′

1
l

log |ql(z)| = − lim
n∈Λ′

∫
log

1
|z − x|µql

(x) = −V µΛ′ (z),

uniformly on each compact K ⊂ C \Co(supp(σ)). This, together with (3.4) and
(3.6) (applied to {ql}, l ∈ Λ′), implies

(V µ − V µΛ′ )(z) ≤ 0, z ∈ C \ Co(supp(σ)).

Since V µ − V µΛ′ is subharmonic in C \ supp(µ) and (V µ − V µΛ′ )(∞) = 0, from
the maximum principle, it follows that V µ ≡ V µΛ′ in C \Co(supp(σ)) and thus
µΛ′ = µ. Consequently, (3.3) holds. (3.3) and (3.4) imply (3.5). ¤

3.2 The asymptotic distribution of the zeros of {Qn,j}n∈Λ

Using Lemma 3.1.2, we can obtain the asymptotic distribution of the zeros of
the polynomials Qn,j , j = −m2, . . . , m1. We continue employing the following
notation introduced in Subsection 1.3.1, namely

∆j = ∆1
j , σj = σ1

j , j = 0, 1, . . . , m1,
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∆j = ∆2
−j , σj = σ2

−j , j = 0,−1, . . . ,−m2,

and

Nn,j =





N1,j(n)− 1, j = 0, 1 . . . ,m1,

N2,−j(n), j = 0,−1, . . . ,−m2.

According to Propositions 2.1.5 and 2.1.7, for all j = −m2, . . . ,m1 the zeros
of Qn,j are all simple, lie in the interior of ∆j , and total Nn,j points.

Proof of Theorem 1.3.2. The unit ball in the cone of positive Borel mea-
sures is weak star compact; therefore, it is sufficient to show that each one of
the sequences of measures {µQn,j}, n ∈ Λ, j = −m2, . . . , m1, has only one accu-
mulation point which coincides with the corresponding component of the vector
measure µ(C). Let Λ′ ⊂ Λ be a subsequence of multi-indices such that for each
j = −m2, . . . , m1

∗ lim
n∈Λ′

µQn,j
= µj .

Notice that µj ∈M1(Ej), j = −m2, . . . , m1. Therefore,

lim
n∈Λ′

|Qn,j(z)|1/|n1| = exp(−PjV
µj (z)), (3.11)

uniformly on compact subsets of C \∆j , where Pj = limn∈Λ′ Nn,j/|n1|.
Because of the normalization adopted on an,m1 , An,m1 = Qn,m1 ; conse-

quently, when j = m1, (2.5) takes the form
∫

xνQn,m1(x)
d|σm1 |(x)

|Qn,m1−1(x)| = 0 , ν = 0, . . . , Nn,m1 − 1 .

(By |σk| we denote the total variation of the measure σk. Since our measures
σk have constant sign, |σk| is either equal to σk or to −σk.) According to (3.11)

lim
n∈Λ′

1
2Nn,m1

log |Qn,m1−1(x)| = −Pm1−1

2Pm1

V µm1−1(x) ,

uniformly on ∆m1 . Using Lemma 3.1.2, it follows that µm1 is the unique solution
of the extremal problem

V µm1 (x)− Pm1−1

2Pm1

V µm1−1(x)
{

= ωm1 , x ∈ supp(µm1) ,
≥ ωm1 , x ∈ Em1 ,

(3.12)

and

lim
n∈Λ′

(∫
Q2

n,m1
(x)

|Qn,m1−1(x)|d|σm1 |(x)

)1/2Nn,m1

= e−ωm1 . (3.13)

Let us show by induction on decreasing values of j, that if j ∈ {−m2, . . . , m1}

V µj (x)− Pj−1

2Pj
V µj−1(x)− Pj+1

2Pj
V µj+1(x)+

Pj+1

Pj
ωj+1

{
= ωj , x ∈ supp(µj) ,
≥ ωj , x ∈ Ej ,

(3.14)
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where P−m2−1 = Pm1+1 = 0, and

lim
n∈Λ′

(∫
Q2

n,j(x)
|Qn,j−1(x)|

|An,j(x)|
|Qn,j(x)|d|σj |(x)

)1/2Nn,j

= e−ωj , (3.15)

where Qn,−m2−1 ≡ 1. For j = m1 these relations are non other than (3.12)-
(3.13) and the initial induction step is settled. Let us assume that the statement
is true for j + 1 ∈ {−m2 + 1, . . . ,m1} and let us prove it for j.

It is easy to see that the orthogonality relations (2.5) and (2.9) can be
expressed as
∫

xνQn,j(x)
|Qn,j+1(x)An,j(x)|

|Qn,j(x)|
d|σj |(x)

|Qn,j−1(x)Qn,j+1(x)| = 0, ν = 0, . . . , Nn,j−1 .

On account of (2.6) and (2.10) taking q = Qn,j+1, this can be further trans-
formed into
∫

xνQn,j(x)

(∫
Q2

n,j+1(t)
|Qn,j(t)|

|An,j+1(t)|
|Qn,j+1(t)|

d|σj+1|(t)
|x− t|

)
d|σj |(x)

|Qn,j−1(x)Qn,j+1(x)| = 0,

for ν = 0, . . . , Nn,j − 1 .
Relation (3.11) implies that

lim
n∈Λ′

1
2Nn,j

log |Qn,j−1(x)Qn,j+1(x)| = (3.16)

−Pj−1

2Pj
V µj−1(x)− Pj+1

2Pj
V µj+1(x) ,

uniformly on ∆j . (Since Qn,−m2−1 ≡ 1, when j = −m2 we only get the second
term on the right hand side of this limit; that is, P−m2−1 = 0.)

Set

Kn,j+1 =

(∫
Q2

n,j+1(t)
|Qn,j(t)|

|An,j+1(t)|
|Qn,j+1(t)|d|σj+1|(t)

)−1/2

.

It follows that for all x ∈ ∆j

1
δ∗j+1K

2
n,j+1

≤
∫

Q2
n,j+1(t)
|Qn,j(t)|

|An,j+1(t)|
|Qn,j+1(t)|

d|σj+1|(t)
|x− t| ≤ 1

δj+1K2
n,j+1

,

where 0 < δj+1 = inf{|x− t| : t ∈ ∆j+1, x ∈ ∆j} ≤ max{|x− t| : t ∈ ∆j+1, x ∈
∆j} = δ∗j+1 < ∞. Taking into consideration these inequalities, from the induc-
tion hypothesis, we obtain that

lim
n∈Λ′

(∫
Q2

n,j+1(t)
|Qn,j(t)|

|An,j+1(t)|
|Qn,j+1(t)|

d|σj+1|(t)
|x− t|

)1/2Nn,j

= e−Pj+1ωj+1/Pj . (3.17)
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Taking (3.16) and (3.17) into account, Lemma 3.1.2 yields that µj is the
unique solution of the extremal problem (3.14) and

lim
n∈Λ′

(∫ ∫
Q2

n,j+1(t)
|Qn,j(t)|

|An,j+1(t)|
|Qn,j+1(t)|

d|σj+1|(t)
|x− t|

Q2
n,j(x)d|σj |(x)

|Qn,j−1(x)Qn,j+1(x)|

) 1
2Nn,j

= e−ωj .

According to (2.6) and (2.10) with q = Qn,j+1

1
|Qn,j+1(x)|

∫
Q2

n,j+1(t)
|Qn,j(t)|

|An,j+1(t)|
|Qn,j+1(t)|

d|σj+1|(t)
|x− t| =

|An,j(x)|
|Qn,j(x)| , x ∈ ∆j ,

which allows to reduce the previous formula to (3.15) thus concluding the in-
duction.

Now, we can rewrite (3.14) multiplying through by P 2
j and taking the con-

stant term on the left to the right to obtain the system of boundary value
equations

P 2
j V µj (x)− Pj−1Pj

2
V µj−1(x)− PjPj+1

2
V µj+1(x)

{
= ω′j , x ∈ supp(µj) ,
≥ ω′j , x ∈ Ej ,

(3.18)
for j = −m2, . . . ,m1, where

ω′j = P 2
j ωj − PjPj+1ωj+1. (3.19)

The terms with P−m2−1 and Pm1+1 do not appear when j = −m2 and j =
m1, respectively. By Lemma 1.3.1, (µ−m2 , . . . , µm1) = (µ−m2

, . . . , µm1
) and

(ω′−m2
, . . . , ω′m1

) = (ωµ
−m2

, . . . , ωµ
m1

) for any convergent subsequence showing
the existence of the limits in (1.15) as stated.

Notice that (3.15) implies that

lim
n∈Λ′

(∫
Q2

n,j(x)
|Qn,j−1(x)|

|An,j(x)|
|Qn,j(x)|d|σj |(x)

)1/2|n1|

= e−Pjωj .

On the other hand, from (3.19) it follows that Pm1ωm1 = ωµ
m1

/Pm1 when j =

m1. Suppose that Pj+1ωj+1 =
∑m1

k=j+1
ωµ

k

Pk
, j + 1 ∈ {−m2 + 1, . . . , m1}. Then,

according to (3.19)

Pjωj =
ωµ

j

Pj
+ Pj+1ωj+1 =

m1∑

k=j

ωµ
k

Pk

and (1.16) immediately follows. ¤

3.3 The n-th root asymptotics of {An,j}n∈Λ and {an,j}n∈Λ

Here, we maintain the change of notation introduced in the previous section.
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Proof of Theorem 1.3.3. If j = m1,An,m1 = Qn,m1 and (1.15) directly
implies that

lim
n∈Λ

|An,m1(z)|1/|n1| = exp
(−Pm1V

µm1 (z)
)
, K ⊂ C \∆m1 .

For j ∈ {−m2 − 1, . . . , m1 − 1}, using (2.6) and (2.10) with q = Qn,j+1, we
obtain

An,j(z) =
Qn,j(z)

Qn,j+1(z)

∫
Q2

n,j+1(x)
Qn,j(x)

An,j+1(x)
Qn,j+1(x)

dσj+1(x)
z − x

, (3.20)

(Qn,−m2−1 ≡ 1.) From (1.15), it follows that

lim
n∈Λ

∣∣∣∣
Qn,j(z)

Qn,j+1(z)

∣∣∣∣
1/|n1|

= (3.21)

exp
(
Pj+1V

µj+1(z)− PjV
µj (z)

)
, K ⊂ C \ (∆j ∪∆j+1)

(we also use that the zeros of Qn,j and Qn,j+1 lie in ∆j and ∆j+1, respectively).
It remains to find the |n1|-th root asymptotic behavior of the integral.

Fix a compact set K ⊂ C \∆j+1. It is easy to verify that (for the definition
of K2

n,j+1 see proof of Theorem 1.3.2 above)

C1

K2
n,j+1

≤
∣∣∣∣∣
∫

Q2
n,j+1(x)
Qn,j(x)

An,j+1(x)
Qn,j+1(x)

dσj+1(x)
z − x

∣∣∣∣∣ ≤
C2

K2
n,j+1

,

where

C1 =
min{max{|u− x|, |v| : z = u + iv} : z ∈ K, x ∈ ∆j+1}

max{|z − x|2 : z ∈ K, x ∈ ∆j+1} > 0

and
C2 =

1
min{|z − x| : z ∈ K, x ∈ ∆j+1} < ∞.

Taking into account (1.16)

lim
n∈Λ

∣∣∣∣∣
∫

Q2
n,j+1(x)
Qn,j(x)

An,j+1(x)
Qn,j+1(x)

dσj+1(x)
z − x

∣∣∣∣∣

1/|n1|

= (3.22)

exp


−2

m1∑

k=j+1

ωµ
k /Pk


 .

From (3.20)-(3.22), we obtain (1.17) and we are done. ¤

Remark 3.3.1. Taking into consideration that the polynomials Qn,j (see Propo-
sitions 2.1.5 and 2.1.7) and the functions

∫
Q2

n,j(x)
Qn,j−1(x)

An,j(x)
Qn,j(x)

dσj(x)
z − x

,
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may have at most one zero in each of the connected components of ∆j \ Ej,
where Ej = supp(σj), in place of (1.17) one can prove convergence in capacity
on each compact subset K ⊂ C \ (Ej ∪ Ej+1). More precisely, for any such
compact set K and each ε > 0

lim
n∈Λ

cap
{

z ∈ K :
∣∣∣|An,j(z)|1/|n1| −Gj(z)

∣∣∣ > ε
}

= 0.

Set

Uµ
j (z) = PjV

µj (z)− Pj+1V
µj+1(z) + 2

m1∑

k=j+1

ωµ
k

Pk
, j = −m2 − 1, . . . , m1 − 1,

and
Uµ

m1
(z) = Pm1V

µm1 (z).

Hence, Gj(z) = exp(−Uµ
j (z)), j = −m2 − 1, . . . , m1.

We have that for j = −m2, . . . , m1(P−m2−1 = Pm1+1 = 0)

Pj

2
(Uµ

j (z)−Uµ
j−1(z)) = −Pj+1Pj

2
V µj+1(z)+P 2

j V µj (z)− PjPj−1

2
V µj−1(z)−ωµ

j .

From the equilibrium property (see Lemma 1.3.1 and (3.18)), it follows that

Uµ
j (x)− Uµ

j−1(x)
{

= 0, x ∈ supp(µj) ,
≥ 0, x ∈ Ej .

Define

pj =
{

p1,j , j = 0, . . . ,m1,
−p2,−j−1, j = −m2 − 1, . . . ,−1.

It is easy to verify that for j = −m2, . . . , m1

Uµ
j (z)− Uµ

j−1(z) = O((pj − pj−1) log 1/|z|), z →∞. (3.23)

In particular, Uµ
j (z) − Uµ

j−1(z) = O(1), z → ∞, whenever pj = pj−1. By
assumption, pj−pj−1 ≤ 0, j = −m2, . . . ,m1 except for p0−p−1 = p1,0+p2,0 > 0.

For all j, the function Uµ
j −Uµ

j−1 is subharmonic in C\supp(µj). If pj ≥ pj−1,

then it is subharmonic in all C \ supp(µj). According to what was said above,
when j = 0 or pj = pj−1, from the equilibrium condition and the maximum
principle, we have that Uµ

j − Uµ
j−1 ≡ 0 on supp(σj) = Ej and Uµ

j < Uµ
j−1 on

C \ supp(σj). In particular, in this case we have that supp(µj) = supp(σj).
When pj−1 > pj , (3.23) implies that in a neighborhood of z = ∞, Uµ

j > Uµ
j−1.

Let γj = {z ∈ C : Uµ
j (z)−Uµ

j−1(z) = 0}. The equilibrium condition entails that
γj ⊃ supp(µj) and the initial remark indicates that γj is bounded. Consider any
bounded component of the complement of γj . On it, Uµ

j −Uµ
j−1 is subharmonic

and on its boundary Uµ
j − Uµ

j−1 = 0. Thus, on any bounded component of the
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complement of γj we have that Uµ
j < Uµ

j−1. From the initial remark it follows
that on the unbounded component of the complement of γj , U

µ
j > Uµ

j−1.
Fix j ∈ {0, . . . , m1}. For each k ∈ {j, . . . , m1} define

Dj
k := {z ∈ C\∪m1

i=j∆i : Uµ
k (z) < Uµ

i (z), i = j, . . . ,m1, i 6= k}, Dm1
m1

:= C\∆m1 .

Let
ζj(z) = min{Uµ

k (z) : k = j, . . . ,m1}.
Corollary 3.3.2. Let S1 = N (σ1

0 , . . . , σ1
m1

), S2 = N (σ2
0 , . . . , σ2

m2
), (S1, S2) ∈

Reg, and Λ = Λ(p1,0, . . . , p1,m1 ; p2,0, . . . , p2,m2) ⊂ Zm1+1
+ (•) × Zm2+1

+ (•), be
given. Let (an,0, an,1, . . . , an,m1),n ∈ Λ, be the associated sequence of “monic”
mixed type multiple orthogonal polynomials. Then, for j = 0, . . . , m1

lim
n∈Λ

|an,j(z)|1/|n1| = exp(−ζj(z)), K ⊂ ∪m1
k=jD

j
k, (3.24)

and

lim sup
n∈Λ

|an,j(z)|1/|n1| ≤ exp(−ζj(z)), K ⊂ C \ ∪m1
k=j∆k. (3.25)

In particular, if p1,0 = · · · = p1,m1 = 1/(m1 + 1), then

lim
n∈Λ

|an,j(z)|1/|n1| = exp(−Uµ
m1

(z)), K ⊂ C \ ∪m1
k=j∆k. (3.26)

Proof. For j = m1, An,m1 = an,m1 , D
m1
m1

= C\∆m1 and ζm1 = Uµ
m1

. Therefore,
(3.24) reduces to (1.17) and implies (3.25). Let us prove these relations for
j = 0, . . . , m1 − 1.

The An,j are expressed in terms of the an,k, k = j, . . . ,m1, through a linear
triangular scheme of equations with function coefficients which do not depend
on n. Using this system, we can solve for an,j , in terms of An,k, k = j, . . . ,m1.

Given j ∈ {1, . . . , m1} and 0 ≤ i < j, we have

(−1)j−i〈σ1
i , . . . , σ1

j 〉̂(z) =
∫
· · ·

∫
dσ1

i (xi) · · · dσ1
j (xj)

(z − xi)(xi+1 − xi) · · · (xj − xj−1)
,

where 〈·〉̂(z) denotes the Cauchy transform of the indicated measure, and

〈σ1
j , . . . , σ1

i 〉̂(z) =
∫
· · ·

∫
dσ1

i (xi) · · · dσ1
j (xj)

(xi+1 − xi) · · · (xj − xj−1)(z − xj)
.

Consequently,

(−1)j−i〈σ1
i , . . . , σ1

j 〉̂(z)− 〈σ1
j , . . . , σ1

i 〉̂(z) =

∫
· · ·

∫ −(xj − xi)dσ1
i (xi) · · · dσ1

j (xj)
(z − xi)(xi+1 − xi) · · · (xj − xj−1)(z − xj)

.
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Since xj − xi = xj − xj−1 + xj−1 − · · · − xi+1 + xi+1 − xi, substituting this in
the previous formula, we obtain

〈σ1
j , . . . , σ1

i 〉̂(z) = (3.27)

j−1∑

k=i

(−1)k−i〈σ1
i , . . . , σ1

k 〉̂(z)〈σ1
j , . . . , σ1

k+1〉̂(z) + (−1)j−i〈σ1
i , . . . , σ1

j 〉̂(z).

(This formula is applicable to any Nikishin system. We will use it on S2 in the
last section.)

Using formula (3.27) it is easy to deduce that (the sum is empty when
j = m1)

an,j(z) = An,j(z) +
m1∑

k=j+1

(−1)k−j〈σ1
k, . . . , σ1

j+1〉̂(z)An,k(z).

Taking (1.17) into consideration, on Dj
k the term containing An,k dominates

the sum (notice that 〈σ1
k, . . . , σ1

j+1〉̂(z) 6= 0, z ∈ C \∆k) and (3.24) immediately
follows. On the complement of ∪m1

k=jD
j
k there is no dominating term and all we

can conclude from the previous equality is (3.25).
Let p1,0 = · · · = p1,m1 = 1/(m1 + 1). In this case, on C \ ∪m1

k=j∆k we have
that Uµ

m1
(z) < Uµ

m1−1(z) < · · · < Uµ
j (z) and (3.26) follows from (3.24). ¤

3.4 Application to mixed type Hermite-Padé approximation

Let S1 = N (σ1
0 , . . . , σ1

m1
), S2 = N (σ2

0 , . . . , σ2
m2

), σ1
0 = σ2

0 be given. Let us
introduce the row vectors

U = (1, ŝ2
1,1, . . . , ŝ

2
1,m2

), V = (1, ŝ1
1,1, . . . , ŝ

1
1,m1

)

and the (m2 + 1)× (m1 + 1) dimensional matrix

W = UtV,

where the super-index t means taking transpose. Define the matrix Markov
type function

Ŝ(z) =
∫
W(x)dσ2

0(x)
z − x

understanding that integration is carried out entry by entry on the matrix W.
Fix n1 = (n1,0, n1,1, . . . , n1,m1) ∈ Zm1+1

+ and n2 = (n2,0, n2,1, . . . , n2,m2) ∈
Zm2+1

+ , |n2| = |n1| − 1. It is easy to see that there exists a non zero vector
polynomial

An = (an,0, . . . , an,m1), deg(an,k) ≤ n1,k − 1, k = 0, . . . , m1,

such that
Ŝ(z)At

n(z)− Dt
n(z) = (3.28)
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(O(1/zn2,0+1), . . . ,O(1/zn2,m2+1))t =: O(1/zn2+1), z →∞,

where Dn = (dn,0, . . . , dn,m2) is some vector polynomial. When m2 = 0, this
construction is called type I Hermite-Padé approximation. If m1 = 0 it is called
of type II. When m1 = m2 = 0 it reduces to diagonal Padé approximation. This
definition is of mixed type.

Lemma 3.4.1. For j = 0, . . . ,m2, (ŝ1
1,0 ≡ 1)

∫
xν

m1∑

k=0

an,k(x)ŝ1
1,k(x)ds2

j (x) = 0, ν = 0, . . . , n2,j − 1. (3.29)

Proof. In fact, notice that according to (3.28), for each ν, 0 ≤ ν ≤ n2,j − 1, j =
0, . . . , m2,

zν

(
m1∑

k=0

an,k(z)
∫

ŝ2
1,j(x)ŝ1

1,k(x)dσ2
0(x)

z − x
− dn,j(z)

)
= O (

1/z2
)
, z →∞,

(ŝ2
1,0 ≡ 1) and the function on the left hand side is analytic in C\Co(supp(σ2

0)).
Using Lemma 2.1.3, we obtain (3.29). ¤

Because of this Lemma, we see that An is an n-th mixed type multiple
orthogonal polynomial with respect to the pair (S1, S2) and in the sequel we
assume that it is “monic”. If

Bn = (bn,0, . . . , bn,m2), deg(bn,j) ≤ n2,j − 1, j = 0, . . . , m2,

denotes a generic vector polynomial with the indicated degrees, (3.29) may be
rewritten in matrix form as

∫
Bn(x)W(x)At

n(x)dσ2
0(x) = 0, for all Bn. (3.30)

Fix j ∈ {0, . . . , m2}. For each k ∈ {−1, . . . ,−j − 1} define

Ωj
k = {z ∈ C \ ∪−j−1

i=0 ∆i : Uµ
k (z) < Uµ

i (z), i = −1, . . . ,−j − 1, i 6= k},
and

Ω0
−1 = C \ (∆0 ∪∆−1).

Set
χj(z) := min{Uµ

k (z) : k = −1, . . . ,−j − 1}
and

(Rn,0, . . . ,Rn,m2)
t := Ŝ(z)At

n(z)− Dt
n(z).

Theorem 3.4.2. Let S1 = N (σ1
0 , . . . , σ1

m1
), S2 = N (σ2

0 , . . . , σ2
m2

), (S1, S2) ∈
Reg, and Λ = Λ(p1,0, . . . , p1,m1 ; p2,0, . . . , p2,m2) ⊂ Zm1+1

+ (•) × Zm2+1
+ (•) be

given. Then for each j ∈ {0, . . . , m2}
lim
n∈Λ

|Rn,j(z)|1/|n1| = exp(−χj(z)), K ⊂ ∪−j−1
k=−1Ω

j
k, (3.31)
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and

lim
n∈Λ

|Rn,j(z)|1/|n1| ≤ exp(−χj(z)), K ⊂ C \ (∪−j−1
k=0 ∆k). (3.32)

In particular, if p2,0 = · · · = p2,m2 = 1/(m2 + 1), then

lim
n∈Λ

|Rn,j(z)|1/|n1| = exp(−Uµ
−1(z)), K ⊂ C \ (∪−j−1

k=0 ∆k). (3.33)

µ = µ(C) = (µ−m2
, . . . , µm1

) and (ωµ
−m2

, . . . , ωµ
m1

) are the equilibrium vector
measure and the system of equilibrium constants, respectively, for the vector
potential problem determined by the interaction matrix C defined in (1.14) on
the system of compact sets Ek = supp(σ1

k), k = 0, . . . , m1, Ek = supp(σ2
−k), k =

−m2, . . . , 0.

Proof. Notice that (3.30) implies that

Ŝ(z)At
n(z)−

∫
W(x)(At

n(z)− At
n(x))dσ2

0(x)
z − x

=
∫
W(x)At

n(x)dσ2
0(x)

z − x
,

where the right hand is O(1/zn2+1), z →∞. Taking

Dt
n(z) =

∫
W(x)(At

n(z)− At
n(x))dσ2

0(x)
z − x

we obtain an integral expression for the remainder in (3.28).
Then

(Rn,0(z), . . . ,Rn,m2(z))t =
∫
W(x)At

n(x)dσ2
0(x)

z − x
.

In scalar form this says that

Rn,j(z) =
∫ An,0(x)

z − x
ds2

j (x), j = 0, . . . ,m2.

Notice that (see (1.12))
Rn,0(z) = An,−1(z).

Let us establish a connection between the remainders Rn,j(z) and the forms
An,k(z) with negative indices k ∈ {−1, . . . ,−j − 1}.

Fix j ∈ {1, . . . , m2}. We have

(−1)jRn,j(z) =
∫
· · ·

∫ An,0(x0) dσ2
0(x0) · · · dσ2

j (xj)
(z − x0)(x1 − x0) · · · (xj − xj−1)

,

and

An,−j−1(z) =
∫
· · ·

∫ An,0(x0) dσ2
0(x0) · · · dσ2

j (xj)
(x1 − x0) · · · (xj − xj−1)(z − xj)

.

