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1. INTRODUCTION

1.1  Our motivation

In the last four decades, the general theory of orthogonal polynomials has ex-
perienced a dramatic expansion, particularly so in connection with its analytic
theory. An updated account in the sole direction of orthogonal polynomials
on the unit circle may be obtained from [74], [75]. Potential theory [73], [77],
Riemann-Hilbert analysis [17], operator theory [75], Riemann surfaces [61], [4],
and the theory of boundary values of analytic functions [2], [3], have come into
play, which together with the classical methods of real and complex analysis
have produced deep and far reaching results within the standard theory of or-
thogonal polynomials.

Some examples of such outstanding results are: the theorem on the ratio
asymptotics of orthogonal polynomials on the unit circle and a segment of the
real line [62]-[65], [55], [16], the extension of Szegd’s theory of orthogonal poly-
nomials [54], [49]-[51], [65], the asymptotic behavior of orthogonal polynomials
corresponding to general classes of measures supported on unbounded intervals
of the real line [64], [52], [53], [35], and with it the solution of the Freud conjec-
ture [44], and the 1/9 conjecture [28], the accurate description of the asymptotic
behavior of orthogonal polynomials on the support of the measure and the com-
plete asymptotic expansion of the orthogonal polynomials for special classes of
measures [47], [48].

All this has been accompanied by a substantial advancement in the study
of non standard models of orthogonality relations as in: orthogonal rational
functions [11], polynomials orthogonal with respect to varying measures [38]-
[40], [78], Sobolev orthogonal polynomials [46], [25], [42], matrix orthogonal
polynomials [19], [79], [76], discrete orthogonal polynomials [66], [18], [7], and
multiple orthogonal polynomials [60], [2], [3], [5].

This thesis is inscribed in the attempt of bringing new light to the analytic
theory of orthogonal polynomials understood in a wide sense. More precisely, we
will study several types of asymptotic properties of a certain class of multiple or-
thogonal polynomials. Such types of orthogonal polynomials are connected with
vector rational approximation [60], [57], [12], simultaneous quadrature formulas
[20], analytic number theory [59], [71], [80], and more recently in integrable sys-
tems, random matrix theory, and brownian motions of non-intersecting paths,
[34], [15], [33]. Before describing our results, let us briefly review the sources
which inspired our research.

Let f denote a formal power series at co. For each n € Z (the set of all
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non negative integers) there exist polynomials Q,,, P, satisfying:
1) degP’ﬂ S n— 1adean S n7Qn i 07
i) (Qnf— Pu)(2) =0(1/2""), 2z — oo

The quotient 7, = 7,(f) = P,/Q, is uniquely determined and is called the
n-th diagonal Padé approximant of f.

Let s denote a finite positive Borel measure with compact support supp(s)
contained in the real line consisting of an infinite number of points. By

. ds(x)

5(z) = / P

we denote the Cauchy transform of the measure. Obviously, s is holomorphic in

the region C \ supp(s) and we write § € H(C \ supp(s)). The smallest interval
which contains supp(s) will be denoted by A.

It is easy to verify that when f = § then @, is an n-th orthogonal poly-

nomial with respect to the measure s and P, is the corresponding second type
polynomial; that is,

Oz/m”Qn(x)ds(m), v=0,...,n—1,

Sy EACET LI

and

Consequently,

(Qns — /Q"Zﬂ: = /szx : (1.1)

In the sequel, we assume that @, is monic; that is, has leading coefficient equal
to 1.

A classical result of A. A. Markov [45] may be restated as follows (originally
it was expressed in terms of continued fractions).

Theorem (A. A. Markov). For any measure s, the corresponding sequence
of diagonal Padé approximants {7, },n € Z, converges to s uniformly on each
compact subset contained in C\ A.

We denote this by

limm, =5, KcC\A. (1.2)

(Throughout the thesis we will use this notation to express uniform convergence

of different sequences of functions on compact subsets of the specified region.)
Using the maximum principle, it is not hard to deduce that convergence

takes place with geometric rate on the indicated region measured in terms of
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the Green function go(z;00) of the region = C \ supp(s) with singularity at
oo. For a large class of measures this rate of convergence is exact.
We say that s is regular, and denote this by s € Reg, when

lim | Qnly"" = cap(supp(s)),

where cap(-) denotes the logarithmic capacity of the set (-) and || * || is the Lo
norm with respect to s of the function *. See [77, Section 3.1] for different forms
of defining regular measures. Let g, = Q.,,/||@n||2 denote the n-th orthonormal
polynomial with respect to s. The regularity of s is equivalent to

lim |gp (2)|1/™ = e90(z%0) KcC\A.

Formulas of this type receive the name of logarithmic or n-th root asymptotics.
On account of (1.1), and trivial upper and lower bounds for the second integral
expression in that formula, it follows that s € Reg implies

lim [|5 — 7, () 2" = e ") (< 1) (1.3)

for every compact subset X C C\ A, where |- || denotes the uniform norm and
k(K) = min{gq(z;00) : z € K}.

In [26, Theorem 1] (see also pages 570-571 in that reference), A. A. Gonchar
devised a way of proving an analogue of Markov’s theorem for functions of the

form
pi(x)

e ds(@) (2)
q1 () P2
fo) = [REE B ) o (14)
where (p1,q1) = 1 and (p2,¢2) = 1 (that is, are relatively prime), the zeros of
p1,q1 and g9 lie in C\ A, and the measure s is such that the corresponding
sequence of orthogonal polynomials satisfies what is called ratio asymptotics.

In a series of two papers [62] and [63], E. A. Rakhmanov proved a theorem
on ratio asymptotics.

Theorem (E. A. Rakhmanov). Suppose that s’ > 0 almost everywhere with
respect to the Lebesgue measure on A, then

. @nii(z) _ p(2)
1171Ln ) () KcC\A (1.5)

uniformly on each compact subset of C\ A, where o(z) denotes the conformal
representation of C\ A onto {w : |w| > 1} such that ¢(c0) = oo and ¢’(c0) > 0.

This result produced great impression because of its theoretical interest
within the general theory of orthogonal polynomials and its applications to
the theory of rational approximation of analytic functions. Simplified proofs of
Rakhmanov’s theorem may be found in [65] and [55].
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A point zg € C is said to be a d attraction point of zeros of a sequence of
functions {g,},n € A C Z,, if for each sufficiently small € > 0 there exists N
such that for all n € A,n > N, the number of zeros (counting multiplicity) of
gn in {z: ]z — 20| < e} is d. A set E is an attractor of the zeros of {g,},n € A,
if for each £ > 0 there exists Ny such that n > Ng,n € A, implies that all the
zeros of g, lie in the & neighborhood of E.

Taking into account E. A. Rakhmanov’s theorem, we can state Gonchar’s
result as follows.

Theorem (A. A. Gonchar). Let f be as in (1.4). Assume that s’ > 0 almost
everywhere with respect to the Lebesgue measure on A. Then

lim || — m ()" = e (< 1) (1.6)

on each compact subset K C C\ (AU {z : f(z) = oo}). If Q, denotes the
n-th monic orthogonal polynomial with respect to s and @,L is the denominator
of 7, (f) normalized to be monic, we have that deg @, = n for all sufficiently
large n, each zero a, of g of multiplicity d, is a d, attraction point of the

zeros of {QnY,n € Zy, and AU {z : g2(2) = 0} is an attractor of the zeros of

{Qu}.n € Zy. Ifpi(2) = CII% (2 = Br), € # 0, a(2) = T2, (2 — ), and
N3

q2(2) =112, (2 — ax), then

i (25— 0(2) 82(2), 17)
where N N
Ao TT @) 17 el2)elon) — 1
) io P(2)e(B) =1 ,};[1 o(2) plax)
and

The expression given here for the functions on the right hand side of (1.7)
are equivalent to those used in [26].

Formula (1.7) is of relative asymptotics. In its general form, relative asymp-
totics deals with the question of obtaining the limit lim,, @n/Qn in terms of
g,ds = gds, where @n is the n-th monic orthogonal polynomial with respect
to the measure s and @,, is the n-th monic orthogonal polynomial with respect
to the measure s. The aim is to extend Szeg6’s theory to classes of measures
not satisfying Szegdé’s condition. With this general purpose, the question was
probably first raised by P. Nevai in [54]. The problem was later considerably de-
veloped by Maté, Nevai, and Totik in [49]-[51] and independently by Rakhmanov
in [65], (see also [31], [32], and [75, Chapters 9 and 13]).

Rakhmanov’s theorem has been extended in several directions. Orthogonal
polynomials with respect to varying measures (depending on the degree of the
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polynomial) arise in the study of multipoint Padé approximation of Markov
functions. In this context, in [38] and [39], an analogue of Rakhmanov’s theo-
rem for such sequences of orthogonal polynomials was proved. Recently, S. A.
Denisov [16] (see also [56]) obtained a remarkable extension of Rakhmanov’s
result for the case when the support of s verifies supp(s) = AUeC R, where
A is a bounded interval, e is a set without accumulation points in R\ 5, and
s’ >0a.e. on A. A version for orthogonal polynomials with respect to varying
Denisov type measures was given in [14].

In this thesis we obtain results on the logarithmic, ratio, and relative asymp-
totics of multiple orthogonal polynomials for Nikishin systems of measures. In
the following section we define such systems of measures and their corresponding
multiple orthogonal polynomials.

1.2 Nikishin systems, mixed multiple orthogonal polynomials,
and normality

The notion of a Nikishin system of measures was introduced by E.M. Nikishin
in [57]. He called them MT systems.

Let 0, 03 be two measures with constant sign and support contained in R.
Let Ay, Ag denote the smallest intervals containing their supports, supp(oy)
and supp(og), respectively. We write Co(supp(os)) = Ay. Assume that A, N
Az = and define

d{og, og)(z) := /Mdaa(ﬂc).
z—t
Therefore, (04, 03) is a measure with constant sign and support equal to that
of o,.

For a system of bounded intervals Ag,..., A,, contained in R satisfying
AjNAj1 =0,j=0,...,m—1, and finite Borel measures oy, ..., 0, with
constant sign in Co(supp(o;)) = A;, such that each one has infinitely many
points in its support, we define recursively

(00, 01,..., 0j) = (00, (01,...,05)), j=1,...,m.

This special notation was introduced by Gonchar, Rakhmanov, and Sorokin in
[29].

Definition 1.2.1. We say that (so,..., Sm) =N (00,..., om), where
80:<00>:O'0, 81:<O'0, 01>7..., 5m:<0—03-~~70—m>7
is the Nikishin system of measures generated by (o¢,...,0m).

Throughout this thesis, the generating measures of the Nikishin systems
considered are understood to have constant sign, to be compactly supported on
the real line, the supports contain infinitely many points, and AjNA; 11 = 0,5 =
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0,...,m —1,. We will not repeat this each time. The results of Chapter 2 may
be easily deduced when the support of the generating measures are unbounded
and have finite moments, but for the rest of the work compactness is an essential
assumption.

Notice that all the measures in a Nikishin system have the same support,
namely supp(oo). We will denote (s;,; = o)

sj,k:<0ja"'7o—k>v OSJSkSm

For simplicity, in what follows we use the notation §;j (instead of 5;) to
indicate the Cauchy transform of s; .

Take two systems S* = (s§,...,s5,,) =N(08,...,00,,), 5% = (s3,...,8%,) =
N(a3,... 7J?m) generated by m; + 1 and mgy + 1 measures, respectively. The

two systems need not coincide, but we will always assume that o} = 03; that
is, both systems stem from the same basis measure. The smallest interval con-
taining supp(c}) will be denoted Co(supp(a)) = Al

Let Z denote the set of non-negative integers. Fix two multi-indices n; =
(’I’Llyo, N1y, nl,ml) S ZT1+1 and ny, = (TLQ’(), N2 1,-. -, nz’mQ) € ZT2+1. Set
[ni| =n10+4- -+ n1,m,, N2| =n20+- - +N2m,, and n = (n;n). We always
assume that |ng| +1 = |n4/.

Let |n;| > 1. The system of polynomials an 0, @n1,-- ., Gn,m, satisfying
i) deg(an,j) <ni; —1,5=0,..., mq, not all identically equal to zero.
ii) For k=0,...,mgand v =0,...,n2% — 1,

[ st St @)istar =0

(deg(an,;) < —1 means that an ; = 0) is called a system of mized type multiple
orthogonal polynomials associated to n = (ny;ng) and (S*,S?). In the context
of pairs of Nikishin systems, this concept was first introduced by V.N. Sorokin
in [70] (see also [69] for the general definition).

Finding ano,...,an,m, reduces to solving a homogeneous linear system of
Ina| equations on |nj| unknowns. Since |nz| = |n;| — 1, a non-trivial solution
is guaranteed. If we multiply all the polynomials giving a solution by the same
constant, the new set of polynomials also solves the problem. Nevertheless, it is
not a trivial fact to determine whether or not the class of all solutions is formed
by collinear polynomial vectors. In more general settings this is known to be
false. Recently, U. Fidalgo and G. Lépez have claimed that the statement is
true for mixed multiple orthogonal polynomials of two Nikishin systems.

In the particular case mg = 0, the polynomials (an,,--.,@n,m,) are called
type I multiple orthogonal polynomials. If m; = 0, an o is called a type II multiple
orthogonal polynomial. The case m; = my = 0 reduces to the usual definition
of orthogonal polynomial.
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We remark that in [57] Nikishin obtained a generalization of the classical
Markov theorem for Nikishin systems consisting of two measures and multi-
indices with two equal components for type Il approximants. Later, J. Busta-
mante and G. Lépez extended in [12] the theorem to arbitrary Nikishin systems
and multi-indices whose components are “nearly” equal also in type II approxi-
mation. A substantial improvement, for quite general systems of multi-indices,
was produced in [24].

In [57], E.M. Nikishin introduced the following definition.

Definition 1.2.2. A set of real continuous functions ug(x), ..., um(z) defined
on an interval A, is called an AT-system for n = (ng,...,Ny,) € Z:L”‘H, if
for any polynomials Py, ..., Py such that deg(P;) < mn; — 1,4 =0,...,m, not

simultaneously identically equal to zero, the function
Py(x)up(x) + -+ 4+ Pp(z) um (),
has at most In| — 1 zeros on A (deg(P;) < —1 means that P; = 0).

We will consider several classes of multi-indices. Given an integer m > 1,
we define
TR0 = {n €T ny > o> nm), (1.9)

7 (x) ={n e Z : Ai <k < jsuch that n; < n; < ng}. (1.10)

More classes of multi-indices will be specified later. The following result was
obtained by U. Fidalgo, J. Illdn, and G. Lépez in [20], and will be applied several
times throughout the thesis.

Lemma 1.2.3. Letn € Z7' (x) and (s1,..., sm) = N(01,..., 0m), then the
system of functions (1, 51,..., S;m) defines an AT-system for n = (ng,...,Mm)

on any interval disjoint from Co(supp(o1)).

We associate to the system of polynomials (ano, ..., anm,) the following
functions (5! $i+1,5(2) =1L, Anm, = anm,)

Zank )Shk(2),  §=0,...,m, (1.11)

An, .
‘AH,—j 1 / P ( ), 7=0,...,m9, (1.12)

the latter being defined recursively. Notice that (1.8) indicates that Ay o satisfies
orthogonality conditions. We will show that in fact all the linear forms Ay, ;,
—meg < j < my, satisfy certain orthogonality conditions and we will describe
their logarithmic and ratio asymptotic properties.

For j =0,..., m1, let Qn,; be the monic polynomial whose zeros are those of
the linear form Ay, ; in the region C\ A}, counting multiplicities (A}, ; = 0).
In particular, An m; = Gn,m; = @n,m,. In the hypothetical case that Ay ; had
infinitely many zeros in the specified region, then @, ; denotes a formal infinite
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product. In fact, on the basis of Lemma 1.2.3, in Proposition 2.1.5 we will show
that if n € ZT1+1(0) X ZTZJrl(o) then

degQnj=Nij=Nijn)=nj+-+nim —1,  j=0,...,my,

all the zeros of @y ; are simple and lie in the interior of the interval Ajl.
Analogously, for j = 1,...,mg, we let Qn,—; be the monic polynomial whose

zeros are those of A, _; in the region C\ Ai 1, counting multiplicities. We will

also prove in Proposition 2.1.7 that if n € Z’fl“(o) X ZT2+1(0) then

degQn,—j = Noj = Naj(n) =ng;+ - +nom,,  J=0,...,ma,

all the zeros of @y, _; are simple and lie in the interior of A?. In this thesis
we describe the logarithmic and ratio asymptotics of the polynomials @y j,
j: —mao,...,Mq.

A multi-index n = (n1;n2) is said to be normal if every solution to i)-ii)
satisfies deg an j = n1,;—1,7 = 0,...,m. If n is normal, it is easy to verify that
the vector (amo7 ey an,ml) is uniquely determined except for a constant factor,
and in that case we normalize it to be “monic” meaning by this that its last
entry different from zero has leading coefficient equal to 1.

1.3 Main results

The results of this thesis appear in three papers: Chapters 2 through 4 are con-
tained in [21], Chapter 5 corresponds to [37], and Chapter 6 develops the results
of [36]. They have been exposed at various international meetings on orthog-
onal polynomials and their applications, as for instance: OPSFA, Luminy’07;
Appopt, San Andres’08; and FoCM, Hong Kong’08. The methods employed are
inscribed in the theory of functions of a real and complex variable as developed
in [1] and [68], with elements of more advanced topics of logarithmic potential
theory [67], and compact Riemann surfaces [9].

Let us describe briefly our main contributions. We will specify more details
in the beginning of each chapter.

1.3.1 Logarithmic asymptotics

One of the main results in this thesis concerns the |nj|-root asymptotics of the
linear forms Ay j, j = —me —1,...,my, under mild conditions on the sequence
of multi-indices and the measures generating both Nikishin systems. We remind
the reader that a measure o is said to be regular if

lim xY/™ = 1/cap(supp(c)),

n—oo
where cap(-) denotes the logarithmic capacity of the Borel set (-) (see [77] or
Section 3.1 for the definition of logarithmic capacity) and &, denotes the leading
coefficient of the n-th orthonormal polynomial with respect to o. For different
equivalent forms of defining regular measures, see sections 3.1 to 3.3 in [77]
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(in particular Theorem 3.1.1). For short, we write (S!,5%) € Reg to mean
that all the measures which generate both Nikishin systems are regular and
their supports are regular compact sets. Recall that a compact set K is said to
be regular with respect to the Dirichlet problem when the Green function with
singularity at infinity of the unbounded connected component of the complement
of I can be extended continuously to all C. Let us introduce some notation
and results from potential theory which we need to formulate our findings of
Chapter 3.

If F is a compact subset of the complex plane, we denote by M(E) the class
of all finite, positive, Borel measures with support consisting of an infinite set
of points contained in F, and M (E) is the subclass of probability measures of

Let Ex, k = —ma,...,m1, be (not necessarily distinct) compact subsets of
the real line and C = (¢, 1), —m2 < j, k < my, areal, positive definite, symmetric
matrix of order mi + ms + 1. C will be called the interaction matrix. Set

Ml = MI(E—"LQ) X X Ml(Eml) .

Given a vector measure 4 = (f_my, - - -, fhm,) € My and j € {—ma,...,m1},
we define the combined potential

my

Wi = Y V' (@), (1.13)

k:*?‘ng

where

Vir(a) = [ log - dun(t)

|z —1|

denotes the standard logarithmic potential of . We denote

wi =inf{Wj'(z) :x € E;}, j=-ma,...,m.
In [60, Chapter 5] the following important lemma is proved (we state the
result in a form convenient for our purpose).

Lemma 1.3.1. Assume that the compact sets Ex, k = —ma, ..., m1, are reqular
with respect to the Dirichlet problem. Let C be a real, positive definite, symmetric
matriz of order my 4+ mgo 4 1. If there exists i = (fi_ s - - - Hyy, ) € M1 such
that for each j = —mag,...,my

w

TN _
Wi (x) = wy x € supp(f;) ,

then i is unique. Moreover, if ¢j, > 0 when E; N Ey, # 0, then [ exists.

For details on how this lemma is derived from [60, Chapter 5] see [10, Section
4]. The vector measure i € M is called the equilibrium solution for the vector
potential problem determined by the interaction matrix C on the system of
compact sets Ej ,j = —ma,...,mq.
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Let A = A(P1,0s---,P1,m15D02,05---sDP2.ms) C ZTlJrl(o) X ZTQJrl(o) be an
infinite sequence of distinct multi-indices such that

77,1 ) . 712 .
nleAm*plj (Oal)a]:(),-n,mh rlllg}xm*pzj (031)7.7:07-"37712-

Obviously, p1,0 > -+ > P1,m,sDP2,0 = -+ = P2,m,, and Z;’nzlopl,j = Z;‘TZOPQJ =
1. Set

mi m2
szzpl,kajzoa"'7mla P—jzzp27k7j:()"'"m
k=3 k=3

Let us define the interaction matrix C which is relevant in this thesis. Take
the tri-diagonal matrix

P2 _Pomy Pomyty 0 )
2
Py Z—m2+1 i szglj-l . P—m2+12p—m,2+2 . 0
—mo+1FP—my42 2
C = 0 _% P7m2+2 ce. 0
0 0 0 Pgn
(1.14)
This matrix satisfies all the assumptions of Lemma 1.3.1 on the compact sets
E; = supp(o ) j=0,1,...,m,E; = supp(azj),j =0,-1,...,—ms, including
¢k >0 when E; N Ey # 0 (recall that of = 02), and it is positive definite
because the principal section C,.,r = 1,...,m1 + ms + 1, of C satisfies
1 —% o --- 0 0
-z 1 -1 0 0
o -4 1 - 0 0
det(C,) = P2, - P> .. qdet| . . o , . > 0.
0 0 o - 1 —%
0 0 0o - —% L) .

Let @(C) be the equilibrium solution for the corresponding vector potential
problem.

Let {p;} € M(E) be a sequence of positive measures and u € M(E). We
write

*limpy = g,

if for every continuous function f € C(E)

tiw [ fdps = [ fau;

that is, when the sequence of measures converges to p in the weak star topology.
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Given a polynomial ¢; of degree [ > 1, we denote the associated normalized
zero counting measure by

where §, is the Dirac measure with mass 1 at = (in the sum the zeros are
repeated according to their multiplicity).

Frequently we will make use of the following renumbering of intervals and
measures

— Al _ 1 e
A'—Aj, Uj—O'j, ]—0,17...,m1,

Aj:AEj, Uj:(rzj, j=0,-1,...,—mao,
and
Nljj(n) -1, 57=0,1...,mq,
Nnj
N27_j(l'l), j:(),*l,...,me.
We have

Theorem 1.3.2. Let S* = N(0},...,0p,), S = N(03,...,02,), (5*,5%) €
Reg, and A = A(pl)o, <oy P1,mey P2,05 - - - ,p27m2) C ZTlJrl(O) X ZTQJFl(O), be
given. Then

*}llg}\/’LQn,J :ﬁjv j: —mz,...,Mmi, (115)

where it = T(C) € My is the vector equilibrium measure determined by the ma-
triz C in (1.14) on the system of compact sets E; = supp(0;),j = 0,...,m1, Ej =
supp(o _]) j = —ma,...,0. Moreover,

neA -1(2)] |@n ()]

1/2|nq| mi
lim (/ 0 o8 /I) |A"’j(x)|d|aj|(x)> = exp Zw /Pr |, (1.16)

where the w denote the corresponding equilibrium constants.

The previous result is demonstrated in Section 3.2. Concerning the logarith-
mic asymptotics of the functions Ay, ;, in Section 3.3 we obtain

Theorem 1.3.3. Let S* = N(o§,...,05,,), 5% = N(0§,...,0%,), (S',5%) €
Rega and A = A(p1,07~"7p1,m1;p2707'~~7p2,m2) Z:'.“Jrl( ) Zm2+1( )7 be
gwen. Let {An;},m €A, j=—mo—1,...,my, be the sequences of “monic” lin-

ear forms associated with the corresponding mized type orthogonal polynomials.
Then, for each j = —mo —1,...,m

lim [ Ay, (=)™ = Gi(2), K CC\(A;UAm)  (117)
(A1 = Apyy41 = 0), where
Gi(2) = exp | Prpa VI (2) — PV (2) — 2 Z w’f , (1.18)

k= ]+1
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(P_ymy-1=Pmyt+1=0) when j=—mo—1,...,m1 — 1, and
G, (2) = exp (=P, VI (2)) . (1.19)
B=T10C) = (A_py---+Fm,) and (W, ... Wk ) are the equilibrium vector

measures and the system of equilibrium constants, respectively, for the wvec-
tor potential problem determined by the interaction matriz C defined in (1.14)
on the system of regular compact sets E; = supp(J}),j =0,....m,E; =

supp(0? ), j = —ma,...,0.

In [58], E. M. Nikishin proved a similar result for type I multiple orthogonal
polynomials (mg = 0) and in Section 5.7 of [60] (see also [43]) the analogue
for type II multiple orthogonal polynomials (m; = 0) is stated. V. N. Sorokin
considered the mixed case in [70] where he stated the result in general but
proved it only when m; = ms = 1. In these papers a stronger assumption is
made on the generating measures. Namely, it is required that |o},| > 0,a.e. on
Alk =0,...,m;i = 1,2. (As usual, by ¢’ we denote the Radon-Nikodym
derivative of the measure o.) We preserve this more restrictive hypothesis for
the stronger Theorem 1.3.4. Weakening the hypothesis to class Reg is made
possible using finer results from potential theory.

Regarding [70] we wish to point out the following. We arrived at the con-
struction of mixed multiple orthogonal polynomials with respect to two Nikishin
systems and the results in Chapters 2 to 4 without any knowledge of the exis-
tence of [70]. In a last attempt to update the references in [21] before submitting
the paper, we discovered [69] and [70] and asked V. N. Sorokin to join the rest
of us as co-author in due recognition for his contributions to the subject and he
kindly accepted.

1.3.2 Ratio asymptotics

For the next result, we assume that supp(o?) = 53 Uelj=0,...,myi=1,2,

where A; = [a%,b%] is a bounded interval of the real line, |(0%)'] > 0 a.e. on A;,
and e’ is a set without accumulation points in R\ E; We denote this writing

St=N"(04,...,00,,),5* =N"(0§,...,02,)-
We need to introduce a Riemann surface that arises in the analysis of the
ratio asymptotics of the family of polynomials {@Qn,; ;’Z:lfmz. Let us renumber

the intervals ﬁ; as follows

Consider the (my + mso + 2)-sheeted Riemann surface

my

R= |J R,

’szmzfl
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formed by the consecutively “glued” sheets
R7m271 =C \ Kfmg, R := @\ (Kk @] Ek+1), k=—-mo,...,m; — 1,

R, = @\ Kml,

where the upper and lower banks of the slits of two neighboring sheets are
identified. It is easy to see that the surface R is orientable, compact, and has
genus zero, the latter meaning that it is homeomorphic to the Riemann sphere.
Fix I = (I1,02), 0 < I3 < mq, 0 < Iy < my. Let ¥ be a single valued
function defined on R onto the extended complex plane satisfying
PO (2) = =2 + O(zi?)’ z — ool7l2=1),

2
PO (2) =Coz+0O(1), z— oo,

where C; and C, are nonzero constants. Since the genus of R is zero, 1)
exists and is uniquely determined up to a multiplicative constant. Consider the
branches of ¢, corresponding to the different sheets k = —mo — 1,...,mq of
the surface R

)\m
W = N,
We normalize 1 so that

mi

[T wlel=1 ¢ er\{o}. (1.20)

szmzfl

In fact there are only two ¥ verifying this normalization. To see this, assume
that ¢ : R — C is a single valued function satisfying

D 1
¢(Z) = ! + O ( ) s z — OO(_l2_1)7

R
9(z) = Daz + O(1), 2 — o™,

where D; and Dy are nonzero constants, and ¢ also satisfies (1.20). The func-
tions ¢ and 1) have the same divisor; consequently, there exists a constant C
such that ¢ = C' ). This implies that D; = C'C; and C € R. From

1= H |¢k<00)| = H |C¢;(f)(00)| _ |C|m1+m2+1
k=—mz-1 k=—mo—1

it follows that C' = £1.
Since the product of all the branches H;n:l_mz_l w,(cl) is a single valued ana-

lytic function in C without singularities, by Liouville’s theorem we know that

e g1 1&,(;) is constant and because of the normalization (1.20) this constant

is either 1 or —1.
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The fact that C; € R\ {0} implies in particular that

V() =90, zeR.

To justify this, let ¢(z) = ¥ (Z). ¢ and ¥ have the same divisor and
therefore there exists a constant C' such that ¢ = C' (). Comparing the leading
coefficients of the Laurent expansion of these functions at co(=2~1 we conclude
that C' =1 since C; € R\ {0}.

In terms of the branches of 1), the symmetry formula above means that
for each k = —mo — 1,...,mq,

DR\ (A, UAw) — R

(A_pm,—1 = A1 = 0); therefore, the coefficients (in particular, the leading
one) of the Laurent expansion at co of these branches are real numbers, and

¢1(€l)($i) = ¢;(gl)( )= wkﬂ (z1), T € ﬁk_,_l. (1.21)

Given an arbitrary function F'(z) which has in a neighborhood of infinity
a Laurent expansion of the form F(z) = C2¥ + O(z*71),2 — o0,C # 0, and
k € Z, we denote _
F:=F/C.

C is called the leading coefficient of F. When C € R, sg(F(c0)) will represent
the sign of C.

Given n = (ni;ny) and | = (I1,ls), we associate a new multi-index n! :=
(n;4e;ny+e?) = (n}';nk), where e’ denotes the unit vector of length m; +1
with all components equal to zero except the component (I; + 1) which equals
1.

We are ready to state the main result of Chapter 4.

Theorem 1.3.4. Let S' = N'(o§,...,0),.),5% = N'(03,...,02,,) be given,
and letn € A C Z7" T (o) x ZT> 1 (o) be an infinite sequence of distinct multi-

indices such that

sup((m2—|—1)n20 — ng|) < o0, sup((m1—|—1)n10— Iny|) < oo.

neA ncA
Let us assume that there exists | = (I11;12),0 <13 <my,0 <y < mg, such that
for alln € A we have that n' € Z’J_”'H(o) X ZTTH( ). Let {Qn,;}j2_,,,, nEA,
be the corresponding sequences of polynomials defined in Section 1.2. Then, for
each fized j € {—ma,...,m1}, we have

=FY(z),  zekcC\supp(o;) (1.22)

where
mi mi

F" = sg [ T] vt H mes (1.23)
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An interesting feature is that the functions F j(l) are completely determined
by the system of boundary conditions (4.14) (see Lemma 4.4.2 in Section 4.4
and the proof of Theorem 1.3.4 in Section 4.5). When my = mgy = 0, this result
reduces to the Denisov-Rakhmanov Theorem.

For type II multiple orthogonal polynomials (m; = 0) and measures such
that |o}.| > 0 on the whole interval Ay, k = —ma, ..., 0, this result was estab-
lished in [5]. Later (also for type II multiple orthogonal polynomials), in [36]
we improved the result to measures of Denisov type and more general classes
of multi-indices than those considered here. The treatment of more general
sequences of multi-indices introduces substantial technical difficulties. For this
reason, we revisit ratio asymptotic for type II multiple orthogonal polynomials
separately in Chapter 6. There we prove Theorem 6.5.2, which is an analogue
of Theorem 1.3.4. The present result is already new when mo = 0 and m; > 2
since ratio asymptotics had not been proved before for liner forms (except the
one that gives the remainder of Padé approximation).

Chapter 4 also contains results on the ratio asymptotic of the forms and the
second type functions defined by them.

1.3.3 Relative asymptotics

In Chapters 5 and 6, we focus on type II multiple orthogonal polynomials. Now,
the construction of the multiple orthogonal polynomials depends of only one
Nikishin system so we drop the supra index on the generating and generated
measures. Since we have no need to match systems at an initial measure as
we did before (o} = o), the basis measure will be o1, following the notation
employed in [36] and [37].

Given the collection of polynomials (p1,...,pm), we define

20 (®;p1y ... pm) = {n € ZT' 1 j <k = ny +deg(pjy1---pr) <nj +1}.
In particular,
20 (@) ={neZl:j<k=mn,<n;+1}.

Recall that a point 2y € C is said to be a d attraction point of zeros of a
sequence of functions {pn},n € A C Z7, if for each sufficiently small £ > 0
there exists IV such that for all n € A, |n| > N, the number of zeros (counting
multiplicity) of ¢n in {z: |z — 20| < €} is d. A set E is an attractor of the zeros
of {¢n},n € A, if for each € > 0 there exists Ny such that n| > Np,n € A,
implies that all the zeros of ¢, lie in the £ neighborhood of E. In Section 5.4,
we prove

Theorem 1.3.5. Let S = N'(o1,...,0,). Consider the perturbed Nikishin
system N(%O’h ey %Um), where pi,qr denote relatively prime polynomials
whose zeros lie in C\ UL Ag. Let A C Z7T (®;p1q1,- .., Pmqm) be a sequence
of distinct multi-indices such that for all n € A;ny — n,, < C, where C is



1. Introduction 19

a constant. Let @n be the monic multiple orthogonal polynomial of smallest
degree relative to the Nikishin system N(%O’h oo Bmg) and n. Then

? gm

lim Cn(2) _ F(zp1: - Pm) , K c C\supp(oy). (1.24)

neA QH(Z) f(z;q1a~'~7qm)

For all sufficiently large |n|,n € A, degQn = |n|, supp(oy) is an attractor of
the zeros of {Qvn}, n € A, and each point in supp(al)\ﬁl 1s a 1 attraction point
of zeros of {@n},n € A. When the polynomials pg,qr, k = 1,...,m, have real
coefficients, the statements remain valid for A C Z7'(®).

An expression for F(z;p1, ..., pm) is given in (5.43) at the end of the proof of
Theorem 1.3.5 in Section 5.4. Formula (1.24) reduces to (1.7) when my = mg =
0 and py = 0. Relative asymptotics of type II multiple orthogonal polynomials
of Nikishin systems had not been considered before. In Chapter 5 we also
obtain the relative asymptotic behavior of the second type functions associated
with the two Nikishin systems (the initial and perturbed ones). When the
polynomials py, qx, k = 1,...,m, have real coefficients an analogue of Theorem
1.3.5 is obtained in Section 5.6 for sequences of the form {Qn,;/@n,; }nea.



2. PRELIMINARY RESULTS

In this chapter, we prove a number of results which are later applied to derive
the main asymptotic properties of the multiple orthogonal polynomials studied
in this thesis. Section 2.1 describes the orthogonality relations satisfied by the
linear forms Ay, ; defined through (1.11)-(1.12), as well as the location of their
zeros (Propositions 2.1.5, 2.1.6 and 2.1.7). Here, it is also proved that all the
multi-indices belonging to the class ZTlH(o) X ZT2+1(0) are normal (Proposi-
tion 2.1.2). Section 2.2 is devoted to the deduction of interlacing properties of
the zeros of the functions Ay, j, —me < j < my, (see Theorem 2.2.5).

2.1 Orthogonality properties of the functions A, ; and their zeros

Recall the notation Co(supp(c?)) = A’%. We start this section by proving the
following result.

Lemma 2.1.1. Let n € Z7""' (o) x Z7?' (o), ST = N(a},..., o},)), and
52 =N(0§,..., 02,,), be given. Then we have:
a) For each j = 0,...,my, the linear form Ay ; has at most Ny j — 1 zeros
on any interval disjoint from A;H (AL, 11 =0), where
Nij=Nyjm) =nij+-+nim. (2.1)

b) Anyo has at least |n1| — 1 = |na| sign changes on the interval A} = AZ.

Proof. For each j =0,...,m; — 1, we have that
1 1 _ 1 1
(sj+1,j+17 t 8j+1,m1) = N(Uj+1a ceey Um1)~

Since ny = (N1,0,-..,N1,m;) € Z’J_”“(o) C Z’_{_“H(*), applying Lemma 1.2.3
it follows that (1,§}+1)j+1, . ,§j1-+1’m1) forms an AT-system with respect to
N14,...,N1m,) on any interval disjoint from A, .. Therefore

5J FLLLSE y ) j+1

An,j(@) = anj(2) + anj41(2)55 1 541 (2) + -+ gy (©)5] 41, m, (2)

has at most Ny ; —1 zeros on any such interval. Obviously, the same is true for
the polynomial Ay, = an m,. This proves a).

Notice that dsak(x) = §§k(m) do2(x). On the other hand, we can replace 2
by any polynomial of degree < ngj — 1 inside the integral in (1.8). Set

ma
81’12 (Z) = Z bl’l27k(z)§ik(z)v deg bl’l27k < n2k — 1, k=0,...,mg,
k=0
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(510(2) =1). Then (1.8) is equivalent to

/ Bu, (&) Ano(x) do2(z) = 0, (2.2)

for all By, as indicated.

Suppose that A, o has N < |n;| — 1 = |ny| sign changes on the interval AZ.
Choose polynomials by, j conveniently so that By, changes sign exactly at those
points where A, o changes sign on A2 and has a zero of order |ny| — 1 — N at
one of the extreme points of A} = A2. By Lemma 1.2.3, the linear form By,
has on A2 at most |ng| — 1 zeros, thus it can only have those zeros which we
have assigned to it. The continuous function By,.An o has constant sign on A%.
This contradicts (2.2). O

We have proved that Ay has |n;| — 1 zeros with odd multiplicity in the
interior of AZ = A}. In short, we shall see that A, o has no other zeros in C\ A}
and that they are all simple. Before proving this, let us turn to the question of
normality.

Proposition 2.1.2. Let n € Z7' ' (o) x Z7* T (e), S = N(0{,..., ok,), and
5?2 = N(o3,..., O',,Zn2), be given. Then, n is normal and (ano,---,Gnm,) S

uniquely determined except for a constant factor.

Proof. Assume that there exists j € {0,...,m} such that degan ; < nq; —2.
Then n; —e’ € ZTI+1(*), where e’/ denotes the m; + 1 dimensional unit vector
with all components equal to zero except the component 7 + 1 which equals
1. According to Lemma 1.2.3 applied to n; — e/, the linear form A, o has at
most |n;| — 2 zeros on A}, but from Lemma 2.1.1, we know that Ap o has at
least |ni| — 1 sign changes on this interval. This contradiction yields that for all
j€{0,...,mi}, degan; = n1; — 1, which implies normality.

Now, let us assume that (an0,---,nm,) and (a5, .-, 0p 4y, ) solve i)-ii)
and these vectors are not collinear. According to what we just proved, for all
j €{0,...,m1}, degan,; = degay, ; = n1; — 1. Take A € C\ {0} such that
deg(an,0 — Aay ) < nio— 2. The vector (ano — Aayg,---5anm, — Ay, ) 8
not identically equal to zero and also solves i)-ii). This is not possible since all
non-trivial solutions must have all components of maximal degree. O

Proposition 2.1.2 allows us to determine the “monic” (an,0, an,1;---; Gn,m;)
uniquely and we impose this normalization. The next lemma will be used on
several occasions.

Lemma 2.1.3. Let sy, k =1,...,m, be finite signed Borel measures such that
Co(supp(sk)) = A C R. Let F(z) = fo(z) + Y ey f5(2)5k(2) € H(C\ A),
where fr, € HV),k = 0,...,m, and V is a neighborhood of A. If F(z) =
O(1/2?),2 — oo, then

Z/fk(x) dsi(z) =0 (2.3)
k=1
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and F(z) = O(1/z),z — oo, implies that

/fk : ) dsy(z (2.4)

— T

Proof. Let I' C V be a closed smooth Jordan curve that surrounds A. If F(z) =
O(1/2?), 2z — oo, from Cauchy’s theorem, Fubini’s theorem and Cauchy’s inte-
gral formula, it follows that

0—£F(z)dz—é£fk(z)§k z)dz

S [ gy on S [ it

k=1

and we obtain (2.3). On the other hand, if F(z) = O(1/z),z — oo, and we
assume that z is in the unbounded connected component of the complement of
I', Cauchy’s integral formula and Fubini’s theorem render

211 r 2

—¢

S [ o [ /fk

which is (2.4). O

Remark 2.1.4. If we assume that n € ZTlH(o) X ZT2+1(O) and Ny m, > 1,
then by Proposition 2.1.2 we know that all the polynomials ay j, j =0,...,m,
are nonzero. Therefore 0o is not a zero of any of the linear forms Ay ;, j =
0,...,mq. Though it is not the case, in principle, some of these linear forms
may have an infinite number of zeros which accumulate on the boundary of the
corresponding region of meromorphy.

Recall that for j € {0,...,m1}, Qn,; denotes the monic polynomial whose
zeros are those of the linear form A ; in the region C\ A}, ,, counting multi-
plicities (A}nl 41 =0), and in the case that Ay ; had infinitely many zeros then
Q@n,; denotes a formal infinite product. The next proposition is adapted from
[43].

Proposition 2.1.5. Letn € Z’J_”“(o) X ZTZH(.) be a multi-index such that
Nim, > 1, and let S' = N(o},..., 0},.), S2=N(0},..., 02,,) be given (recall
that oy = o2). Then, deg Qn;=Ni;—1,7=0,1...,mq, where Ny ; is given
by (2.1), and all the zeros of Qn ; are simple and lie in the interior of A}. IfI
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denotes the closure of a connected component of A; \supp(a}), then Qn,; has
at most one zero in I. Moreover,
/ R L 0,... . Nyj—2 j=1 (2.5)
x @) =—"—= =0, v=0,...,N1; — 2, ji=1,...,mqy, (2.
T Qn -1 (x) !

and for any polynomial q,degq < Ny j4+1 — 1,

Q(Z)An,j(z) _ / Q(x)-An,jH(ﬂU) d%l'+1(x)
Qn,;(2) Qn,j(z) z2—x

Proof. Using induction on j, we will prove simultaneously the general statement
concerning the zeros and (2.5). Then, we prove that on any interval I there is
at most one zero of @y ;. Finally, we obtain (2.6). For j = 0, we already know
by Lemma 2.1.1 that Ay o has N1 g—1 = |n;| — 1 sign changes in the interior of
A} = A3. Therefore, deg Qno > N1 — 1. If degQno = N1,0 — 1 we conclude
with the initial step.