Consequently,

(−1)jRn,j(z)−An,−j−1(z) =
∫
· · ·

∫ −(xj − x0)An,0(x0) dσ2
0(x0) · · · dσ2

j (xj)
(z − x0)(x1 − x0) · · · (xj − xj−1)(z − xj)

.
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Since xj − x0 = xj − xj−1 + xj−1 − · · · − x1 + x1 − x0, substituting this in the
previous formula, we obtain

An,−j−1(z) =
j−1∑

k=0

(−1)k〈σ2
j , . . . , σ2

k+1〉̂(z)Rn,k(z) + (−1)jRn,j(z).

We have a triangular scheme of linear equations whose coefficients do not
depend on n. We can solve for Rn,j in terms of An,−1, . . . ,An,−j−1. Using
(3.27) one obtains that for each j ∈ {0, . . . , m2} (when j = 0 the sum below is
empty)

Rn,j(z) =
j∑

k=1

(−1)k−1〈σ2
k, . . . , σ2

j 〉̂(z)An,−k(z) + (−1)jAn,−j−1(z).

Taking (1.17) into consideration, on Ωj
−k the term containing An,−k dominates

the sum (notice that 〈σ2
k, . . . , σ2

j 〉̂(z) 6= 0, z ∈ C \∆−k) and (3.31) immediately
follows . On the complement of ∪−j−1

k=−1Ω
j
k there is no dominating term and all

we can conclude from the previous equality is (3.32).
Let p2,0 = · · · = p2,m2 = 1/(m2 + 1). In this case, on C \ ∪−j−1

k=0 ∆k we have
that Uµ

−1(z) < Uµ
−2(z) < · · · < Uµ

−j−1(z) (see third sentence before Corollary
3.3.2) and (3.33) follows from (3.31). ¤

Remark 3.4.3. Fix j ∈ {0, . . . , m2}. For each k ∈ {−1, . . . ,−j − 1} we could
have defined

Ωj
k = {z ∈ C \ ∪−j−1

i=0 Ei : Uµ
k (z) < Uµ

i (z), i = −1, . . . ,−j − 1, i 6= k},

Ω0
−1 = C \ (E0 ∪ E−1).

Taking into account that the polynomials Qn,i and the forms An,i may have at
most one zero in each of the connected components of ∆i \Ei, one can prove in
place of (3.31) − (3.33) convergence in capacity on each compact subset of the
corresponding regions.

We say that I1 ⊂ Zm1+1
+ (•) is a complete, ordered, sequence of multi-indices

if:

a) For each n ∈ Z+, there exists a unique n1 ∈ I1 such that |n1| = n.

b) Any two multi-indices in I1 are ordered in the sense that all components
of one of them are less than or equal to the corresponding components of
the other one, or they are identical.

Remark 3.4.4. Fix I1 ⊂ Zm1+1
+ (•), I2 ⊂ Zm2+1

+ (•), two complete, ordered
sequences of multi-indices. Each n ∈ Z+ determines a unique n1 ∈ I1 and
n2 ∈ I2 such that n = |n1| = |n2| + 1. The corresponding “monic” mixed type
multiple orthogonal polynomials we denote by An. We can interchange the roles
of the Nikishin systems S1, S2, and determine a sequence of “monic” mixed type
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multiple orthogonal polynomials which we denote Bn. It is easy to verify that
the sequences {An}, {Bn}, n ∈ Z+ are bi-orthogonal. That is,

∫
Bn′(x)W(x)At

n(x)dσ2
0(x)

{
= 0, n 6= n′,
6= 0, n = n′. (3.34)

The inequality in (3.34) is a consequence of Lemma 1.2.3. With the same hypoth-
esis, all the results of this subsection hold true for the sequence {Bn}, n ∈ Z+.



4. RATIO ASYMPTOTICS

In Section 4.2 of this chapter, for convenience of the reader, we briefly re-
view some results known about the asymptotic behavior of sequences of or-
thogonal polynomials with respect to varying measures which are essential
for the proof of the results we obtain here. Then, in Section 4.3 we go on
to prove the weak asymptotics of sequences of varying measures which ap-
pear in the study of the ratio asymptotics of multiple orthogonal polynomials.
This is used, in particular, to obtain the normality of sequences of the form
{Qnl,j/Qn,j}n∈Λ, j ∈ {−m2, . . . , m1}. The next step, taken in Section 4.4, con-
sists in showing that any convergent subsequence of {Qnl,j/Qn,j}n∈Λ satisfies
a system of boundary value equations which turns out to have a unique solu-
tion. This already implies the existence of limit in (1.22). The expression of
the limit functions, in terms of the Riemann surface introduced in Subsection
1.3.2, is deduced in Section 4.5, concluding the proof of Theorem 1.3.4. In this
section, we also prove a complementary result on the ratio asymptotics of the
corresponding orthonormal polynomials and their leading coefficients. Finally,
in Section 4.6, we investigate the ratio asymptotics of the linear forms and the
connection of the present result on ratio asymptotics with the one obtained in
the previous chapter on logarithmic asymptotics.

4.1 Preliminaries and notation

In this chapter we study the convergence of the sequences {Qnl,j/Qn,j}n∈Λ and
{Anl,j/An,j}n∈Λ, where Λ ⊂ Zm1+1

+ (•)×Zm2+1
+ (•) is assumed to be an infinite

sequence of multi-indices. Recall that given a multi-index n = (n1;n2) and a
vector l = (l1; l2) such that 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, by nl = (nl1

1 ;nl2
2 )

we denote the multi-index obtained by adding one to the component li + 1 of
ni. As before, we will always assume that l = (l1; l2) is a fixed vector and
nl ∈ Zm1+1

+ (•)× Zm2+1
+ (•) for all n ∈ Λ. Recall that

∆j = ∆1
j , σj = σ1

j , j = 0, 1, . . . , m1,

∆j = ∆2
−j , σj = σ2

−j , j = 0,−1, . . . ,−m2,

and

Nn,j =





N1,j(n)− 1, j = 0, 1 . . . ,m1,

N2,−j(n), j = 0,−1, . . . ,−m2.
(4.1)
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We will keep this notation throughout this chapter. Set

Hn,j =
Qn,j+1An,j

Qn,j
, j = −m2 − 1, . . . , m1,

(Qn,−m2−1 ≡ Qn,m1+1 ≡ 1 and Hn,m1 ≡ 1). With these notations, relations
(2.5), (2.9), (2.6), and (2.10) (replacing general q by Qn,j+1 and shifting the
index j by −1) can be rewritten as follows

∫
xνQn,j(x)

|Hn,j(x)| d|σj |(x)
|Qn,j−1(x)Qn,j+1(x)| = 0, ν = 0, . . . , Nn,j − 1, (4.2)

for each j = −m2, . . . ,m1, and

Hn,j−1(z) =
∫

Q2
n,j(x)
z − x

Hn,j(x)dσj(x)
Qn,j−1(x)Qn,j+1(x)

, j = −m2, . . . ,m1. (4.3)

Since on the interval ∆j the measure σj and the functions Hn,j , Qn,j−1Qn,j+1,
preserve a constant sign, we can take their absolute values in (4.2) without
altering the orthogonality relations.

For each j = −m2, . . . ,m1, define

Kn,j =

(∫

∆j

Q2
n,j(x)

|Hn,j(x)| d|σj |(x)
|Qn,j−1(x)Qn,j+1(x)|

)−1/2

. (4.4)

Take
Kn,m1+1 = 1 , κn,j =

Kn,j

Kn,j+1
, j = −m2, . . . , m1 .

Define
qn,j = κn,jQn,j , hn,j−1 = K2

n,jHn,j−1 , (4.5)

and

dρn,j(x) =
hn,j(x)dσj(x)

Qn,j−1(x)Qn,j+1(x)
. (4.6)

From (4.2) and the notation introduced above, we obtain
∫

∆j

xνQn,j(x)d|ρn,j |(x) = 0, ν = 0, . . . , Nn,j − 1, j = −m2, . . . ,m1 , (4.7)

and qn,j is orthonormal with respect to the varying measure |ρn,j |. On the other
hand, using (4.3) it follows that

hn,j−1(z) = εn,j

∫

∆j

q2
n,j(x)
z − x

d|ρn,j |(x) , j = −m2, . . . ,m1, (4.8)

where εn,j denotes the sign of the varying measure ρn,j .
In order to study the convergence of the sequence {Qnl,j/Qn,j}n∈Λ, it is

necessary to follow the following steps. First, we show that for each j ∈
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{−m2, . . . , m1} the sequence {Qnl,j/Qn,j} is uniformly bounded on each com-
pact subset contained in C \ supp(σj) (for all sufficiently large |n1|). Taking a
subsequence of multi-indices such that all the sequences of ratios of polynomials
have limit, we show that the limit functions must satisfy a system of boundary
value problems. This system happens to have a unique solution from which we
derive that all convergent subsequences have the same limit. Finally, we show
that the limit functions can be expressed in terms of the branches of certain con-
formal representations of a related compact Riemann surface onto the extended
complex plane.

In this chapter, we assume that supp(σj) = ∆̃j∪ej , j = −m2, . . . , m1, where
∆̃j = [aj , bj ] is a bounded interval of the real line, |σ′j | > 0 a.e. on ∆̃j , and
ej is a set without accumulation points in R \ ∆̃j . We denote this writing
S1 = N ′(σ1

0 , . . . , σ1
m1

), S2 = N ′(σ2
0 , . . . , σ2

m2
).

4.2 Ratio and relative asymptotics of orthogonal polynomials
with respect to varying measures

For convenience of the reader, in this section we will present in the form of
lemmas some results from [8] on the asymptotics of polynomials orthogonal with
respect to varying measures which will be used in the proof of the theorems of
this chapter and of Chapter 6.

Let {µn}n∈N be a sequence of finite positive Borel measures whose supports
supp(µn) contain infinitely many points and are all contained in a fixed compact
set S ⊂ R. Assume also that {w2n}n∈N is a sequence of polynomials with real
coefficients such that, for each n ∈ N, deg w2n = in, 0 ≤ in ≤ 2n, w2n is
non-negative on S and ∫

dµn

w2n
< ∞.

We denote by {xn,i}2n
i=1 the set of zeros of w2n whenever deg w2n = 2n. If

deg w2n < 2n, we define xn,i = ∞ for i = 1, . . . , 2n − in and denote by
{xn,i}2n

i=2n−in+1 the set of zeros of w2n. We assume that the zeros are enu-
merated so that |xn,i| ≥ |xn,i+1|.

Let {ln,j}, deg ln,j = j, j ∈ Z+, denote the orthonormal polynomials as-
sociated to the varying measure dµn/w2n, i.e. these polynomials have positive
leading coefficient and satisfy

∫
ln,k ln,j

dµn

w2n
= δk,j , k, j ∈ Z+,

where δk,j denotes the Kronecker delta.
Given any compact interval ∆ of the real line, we will denote by ϕ∆ the

conformal mapping of C\∆ onto {|z| > 1}, such that ϕ∆(∞) = ∞ and ϕ′∆(∞) >
0.

Let f be a Borel measurable function on [0, 2π], such that log f ∈ L1[0, 2π].
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The Szegő function D(f, ·) associated with f is given by

D(f, z) = exp
( 1

4π

∫ 2π

0

eit + z

eit − z
log f(t) dt

)
, |z| < 1

Definition 4.2.1. Let k ∈ Z be a fixed integer. We say that ({dµn}, {w2n}, k)
is strongly admissible on S if

a) There exists a finite Borel measure µ on R, such that µn
∗−→ µ, n →∞.

b) In case that k is negative, then
∫

S

−k∏

i=1

|1− x/xn,i|−1dµn ≤ Mk < ∞ ,

where x/xn,i = 0 if xn,i = ∞.

c) If ∆ denotes the convex hull of S, then

lim
n→∞

2n∑

i=1

(1− |ϕ∆(xn,i)|−1) = ∞ .

d) If µ′n, µ′ denote the Radon-Nikodym derivatives of µn and µ, respectively,
then

lim
n→∞

∫

S

|µ′n(x)− µ′(x)|dx .

The following definition was introduced in [8].

Definition 4.2.2. Let {µn}n∈N, be a sequence of finite positive Borel measures
supported on the compact set S ⊂ R. We say that {µn} is a Denisov-type
sequence on S if

1) There exists a finite positive Borel measure µ, such that supp(µ) = S and
µn

∗−→ µ, n →∞.

2) There exists an interval [a, b] ⊂ S such that for each ε > 0, S \(a−ε, b+ε)
is a finite set.

3) µ′(x) > 0 a.e. on [a, b] and for all sufficiently large n, µ′n(x) > 0 a.e. on
[a, b].

The following result on ratio asymptotics of orthogonal polynomials with
respect to varying measures takes place. In [8, Theorem 1] it is proved

Lemma 4.2.3. Suppose that, for each k ∈ Z, ({dµn}, {w2n}, k) is strongly
admissible on S and {µn} is a Denisov-type sequence on S. Then, for each
fixed k ∈ Z,

lim
n→∞

ln,n+k(z)
ln,n+k−1(z)

= ϕ∆̃(z) ,

uniformly on compact subsets of C \ S, where ∆̃ = [a, b] is the interval that
appears in part 2) of Definition 4.2.2.
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Regarding relative asymptotics of orthogonal polynomials with respect to
varying measures, in [8, Theorem 2] the authors prove

Lemma 4.2.4. Suppose that for each k ∈ Z, ({dµn}, {w2n}, 2k) is strongly
admissible on S and {dµn} is a Denisov-type sequence on S. Let h be a non-
negative Borel measurable function on S verifying:

1) There exists an algebraic polynomial Q, such that Qh±1 ∈ L∞(S).

2) For each k ∈ Z, ({h dµn}, {w2n}, 2k) is strongly admissible on S.

Let {gn}n ∈ N be a sequence of continuous functions on S which converges to
g > 0 uniformly on S. For each n ∈ N, set hn = h gn and let {qn,m}m∈N, be
the sequence of orthonormal polynomials with respect to hn dµn/w2n. Then, for
each fixed k ∈ Z,

lim
n→∞

qn,n+k(z)
ln,n+k(z)

=
1

D(h̃ g̃, 1/ϕ∆̃(z))

uniformly on compact subsets of C \ S, where ∆̃ = [a, b] is the interval that
appears in part 2) of Definition 4.2.2, and h̃(θ) = h(τ(cos θ)), g̃(θ) = g(τ(cos θ)),
τ being the affine-linear transformation that maps [−1, 1] onto ∆̃.

In connection with the weak limit of sequences of varying measures Corollary
3 in [8] states the following. For the proof the authors refer to [41, Theorem 9]
and [14, Theorem 8].

Lemma 4.2.5. Suppose that, for each k ∈ Z, ({dµn}, {w2n}, k) is strongly
admissible on S and {µn} is a Denisov type sequence on S. Then, for each
k ∈ Z, and any function f continuous on S, we have

lim
n→∞

∫
f(x)

l2n,n+k(x)dµn(x)
w2n(x)

=
1
π

∫ b

a

f(x)
dx√

(b− x)(x− a)
,

where ∆̃ = [a, b].

4.3 Weak convergence of the varying measures q2
n,j(x) d|ρn,j|(x)

and uniform boundedness of the sequences {Qnl,j/Qn,j}n∈Λ

In order to prove that for each j = −m2, . . . ,m1, the sequence {Qnl,j/Qn,j}
is uniformly bounded on each compact subset of C \ supp(σj), Theorem 2.2.5
would be sufficient if ∆j = ∆̃j , j = −m2, . . . ,m1. To allow the compact sets to
enter the connected components of ∆j \supp(σj), we need to show that the zeros
of Qn,j falling in the intervals I (see Propositions 2.1.5 and 2.1.7) are attracted
to points in supp(σj) \ ∆̃j . In our aid comes the next result.
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Lemma 4.3.1. Let S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

) be given, and
let Λ ⊂ Zm1+1

+ (•) × Zm2+1
+ (•) be an infinite sequence of distinct multi-indices

such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞ , sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞ . (4.9)

For any continuous function f on supp(σj)

lim
n∈Λ

∫
f(x) q2

n,j(x) d|ρn,j |(x) =
1
π

∫ bj

aj

f(x)
dx√

(bj − x)(x− aj)
, (4.10)

where ∆̃j = [aj , bj ], −m2 ≤ j ≤ m1. In particular,

lim
n∈Λ

εn,j hn,j−1(z) =
1√

(z − bj)(z − aj)
, K ⊂ C \ supp(σj) , (4.11)

where
√

(z − bj)(z − aj) > 0 if z > bj. Consequently, for j = −m2, . . . ,m1,

each point of supp(σj) \ ∆̃j is a limit of zeros of {Qn,j},n ∈ Λ.

Proof. We will prove this by induction on j. For j = m1, using Lemma 4.2.5
(see also Corollary 3 in [8]) and the second condition in (4.9), it follows that

lim
n∈Λ

∫

∆m1

f(x)q2
n,m1

(x)
d|σm1 |(x)

|Qn,m1−1(x)| =
1
π

∫

∆̃m1

f(x)
dx√

(bm1 − x)(x− am1)
,

where f is continuous on supp(σm1). Take f(x) = (z − x)−1 where z ∈ C \
supp(σm1). According to (4.8) and the previous limit one obtains that

lim
n∈Λ

εn,m1hn,m1−1(z) =
1√

(z − bm1)(z − am1)
=: hm1(z) ,

pointwise on C \ supp(σm1). Since
∣∣∣∣∣
∫

∆m1

q2
n,m1

(x)
z − x

d|σm1 |(x)
|Qn,m1−1(x)|

∣∣∣∣∣ ≤
1

d(K, supp(σm1))
, z ∈ K ⊂ C \ supp(σm1) ,

where d(K, supp(σm1)) denotes the distance between the two compact sets, the
sequence {hn,m1−1}, n ∈ Λ, is uniformly bounded on compact subsets of C \
supp(σm1) and (4.11) follows for j = m1.

Let ζ ∈ supp(σm1) \ ∆̃m1 . Take r > 0 sufficiently small so that the circle
Cr = {z : |z−ζ| = r} surrounds no other point of supp(σm1)\∆̃m1 and contains
no zero of qn,m1 ,n ∈ Λ. From (4.11) for j = m1

lim
n∈Λ

1
2πi

∫

Cr

εn,m1h
′
n,m1−1(z)

εn,m1hn,m1−1(z)
dz =

1
2πi

∫

Cr

h′m1
(z)

hm1(z)
dz = 0 . (4.12)

Since ζ is a mass point of σm1 , formula (4.8) indicates that either hn,m1−1

has a simple pole at ζ or Qn,m1(ζ) = 0. In any case, from (4.12) and the
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argument principle, it follows that for all sufficiently large |n|,n ∈ Λ, Qn,m1

must have a simple zero inside Cr. The parameter r can be taken arbitrarily
small; therefore, the last statement of the lemma readily follows and the basis
of induction is fulfilled.

Let us assume that the lemma is satisfied for j ∈ {k + 1, . . . , m1},−m2 ≤
k ≤ m1 − 1, and let us prove that it is also true for k. From (4.11) applied to
j = k + 1, we have that

lim
n∈Λ

|hn,k(x)| = 1√
|(x− bk+1)(x− ak+1)|

,

uniformly on ∆k ⊂ C \ supp(σk+1). It follows that {|hn,k|d|σk|},n ∈ Λ, is a
sequence of Denisov type measures according to Definition 4.2.2. Additionally,
({|hn,k|d|σk|}, {|Qn,k−1Qn,k+1|}, l),n ∈ Λ, is strongly admissible as in Defini-
tion 4.2.1 for each l ∈ Z. Therefore, we can apply Lemma 4.2.5 of which (4.10)
for j = k is a particular case. In the proof of Lemma 4.2.5 (see [8, Corollary
3], [14, Theorem 8], and [41, Theorem 9]), it is required that the inequality
deg(Qn,j−1Qn,j+1) − 2 deg(Qn,j) ≤ C holds for every n ∈ Λ, where C ≥ 0 is
a constant. It is straightforward to check that this condition is satisfied under
the assumption (4.9).

Now we return to the induction argument. From (4.10) for j = k, (4.11) and
the rest of the statements of the lemma immediately follow just as in the case
when j = m1. With this we conclude the proof. ¤

Now we are ready to prove the uniform boundedness of the sequences of
ratios {Qnl,j/Qn,j}.
Lemma 4.3.2. Let S1 = N ′(σ1

0 , . . . , σ1
m1

), S2 = N ′(σ2
0 , . . . , σ2

m2
) be given, and

let Λ ⊂ Zm1+1
+ (•) × Zm2+1

+ (•) be an infinite sequence of distinct multi-indices
such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞ , sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞ .

Let us assume that there exists l = (l1; l2), 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, such
that for all n ∈ Λ we have that nl ∈ Zm1+1

+ (•) × Zm2+1
+ (•). Then, for each

j = −m2, . . . , m1, and each compact set K ⊂ C \ supp(σj) there exist positive
constants Cj,1(K), Cj,2(K) such that

Cj,1(K) ≤ inf
z∈K

∣∣∣∣
Qnl,j(z)
Qn,j(z)

∣∣∣∣ ≤ sup
z∈K

∣∣∣∣
Qnl,j(z)
Qn,j(z)

∣∣∣∣ ≤ Cj,2(K),

for all sufficiently large |n1|,n ∈ Λ.

Proof. The uniform bound from above and below on each fixed compact subset
K ⊂ C \∆j (for all n ∈ Λ) is a direct consequence of the interlacing property of
the zeros of Qnl,j and Qn,j . In fact, comparing distances to z ∈ K of consecutive
interlacing zeros, it is easy to verify that

min
{

d1,
d1

d2

}
≤ inf

z∈K

∣∣∣∣
Qnl,j(z)
Qn,j(z)

∣∣∣∣ ≤ sup
z∈K

∣∣∣∣
Qnl,j(z)
Qn,j(z)

∣∣∣∣ ≤
max{d2, d

2
2}

d1
,
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where d2 denotes the diameter of K ∪∆j and d1 denotes the distance between
K and ∆j . So, for such compact sets the assertion has been proved.

The additional restrictions made in the lemma guarantee that the zeros of
the polynomials Qnl,j and Qn,j lying in ∆j \ supp(σj) converge to the mass
points as results from Lemma 4.3.1. Let K ⊂ C \ supp(σj) and suppose that
K ∩ ∆j 6= ∅. Notice that K can intersect at most a finite number of open
intervals I1, . . . , IM forming the connected components of ∆j \ supp(σj). The
polynomials Qnl,j and Qn,j can have at most one zero in each of those intervals.
Consequently, for all |n1|,n ∈ Λ, sufficiently large, the zeros of Qnl,j and Qn,j lie
at a positive distance ε from K. Now, it is easy to show that for all sufficiently
large |n1|

min
{

ε,
ε

d2

}
≤ inf

z∈K

∣∣∣∣
Qnl,j(z)
Qn,j(z)

∣∣∣∣ ≤ sup
z∈K

∣∣∣∣
Qnl,j(z)
Qn,j(z)

∣∣∣∣ ≤
max{d2, d

2
2}

ε
.

This concludes the proof. ¤

4.4 The system of boundary value problems

From Lemma 4.3.2 we know that the sequences
{
Qnl,j/Qn,j

}
n∈Λ

, j = −m2, . . . , m1,

are uniformly bounded on each compact subset of C\supp(σj) for all sufficiently
large |n1|. By Montel’s theorem, there exists a subsequence of multi-indices
Λ′ ⊂ Λ and a collection of functions F̃

(l)
j , holomorphic in C \ supp(σj), such

that

lim
n∈Λ′

Qnl,j(z)
Qn,j(z)

= F̃
(l)
j (z), K ⊂ C \ supp(σj), j = −m2, . . . , m1. (4.13)

In principle, the functions F̃
(l)
j may depend on Λ′. We shall see that this

is not the case and, therefore, the limit in (4.13) holds for n ∈ Λ. First, let us
obtain some general information on the functions F̃

(l)
j .

Proposition 4.4.1. The limiting functions F̃
(l)
j satisfy the following properties:

a) For each j = −m2, . . . ,m1, the function F̃
(l)
j has no zeros in C\ supp(σj).

b) For each j = −m2, . . . , m1, the points in supp(σj) \ ∆̃j are removable
isolated singularities of F̃

(l)
j . These points are not zeros of F̃

(l)
j .

c) If −l2 ≤ j ≤ l1, the function F̃
(l)
j has a simple pole at infinity and

(F̃ (l)
j )′(∞) = 1, whereas, for j ∈ {−m2, . . . ,−l2− 1} ∪ {l1 + 1, . . . ,m1}, it

is analytic at infinity and F̃
(l)
j (∞) = 1.
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Proof. By Lemma 4.3.2 we know that the sequence |Qnl,j/Qn,j |,n ∈ Λ, is
uniformly bounded on compact subsets of C\ supp(σj) from below by a positive
constant, for all sufficiently large |n1|. Therefore, the assertion a) follows.

It is clear that the points in supp(σj) \ ∆̃j are isolated singularities of F̃
(l)
j .

Let ζ ∈ supp(σj) \ ∆̃j . By Lemma 4.3.1, ζ is a limit of zeros of Qn,j and Qnl,j

as |n1| → ∞,n ∈ Λ, and in a sufficiently small neighborhood of ζ, for large
|n1|,n ∈ Λ, there can be at most one zero of these polynomials (so there is
exactly one, for all sufficiently large |n1|). Let limn∈Λ ζn = ζ, where Qn,j(ζn) =
0. From formula (4.13)

lim
n∈Λ′

(z − ζn)Qnl,j(z)
Qn,j(z)

= (z − ζ)F̃ (l)
j (z), K ⊂ (C \ supp(σj)) ∪ {ζ} ,

and (z−ζ)F̃ (l)
j (z) is analytic in a neighborhood of ζ. Hence ζ is not an essential

singularity of F̃
(l)
j . Taking into consideration that Qnl,j ,n ∈ Λ, also has a

sequence of zeros converging to ζ, from the argument principle it follows that ζ

is a removable singularity of F̃
(l)
j which is not a zero.