Suppose that deg @n,0 > N1 (including the possible case that degQno =
00). It is easy to see that Ay o(Z) = Ano(2), so the zeros of Qno come in
conjugate pairs. Therefore, we can choose Ni g (or Ny + 1 if necessary) zeros
of @n o in such a way that the monic polynomial @)}, , with this set of zeros has
constant sign on Al (A} N A} =0). Notice that

Ao ¢ (T Al

n,0

. j=0,....m—1. (26

is analytic in the indicated region and

v N 1
ZA’0:O< ), Z—)OO’ V:O7,..7N171_1~

* 2
n,0 Z

From (2.3), we get

1
0= /xl’An1(x)M,

’ ;,o(x)
This implies that Ay 1 has at least N1 1 zeros on A%. According to Lemma 2.1.1
this linear form can only have IV} ; — 1 zeros on this interval. Consequently, our
initial assumption is false and deg Qn,0 = N1 — 1.

Suppose that we have proved that for some j € {0,...,m; — 1}, degQn ; =
Nip,; — 1, all its zeros are simple and lie in the interior of Ajl-. Let us show that
then, (2.5) and the statement concerning the zeros are valid for j + 1.

Indeed, the induction hypothesis implies that

VZO,...,NLl—l.

.Anj — 1 ZV.An' 1
2 ¢ H(C\ AL ), 2 =05 ), , =0,...,Ny 41— 2.
e HE\AL), 5 =0 (L) s v L

From (2.3), it follows that
dol, ()

OZ/xVAn’j+l(x)Q]7-(gj)7 VZO,...7N1)J‘+1—2.
n,j
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We have obtained (2.5) for j + 1.

Formula (2.5) for j + 1 implies that Qpn j+1 has at least Ny j11 — 1 sign
changes in the interior of Ajl-ﬂ. If deg Qun j+1 = Nij+1 — 1, we have finished
the proof (for example, this is the case when j + 1 = m; because Apm, =
@n,m, ). Let us suppose that deg@n j+1 > Ni j+1 (including the possible case
that deg Qn,j+1 = 00, and of course j < my — 2). Since Ay j+1(Z) = An,j+1(2),
we can choose Ny ;41 (or Ny jit1 + 1 if necessary) zeros of Qn j+1 so that the
monic polynomial )y, ;. ; with this set of zeros has constant sign on Ajl 4. Then

Anji1

T AL 2" An j1 1
- €EH(C\Aj,), ———=0(=5],z—00, v=0,...,Np 42— L.
n,j+1 n,j+1 z

Using (2.3), it follows that

dot,,(z)
OZ/Z‘VAHJ_;_Q(Z')M, I/ZO,...,NL]‘_;,_Q—I.
n,j+1

This implies that Ay ;12 has at least Ny j12 zeros on A} Lo According to Lemma
2.1.1 this linear form can only have N; j;2—1 zeros on this interval. This implies
that our initial assumption is false; therefore, deg Qn j+1 = N1 j+1 —1 as stated.

Suppose that the interval I contains two zeros 1, x2 of @y ;; that is, of A, ;.
According to (2.5)

/f”" Anj@) (@ze)@w)do@) 0y
( R =0U,..., N1 5 .

T —x1)(T — 33) Qn,j-1(x)

The function Ap ;(z)/(x — x1)(z — 22) has Ny ; — 3 sign changes on supp(a}),
but notice that the measure (z —x1)(x — x2) doj(x)/Qn j—1(x) has constant
sign on supp(ojl»). This is impossible because of the number of orthogonality
relations.

Formula (2.6) follows from (2.4) since for any polynomial ¢ such that degq <
N17j+1 — 1, we have

4 An, =\ AL GAn; _ (1
Ons € HC\ Ajyy), O =0 R Z — 00.

With this we conclude the proof. O

Now we turn to the analysis of the orthogonality relations satisfied by the
linear forms A, —j, 7 =0,...,ma. We start with the following result.

Proposition 2.1.6. Let n € Z7" ' (o) x Z* (o) be a multi-index such that
Nim, > 1, and let S* = N(0§,...,00,,) and S* = N(03,..., 02,,) be given.
Then, for each j =0,...,mo

/w”Anﬁj(x) dsik(x) =0, k=j,...,ma, v=0,...,n25— 1. (2.7)
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Proof. When j = 0 the statement reduces to the relations ii) which define
Ano. If mg =0 we are done. Therefore, let us assume that me > 1, that (2.7)
holds for some j € {0, ..., ms — 1}, and prove that it is also satisfied for j + 1.

Fixje€{0,...,me—1}, k€ {j+1,...,ma},and v € {0,...,n2,—1}. Using
the definition (1.12) of A, —;j_1, Fubini’s theorem, and the induction hypothesis,
we obtain

/:c”An,,j,l( )dsJH & / /A ( )d5g+1 () =
/ An_s( / ";fz ds?, 4 (x) do(t) =

/ Py (t) An,—;(t) do(t) — / t" An,—j(t) ds5 () =0
since p, is a polynomial of degree < ngy ) — 2, and ng j41 > no k. O

Observe that taking linear combinations of the relations (2.7), we obtain

/an,j(x)Am_j(x) do(z) =0,  j=0,....ms,

where By, ; is an arbitrary linear form of type
Bn, 5( Zbk‘ ]-‘rl k(2 degby < nap — 1.

Arguing exactly as in the proof of part b) from Lemma 2.1.1, it follows that
An,—; has at least Ny ; sign changes on A2 Co(supp(c )), where

Ng,j :NQJ'(H) :n27j—|—-~~—|—n27m2, ] 207...,1’)’7,2. (28)

Recall that for j = 1,...,ma, Qn,—; was defined as the monic polynomial whose
zeros are those of A n,—j in the region C\ A] 1- Consequently, deg Qyn —; >
Ny j,j =1,...,mgy. Also recall that for j = 0 we proved in Proposition 2.1.5
that deg Qn,o = Ny = |ng| = |n1| — 1, that the zeros of Qn o are simple, and
lie in the interior of AZ = Al.

Proposition 2.1.7. Letn € Zm1+1( o) X ZTQ'H(.) be a multi-index such that
nim, > 1, and let S* :N(Ué,..., o), S2=N(03,..., 02%,) be given. Then,
degQn,—j = Naj,j = 0,...,mq, where NQ’J is given by (2.8), all the zeros of
Qn,—; are simple and lie in the interior ofA and Qn,—m,—1 = 1. If I denotes

the closure of a connected component of A2 \ supp(o ) then Qn —j has at most

one zero in I. Moreover, for each j =0,...,ma, and v=0,...,Ny;—1,
/”A ()da() 0 (2.9)
T —— =0, .
Qn,—j-1(2)

and for any polynomial q¢,degq < No j_1,

Hehncie) _ [ labncsoe) 421
Qn,—j(2) Qn,—j(x) z—x

j=1,...,me+1. (2.10)
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Proof. Fix j € {0,...,ma}. From (2.7) we have that for each ¢, degq < ns ;,

/ 9E) 9 4 () do? () = 0.

Z—T

It follows that

An,—j-1(2) = ﬁ / ,z(](_xl An—j(x)doj(z) = O (1/2"71) 2z — 0.

We have shown that deg@Qn —j—1 > Nojt1(Nom,+1 = 0). The zeros of
Qn,—j—1 come in conjugate pairs since Ay _;_1 is also symmetric with respect to
the real line. If deg Qn,—j—1 > Na j11 take Ny j11+1 (or Na j41+2 if necessary)
zeros from @n,—j—1 so that the monic polynomial QF _,;_; with these zeros
has constant sign on A?. If deg@Qn,—j—1 = N2 j+1 take Qf ;1 = Qn,—j-1.
Therefore,

Anici _ o (1/zm20 98 Q1) € HT\ AY),
Qn,fjfl
It follows that for all v =0,...,n2,; +deg@Qy, _;_; — 1,
%:O(l/ZQ)EH(@\A?), z — 00.
n,—j—1

Using (2.3), we obtain

. da?(az) .
0:/95 An,—j (%) m———, v=0,...,n2; +degQy ;1 — 1.
n,—j—l(x)

This formula implies that Ay, —; has at least ng ; +deg @y, _;_1 > N2 j sign
changes on A?. In particular, we have proved that if for some j € {0,...,ma},
deg Qn,—j—1 > N3 j4+1 then deg @Qn —; > Na ;. Going downwards on the index
j we would obtain that deg Qn,0 > N2 = |nz| = |ny| — 1, which is false accor-

ding to Proposition 2.1.5. Consequently, for all j € {0,...,ma},degQn,—j—1 =
Ny jy1 (in particular, Qn —m,—1 = 1). Hence, Qn—j—1 = Qn,—j—1 and (2.9)
follows. The proof that I contains at most one zero of Qn,—; is the same as in
Proposition 2.1.5.

Now, fix j € {1,...,ma + 1}. Notice that for any ¢,deggq < No ;_1,

qAn,—; =\ A2 qAn,—j <1>
——= c H(C\A;_ ), ———=0(-), z— o0
Qn7—j ( \ 7 1) Qn,—j P
Using (2.4), (2.10) readily follows. O

2.2 Interlacing properties of the zeros of the functions Ay,

Fix a vector | := (l1;l3) where 0 < I3 < my and 0 < Iy < my. Given n =
(n1;ny), recall that n' := (n; + €'*;ny + €) = (n';n2), where e’ denotes
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the unit vector of length m; + 1 with all components equal to zero except the
component (I; + 1) which equals 1. In this section it is always assumed that
both n and n' belong to Z' ' (e) x Z> T ().

Fix real constants A, B such that |A| + |B| > 0 and define

gnJ = AAn’j +B.Anl’j, jZO,...7m1.

Before proving the interlacing property satisfied by the zeros of Ay ; and A,y ;,
we need to analyze the zeros of these functions Gy, ;. Since deg a,y ;, = degan, +
1 it is obvious that Gy, ; #0,j < ;. In particular, this is always true for Gy .

Lemma 2.2.1. Assume that A,B € R,|A| + |B| > 0, and n1,,, > 1. Then
for all j € {0,...,m1} such that ny; > 2, deg Aanj + Bayi ; > n1; — 2 and
gn,j ?é 0.

Proof. Assume that there exists j € {0,...,m1} such that n;; > 2 and

deg Aanj + Bayi ; < nyj —3 (n1,; —3 = —1 means that Aan ; + Bay j = 0).
Then n' —2e/ € Z’fl“ (x), where e/ denotes the m1+1 dimensional unit vector
with all components equal to zero except the component 7 + 1 which equals 1.
According to Lemma 1.2.3 the linear form Gy, ¢ has at most |n;|—2 zeros on Af,
but Gn o satisfies the same orthogonality relations (1.8) as Ay, and, therefore,
it has at least |n;| — 1 sign changes on this interval. This contradiction implies
the statement. d

From this lemma it follows that if 1y ,,, > 2 then Gy, ; # 0,75 € {0,...,mq}.

Lemma 2.2.2. Assume that A,B € R and Gnj = AAnj + BAw ; # 0, for
some j € {0,...,mq}. If j < li then Gn,; has at most Ny ; zeros, counting
multiplicities, on any interval disjoint from A (A}, 1 = 0). If j > 11 then
Gn,j has at most Ny j — 1 zeros, counting multiplicities, on any interval disjoint
from A}H.

Proof. We have

Gnj(2) = D> _(Aan k(2) + Ban 1(2))8] 41 4(2),
k=j

where deg an,;, = 11 —1 and deg a5, = nlll’k—l. By Lemma 1.2.3, the functions

(1,841 5415+ >8j11.m,) form an AT-system with respect to (nlll’j, ..,mi,, ) on
any interval disjoint from A} 11, and the result follows immediately. O
Notice that for each j € {0,...,m1}, Gn; is a real function when it is

restricted to the real line.

Proposition 2.2.3. Let ny,,, > 1. Assume that A,B € R, |A| + |B| > 0, and
let Kk = max{k’ : Gnp # 0} < my. Then, K > 11 and Gn,; =0,k < j < my.
If 7 <1y then Gn; has at most Ny j zeros in C\ A}H, counting multiplicities,
and at least N1 j — 1 sign changes in the interior of A}. Ifli < j <k then Gn ;
has at most N1 ; —1 zeros in C\ A}—s—l and at least N1 j — 2 sign changes in the
interior of Ajl-. Therefore, all the zeros of Gy j in C\ A}+1 are real and simple.
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Proof. If j <[y, since degay:;, > degan,, it follows that G, ; Z 0. Conse-
quently, k > [;. Obviously, from the definition of &, G5 ; =0,k < j < m;y.

Assume that Gy ;,j < [y, has at least Ny ; + 1 zeros in C\ A}H, counting
multiplicities. Select Ny ;+1 or Ny ; +2 zeros of G, ; which are symmetric with
respect to the real axis, and let @7, ; be the monic polynomial whose zeros are
those prescribed. If j < [; then

v
z gnﬂ' 1
ﬁzO(—z), 2z — 00, v=0,...,Ny 1.
n,j o

From (2.3), it follows that

doj,q(x)
OZ/ZL’VQ 7'+1($)L v=20 ...7N17'+1.
nr g, S
These orthogonality relations imply that Gy, j41 has at least Ny j41 4 1 zeros on

A}H. Since Gn j+1 Z 0 we obtain a contradiction with Lemma 2.2.2.

If j =1 and j < K, then

v
Znls _ O(%) 200, v=0,...,Niji1— 1
n,lq z
Arguing as before, it follows that Gy j,+1 has at least Ny, 41 zeros on Al11+1’
contradicting Lemma 2.2.2. If j = I3 = & then Gy ;41 = 0 and Gy, =
Aay 1, + Bay , is a polynomial of degree at most ny;, < Ny, + 1 and thus it
is identically equal to zero which is impossible. Consequently, when j <1y, Gy ;
has at most Ny ; zeros in C\ A}, | counting multiplicities.

Let I; < j < k and assume that Gy, ; has at least Ny ; zeros in C\ A;—s-lv
counting multiplicities. If 7 = m; we get immediately a contradiction because
in this case Gn, m, is a polynomial of degree at most Ny ,, — 1. If [1 < j < my,
then there exists a polynomial Q7 ; with real coeflicients and degree at least
Ny ; such that

2YGn,j 1
#:O(;), z — 00, VZO,...7N1J‘+1—1.
n,j
This implies that Gp j41 has at least Ny ;i1 zeros on Aj, | contradicting Lemma
2.2.2.

Now, let us analyze the sign changes. Notice that G, o # 0. Assume that
Gno has N < Nig—1 = |ni| — 1 = |ng| sign changes on A} = A2, choose a
nonzero linear form

ma
B, (Z) = anzyk(z)gik(z) , deg bnz,k <ngx—1, k=0,...,ma,
k=0

such that By, has a simple zero at each point where Gy, ¢ has a sign change, and
a zero of order |ny| — 1 — N at one of the extreme points of AZ. By Lemma
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1.2.3, By, has at most |nz| — 1 zeros on A3. Thus, By, has exactly those zeros
prescribed. By definition,

/ Bay (2) G o) do(x) = 0,

which contradicts the fact that By, (2)Gn,o(x) has constant sign on A3.

Let us prove by induction that for all j <1, G, ; has at least Ny ; — 1 sign
changes in the interior of Ajl. For j = 0 this was proved above and if [; = 0 we
are done. Let us assume that for some j < l1, Gy ; has at least N; ; — 1 sign
changes on Ajl-, and let us show that G, ;11 has at least Ny ;11 — 1 sign changes
on A} 41

Let @7, ; be a monic polynomial whose zeros are Ny,; — 1 points where Gy, ;
has a sign change. Then

Zygnj 1
: :(9(—), , =0, Ny —2.
2=0(z) o v Lo

Using (2.3), this implies that

1
0= /ngnJH(z)w

5 VZO,...,N17]'+172.
n,j(m)

Thus, Gnjy1 has at least Ny ;i1 — 1 sign changes in the interior of A, as
claimed.

Finally, we prove that Gn j,l1 < j < &, has at least Ny ; — 2 sign changes in
the interior of A]l. Let @y, be a monic polynomial of degree Ny,;, — 1 whose
zeros are points where Gy, ;, changes sign in the interior of Alll, then

v
Zg*in’llz(’)(%), z — 00, v=0,...,Nij;4+1— 3.
n,ly z
From here we get orthogonality conditions that imply that Gy ;,+1 has at least
Ni,;,+1 — 2 sign changes in the interior of A111+1- One proceeds the same way
until we arrive to j = k.
From the upper bound on the number of zeros and the lower bound on the
number of sign changes it follows that all the zeros are simple and lie on the
real line. (]

Let j € {0,...,ma + 1}. Given two real constants A, B, we define
On,—j = Adn,—j + BAn ;.
Thus, by (1.12),

gnf’ x .
On,—j—1(2) = Z’%i)do?(x), Jj=0,...,ma. (2.11)
If |A| + |B| > 0 then G, # 0 and from (2.11) it follows that G, _; # 0 for all
je {1,,MQ—|-1}
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Proposition 2.2.4. Let A,B € R,|A| + |B| > 0. For every j € {1,...,ma},
Gn,—j has at most Ny j + 1 zeros on C\ A%, counting multiplicities, and at
least Na j sign changes in the interior of A?. Hence, all the zeros of Gn,—j on

C\ A?ﬂ are real and simple.

Proof. Let j € {0,...,m2}. By (2.7) we know that
/m”Anz7_j(x)ds?’k(x):07 k=3j,...,ma, 1/:0,...,nl227k—1.
Since ng j < ng‘:k, it follows that

/:c”gm_j(z) ds?vk(:v) =0, k=7j,...,ma, v=0,...,n25— 1. (2.12)

Using the same arguments employed in the previous section to show that A, _;
has at least NN ; sign changes in the interior of A? (see the comments before
Proposition 2.1.7), one obtains the same conclusion for G, ;.

If ¢ is a polynomial with degq < ng ;, then from (2.12) we have

/ 1) =@ g o do?(x) = 0.

z2—x
Hence, for every j € {0,...,ma},

On,—j—1(2) = ﬁ / ZQ(_xl Gn,—j(x) da?(a:) = O(ﬁ), z — 00.

Assume that for some j € {0,...,mg — 1}, Gn _;_1 has at least Na ;11 + 2
zeros, counting multiplicities, on C \ A?. Select at least Na ji1 + 2 zeros of
On,—j—1, symmetric with respect to the real axis, and denote by @ ; the
monic polynomial whose zeros are the points selected. Then,

*
n,—j—

YOno—i_ 1
%20(7), z — 00, VZO,...,NQ’j—f—l.
) z
n,—j—1
As before, this implies that G, _; has at least Ny ; + 2 zeros in the interior
of A?. Going downwards on the index j, we obtain that G, has at least
Nz + 2= N+ 1 zeros, which is impossible by Proposition 2.2.3. Therefore,
for all j € {1,...,ma + 1}, Gn j has at most Ny ; + 1 zeros in C\ A3, and,
therefore, they must be real and simple. O

We are now ready to prove the interlacing property satisfied by the zeros of

An,]‘ and An",j'

Theorem 2.2.5. Let n,n' € Z7" ' (o) x Z7**"(0),n1,m, > 2. Then, for all
J € {—ma,...,mi} the zeros of Anj; and Ay ; interlace; that is, between two
consecutive zeros of An j there is one zero of Ay ; and viceversa.
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Proof. Since nq ,,, > 2, from Lemma 2.2.1 we know that for all j € {0,...,m1}
and for all A, B real such that |A|4|B| > 0, the linear form Gy, ; is not identically
equal to zero. This is always true for j € {—mag,...,—1}. Therefore, from
Propositions 2.2.3 and 2.2.4 we know that for all real A, B, such that |[A|+|B| > 0
the zeros of Gy, j,j € {—ma,...,m1}, are real and simple. This is the basic fact
we will use in the proof.

Fix y € R\ A;H' It cannot occur that Ay ;(y) = An ;(y) = 0. If so, y
would be a simple zero of Ay ; and Ay ;. Thus, A;, ;(y) # 0 and A, ;(y) # 0.
Take A =1and B = —A; ;(y)/ AL, ;(y) and consider Gy j = AAn; + BAy ;.
With this choice of A and B, we have

Gnji(y) =Gn;(y) =0,

and we obtain a contradiction because the zeros of Gy ; are simple.
Now, taking A = Ay ;(y) and B = — Ay j(y), we have that [A] 4+ |B| > 0.
Since

Ant J (Y)An,;(y) — Anj(y)An J (y) =0,

and the zeros on R\ AJ, ; of At ;(y)An () — An,j(y)Ant () with respect to
x are simple, it follows that

Ant ()AL () = Anj(y) Ay (y) # 0.