According to the definitions of Qn,j , Qnl,j , and Propositions 2.1.5 and 2.1.7
(see also (4.1)), when −l2 ≤ j ≤ l1, we have that deg Qnl,j = Nnl,j = Nn,j +1 =
deg Qn,j + 1 whereas, for j ∈ {−m2, . . . ,−l2 − 1} ∪ {l1 + 1, . . . , m1}, we obtain
that deg Qnl,j = Nnl,j = Nn,j = deg Qn,j . This implies the assertion c). ¤

Now, let us prove that the functions F̃
(l)
j , j = −m2, . . . ,m1, satisfy a system

of boundary value problems.

Lemma 4.4.2. Let S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

) be given, and
let Λ ⊂ Zm1+1

+ (•) × Zm2+1
+ (•) be an infinite sequence of distinct multi-indices

such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞, sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞.

Let us assume that there exists l = (l1; l2), 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, such
that for all n ∈ Λ we have that nl ∈ Zm1+1

+ (•) × Zm2+1
+ (•). Then, there exists

a normalization F
(l)
j , j = −m2, . . . , m1, by positive constants, of the functions

F̃
(l)
j given in (4.13), which verifies the system of boundary value problems

1) F
(l)
j , 1/F

(l)
j ∈ H(C \ ∆̃j) ,

2) (F (l)
j )′(∞) > 0 , j ∈ {−l2, . . . , l1} ,

2′) F
(l)
j (∞) > 0 , j ∈ {−m2, . . . ,−l2 − 1} ∪ {l1 + 1, . . . , m1} ,

3) |F (l)
j (x)|2 1

|(F (l)
j−1 F

(l)
j+1)(x)|

= 1, x ∈ ∆̃j ,

(4.14)

where F
(l)
−m2−1 ≡ F

(l)
m1+1 ≡ 1.
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Proof. The assertions 1), 2), and 2’) were proved above for the functions
F̃

(l)
j . Consequently, they are satisfied by any normalization of these functions

by means of positive constants.
From (4.7) applied to n and nl, for each j = −m2, . . . , m1, we have

∫
xν Qn,j(x) d|ρn,j |(x) = 0, ν = 0, . . . , Nn,j − 1 ,

and ∫
xν Qnl,j(x) gn,j(x) d|ρn,j |(x) = 0 , ν = 0, . . . , Nnl,j − 1 ,

where

gn,j(x) =
|Qn,j−1(x)Qn,j+1(x)|
|Qnl,j−1(x)Qnl,j+1(x)|

|hnl,j(x)|
|hn,j(x)| , dρn,j(x) =

hn,j(x)dσj(x)
Qn,j−1(x)Qn,j+1(x)

.

From (4.11) and (4.13)

lim
n∈Λ′

gn,j(x) = |(F̃ (l)
j−1F̃

(l)
j+1)(x)|−1 (4.15)

uniformly on ∆j .
Fix j ∈ {−m2, . . . ,−l2− 1}∪ {l1 +1, . . . ,m1}. As mentioned above, for this

selection of j we have that deg Qnl,j = deg Qn,j = Nn,j . Due to (4.15) and
(4.13), from Lemmas 4.2.3 and 4.2.4 (Theorems 1 and 2 of [8]), it follows that

lim
n∈Λ′

Qnl,j(z)
Qn,j(z)

=
Sj(z)
Sj(∞)

= S̃j(z) = F̃
(l)
j (z) , K ⊂ C \ supp(σj) , (4.16)

where Sj is the Szegő function on C\∆̃j with respect to |F̃ (l)
j−1(x)F̃ (l)

j+1(x)|−1, x ∈
∆̃j . The function Sj is uniquely determined by

1) Sj , 1/Sj ∈ H(C \ ∆̃j) ,

2) Sj(∞) > 0 ,

3) |Sj(x)|2 1∣∣(F̃ (l)
j−1F̃

(l)
j+1)(x)

∣∣ = 1, x ∈ ∆̃j .

(4.17)

Now, fix j ∈ {−l2, . . . , l1}. In this situation deg Qnl,j = deg Qn,j + 1 =
Nn,j + 1. Let Q∗n,j(x) be the monic polynomial of degree Nn,j orthogonal with
respect to the varying measure gn,j d|ρn,j |. Using the same arguments as above,
we have

lim
n∈Λ′

Q∗
n,j(z)

Qn,j(z)
=

Sj(z)
Sj(∞)

= S̃j(z) , K ⊂ C \ supp(σj) . (4.18)

On the other hand, since deg Qnl,j = deg Q∗n,j +1 and both of these polynomials
are orthogonal with respect to the same varying weight, by Lemma 4.2.3 [8,
Theorem 1] and (4.11), it follows that

lim
n∈Λ′

Qnl,j(z)
Q∗n,j(z)

=
ϕj(z)
ϕ′j(∞)

= ϕ̃j(z) , K ⊂ C \ supp(σj) , (4.19)
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where ϕj denotes the conformal representation of C \ ∆̃j onto {w : |w| > 1}
such that ϕj(∞) = ∞ and ϕ′j(∞) > 0. The function ϕj is uniquely determined
by

1) ϕj , 1/ϕj ∈ H(C \ ∆̃j) ,

2) ϕ′j(∞) > 0 ,

3) |ϕj(x)| = 1, x ∈ ∆̃j .

(4.20)

From (4.13), (4.18), and (4.19), we obtain

lim
n∈Λ′

Qnl,j(z)
Qn,j(z)

= (S̃jϕ̃j)(z) = F̃
(l)
j (z) , K ⊂ C \ supp(σj) . (4.21)

Thus,

F̃
(l)
j =





S̃jϕ̃j , j ∈ {−l2, . . . , l1} ,

S̃j , j ∈ {−m2, . . . ,−l2 − 1} ∪ {l1 + 1, . . . , m1} ,

(4.22)

and from (4.17) and (4.22) it follows that

|F̃ (l)
j (x)|2 1∣∣(F̃ (l)

j−1F̃
(l)
j+1)(x)

∣∣ =
1
ωj

, x ∈ ∆̃j , j = −m2, . . . ,m1 , (4.23)

where

ωj =





(Sj ϕ′j)
2(∞) , j ∈ {−l2, . . . , l1} ,

S2
j (∞) , j ∈ {−m2, . . . ,−l2 − 1} ∪ {l1 + 1, . . . , m1} .

(4.24)

Now, let us show that there exist positive constants cj , j = −m2, . . . ,m1,

such that the functions F
(l)
j = cjF̃

(l)
j satisfy (4.14). In fact, according to (4.23)

for any such constants cj we have that

|F (l)
j (x)|2 1∣∣(F (l)

j−1F
(l)
j+1)(x)

∣∣ =
c2
j

cj−1cj+1ωj
, x ∈ ∆̃j , j = −m2, . . . , m1 ,

where c−m2−1 = cm1+1 = 1. The problem reduces to find appropriate constants
cj such that

c2
j

cj−1cj+1ωj
= 1 , j = −m2, . . . , m1 . (4.25)

Taking logarithm, we obtain the linear system of equations

2 log cj − log cj−1 − log cj+1 = log ωj , j = −m2, . . . , m1 (4.26)

(c−m2−1 = cm1+1 = 1) on the unknowns log cj . This system has a unique
solution with which we conclude the proof. ¤
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4.5 The limiting functions of the sequences {Qnl,j/Qn,j}n∈Λ

Recall that given an arbitrary function F (z) which has in a neighborhood of
infinity a Laurent expansion of the form F (z) = Czk + O(zk−1), C 6= 0, and
k ∈ Z, we denote

F̃ := F/C .

C is called the leading coefficient of F . When C ∈ R, sg(F (∞)) represents the
sign of C.

Proof of Theorem 1.3.4. Since the families of functions
{
Qnl,j/Qn,j

}
n∈Λ

, j = −m2, . . . , m1,

are uniformly bounded on each compact subset K ⊂ C \ supp(σj) for all suf-
ficiently large |n1|,n ∈ Λ, uniform convergence on compact subsets of the in-
dicated region follows from proving that any convergent subsequence has the
same limit. According to Lemma 4.4.2 the limit functions, appropriately nor-
malized, of a convergent subsequence satisfy the same system of boundary value
problems (4.14). From Lemma 4.2 in [5] (see also [3]) this system has a unique
solution.

It remains to show that the functions defined in (1.23) satisfy (4.14). When
multiplying two consecutive branches, the singularities on the common slit can-
cel out by the Schwarz reflection principle; therefore, 1) takes place since only
the singularities of ψ

(l)
j on ∆̃j remain. From the definition of ψ(l) it also follows

that for j = −l2, . . . , l1, F
(l)
j has at infinity a simple pole, whereas it is regular

and different from zero at infinity when j ∈ {−m2, . . . ,−l2−1}∪{l1+1, . . . ,m1}.
The factor sign in front of (1.23) guarantees the positivity claimed in 2) and 2′).

In order to verify 3), notice that F
(l)
j /F

(l)
j−1 = sg(ψ(l)

j−1(∞))/ψ
(l)
j−1. Therefore,

if j = −m2 + 1, . . . ,m1,

|F (l)
j (x)|2

|F (l)
j−1(x)F (l)

j+1(x)|
=

|ψ(l)
j (x)|

|ψ(l)
j−1(x)|

= 1, x ∈ ∆̃j ,

on account of (1.21). For j = −m2 and x ∈ ∆̃−m2 , from the definition and
(1.21)

|F (l)
−m2

(x)|2
|F (l)
−m2+1(x)|

= |ψ(l)
−m2

(x)||
m1∏

k=−m2

ψ
(l)
k (x)| = |

m1∏

k=−m2−1

ψ
(l)
k (x)| = 1,

since
∏m1

k=−m2−1 ψ
(l)
k is constantly equal to 1 or −1 on all C. The proof is

complete. ¤
The following corollary complements Theorem 1.3.4. The proof is similar to

that of Corollary 4.1 in [5].
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Corollary 4.5.1. Let S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

) be given,
and let Λ ⊂ Zm1+1

+ (•)×Zm2+1
+ (•) be an infinite sequence of distinct multi-indices

such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞, sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞.

Let us assume that there exists l = (l1; l2), 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, such
that for all n ∈ Λ we have that nl ∈ Zm1+1

+ (•) × Zm2+1
+ (•). Let {qn,j =

κn,j Qn,j}m1
j=−m2

,n ∈ Λ, be the system of orthonormal polynomials as defined
in (4.5) and {Kn,j}m1

j=−m2
,n ∈ Λ, the values given by (4.4). Then, for each

fixed j = −m2, . . . , m1, we have

lim
n∈Λ

κnl,j

κn,j
= κ

(l)
j , (4.27)

lim
n∈Λ

Knl,j

Kn,j
= κ

(l)
j · · ·κ(l)

m1
, (4.28)

and

lim
n∈Λ

qnl,j(z)
qn,j(z)

= κ
(l)
j F̃

(l)
j (z), K ⊂ C \ supp(σj) , (4.29)

where

κ
(l)
j =

c
(l)
j√

c
(l)
j−1c

(l)
j+1

, c
(l)
j =





(F (l)
j )′(∞) , j ∈ {−l2, . . . , l1} ,

F
(l)
j (∞) , j /∈ {−l2, . . . , l1} ,

(4.30)

(c(l)
−m2−1 = c

(l)
m1+1 = 1) and the functions F

(l)
j are defined by (1.23).

Proof. By Theorem 1.3.4, we have limit in (4.15) along the whole sequence Λ.
Reasoning as in the deduction of formulas (4.16) and (4.21), but now in connec-
tion with orthonormal polynomials (see Lemmas 4.2.3 and 4.2.4, [8, Theorems
1, 2]), it follows that

lim
n∈Λ

qnl,j(z)
qn,j(z)

=





(Sj ϕj)(z) , j ∈ {−l2, . . . , l1} ,

Sj(z) , j ∈ {−m2, . . . ,−l2 − 1} ∪ {l1 + 1, . . . , m1} ,

uniformly on compact subsets of C \ supp(σj), where Sj is defined in (4.17).
This formula, divided by (4.16) or (4.21) according to the value of j gives

lim
n∈Λ

κnl,j

κn,j
=
√

ωj =
cj√

cj−1cj+1
,

where ωj is defined in (4.24), and the cj are the normalizing constants found in
Lemma 4.4.2 solving the linear system of equations (4.26) which ensure that

F
(l)
j ≡ cjF̃

(l)
j , j = −m2, . . . ,m1 ,
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with F
(l)
j satisfying (4.14) and thus given by (1.23). Since (F̃ (l)

j )′(∞) = 1, j ∈
{−l2, . . . , l1}, and (F̃ (l)

j )(∞) = 1, j ∈ {−m2, . . . ,−l2 − 1} ∪ {l1 + 1, . . . , m1}
formula (4.27) immediately follows with κ

(l)
j as in (4.30).

From the definition of κn,j , we have that

Kn,j = κn,j · · ·κn,m1 .

Taking the ratio of these constants for the multi-indices n and nl and using
(4.27), we get (4.28). Formula (4.29) is an immediate consequence of (4.27) and
(1.22). ¤

Let lcm(a, b) denote the least common multiple of two integers a and b, and
define m := lcm(m1 + 1,m2 + 1), d1 := m/(m1 +1), d2 := m/(m2 +1). Within
the class of pairs l = (l1; l2) with 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, we distinguish the
subclass

L := {(l1; l2) : l1 ≡ r mod (m1+1), l2 ≡ r mod (m2+1) for some 0 ≤ r ≤ m−1}.

It is easy to check that for different r, 0 ≤ r ≤ m − 1, the pairs (l1, l2) in L
are different. Let p := (p1;p2), where p1 = (d1, . . . , d1) and p2 = (d2, . . . , d2)
have m1 + 1 and m2 + 1 components, respectively. By n + p we denote the
multi-index (n1 + p1;n2 + p2).

Corollary 4.5.2. Let S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

) be given,
and let Λ ⊂ Zm1+1

+ (•)×Zm2+1
+ (•) be an infinite sequence of distinct multi-indices

such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞, sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞.

Then, for each fixed j ∈ {−m2, . . . ,m1}, we have

lim
n∈Λ

Qn+p,j(z)
Qn,j(z)

=
∏

l∈L

F̃
(l)
j (z), K ⊂ C \ supp(σj) , (4.31)

lim
n∈Λ

κn+p,j

κn,j
=

∏

l∈L

κ
(l)
j , (4.32)

and

lim
n∈Λ

qn+p,j(z)
qn,j(z)

=
∏

l∈L

κ
(l)
j F̃

(l)
j (z), K ⊂ C \ supp(σj) . (4.33)

Proof. Given n ∈ Λ and 0 ≤ r ≤ m, let n(r) := n + q(r) where q(r) =
(q1(r);q2(r)) is the multi-index satisfying

qi(r) = (k + 1, . . . , k + 1︸ ︷︷ ︸
s

, k, . . . , k) , r = k(mi + 1) + s , 0 ≤ s ≤ mi .

Hence, n(0) = n, n(m) = n + p and n(r) ∈ Zm1+1
+ (•)× Zm2+1

+ (•) for every r.
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We have
Qn+p,j(z)
Qn,j(z)

=
m−1∏
r=0

Qn(r+1),j(z)
Qn(r),j(z)

.

In addition, by (1.22) we know that for each fixed 0 ≤ r ≤ m− 1,

lim
n∈Λ

Qn(r+1),j(z)
Qn(r),j(z)

= F̃
(l)
j (z), z ∈ K ⊂ C \ supp(σj) ,

where l = (l1; l2) is precisely the multi-index satisfying l1 ≡ r mod (m1 + 1),
l2 ≡ r mod (m2 + 1). Therefore (4.31) follows. Relations (4.32) and (4.33) are
proved analogously in view of (4.27) and (4.29). ¤

4.6 The limiting functions of the sequences {Anl,j/An,j}n∈Λ

At this point we need to introduce some notations. For j ∈ {−m2, . . . , m1− 1},
set

δj :=
{

1, if ∆j is to the left of ∆j+1 ,
−1, if ∆j is to the right of ∆j+1 .

For multi-indices l = (l1; l2) such that l1 + l2 ≥ 2, we define

∆j, l :=





1, if j ≥ l1 + 2 ,
δj−1, if j ∈ {l1, l1 + 1} ,

−δj−1δj , if j ∈ {−l2 + 1, . . . , l1 − 1} ,
−δj , if j ∈ {−l2 − 1,−l2} ,
1, if j ≤ −l2 − 2 .

If l1 + l2 = 1 then

∆j, l :=





1, if j ≥ l1 + 2 ,
δj−1, if j ∈ {l1, l1 + 1} ,
−δj , if j ∈ {−l2 − 1,−l2} ,
1, if j ≤ −l2 − 2 ,

and for l1 = l2 = 0

∆j,(0;0) :=





1, if j ≥ 2 ,
δ0, if j = 1 ,
1, if j = 0 ,

−δ−1, if j = −1 ,
1, if j ≤ −2 .

Recall that εn,j denotes the sign of the varying measure

dρn,j(x) =
hn,j(x)dσj(x)

Qn,j−1(x)Qn,j+1(x)
.
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Lemma 4.6.1. For any n,nl ∈ Zm1+1
+ (•)× Zm2+1

+ (•) and −m2 ≤ j ≤ m1

εnl,j

εn,j
=

m1∏

k=j

∆k,l . (4.34)

Proof. We will denote by sign(f, ∆) the sign of a function f on the interval ∆.
Thus

εnl,j

εn,j
= sign(

Hnl,j Qn,j−1 Qn,j+1

Hn,j Qnl,j−1 Qnl,j+1

, ∆j) . (4.35)

If −l2 ≤ j − 1 ≤ l1, then deg(Qnl,j−1) = 1 + deg(Qn,j−1) and, therefore,

sign(
Qn,j−1

Qnl,j−1

, ∆j) = δj−1 . (4.36)

If j − 1 < −l2 or j − 1 > l1, then deg(Qnl,j−1) = deg(Qn,j−1), implying that

sign(
Qn,j−1

Qnl,j−1

,∆j) = 1 . (4.37)

Analogously, we have that for −l2 ≤ j + 1 ≤ l1

sign(
Qn,j+1

Qnl,j+1

, ∆j) = −δj (4.38)

and for j + 1 < −l2 or j + 1 > l1

sign(
Qn,j+1

Qnl,j+1

, ∆j) = 1 . (4.39)

From (4.36)-(4.38) it follows that

sign(
Qn,j−1 Qn,j+1

Qnl,j−1 Qnl,j+1

, ∆j) = ∆j, l . (4.40)

Now, by (4.3)

Hnl,j(x)
Hn,j(x)

=

∫ Q2
nl,j+1

(t)

x−t

H
nl,j+1(t) dσj+1(t)

Q
nl,j

(t)Q
nl,j+2(t)∫ Q2

n,j+1(t)

x−t
Hn,j+1(t) dσj+1(t)
Qn,j(t)Qn,j+2(t)

.

Therefore,
sign(Hnl,j/Hn,j ,∆j) =

εnl,j+1

εn,j+1
. (4.41)

Since Hnl,m1 ≡ Hn,m1 ≡ 1, the right hand side of (4.41) equals 1 for j = m1.
Hence (4.34) follows from (4.35), (4.40) and (4.41). ¤

This lemma shows that εnl,j/εn,j depends on j, l, and the relative positions
of the intervals ∆j but not on n. Define the functions

A(l)
j := ψ̃

(l)
j

m1∏

k=j+1

∆k, l

(κ(l)
k )2

(the product should be understood to be equal to 1 when j = m1).
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Theorem 4.6.2. Let S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

) be given,
and let Λ ⊂ Zm1+1

+ (•) × Zm2+1
+ (•) be an infinite sequence of distinct multi-

indices such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞ , sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞ .

Let us assume that there exists l = (l1; l2), 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, such that
for all n ∈ Λ we have that nl ∈ Zm1+1

+ (•)×Zm2+1
+ (•). Let {An,j}m1

j=−m2−1,n ∈
Λ, be the associated sequences of “monic” linear forms defined by (1.11)-(1.12).
Then, for each fixed j = −m2 − 1, . . . ,m1,

lim
n∈Λ

Anl,j(z)
An,j(z)

= A(l)
j , K ⊂ C \ (supp(σj) ∪ supp(σj+1)) (4.42)

(supp(σ−m2−1) = supp(σm1+1) = ∅).
Proof. It follows from the definition of Hn,j and Hnl,j that

Anl,j(z)
An,j(z)

=
εnl,j+1hnl,j(z)
εn,j+1hn,j(z)

εn,j+1

εnl,j+1

K2
n,j+1

K2
nl,j+1

Qnl,j(z)
Qn,j(z)

Qn,j+1(z)
Qnl,j+1(z)

.

By Lemma 4.3.1,

lim
n∈Λ

εnl,j+1hnl,j(z)
εn,j+1hn,j(z)

= 1 , K ⊂ C \ supp(σj+1) .

Using Lemma 4.6.1 and Corollary 4.5.1, we have

lim
n∈Λ

εn,j+1

εnl,j+1

K2
n,j+1

K2
nl,j+1

=
m1∏

k=j+1

∆k, l

(κ(l)
k )2

.

Finally, applying (1.22) and (1.23) one obtains

lim
n∈Λ

Qnl,j(z)
Qn,j(z)

Qn,j+1(z)
Qnl,j+1(z)

= ψ̃
(l)
j (z) , K ⊂ C \ (supp(σj) ∪ supp(σj+1)) .

Putting these relations together we get (4.42). ¤

Corollary 4.6.3. Let S1 = N ′(σ1
0 , . . . , σ1

m1
), S2 = N ′(σ2

0 , . . . , σ2
m2

) be given,
and let Λ ⊂ Zm1+1

+ (•)×Zm2+1
+ (•) be an infinite sequence of distinct multi-indices

such that

sup
n∈Λ

((m2 + 1) n2,0 − |n2|) < ∞ , sup
n∈Λ

((m1 + 1) n1,0 − |n1|) < ∞ . (4.43)

Then, for each fixed j ∈ {−m2, . . . ,m1}, we have

lim
n∈Λ

An+p,j(z)
An,j(z)

=
∏

l∈L

A(l)
j (z) , K ⊂ C \ (supp(σj) ∪ supp(σj+1)) (4.44)
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(supp(σ−m2−1) = supp(σm1+1) = ∅). Consequently, uniformly on each compact
subset K ⊂ C \ (supp(σj) ∪ supp(σj+1)),

lim
n∈Λ

|An,j(z)|1/|n1| =
∏

l∈L

|A(l)
j (z)|1/m , (4.45)

where m = lcm(m1 + 1, m2 + 1).

Proof. Using the same arguments employed to prove Corollary 4.5.2, we obtain
(4.44). From (4.44) it is easy to deduce the |n1|-th root asymptotic of the linear
forms.

In fact, it is easy to see that for each n ∈ Λ there exists n0 ∈ Zm1+1
+ (•) ×

Zm2+1
+ (•) (which may depend on n), whose entries are uniformly bounded by a

constant C independent of n (condition (4.43) is used), such that n = rp + n0

for some r ∈ Z+. Write

An,j(z) =
An,j(z)
An−p,j(z)

An−p,j(z)
An−2p,j(z)

· · · An0+p,j(z)
An0,j(z)

An0,j(z).

Then

1
|n1| log |An,j(z)| = 1

|n1| log |An0,j(z)|+ 1
|n1|

r−1∑

k=0

log
∣∣∣∣
An0+(k+1)p,j(z)
An0+kp,j(z)

∣∣∣∣ .

Obviously,

lim
n∈Λ

1
|n1| log |An0,j(z)| = 0, K ⊂ C \ (supp(σj) ∪ supp(σj+1)),

and because of (4.44), uniformly on each compact subset K ⊂ C \ (supp(σj) ∪
supp(σj+1)),

lim
n∈Λ

1
|n1|

r−1∑

k=0

log
∣∣∣∣
An0+(k+1)p,j(z)
An0+kp,j(z)

∣∣∣∣ =
1
m

log

∣∣∣∣∣
∏

l∈L

A(l)
j (z)

∣∣∣∣∣ ,

since |n1| = r|p1|+O(1) = rm +O(1), |n1| → ∞. ¤
The function appearing on the right hand side of (4.45) corresponds with the

one on the right hand side of (1.17) associated to the vector equilibrium problem
with interaction matrix C constructed taking p1,k = 1/(m1 + 1), 0 ≤ k ≤ m1,
and p2,k = 1/(m2 +1), 0 ≤ k ≤ m2. In that case, for each j = −m2−1, . . . ,m1,
we have

Gj(z) =
∏

l∈L

|A(l)
j (z)|1/m , z ∈ C \ (∆̃j ∪ ∆̃j+1)

(∆−m2−1 = ∆m1+1 = ∅), where m = lcm(m1 + 1,m2 + 1).



5. RELATIVE ASYMPTOTICS

In this chapter and the next, we restrict our attention to type II multiple
orthogonal polynomials. In Section 5.2, we establish some algebraic connec-
tions between the multiple orthogonal polynomials Qn of the initial system
N (σ1, . . . , σm) and the multiple orthogonal polynomials Q̃n of the perturbed
system N (p1σ1, . . . , pmσm), where p1, . . . , pm denote polynomials with com-
plex coefficients. Section 5.3 is used to explain some notational modifications
we introduce in passing from mixed type multiple orthogonal polynomials to the
more specific type II multiple orthogonal polynomials. Theorem 1.3.5 is proved
in Section 5.4, first for polynomial perturbations from which the rational case
is deduced. The relative asymptotic of the second type functions is obtained in
Section 5.5 which is used in Section 5.6 to deduce the relative asymptotics for
the sequences {Qn,j}n∈Λ, j ∈ {1, . . . , m}, as well.