But A ()AL ;(y) — An; (y) AL (y) is a continuous real function on R\ A},
in y so it must have constant sign on each one of the connected components of
R\ A},,. In particular, its sign on A is constant.

Evaluating Apn: ;(y) Ay ;(y) — An,j(y) AL ;(y) at two consecutive zeros of
Api j, since the sign of A;,,)j at these two points changes, the sign of A, ;
must also change. Using Bolzano’s theorem we find that there must be an
intermediate zero of Ay, ;. Analogously, one proves that between two consecutive
zeros of Ay ; on A} there is one of Ay ;. Thus, the interlacing property has
been proved. O



3. LOGARITHMIC ASYMPTOTICS

Here, we treat the logarithmic asymptotic of mixed type multiple orthogonal
polynomials generated by two Nikishin systems. The first section is dedicated
to the introduction of the main concepts of potential theory and some results
from the scalar case which will be needed for our work. In Section 3.2, we
study the asymptotic distribution of the zeros of the sequences of polynomials
{Qn,j}tnena.j € {—ma,...,m1}, proving Theorem 1.3.2. This paves the way to
obtain Theorem 1.3.3 in Section 3.3 on the logarithmic asymptotics of the mixed
type multiple orthogonal polynomials and their associated linear forms. The
final section of this chapter considers some application of the results obtained
to the asymptotic behavior of mixed type Hermite-Padé approximants.

3.1 Preliminaries and notation

If E is a compact subset of the complex plane, recall that M(FE) denotes the
class of all finite, positive, Borel measures with support consisting of an infinite
set of points contained in F, and M (FE) is the subclass of probability measures
of M(E).

Recall that given a polynomial g; of degree [ > 1, we denote the associated
normalized zero counting measure by

1
:u’(H = 7 Z 53‘:7
qi(z)=0

where 0, is the Dirac measure with mass 1 at = (in the sum the zeros are
repeated according to their multiplicity).
If 4 € M(E), the logarithmic potential associated to p is given by

Vi) = [ o du(o).

|2 — 2|

whereas the logarithmic energy of p is defined as

1) = [ Vi@ dute) = [ [tog —— du(e) du(2).

|2 — x|

The quantity
I(E) :=inf{I(u): p € My(E)}
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is known as the energy of E, and
cap(E) := e 1(®)

is known as the logarithmic capacity of E. For an arbitrary set A, the interior
capacity of A is by definition

cap(A) :=sup{cap(E): E C A, E compact}.

We will only use the interior logarithmic capacity of a set; therefore, in the
sequel we will refer to it simply as the capacity.

Lemma 3.1.1. Let E C C be a compact set which is regular with respect to
the Dirichlet problem and ¢ a continuous function on E. Then there exists a
unique it € M1(E) and a constant w such that

VE(2) + ¢(2) { § Z: i 2 Sﬁ‘jl].pp(ﬁ)’

If the compact set F is not regular with respect to the Dirichlet problem then
the second part of the statement is true except on a set e such that cap(e) = 0.
Theorem 1.1.3 in [77] contains a proof of this lemma in this context. When
F is regular, it is well known that this inequality except for a set of capacity
zero implies the inequality for all points in the set. fr is called the equilibrium
measure in the presence of the external field ¢ on E and w is the equilibrium
constant.

Recall that a measure o € M(FE) is regular if

. 1/n _ 1
g " = cap(supp(o)) ’
where k, is the leading coefficient of the n-th orthonormal polynomial with
respect to o.

In order to determine the asymptotic zero distribution of the polynomials
Qn,; we use the following lemma. Different versions of it appear in [13], [27],
and [77]. In [27], it was proved assuming that supp(c) is an interval on which
o’ > 0 a.e. Theorem 3.3.3 in [77] and Theorem 1 in [13], do not cover the type
of external field we consider here. So, we will sketch a proof.

Lemma 3.1.2. Let o be a regular measure, supp(c) C R, where supp(o) is
reqular with respect to the Dirichlet problem. Let {¢;},1 € A C Z,, be a sequence
of positive continuous functions on supp(o) such that
lim o log —— = ¢(z) > (3.1)
im—log —— = ¢(x) > —oc0 .
iex 21 28 gy (2)] ’
uniformly on supp(o). By {qi},l € A, denote a sequence of monic polynomials
such that degq; =1 and

/mkql(x)qﬁl(z)do’(x) =0, k=0,...,1—1. (3.2)
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Then
* 1' - .
llm /.qu /.l/, (3 3)

and
i ([la@Pa@iw) = (3.0

where @ and w are the equilibrium measure and equilibrium constant in the
presence of the external field ¢ on E := supp(c). We also have that

1/1
. |l (2)] _ o
%g\l <qu1/2”E> = exp (w — V#(2)), K c C\ Co(supp(0)). (3.5)

Proof. On account of (3.1) and Lemma 3.1.1, it follows that for any £ > 0
there exists lp such that for all I > ly,l € A, and z € supp() C supp(c) = E

1 1
Ipi(2)] < 1o

7 = g
N i R (2169]

<é(z)+e<w—VFE(Z) +e,

where {p;},l € A, is any sequence of monic polynomials such that degp; = [
and le¢ll/2||E = maX,cp |(pl¢)l1/2)(z)|. Hence,

= 1
wu(z) :=VH*(z) + 7 og% <w+e, zesupp(@p), >l
[V2tenal V>

Since w; is subharmonic in C \ supp(f), by the continuity and maximum prin-
ciples, we have -
u(z) <w+e, ze€C, 1>l

In particular,

(00) = Tlog ——— <w+
u(o0) = = log ————— < w +e¢.
L sy e
The last two relations imply
1/
lim sup (mlf'zﬂ) < exp (w — VF(2)), K cC, (3.6)
leA ”pl(bl |z
and
liminf iy |[f" = exp (~w). (3.7)

In particular, these relations hold for the sequence of polynomials {g;},1 € A.

Let #; be the weighted Fekete polynomial of degree [ for the weight e~% on
supp(o) and |o| be the total variation of . From the minimality property in
the Lo norm of ¢;, we have

1/2
lad,? ||z = ( / |ql(fﬂ)|2¢z(1?)d0(x)) < |ltig; 2 < |o|V2t16,? ||z <
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_ 1/2
o V2 e | ]l %! .

Then, using (3.1) and Theorem III.1.9 in [77], we obtain that

limsup [|gu 2[5/ < e (3.8)
leA

Since supp(o) is regular with respect to the Dirichlet problem, Theorem

3.2.3 vi) in [77] yields
12 1/1
lim sup (WE) <1
er \ lag, "2

which combined with (3.7) (with p; = ¢;) and (3.8) implies

1/1
(NIl
gyl
Thus, we obtain (3.4) since (3.7), (3.8), and (3.9) give
limsup [l *|| ' = limsup gy ?[3"" = e (3.10)
leA leA

All the zeros of ¢; lie in Co(supp(c)) C R. The unit ball in the weak star
topology of measures is compact. Take any subsequence of indices A’ C A such
that

* 1im pg, = par.

leN
Then,
1 _ 1 ,
lim +loglai(2)] = — lim, [ log P (z) = =V (2),

uniformly on each compact I C C\ Co(supp(c)). This, together with (3.4) and
(3.6) (applied to {¢;},1 € A’), implies

(VE—VHEAr)(2) <0, z € C\ Co(supp(o)).
Since V# — V#a’ is subharmonic in C \ supp(zz) and (VF — V#a")(00) = 0, from

the maximum principle, it follows that V# = V#’ in C\ Co(supp(c)) and thus
par = 1. Consequently, (3.3) holds. (3.3) and (3.4) imply (3.5). O

3.2 The asymptotic distribution of the zeros of {Qn,; }nen

Using Lemma 3.1.2, we can obtain the asymptotic distribution of the zeros of
the polynomials Qn j, j = —ma,...,m;. We continue employing the following
notation introduced in Subsection 1.3.1, namely

— Al — 1 L
Aj=Aj, oj=0j, 7=0,1,...,mq,
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Aj:Agj, szazj, 7=0,—1,...,—ma,
and
Nijn)—1, j=0,1...,m,
Npj=
Ny, _j(n), j=0,—-1,...,—mo.
According to Propositions 2.1.5 and 2.1.7, for all j = —ma, ..., m; the zeros

of Qn,; are all simple, lie in the interior of A;, and total Ny ; points.

Proof of Theorem 1.3.2. The unit ball in the cone of positive Borel mea-
sures is weak star compact; therefore, it is sufficient to show that each one of
the sequences of measures {pq, ,}, n € A, j = —mg,...,m, has only one accu-
mulation point which coincides with the corresponding component of the vector
measure (C). Let A’ C A be a subsequence of multi-indices such that for each
J = —ma,...,M

li = 1.
* i 1, = 1

Notice that p; € M1(E;), j = —ma, ..., m1. Therefore,

Tim [Qn(2)] /) = exp(— P,V (2)), (3.11)

uniformly on compact subsets of C\ A;, where P; = limyeas Ny ;/|n1].
Because of the normalization adopted on anm,, Anm, = @n,m,; conse-
quently, when j = mq, (2.5) takes the form

dom, |(x)
|Qn,m1*1(x)|

(By |ok| we denote the total variation of the measure oj. Since our measures
oy have constant sign, |oy| is either equal to oy, or to —oy.) According to (3.11)

/x”czn,ml(@ S0, w=0,. Naw 1.

1 — Pm171 Hmq—1
I}gf\l, 5N, log [Qn,m,—1(z)| = —mv 171 (),

uniformly on A,,,. Using Lemma 3.1.2, it follows that p,, is the unique solution
of the extremal problem

Pri—1 =w x € supp(fim, )
Hmq oMMy mg -1 mio mi) s
VHm(x) 2B, 1% (x){ > w3 € By, | (3.12)
and Lo
am, (%) n
li |0y, =e “m . 3.13
HIEIR/ < ‘Qn,ml_l(fﬂ” |U 1 |(1‘)> e ! ( )
Let us show by induction on decreasing values of j, that if j € {—ma,...,m1}
, P . P; , P; =w;, x € supp(u;)
" 4y M1 I Jj+1 s PPK;)
Vi (x) 2Pij () 2PjV] (z)+ 5. wj+1{ >, zek,

(3.14)
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where P_,,,_1 = Pp,+1 =0, and

20(0) [ An(a)] e
: n,j x n,j (L O — W)
ok </ Qg1 @] Q@) J'“”)) ©T B

where Qn —m,—1 = 1. For j = m; these relations are non other than (3.12)-
(3.13) and the initial induction step is settled. Let us assume that the statement
is true for j+1 € {—mo +1,...,m1} and let us prove it for j.

It is easy to see that the orthogonality relations (2.5) and (2.9) can be
expressed as

vOr ()| @41 (@) Ang (@) doj|(z)
/ PO DT ey @Quyn @]

On account of (2.6) and (2.10) taking ¢ = @Qn,j+1, this can be further trans-
formed into

/qu () Qn 1 (®) [An g ()] dloj(t) dlo;|(x) _0
e @n; ()] 1@njr1®)] [z —t] ] |@n;-1(2)@n ()]

forv=20,...,Np; — 1.
Relation (3.11) implies that

:07 VZO,...,Nn’j—l.

i, 53— 108 @1 (1) Q01 (2)] = (3.16)
Py P,
i VA RS _ ]7‘/“]-%-1
uniformly on A;. (Since Qn,—m,—1 = 1, when j = —my we only get the second

term on the right hand side of this limit; that is, P_,,,—; = 0.)

Set "
Q@) A )] )
fnan = ( Qus @] Quyap O]

It follows that for all x € A;

L < Qnr1(®) [An i1 ()] dloj | (t) < 1
5;+1K121,j+1 N Qn, ()] |Qnjr1(t)] |z—t] 5j+1K1217j+17
where 0 < §;11 =inf{lx —t|: t € Ajyq,x € Aj} <max{|z —t|:t € Ajqq,x €

A} = 5;? |1 < oo. Taking into consideration these inequalities, from the induc-
tion hypothesis, we obtain that

) 1/2Ny
lim Qnj+1(0) [An,j1 ()] d|oj+1](t) _ePwnl/P (317)
neA” Qi ()] [Qn 1 ()] [z — ¢
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Taking (3.16) and (3.17) into account, Lemma 3.1.2 yields that ju; is the
unique solution of the extremal problem (3.14) and

lim
ncA’

[ [ SO Ol dosnl) G sl 5
Qo s O 1@nia®] [o =t Q1 (@)1

According to (2.6) and (2.10) with ¢ = Qn,j+1

1 n1 () [Angi1 (O] dloji|(t) | Ang(@)]
@n (@) ) |Qn; @] [@ujra ] |z =t [Qnj(2)]

which allows to reduce the previous formula to (3.15) thus concluding the in-
duction.

Now, we can rewrite (3.14) multiplying through by sz and taking the con-
stant term on the left to the right to obtain the system of boundary value

equations

Z‘EA]',

v P;_1P;_ . P; P; _ =w}, x € supp(p;)
2171 I e S Ry i i PP(Kj) 5
PV (o) = Bt ymies(a) - Dy ) { 20 TERD
(3.18)

for j = —ma, ..., my, where

w;- = szwj - PijijH. (319)
The terms with P_,,,_1 and P,,4+1 do not appear when j = —mg and j =
my, respectively. By Lemma 1.3.1, (U—my,- s lmy) = (B_pys-- s i, ) and
(Wongs vy Wiy ) = (wEmQ, ...,wif ) for any convergent subsequence showing

the existence of the limits in (1.15) as stated.
Notice that (3.15) implies that

. Q) @, N\ L
r}g}(\l’ < |Qn.j—1(z)| |Qn,j(:€)|d‘0]|($) =e .

On the other hand, from (3.19) it follows that P, wp, = W, /Pp, when j =

u
m1. Suppose that Pjiwjy1 = Zzgjﬂ %Zvj +1e{—ma+1,...,m1}. Then,
according to (3.19)

ijj‘ = Fj + Pj+1wj+1 = ; Fk
and (1.16) immediately follows. O

3.3 The n-th root asymptotics of {An j}ner and {an j}nea

Here, we maintain the change of notation introduced in the previous section.
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Proof of Theorem 1.3.3. If j = mi, Anm; = @Qnm, and (1.15) directly
implies that

lim | Anm, (2)]Y 1] = exp (=P, VFmi(2)), K CC\Ap,.
ne
For j € {—-mo —1,...,m; — 1}, using (2.6) and (2.10) with ¢ = Qn j+1, We

obtain ,
QHJ(‘Z) Qn,j+1(x) An,j-{-l(l') dO’j+1($)

An j(2) = Onin(9) ) Cus@) Onyr(@) 2—w (3.20)
(Qn,—my—1 = 1.) From (1.15), it follows that
- Qn,j( ) 1/|n1| B
}IGA Q1 (2) = (3.21)

exp (Pj+1vﬂj+1 (Z) — PjVﬂj (Z)) R K cC (C\ (AJ U Aj+1)

(we also use that the zeros of Qn ; and Qn ;41 lie in A; and Aj4q, respectively).
It remains to find the |n;|-th root asymptotic behavior of the integral.

Fix a compact set K C C\ Aj1;. It is easy to verify that (for the definition
of K72 ;. see proof of Theorem 1.3.2 above)

/Q i+1(&) Anj1(2) dojia(2) Ca
n]—i—l l’l,j Qn,j+1(x) Z—=T K2,3+1 ’
where
min{max{|u —z|,|v| : z =u+iv}:z€ K,z € Aj 1}
Cy = >0
max{|z —z|?: z€ K,z € Ajq1}
and
Coy = ! < 00
2_min{|zfx|:z€IC,x€Aj+1} '
Taking into account (1.16)
1/|my|
. Qfl,j+l(z) An,j+1(x) d0j+1(.’1,‘) ' .
lim = (3.22)
neA Qnj(z) Qnjt1(x) z—=z
mi o
exp | —2 Z wh /Py | -
k=j+1
From (3.20)-(3.22), we obtain (1.17) and we are done. O

Remark 3.3.1. Taking into consideration that the polynomials Qn ; (see Propo-
sitions 2.1.5 and 2.1.7) and the functions

Q?Lj(x) An}j(l') daj(x)
Qn,j—l(l’) Qn,j(x) z—zx’
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may have at most one zero in each of the connected components of A; \ Ej,
where E; = supp(c;), in place of (1.17) one can prove convergence in capacity
on each compact subset K C C\ (E; U Ejy1). More precisely, for any such
compact set IC and each € > 0

}liérll\cap {z ek: )|.An7j(z)\1/‘“1‘ - Gj(z)‘ > 5} =0.
Set
— _ _ mi wg .
U]'u(z) = PJV“J(Z) - Pj-‘rlvﬂjJrl(Z) +2 Z E? J = —m2 — 1)"'am1 - la
k=j+1

and B 3
UL (2) = Py, Vi (2).

Hence, G(z) = exp(—Ujﬁ(z)),j =—mg—1,...,my.
We have that for j = —mag,...,m1(P_my—1 = Ppy41 =0)
P, - P

P _
LU (:)-ULLy(2) =~V () + PRV (2)

PP

5 VFEi-1(2) —w]‘?.

From the equilibrium property (see Lemma 1.3.1 and (3.18)), it follows that

UF(z) - UF () { S0 e supp(E),

J J= >0, ze€ Ej .
Define .
pi= 4 PLi J=0,...,m,
/ —P2,—j-1, .7: _m2_17"'a_1'
It is easy to verify that for j = —mao, ..., m
Uf'(2) = ULy (2) = O((pj = pj-1)1og 1/|2]), 2z — oc. (3.23)

In particular, Ujﬁ(z) - Uﬁl(z) = 0O(1),z — oo, whenever p; = p;_1. By
assumption, p;—p;—1 < 0,5 = —ma,...,m except for po—p_1 = p1,0+p2,0 > 0.
For all j, the function UJ-H—UJ-H_1 is subharmonic in C\supp(#;). If p; > pj_1,
then it is subharmonic in all C \ supp(fz;). According to what was said above,
when j = 0 or p; = pj_1, from the equilibrium condition and the maximum
principle, we have that Uf — U;El = 0 on supp(c;) = E; and UJ’AT < U;El on
C\ supp(c;). In particular, in this case we have that supp(7i;) = supp(c;).
When p;_1 > pj, (3.23) implies that in a neighborhood of z = o0, Ujﬁ > Ujﬁ_l.
Let v, ={z € C: Ujﬁ(z) — Ujﬁ_l(z) = 0}. The equilibrium condition entails that
v D Supp(ﬁj) and the initial remark indicates that -y; is bounded. Consider any
bounded component of the complement of ;. On it, Uj' — Uf"_; is subharmonic

and on its boundary UjF — Ujﬁ_1 = 0. Thus, on any bounded component of the
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complement of v; we have that UjH < Uﬁl. From the initial remark it follows

that on the unbounded component of the complement of +;, Ujﬁ > Uﬁl.
Fix j € {0,...,my}. For each k € {j,...,m1} define
1=

D} :={z € C\UM,A,; : Uf'(2) <UF(2),i=j,...,mu1,i £k}, Diti=C\Ay,.

Let B
G(2) =min{Uf (z) 1 k=j4,...,mq}.

Corollary 3.3.2. Let S* = N(a},...,08,,), S* = N(03,...,02,), (5',5%) €

) ma
Reg, and A = A(p1.0s---,P1,m1D02,05- -, P2,ms) C ZTlH(o) X ZT2+1(0)7 be
given. Let (an0,0n,1s---,0nm,),1 € A, be the associated sequence of “monic”
mized type multiple orthogonal polynomials. Then, for j =0,...,m;
lim Jan 5 (2)/7 = exp(~¢;(2)), K C U, D, (3.24)

and

fim sup Jan i ()M < exp(=¢5(2)), K C C\UZ A, (3.25)
In particular, if p1o =+ = p1,m, = 1/(m1 + 1), then

lim lan,j (2)]Y/ 11 = exp(~UE (2)), K CC\U A (3.26)

Proof. For j = mi, Anm, = @nm,, Dyt = C\ Ay, and ¢y, = Ufnl. Therefore,
(3.24) reduces to (1.17) and implies (3.25). Let us prove these relations for
j=0,...,m; — 1.

The Ay ; are expressed in terms of the an i,k = j,...,m, through a linear
triangular scheme of equations with function coefficients which do not depend
on n. Using this system, we can solve for ay ;, in terms of An i,k =j,...,mq.

Given j € {1,...,my} and 0 < i < j, we have

o R do'.l T; ~-d0'1- Z;
(=1 "o, s 05)(2) = // (z—xi)(l‘;_f1 zxi)"J'((ﬂfj)— zj1)’

where (-)(z) denotes the Cauchy transform of the indicated measure, and

. oy [ do}(z;) -~ doj(x;)
(aj,...,0i>(2)—/ /(xiﬂ_mi)...(mj_mj1)(z—xj)'

Consequently,

(=17 Yo}, ... ,ajl.>(z) — (0}, oty (2) =

//( —(xj — xi)do} (x;) - - - doj(x;)

2= x)(Tip1 — ) - (x; —x5-1) (2 — xj).
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Since x; — x; = Tj — Tj—1 + Tj—1 — -+ — Tiy1 + Tit1 — T4, substituting this in
the previous formula, we obtain
(0),....0l)(z) = (3.27)
j—1
S Do ok (2) (o) ok ) (2) + (<1 o) o)) (2).
k=i

(This formula is applicable to any Nikishin system. We will use it on S? in the
last section.)
Using formula (3.27) it is easy to deduce that (the sum is empty when

j=m)

ma

anj(2) = Ang(2) + D0 (D) P og, . 0j00) (2) Ani(2).

k=j+1
Taking (1.17) into consideration, on Di the term containing A, ; dominates
the sum (notice that (o,...,05,,)(2) # 0,2 € C\ Ax) and (3.24) immediately
follows. On the complement of U™ j Di there is no dominating term and all we

can conclude from the previous equality is (3.25).
Let p1o = = P1,m, = 1/(m1 +1). In this case, on C\ Uk A we have

that U, (z) < U“1 )<< Uf(z) and (3.26) follows from (3.24). O

3.4 Application to mixed type Hermite-Padé approximation

Let S' = N(o§,..., 0%,.),8% = N(03,..., 02%,,),06 = o3 be given. Let us
introduce the row vectors

U= (1511a-~ 51 ), V= (15117~- 8%7711)

81 a2
and the (mg + 1) X (m7 + 1) dimensional matrix
W = U"V,

where the super-index ¢ means taking transpose. Define the matrix Markov
type function

W(x dUO
z—x
understanding that integration is carried out entry by entry on the matrix W.
Fix ny = (1,0, n11, -+, nm,) € Z7H and my = (ng0, n2.1,- -+, N2m,) €
Z7t |no| = |ng| — 1. It is easy to see that there exists a non zero vector
polynomial
Ap = (n0,-- -, 0nm, ), deg(an,k) <mnip—1, k=0,...,mq,
such that

S(2)AL () — Dh(2) = (3.28)
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(O(1/22041),..., O(1 /et ) = O(1/z7H), 2 — o,

where Dy = (dn,0,-- -, dnﬁmQ) is some vector polynomial. When ms = 0, this
construction is called type I Hermite-Padé approximation. If m; = 0 it is called
of type II. When m; = my = 0 it reduces to diagonal Padé approximation. This
definition is of mixed type.

Lemma 3.4.1. For j =0,...,ms, (5] =1)

/ Zank (v)ds3(z) =0, v=0,...,np;— L (3.29)

Proof. In fact, notice that according to (3.28), for each v,0 <v <mng; —1,j =
0, ..., Mo,

il 52 (2)s)  (z)do?(z
(Zank ) [Tt °”—dn,j<z>>=0<1/z2), 2 00,

zZ—X

(510 = 1) and the function on the left hand side is analytic in C\ Co(supp(c3)).
Using Lemma 2.1.3, we obtain (3.29). O

Because of this Lemma, we see that A, is an n-th mixed type multiple
orthogonal polynomial with respect to the pair (S!,S?) and in the sequel we
assume that it is “monic”. If

an (bn,Oa-~-7bn,m2)7 deg(bn,j) §n27j —1, j:(),...7m2,

denotes a generic vector polynomial with the indicated degrees, (3.29) may be
rewritten in matrix form as

/ By ()W ()AL (2)do2(x) = 0,  for all By, (3.30)
Fix j € {0,...,ma}. For each k € {—1,...,—j — 1} define
QL ={z € C\UZ"A; : UF(2) < UF(2),i = —1,...,—j — 1,i # k},
and
Q% =C\(AgUA_).

Set B

xj(z) = min{U}/(z) : k=—-1,...,—j — 1}
and R

(R0 -+ Ram,)" i= S(2)AL (2) — DL (2).
Theorem 3.4.2. Let S' = N(a},...,04,),5% = N(d3,...,02,), (S*,57) €

Reg, and A = A(P1,0,---sD1,m13P2,05- -2 P2,ma) C ZTIH(Q) X Zmﬁ'l(o) be
giwen. Then for each j € {0,...,ma}

lim (R () [/ = exp(—x;(2)),  KCUZTiod, (331
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and

lim R ()M < exp(=x;(2)), K CC\ (U5 Ap). (3.32)
In particular, if poo = -+ = pam, = 1/(ma + 1), then

lim (R ()™ = exp(=U", (), KCC\(UZy'Ak). (333)

i=T7C) = (A_pys - fpp,) and (W B omgs - wh ) are the equilibrium vector

mi
measure and the system of equilibrium constants, respectively, for the wvector

potential problem determined by the interaction matriz C defined in (1.14) on
the system of compact sets Ej, = supp(c}),k =0,...,mq, Ey =supp(c?,), k =
—mao, ..., 0.

Proof. Notice that (3.30) implies that

/W )AL (2) — AL (x /W 2)do?(z)
z—x z—x ’

where the right hand is O(1/22%1), 2 — co. Taking

/W J(AL(2) — AL (x))do3 (x)

zZ—x

we obtain an integral expression for the remainder in (3.28).

Then Wi 2 ( )
)dog(z
(Rno(2)s -, Rims( / P .

In scalar form this says that

Notice that (see (1.12))
Rn’o(z) = An,,l(z).

Let us establish a connection between the remainders Ry j(z) and the forms
An k(z) with negative indices k € {—1,...,—j — 1}.
Fix j € {1,...,ma2}. We have

DRuse = [ z—nxoox;dj(;%w (xda—(x)>
= [ | G ey

/ / (z; — 2z0)An,o(20) dog(z0) - - - do? ()

(z —wo)(w1 — x0) - (l’j*xj—l)(zfzj).

and

Consequently,

(—1)Rn,j(2)—A
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Since x; — o = T; — Tj—1 +Tj_1 — -+ — T1 + T1 — To, substituting this in the
previous formula, we obtain

An—jo1(2) = Y (=DM0F. - o) (2)Ran(2) + (-1) Ry (2).

k=0

We have a triangular scheme of linear equations whose coefficients do not
depend on n. We can solve for Ry ; in terms of Ay —1,...,An —j—1. Using
(3.27) one obtains that for each j € {0,...,m2} (when j = 0 the sum below is
empty)

Ru(2) = D (=1 ok, 07) (2)An,—w(2) + (=1) An,—j-1(2).

k=1

Taking (1.17) into consideration, on i the term containing Ay _j, dominates
the sum (notice that (07,...,02)(2) # 0,z € C\ A_;) and (3.31) immediately
follows . On the complement of U,:i j Qi there is no dominating term and all
we can conclude from the previous equality is (3.32).

Let pag =+ = pam, = 1/(m2 + 1). In this case, on C\ U,;ialAk we have
that U”,(2) < U"y(2) < -+ < UEj_l(z) (see third sentence before Corollary
3.3.2) and (3.33) follows from (3.31). O

Remark 3.4.3. Fiz j € {0,...,ma}. For each k € {-1,...,—j — 1} we could
have defined

QL ={z € C\UZ'E; : Ul (2) <UF(2),i=—1,...,—j — L,i # k},

Q°, =C\(EqUE_,).

Taking into account that the polynomials Qn i and the forms An; may have at
most one zero in each of the connected components of A; \ E;, one can prove in
place of (3.31) — (3.33) convergence in capacity on each compact subset of the
corresponding Tegions.

We say that Z; C ZTlH(o) is a complete, ordered, sequence of multi-indices
if:

a) For each n € Z, there exists a unique n; € Z; such that |n;| = n.

b) Any two multi-indices in Z; are ordered in the sense that all components
of one of them are less than or equal to the corresponding components of
the other one, or they are identical.

Remark 3.4.4. Fiz I, C Z7""'(e), Iy C Z77*"'(e), two complete, ordered
sequences of multi-indices. Fach n € Z, determines a unique n; € I; and
ny € Iy such that n = |n1| = |ng| + 1. The corresponding “monic” mized type
multiple orthogonal polynomials we denote by A,,. We can interchange the roles
of the Nikishin systems S', 82, and determine a sequence of “monic” mized type
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multiple orthogonal polynomials which we denote B,,. It is easy to verify that
the sequences {A,}, {Bn},n € Z4 are bi-orthogonal. That is,

=0, n#n,

[Bu@masi@ada{ Zp 12 (330

The inequality in (3.34) is a consequence of Lemma 1.2.3. With the same hypoth-
esis, all the results of this subsection hold true for the sequence {B,},n € Z.



4. RATIO ASYMPTOTICS

In Section 4.2 of this chapter, for convenience of the reader, we briefly re-
view some results known about the asymptotic behavior of sequences of or-
thogonal polynomials with respect to varying measures which are essential
for the proof of the results we obtain here. Then, in Section 4.3 we go on
to prove the weak asymptotics of sequences of varying measures which ap-
pear in the study of the ratio asymptotics of multiple orthogonal polynomials.
This is used, in particular, to obtain the normality of sequences of the form
{Qnj/Qn,j}nen,j € {—m2,...,m1}. The next step, taken in Section 4.4, con-
sists in showing that any convergent subsequence of {Qy ;/@n,jtnen satisfies
a system of boundary value equations which turns out to have a unique solu-
tion. This already implies the existence of limit in (1.22). The expression of
the limit functions, in terms of the Riemann surface introduced in Subsection
1.3.2, is deduced in Section 4.5, concluding the proof of Theorem 1.3.4. In this
section, we also prove a complementary result on the ratio asymptotics of the
corresponding orthonormal polynomials and their leading coefficients. Finally,
in Section 4.6, we investigate the ratio asymptotics of the linear forms and the
connection of the present result on ratio asymptotics with the one obtained in
the previous chapter on logarithmic asymptotics.

4.1 Preliminaries and notation

In this chapter we study the convergence of the sequences {Qy: ;/@n,j }nea and
{Ant j/Anjtnen, where A C Z7 1 () x Z777 (o) is assumed to be an infinite
sequence of multi-indices. Recall that given a multi-index n = (n;;ny) and a
vector | = (Iy;l3) such that 0 < I; < mq, 0 < Iy < mg, by n! = (nlll;nl;)
we denote the multi-index obtained by adding one to the component [; + 1 of
n;. As before, we will always assume that | = (I3;l2) is a fixed vector and
n' € Z7' (o) x Z7* "' (o) for all n € A. Recall that

Aj:A;-7 Uj:O'l j:0,17...,m1,
Aj:AQ_j, O'j:O'24 jZO,—l,...7—m2,

and

Naj = (4.1)
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We will keep this notation throughout this chapter. Set
_ Qnjt+1An,

Hnyj_TJﬂ j:_m2_17"'am17
(@Qn,—m2—1 = Qumi+1 = 1 and Hpm, = 1). With these notations, relations
(2.5), (2.9), (2.6), and (2.10) (replacing general ¢ by Qn j+1 and shifting the
index j by —1) can be rewritten as follows

Hn,;(2)| d|o;|(x)
2’ Qn i (z / =0, v=0,...,Nu; —1, 4.2
[ e : 2
for each j = —mso,...,mq, and

Qfm(x) Hn,j(x)do;(z)
2=2 Qnj-1(2)Qnjt1(z)’

Since on the interval A; the measure o; and the functions Hy, j, @n,j—1@n,j+1,
preserve a constant sign, we can take their absolute values in (4.2) without
altering the orthogonality relations.

For each j = —mao, ..., my, define

—1/2
_ 2 oy |Hn(2)| dlog|(z)
Kn,] - (/A] Qn,j( )Qn,j1<$)Qn,j+1(x)> : (44)

j:—mg,...7m1. (43)

Hnj-1(2) =

Take %
Knmi+1=1, knj= Kn,l;il , J=-—Ma,...,mq .
Define
(nj = Fnj@ng, hnjo1=Kq Haj-1, (4.5)
and
dpus(2) = 5 2A DD (1.6

 Qnj-1(2)Qn,j11(2)

From (4.2) and the notation introduced above, we obtain
[ Qus@dlpnsl(2) =0, v =0, Ny <L G = e (A7)
A7

and g, ; is orthonormal with respect to the varying measure |py ;|. On the other
hand, using (4.3) it follows that

2
Qn (Jf) .
hn,j—1(2) zsn’j/ L dlpn,l(x), j=-—ma,...,m, (4.8)

A zZ—XT

where ey, ; denotes the sign of the varying measure py, ;.
In order to study the convergence of the sequence {Qy ;/Qn j}nen, it is
necessary to follow the following steps. First, we show that for each j €
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{—=ma,...,m1} the sequence {Qy: ;/@n,;} is uniformly bounded on each com-
pact subset contained in C \ supp(o;) (for all sufficiently large |n;|). Taking a
subsequence of multi-indices such that all the sequences of ratios of polynomials
have limit, we show that the limit functions must satisfy a system of boundary
value problems. This system happens to have a unique solution from which we
derive that all convergent subsequences have the same limit. Finally, we show
that the limit functions can be expressed in terms of the branches of certain con-
formal representations of a related compact Riemann surface onto the extended
complex plane. B

In this chapter, we assume that supp(o;) = AjUe;,j = —ma,...,my, where
Aj = A
e; is a set without accumulation points in R\ Aj. We denote this writing

St=N"(o,...,08.), 8 =N(03,...,02% ).

s Ymy s Ymo

[a;,b;] is a bounded interval of the real line, |07 > 0 a.e. on Aj, and

4.2 Ratio and relative asymptotics of orthogonal polynomials
with respect to varying measures

For convenience of the reader, in this section we will present in the form of
lemmas some results from [8] on the asymptotics of polynomials orthogonal with
respect to varying measures which will be used in the proof of the theorems of
this chapter and of Chapter 6.

Let {pn }nen be a sequence of finite positive Borel measures whose supports
supp(p,) contain infinitely many points and are all contained in a fixed compact
set S C R. Assume also that {way, }nen is a sequence of polynomials with real
coefficients such that, for each n € N, degws, = i, 0 < i, < 2n, wo, is
non-negative on S and

d
/ o oo
Wan
We denote by {z,;}?", the set of zeros of wa, whenever degws, = 2n. If
deg wo, < 2n, we define z,; = oo for ¢ = 1,...,2n — ¢, and denote by

{Zni}i%,_i 41 the set of zeros of ws,. We assume that the zeros are enu-
merated so that |z, ;| > [Ty it1]-

Let {l,, ;}, degly,; = j, j € Z+, denote the orthonormal polynomials as-
sociated to the varying measure dpu, /way,, i.e. these polynomials have positive
leading coefficient and satisfy

dpn, :
/ln,k bnj oo™ = 8pj, kg €Ly,
W2n
where dy, ; denotes the Kronecker delta.

Given any compact interval A of the real line, we will denote by pa the
conformal mapping of C\ A onto {|z| > 1}, such that pa (c0) = oo and /5 (c0) >
0.

Let f be a Borel measurable function on [0, 27, such that log f € L[0, 27].
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The Szegé function D(f,-) associated with f is given by

2w 4
Dio) =ew (- [ g ), o<1

47 et — z

Definition 4.2.1. Let k € Z be a fized integer. We say that ({du,}, {wan}, k)
is strongly admissible on S if

a) There exists a finite Borel measure p on R, such that pi, 5 u, n— 0.

b) In case that k is negative, then

—k
/ [ 1t = 2/l i < My < o0,
Si=1

where £/, ; =0 if 2, ; = 0.

¢) If A denotes the convex hull of S, then

2n

Tim 31— fpa )]~ = oo,

i=1

d) If ul,, 1 denote the Radon-Nikodym derivatives of p, and u, respectively,
then

lim [ | (2) - ()| de.
S

The following definition was introduced in [8].

Definition 4.2.2. Let {{, }nen, be a sequence of finite positive Borel measures
supported on the compact set S C R. We say that {u,} is a Denisov-type
sequence on S if

1) There exists a finite positive Borel measure p, such that supp(u) = S and
fin = s 0 00.

2) There exists an interval [a,b] C S such that for each € >0, S\ (a—¢,b+€)
is a finite set.

3) 1 (x) >0 a.e. on [a,b] and for all sufficiently large n, pl (x) > 0 a.e. on
[a, b].

The following result on ratio asymptotics of orthogonal polynomials with
respect to varying measures takes place. In [8, Theorem 1] it is proved

Lemma 4.2.3. Suppose that, for each k € Z, ({du,},{wan}, k) is strongly
admissible on S and {u,} is a Denisov-type sequence on S. Then, for each
fized k € Z,

lim ——————— = px(2),

n—0o0 ln,nJrkfl(Z) QOA( )
uniformly on compact subsets of C\ S, where A = [a,b] is the interval that
appears in part 2) of Definition 4.2.2.
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Regarding relative asymptotics of orthogonal polynomials with respect to
varying measures, in [8, Theorem 2] the authors prove

Lemma 4.2.4. Suppose that for each k € Z, ({dpn}, {wan},2k) is strongly
admissible on S and {du,} is a Denisov-type sequence on S. Let h be a non-
negative Borel measurable function on S verifying:

1) There exists an algebraic polynomial Q, such that Q h*' € L>=(S).
2) For each k € Z, ({hdun}, {wan},2k) is strongly admissible on S.

Let {gn}n € N be a sequence of continuous functions on S which converges to
g > 0 uniformly on S. For each n € N, set hy, = hg, and let {¢nm}men, be
the sequence of orthonormal polynomials with respect to hy, dpi, /wan. Then, for
each fixed k € 7,

i I ntk(2) _ _ 1

1% bynin(2)  D(hG,1/05(2))

uniformly on compact subsets of C\ S, where A = [a,b] is the interval that
appears in part 2) of Definition 4.2.2, and h(0) = h(r (cosB)), g(0) = g((cos b)),
T being the affine-linear transformation that maps [—1,1] onto A.

In connection with the weak limit of sequences of varying measures Corollary
3 in [8] states the following. For the proof the authors refer to [41, Theorem 9]
and [14, Theorem 8|.

Lemma 4.2.5. Suppose that, for each k € Z, ({du,},{wan}, k) is strongly
admissible on S and {u,} is a Denisov type sequence on S. Then, for each
k € Z, and any function f continuous on S, we have

12
nn+k:( d:un
Jim [ )t e / I ) —
where A = [a, b].

4.3  Weak convergence of the varying measures g, ;(x) d|pn ;| (2)
and uniform boundedness of the sequences {Qyi ;/@n,; fnea

In order to prove that for each j = —my,...,m;, the sequence {Qnt ;/Qn,;}
is uniformly bounded on each compact subset of C \ supp(o;), Theorem 2.2.5
would be sufficient if A; = Ej,j = —mg,...,my. To allow the compact sets to
enter the connected components of A;\supp(c;), we need to show that the zeros
of Qn,; falling in the intervals I (see Propositions 2.1.5 and 2.1.7) are attracted
to points in supp(o;) \ ﬁj. In our aid comes the next result.
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Lemma 4.3.1. Let S* = N'(0},...,0},.),8* =N'(0§,...,02,,) be given, and
let A C ZTlﬂ(o) X ZTQH(Q) be an infinite sequence of distinct multi-indices
such that

sup((mz + 1) ng o — |n2l) < 00, sup((m1+1)ny1 o —|m]) <oco. (4.9)
neA neA

For any continuous function f on supp(o;)

lim z) @2 (z)d|pn / ; 4.10
tim [ £(2)a3, @) dion. e e SR
where Ej = [a;,b;], —mqo < j < my. In particular,
1
limey jhni—1(2) = , K cCC\supp(oy), 4.11
nen i finug 1(2) G_0)(—a) \ supp(o;) ( )
where \/(z —b;)(z —a;) > 0 if z > b;. Consequently, for j = —ma,...,my,

each point of supp(c;) \ ﬁj is a limit of zeros of {Qn;},n € A.

Proof. We will prove this by induction on j. For j = my, using Lemma 4.2.5
(see also Corollary 3 in [8]) and the second condition in (4.9), it follows that

| dlom|(z) _ 1 . v
rlllgll\/ f nml( )|Qnm1 1( )| - 7_(_/Aml f( )\/(b’ﬂn _x)(x—aml)a

where f is continuous on supp(c,,,). Take f(z) = (z — x)~! where z € C\
supp(om, ). According to (4.8) and the previous limit one obtains that
1

lim En,my hn my— 1(2’) = = h7n1 (Z) )

neA \/(Z - bml)(z - aml)

pointwise on C \ supp(cy,, ). Since

, z€K cCC\supp(om,),

[ O p—
A Z—T ‘Qn,mlfl(xﬂ _d(/C,supp(Jml))

mq

where d(IC, supp (o, )) denotes the distance between the two compact sets, the
sequence {Anm,—1}, n € A, is uniformly bounded on compact subsets of C\
supp (o, ) and (4.11) follows for j = m;.