5.1 Preliminaries and notation

Let (s1, . . . , sm) = N (σ1, . . . , σm) be the Nikishin system of measures generated
by (σ1, . . . , σm). Recall that the notation (s1, . . . , sm) = N ′(σ1, . . . , σm) is used
to indicate that for each k = 1, . . . , m, supp(σk) ⊂ R consists of an interval ∆̃k,
on which |σ′k| > 0 almost everywhere, and a discrete set without accumulation
points in R \ ∆̃k. Finally, let (s̃1, . . . , s̃m) = N (p1σ1, . . . , pmσm), denote a
“perturbation” of (s1, . . . , sm), where

s̃k = 〈p1σ1, . . . , pk σk〉, 1 ≤ k ≤ m,

and the pk, k = 1, . . . ,m, are monic polynomials with complex coefficients whose
zeros lie in C \ ∪m

k=1∆k. Here, as before, ∆k = Co(supp(σk)). The system
(s̃1, . . . , s̃m) is also regarded as a Nikishin system (even if the polynomials pk

have complex coefficients).
Let Qn (resp. Q̃n) be the monic polynomial of smallest degree (not identi-

cally equal to zero) such that

0 =
∫

xνQn(x) dsk(x) , ν = 0, . . . , nk − 1 , k = 1, . . . ,m , (5.1)

0 =
∫

xνQ̃n(x) ds̃k(x) , ν = 0, . . . , nk − 1 , k = 1, . . . ,m , (5.2)
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where n = (n1, . . . , nm) ∈ Zm
+ . One of the goals of this chapter is the study

of the asymptotic behavior of the sequence {Q̃n/Qn}, when n runs through an
appropriate sequence of multi-indices contained in Zm

+ .
Given the collection of polynomials (p1, . . . , pm), we define

Zm
+ (~; p1, . . . , pm) = {n ∈ Zm

+ : j < k ⇒ nk + deg(pj+1 · · · pk) ≤ nj + 1} .

In particular,

Zm
+ (~) = {n ∈ Zm

+ : j < k ⇒ nk ≤ nj + 1} .

Obviously, Zm
+ (~; p1, . . . , pm) ⊂ Zm

+ (~) ⊂ Zm
+ (∗) and Zm

+ (•) ⊂ Zm
+ (~). Using

Lemma 1.2.3, it follows that if n ∈ Zm
+ (∗), then the polynomial Qn has degree

|n|, all its zeros are simple and lie in the interior of ∆1.

5.2 Some algebraic relations

In this section we prove a number of auxiliary lemmas which are later applied in
the analysis of the asymptotics of the sequence {Q̃n/Qn}. Let us first express
the orthogonality relations (5.2) satisfied by the polynomials Q̃n in terms of the
measures in the initial system (s1, . . . , sm).

Lemma 5.2.1. For each k = 1, . . . , m, we have

s̃k = p1lk,1s1 + p1p2lk,2s2 + · · ·+ (p1 · · · pk)lk,ksk , (5.3)

where lk,j is a polynomial of degree deg lk,j ≤ deg(pj+1 · · · pk) − 1, j < k, and
lk,k ≡ 1. In particular, if n = (n1, . . . , nm) ∈ Zm

+ (~; p1, . . . , pm), then for each
k = 1, . . . , m

0 =
∫

xνQ̃n(x)(p1 · · · pk)(x)dsk(x) , ν = 0, . . . , nk − 1 . (5.4)

Proof. To prove (5.3), we proceed by induction on m, the number of measures
which generate the system. For m = 1, (5.3) is trivial, since s̃1 = p1σ1 = p1s1.
Assume that (5.3) is true for any Nikishin system with m − 1 ≥ 1 generating
measures and let us prove it when the number of generating measures is m.

Fix k ∈ {1, . . . , m}. By definition,

s̃k = 〈p1σ1, . . . , pkσk〉 = 〈p1σ1, 〈p2σ2, . . . , pkσk〉〉 .
Consider the Nikishin system N (p2σ2, . . . , pkσk) which has at most m−1 gener-
ating measures. By the induction hypothesis, there exist polynomials h2, . . . , hk,
deg hj ≤ deg(pj+1 · · · pk)− 1, hk ≡ 1, such that

〈p2σ2, . . . , pkσk〉 = p2h2σ2 + · · ·+ (p2 · · · pk)hk〈σ2, . . . , σk〉 .
Inserting this relation above, we have

s̃k = 〈p1σ1, p2h2σ2〉+ · · ·+ 〈p1σ1, (p2 · · · pk)hk〈σ2, . . . , σk〉〉 . (5.5)
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Given two measures σα, σβ , and a polynomial h, notice that

d〈σα, h σβ〉(x) =
∫

(h(t)∓ h(x))dσβ(t)
x− t

dσα(x) =

h∗(x)dσα(x) + h(x)d〈σα, σβ〉(x) ,

where deg h∗ = deg h− 1 . Making use of this property in each term of (5.5), it
follows that

s̃k = p1[(p2h2)∗ + · · ·+ (p2 · · · pkhk)∗]σ1 + (p1p2)h2〈σ1, σ2〉+ · · ·

+(p1 · · · pk)hk〈σ1, . . . , σk〉 ,
which establishes (5.3).

Using (5.3) and the orthogonality relations (5.2) satisfied by Q̃n, it follows
that for each k ∈ {1, . . . ,m} and ν = 0, . . . , nk − 1,

0 =
∫

xνQ̃n(x)ds̃k(x) =
k∑

j=1

∫
xν lk,j(x)Q̃n(x)(p1 · · · pj)(x)dsj(x) . (5.6)

In the rest of the proof we assume that n ∈ Zm
+ (~; p1, . . . , pm). When k = 1

the last formula reduces to (5.4). Suppose that (5.4) holds up to k − 1, 1 ≤
k − 1 ≤ m− 1, and let us show that it is also satisfied for k.

Let j ∈ {1, . . . , k − 1} and 0 ≤ ν ≤ nk − 1, then

ν + deg lk,j ≤ nk − 1 + deg(pj+1 · · · pk)− 1 ≤ nj − 1 .

Therefore, according to the induction hypothesis
∫

xν lk,j(x)Q̃n(x)(p1 · · · pj)(x)dsj(x) = 0 ,

and (5.6) reduces to (5.4) for the index k. With this we conclude the proof. ¤

Lemma 5.2.2. Let n ∈ Zm
+ (~; p1, . . . , pm). Then, for each k = 1, . . . , m, and

ν = 0, . . . , nk − deg(pk+1 · · · pm)− 1

0 =
∫

xνQ̃n(x)(p1 · · · pm)(x)dsk(x). (5.7)

Proof. In place of xν we can put in (5.4) any polynomial of degree ≤ nk − 1.
So, replacing xν by xν(pk+1 · · · pm) we obtain (5.7). ¤

Our next objective is to express the multiple orthogonal polynomials of the
perturbed system in terms of multiple orthogonal polynomials of the initial
system.

Let n ∈ Zm
+ (~; p1, . . . , pm) and consider the multi-indices

nj = (n1 − deg(p2 · · · pm) + j, n2 − deg(p3 · · · pm), . . . , nm) , j ≥ 0 .
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It is easy to verify that

nj ∈ Zm
+ (~) , j ≥ 0 .

Therefore, deg Qnj
= |nj | = |n| + deg(p2p

2
3 · · · pm−1

m ) + j, all the |nj | zeros of
Qnj are simple and lie on ∆1. Moreover, for each j ≥ 0 and k = 1, . . . ,m,

0 =
∫

xνQnj (x)dsk(x) , ν = 0, . . . , nk − deg(pk+1 · · · pm)− 1 . (5.8)

Lemma 5.2.3. Let n ∈ Zm
+ (~; p1, . . . , pm) and set Rn = Q̃np1 · · · pm. There

exist unique constants λn,j , j = 0, . . . , N, such that

Rn =
N∑

j=0

λn,jQnj , N = deg(p1p
2
2 · · · pm

m) . (5.9)

If j′ is such that deg Rn = deg Qnj′ then λn,j′ = 1 and λn,j = 0, j′+1 ≤ j ≤ N .
In particular, λn,N = 1 if and only if deg Q̃n = |n|.
Proof. Since deg Rn ≤ |n|+deg(p1 · · · pm), and {Qnj}, j = 0, . . . , N, has repre-
sentatives of all degrees from |n|−deg(p2p

2
3 · · · pm−1

m ) up to |n|+deg(p1 · · · pm),
there exists a unique system of constants λn,j , j = 0 . . . , N, such that

deg(Rn −
N∑

j=0

λn,jQnj ) ≤ |n| − deg(p2p
2
3 · · · pm−1

m )− 1 .

From (5.7)-(5.8) it follows that for each k = 1, . . . ,m,

∫
xν(Rn −

N∑

j=0

λn,jQnj ) dsk(x) , ν = 0, . . . , nk − deg(pk+1 · · · pm)− 1 .

By the normality of the multi-index

n0 = (n1 − deg(p2 · · · pm), n2 − deg(p3 · · · pm), . . . , nm) ∈ Zm
+ (~) ,

we obtain that

Rn −
N∑

j=0

λn,jQnj ≡ 0 ,

which is (5.9). The rest of the statements follow because Rn is monic. ¤
Let n ∈ Zm

+ (~; p1, . . . , pm). Define recursively the functions

Rn,0(z) = Rn(z), Rn,k(z) =
∫

Rn,k−1(x)
z − x

dσk(x), k = 1, . . . , m. (5.10)

In deriving (5.7), we lost some orthogonality relations. We will recover them in
the form of analytic properties of the functions Rn,k, k = 0, . . . , m− 1.
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Lemma 5.2.4. Fix n ∈ Zm
+ (~; p1, . . . , pm). The following relations take place:

If z1 is a zero of p1 · · · pm of multiplicity τ1, then

Ω(i)
n (z1) =

(
Rn

Qn0

)(i)

(z1) = 0 , i = 0, . . . , τ1 − 1 . (5.11)

If zk is a zero of pk · · · pm, k = 2, . . . , m, of multiplicity τk, then

R
(i)
n,k−1(zk) = 0 , i = 0, . . . , τk − 1 . (5.12)

Proof. The zeros of p1 · · · pm lie in C \∆1, and those of Qn0 in ∆1. Therefore,
Ωn has a zero at z1 of multiplicity greater than or equal to τ1 which implies
(5.11).

For simplicity, first we will prove (5.12) for k = 2. By definition

Rn,1(z) =
∫

Rn(x)
z − x

dσ1(x) .

Therefore, for each i ≥ 0,

R
(i)
n,1(z) = (−1)ii!

∫
Rn(x)

(z − x)i+1
dσ1(x) , z ∈ C \∆1 .

If z2 is a zero of p2 · · · pm of multiplicity τ2, using (5.4) with k = 1 we have that

0 =
∫

(p2 · · · pm)(x)
(z2 − x)i+1

Q̃n(x)p1(x)dσ1(x) =
(−1)iR

(i)
n,1(z2)

i!
, i = 0, . . . , τ2 − 1 ,

which is (5.12) for k = 2. The proof of the general case uses basically the same
arguments.

Consider the functions

Φn,k(z) =
∫

Rn(x)
z − x

dsk(x) , k = 1, . . . ,m .

Notice that Φn,1 = Rn,1. For each i ≥ 0,

Φ(i)
n,k(z) = (−1)ii!

∫
Rn(x)

(z − x)i+1
dsk(x) , k = 1, . . . ,m .

It is easy to verify that for each k = 2, . . . , m,

Φn,k(z) + (−1)kRn,k(z) =
∫
· · ·

∫
Rn(x1)(x1 − xk)dσ1(x1) · · · dσk(xk)

(z − x1)(x1 − x2) · · · (xk−1 − xk)(z − xk)
.

Taking x1 − xk = x1 − x2 + · · ·+ xk−1 − xk, it follows that

Rn,k(z) = (−1)k−1Φn,k(z) +
k−1∑

l=1

(−1)l−1ϑ̂l,k(z)Φn,l(z), (5.13)



5. Relative asymptotics 70

for z ∈ C \ (∪m
l=1∆l) , where ϑl,k = 〈σk, σk−1, . . . , σl+1〉. If zk is a zero of

pk · · · pm of multiplicity τk(≤ τk−1 ≤ · · · ≤ τ2), using (5.4) we obtain that for
each l = 2, . . . , k and i = 0, . . . , τk − 1,

0 =
∫

(pl · · · pm)(x)
(zk − x)i+1

Q̃n(x)(p1 · · · pl−1)(x)dsl−1(x) =
(−1)iΦ(i)

n,l−1(zk)
i!

. (5.14)

Now, (5.12) is a consequence of (5.13) (with k replaced by k − 1), and (5.14).
With this we conclude the proof. ¤

5.3 Some notational adjustments

The modifications we introduce here in the notation will be employed in this
chapter and the next. For each n ∈ Zm

+ (~), define recursively the functions

Ψn,0(z) = Qn(z), Ψn,k(z) =
∫

Ψn,k−1(x)
z − x

dσk(x), k = 1, . . . ,m. (5.15)

These functions are the analogues of the functions An,−j , j = 0, . . . , m2 + 1,
defined in (1.12). In the previous chapters, we restricted our attention to multi-
indices in Zm

+ (•), which is strictly contained in Zm
+ (~). For type II multiple

orthogonal polynomials, the consideration of this slightly more general class
causes no technical difficulty. In some instances, we will refer to previous results
to deduce some formulas we need when n ∈ Zm

+ (~) instead of Zm
+ (•). Their full

proof would follow the arguments employed before. In any case, the reader can
check the original source [37] for more details if needed.

By Proposition 2.1.6, for each n = (n1, . . . , nm) ∈ Zm
+ (~), k = 1, . . . , m, and

k ≤ k + r ≤ m,
∫

Ψn,k−1(t) tνd〈σk, . . . , σk+r〉(t) = 0, ν = 0, . . . , nk+r − 1. (5.16)

Consequently, Ψn,k−1, k = 1, . . . , m, has exactly Nn,k := nk + · · ·+ nm zeros in
C \ ∆k−1, they are all simple, and lie in the interior of ∆k. Let Qn,k be the
monic polynomial of degree Nn,k whose simple zeros are located at the points
where Ψn,k−1 vanishes on ∆k and let Qn,m+1 ≡ 1. From Proposition 2.1.7 it
follows that

∫
xνΨn,k−1(x)

dσk(x)
Qn,k+1(x)

= 0, ν = 0, . . . , Nn,k − 1, k = 1, . . . ,m . (5.17)

As before, set

Hn,k(z) :=
Qn,k−1(z)Ψn,k−1(z)

Qn,k(z)
, k = 1, . . . , m + 1 ,

(Hn,1(z) ≡ 1). The analogue of (4.3) (see also (50) in [14]) is

Hn,k+1(z) =
∫

Q2
n,k(x)
z − x

Hn,k(x)dσk(x)
Qn,k−1(x)Qn,k+1(x)

, k = 1, . . . ,m . (5.18)
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From (5.17), we have that for each multi-index n = (n1, . . . , nm) ∈ Zm
+ (~)

there exists an associated system of polynomials

{Qn,k}m
k=1, deg Qn,k =

m∑

α=k

nα =: Nn,k, Qn,0 ≡ Qn,m+1 ≡ 1.

For each k = 1, . . . , m, they satisfy the full system of orthogonality relation
∫

xνQn,k(x)
Hn,k(x)dσk(x)

Qn,k−1(x)Qn,k+1(x)
= 0, ν = 0, . . . , Nn,k − 1, (5.19)

with respect to varying measures. Notice that Hn,k and Qn,k−1Qn,k+1 have
constant sign on ∆k.

Let εn,k be the sign of the measure Hn,k(x)dσk(x)/Qn,k−1(x)Qn,k+1(x) on
supp(σk). For each k = 1, . . . , m, set

Kn,k =
(∫

Q2
n,k(x)

εn,kHn,k(x)dσk(x)
Qn,k−1(x)Qn,k+1(x)

)−1/2

. (5.20)

Take
Kn,0 = 1 , κn,k =

Kn,k

Kn,k−1
, k = 1, . . . , m .

Define

qn,k = κn,kQn,k , hn,k = K2
n,k−1Hn,k , k = 1, . . . , m . (5.21)

From (5.19)
∫

xνQn,k(x)
εn,khn,k(x)dσk(x)

Qn,k−1(x)Qn,k+1(x)
= 0, ν = 0, . . . , Nn,k − 1, k = 1, . . . , m ,

and with the notation introduced above it follows that qn,k is orthonormal with
respect to the varying measure

εn,khn,k(x)dσk(x)
Qn,k−1(x)Qn,k+1(x)

= dρn,k(x) .

In the present context Lemma 4.3.1 implies (see also [36, Lemma 3.3] or [8,
Corollary 3])

Lemma 5.3.1. Let S = N ′(σ1, . . . , σm) and Λ ⊂ Zm
+ (~) be a sequence of multi-

indices such that for all n ∈ Λ, n1 − nm ≤ C, where C is a constant. Then, for
each fixed k = 1, . . . ,m, we have

lim
n∈Λ

εn,khn,k+1(z) =
1√

(z − bk)(z − ak)
, K ⊂ C \ supp(σk) , (5.22)

where [ak, bk] = ∆̃k. The square root is taken so that
√

(z − bk)(z − ak) > 0 for
z = x > bk. supp(σk) is an attractor of the zeros of {Qn,k},n ∈ Λ, and each
point of supp(σk) \ ∆̃k is a 1 attraction point of zeros of {Qn,k},n ∈ Λ.
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In the proof of our main result, we use the asymptotic behavior of the poly-
nomials Qn,k, k = 1, . . . ,m, and the functions Ψn,k, k = 1, . . . , m, when n runs
through a sequence of multi-indices Λ ⊂ Zm

+ (~).
The relevant Riemann surface has now m + 1 sheets and is given by

R =
m⋃

k=0

Rk,

formed by the consecutively “glued” sheets

R0 := C\∆̃1, Rk := C\{∆̃k∪∆̃k+1}, k = 1, . . . , m−1, Rm = C\∆̃m,

where the upper and lower banks of the slits of two neighboring sheets are
identified. Fix l ∈ {1, . . . , m}. Let ψ(l), l = 1, . . . , m, be a single valued rational
function on R whose divisor consists of a simple zero at the point ∞(0) ∈ R0

and a simple pole at the point ∞(l) ∈ Rl. Therefore,

ψ(l)(z) = C1/z +O(1/z2) , z →∞(0) , ψ(l)(z) = C2z +O(1) , z →∞(l) ,

where C1 and C2 are constants different from zero. We denote the branches of
the algebraic function ψ(l), corresponding to the different sheets k = 0, . . . , m
of R by

ψ(l) := {ψ(l)
k }m

k=0 .

We normalize ψ(l) so that

m∏

k=0

|ψ(l)
k (∞)| = 1, C1 ∈ R \ {0}. (5.23)

The symmetry formula, ψ(l)(z) = ψ(l)(z), z ∈ R, satisfied by the functions
ψ(l), imply that for each k = 0, 1, . . . ,m

ψ
(l)
k : R \ (∆̃k ∪ ∆̃k+1) −→ R (5.24)

(∆̃0 = ∆̃m+1 = ∅). In particular, the coefficients of the Laurent expansion at ∞
of these branches are real numbers and sg(ψ(l)

k (∞)) is defined. It also expresses
that

ψ
(l)
k (x±) = ψ

(l)
k (x∓) = ψ

(l)
k+1(x±), x ∈ ∆̃k+1. (5.25)

For any fixed multi-index n = (n1, . . . , nm), set

nl := (n1, . . . , nl−1, nl + 1, nl+1, . . . , nm) .

Corollary 4.5.1 (see also [36] or [5]) may be rewritten as

Corollary 5.3.2. Let S = N ′(σ1, . . . , σm) and Λ ⊂ Zm
+ (~) be a sequence of

multi-indices such that for all n ∈ Λ and some fixed l ∈ {1, . . . ,m}, we have
that nl ∈ Zm

+ (~) and n1 − nm ≤ C, where C is a constant. Let {qn,k =
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κn,kQn,k}m
k=1,n ∈ Λ, be the system of orthonormal polynomials defined in (5.21)

and {Kn,k}m
k=1,n ∈ Λ, the values given by (5.20). Then, for each fixed k =

1, . . . , m, we have
lim
n∈Λ

κnl,k

κn,k
= κ

(l)
k , (5.26)

lim
n∈Λ

Knl,k

Kn,k
= κ

(l)
1 · · ·κ(l)

k , (5.27)

and

lim
n∈Λ

qnl,k(z)
qn,k(z)

= κ
(l)
k F̃

(l)
k (z), K ⊂ C \ supp(σk) , (5.28)

where

κ
(l)
k =

c
(l)
k√

c
(l)
k−1c

(l)
k+1

, c
(l)
k =

{
(F (l)

k )′(∞) , k = 1, . . . , l ,

F
(l)
k (∞) , k = l + 1, . . . , m ,

(5.29)

(c(l)
0 = c

(l)
m+1 = 1) and

F
(l)
k := δk,l

m∏

ν=k

ψ(l)
ν , (5.30)

with δk,l = sg
(∏m

ν=k ψ
(l)
ν (∞)

)
.

5.4 Relative asymptotics for the polynomials Qn

We will first prove the theorem when the measures are modified by means of
polynomials; that is, we will initially suppose that qj ≡ 1, j = 1, . . . , m. Once
this is done, the rational case easily follows.

Proof of Theorem 1.3.5 in the polynomial case. When l = 1, it is possible
to find an algebraic function ψ(1) satisfying

m∏

k=0

ψ
(1)
k (∞) = 1 , C1 ∈ R \ {0}. (5.31)

Let (a, b)k denote the interval (a, b) on the sheet Rk. We distinguish two cases.
Suppose that ∆̃1 = [a1, b1] is to the left of ∆̃2 = [a2, b2]. Take ψ(1) verifying
(5.23) with C1 = limz→∞ zψ

(1)
0 (z) > 0. Because of (5.24), the restriction of ψ(1)

to (−∞, a1]0 ∪ (−∞, a1]1 establishes a bicontinuous bijection onto the interval
(−∞, 0) of the real line. It follows that ψ

(1)
1 (x) → −∞, x → −∞, x ∈ R, which

means that C2 > 0, and ψ
(1)
k (∞) > 0, k = 2, . . . , m. Therefore,

∏m
k=0 ψ

(1)
k (∞) >

0. If ∆̃1 is to the right of ∆̃2, take ψ(1) satisfying (5.23) with C1 < 0. Now, the
restriction of ψ(1) to [b1, +∞)0 ∪ [b1, +∞)1 establishes a bicontinuous bijection
onto (−∞, 0). It follows that ψ

(1)
1 (x) → −∞, x → +∞, x ∈ R, which means

that C2 < 0, and ψ
(1)
k (∞) > 0, k = 2, . . . , m. Again,

∏m
k=0 ψ

(1)
k (∞) > 0.
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Throughout the rest of this chapter, when ∆̃1 is to the left of ∆̃2, we will
select ψ(1) so that sg(ψ(1)

k (∞)) = 1, for all k = 0, . . . , m. If ∆̃1 is to the
right of ∆̃2, we will take ψ(1) so that sg(ψ(1)

0 (∞)) = sg(ψ(1)
1 (∞)) = −1 and

sg(ψ(1)
k (∞)) = 1, for all k = 2, . . . , m.

In general, for any l ∈ {1, . . . , m} and ψ(l) verifying (5.23), we know that

m∏
ν=0

ψ(l)
ν (∞) ∈ {−1, 1} .

Let Λ ⊂ Zm
+ (~; p1, . . . , pm) be an infinite sequence of distinct multi-indices

such that n1 − nm ≤ C,n ∈ Λ. According to (5.26)-(5.30), for each fixed j ≥ 0,

lim
n∈Λ

Qnj+1(z)
Qnj

(z)
= F̃

(1)
1 (z) =

sg(ψ(1)
0 (∞))

c
(1)
1 ψ

(1)
0 (z)

=: ϕ0(z), K ⊂ C \ supp(σ1) . (5.32)

(Notice that (5.31) implies that
∏m

ν=0 ψ
(1)
ν (z) ≡ 1.)

Using (5.9),

Ωn =
Rn

Qn0

=
N∑

j=0

λn,j

Qnj

Qn0

, N = deg(p1p
2
2 · · · pm

m) .

Set

λ∗n = (
N∑

j=0

|λn,j |)−1 .

At least one of the numbers in the sum is 1 so λ∗n is finite. Define

λ∗nΩn =
N∑

j=0

λ∗n,j

Qnj

Qn0

,

N∑

j=0

|λ∗n,j | = 1 . (5.33)

Because of (5.32) and (5.33), the family {λ∗nΩn},n ∈ Λ, is normal in C \
supp(σ1), and any convergent subsequence {λ∗nΩn},n ∈ Λ′ ⊂ Λ, converges to

lim
n∈Λ′

λ∗nΩn(z) = pΛ′(ϕ0(z)) =
N∑

j=0

λjϕ
j
0(z) , K ⊂ C \ supp(σ1) .

That is, pΛ′(w) is a polynomial of degree ≤ N , not identically equal to zero
since

∑N
j=0 |λj | = 1. We will show that pΛ′ does not depend on the subsequence

taken. This implies the existence of limit along all Λ. To this aim, we will
uniquely determine N zeros of pΛ′ .

Let z1 be one of the zeros of p1 · · · pm and τ1 its multiplicity. Using (5.11)
and the Weierstrass theorem, it follows that

(pΛ′ ◦ ϕ0)(i)(z1) = 0 , i = 0, . . . , τ1 − 1 .
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Since ϕ0 is one to one in C \ ∆̃1, we conclude that pΛ′(w) is divisible by

(w − ϕ0(z1))τ1 .

We will detect the rest of the zeros of pΛ′(w) in virtue of (5.12). Consider
the sequence {λ∗nRn,k−1},n ∈ Λ′. From (5.9), (5.10) and (5.15)

λ∗nRn,k−1(z) =
N∑

j=0

λ∗n,jΨnj ,k−1(z) .

Multiplying this equation by εn0,k−1K
2
n0,k−1Qn0,k−1/Qn0,k and using the defi-

nition of hn,k, we obtain

λ∗nεn0,k−1K
2
n0,k−1(Qn0,k−1Rn,k−1)(z)

Qn0,k(z)

=
N∑

j=0

λ∗n,j

K2
n0,k−1

K2
nj ,k−1

Qn0,k−1(z)
Qnj ,k−1(z)

Qnj ,k(z)
Qn0,k(z)

εn0,k−1

εnj ,k−1
εnj ,k−1hnj ,k(z) .

From (5.26)-(5.28), for each j ≥ 0 and k = 2, . . . ,m,

lim
n∈Λ′

K2
nj ,k−1

K2
nj+1,k−1

Qnj ,k−1(z)
Qnj+1,k−1(z)

Qnj+1,k(z)
Qnj ,k(z)

=
F̃

(1)
k (z)

(κ(1)
1 · · ·κ(1)

k−1)2F̃
(1)
k−1(z)

,

uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)). On account of
(5.29) and the expression of the functions F

(1)
k ,

F̃
(1)
k (z)

(κ(1)
1 · · ·κ(1)

k−1)2F̃
(1)
k−1(z)

=
sg(ψ(1)

k−1(∞))

c
(1)
1 ψ

(1)
k−1(z)

=: ϕk−1(z). (5.34)

Let us consider the ratios εnj+1,k/εnj ,k, k = 1, . . . , m− 1, j ≥ 0. Recall that
εn,k is by definition the sign of the measure Hn,k(x)dσk(x)/(Qn,k−1Qn,k+1)(x)
on ∆k. Notice that for each fixed k = 2, . . . , m the polynomials Qnj ,k have
the same degree for all j ≥ 0; therefore, they all have the same sign on any
interval disjoint from ∆k. On the other hand, the polynomials Qnj ,1 have
degrees that increase one by one with j. Hence, if ∆1 is to the left of ∆2, all the
polynomials Qnj ,1 have the same sign on ∆2 whereas, if ∆1 is to the right of ∆2,
the sign of these polynomials alternate on ∆2 as j increases one by one. Taking
these facts into consideration, it is easy to see that for all j ≥ 0, the measures
Hnj ,1(x)dσ1(x)/Qnj ,2(x) = dσ1(x)/Qnj ,2(x), have the same sign; therefore, for
all j ≥ 0, εnj+1,1/εnj ,1 = 1 and the functions Hnj ,2 have the same sign on
∆2 (see (5.18)). Hence, the measures Hnj ,2(x)dσ2(x)/(Qnj ,1Qnj ,3)(x) have the
same sign if ∆1 is to the left of ∆2 and alternate signs as j increases when ∆1

is to the right of ∆2. Thus, for all j ≥ 0, εnj+1,2/εnj ,2 = 1 when ∆1 is to the
left of ∆2 and εnj+1,2/εnj ,2 = −1 when ∆1 is to the right of ∆2. By the same
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token (see (5.18)), for all j ≥ 0 the functions Hnj ,3 have the same sign on ∆3

when ∆1 is to the left of ∆2 and alternate sign when ∆1 is to the right of ∆2.
From now on the situation repeats and for each fixed k = 2, . . . , m− 1, and all
j ≥ 0, εnj+1,k/εnj ,k = 1 when ∆1 is to the left of ∆2 while εnj+1,k/εnj ,k = −1
when ∆1 is to the right of ∆2.

Let δ = 1 when ∆1 is to the left of ∆2 and δ = −1 if ∆1 is to the right of
∆2. Using (5.22) and (5.26)-(5.29), it follows that

lim
n∈Λ′

λ∗nεn0,k−1K
2
n0,k−1

Qn0,k−1(z)Rn,k−1(z)
Qn0,k(z)

=





1√
(z−b1)(z−a1)

∑N
j=0 λjϕ

j
1(z) , k = 2 ,

1√
(z−bk−1)(z−ak−1)

∑N
j=0 λj(δϕk−1)j(z) , k = 3, . . . , m ,

= (5.35)





1√
(z−b1)(z−a1)

pΛ′(ϕ1(z)) , k = 2 ,

1√
(z−bk−1)(z−ak−1)

pΛ′(δϕk−1(z)) , k = 3, . . . , m ,

uniformly on each compact subset K of C \ (supp(σk−1) ∪ supp(σk)).
Let zk be one of the zeros of pk · · · pm, k = 2, . . . , m, and τk its multiplicity.

Using (5.35), (5.12), and Weierstrass theorem, it follows that

(pΛ′ ◦ ϕ1)(i)(z2) = 0 , i = 0, . . . , τ2 − 1 ,

and

(pΛ′ ◦ (δϕk−1))(i)(zk) = 0 , i = 0, . . . , τk − 1 , k = 3, . . . , m .

Since ϕk−1 is one to one in C\ (∆̃k−1∪∆̃k), we conclude that pΛ′(w) is divisible
by

(w − ϕ1(z2))τ2 ,

and
(w − δϕk−1(zk))τk , k = 3, . . . , m .

Therefore, the following sets are formed by zeros of pΛ′ :

Z0 := {ϕ0(z1) : z1 is a zero of p1 · · · pm} ,

Z1 := {ϕ1(z2) : z2 is a zero of p2 · · · pm} ,

Zk := {δϕk(zk+1) : zk+1 is a zero of pk+1 · · · pm} , 2 ≤ k ≤ m− 1 .

Assume first that δ = 1. Recall that in this case we selected ψ(1) so that
sg(ψ(1)

k (∞)) = 1 for all 0 ≤ k ≤ m. Therefore the functions ϕ0, ϕ1, δϕk, 2 ≤ k ≤
m− 1, are the first m branches of 1/c

(1)
1 ψ(1). If δ = −1, since ψ(1) was chosen

so that sg(ψ(1)
0 (∞)) = sg(ψ(1)

1 (∞)) = −1 and sg(ψ(1)
k (∞)) = 1, 2 ≤ k ≤ m,

the functions ϕ0, ϕ1, δϕk, 2 ≤ k ≤ m − 1, are now the first m branches of
−1/c

(1)
1 ψ(1). In any case, since ψ(1) : R −→ C is bijective it follows that the
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zero sets Zk, 0 ≤ k ≤ m − 1 are pairwise disjoint. Therefore, we have detected
N = deg(p1p

2
2 · · · pm

m) zeros (counting multiplicities) of the polynomial pΛ′ and
their location does not depend on the subsequence Λ′ ⊂ Λ.

Let

(pk · · · pm)(z) =
lk∏

ν=1

(z − zk,ν)τk,ν ,

where {zk,1, . . . , zk,lk} are the distinct zeros of pk · · · pm. Then

pΛ′(w) = c

2∏

k=1

lk∏
ν=1

(w − ϕk−1(zk,ν))τk,ν

m∏

k=3

lk∏
ν=1

(w − δϕk−1(zk,ν))τk,ν ,

where c is uniquely defined by the conditions that it is a positive constant such
that the sum of the moduli of the coefficients of pΛ′ equals one; moreover,

0 < c = lim
n∈Λ

λ∗n < ∞ .

Consequently, uniformly on each compact subset K ⊂ C \ supp(σ1),

lim
n∈Λ

Rn(z)
Qn0(z)

=

2∏

k=1

lk∏
ν=1

(ϕ0(z)− ϕk−1(zk,ν))τk,ν

m∏

k=3

lk∏
ν=1

(ϕ0(z)− δϕk−1(zk,ν))τk,ν . (5.36)

From (5.26) and (5.28), it follows that

lim
n∈Λ

Qn(z)
Qn0(z)

= (F̃ (1)
1 (z))deg(p2···pm) · · · (F̃ (m−1)

1 (z))deg(pm) . (5.37)

Combining (5.36) and (5.37), we get

lim
n∈Λ

Q̃n(z)
Qn(z)

= F(z; p1, . . . , pm) , K ⊂ C \ supp(σ1) ,

where (ϕ0(z) = F̃
(1)
1 (z))

F(z; p1, . . . , pm) =
l1∏

ν=1

(
ϕ0(z)− ϕ0(z1,ν)

z − z1,ν

)τ1,ν l2∏
ν=1

(
1− ϕ1(z2,ν)

ϕ0(z)

)τ2,ν

×

m∏

k=3

lk∏
ν=1

(
ϕ0(z)− δϕk−1(zk,ν)

F̃
(k−1)
1 (z)

)τk,ν

.

Let us simplify the expression above. From the definition of the functions
ϕk, and taking into account that δ = sg(ψ(1)

0 (∞)), it follows that

1− ϕ1(z2,ν)
ϕ0(z)

= 1− ψ
(1)
0 (z)

ψ
(1)
1 (z2,ν)

.
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It is easy to see that for l ≥ 2 the following equation holds:

1
ψ(1)(z)

− 1
ψ(1)(∞(l−1))

=
C

(l−1)
0

C
(1)
0 ψ(l−1)(z)

, (5.38)

where
ψ(1)(z) = C

(1)
0 /z +O(1/z2) , z →∞(0) ,

ψ(l−1)(z) = C
(l−1)
0 /z +O(1/z2) , z →∞(0) .

For k ≥ 3 (recall that
∏m

ν=0 ψ
(l)
ν (∞) ∈ {−1, 1} when l ≥ 2), we have that

F̃
(k−1)
1 (z) =

sg(ψ(k−1)
0 )(∞)

c
(k−1)
1 ψ

(k−1)
0 (z)

.

Thus
ϕ0(z)− δϕk−1(zk,ν)

F̃
(k−1)
1 (z)

= (5.39)

c
(k−1)
1 ψ

(k−1)
0 (z)

c
(1)
1 sg(ψ(k−1)

0 (∞))

(
sg(ψ(1)

0 (∞))

ψ
(1)
0 (z)

− δ

ψ
(1)
k−1(zk,ν)

)
.

From (5.38), it follows that

ψ
(k−1)
0 (z)

(
1

ψ
(1)
0 (z)

− 1

ψ
(1)
k−1(∞)

)
=

C
(k−1)
0

C
(1)
0

.

Therefore,

ψ
(k−1)
0 (z)

(
1

ψ
(1)
0 (z)

− δ

ψ
(1)
k−1(zk,ν)

)
= (5.40)

C
(k−1)
0

C
(1)
0

+

(
ψ

(k−1)
0 (z)

ψ
(1)
k−1(∞)

− δψ
(k−1)
0 (z)

ψ
(1)
k−1(zk,ν)

)
.

It is straightforward to check that

c
(k−1)
1

c
(1)
1

C
(k−1)
0

C
(1)
0

=
sg(ψ(k−1)

0 (∞))

sg(ψ(1)
0 (∞))

. (5.41)

Evaluating (5.38) at zk,ν we obtain

1

ψ
(1)
k−1(zk,ν)

− 1

ψ
(1)
k−1(∞)

=
C

(k−1)
0

C
(1)
0 ψ

(k−1)
k−1 (zk,ν)

. (5.42)

Assume that ∆1 is to the left of ∆2, then δ = sg(ψ(1)
0 (∞)) = 1. From (5.39),

(5.40), (5.41), and (5.42), we find that

ϕ0(z)− δϕk−1(zk,ν)

F̃
(k−1)
1 (z)

= 1− ψ
(k−1)
0 (z)

ψ
(k−1)
k−1 (zk,ν)

.
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If ∆1 is to the right of ∆2, then δ = sg(ψ(1)
0 (∞)) = −1. Applying (5.39)-(5.42),

we obtain again

ϕ0(z)− δϕk−1(zk,ν)

F̃
(k−1)
1 (z)

= 1− ψ
(k−1)
0 (z)

ψ
(k−1)
k−1 (zk,ν)

.

Therefore,
F(z; p1, . . . , pm) = (5.43)

l1∏
ν=1

(
ϕ0(z)− ϕ0(z1,ν)

z − z1,ν

)τ1,ν m∏

k=2

lk∏
ν=1

(
1− ψ

(k−1)
0 (z)

ψ
(k−1)
k−1 (zk,ν)

)τk,ν

.

(We did not substitute ϕ0 in terms of ψ
(1)
0 (see (5.32)) in the first group of

products for simplicity in the final expression.)
We have proved (1.24) on compact subsets of C \ supp(σ1). Using the

maximum principle it follows that the same is true on compact subsets of
C \ supp(σ1). Notice that F is analytic and has no zero in C \ ∆̃1. For all
n ∈ Λ, deg Qn = |n|, supp(σ1) is an attractor of the zeros of {Qn},n ∈ Λ, and
each point in supp(σ1) \ ∆̃1 is a 1 attraction point of zeros of {Qn},n ∈ Λ;
therefore, the statements concerning deg Q̃n and the asymptotic behavior of
the zeros of these polynomials follow from (1.24), on account of the argument
principle and the corresponding behavior of the zeros of the polynomials Qn

described in Lemma 5.3.1.
In order to prove the last statement, let us assume that the polynomials

pk, k = 1, . . . , m, have real coefficients and Λ ⊂ Zm
+ (~). Notice that in this case

the polynomials Q̃n are the multiple orthogonal polynomials with respect to the
Nikishin system N (p1σ1, . . . , pmσm) generated by real measures with constant
sign. Thus, Corollary 5.3.2 can be applied to them. Given Λ we construct the
auxiliary sequence Λ(¦) as follows. To each n = (n1, . . . , nm) ∈ Λ we associate
n¦ = (n1, n2−deg(p2), . . . , nm−deg(p2 · · · pm)) (we disregard those multi-indices
in Λ for which a component of n¦ would turn out to be negative, according to
the assumptions on Λ there can be at most a finite number of such n). It is
easy to see that Λ(¦) ⊂ Zm

+ (~; p1, . . . , pm).
Choose consecutive multi-indices running from n¦ to n so that each one of

them belongs to Zm
+ (~). We can write Qn/Qn¦ as the product of quotients of

the corresponding monic multiple orthogonal polynomials. The same can be
done with Q̃n/Q̃n¦ . According to (5.26) and (5.28), there exists an analytic
function G(z) in C \ ∆̃1, which is never zero, such that

lim
n∈Λ

Qn(z)
Qn¦(z)

= lim
n∈Λ

Q̃n(z)

Q̃n¦(z)
= G(z) , K ⊂ C \ supp(σ1) .

Since
Q̃n(z)
Qn(z)

=
Q̃n(z)

Q̃n¦(z)

Q̃n¦(z)
Qn¦(z)

Qn¦(z)
Qn(z)

,
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using Theorem 1.3.5 on the ratio appearing in the middle of the right hand
side, and the previous limits on the other two ratios, the last statement readily
follows. ¤
Proof of Theorem 1.3.5 in general. Notice that N (p1

q1
σ1, . . . ,

pm

qm
σm) =

N ( p1q1
|q1|2 σ1, . . . ,

pmqm

|qm|2 σm), where qk denotes the polynomial obtained conjugating
the coefficients of qk. Let Q∗

n be the nth monic multiple orthogonal polynomial
with respect to the Nikishin system N ( σ1

|q1|2 , . . . , σm

|qm|2 ) generated by measures
with constant sign.

Using Theorem 1.3.5 for the polynomial case, we have

lim
n∈Λ

Q̃n(z)
Q∗n(z)

= F(z; p1q1, . . . , pmqm) , K ⊂ C \ supp(σ1)

and, considering the last remark of the same theorem for the polynomial case,
we also have

lim
n∈Λ

Qn(z)
Q∗n(z)

= F(z; q1q1, . . . , qmqm) , K ⊂ C \ supp(σ1) .

On the other hand,

F(z; p1q1, . . . , pmqm)
F(z; q1q1, . . . , qmqm)

=
F(z; p1, . . . , pm)
F(z; q1, . . . , qm)

because in the products defining the functions on the left hand side all the
factors connected with the zeros of the qk cancel out. Consequently, (1.24)
takes place. The rest of the statements are proved following arguments similar
to those employed in the proof for the polynomial case. ¤

The previous results allow to derive ratio asymptotics for the multiple or-
thogonal polynomials of our perturbed Nikishin systems.

Corollary 5.4.1. Let S = N ′(σ1, . . . , σm). Consider the perturbed Nikishin
system N (p1

q1
σ1, . . . ,

pm

qm
σm), where pk, qk denote relatively prime polynomials

whose zeros lie in C\∪m
k=1∆k. Let Λ ⊂ Zm

+ (~; p1q1, . . . , pmqm) be a sequence of
distinct multi-indices such that for all n ∈ Λ and some fixed l ∈ {1, . . . , m}, we
have that nl ∈ Zm

+ (~; p1q1, . . . , pmqm) and n1−nm ≤ C, where C is a constant.
Let Q̃n be the monic multiple orthogonal polynomial of smallest degree with
respect to the Nikishin system N (p1

q1
σ1, . . . ,

pm

qm
σm) and n. Then

lim
n∈Λ

Q̃nl(z)

Q̃n(z)
= lim

n∈Λ

Qnl(z)
Qn(z)

= F̃
(l)
1 (z), K ⊂ C \ supp(σ1) .

Proof. Since
Q̃nl(z)

Q̃n(z)
=

Q̃nl(z)
Qnl(z)

Qnl(z)
Qn(z)

Qn(z)

Q̃n(z)
,

the result follows immediately applying Corollary 5.3.2 and Theorem 1.3.5. ¤
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5.5 Relative asymptotics of second type functions

Let Q̃n be the monic polynomial of smallest degree satisfying (5.2). Set

Ψ̃n,0(z) := Q̃n(z) ,

Ψ̃n,k(z) :=
∫

Ψ̃n,k−1(x)
z − x

pk(x) dσk(x) , 1 ≤ k ≤ m. (5.44)

Lemma 5.5.1. If nj ≥ deg(pj+1 · · · pm), j = 1, . . . , m − 1, then Rn,k(z) =
(pk+1 · · · pm)(z)Ψ̃n,k(z), z ∈ C \ supp(σk), k = 0, 1, . . . , m, (Rn,m = Ψ̃n,m).

Proof. We proceed by induction on k. The case k = 0 is trivial since by
definition, Rn,0(z) = (p1 · · · pm)(z)Q̃n(z). Assume that the result holds for
k − 1, and let us prove it for k. We have

Rn,k(z) =
∫

Rn,k−1(x)
z − x

dσk(x) =
∫

Ψ̃n,k−1(x)(pk · · · pm)(x)
z − x

dσk(x) =

(pk+1 · · · pm)(z)Ψ̃n,k(z) +
∫

Ψ̃n,k−1(x)l(x)pk(x)dσk(x) ,

where l(x) is a polynomial of degree deg(pk+1 · · · pm)−1. Now, for k ≤ k+r ≤ m,

the functions Ψ̃n,k satisfy the orthogonality relations (see in [29] that the proof
presented there is also valid for complex measures)

∫
Ψ̃n,k−1(t)tνd〈pkσk, . . . , pk+rσk+r〉(t) = 0 , ν = 0, . . . , nk+r − 1.

In particular,
∫

Ψ̃n,k−1(t)tνpk(t)dσk(t) = 0 if ν ≤ nk − 1. Thus, since we are
assuming that nk ≥ deg(pk+1 · · · pm), we get that

∫
Ψ̃n,k−1(x)l(x)pk(x)dσk(x) = 0

and the result follows. ¤

Remark 5.5.2. The condition nk ≥ deg(pk+1 · · · pm), k = 1, . . . , m − 1, is
automatically satisfied by the components of multi-indices n with norm suffi-
ciently large that belong to a sequence Λ ⊂ Zm

+ (~; p1, . . . , pm) such that for all
n ∈ Λ, n1 − nm ≤ C, where C is a constant. In fact, it is satisfied for all
n ∈ Zm

+ (~; p1, . . . , pm) such that nm ≥ 1.

Now, we need to introduce some notation similar to that presented in Section
4.6

δk :=
{

1, if ∆k is to the left of ∆k+1 ,
−1, if ∆k is to the right of ∆k+1 .

For k ≥ 2, set

∆k,l :=




−δkδk−1, if l ≥ k + 1 ,

δk−1, if l ∈ {k − 1, k} ,
1, if l ≤ k − 2 .
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If k = 1,

∆1,l :=
{

1, if l = 1 ,
−δ1, if l ≥ 2 .

Recall that εn,k denotes the sign of the measure Hn,k(x)dσk(x)
Qn,k−1(x)Qn,k+1(x) on supp(σk).

Lemma 4.6.1 can be rewritten as

Lemma 5.5.3. For any n,nl ∈ Zm
+ (~)

εnl,j

εn,j
=

j∏

k=1

∆k,l . (5.45)

Definition 5.5.4. We define the following functions

ϕ
(j)
k−1(z) :=

sg(ψ(j)
k−1(∞))

c
(j)
1 ψ

(j)
k−1(z)

, 1 ≤ j ≤ m− 1 . (5.46)

Notice that ϕ
(1)
k−1 = ϕk−1, where ϕk−1 was previously defined in (5.34).

Theorem 5.5.5. Let S = N ′(σ1, . . . , σm) and Λ ⊂ Zm
+ (~; p1, . . . , pm) be a

sequence of distinct multi-indices such that for all n ∈ Λ, n1 − nm ≤ C, where
C is a constant. Then, for each k ∈ {0, 1, . . . , m},

lim
n∈Λ

Ψ̃n,k(z)
Ψn,k(z)

= Gk(z; p1, . . . , pm) , K ⊂ C \ (supp(σk) ∪ supp(σk+1)) , (5.47)

where Gk is analytic and never vanishes in the indicated region. For each
k = {0, . . . , m − 1} and all sufficiently large |n|,n ∈ Λ, Ψ̃n,k has exactly
Nn,k+1 = nk+1 + · · ·+ nm zeros in C \ supp(σk), supp(σk+1) is an attractor of
the zeros of {Ψ̃n,k},n ∈ Λ, in this region, and each point in supp(σk+1) \ ∆̃k+1

is a 1 attraction point of zeros of {Ψ̃n,k},n ∈ Λ. When the coefficients of the
polynomials pk, k = 1, . . . , m, are real, all the statements above remain valid for
Λ ⊂ Zm

+ (~). An expression for Gk is given in (5.50)-(5.51) below.

Proof. For k = 0, (5.47) is (1.24) since Ψ̃n,0 = Q̃n and Ψn,0 = Qn; therefore,

G0(z; p1, . . . , pm) = F(z; p1, . . . , pm) .

By (5.35), we know that

lim
n∈Λ

λ∗nεn0,k−1K
2
n0,k−1(Qn0,k−1Rn,k−1)(z)

Qn0,k(z)
=





1√
(z−b1)(z−a1)

pΛ(ϕ1(z)) , k = 2 ,

1√
(z−bk−1)(z−ak−1)

pΛ(δϕk−1(z)) , k = 3, . . . , m ,
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uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)). Also, see (5.22),

lim
n∈Λ

εn0,k−1hn0,k(z) =
1√

(z − bk−1)(z − ak−1)
, K ⊂ C \ supp(σk−1).

Thus, since limn∈Λ λ∗n = c, we conclude that

lim
n∈Λ

Rn,k−1(z)
Ψn0,k−1(z)

= lim
n∈Λ

K2
n0,k−1

(Qn0,k−1Rn,k−1)(z)
(hn0,kQn0,k)(z)

= (5.48)

{
pΛ(ϕ1(z))/c , k = 2 ,
pΛ(δϕk−1(z))/c , k = 3, . . . , m ,

uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)).
Recall that nj = (n1 − deg(p2 · · · pm) + j, n2 − deg(p3 · · · pm), . . . , nm). It is

easy to see that

Ψn0,k−1

Ψnj ,k−1
=

Qn0,k

Qnj ,k

Qnj ,k−1

Qn0,k−1

εn0,k−1hn0,k

εnj ,k−1hnj ,k

εnj ,k−1

εn0,k−1

K2
nj ,k−1

K2
n0,k−1

.

From this expression, applying Proposition 5.3.2 and (5.45), we obtain that the
following limit holds uniformly on compact subsets of C\(supp(σk−1)∪supp(σk))

lim
n∈Λ

Ψn0,k−1(z)
Ψnj ,k−1(z)

= (∆k−1,1 · · ·∆1,1)j
( F̃

(1)
k−1(z)

F̃
(1)
k (z)

)j

(κ(1)
1 · · ·κ(1)

k−1)
2j .

Now, from (5.29) and (5.30), we have

F̃
(1)
k−1(z)

F̃
(1)
k (z)

=
c
(1)
k

c
(1)
k−1

sg(ψ(1)
k−1(∞))ψ(1)

k−1(z) ,

and from (5.29)

(κ(1)
1 · · ·κ(1)

k−1)
2 = c

(1)
1

c
(1)
k−1

c
(1)
k

.

Thus,

lim
n∈Λ

Ψn0,k−1(z)
Ψnj ,k−1(z)

= (∆k−1,1 · · ·∆1,1)j(c(1)
1 sg(ψ(1)

k−1(∞))ψ(1)
k−1(z))j .

Set

Ξk := (∆k−1,1 · · ·∆1,1)deg(p2···pm) · · · (∆k−1,m−1 · · ·∆1,m−1)deg(pm) . (5.49)

Using the same arguments above, on an appropriate consecutive collection of
multi-indices, one proves that

lim
n∈Λ

Ψn0,k−1(z)
Ψn,k−1(z)

= Ξk

m−1∏

j=1

1

(ϕ(j)
k−1(z))deg(pj+1···pm)

,
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uniformly on compact subsets of C\(supp(σk−1)∪supp(σk)). Therefore, writing

Rn,k−1(z)
Ψn,k−1(z)

=
Rn,k−1(z)
Ψn0,k−1(z)

Ψn0,k−1(z)
Ψn,k−1(z)

,

using the expression of pΛ, applying (5.48), and Lemma 5.5.1, for k = 2 we get

lim
n∈Λ

Ψ̃n,1(z)
Ψn,1(z)

= Ξ2

l1∏
ν=1

(ϕ1(z)− ϕ0(z1,ν))τ1,ν

l2∏
ν=1

( 1
ϕ1(z)

ϕ1(z)− ϕ1(z2,ν)
z − z2,ν

)τ2,ν

×
m∏

j=3

lj∏
ν=1

(ϕ1(z)− δϕj−1(zj,ν)

ϕ
(j−1)
1 (z)

)τj,ν

(5.50)

uniformly on compact subsets of C \ (supp(σ1) ∪ supp(σ2)), and for k ≥ 3 we
obtain

lim
n∈Λ

Ψ̃n,k−1(z)
Ψn,k−1(z)

= Ξk

l1∏
ν=1

(δϕk−1(z)−ϕ0(z1,ν))τ1,ν

l2∏
ν=1

(δϕk−1(z)− ϕ1(z2,ν)
ϕk−1(z)

)τ2,ν

×
lk∏

ν=1

(δϕk−1(z)− δϕk−1(zk,ν)

ϕ
(k−1)
k−1 (z)(z − zk,ν)

)τk,ν
m∏

j=3,j 6=k

lj∏
ν=1

(δϕk−1(z)− δϕj−1(zj,ν)

ϕ
(j−1)
k−1 (z)

)τj,ν

(5.51)
uniformly on compact subsets of C\ (supp(σk−1)∪ supp(σk)). Therefore, (5.47)
is proved.