Let ¢ € supp(opm,) \ Ap,. Take 7 > 0 sufficiently small so that the circle
C, = {z : |z—¢| = r} surrounds no other point of supp(c,,, )\ A, and contains
1no zero of gn m,,n € A. From (4.11) for j = my

L / Enmi iy 1(2) L[ o (2)
C,

dz = — ! dz=0. 4.12
En,my Pn,my—1(2) 27 Jo, P, (2) ( )

Since ¢ is a mass point of o,,,, formula (4.8) indicates that either Ay, —1
has a simple pole at ¢ or Qnm,({) = 0. In any case, from (4.12) and the
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argument principle, it follows that for all sufficiently large |n|,n € A, Qnm,
must have a simple zero inside C,. The parameter r can be taken arbitrarily
small; therefore, the last statement of the lemma readily follows and the basis
of induction is fulfilled.

Let us assume that the lemma is satisfied for j € {k+1,...,m1},—my <
k < mj — 1, and let us prove that it is also true for k. From (4.11) applied to
j =k +1, we have that

lim |hy k(2)] = !
ned T [@ = b (@ — anen)]

uniformly on Ay C C\ supp(og+1). It follows that {|hnk|d|ok|},n € A, is a
sequence of Denisov type measures according to Definition 4.2.2. Additionally,
({Ihnkldlokl}, {|Qnk—1@n k+1]},1),n € A, is strongly admissible as in Defini-
tion 4.2.1 for each [ € Z. Therefore, we can apply Lemma 4.2.5 of which (4.10)
for j = k is a particular case. In the proof of Lemma 4.2.5 (see [8, Corollary
3], [14, Theorem 8], and [41, Theorem 9]), it is required that the inequality
deg(@n,j—1@n,j+1) — 2deg(@n,;) < C holds for every n € A, where C > 0 is
a constant. It is straightforward to check that this condition is satisfied under
the assumption (4.9).

Now we return to the induction argument. From (4.10) for j = k, (4.11) and
the rest of the statements of the lemma immediately follow just as in the case
when j = m;. With this we conclude the proof. O

Now we are ready to prove the uniform boundedness of the sequences of
ratios {Qni ;/Qn,j}-
Lemma 4.3.2. Let St = N'(a},... 0} ),82 =N'(0d,...,02,)) be given, and

» Y mg ?rma
let A C Z7" T (0) x Z>T (o) be an infinite sequence of distinct multi-indices

such that

sup((msg + 1) ng o — |ng|) < oo, sup((m1 +1)n1 0 — m|) < 0.
neA neA

Let us assume that there exists I = (I1;12),0 < I3 < m1,0 < ls < mg, such
that for all n € A we have that n' € ZTlH(o) X Z’fﬁl(o). Then, for each

Jj = —ma,...,m1, and each compact set I C C\ supp(c;) there exist positive
constants C;1(IC), C;2(K) such that
. in (Z) in (Z)
Ci1(K) < inf |12 < sup | —=L"2| < €5 4(K),
J’l( ) T zEK Qn,j(z> - zEIIC) Qn,j(z) N J’z( )

for all sufficiently large |ny|,n € A.

Proof. The uniform bound from above and below on each fixed compact subset
K c C\A; (for all n € A) is a direct consequence of the interlacing property of
the zeros of @y ; and @y ;. In fact, comparing distances to z € K of consecutive

interlacing zeros, it is easy to verify that
d (2 (2

min{dh—l} < inf Q"l’J( ) in’j( )

d2 zeK Qn,j (Z)

@n,j(2)

max{dy, d3}

<
= dy

< sup
zZEK
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where do denotes the diameter of X U A; and d; denotes the distance between
K and Aj. So, for such compact sets the assertion has been proved.

The additional restrictions made in the lemma guarantee that the zeros of
the polynomials Qy: ; and Qn; lying in A; \ supp(o;) converge to the mass
points as results from Lemma 4.3.1. Let £ C C \ supp(o;) and suppose that
KnA; # 0. Notice that K can intersect at most a finite number of open
intervals Iy, ..., Ip forming the connected components of A; \ supp(c;). The
polynomials Qy: ; and @y ; can have at most one zero in each of those intervals.
Consequently, for all [n;[,n € A, sufficiently large, the zeros of Q@ ; and Qn ; lie
at a positive distance € from K. Now, it is easy to show that for all sufficiently
large |ny|

. ) 2
min {5, i} < inf Lnl’j (2) < sup @t (2) < max{dy, d; } .
dQ zeK anj (Z) 2eK nJ(Z) S
This concludes the proof. O

4.4 The system of boundary value problems
From Lemma 4.3.2 we know that the sequences
{in,j/Qn,j}n€A7 j:_mQa"'amh

are uniformly bounded on each compact subset of C\supp(c;) for all sufficiently
large |ni|. By Montel’s theorem, there exists a subsequence of multi-indices
A C A and a collection of functions F' j(l)
that

, holomorphic in C \ supp(c;), such

o Quj(2) = .
r}lerf\ll WJ(Z) =F;"(z), KcCC\supp(o;), j=-ma,....,mi. (4.13)

In principle, the functions F j(l) may depend on A’. We shall see that this
is not the case and, therefore, the limit in (4.13) holds for n € A. First, let us

obtain some general information on the functions F j(l).

Proposition 4.4.1. The limiting functions ﬁj(l) satisfy the following properties:
a) For each j = —ma,...,mq, the function ﬁj(l) has no zeros in C\ supp(c;).

b) For each j = —mg,...,mq, the points in supp(c;) \ ﬁj are removable
isolated singularities of Fj(l), These points are not zeros of Fj(l),

c) If =la < j < li, the function ﬁj(l) has a simple pole at infinity and
(ﬁj(l))’(oo) =1, whereas, for j € {—ma,...,—la —1}U{li+1,...,m1}, it
is analytic at infinity and ﬁ'j(l)(oo) =1.
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Proof. By Lemma 4.3.2 we know that the sequence |Qy ;/Qn,j|,n € A, is
uniformly bounded on compact subsets of C\ supp(c;) from below by a positive
constant, for all sufficiently large |n;|. Therefore, the assertion a) follows.

It is clear that the points in supp(o;) \ Aj are isolated singularities of ﬁj(l).

Let ¢ € supp(o;) \Aj By Lemma 4.3.1, ¢ is a limit of zeros of Qn ; and Qn ;
as [nj| — oo,n € A, and in a sufficiently small neighborhood of ¢, for large
[ni|,n € A, there can be at most one zero of these polynomials (so there is
exactly one, for all sufficiently large |n;|). Let limpep (o = ¢, where Qn ;((n) =
0. From formula (4.13)

e ) Quiy ()

lm oy = 0@, KC(C\swp(o) U {<),

and (z— C)f‘j(l) (z) is analytic in a neighborhood of ¢. Hence ( is not an essential

singularity of ﬁj(l). Taking into consideration that Q,: ;,n € A, also has a
sequence of zeros converging to ¢, from the argument principle it follows that ¢
is a removable singularity of ﬁj(l) which is not a zero.

According to the definitions of Qn j, @yt ;, and Propositions 2.1.5 and 2.1.7
(see also (4.1)), when —ls < j <y, we have that deg Q1 ; = Ny j = Ny j+1 =

deg Qn,j + 1 whereas, for j € {—mo,...,—lo =1} U{l; +1,...,m1}, we obtain
that deg Qyi j = Nyt j = Nnj = deg Qn ;. This implies the assertion c). O
Now, let us prove that the functions ﬁj(l),j = —ma, ..., my, satisfy a system

of boundary value problems.

Lemma 4.4.2. Let S* = N'(0},...,0},.),8* =N'(03,...,02,,) be given, and
let A C Z’_:_“'H(o) X ZT2+1(0) be an infinite sequence of distinct multi-indices

such that

sup((mg + 1) ng g — |n2|) < oo, sup((mq + 1) n1 o — |m|) < oo.
neA neA

Let us assume that there exists | = (l1;12),0 < I3 < mq1,0 < Iy < mg, such
that for all n € A we have that n' € Zrﬁ'l(o) X ZTQ"'l(o). Then, there exists
a normalization Fj(l), j = —ma,...,my, by positive constants, of the functions

ﬁj(l) given in (4.13), which verifies the system of boundary value problems

1) FY1/FY e HC\A)),
2)  (F)(c0) >0, je€{~la....,1i},

2) Fj(l)(oo) >0, j€{-ma...,~lo—1}U{ly+1,...,mi}, (4.14)
1 ~
3) |F (2))2 — =1, zeA,,
L E F @)
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Proof. The assertions 1), 2), and 2’) were proved above for the functions

F j(l). Consequently, they are satisfied by any normalization of these functions
by means of positive constants.
From (4.7) applied to n and n!, for each j = —ma,...,my, we have

/x” Qs (@) dlpnsl(@) =0, v =0, Nay—1,

and
/:17” and(x) gnJ(:c) d|pn7j|(m) =0, v=0,...,Ny;—1,
where
(o) = 1@ni—1(@)@n 1 (@)] V(@ hag(@)doy(z)
9030 = (o @y @) Ty ()] ) = G @ Qn s @)
From (4.11) and (4.13)
lim g j(2) = |(F2 ) (@) (4.15)

uniformly on Aj.

Fixje{-ma,...,—lo—1}U{l1+1,...,m1}. As mentioned above, for this
selection of j we have that deg@y: ; = degQn; = Ny ;. Due to (4.15) and
(4.13), from Lemmas 4.2.3 and 4.2.4 (Theorems 1 and 2 of [8]), it follows that
Q) _ 50 g

I e~ S @ =F@,  KcTliswp(e),  (416)

vifhere S; is the Szegd function on C\ A; with respect to |13](91(x)ﬁj(21(x)|’1, x €

Aj. The function S; is uniquely determined by

1) 8;,1/8; € HT\A,;),
2) S](OO) >0,

: (4.17)
[(F2E) ()]

Now, fix j € {—lz,...,l1}. In this situation degQ,:; = degQn; +1 =
Nnj+ 1. Let Qy ; (x) be the monic polynomial of degree Ny ; orthogonal with
respect to the varying measure gy, j d|pn j|. Using the same arguments as above,
we have

Qn.;(2) S;(z) ~ _
li I L= =Si(2), KcC ). 4.18
nler/r\l/ Qn,j (Z) S](OO) j(Z) \ Supp(aj) ( )
On the other hand, since deg Qn: ; = deg @, ;+1 and both of these polynomials
are orthogonal with respect to the same varying weight, by Lemma 4.2.3 [8,
Theorem 1] and (4.11), it follows that

L Q) ()
ned Qi () ()

=p;(2), K C C\ supp(o;), (4.19)
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where ; denotes the conformal representation of C \ A; onto {w : [w| > 1}
such that ¢;(00) = oo and ¢/;(c0) > 0. The function ; is uniquely determined
by

1) ¢, l/p; € HC\4A)),

2)  ¢j(e0) >0, (4.20)

3 lei@)l =1, zel;.

From (4.13), (4.18), and (4.19), we obtain

. in, (Z) 5 - =)
I S = (7)) = F'(). Ko Clsmploy).  (421)
Thus,
~0 gj@jv je{—127...7l1}7
FY = (4.22)

S;j j6{7m23"'771271}U{ll+]—a"'7ml}a

and from (4.17) and (4.22) it follows that

PO ()2 1 _ 1 X i
|7 ()] ‘(ﬁJ(Qlﬁj(Ql)(m)‘ = reN;, j=-—ma,...,my, (4.23)
where

(Sj (p;)Q(OO), j € {—12,...711},
Wi = (424)
SJQ(OO)7 jE{—m27...7—lg—1}U{l1+1,...,m1}.

Now, let us show that there exist positive constants cj,j = —ma,...,mq,

such that the functions Fj(l) = cjﬁj(l) satisfy (4.14). In fact, according to (4.23)
for any such constants c; we have that

1 A ~ ,
= x €A, Jj=-—mgo,...,my,

|FO ()2 = :
J (ED FO (@) 1641w

where ¢_yn,—1 = ¢m,+1 = 1. The problem reduces to find appropriate constants
c¢; such that

2

9 21, j=—may...,m. (4.25)
€j—1Cj+1Wj

Taking logarithm, we obtain the linear system of equations
2logc; —logcj—1 —logcjy1 = logwj, j=-mo,...,mq (4.26)

(C—ms—1 = Cmy+1 = 1) on the unknowns logc;. This system has a unique
solution with which we conclude the proof. O
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4.5 The limiting functions of the sequences {Qni ;/@n.jtnen

Recall that given an arbitrary function F(z) which has in a neighborhood of
infinity a Laurent expansion of the form F(z) = CzF + O(z*~1),C # 0, and
k € Z, we denote B

F:=F/C.

C is called the leading coefficient of F'. When C € R, sg(F(c0)) represents the
sign of C.

Proof of Theorem 1.3.4. Since the families of functions

{Qn’,j/Qn,j}neA ) j=—mg,...,mq,

are uniformly bounded on each compact subset K C C \ supp(c;) for all suf-
ficiently large |n;i|,n € A, uniform convergence on compact subsets of the in-
dicated region follows from proving that any convergent subsequence has the
same limit. According to Lemma 4.4.2 the limit functions, appropriately nor-
malized, of a convergent subsequence satisfy the same system of boundary value
problems (4.14). From Lemma 4.2 in [5] (see also [3]) this system has a unique
solution.

It remains to show that the functions defined in (1.23) satisfy (4.14). When
multiplying two consecutive branches, the singularities on the common slit can-
cel out by the Schwarz reflection principle; therefore, 1) takes place since only

the singularities of I/JJ(D on Aj remain. From the definition of ¢ it also follows
that for j = —Is,...,11, Fj(l) has at infinity a simple pole, whereas it is regular
and different from zero at infinity when j € {—ma, ..., —lo—1}U{l1+1,...,m1}.
The factor sign in front of (1.23) guarantees the positivity claimed in 2) and 2').
. . 1 l ! l
In order to verify 3), notice that Fj( )/FJQl = sg(w§21(oo))/¢§ll. Therefore,
lfj: 7m2+1,...,m17

1 l
F @)P ;" @)] X
D om0 TEA
[F521 (@) iy ()] (957, ()]
on account of (1.21). For j = —mg and z € K,mw from the definition and
(1.21)
PO (@) 0 T ™ W
TR = W@l T wW@i=1 I @’@i=1,
| —mao+1 Jj)l k=—mo k=—mo—1

since Hg;_mrl 1/1,?) is constantly equal to 1 or —1 on all C. The proof is
complete. O

The following corollary complements Theorem 1.3.4. The proof is similar to
that of Corollary 4.1 in [5].
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Corollary 4.5.1. Let S* = N'(0§,...,00,,),5% = N'(03,...,02,,) be given,
and let A C ZTIH(') xZTzH(o) be an infinite sequence of distinct multi-indices

such that

sup((ma + 1) ne g — |n2|) < oo, sup((m1 + 1) n1 o — [m|) < oo.
neA neA

Let us assume that there exists | = (l1;12),0 < I3 < mq1,0 < Iy < mg, such
that for all n € A we have that n' € Z7""' (o) x Z[> (o). Let {qn; =
Kn,j QHJ};":L,M,H € A, be the system of orthonormal polynomials as defined
in (4.5) and {Kn;};2 . ,n € A, the values given by (4.4). Then, for each

j=—-m
fixed 7 = —meo, ..., m1, we have
o Baly ()
Il]lg/l\ .y =K; (4.27)
Ky
im =25 — 0O
1111€H11\ Ky K; Koty s (4.28)
and ()
It i \2) ) ) K
=K. F, , cC D, 4.29
ngjl\ an(Z) KZJ 7 (Z) \Supp(UJ) ( )
where
) (") (00), j€{~la,....0a},
o _ ) o _
ST 9 T e 0
€111 F(0),  j¢{~lo.... 1},
(c(,l)mz,1 = cgl)ﬁl = 1) and the functions Fj(l) are defined by (1.23).

Proof. By Theorem 1.3.4, we have limit in (4.15) along the whole sequence A.
Reasoning as in the deduction of formulas (4.16) and (4.21), but now in connec-
tion with orthonormal polynomials (see Lemmas 4.2.3 and 4.2.4, [8, Theorems
1, 2]), it follows that

) in,j(z) (Sj QOj)(Z), je{_l25""ll}7

lim ——— =

ned Qn,j(z) Sj(z)a j6{7m25"'371271}U{ll+17"-3m1}7

uniformly on compact subsets of C \ supp(o;), where S; is defined in (4.17).
This formula, divided by (4.16) or (4.21) according to the value of j gives

. K:nl . C;
lim d — NOTES —t
neA Kp j Ci—1Cj4+1

where w; is defined in (4.24), and the ¢; are the normalizing constants found in
Lemma 4.4.2 solving the linear system of equations (4.26) which ensure that

Fj(l) Ecjﬁj(l)’ J=—ma, ..., my,
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with Fj(l) satisfying (4.14) and thus given by (1.23). Since (ﬁj(l))’(oo) =1,j¢€
{~la,...,0h}, and (F\")(c0) = 1,5 € {~may...,~lo — 1} U{li + 1,...,m1}

formula (4.27) immediately follows with /{g-l) as in (4.30).
From the definition of ky ; , we have that

Ky j = Knj - Enm, -

Taking the ratio of these constants for the multi-indices n and n' and using
(4.27), we get (4.28). Formula (4.29) is an immediate consequence of (4.27) and
(1.22). O

Let lem(a, b) denote the least common multiple of two integers a and b, and
define m :=lem(my + 1,ma + 1), dy :=m/(m1+1), d2 := m/(mg +1). Within
the class of pairs | = (I1;12) with 0 <3 <mq, 0 < ly < mg, we distinguish the
subclass

L:={(l1;12) : Iy =rmod (m1+1), ls = rmod (ma+1) for some 0 < r < m—1}.

It is easy to check that for different r,0 < r < m — 1, the pairs (I1,l2) in L
are different. Let p := (p1;p2), where p1 = (dy,...,d;) and pa = (da,...,ds)
have m; + 1 and ms + 1 components, respectively. By n + p we denote the
multi-index (n; + p1;n2 + pa2).

Corollary 4.5.2. Let S* = N'(o§,...,00,,).5% = N'(d3,...,02,,) be given,
and let A C Zi”“(o) XZTZH(o) be an infinite sequence of distinct multi-indices

such that

suR((mg + 1) ngo — ng|) < oo, sup((m1 +1)nyo— |ng|) < oo.
nec neA
Then, for each fized j € {—ma,...,m1}, we have
. @nip;(2) ()
lim —2 2 = | | FV(2), K C C\ supp(oy), (4.31)
neA Qn,j (Z) lell J J
i Kn+4p,j (l )
lim Py H Ky (4.32)
leL
and
lim Qn-i-p,] 2) H KDFD(2), K c C\ supp(c;) . (4.33)

neA  gn (%) L

Proof. Given n € A and 0 < r < m, let n(r) := n + q(r) where q(r) =
(q1(r);qz2(r)) is the multi-index satisfying

q(r)=(k+1,.. . k+ 1Lk ...0k), r=km+1)+s, 0<s<m;.
—_———

Hence, n(0) =n, n(m) =n+ p and n(r) € ZT1+1(0) X ZTZH(.) for every r.
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‘We have

Qn-i—p,] Qn(rJrl J(Z
Qn,] H Qn(r),] (Z)

In addition, by (1.22) we know that for each fixed 0 < r <m — 1,

Qneri1).5(2) =@
lim 2D pD) 0 e K c C\supploy),
neA Qn(7)]( ) ’ ( ) \ ( ’

where [ = (ly;13) is precisely the multi-index satisfying l; = rmod (m; + 1),
lo = rmod (m2 + 1). Therefore (4.31) follows. Relations (4.32) and (4.33) are
proved analogously in view of (4.27) and (4.29). O

4.6 The limiting functions of the sequences {Ap: ;/Anj tnea

At this point we need to introduce some notations. For j € {—ma,...,m; — 1},
set

Py 1, if A, istotheleft of Aj;iq,

J —1, if A; isto theright of Ajy;.

For multi-indices [ = (I1;12) such that I; + 13 > 2, we define

L i>h+2,
0j—1, if Je{l,lh+1},
AjJ = 7(5]‘_15]', if j € {712+1,...,ll 71},
—(Sj, if j € {—ZQ—].,—IQ},
1. if j < —ly—2.
If l1 +l2 =1 then
1, if j>hL+2,

(Sj,l, if jE{ll,ll—‘rl},
—(5j, if j S {—lg — 1, —lg},

1L if < —lp—2,
and for l{ =1, =0
1, if j>2,
507 if .] = 1a
Aj,(O;O) = 1, if j = 0,
—0-1 if ] = _13
1, if j<-2.

Recall that ey, ; denotes the sign of the varying measure

b j(z)do; ()
Qnj—1(2)Qnjra(z)

dpn,j(z) =
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Lemma 4.6.1. For any n,n' € ZTlH(o) X ZTQH(Q) and —mg < j < my
Enli 1
2 = T A (4.34)

Proof. We will denote by sign(f, A) the sign of a function f on the interval A.
Thus

€nl7j

Hnl,j Qn,j—l Qn,j-i—l A)

= sign , . 4.35
€n,j (Hn,j Qntj—1Qnijy1 ° (4.35)
If —lp < j—1<1, then deg(Qni j—1) = 1 + deg(Qn,j—1) and, therefore,
sign(M, Ag) == (53‘,1 . (436)
in,j—l
If j =1 < —lyorj—1>1I, then deg(Qn: j—1) = deg(Qn,j—1), implying that
sign( Cnj1 A =1. (4.37)
n! j—1
Analogously, we have that for —lo < j+1<1[
sign( Cnj1 LA = —6; (4.38)
in,j+1
and for j+1< —lborj+1>1
sign(M,Aj) =1. (4.39)
n! j+1
From (4.36)-(4.38) it follows that
) Qn,j—1 @n,j+1
sign(=———————,A;) = A, ;. 4.40
(in’j_1 R i) =4 (4.40)
Now, by (4.3)
Qildurl(t) Hnl,j+1(t) doja(t)
Hnl,j x) . f r—t Qut (DRt jyo(t)
Hoi(z) [ Quser® Haya () dojia(t)
ale) Sy Qs (D@ +2(0)
Therefore,
Enl i
sign(Hpt ;/Hn j, A;) = =FL (4.41)
/ €n,j+1
Since Hyt ;m, = Hnm, = 1, the right hand side of (4.41) equals 1 for j = m;.
Hence (4.34) follows from (4.35), (4.40) and (4.41). O

This lemma shows that €, ;/en,; depends on j,[, and the relative positions
of the intervals A; but not on n. Define the functions

W _ 0 17 Ak
A= H O]

(the product should be understood to be equal to 1 when j = my).
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Theorem 4.6.2. Let S' = N'(o§,...,0),.),5% = N'(03,...,02,,) be given,
and let A C ZTlﬂ(o) X Z’f?“(o) be an infinite sequence of distinct multi-

indices such that

sup((mg + 1) ng o — |ng|) < oo, sup((ml +1)nio—|ml|) < oco.
neA neA

Let us assume that there exists | = (I1;12),0 <13 < mq,0 <ly < mg, such that
for alln € A we have that n' € Z" (o) x ZTzH(O), Let {An ;}2 ne

Jj=—mo—1

A, be the associated sequences of “monic” linear forms defined by (1.11)-(1.12).
Then, for each fixed j = —mo — 1,...,myq,

A (2)
rl:érjl\ Tns(5) A7, IC c C\ (supp(cj) Usupp(cjt1)) (4.42)

(Supp(O'mefl) = Supp(0m1+1) = (Z))

Proof. It follows from the definition of H, ; and Hat j that

Anl,j(z) _ 5nl,j+1hnl,j(z) €n,j+1 Kg,j+1 in,j(z) Qn,j-ﬁ-l(z)
Anj(2)  engiihn(2) e i1 Koy @ng(2) Quijia(2)

By Lemma 4.3.1,

Enl,j+1Mnt ;(2)

=1, KccC i11) -
neA 5n,j+1hn,j(z) \ Supp(U]+l)

Using Lemma 4.6.1 and Corollary 4.5.1, we have

2 mi

lim €n,j+1 Kn,j+1 _ H Ag,i
2

neh et Ko 250 (k)

Finally, applying (1.22) and (1.23) one obtains

Qnt j(2) Qnjt1(2)

lim =9\(2), KK C C\ (supp(o;) Usupp(cjt1))-
neAQn]()in]+1() i (%) \ ( (o) (0541))
Putting these relations together we get (4.42). O

Corollary 4.6.3. Let S* = N'(o§,...,00,,),5% = N'(d},...,02,) be given,
and let A C Z7' T (o) x Z7* 1 (o) be an infinite sequence of distinct multi-indices

such that

SHR((TTLQ +1)n20 — n2|) < o0, SUR((ml +1)nio—|ml|) <oco. (4.43)
ne ne
Then, for each fized j € {—ma,...,m1}, we have

lim «T,I;J =[[A"().  KcC\ (supp(oy) Usupp(oj41))  (4.44)

leL
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(supp(c_my—1) = supp(opm,+1) = 0). Consequently, uniformly on each compact
subset I C C\ (supp(o;) Usupp(o,+1)),

lim | Ay (2)] ™ = TT AT )1, (4.45)
leL

where m = lem(my + 1,ma + 1).

Proof. Using the same arguments employed to prove Corollary 4.5.2, we obtain
(4.44). From (4.44) it is easy to deduce the |n;|-th root asymptotic of the linear
forms.

In fact, it is easy to see that for each n € A there exists ny € Zi“'“(o) X
ZT2+1(0) (which may depend on n), whose entries are uniformly bounded by a
constant C' independent of n (condition (4.43) is used), such that n = rp + ng
for some r € Z. Write

Anj(2) An-pj(2)  Anipi(2) 4

AnilE) = ) Aopg () Ay (z) o)

Then

Ang+(k+1)p,j(2)

1 1 r—1
’ Ang+kp,j (2)

1
log | An,;(2)| = — log [An,,;(2)| + — ) _log
|y | ’ | o n] kZ:O
Obviously,

1
lim —log |An,,;(2)| =0, K CC\ (supp(o;) Usupp(c;+1)),

neA [ny |

and because of (4.44), uniformly on each compact subset X C C\ (supp(o;) U
supp(0j+1))s

| 1 Sl ’Ano+(k+1)p,j<z) 1 1 HA(l)( )

1m (6] —_— | &= — Og ; z )

neA |Il1| =0 An0+kp7j(z) m L J

since | = r[pi| + O(1) = rm + O(1), jn; | — oo. -

The function appearing on the right hand side of (4.45) corresponds with the
one on the right hand side of (1.17) associated to the vector equilibrium problem
with interaction matrix C constructed taking p; , = 1/(m1 +1), 0 < k < mq,
and pa = 1/(m2+1), 0 < k < mg. In that case, for each j = —mo—1,...,my,
we have L

Gi(2) = [[IAP @)™, zeC\(A;UA;)

leL

(A_p,—1 = Ay 1 = 0), where m = lem(my + 1,mg + 1).



5. RELATIVE ASYMPTOTICS

In this chapter and the next, we restrict our attention to type II multiple
orthogonal polynomials. In Section 5.2, we establish some algebraic connec-
tions between the multiple orthogonal polynomials @, of the initial system
N(o1,..., o) and the multiple orthogonal polynomials @, of the perturbed
system N(p101,..., PmOm), where pi,...,pn, denote polynomials with com-
plex coefficients. Section 5.3 is used to explain some notational modifications
we introduce in passing from mixed type multiple orthogonal polynomials to the
more specific type II multiple orthogonal polynomials. Theorem 1.3.5 is proved
in Section 5.4, first for polynomial perturbations from which the rational case
is deduced. The relative asymptotic of the second type functions is obtained in
Section 5.5 which is used in Section 5.6 to deduce the relative asymptotics for
the sequences {Qn jtnen,j € {1,...,m}, as well.

5.1 Preliminaries and notation

Let (s1,--., 8m) =N (o1, .., om) be the Nikishin system of measures generated
by (01, ..., om). Recall that the notation (s1, ..., sm) = N'(01,..., o) is used
to indicate that for each k = 1,...,m, supp(o) C R consists of an interval Ay,

on which |o}| > 0 almost everywhere, and a discrete set without accumulation
points in R\ Ay. Finally, let (31,...,5,) = N(p101,..., Pmom), denote a
“perturbation” of (si,..., S,), where

Sk = (P101,. .., Pk Ok), 1<k<m,

and the py, k = 1,...,m, are monic polynomials with complex coefficients whose
zeros lie in C\ U, Ay. Here, as before, Ay, = Co(supp(oy)). The system
(81,...,8m) is also regarded as a Nikishin system (even if the polynomials py
have complex coefficients).

Let Qn (resp. én) be the monic polynomial of smallest degree (not identi-
cally equal to zero) such that

O:/x”Qn(x)dsk(m), v=0,....np,—1, k=1,...,m, (5.1)

O:/x”@n(x)dgk(m), v=0,....np,—1, k=1,...,m, (5.2)
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where n = (n1,...,n,) € Z7. One of the goals of this chapter is the study

of the asymptotic behavior of the sequence {@n /Qn}, when n runs through an
appropriate sequence of multi-indices contained in Z".
Given the collection of polynomials (p1,...,pm), we define

In particular,
(@) ={neZl:j<k=mn,<n;+1}.

Obviously, ZT(®;p1,...,pm) C ZT7(®) C Z7(*) and ZT'(e) C ZT7(®). Using
Lemma 1.2.3, it follows that if n € Z7'(x), then the polynomial @y has degree
In|, all its zeros are simple and lie in the interior of A;.

5.2 Some algebraic relations

In this section we prove a number of auxiliary lemmas which are later applied in
the analysis of the asymptotics of the sequence {Qy/Qn}. Let us first express
the orthogonality relations (5.2) satisfied by the polynomials @y in terms of the

measures in the initial system (s1,..., Sm).
Lemma 5.2.1. For each k =1,...,m, we have

Sk = pileis1 + pipeleose + -+ (p1- - Pr)lkkSk, (5.3)
where I ; is a polynomial of degree degly ; < deg(pjt+1---px) — 1,5 < k, and
I = 1. In particular, if n = (ny,..., ny,) € Z7(®;p1,...,0m), then for each
k=1,....m

0= /x"@n(x)(pl cepe)(x)dsg(x), v=0,...,n—1. (5.4)

Proof. To prove (5.3), we proceed by induction on m, the number of measures

which generate the system. For m = 1, (5.3) is trivial, since 57 = p1o1 = p151.

Assume that (5.3) is true for any Nikishin system with m — 1 > 1 generating

measures and let us prove it when the number of generating measures is m.
Fix k € {1,...,m}. By definition,

5k = (p101, ..., PROK) = (D101, (D202, - .., DKOK)) -

Consider the Nikishin system N (p2oa, . .., pror) which has at most m—1 gener-
ating measures. By the induction hypothesis, there exist polynomials ho, ..., hg,
degh; < deg(pj+1---pr) — 1, hy =1, such that

(P202, ..., pkOk) = p2haoy + -+ (p2- - pr)hi (o2, ..., ok) -

Inserting this relation above, we have

Sk = <P101,p2h202> +e <P1017 (p2 e 'pk)hk<027 .- ~,Uk>> . (5-5)
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Given two measures 0,03, and a polynomial h, notice that

(h(t) F h(z))dos(t)

r—t

(0w, hos)(x) = / doo(z) =

h*(z)doq(x) + h(z)d(on, 08)(x),

where deg h* = deg h — 1. Making use of this property in each term of (5.5), it
follows that

Sp = pil(p2ha)” + -+ (2 - - prhi) o1 + (p1p2)he(or, 02) + - -

+(p1 - pr)hi{or, ... on),

which establishes (5.3).
Using (5.3) and the orthogonality relations (5.2) satisfied by Qn, it follows
that for each k € {1,...,m} and v =0,...,np — 1,

k
Oz/x”@n(z)dgk(sc) :Z/z”zk,j(x)@n(x)(pl...pj)(x)dsj(x). (5.6)

In the rest of the proof we assume that n € Z7*(®;p1,...,pm). When k =1
the last formula reduces to (5.4). Suppose that (5.4) holds up to k — 1,1 <
k—1<m—1, and let us show that it is also satisfied for k.

Let j€{1,...,k—1} and 0 < v < nj — 1, then

v+degly; <nig—1+deg(pjt1---pe)—1<n; —1.

Therefore, according to the induction hypothesis

/xl’lk’j(@@n(x)(m - pj)(x)ds;(x) =0,
and (5.6) reduces to (5.4) for the index k. With this we conclude the proof. O

Lemma 5.2.2. Let n € Z7(®;p1,...,pm). Then, for each k =1,...,m, and
v=0,...,n; —deg(pr+1- - Pm) — 1

0= [ " Gulo)pr -+ pm)@)dsi (o). (57)
Proof. In place of ¥ we can put in (5.4) any polynomial of degree < ny — 1.

So, replacing =¥ by z(pg+1 -+ - Pm) We obtain (5.7). O

Our next objective is to express the multiple orthogonal polynomials of the
perturbed system in terms of multiple orthogonal polynomials of the initial
system.

Let n € Z7(®;p1, ..., Pm) and consider the multi-indices

nj = (nl _deg(p2"'p'ﬂL) +jan2 _deg(p3"'p’m)7"-anm)a ]Z 0.
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It is easy to verify that
IleZT(@)v jZO

Therefore, deg Qn, = [n;| = |n| + deg(pep3 - --p~') + 7, all the |n;| zeros of

Qn, are simple and lie on A;. Moreover, for each j > 0 and k =1,...,m,
0= /x”an (z)dsk(x), v=0,...,n, — deg(pPrt1- Pm)— 1. (5.8)
Lemma 5.2.3. Let n € Z(®;p1,...,pm) and set Ry = @npl pm. There
exist unique constants An j,5 = 0,..., N, such that
N
Ro=Y AnjQn,. N =deg(pip3 - p). (5.9)
§=0

If j' is such that deg Ry, = deg an, then Adnjo =1 and A\n; =0,7'+1 < j < N.
In particular, \n v = 1 if and only if deg Qn = |n|.

Proof. Since deg Ry < [n|+deg(p1 - pm), and {Qn, },j = 0,..., N, has repre-

m—1

sentatives of all degrees from |n| —deg(p2p3 - - p™~1) up to |n|+deg(pr -+ pm),
there exists a unique system of constants A, j,j =0..., 1V, such that

N
deg(Rn — Y An,;Qn;) < [n| — deg(pop3 ---pjn ") — 1.
=0

From (5.7)-(5.8) it follows that for each k =1,...,m,

N
/x”(Rn - Z An,j@n;)dsg(z), v=0,...,n; —deg(prs1- pm) — 1.
=0

By the normality of the multi-index
ng = (nl - deg(pQ o 'an)a ng — deg(pS o 'pnb)a s 7n7n) € ZT(®) )

we obtain that

N
Ro— An;jQn, =0,
j=0

which is (5.9). The rest of the statements follow because Ry is monic. O
Let n € Z7(®;p1, - - ., Pm)- Define recursively the functions
Ry -
Rug(9) = Ral2). () = [ 2oy a), b= 1cm (.10)

In deriving (5.7), we lost some orthogonality relations. We will recover them in
the form of analytic properties of the functions Ry i,k =0,...,m — 1.
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Lemma 5.2.4. Fizn € Z7(®;p1,...,pm). The following relations take place:
If z1 is a zero of p1 -+ pm of multiplicity T, then

o) = (5

@)
) (21)=0, i=0,...,71—1. (5.11)

no

If 2. is a zero of pr. - - pm, k = 2,...,m, of multiplicity 15, then
Rl('f,)k—l(zk):()v 1=0,...,7,—1. (5.12)

Proof. The zeros of p; - - - py, lie in C\ Ay, and those of @y, in A;. Therefore,
Q, has a zero at z; of multiplicity greater than or equal to 73 which implies
(5.11).

For simplicity, first we will prove (5.12) for k = 2. By definition

Roi(z) = / Bnl®) 151 ().

zZ—X

Therefore, for each ¢ > 0,

RS,)l(Z) = (=1)4! / (Z]irla(gzﬂdol(x), zeC\A;.

If 25 is a zero of py - - - pyy, of multiplicity 72, using (5.4) with k = 1 we have that

_1yi p(®) 5
o= [P g ) i = CUERCD i,

(22 — 2)it] il

which is (5.12) for k = 2. The proof of the general case uses basically the same
arguments.
Consider the functions

Dy 1 (2) :/Mdsk(x), k=1,....,m.

Z—T

Notice that ®, 1 = Ry 1. For each i > 0,

It is easy to verify that for each k = 2,...,m,

Ry (z1)(z1 — ag)doyr(z1) - - - dog (k)

1
zZ— ,Il)(gcl — x2) - (xk—l _ Ik)(z — Ik) .

q)n,k(Z)“v‘(—l)kRn’k(z):/.../(

Taking 1 — xp =1 — 22+ - -+ + X1 — Tk, it follows that

E

R k(2) = (1) 1@y 1(2) + Y (=)' Mk (2) @i (2), (5.13)
1

~
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for z € C\ (Ur;A;), where 91 = (0%, 0k-1,.-.,0141). If 2z is a zero of
Dk -+ - P of multiplicity 74 (< 75—1 < -+ < 73), using (5.4) we obtain that for
eachl=2,....,kandi=0,...,7, — 1,

igy ()
[ (o pw)(T) 5 . (-1) ‘I)n,l—1(zk)
0= /WQn(x)(pl . 'pl_l)(l')dSI_l(fr) = # . (514)
Now, (5.12) is a consequence of (5.13) (with k replaced by k — 1), and (5.14).
With this we conclude the proof. O

5.3 Some notational adjustments

The modifications we introduce here in the notation will be employed in this
chapter and the next. For each n € Z'(®), define recursively the functions

Uni-1(x)
zZ—X

Uno(2) = Qn(2), ¥ni(z)= / dop(z), k=1,...,m. (5.15)
These functions are the analogues of the functions A, —;,5 = 0,...,m2 + 1,
defined in (1.12). In the previous chapters, we restricted our attention to multi-
indices in ZT(e), which is strictly contained in Z7'(®). For type II multiple
orthogonal polynomials, the consideration of this slightly more general class
causes no technical difficulty. In some instances, we will refer to previous results
to deduce some formulas we need when n € Z7'(®) instead of Z'7'(e). Their full
proof would follow the arguments employed before. In any case, the reader can
check the original source [37] for more details if needed.

By Proposition 2.1.6, for each n = (ny,...,ny) € Z7(®), k=1,...,m, and
kEk<k+r<m,

/‘I’n,k—l(t) t'd{og, ..., oker)(t) =0, v=0,... npy, — 1. (5.16)

Consequently, ¥y, 1,k =1,...,m, has exactly Ny ; :=ng + - -+ n,, zeros in
C\ Ak_1, they are all simple, and lie in the interior of Ay. Let Qnx be the
monic polynomial of degree N, ; whose simple zeros are located at the points
where Wy, ;1 vanishes on Ay and let Qn m+1 = 1. From Proposition 2.1.7 it
follows that

dog(x)
U o ()= 0y =0,...,Nax—1, k=1,...,m. (5.17
[ @ " (517)
As before, set
nk—1(2)Un g
Hn,k(z) = Q k I(Z) k 1(2) kZl,...,m—i—l,

Qn,k(z) ’
(Hn,1(2) = 1). The analogue of (4.3) (see also (50) in [14]) is

_ Qi () Hyp(x)doy(x) B
Hupt1(2) = % Or 1 (D0 @) k=1,...,m. (5.18)
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From (5.17), we have that for each multi-index n = (n1,...,n,) € Z7(®)
there exists an associated system of polynomials

{Qn,k}qu:p deg Qn,k = Z Ng = Nnk, Qn,O = C21[17171-1-1 =1

a=k

For each k =1,...,m, they satisfy the full system of orthogonality relation

v Ha i (x)dog(z)
/ ¥ On @) G S G @)

with respect to varying measures. Notice that Hyn i and Qn x—1@n,k+1 have
constant sign on Ag.

Let en 1 be the sign of the measure Hy i (z)dok(z)/Qn, k—1(2)Qn k+1(x) on
supp(oy). For each k=1,...,m, set

B > () EniMa(2)dow() —1/2
Kk = </ On.i )Qn,kl(mmn,m(m)) : (5.20)

v=0,...,Noy —1, (5.19)

Take Ko
Kno=1, H“’k:Kn,;;_l’ k=1,...,m.
Define
Gk = Fnk@nk , Mk =Kip 1 Hak, k=1,...,m. (5.21)
From (5.19)

En khn k(l‘)ddk(l‘)
2 Qn.k(x - =0, v=0,...,.Nnrx—1, k=1,...,m,
/ Cn.il )Qn,k—l(l‘)Qn,kH(x) -

and with the notation introduced above it follows that gy, ; is orthonormal with
respect to the varying measure

6n7khn,k(x)dok(x)

Qn,k—1(2)Qn k41 ()

In the present context Lemma 4.3.1 implies (see also [36, Lemma 3.3] or [8,
Corollary 3])

= dpn k().

Lemma 5.3.1. Let S = N'(01,...,0m) and A C Z(®) be a sequence of multi-
indices such that for alln € A, ny — n,, < C, where C is a constant. Then, for
each fixed k =1,...,m, we have

1
(z —bg)(z — ak)
where [ag,by] = Ag. The square root is taken so that \/(z — by)(z — ag) > 0 for

z =x > by. supp(ok) is an attractor of the zeros of {Qni},n € A, and each
point of supp(o) \ Ay is a 1 attraction point of zeros of {Qni},n € A.