From the expression of the limit functions one sees that Gk does not vanish
in C \ (supp(σk)∪ supp(σk+1)). The statements concerning the number of zeros
of Ψ̃n,k for k ∈ {0, . . . ,m − 1} and their limit behavior follows at once from
(5.47), on account of the argument principle and the corresponding behavior of
the zeros of the polynomials Qn,k+1 described in Proposition 5.3.1. Recall that
the zeros of Qn,k+1 are those of Ψn,k in C \ supp(σk).

Now, let us assume that the coefficients of the polynomials pk are real and
Λ ⊂ Zm

+ (~). Since

Ψnl,k−1

Ψn,k−1
=

Qnl,k

Qn,k

Qn,k−1

Qnl,k−1

εnl,k−1hnl,k

εn,k−1hn,k

εn,k−1

εnl,k−1

K2
n,k−1

K2
nl,k−1

,

applying (5.27), (5.28), (5.22), and (5.45), we conclude that the ratio asymp-
totics

lim
n∈Λ

Ψnl,k−1(z)
Ψn,k−1(z)

, K ⊂ C \ (supp(σk−1) ∪ supp(σk)) ,

holds and the limit does not vanish in the indicated region.
Since each measure pk σk is real with constant sign, we can define the poly-

nomials Q̃n,k, 1 ≤ k ≤ m, as the monic polynomials of degree Nn,k whose



5. Relative asymptotics 85

simple zeros are located at the points where Ψ̃n,k−1 vanishes on ∆k. Let
Q̃n,0 ≡ Q̃n,m+1 ≡ 1. We also introduce the associated notions

H̃n,k :=
Q̃n,k−1Ψ̃n,k−1

Q̃n,k

, k = 1, . . . , m + 1 , (5.52)

ε̃n,k as the sign of H̃n,k(x)pk(x)dσk(x)/Q̃n,k−1(x)Q̃n,k+1(x) on supp(σk), and

K̃n,k :=

(∫
Q̃2

n,k(x)
ε̃n,kH̃n,k(x)pk(x)dσk(x)

Q̃n,k−1(x)Q̃n,k+1(x)

)−1/2

. (5.53)

The formulas (5.27), (5.28), (5.22), and (5.45) are independent of the orthogo-
nality measures, hence

lim
n∈Λ

Ψ̃nl,k−1(z)

Ψ̃n,k−1(z)
= lim

n∈Λ

Ψnl,k−1(z)
Ψn,k−1(z)

.

Applying the same argument used in the last two paragraphs of the proof of
Theorem 1.3.5 for the polynomial case, we conclude that (5.47) is valid for
Λ ⊂ Zm

+ (~).
The rest of the statements regarding the zeros of Ψ̃n,k and their limit be-

havior follows as in the case of polynomials with complex coefficients. ¤

Corollary 5.5.6. Let S = N ′(σ1, . . . , σm). Consider the perturbed Nikishin
system N (p1

q1
σ1, . . . ,

pm

qm
σm), where pk, qk denote relatively prime polynomials

whose zeros lie in C \ ∪m
k=1∆k. Let Λ ⊂ Zm

+ (~; p1q1, . . . , pmqm) be a sequence
of distinct multi-indices such that for all n ∈ Λ, n1 − nm ≤ C, where C is a
constant. Let Q̃n be the monic multiple orthogonal polynomial of smallest degree
relative to the Nikishin system N (p1

q1
σ1, . . . ,

pm

qm
σm) and n, whereas Ψ̃n,k, 0 ≤

k ≤ m, denote the second type functions defined in (5.44), with pk replaced by
pk/qk. Then, for each k ∈ {0, . . . , m}, and K ⊂ C \ (supp(σk) ∪ supp(σk+1))

lim
n∈Λ

Ψ̃n,k(z)
Ψn,k(z)

=
Gk(z; p1, . . . , pm)
Gk(z; q1, . . . , qm)

. (5.54)

For each k = {0, . . . , m − 1} and all sufficiently large |n|,n ∈ Λ, Ψ̃n,k has ex-
actly Nn,k+1 zeros in C \ supp(σk), supp(σk+1) is an attractor of the zeros of
{Ψ̃n,k},n ∈ Λ, in this region, and each point in supp(σk+1)\∆̃k+1 is a 1 attrac-
tion point of zeros of {Ψ̃n,k},n ∈ Λ. When the polynomials pk, qk, k = 1, . . . ,m,
have real coefficients, all the statements remain valid when Λ ⊂ Zm

+ (~).

Proof. We consider the auxiliary Nikishin system

S1 := N
( σ1

|q1|2 , . . . ,
σm

|qm|2
)

,
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and define the related second type functions

Ψ∗n,0(z) := Q∗
n(z) ,

Ψ∗n,k(z) :=
∫ Ψ∗n,k−1(x)

z − x

dσk(x)
|qk(x)|2 , 1 ≤ k ≤ m ,

where Q∗
n denotes the multiple orthogonal polynomial associated to S1 and n.

Notice that if we perturb the generator of system S1 multiplying the k-th
measure by the real polynomial |qk|2 we get the generator of the original Nikishin
system S. Thus, applying Theorem 5.5.5, we obtain that for all k ∈ {0, . . . , m}

lim
n∈Λ

Ψn,k(z)
Ψ∗n,k(z)

= Gk(z; |q1|2, . . . , |qm|2) , K ⊂ C \ (supp(σk) ∪ supp(σk+1)) .

The perturbed system S2 := N (p1
q1

σ1, . . . ,
pm

qm
σm) can be written as

S2 = N
(
p1q1

σ1

|q1|2 , . . . , pmqm

σm

|qm|2
)

.

Therefore, employing the same argument

lim
n∈Λ

Ψ̃n,k(z)
Ψ∗n,k(z)

= Gk(z; p1q1, . . . , pmqm) , K ⊂ C \ (supp(σk) ∪ supp(σk+1)) .

We conclude that

lim
n∈Λ

Ψ̃n,k(z)
Ψn,k(z)

=
Gk(z; p1q1, . . . , pmqm)
Gk(z; q1q1, . . . , qmqm)

=
Gk(z; p1, . . . , pm)
Gk(z; q1, . . . , qm)

,

uniformly on compact subsets of C \ (supp(σk) ∪ supp(σk+1)). The statements
concerning the zeros can be proved as in the case of polynomial perturbation.

When the polynomials pk, qk, k = 1, . . . , m, have real coefficients, it follows
from Theorem 5.5.5 that (5.54) remains valid for Λ ⊂ Zm

+ (~). The statements
concerning the zeros are derived immediately. ¤

5.6 Relative asymptotics for the polynomials Qn,k

In this section, we will restrict our attention to the case when the polynomials
pk, qk, k = 1, . . . , m, have real coefficients (and of course their zeros lie in C \
∪m

k=1∆k). Accordingly, we use the objects Q̃n,k, H̃n,k, K̃n,k, and ε̃n,k, introduced
at the end of the proof of Theorem 5.5.5 (see (5.52) and (5.53)). Here, we study
the asymptotics of the ratios Q̃n,k/Qn,k.

Lemma 5.6.1. For any n ∈ Zm
+ (~)

εn,k

ε̃n,k
=

k∏

i=1

sign(pi, supp(σi)) . (5.55)
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Proof. By definition εn,k is the sign of Hn,k(x)dσk(x)/Qn,k−1(x)Qn,k+1(x) on
supp(σk) and ε̃n,k is the sign of H̃n,k(x)pk(x)dσk(x)/Q̃n,k−1(x)Q̃n,k+1(x) on
supp(σk). If k = 1 these measures reduce respectively to dσ1(x)/Qn,2(x) and
p1(x)dσ1(x)/Q̃n,2(x). Since Qn,2 and Q̃n,2 are monic polynomials of the same
degree and their zeros are located in ∆2, which is disjoint with supp(σ1), it
follows that Qn,2 and Q̃n,2 have the same sign on supp(σ1). Therefore,

εn,1

ε̃n,1
= sign(p1, supp(σ1)) .

To conclude the proof we show that

εn,k

ε̃n,k
= sign(pk, supp(σk))

εn,k−1

ε̃n,k−1
.

Notice that Qn,k−1 and Q̃n,k−1 have the same sign on supp(σk) by an ar-
gument similar to the one explained above. The same holds for Qn,k+1 and
Q̃n,k+1. Therefore

εn,k

ε̃n,k
=

sign(Hn,k, supp(σk))

sign(pkH̃n,k, supp(σk))
.

By (5.18), we know that

Hn,k(x) =
∫

∆k−1

Q2
n,k−1(t)
x− t

Hn,k−1(t)dσk−1(t)
Qn,k−2(t)Qn,k(t)

,

and

H̃n,k(x) =
∫

∆k−1

Q̃2
n,k−1(t)
x− t

H̃n,k−1(t)pk−1(t)dσk−1(t)

Q̃n,k−2(t)Q̃n,k(t)
.

Consequently,
sign(Hn,k, supp(σk))

sign(H̃n,k, supp(σk))
=

εn,k−1

ε̃n,k−1
,

and the claim follows. ¤
We are ready to state and prove

Theorem 5.6.2. Let S = N ′(σ1, . . . , σm) and Λ ⊂ Zm
+ (~) be a sequence of

distinct multi-indices such that for all n ∈ Λ, n1 − nm ≤ C, where C is a
constant. Assume that the polynomials pk, k = 1, . . . , m, have real coefficients.
For each k ∈ {1, . . . , m},

lim
n∈Λ

Q̃n,k(z)
Qn,k(z)

= Fk(z; p1, . . . , pm) , K ⊂ C \ supp(σk) , (5.56)

where Fk(z; p1, . . . , pm) is analytic and never vanishes in C \ supp(σk) and

lim
n∈Λ

K̃2
n,k

K2
n,k

=
∏k

i=1 sign(pi, supp(σi))
Gk(∞; p1, . . . , pm)

. (5.57)
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For k ∈ {1, . . . ,m− 1} and z ∈ C \ (supp(σk) ∪ supp(σk+1))

Fk+1(z; p1, . . . , pm) =
k∏

i=0

Gi(z; p1, . . . , pm)
Gi(∞; p1, . . . , pm)

, (5.58)

where Gi(z; p1, . . . , pm) is the function given in (5.47).

Proof. If Λ ⊂ Zm
+ (~; p1, . . . , pm), from (5.35) and Lemma 5.5.1, we have that

lim
n∈Λ

λ∗nεn0,k−1K
2
n0,k−1

Qn0,k−1(z)(pk · · · pm)(z)Ψ̃n,k−1(z)
Qn0,k(z)

=





1√
(z−b1)(z−a1)

pΛ(ϕ1(z)) , k = 2 ,

1√
(z−bk−1)(z−ak−1)

pΛ(δϕk−1(z)) , k = 3, . . . , m .
(5.59)

By Proposition 5.3.1, we know that

lim
n∈Λ

ε̃n,kK̃2
n,kH̃n,k+1(z) =

1√
(z − bk)(z − ak)

, K ⊂ C \ supp(σk) , (5.60)

where [ak, bk] = ∆̃k. Formula (5.52) implies

λ∗nεn0,k−1K
2
n0,k−1Qn0,k−1(z)(pk · · · pm)(z)Ψ̃n,k−1(z)

ε̃n,k−1K̃2
n,k−1H̃n,k(z)Qn0,k(z)

=

λ∗n
εn0,k−1

ε̃n,k−1

K2
n0,k−1

K̃2
n,k−1

Qn0,k−1(z)

Q̃n,k−1(z)

Q̃n,k(z)
Qn0,k(z)

(pk · · · pm)(z) . (5.61)

Using (5.59), (5.60), and (5.61), we obtain

lim
n∈Λ

λ∗n
εn0,k−1

ε̃n,k−1

K2
n0,k−1

K̃2
n,k−1

Qn0,k−1(z)

Q̃n,k−1(z)

Q̃n,k(z)
Qn0,k(z)

(pk · · · pm)(z) =

{
pΛ(ϕ1(z)) , k = 2 ,
pΛ(δϕk−1(z)) , k = 3, . . . ,m .

(5.62)

Using the results on ratio asymptotics for the constants Kn,k, K̃n,k and the
polynomials Qn,k, Q̃n,k, it follows that (5.62) is also valid for Λ ⊂ Zm

+ (~).
Since

εn0,k−1

ε̃n,k−1
=

εn0,k−1

εn,k−1

εn,k−1

ε̃n,k−1
,

applying Lemma 5.6.1, (5.45), and (5.49), we obtain

εn0,k−1

ε̃n,k−1
= Ξk

k−1∏

i=1

sign(pi, supp(σi)) . (5.63)
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We have
K2

n0,k−1

K̃2
n,k−1

=
K2

n0,k−1

K2
n,k−1

K2
n,k−1

K̃2
n,k−1

, (5.64)

and by (5.27)

lim
n∈Λ

K2
n0,k−1

K2
n,k−1

=
m−1∏

i=1

(κ(i)
1 · · ·κ(i)

k−1)
−2 deg(pi+1···pm) . (5.65)

Write
Qn0,k−1(z)

Q̃n,k−1(z)
=

Qn0,k−1(z)
Qn,k−1(z)

Qn,k−1(z)

Q̃n,k−1(z)
, (5.66)

and
Q̃n,k(z)
Qn0,k(z)

=
Q̃n,k(z)
Qn,k(z)

Qn,k(z)
Qn0,k(z)

. (5.67)

Notice that

lim
n∈Λ

Qn0,k−1(z)
Qn,k−1(z)

=
m−1∏

i=1

(F̃ (i)
k−1(z))−deg(pi+1···pm) . (5.68)

lim
n∈Λ

Qn,k(z)
Qn0,k(z)

=
m−1∏

i=1

(F̃ (i)
k (z))deg(pi+1···pm) . (5.69)

From (5.30) and (5.29) it follows that

F̃
(i)
k (z)

F̃
(i)
k−1(z)

=
c
(i)
k−1

c
(i)
k

sg(ψ(i)
k−1(∞))

ψ
(i)
k−1(z)

,

(κ(i)
1 · · ·κ(i)

k−1)
2 =

c
(i)
1 c

(i)
k−1

c
(i)
k

.

Therefore, using (5.46), we get

F̃
(i)
k (z)

F̃
(i)
k−1(z)(κ(i)

1 · · ·κ(i)
k−1)2

= ϕ
(i)
k−1(z) . (5.70)

Taking into consideration (5.63)-(5.70), we conclude that

lim
n∈Λ

λ∗n
εn0,k−1

ε̃n,k−1

K2
n0,k−1

K̃2
n,k−1

Qn0,k−1(z)

Q̃n,k−1(z)

Q̃n,k(z)
Qn0,k(z)

(pk · · · pm)(z) =

c Ξk

k−1∏

i=1

sign(pi, supp(σi))
m−1∏

i=1

(ϕ(i)
k−1(z))deg(pi+1···pm) lim

n∈Λ

Qn,k−1(z)

Q̃n,k−1(z)

×(pk · · · pm)(z) lim
n∈Λ

K2
n,k−1

K̃2
n,k−1

Q̃n,k(z)
Qn,k(z)

, (5.71)
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provided that the limits on the right-hand side exist.
In Theorem 1.3.5 we proved (5.56) for k = 1. Assume that k = 2. Equations

(5.62) and (5.71) yield

lim
n∈Λ

K2
n,1

K̃2
n,1

Q̃n,2(z)
Qn,2(z)

=
pΛ(ϕ1(z))F(z; p1, . . . , pm)

c Ξ2 sign(p1, supp(σ1))(p2 · · · pm)(z)
∏m−1

i=1 (ϕ(i)
1 (z))deg(pi+1···pm)

,

uniformly on compact subsets of C \ supp(σ2). Using (5.50), we have

pΛ(ϕ1(z))

c Ξ2 (p2 · · · pm)(z)
∏m−1

i=1 (ϕ(i)
1 (z))deg(pi+1···pm)

= G1(z; p1, . . . , pm) .

Consequently,

lim
n∈Λ

K2
n,1

K̃2
n,1

Q̃n,2(z)
Qn,2(z)

=
F(z; p1, . . . , pm)G1(z; p1, . . . , pm)

sign(p1, supp(σ1))
.

Evaluating at infinity, we obtain (F(∞; p1, . . . , pm) = 1)

lim
n∈Λ

K2
n,1

K̃2
n,1

=
G1(∞; p1, . . . , pm)
sign(p1, supp(σ1))

.

Therefore, (5.57) and (5.58) are satisfied for k = 1, since G0 = F .
Define the functions

Fk(z; p1, . . . , pm) := lim
n∈Λ

Q̃n,k(z)
Qn,k(z)

provided the limit exists. From (5.51) it follows that for any k ≥ 3,

pΛ(δϕk−1(z))

c Ξk (pk · · · pm)(z)
∏m−1

i=1 (ϕ(i)
k−1(z))deg(pi+1···pm)

= Gk−1(z; p1, . . . , pm) .

As a consequence, using (5.71), we obtain that for any k ≥ 3,

lim
n∈Λ

K2
n,k−1

K̃2
n,k−1

Q̃n,k(z)
Qn,k(z)

=
Fk−1(z; p1, . . . , pm) Gk−1(z; p1, . . . , pm)∏k−1

i=1 sign(pi, supp(σi))
.

Therefore, using an induction process one proves (5.56)-(5.58). ¤

Corollary 5.6.3. Let S = N ′(σ1, . . . , σm). Consider the perturbed Nikishin
system N (p1

q1
σ1, . . . ,

pm

qm
σm), where pk, qk denote relatively prime polynomials

with real coefficients whose zeros lie in C \ ∪m
k=1∆k. Let Λ ⊂ Zm

+ (~) be a
sequence of distinct multi-indices such that for all n ∈ Λ, n1 − nm ≤ C, where
C is a constant. Let Q̃n,k, 1 ≤ k ≤ m, be the monic polynomials of degree
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Nn,k whose simple zeros are located at the points where Ψ̃n,k−1 vanishes on ∆k,
where Ψ̃n,k, 0 ≤ k ≤ m, denote the second type functions defined in (5.44), with
pk replaced by pk/qk. Let K̃n,k, 1 ≤ k ≤ m be the constants defined in (5.53),
with pk replaced by pk/qk. Then, for each k ∈ {1, . . . , m},

lim
n∈Λ

Q̃n,k(z)
Qn,k(z)

=
Fk(z; p1, . . . , pm)
Fk(z; q1, . . . , qm)

, K ⊂ C \ supp(σk) , (5.72)

and

lim
n∈Λ

K̃2
n,k

K2
n,k

=
k∏

i=1

sign(pi/qi, supp(σi))
Gk(∞; q1, . . . , qm)
Gk(∞; p1, . . . , pm)

. (5.73)

Proof. By Q∗n,k denote polynomials associated with the auxiliary Nikishin
system N (σ1/q1, . . . , σm/qm), corresponding to the indices n, k. On account of
Theorem 5.6.2, we have that

lim
n∈Λ

Q̃n,k(z)
Q∗n,k(z)

= Fk(z; p1, . . . , pm) , K ⊂ C \ supp(σk) .

and

lim
n∈Λ

Qn,k(z)
Q∗

n,k(z)
= Fk(z; q1, . . . , qm) , K ⊂ C \ supp(σk) .

Therefore, (5.72) is obtained. Using the same idea, (5.73) follows from (5.57).
¤

Remark 5.6.4. Theorem 5.5.5 and Corollary 5.5.6 allow to define polynomials
Q̃n,k, k = 1, . . . , m, in the case when pk, qk have complex coefficients as those
monic polynomials which carry the zeros of Ψ̃n,k−1 lying in C \∆k−1. For such
polynomials Q̃n,k, results analogous to those expressed in Theorem 5.6.2 and
Corollary 5.6.3 can be proved.



6. RATIO ASYMPTOTICS REVISITED

This chapter is organized as follows. In Section 6.2 we introduce and study
an auxiliary system of second type functions. These second type functions are
specially reviewed in Section 6.3 when m = 2, 3 to exemplify their construction.
An interlacing property for the zeros of the polynomials Qn and of the second
type functions is proved in Section 6.4. Using the interlacing property of zeros
and results on ratio and relative asymptotics of polynomials orthogonal with
respect to varying measures, in Section 6.5 a system of boundary value problems
is derived which allows to conclude the proof of the main result of this chapter,
Theorem 6.5.2.

6.1 Preliminaries and notation

Let S = N (σ1, . . . , σm). Fix a multi-index n = (n1, . . . , nm) ∈ Zm
+ . Let Qn

be an n-th monic multiple orthogonal polynomial with respect to S. That is,
Qn 6≡ 0 is monic, deg Qn ≤ |n| = n1 + · · ·+ nm, and

∫
Qn(x)xνdsk(x) = 0, ν = 0, . . . , nk − 1, k = 1, . . . , m. (6.1)

If (6.1) implies that deg Qn = |n|, the multi–index n is normal and the
corresponding monic multiple orthogonal polynomial is uniquely determined. In
addition, if the zeros of Qn are simple and lie in the interior of Co(supp(σ1)), the
multi–index is said to be strongly normal. For Nikishin systems with m = 1, 2, 3,
all multi-indices are strongly normal (see [22]). An open question is whether
or not this is true for all m ∈ N. (Recently, U. Fidalgo Prieto and G. López
Lagomasino claimed to have proved that all multi-indices are strongly normal.)
The best result known when m ≥ 4 is that all multi-indices in the class

Zm
+ (∗) = {n ∈ Zm

+ : 6 ∃ 1 ≤ i < j < k ≤ m, with ni < nj < nk}
are strongly normal (see [20]).

In [5], a Rakhmanov type theorem was proved for Nikishin systems such
that |σ′k| > 0 a.e. on Co(supp(σk)), k = 1, . . . , m, and sequences of multi-indices
contained in

Zm
+ (~) = {n ∈ Zm

+ : 1 ≤ i < j ≤ m ⇒ nj ≤ ni + 1} .

It is easy to see that Zm
+ (~) ⊂ Zm

+ (∗). Here, we assume that supp(σk) =
∆̃k ∪ ek, k = 1, . . . , m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
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a.e. on ∆̃k, ek is a set without accumulation points in R \ ∆̃k, and the sequence
of multi-indices on which the limit is taken is in Zm

+ (∗).
As in Theorem 1.3.4, the proof of the corresponding result under these

weaker assumptions, Theorem 6.5.2 below, uses the construction of second type
functions. Now, this construction depends on the relative value of the com-
ponents of the multi-indices in Zm

+ (∗) under consideration. As we saw before,
a crucial step consists in proving an interlacing property for the zeros of the
second type functions corresponding to “consecutive” multi-indices. For this
purpose, we need to be sure that the second type functions are built using the
same procedure. To distinguish different classes of multi-indices which respond
for the same construction of second type functions, we introduce the following
definition.

Definition 6.1.1. Suppose that n = (n1, . . . , nm) ∈ Zm
+ . Let τn denote the

permutation of {1, 2, . . . ,m} given by

τn(i) = j if
{

nj > nk for k < j, k 6∈ {τn(1), . . . , τn(i− 1)}
nj ≥ nk for k > j, k 6∈ {τn(1), . . . , τn(i− 1)} .

In words, τn(1) is the subindex of the first component of n (from left to
right) which is greater or equal than the rest, τn(2) is the subindex of the first
component which is second largest, and so forth. For example, if n1 ≥ · · · ≥ nm

then τn is the identity.
Let τ denote a permutation of {1, 2, . . . , m}. Set

Zm
+ (∗, τ) = {n ∈ Zm

+ (∗) : τn = τ} .

Let n ∈ Zm
+ and l ∈ {1, . . . ,m}. Define

nl := (n1, . . . , nl−1, nl + 1, nl+1, . . . , nm) .

(In Chapters 1 to 4 this was denoted by nl but here we will need to give that
notation a different meaning.)

The relevant Riemann surface in this chapter coincides with the one pre-
sented in Chapter 5. The main result of this chapter is Theorem 6.5.2.

6.2 Functions of second type and orthogonality properties

Fix n = (n1, . . . , nm) ∈ Zm
+ (∗) and consider Qn the n-th multi-orthogonal

polynomial with respect to a Nikishin system S = N (Σ), Σ = (σ1, . . . , σm). As
before, ∆k = Co(supp(σk)), k = 1, . . . , m. Inductively, we define functions of sec-
ond type Ψn,k, k = 0, 1, . . . , m, systems of measures Σk = (σk

k+1, . . . , σ
k
m), k =

0, 1, . . . , m−1, Co(supp(σk
j )) ⊂ ∆j , which generate Nikishin systems, and multi-

indices nk ∈ Zm−k
+ (∗), k = 0, . . . ,m− 1. Take Ψn,0 = Qn,n0 = n, and Σ0 = Σ.

Suppose that nk = (nk
k+1, . . . , n

k
m), Σk = (σk

k+1, . . . , σ
k
m) and Ψn,k have

already been defined, where 0 ≤ k ≤ m− 2. Let

nk+1 = (nk+1
k+2, . . . , n

k+1
m ) ∈ Zm−k−1

+ (∗)
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be the multi-index obtained deleting from nk the first component nk
rk

which
verifies

nk
rk

= max{nk
j : k + 1 ≤ j ≤ m}.

The components of nk+1 and nk are related as follows

nk
k+1 = nk+1

k+2, . . . , n
k
rk−1 = nk+1

rk
, nk

rk+1 = nk+1
rk+1, . . . , n

k
m = nk+1

m .

Denote

Ψn,k+1(z) =
∫

∆k+1

Ψn,k(x)
z − x

dsk
rk

(x) , (6.2)

where sk
rk

= 〈σk
k+1, . . . , σ

k
rk
〉 is the corresponding component of the Nikishin

system Sk = N (Σk) = (sk
k+1, . . . , s

k
m).

In order to define Σk+1 we introduce the following notation. Set

sk
i,j = 〈σk

i , . . . , σk
j 〉, k + 1 ≤ i ≤ j ≤ m,

where σk
i , . . . , σk

j are measures in Σk. In page 390 of [30] it is proved that there
exists a finite measure τk

i,j with constant sign such that

Co(supp(τk
i,j)) ⊂ Co(supp(sk

i,j))

1
ŝk

i,j(z)
= lki,j(z) + τ̂k

i,j(z)

where lki,j is a certain polynomial of degree 1. That Co(supp(sk
i,j)) ⊂ ∆i easily

follows by induction. We wish to remark that the continuous part of supp(sk
i,j)

and supp(τk
i,j) coincide, but not their isolated parts. In fact, zeros of ŝk

i,j on
∆i (there is one such zero between two consecutive mass points of sk

i,j) become
poles of τ̂k

i,j (mass points of τk
i,j).

Suppose that rk = k + 1. In this case, we take

Σk+1 = (σk
k+2, . . . , σ

k
m) = (σk+1

k+2 , . . . , σk+1
m )

deleting the first measure of Σk. If rk ≥ k + 2, then Σk+1 is defined by

(τk
k+2,rk

, ŝk
k+2,rk

dτk
k+3,rk

, . . . , ŝk
rk−1,rk

dτk
rk,rk

, ŝk
rk,rk

dσk
rk+1, σ

k
rk+2, . . . , σ

k
m) ,

where Co(supp(σk+1
j )) ⊂ ∆j , j = k+2, . . . ,m. Any two consecutive measures in

the system Σk+1 are supported on disjoint intervals; therefore, Σk+1 generates
a Nikishin system. To conclude we define

Ψn,m(z) =
∫

∆m

Ψn,m−1(x)
z − x

dsm−1
m (x) .

If n1 ≥ · · · ≥ nm, we have that nk = (nk+1, . . . , nm), Σk = (σk+1, . . . , σm)
and Ψn,k(z) =

∫
∆k

Ψn,k−1(x)
z−x dσk(x), k = 1, . . . , m. Basically, this is the situation

considered in [5] and in Chapter 5.
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6.3 Some examples when m = 2, 3

To fix ideas let us turn our attention to the cases m = 2 and m = 3. We denote
by C(f ; µ) the Cauchy transform of fdµ; that is,

C(f ;µ)(z) =
∫

f(x)
z − x

dµ(x) .

In the tables below, we omit the line corresponding to k = 0 because by defini-
tion Σ0 = Σ, Ψn,0 = Qn and n0 = n.

Tab. 6.1: m=2
m = 2 k rk−1 Ψn,k Σk nk

n1 ≥ n2 1 1 C(Qn; σ1) (σ2) (n2)
n1 < n2 1 2 C(Qn; 〈σ1, σ2〉) (τ2) (n1)

Tab. 6.2: m = 3
m = 3 k rk−1 Ψn,k Σk nk

n1 ≥ n2 ≥ n3 1 1 C(Qn; σ1) (σ2, σ3) (n2, n3)
2 2 C(Ψn,1; σ2) (σ3) (n3)

n1 ≥ n3 > n2 1 1 C(Qn; σ1) (σ2, σ3) (n2, n3)
2 3 C(Ψn,1; 〈σ2, σ3〉) (τ3) (n2)

n2 > n1 ≥ n3 1 2 C(Qn; 〈σ1, σ2〉) (τ2, 〈σ3, σ2〉) (n1, n3)
2 2 C(Ψn,1; τ2), (〈σ3, σ2〉) (n3)

n2 ≥ n3 > n1 1 2 C(Qn; 〈σ1, σ2〉) (τ2, 〈σ3, σ2〉) (n1, n3)
2 3 C(Ψn,1; 〈τ2, σ3, σ2〉) (τ3,2) (n1)

n3 > n1 ≥ n2 1 3 C(Qn; 〈σ1, σ2, σ3〉) (τ2,3, 〈τ3, σ2, σ3〉) (n1, n2)
2 2 C(Ψn,1; τ2,3) (〈τ3, σ2, σ3〉) (n2)

In Theorem 2 of [23] it was proved that the functions Ψn,k verify the following
orthogonality relations. For each k = 0, 1, . . . ,m− 1,

∫

∆k+1

xνΨn,k(x) dsk
i (x) = 0, ν = 0, 1, . . . , nk

i − 1, i = k + 1, . . . , m , (6.3)

where sk
i = 〈σk

k+1, . . . , σ
k
i 〉.

We wish to underline that since Z2
+(∗) = Z2

+, all multi-indices with two
components have associated functions of second type. However, for m = 3 the
case n1 < n2 < n3 has not been considered (see Table 6.2). The rest of this
section will be devoted to the construction of certain functions Ψn,k for this
case and to the proof of the orthogonality relations they satisfy. We use the
following auxiliary result.

Lemma 6.3.1. Let s3,2 = 〈σ3, σ2〉. Then
∫

∆2

ŝ3,2(x)
σ̂3(x)

dτ2,3(x)
z − x

+ C1 =
σ̂2(z)
ŝ2,3(z)

, z ∈ C \ supp(σ2) , (6.4)

where C1 = σ2(∆2)/s2,3(∆2).
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Proof. We employ two useful relations. The first one is

σ̂2(ζ) σ̂3(ζ) = ŝ2,3(ζ) + ŝ3,2(ζ), ζ ∈ C \ (supp(σ2) ∪ supp(σ3)) . (6.5)

The proof is straightforward and may be found in Lemma 4 of [22]. The second
one was mentioned above and states that there exists a polynomial l2,3 of degree
1 and a measure τ2,3 such that

1
ŝ2,3(z)

= τ̂2,3(z) + l2,3(z), z ∈ C \ supp(σ2) . (6.6)

Notice that
σ̂2(z)
ŝ2,3(z)

− C1 = O
(

1
z

)
∈ H(C \∆2) .

On the other hand, from (6.5) and (6.6) it follows that

σ̂2

ŝ2,3
=

σ̂2 σ̂3

σ̂3 ŝ2,3
=

ŝ2,3 + ŝ3,2

σ̂3 ŝ2,3
=

1
σ̂3

+
ŝ3,2

σ̂3
l2,3 +

ŝ3,2

σ̂3
τ̂2,3 .

Since 1
σ̂3

+ ŝ3,2
σ̂3

l2,3 and ŝ3,2
σ̂3

are analytic on a neighborhood of ∆2, from (2.4)
the thesis readily follows. ¤

We are ready to define the functions of second type and to prove the orthog-
onality properties they verify for multi-indices with 3 components not in Z3

+(∗)
(with n1 < n2 < n3).

Lemma 6.3.2. Fix n = (n1, n2, n3) ∈ Z3
+ where n1 < n2 < n3 and consider Qn

the n-th orthogonal polynomial associated to a Nikishin system S = (s1, s2, s3) =
N (σ1, σ2, σ3). Set Ψn,0 = Qn,

Ψn,1(z) =
∫

∆1

Qn(x)
z − x

d s1,3(x) , (6.7)

Ψn,2(z) =
∫

∆2

Ψn,1(x)
z − x

ŝ3,2(x)
σ̂3(x)

d τ2,3(x) . (6.8)

Then ∫

∆1

tν Ψn,0(t) d s1,j(t) = 0, 0 ≤ ν ≤ nj − 1, 1 ≤ j ≤ 3 (6.9)

∫

∆2

tν Ψn,1(t) d τ2,3(t) = 0, 0 ≤ ν ≤ n1 − 1 (6.10)

∫

∆2

tν Ψn,1(t)
ŝ3,2(t)
σ̂3(t)

d τ2,3(t) = 0, 0 ≤ ν ≤ n2 − 1 (6.11)

∫

∆3

tν Ψn,2(t)
ŝ2,3(t)
σ̂2(t)

d τ3,2(t) = 0, 0 ≤ ν ≤ n1 − 1. (6.12)



6. Ratio asymptotics revisited 97

Remark 6.3.3. The measure ŝ3,2 dτ2,3/σ̂3 supported on ∆2 cannot be written
in the form 〈τ2,3, µ〉 for some measure µ supported on ∆3, so there is no Σ1 and
S1 in this case.

Proof of Lemma 6.3.2. The relations (6.9) follow directly from the definition
of Qn. Let us justify (6.10) and (6.11).

For 0 ≤ ν ≤ n1 − 1(≤ n3 − 3), applying Fubini’s theorem,
∫

∆2

tν Ψn,1(t) dτ2,3(t) =
∫

∆2

tν
∫

∆1

Qn(x)
t− x

ds1,3(x) dτ2,3(t)

=
∫

∆1

Qn(x)
∫

∆2

tν − xν + xν

t− x
dτ2,3(t) ds1,3(x)

=
∫

∆1

Qn(x) pν(x) ds1,3(x)−
∫

∆1

xνQn(x) τ̂2,3(x) ds1,3(x) ,

where pν(x) =
∫
∆2

tν−xν

t−x dτ2,3(t) is a polynomial of degree at most n1−2. Since
ds1,3(x) = ŝ2,3(x) dσ1(x) and τ̂2,3(x) ŝ2,3(x) = 1 − l2,3(x) ŝ2,3(x), the measure
τ̂2,3(x) ds1,3(x) is equal to dσ1(x) − l2,3(x) ds1,3(x). Therefore, applying (6.9)
both integrals vanish and we obtain (6.10). Actually, we only needed that
n1 ≤ n3 − 1.

If 0 ≤ ν ≤ n2 − 1(≤ n3 − 2),
∫

∆2

tν Ψn,1(t)
ŝ3,2(t)
σ̂3(t)

dτ2,3(t) =
∫

∆2

tν
ŝ3,2(t)
σ̂3(t)

∫

∆1

Qn(x)
t− x

ds1,3(x) dτ2,3(t)

=
∫

∆1

Qn(x)
∫

∆2

tν − xν + xν

t− x

ŝ3,2(t)
σ̂3(t)

dτ2,3(t) ds1,3(x)

=
∫

∆1

Qn(x)xν

∫

∆2

ŝ3,2(t)
σ̂3(t)

dτ2,3(t)
t− x

ds1,3(x) .

By Lemma 6.3.1, the last expression is equal to

C1

∫

∆1

Qn(x)xν ds1,3(x)−
∫

∆1

Qn(x) xν σ̂2(x)
ŝ2,3(x)

ds1,3(x)

= −
∫

∆1

Qn(x)xν ds1,2(x) = 0 ,

taking into account that ds1,3(x) = ŝ2,3(x) dσ1(x) and (6.9). This proves (6.11).
It would have been sufficient to require n2 ≤ n3.

Let us prove (6.12). Take 0 ≤ ν ≤ n1 − 1, we have
∫

∆3

tν Ψn,2(t)
ŝ2,3(t)
σ̂2(t)

dτ3,2(t) =
∫

∆3

tν
∫

∆2

Ψn,1(x)
t− x

ŝ3,2(x)
σ̂3(x)

dτ2,3(x)
ŝ2,3(t)
σ̂2(t)

dτ3,2(t)

=
∫

∆2

Ψn,1(x)
ŝ3,2(x)
σ̂3(x)

∫

∆3

tν − xν + xν

t− x

ŝ2,3(t)
σ̂2(t)

dτ3,2(t) dτ2,3(x)
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=
∫

∆2

pν(x)Ψn,1(x)
ŝ3,2(x)
σ̂3(x)

dτ2,3(x)

+
∫

∆2

Ψn,1(x) xν ŝ3,2(x)
σ̂3(x)

∫

∆3

ŝ2,3(t)
σ̂2(t)

dτ3,2(t)
t− x

dτ2,3(x)

where pν(x) is the polynomial defined by
∫

∆3

tν − xν

t− x

ŝ2,3(t)
σ̂2(t)

dτ3,2(t),

of degree ≤ n1 − 2. Applying (6.11), the first integral after the last equality
equals zero since n1 < n2 (though n1 ≤ n2 + 1 would have been sufficient). If
we interchange the sub-indices 2 and 3 in Lemma 6.3.1, we obtain

∫

∆3

ŝ2,3(t)
σ̂2(t)

dτ3,2(t)
t− x

= − σ̂3(x)
ŝ3,2(t)

+ C2 , (6.13)

where C2 = σ3(∆3)/s3,2(∆3). Therefore, using (6.13), (6.11) and (6.10), it fol-
lows that ∫

∆2

Ψn,1(x)xν ŝ3,2(t)
σ̂3(x)

∫

∆3

ŝ2,3(t)
σ̂2(t)

dτ3,2(t)
t− x

dτ2,3(x)

=
∫

∆2

Ψn,1(x)xν ŝ3,2(t)
σ̂3(x)

(
C2 − σ̂3(x)

ŝ3,2(t)

)
dτ2,3(x) = 0 ,

since n1 ≤ n2. This completes the proof. ¤

6.4 Interlacing property of zeros of polynomials and second type
functions

As we have pointed out, from the definition Zm
+ (∗) = Zm

+ ,m = 1, 2. We have
introduced adequate functions of second type also when m = 3 and n1 < n2 < n3

which were the only multi-indices initially not in Z3
+(∗). To unify notation, in

the rest of this chapter we will consider that Z3
+(∗) = Z3

+.
In this section, we show that for n ∈ Zm

+ (∗),m ∈ N, the functions Ψn,k, k =
0, . . . , m − 1, have exactly |nk| simple zeros in the interior of ∆k+1 and no
other zeros on C \ ∆k. The zeros of “consecutive” Ψn,k satisfy an interlacing
property. These properties are proved in Lemma 6.4.1 below which complements
Theorem 2.1 (see also Lemma 2.1) in [5] and substantially enlarges the class of
multi-indices for which it is applicable.

Theorem 1 of [22] proves that Lemma 1.2.3 remains valid for any n ∈ Z3
+

and m = 2. Recall that in this chapter nl denotes the multi-index obtained
adding 1 to the l-th component of n.

The following lemma resumes some properties proved in Chapter 2 for multi-
indices in Zm

+ (•) which we need to extend for the more general class of multi-
indices Zm

+ (∗). The proof follows the same guidelines employed before. For
the sake of completeness we reproduce them here since there are some slight
modifications.
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Lemma 6.4.1. Let S = N (σ1, . . . , σm). Let n ∈ Zm
+ (∗),m ∈ N, then for each

k = 0, . . . , m− 1, the function Ψn,k has exactly |nk| simple zeros in the interior
of ∆k+1 and no other zeros on C\∆k. Let I denote the closure of any one of the
connected components of ∆k+1 \ supp(σk

k+1), then Ψn,k has at most one simple
zero on I. Assume that l ∈ {1, 2, . . . , m} is such that n,nl ∈ Zm

+ (∗, τ) for a
fixed permutation τ . Then, for each k ∈ {0, . . . , m− 1} between two consecutive
zeros of Ψnl,k lies exactly one zero of Ψn,k and viceversa (that is, the zeros of
Ψnl,k and Ψn,k on ∆k+1 interlace).

Proof. Assume that n,nl ∈ Zm
+ (∗, τ). We claim that for any real constants

A,B, |A|+ |B| > 0, and k ∈ {0, 1, . . . ,m− 1}, the function

Gn,k(x) = AΨn,k(x) + BΨnl,k(x)

has at most |nk| + 1 zeros in C \∆k (counting multiplicities) and at least |nk|
simple zeros in the interior of ∆k+1 (∆0 = ∅). We prove this by induction on k.

Let k = 0. The polynomial Gn,0 = AΨn,0 +BΨnl,0 is not identically equal to
zero, and |n| ≤ deg(Gn,0) ≤ |n|+ 1. Therefore, Gn,0 has at most |n|+ 1 zeros in
C. Let hj , j = 1, . . . ,m, denote polynomials, where deg(hj) ≤ nj−1. According
to (6.3), ∫

∆1

Gn,0(x)
m∑

j=1

hj(x)ŝ2,j(x)dσ1(x) = 0 (6.14)

(ŝ2,1 ≡ 1).
In the sequel, we call change knot a point on the real line where a function

changes its sign. Notice that for each k ∈ {0, . . . ,m− 1}, Gn,k is a real function
when restricted to the real line. Assume that Gn,0 has N ≤ |n|−1 change knots
in the interior of ∆1. We can find polynomials hj , j = 1, . . . ,m, deg(hj) ≤
nj − 1, such that

∑m
j=1 hj ŝ2,j has a simple zero at each change knot of Gn,0 on

∆1 and a zero of order |n| − 1 − N at one of the extreme points of ∆1. By
Lemma 1.2.3, (1, ŝ2,2, . . . , ŝ2,m) forms an AT system with respect to n ∈ Zm

+ (∗);
therefore,

∑m
j=1 hj ŝ2,j can have no other zero on ∆1, but this contradicts (6.14)

since Gn,0

∑m
j=1 hj ŝ2,j would have a constant sign on ∆1 (and supp(σ1) contains

infinitely many points). Therefore, Gn,0 has at least |n| change knots in the
interior of ∆1. Consequently, all the zeros of Gn,0 are simple and lie on R as
claimed.

Assume that for each k ∈ {0, . . . , κ − 1}, 1 ≤ κ ≤ m − 1, the claim is
satisfied whereas it is violated when k = κ. Let hj denote polynomials such
that deg(hj) ≤ nκ

j − 1, κ + 1 ≤ j ≤ m. Using (6.3) or (6.9)-(6.12) according
to the situation (to simplify the writing we use the notation of (6.3) but the
arguments are the same when m = 3 and n1 < n2 < n3; in particular, in this
case, ds0

r0
= ds1,3, ds1

r1
= ŝ3,2dτ2,3/σ̂3 and ds2

r2
= ŝ2,3dτ3,2/σ̂2)

∫

∆κ+1

Gn,κ(x)
m∑

j=κ+1

hj(x)ŝκ
κ+2,j(x)dσκ

κ+1(x) = 0 (6.15)
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(ŝκ
κ+2,κ+1 ≡ 1). Arguing as above, since (1, ŝκ

κ+2,κ+2, . . . , ŝ
κ
κ+2,m) forms an AT

system with respect to nκ ∈ Zm−κ
+ (∗), we conclude that Gn,κ has at least |nκ|

change knots in the interior of ∆κ+1.
Let us suppose that Gn,κ has at least |nκ|+2 zeros in C\∆κ and let Wn,κ be

the monic polynomial whose zeros are those points (counting multiplicities). The
complex zeros of Gn,κ (if any) must appear in conjugate pairs since Gn,κ(z) =
Gn,κ(z); therefore, the coefficients of Wn,κ are real numbers. On the other hand,
from (6.3) ((6.9) or (6.11) when necessary)

0 =
∫

∆κ

Gn,κ−1(x)
z

nκ−1
rκ−1 − x

nκ−1
rκ−1

z − x
dsκ−1

rκ−1
(x) .

Therefore,

Gn,κ(z) =
1

znκ−1
rκ−1

∫

∆κ

x
nκ−1

rκ−1Gn,κ−1(x)
z − x

dsκ−1
rκ−1

(x) = O
(

1

znκ−1
rκ−1+1

)
, z →∞ ,

and taking into consideration the degree of Wn,κ , we obtain

zjGn,κ

Wn,κ
= O

(
1
z2

)
∈ H(C \∆κ) , j = 0, . . . , |nκ−1|+ 1 .

Let Γ be a closed Jordan curve which surrounds ∆κ and such that all the
zeros of Wn,κ lie in the exterior of Γ. Using Cauchy’s theorem, the integral
expression for Gn,κ, Fubini’s theorem, and Cauchy’s integral formula, for each
j = 0, . . . , |nκ−1|+ 1, we have

0 =
1

2πi

∫

Γ

zjGn,κ(z)
Wn,κ(z)

dz =
1

2πi

∫

Γ

zj

Wn,κ(z)

∫

∆κ

Gn,κ−1(x)
z − x

dsκ−1
rκ−1

(x)dz =

∫

∆κ

xjGn,κ−1(x)
Wn,κ(x)

dsκ−1
rκ−1

(x) ,

which implies that Gn,κ−1 has at least |nκ−1|+2 change knots in the interior of
∆κ. This contradicts our induction hypothesis since this function can have at
most |nκ−1|+ 1 zeros in C \∆κ−1 ⊃ ∆κ. Hence Gn,κ has at most |nκ|+ 1 zeros
in C \∆κ as claimed.

Taking B = 0 the assumption nl ∈ Zm
+ (∗, τ) is not required, and the argu-

ments above lead to the proof that Ψn,k has at most |nk| zeros on C \∆k since
Qn = Ψn,0 has at most |n| zeros on C. Consequently, the zeros of Ψn,k in C\∆k

are exactly the |nk| simple ones it has in the interior of ∆k+1.
Let I be the closure of a connected component of ∆k+1 \ supp(σk

k+1) and let
us assume that I contains two consecutive simple zeros x1, x2 of Ψn,k. Taking
B = 0 and A = 1, we can rewrite (6.15) as follows

∫

∆k+1

Ψn,k(x)
(x− x1)(x− x2)

m∑

j=k+1

hj(x)ŝk
k+2,j(x)(x− x1)(x− x2)dσk

k+1(x) = 0 ,

(6.16)
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where deg(hj) ≤ nk
j −1, j = k+1, . . . , m. The measure (x−x1)(x−x2)dσk

k+1(x)
has a constant sign on ∆k+1 and Ψn,k(x)/(x− x1)(x− x2) has |nk| − 2 change
knots on ∆k+1. Using again Lemma 1.2.3, we can construct appropriate poly-
nomials hj to contradict (6.16). Therefore, I contains at most one zero of Ψn,k.

Fix y ∈ R \∆k and k ∈ {0, 1, . . . , m − 1}. It cannot occur that Ψnl,k(y) =
Ψn,k(y) = 0. If this was so, y would have to be a simple zero of Ψnl,k and Ψn,k.
Therefore, (Ψnl,k)′(y) 6= 0 6= (Ψn,k)′(y). Taking A = 1, B = −Ψ′n,k(y)/Ψ′nl,k

(y),
we find that

Gn,k(y) = (AΨn,k + BΨnl,k)(y) = (Gn,k)′(y) = 0 ,

which means that Gn,k has at least a double zero at y against what we proved
before.

Now, taking A = Ψnl,k(y), B = −Ψn,k(y), we have that |A|+ |B| > 0. Since

Ψnl,k(y)Ψn,k(y)−Ψn,k(y)Ψnl,k(y) = 0 ,

and the zeros on R \∆k of Ψnl,k(y)Ψn,k(x) − Ψn,k(y)Ψnl,k(x) with respect to
x are simple, using again what we proved above, it follows that

Ψnl,k(y)Ψ′n,k(y)−Ψn,k(y)Ψ′nl,k
(y) 6= 0 .

But Ψnl,k(y)Ψ′n,k(y)−Ψn,k(y)Ψ′nl,k
(y) is a continuous real function on R \∆k

so it must have constant sign on each one of the intervals forming R \ ∆k; in
particular, its sign on ∆k+1 is constant.

We know that Ψnl,k has at least |nk| simple zeros in the interior of ∆k+1.
Evaluating Ψnl,k(y)Ψ′n,k(y)−Ψn,k(y)Ψ′nl,k

(y) at two consecutive zeros of Ψnl,k,
since the sign of Ψ′nl,k

at these two points changes the sign of Ψn,k must also
change. Using Bolzano’s theorem we find that there must be an intermediate
zero of Ψn,k. Analogously, one proves that between two consecutive zeros of
Ψn,k on ∆k+1 there is one of Ψnl,k. Thus, the interlacing property has been
proved. ¤

Let Qn,k+1, k = 0, . . . , m − 1, denote the monic polynomial whose zeros
are equal to those of Ψn,k on ∆k+1. From (6.3) ((6.9), (6.11), or (6.12) when
necessary)

0 =
∫

∆k+1

Ψn,k(x)
znk

rk − xnk
rk

z − x
dsk

rk
(x)

(Recall that when m = 3 and n1 < n2 < n3, we take ds0
r0

= ds1,3, ds1
r1

=
ŝ3,2dτ2,3/σ̂3 and ds2

r2
= ŝ2,3dτ3,2/σ̂2.) Therefore,

Ψn,k+1(z) =
1

znk
rk

∫

∆k+1

xnk
rk Ψn,k(x)
z − x

dsk
rk

(x) = O
(

1

znk
rk

+1

)
, z →∞ ,

and taking into consideration the degree of Qn,k+2 (by definition Qn,m+1 ≡ 1),
we obtain

zjΨn,k+1

Qn,k+2
= O

(
1
z2

)
∈ H(C \∆k+1) , j = 0, . . . , |nk| − 1 .
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On account of (2.3), it follows that (take Qn,0 ≡ 1)

0 =
∫

∆k+1

xjQn,k+1(x)
Hn,k+1(x)dsk

rk
(x)

Qn,k(x)Qn,k+2(x)
, k = 0, . . . , m− 1 , (6.17)

where
Hn,k+1 =

Qn,kΨn,k

Qn,k+1
, k = 0, . . . , m ,

has constant sign on ∆k+1.
This last relation implies that

∫

∆k+1

Q(z)−Q(x)
z − x

Qn,k+1(x)
Hn,k+1(x)dsk

rk
(x)

Qn,k(x)Qn,k+2(x)
= 0 ,

where Q is any polynomial of degree ≤ |nk|. If we use this formula with Q =
Qn,k+1 and Q = Qn,k+2, respectively, we obtain

∫

∆k+1

Qn,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

=

1
Qn,k+1(z)

∫

∆k+1

Q2
n,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

and
∫

∆k+1

Qn,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

=
1

Qn,k+2(z)

∫

∆k+1

Ψn,k(x)dsk
rk

(x)
z − x

.

Equating these two relations and using the definition of Ψn,k+1 and Hn,k+2, we
obtain

Hn,k+2(z) =
∫

∆k+1

Q2
n,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

, k = 0, . . . , m− 1 . (6.18)

Notice that from the definition Hn,1 ≡ 1.
For each k = 1, . . . , m, set

K−2
n,k =

∫

∆k

Q2
n,k(x)

∣∣∣∣
Qn,k−1(x)Ψn,k−1(x)

Qn,k(x)

∣∣∣∣
d|sk−1

rk−1
|(x)

|Qn,k−1(x)Qn,k+1(x)| , (6.19)

where |s| denotes the total variation of the measures s. Take

Kn,0 = 1 , κn,k =
Kn,k

Kn,k−1
, k = 1, . . . , m .

Define
qn,k = κn,kQn,k , hn,k = K2

n,k−1Hn,k , (6.20)
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and

dρn,k(x) =
hn,k(x)dsk−1

rk−1
(x)

Qn,k−1(x)Qn,k+1(x)
. (6.21)

Notice that the measure ρn,k has constant sign on ∆k. Let εn,k be the sign of
ρn,k. From (6.17) and the notation introduced above, we obtain

∫

∆k

xνqn,k(x)d|ρn,k|(x) = 0, ν = 0, . . . , |nk−1| − 1, k = 1, . . . , m , (6.22)

and qn,k is orthonormal with respect to the varying measure |ρn,k|. On the other
hand, using (6.18) it follows that

hn,k+1(z) = εn,k

∫

∆k

q2
n,k(x)
z − x

d|ρn,k|(x) , k = 1, . . . , m . (6.23)

Let us state the analogue of Lemma 4.3.1 in this context. The proof is
similar, so we refrain from repeating it and refer to [36] for the details should it
be necessary.

Lemma 6.4.2. Let S = N ′(σ1, . . . , σm). Let Λ ⊂ Zm
+ (∗) be an infinite sequence

of distinct multi-indices with the property that max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞.

For any continuous function f on supp(σk−1
k )

lim
n∈Λ

∫

∆k

f(x)q2
n,k(x)d|ρn,k|(x) =

1
π

∫

∆̃k

f(x)
dx√

(bk − x)(x− ak)
, (6.24)

where ∆̃k = [ak, bk]. In particular,

lim
n∈Λ

εn,khn,k+1(z) =
1√

(z − bk)(z − ak)
, K ⊂ C \ supp(σk−1

k ) , (6.25)

where
√

(z − bk)(z − ak) > 0 if z > bk. Consequently, for k = 1, . . . ,m, each
point of supp(σk−1

k ) \ ∆̃k, is a limit of zeros of {Qn,k},n ∈ Λ.

As in Section 4.3, from Lemma 6.4.2 we obtain the following analogue of
Lemma 4.3.1 (see [36] for details).

Lemma 6.4.3. Let S = N ′(σ1, . . . , σm). Let Λ ⊂ Zm
+ (∗) be an infinite sequence

of distinct multi-indices such that

max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞.

Assume that there exists l ∈ {1, . . . , m} and a fixed permutation τ of {1, . . . , m}
such that for all n ∈ Λ we have that n,nl ∈ Zm

+ (∗, τ). Then, for each k =
1, . . . , m, and each compact set K ⊂ C\supp(σk−1

k ) there exist positive constants
Ck,1(K), Ck,2(K) such that

Ck,1(K) ≤ inf
z∈K

∣∣∣∣
Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ sup
z∈K

∣∣∣∣
Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ Ck,2(K),

for all sufficiently large |n|,n ∈ Λ.
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6.5 Proof of Theorem 6.5.2

In this final section, S = N ′(σ1, . . . , σm); that is, supp(σk) = ∆̃k ∪ ek, k =
1, . . . , m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0 a.e. on ∆̃k,
and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂ Zm

+ (∗) be a
sequence of distinct multi-indices. Let us assume that there exists l ∈ {1, . . . , m}
and a fixed permutation τ of {1, . . . , m} such that for all n ∈ Λ we have that
n,nl ∈ Zm

+ (∗, τ). From Lemma 6.4.3 we know that the sequences

{Qnl,k/Qn,k}n∈Λ , k = 1, . . . , m,

are uniformly bounded on each compact subset of C \ supp(σk−1
k ) for all suf-

ficiently large |n|. By Montel’s theorem, there exists a subsequence of multi-
indices Λ′ ⊂ Λ and a collection of functions F̃ l

k, holomorphic in C \ supp(σk−1
k ),

respectively, such that

lim
n∈Λ′

Qnl,k(z)
Qn,k(z)

= F̃
(l)
k (z), K ⊂ C \ supp(σk−1

k ), k = 1, . . . ,m. (6.26)

In principle, the functions F̃
(l)
k may depend on Λ′. We shall see that this

is not the case and, therefore, the limit in (6.26) holds for n ∈ Λ. First, let us
obtain some general information on the functions F̃

(l)
k .

The points in supp(σk−1
k ) \ ∆̃k are isolated singularities of F̃

(l)
k . Let ζ ∈

supp(σk−1
k ) \ ∆̃k. By Lemma 6.4.2 each such point is a limit of zeros of Qn,k

and Qnl,k as |n| → ∞,n ∈ Λ, and in a sufficiently small neighborhood of them,
for each n ∈ Λ, there can be at most one such zero of these polynomials (so
there is exactly one, for all sufficiently large |n|). Let limn∈Λ ζn = ζ where
Qn,k(ζn) = 0. From (6.26)

lim
n∈Λ′

(z − ζn)Qnl,k(z)
Qn,k(z)

= (z − ζ)F̃ (l)
k (z), K ⊂ (C \ supp(σk−1

k )) ∪ {ζ} ,

and (z − ζ)F̃ (l)
k (z) is analytic in a neighborhood of ζ. Hence ζ is not an es-

sential singularity of F̃
(l)
k . Taking into consideration that Qnl,k,n ∈ Λ also

has a sequence of zeros converging to ζ, from the argument principle it follows
that ζ is a removable singularity of F̃

(l)
k which is not a zero. By Lemma 6.4.3

we also know that the sequence of functions |Qnl,k/Qn,k|,n ∈ Λ, is uniformly
bounded from below by a positive constant for all sufficiently large |n|. There-
fore, in C \ supp(σk−1

k ) the function F̃
(l)
k is also different from zero. According

to the definition of Qn,k and Qnl,k and Lemma 6.4.1, for k = 1, . . . , τ−1(l),
we have that deg Qnl,k = |nk−1

l | = |nk−1| + 1 = deg Qn,k + 1 whereas, for
k = τ−1(l) + 1, . . . , m, we obtain that deg Qnl,k = |nk−1

l | = |nk−1| = deg Qn,k.
Consequently, for k = 1, . . . , τ−1(l), the function F̃

(l)
k has a simple pole at in-

finity and (F̃ (l)
k )′(∞) = 1, whereas, for k = τ−1(l) + 1, . . . , m, it is analytic at

infinity and F̃
(l)
k (∞) = 1.
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Now let us prove that the functions F̃
(l)
k satisfy a system of boundary value

problems.

Lemma 6.5.1. Let S = N ′(σ1, . . . , σm). Let Λ ⊂ Zm
+ (∗) be an infinite sequence

of distinct multi-indices such that

max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞.

Assume that there exists l ∈ {1, . . . , m} and a fixed permutation τ of {1, . . . , m}
such that for all n ∈ Λ we have that n,nl ∈ Zm

+ (∗, τ). Take Λ′ ⊂ Λ such that
(6.26) holds. Then, there exists a normalization F

(l)
k , k = 1, . . . ,m, by positive

constants, of the functions F̃
(l)
k , k = 1, . . . ,m, given in (6.26), which verifies the

system of boundary value problems

1) F
(l)
k , 1/F

(l)
k ∈ H(C \ ∆̃k) ,

2) (F (l)
k )′(∞) > 0 , k = 1, . . . , τ−1(l) ,

2′) F
(l)
k (∞) > 0 , k = τ−1(l) + 1, . . . , m ,

3) |F (l)
k (x)|2 1

|(F (l)
k−1 F

(l)
k+1)(x)|

= 1, x ∈ ∆̃k ,

(6.27)

where F
(l)
0 ≡ F

(l)
m+1 ≡ 1.

Proof. The assertions 1), 2), and 2’) were proved above for the functions F̃
(l)
k .

Consequently, they are satisfied for any normalization of these functions by
means of positive constants.

From (6.22) applied to n and nl, for each k = 1, . . . , m, we have
∫

∆k

xνQn,k(x)d|ρn,k|(x) = 0, ν = 0, . . . , |nk−1| − 1 ,

and
∫

∆k

xνQnl,k(x)gn,k(x)d|ρn,k|(x) = 0 , ν = 0, . . . , |nk−1
l | − 1 ,

where

gn,k(x) =
|Qn,k−1(x)Qn,k+1(x)|
|Qnl,k−1(x)Qnl,k+1(x)|

|hnl,k(x)|
|hn,k(x)| , dρn,k(x) =

hn,k(x)dsk−1
rk−1

(x)
Qn,k−1(x)Qn,k+1(x)

.

From (6.25) and (6.26)

lim
n∈Λ′

gn,k(x) = |(F̃ (l)
k−1F̃

(l)
k+1)(x)|−1 (6.28)

uniformly on ∆k.
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Fix k ∈ {τ−1(l) + 1, . . . , m}. As mentioned above, for this selection of k
we have that deg Qnl,k = deg Qn,k = |nk−1|. Using Lemmas 4.2.3, 4.2.4, and
(6.26), it follows that

lim
n∈Λ′

Qnl,k(z)
Qn,k(z)

=
Sk(z)
Sk(∞)

= S̃k(z) = F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) , (6.29)

where Sk denotes the Szegő function on C \ ∆̃k with respect to the weight
|F̃ (l)

k−1(x)F̃ (l)
k+1(x)|−1, x ∈ ∆̃k. The function Sk is uniquely determined by

1) Sk, 1/Sk ∈ H(C \ ∆̃k) ,

2) Sk(∞) > 0 ,

3) |Sk(x)|2 1∣∣(F̃ (l)
k−1F̃

(l)
k+1)(x)

∣∣ = 1, x ∈ ∆̃k .

(6.30)

Now, fix k ∈ {1, . . . , τ−1(l)}. In this situation deg Qnl,k = deg Qn,k + 1 =
|nk−1| + 1. Let Q∗n,k(x) be the monic polynomial of degree |nk−1| orthogonal
with respect to the varying measure gn,kd|ρn,k|. Using the same arguments as
above, we have

lim
n∈Λ′

Q∗
n,k(z)

Qn,k(z)
=

Sk(z)
Sk(∞)

= S̃k(z) , K ⊂ C \ supp(σk−1
k ) . (6.31)

On the other hand, since deg Qnl,k = deg Q∗
n,k+1 and both of these polynomials

are orthogonal with respect to the same varying weight, by Lemma 4.2.3 and
(6.26), it follows that

lim
n∈Λ′

Qnl,k(z)
Q∗n,k(z)

=
ϕk(z)
ϕ′k(∞)

= ϕ̃k(z) , K ⊂ C \ supp(σk−1
k ) , (6.32)

where ϕk denotes the conformal representation of C \ ∆̃k onto {w : |w| > 1}
such that ϕk(∞) = ∞ and ϕ′k(∞) > 0. The function ϕk is uniquely determined
by

1) ϕk, 1/ϕk ∈ H(C \ ∆̃k) ,

2) ϕ′k(∞) > 0 ,

3) |ϕk(x)| = 1, x ∈ ∆̃k .

(6.33)

From (6.31) and (6.32), we obtain

lim
n∈Λ′

Qnl,k(z)
Qn,k(z)

= (S̃kϕ̃k)(z) = F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) . (6.34)

Thus,

F̃
(l)
k =

{
S̃kϕ̃k , k = 1, . . . , τ−1(l) ,

S̃k , k = τ−1(l) + 1, . . . , m ,
(6.35)
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and from (6.30) and (6.35) it follows that

|F̃ (l)
k (x)|2 1∣∣(F̃ (l)

k−1F̃
(l)
k+1)(x)

∣∣ =
1
ωk

, x ∈ ∆̃k , k = 1, . . . , m , (6.36)

where

ωk =
{

(Skϕ′k)2(∞) , k = 1, . . . , τ−1(l) ,
S2

k(∞) , k = τ−1(l) + 1, . . . , m .
(6.37)

Now, let us show that there exist positive constants ck, k = 1, . . . ,m, such
that the functions F

(l)
k = ckF̃

(l)
k satisfy (6.27). In fact, according to (6.36) for

any such constants ck we have that

|F (l)
k (x)|2 1∣∣(F (l)

k−1F
(l)
k+1)(x)

∣∣ =
c2
k

ck−1ck+1ωk
, x ∈ ∆̃k , k = 1, . . . , m ,

where c0 = cm+1 = 1. The problem reduces to finding appropriate constants ck

such that
c2
k

ck−1ck+1ωk
= 1 , k = 1, . . . ,m . (6.38)

Taking logarithm, we obtain the linear system of equations

2 log ck − log ck−1 − log ck+1 = log ωk , k = 1, . . . ,m (6.39)

(c0 = cm+1 = 1) on the unknowns log ck . This system has a unique solution
with which we conclude the proof. ¤

Consider the (m + 1)-sheeted compact Riemann surface R introduced in
Chapter 5 and a conformal representation of R onto the extended complex
plane ψ(l), l ∈ {1, . . . ,m}, such that

ψ(l)(z) =
C1

z
+O

( 1
z2

)
, z →∞(0)

ψ(l)(z) = C2 z +O(1), z →∞(l)

where C1 and C2 are nonzero constants. As before, the branches of ψ(l), corre-
sponding to the different sheets k = 0, 1, . . . , m of R are denoted

ψ(l) := {ψ(l)
k }m

k=0 ,

and ψ(l) is normalized as in (5.23).
We are ready to state and prove

Theorem 6.5.2. Let S = N ′(σ1, . . . , σm) and Λ ⊂ Zm
+ (∗) be a sequence of

distinct multi-indices such that

max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞.
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Let us assume that there exists l ∈ {1, . . . , m} and a fixed permutation τ of
{1, . . . , m} such that for all n ∈ Λ we have that n,nl ∈ Zm

+ (∗, τ). Let {Qn,k}m
k=1,

n ∈ Λ, be the corresponding sequences of polynomials defined in Section 6.4.
Then, for each fixed k ∈ {1, . . . , m}, we have

lim
n∈Λ

Qnl,k(z)
Qn,k(z)

= F̃
(l)
k (z), z ∈ K ⊂ C \ supp(σk−1

k ) (6.40)

where

F
(l)
k := sg

(
m∏

ν=k

ψ(τ−1(l))
ν (∞)

)
m∏

ν=k

ψ(τ−1(l))
ν . (6.41)

Proof. Since the families of functions

{Qnl,k/Qn,k}n∈Λ , k = 1, . . . , m,

are uniformly bounded on each compact subset K ⊂ C\ supp(σk−1
k ) for all suffi-

ciently large |n|,n ∈ Λ, uniform convergence on compact subsets of the indicated
region follows from proving that any convergent subsequence has the same limit.
According to Lemma 6.5.1 the limit functions, appropriately normalized, of a
convergent subsequence satisfy the same system of boundary value problems
(6.27). According to Lemma 4.2 in [5] this system has a unique solution.

It remains to show that the functions defined in (6.41) satisfy (6.27). When
multiplying two consecutive branches, the singularities on the common slit can-
cel out; therefore, 1) takes place since only the singularities of ψ

(τ−1(l))
k on ∆̃k

remain. From the definition of ψ(τ−1(l)) it also follows that for k = 1, · · · , τ−1(l),
F

(l)
k has at infinity a simple pole, whereas it is regular and different from zero

when k = τ−1(l) + 1, · · · ,m. The factor sign in front of (6.41) guarantees the
positivity claimed in 2) and 2′).

In order to verify 3), notice that F
(l)
k /F

(l)
k−1 = sg(ψ(τ−1(l))

k−1 (∞))/ψ
(τ−1(l))
k−1 .

Therefore, if k = 2, . . . , m,

|F (l)
k (x)|2

|F (l)
k−1(x)F (l)

k+1(x)|
=
|ψ(τ−1(l))

k (x)|
|ψ(τ−1(l))

k−1 (x)|
= 1, x ∈ ∆̃k,

on account of (5.25). For k = 1, from the definition and (5.25)

|F (l)
1 (x)|2
|F (l)

2 (x)|
= |ψ(τ−1(l))

1 (x)|2|
m∏

ν=2

ψ(τ−1(l))
ν (x)| = |

m∏
ν=0

ψ(τ−1(l))
ν (x)| = 1, x ∈ ∆̃1,

since
∏m

ν=0 ψ
(τ−1(l))
ν is constantly equal to 1 or −1 on all C. ¤

Let 1 = (1, . . . , 1). An immediate consequence of Theorem 6.5.2 is

Corollary 6.5.3. Let S = N ′(σ1, . . . , σm). Let Λ ⊂ Zm
+ (∗) be an infinite

sequence of distinct multi-indices such that

max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞.
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Then, for each k = 1, . . . , m,

lim
n∈Λ

Qn+1,k(z)
Qn,k(z)

=
m∏

l=1

F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) . (6.42)

Proof. Let
Λτ = Λ ∩ Zm

+ (∗, τ) ,

where τ is a given permutation of {1, . . . , m}. We are only interested in those
Λτ with infinitely many terms. There are at most m! such subsequences. For
n ∈ Λτ fixed, denote nτ(j), j ∈ {1, . . . , m}, the multi-index obtained adding
one to all j components τ(1), . . . , τ(j) of n. (Notice that this notation differs
from that introduced previously for nl.) In particular, nτ(m) = n + 1. It is
easy to verify that for all j ∈ {1, . . . , m}, nτ(j) ∈ Λτ . For all n ∈ Λτ and each
k ∈ {1, . . . , m}, we have

Qn+1,k

Qn,k
=

m−1∏

j=0

Qnτ(j+1),k

Qnτ(j),k
,

where Qnτ(0),k = Qn,k. From (6.40) it follows that

lim
n∈Λτ

Qn+1,k(z)
Qn,k(z)

=
m∏

l=1

F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) .

The right side does not depend on l, since all possible values intervene. There-
fore, the limit is the same for all τ and thus (6.42) is obtained. ¤

The following corollary complements Theorem 6.5.2. The proof is similar to
that of Corollary 4.5.1.

Corollary 6.5.4. Let S = N ′(σ1, . . . , σm) and Λ ⊂ Zm
+ (∗) be a sequence of

distinct multi-indices such that

max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞.

Let us assume that there exists l ∈ {1, . . . , m} and a fixed permutation τ of
{1, . . . , m} such that for all n ∈ Λ we have that n,nl ∈ Zm

+ (∗, τ). Let {qn,k =
κn,kQn,k}m

k=1,n ∈ Λ, be the system of orthonormal polynomials as defined in
(6.20) and {Kn,k}m

k=1,n ∈ Λ, the values given by (6.19). Then, for each fixed
k = 1, . . . , m, we have

lim
n∈Λ

κnl,k

κn,k
= κ

(l)
k , (6.43)

lim
n∈Λ

Knl,k

Kn,k
= κ

(l)
1 · · ·κ(l)

k , (6.44)

and

lim
n∈Λ

qnl,k(z)
qn,k(z)

= κ
(l)
k F̃

(l)
k (z), z ∈ K ⊂ C \ supp(σk−1

k ) , (6.45)
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where

κ
(l)
k =

c
(l)
k√

c
(l)
k−1c

(l)
k+1

, c
(l)
k =

{
(F (l)

k )′(∞) , k = 1, . . . , τ−1(l) ,

F
(l)
k (∞) , k = τ−1(l) + 1, . . . , m ,

(6.46)
and the F

(l)
k are defined by (6.41).

Proof. By Theorem 6.5.2, we have limit in (6.28) along the whole sequence
Λ. Reasoning as in the deduction of formulas (6.29) and (6.34), but now in
connection with orthonormal polynomials, it follows that

lim
n∈Λ

qnl,k(z)
qn,k(z)

=
{

(Skϕk)(z) , k = 1, . . . , τ−1(l) ,
Sk(z) , k = τ−1(l) + 1, . . . , m ,

K ⊂ C \ supp(σk−1
k ) ,

where Sk is defined in (6.30). This formula, divided by (6.29) or (6.34) according
to the value of k gives

lim
n∈Λ

κnl,k

κn,k
=
√

ωk =
ck√

ck−1ck+1
,

where ωk is defined in (6.37), and the ck are the normalizing constants found
solving the linear system of equations (6.39) which ensure that

F
(l)
k ≡ ckF̃

(l)
k , k = 1, . . . ,m ,

with F
(l)
k satisfying (6.27) and thus given by (6.41). Since (F̃ (l)

k )′(∞) = 1, k =
1, . . . , τ−1(l), and (F̃ (l)

k )(∞) = 1, k = τ−1(l) + 1, . . . ,m, formula (6.43) immedi-
ately follows with κ

(l)
k as in (6.46).

From the definition of κn,k , we have that

Kn,k = κn,1 · · ·κn,k .

Taking the ratio of these constants for the multi-indices n and nl and using
(6.43), we get (6.44). Formula (6.45) is an immediate consequence of (6.43) and
(6.40). ¤

Remark 6.5.5. We have imposed two types of restrictions on the class of multi-
indices under consideration. The first one refers to being in Zm

+ (∗). This is
connected with the long standing question in the theory of multiple orthogonal
polynomials of whether or not for any m all multi-indices of a Nikishin system
are strongly normal. We have proved our results in the largest class of multi-
indices known to be strongly normal. Should this conjecture be solved in the
positive sense (as it appears to be the case), the methods exposed in this chapter
should allow to eliminate this condition as we have done for the cases m = 1, 2, 3.

The second restriction

max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞
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is connected with the use of Lemma 6.4.2. This condition means that all com-
ponents of the multi-indices are of the same order and that orthogonality is,
basically, equally distributed between all the measures. The proof of (6.24) re-
quires the density of certain classes of rational functions with fixed poles (in
our case at the zeros of the polynomials Qn,k−1Qn,k+1 and numerator of degree
twice the order of orthogonality) in the space of continuous functions on a given
interval. In general, this is not true if the rational functions are such that the
degree of the denominator is much larger in order than that of the numerator
(as |n| → ∞). This is what may occur if we eliminate the restriction above. It
can be relaxed to nk = |n|/m + O(log |n|), k = 1, . . . , m, without changing the
structure of the Riemann surface which describes the solution of the problem, but
not much more. In applications, the diagonal case (nk = |n|/m, k = 1, . . . , m)
and nearby indices seem to be the most important.



7. CONCLUDING REMARKS

We have obtained the logarithmic and ratio asymptotics of mixed type multiple
orthogonal polynomials associated with two Nikishin systems of measures. The
results have been proved under assumptions that match those required in the
case of standard orthogonality as far as the measures is concerned. So in this
sense they are sharp. Possible extensions would require relaxing the assumptions
on the systems of multi-indices. In this connection see Remark 6.5.5 whose
statements are valid for the mixed type case. The strong asymptotics for type II
Nikishin multiple orthogonal polynomials was obtained in [3]. It would be nice to
extend that result to mixed type orthogonality when the generating measures are
in the Szegő class. The Riemann-Hilbert approach could also give new light to
the strong asymptotics of mixed type Nikishin multiple orthogonal polynomials
giving finer strong asymptotics for special classes of generating measures. In
this direction little has been achieved. Another area of further research would
be the consideration of measures with unbounded support and the study of the
contracted asymptotics of the corresponding multiple orthogonal polynomials.

We also proved relative asymptotics for type II multiple orthogonal poly-
nomials in which the perturbation is given by rational functions. This result
allows to give a Markov type theorem for simultaneous Padé approximants of
the corresponding system of Cauchy transforms. The result can be extended to
mixed type multiple orthogonal polynomials combining the methods exhibited
in Chapter 5 and the results from Chapter 4. Nevertheless, here we are far from
achieving our initial goals. We would have liked to give the relative asymptotics
under the assumption that the perturbation is due to functions gk, k = 1, . . . , m,
such that pkg±1

k ∈ L∞(σk) for some appropriate polynomials pk, k = 1, . . . , m.
This would correspond with what is known for standard orthogonality (see [50],
[51], [65]). The technical difficulty here was of a different character. We were
unable to provide the normality of the sequences of {Q̃n,k/Qn,k}n∈Λ, under this
weaker assumption on the perturbation functions. An immediate application
would be the following. In [3], strong asymptotics was proved for measures
given by weights in the Szegő class. This result could be extended to general
measures in the Szegő class.
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meromorphic functions, Math. USSR Sb. 26 (1975), 555–575.

[27] A. A. Gonchar and E. A. Rakhmanov, The equilibrium measure and dis-
tribution of zeros of extremal polynomials, Math. USSR Sb. 53 (1986),
119–130.

[28] A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and degree
of rational approximation of analytic functions, Math. USSR Sb. 62 (1989),
305-348.

[29] A.A. Gonchar, E.A. Rakhmanov, and V.N. Sorokin, Hermite-Padé approx-
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polynomials with respect to an analytic weight: canonical representation
and strong asymptotics, Constr. Approx. 24 (2006), 319–363.

[48] A. Mart́ınez Finkelshtein, K. Mc Laughlin, and E. B. Saff, Asymptotics of
orthogonal polynomials with respect to an analytic weight with algebraic
singularities on the circle, Internat. Math. Research Notices Vol. 2006, 1–
43.
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