1151\ €n khn kt1(2) = , K c C\ supp(oz), (5.22)
n
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In the proof of our main result, we use the asymptotic behavior of the poly-
nomials Qn x,k =1,...,m, and the functions ¥y, ;,k = 1,...,m, when n runs
through a sequence of multi-indices A C Z7 (®).

The relevant Riemann surface has now m + 1 sheets and is given by

R=J R,
k=0
formed by the consecutively “glued” sheets
Ro:=C\A;, Ry :=C\{AyUA,1}, k=1,...,m—1,  R,=C\A,,

where the upper and lower banks of the slits of two neighboring sheets are
identified. Fix I € {1,...,m}. Let 1 = 1,... m, be a single valued rational
function on R whose divisor consists of a simple zero at the point 0o(® € Ry
and a simple pole at the point co®) € R;. Therefore,

vO(2)=C1/z+01/22), 2z — 0@, PO (2) = Caz 4+ 0(1), 2z — 0o

where (7 and Cy are constants different from zero. We denote the branches of
the algebraic function ¥, corresponding to the different sheets k = 0,...,m
of R by

PO = Dy

We normalize ¢ so that

IT 1) =1,  C1er\{o}. (5.23)
k=0

The symmetry formula, ¥ (z) = 91 (Z), 2 € R, satisfied by the functions
" imply that for each k =0,1,...,m

Y R\ (A UA) — R (5.24)

(&0 = £m+1 = (). In particular, the coefficients of the Laurent expansion at oo

of these branches are real numbers and sg(w,(cl)(oo)) is defined. It also expresses
that

1 l 1 X
V(as) = o) (z5) = 1/)1(#1(9%)7 T € Ay (5.25)
For any fixed multi-index n = (n,...,n,,), set
n' = (ng,...,n_ 4+ L, ) -

Corollary 4.5.1 (see also [36] or [5]) may be rewritten as

Corollary 5.3.2. Let S = N'(01,...,0m,) and A C ZT(®) be a sequence of
multi-indices such that for all n € A and some fized | € {1,...,m}, we have
that n' € Z7(®) and ny — ny, < C, where C is a constant. Let {qn i =
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Fnk@nk iy, € A, be the system of orthonormal polynomials defined in (5.21)
and {Knk}ie,,n € A, the values given by (5.20). Then, for each fized k =

1,...,m, we have
Knl k 0

lim ——= = 5.26
Y Kook K s (5.26)
. Kuig 0 1
m et =y (5.27)
and B
. Ont k(2 1) =
l].llérjl\ ) = n}c)F,E)(zL K c C\ supp(oy), (5.28)
where
O] l
W _ G o _ [ (EPY(0), k=11, 5 99
T oo T FY (o) k=1+1,....m (5.29)

FY =6 [ w0, (5.30)
v=k

with (5]@)[ = s¢q (H:,n:k (Vl)(oo)> :

5.4 Relative asymptotics for the polynomials (),

We will first prove the theorem when the measures are modified by means of
polynomials; that is, we will initially suppose that ¢; = 1,5 = 1,...,m. Once
this is done, the rational case easily follows.

Proof of Theorem 1.3.5 in the polynomial case. When [ = 1, it is possible
to find an algebraic function ¢! satisfying

ﬁ vy =1, €y R\ {0}. (5.31)
k=0

Let (a, b)) denote the interval (a, b) on the sheet Ry. We distinguish two cases.
Suppose that A = [a1,b1] is to the left of Ay = [ag,bs]. Take ¢ verifying
(5.23) with Cy = lim, zw(()l)(z) > 0. Because of (5.24), the restriction of ¢!
to (—o00, a1]o U (—00,a1]y establishes a bicontinuous bijection onto the interval
(—00,0) of the real line. It follows that w%l)(x) — —00,x — —00,x € R, which
means that Cy > 0, and 1/)19)(00) >0,k =2,...,m. Therefore, [T;" w,(cl)(oo) >
0. If A; is to the right of A, take () satisfying (5.23) with C; < 0. Now, the
restriction of (1) to [by, +00)o U [by, +00)1 establishes a bicontinuous bijection
onto (—o0,0). It follows that wgl)(x) — —00,z — +o00,z € R, which means
that Cy < 0, and ") (00) > 0,k = 2,...,m. Again, [[I, ¥\ (c0) > 0.
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Throughout the rest of this chapter, when A; is to the left of &2, we will
select () so that sg(w,(cl)(oo)) =1, forall k = 0,...,m. If A; is to the
right of Ay, we will take ¢ so that sg( él)(oo)) = sg( 51)(00)) = —1 and
sg( ,(Cl)(oo)) =1,forallk=2,...,m.

In general, for any I € {1,...,m} and ¥ verifying (5.23), we know that

TT v (o) € {113
v=0

Let A C Z7(®;p1,.--,Pm) be an infinite sequence of distinct multi-indices
such that n; —n,, < C,n € A. According to (5.26)-(5.30), for each fixed j > 0,
lim Onyn(2) ﬁ(l)(z) = M =:pg(z), K CC\supp(o1). (5.32)
=F = =: ) . (5.
neA an (Z) cgl)wél)(z)
(Notice that (5.31) implies that ] M) =1)
Using (5.9),
N
R Ql’lj m
On=—="=) >,  N=deg(pips---ppy).
Ql’lo j=0 Qng
Set

N
=0 ash™t
j=0

At least one of the numbers in the sum is 1 so A} is finite. Define

N Q N
Ao =D A~ > Al =1. (5.33)
§=0

n,j ’
Q=

Because of (5.32) and (5.33), the family {A\;Q,},n € A, is normal in C \
supp(o1), and any convergent subsequence {\:Q,},n € A’ C A, converges to

N
lim A0 (2) = p(0(2)) = ; Ajh(z), K C C\supp(oy).

That is, pa/(w) is a polynomial of degree < N, not identically equal to zero
since Z;.VZO |A;] = 1. We will show that pa, does not depend on the subsequence
taken. This implies the existence of limit along all A. To this aim, we will
uniquely determine N zeros of py:.

Let z1 be one of the zeros of py - - p,, and 7 its multiplicity. Using (5.11)
and the Weierstrass theorem, it follows that

(par 0 00)P(z1) =0, i=0,....,71—1.
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Since ¢y is one to one in C\ A1, we conclude that par(w) is divisible by

(w —po(21))™

We will detect the rest of the zeros of pa/(w) in virtue of (5.12). Consider
the sequence {\\Rn r—1},n € A’. From (5.9), (5.10) and (5.15)

N
MRok-1(2) =D A, k-1(2).
7=0

Multiplying this equation by ano,k,1Kﬁ0,k_1Qn0,k,1/Qn0’k and using the defi-
nition of hy k, we obtain
Mano k-1 K2 11 (Qnok—1Rak—1)(2)
Qno k(2)

N
_ Z)\* 'Krzlo,k—l Qno,k—l(z) an,k(z) Eng,k—1
j=0 ™I KﬁjJ(;_l Ql’lj,k*l(’z) Ql’lo,k('z) El’l]‘,k‘fl

From (5.26)-(5.28), for each j > 0 and k =2,...,m,

En, k—1hm; k(2) -

Kﬁf”“*l On; k-1(2) @nyyak(2) ﬁzgl)(Z)

lim = ;
ned’ K121j+1,k—1 an+17k71(2) anvk(z) (H(ll) s 1435917)1)21:1]517)1(2)

uniformly on compact subsets of C\ (supp(ox—_1) Usupp(cy)). On account of
(5.29) and the expression of the functions F,gl),

(e s8(12, (00))
O ]fm( 2)~<1> =~ m oy = ) (5-34)
(K17 k)2 (2) e Yy (2)
Let us consider the ratios en,,, x/€n; k,k = 1,...,m — 1,5 > 0. Recall that

€n,k 18 by definition the sign of the measure Hy i (x)dog(2)/(Qnk—1@n k+1)(T)
on Ay. Notice that for each fixed k& = 2,...,m the polynomials Qn; » have
the same degree for all j > 0; therefore, they all have the same sign on any
interval disjoint from Ag. On the other hand, the polynomials Qn; 1 have
degrees that increase one by one with j. Hence, if A; is to the left of Ay, all the
polynomials Qn; 1 have the same sign on Ay whereas, if Ay is to the right of Ay,
the sign of these polynomials alternate on Ay as j increases one by one. Taking
these facts into consideration, it is easy to see that for all j > 0, the measures
Hn, 1(x)doi(2)/Qn; 2(x) = doi(x)/Qn; 2(x), have the same sign; therefore, for
all j > 0, Ethl/eHM = 1 and the functions Hn; 2 have the same sign on
Ay (see (5.18)). Hence, the measures Hy; 2(7)doz(z)/(Qn;,1@n, 3)(x) have the
same sign if A is to the left of Ay and alternate signs as j increases when Aq
is to the right of As. Thus, for all j > 0, Enj+l’2/8nj’2 = 1 when A; is to the
left of A and ep,,, 2/en;,2 = —1 when A; is to the right of Ay. By the same
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token (see (5.18)), for all j > 0 the functions Hy, 3 have the same sign on Ag
when Aj is to the left of As and alternate sign when Aj is to the right of As.
From now on the situation repeats and for each fixed k = 2,...,m — 1, and all
J >0, en;.y k/6n;k = 1 when Ay is to the left of Ay while ey, 1/en; x = —1
when A; is to the right of As.

Let 6 = 1 when A is to the left of Ay and § = —1 if A; is to the right of
A,. Using (5.22) and (5.26)-(5.29), it follows that

Qnok—1(2)Rnp—1(2)

. * 2
i N1 K

ng,k—1 Qno,k(z) =
T Lo Vi (3), —y
T N j = (535)
\/(Z_bkfl)(z—akfl) 3=0 A] (690]6—1) (Z) s k‘ = 3’ cee,my,
1
1 .., 5
(271)1)(?7(11)]9/\ ((pl (Z)) ) k ,

\/(Zfbkfﬂ(zfakfl)p[\,(&0]671(2)) y k=3m,

uniformly on each compact subset K of C\ (supp(or—1) U supp(og)).
Let z; be one of the zeros of pg -+ pm, k = 2,...,m, and 7 its multiplicity.
Using (5.35), (5.12), and Weierstrass theorem, it follows that

(pA'o@l)(i)(ZQ):Oa i:O7"'7T2_1a
and
(par o (01 N (z) =0,  i=0,...,7%—1, k=3,...,m.
Since @g_1 is one to one in C\ (Ag_; UAy), we conclude that py(w) is divisible
by
(w —1(22))™

and
Tk

(w—dpr—1(2))™, k=3,...,m.

Therefore, the following sets are formed by zeros of py::
Zo:={wo(z1) : z11s a zero of py - pm },

Z1 :={p1(22) : 22is a zero of pa - - pim },
2 = {00k (2k+1) : 2p41is a zero of pri1 -+ pm}t, 2<k<m-—1.
Assume first that 6 = 1. Recall that in this case we selected (! so that
sg( ,(Cl)(oo)) =1 for all 0 < k < m. Therefore the functions g, 1,00k, 2 < k <
m — 1, are the first m branches of 1/051)1/1(1). If § = —1, since Y was chosen
so that sg(wél)(oo)) = sg( %1)(00)) = —1 and sg( ](Cl)(oo)) =1,2<k<m,
the functions g, p1,d¢k,2 < k < m — 1, are now the first m branches of
—1/051)111(1). In any case, since (1) : R — C is bijective it follows that the
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zero sets 2,0 < k < m — 1 are pairwise disjoint. Therefore, we have detected
N = deg(p1p3 - - - p™) zeros (counting multiplicities) of the polynomial pss and
their location does not depend on the subsequence A’ C A.

Let
173
(pk i 'pm)(z) = H(Z - Zk,l/)‘rk’u ’
v=1
where {2z 1,..., 25,1, } are the distinct zeros of py, - - - pp,. Then
2 m
par(w —CHH (w —pr-1(2k0)) T’“HH (w = 0pr—1(z0)) ™",
k=1v=1 k=3 v=1

where c is uniquely defined by the conditions that it is a positive constant such
that the sum of the moduli of the coefficients of ps, equals one; moreover,

0<c=limA} <o0o.
neA

Consequently, uniformly on each compact subset K C C\ supp(oy),

lim [tn(2) =

neA QHO(Z)
2 I m
T TL#0() - or1Ca)™ [T TL(00(2) — 8ps(ana))™ . (5.36)
k=1v=1 k=3v=1

From (5.26) and (5.28), it follows that

rlxieA g:(( )) _ (ﬁl(l)(z))dcg(mwpm) e (ﬁl(’mfl)(z))dcg(pm) ) (5.37)

Combining (5.36) and (5.37), we get

 Qu(2)
b2 Qn(2)

where (po(2) = FV(2))

Flepoon) = [1 <soo “la)) ™ 1 (1- 22} ™

= F(2;p15--Pm) s K c C\ supp(oy),

—Z
v—1 1,v v—1

m 5 1(2 U) Tk,v
HH<%P“$>k> |

k=3 v=1

Let us simplify the expression above. From the definition of the functions
©, and taking into account that § = sg(wél)(oo)), it follows that

1
1_ ©1(22,0) —q_ (() )(Z)

vo(2) M(z9,)
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It is easy to see that for [ > 2 the following equation holds:

1 1 oo
P dD (ool D) — Dy (z)

(5.38)

where
bV (2) = C§M /2 + 0(1/2%), 2 — 00,

w(z—u(z) _ Célfl)/z +0(1/22), = — 000
For k > 3 (recall that [, P (00) € {~1,1} when [ > 2), we have that

F1 ) = 3800 )()

Cgk—l)wék—l)(z) :

Thus
©o(2) — 6pk—1(2k,v) _

F'V(2)
(

o Ve (2) (sgwé” x) )
Psgf Vo) \ i) ol ()
From (5.38), it follows that

(k_l)(z) < 1 1 ) _ C(()k—l)
0 - — .
oMz el (o) e

w(k,l) ( 1 _ 1) )
o ) 0z e ()

L (w Ve e
@ T\ ,0 M :
Co P21 (00) h1(2k,0)

It is straightforward to check that

(5.39)

Therefore,

(5.40)

AV sa(ug V()
AoV se(e? ()

(5.41)

Evaluating (5.38) at 2, we obtain

(k—1)
! L Co . (5.42)

O Grw) v (00) O ()

Assume that A; is to the left of A, then § = sg( 61)(00)) = 1. From (5.39),
(5.40), (5.41), and (5.42), we find that

po(2) = Spra(zmn) _ % ()
=(k— - k— )
F00) 5 ()
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If A; is to the right of Ay, then § = sg(z/)él)(oo)) = —1. Applying (5.39)-(5.42),
we obtain again

©o(2) — dpr—1(2k,0) 1 (()kfl)(z)

=(k—1 - (k-1 :
F () e ()
Therefore,
F(z;015- -y Pm) = (5.43)
l Iy k 1 Tk,v
EEEE V> H O
e z— 21, P (k 1 V) .
(We did not substitute ¢g in terms of 7,[1 (see (5.32)) in the first group of

products for simplicity in the final expression.)

We have proved (1.24) on compact subsets of C \ supp(oy). Using the
maximum principle it follows that the same is true on compact subsets of
C \ supp(oy). Notice that F is analytic and has no zero in C \ A;. For all
n € A, deg @, = |n|, supp(oy) is an attractor of the zeros of {@Qn},n € A, and
each point in supp(oq) \ A; is a 1 attraction point of zeros of {Qn},n € A;
therefore, the statements concerning deg @n and the asymptotic behavior of
the zeros of these polynomials follow from (1.24), on account of the argument
principle and the corresponding behavior of the zeros of the polynomials Qy
described in Lemma 5.3.1.

In order to prove the last statement, let us assume that the polynomials
Pk, k =1,...,m, have real coefficients and A C Z7'(®). Notice that in this case
the polynomials @n are the multiple orthogonal polynomials with respect to the
Nikishin system N (p101,...,pm0om) generated by real measures with constant
sign. Thus, Corollary 5.3.2 can be applied to them. Given A we construct the
auxiliary sequence A(¢) as follows. To each n = (ny,...,n,,) € A we associate
n, = (n1,na—deg(pa), ..., nm—deg(ps2 - - - pm)) (we disregard those multi-indices
in A for which a component of n, would turn out to be negative, according to
the assumptions on A there can be at most a finite number of such n). It is
easy to see that A(o) C ZTT(®;p1,...,Pm)-

Choose consecutive multi-indices running from n, to n so that each one of
them belongs to ZT'(®). We can write Qn/Qn, as the product of quotients of
the corresponding monic multiple orthogonal polynomials. The same can be
done with Qn/@n,. According to (5.26) and (5.28), there exists an analytic
function G(z) in C\ Ay, which is never zero, such that

Qn(2) én(z)

lim = lim =

neA Qp,(2) neA Qn, (2)

=G(z), K C C\ supp(oy) .

Since
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using Theorem 1.3.5 on the ratio appearing in the middle of the right hand
side, and the previous limits on the other two ratios, the last statement readily

follows. 0

Proof of Theorem 1.3.5 in general. Notice that /\/’(%01, cey z—mam) =
N(%Jh ey %Jm), where G, denotes the polynomial obtained conjugating
the coefficients of g;. Let @} be the nth monic multiple orthogonal polynomial
with respect to the Nikishin system A (ﬁ, e ‘;—:lz) generated by measures

with constant sign.
Using Theorem 1.3.5 for the polynomial case, we have

én(z)

neh Q4 (2)

= F(z;p141, - -+ Pmlm), K C C\ supp(o1)

and, considering the last remark of the same theorem for the polynomial case,
we also have

Qn (Z)
nea Qn(2)

On the other hand,

=F(z;q1Qys - - - 4mm), K C C\supp(oy).

F(2;01G15 - Pmlm)  F(2301,- - Pm)

F(z;q1G1s- - Gmlm)  F(25q1,- - Gm)

because in the products defining the functions on the left hand side all the
factors connected with the zeros of the g, cancel out. Consequently, (1.24)
takes place. The rest of the statements are proved following arguments similar
to those employed in the proof for the polynomial case. O

The previous results allow to derive ratio asymptotics for the multiple or-
thogonal polynomials of our perturbed Nikishin systems.

Corollary 5.4.1. Let S = N'(o1,...,0m). Consider the perturbed Nikishin
system /\/(’;—1017 ey %Jm), where py,qr denote relatively prime polynomials
whose zeros lie in C\ U], Ag. Let A C ZT(®;p1q1, - - -, Pmlm) be a sequence of
distinct multi-indices such that for alln € A and some fized | € {1,...,m}, we

have that n' € ZT(®;p1G1, - - -, PmGm) and ny —ny, < C, where C is a constant.

Let @n be the monic multiple orthogonal polynomial of smallest degree with
respect to the Nikishin system N(%Ul’ cey ’;m om) and n. Then

lim O (2) = lim i (2) = ﬁl(l)(z), K C C\ supp(o1).

neA Qu(z) meA Qn(z)

Proof. Since _ N
@ni(2) _ @ni(2) Qui(2) @n(2)
Qu(z)  Qui(2) Qn(2) Qu(2)’
the result follows immediately applying Corollary 5.3.2 and Theorem 1.3.5. O
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5.5 Relative asymptotics of second type functions

Let @n be the monic polynomial of smallest degree satisfying (5.2). Set

U,0(2) i= Qu(z),

U, k(2) = / Mm(w) dop(z), 1<k<m. (5.44)

zZ—X

Lemma 5.5.1. If n; > deg(pj41---Pm), J = 1,...,m — 1, then Ry (z) =

(pk+1 o 'pm)<z)@n,k(z); S (C \ SuPp(Uk)7 k = 07 17 ce 7m7 (Rmm = qlmm)-
Proof. We proceed by induction on k. The case k = 0 is trivial since by
definition, Rpno(z) = (p1-- Pm)(2)@Qn(2). Assume that the result holds for
k — 1, and let us prove it for k. We have

Rn,k(z) _ / Mdak(x) _ / \Ifn,k—l(x)(pk . . ~pm)($) dcrk(x) —

zZ—x zZ—x

(P~ D) (2) T (2) + / T ()l (2)pi (@) dori ()

where () is a polynomial of degree deg(pgr1 - - pm)—1. Now, for k < k+r < m,
the functions ¥y,  satisfy the orthogonality relations (see in [29] that the proof
presented there is also valid for complex measures)

/@n,k-l(t)tljd<pkgkﬂ7 .. ,pk+7~0k+r>(t) =0, v=0,...,np4, — 1.

In particular, f\fln,;@,l(t)t”pk(t)dak(t) = 0 if v < ny — 1. Thus, since we are
assuming that ny > deg(pg+1 - Pm), We get that

/ Bt ()12 pi (@) oy () = O

and the result follows. O

Remark 5.5.2. The condition ng > deg(pgs1- - Pm),k = 1,...,m — 1, is
automatically satisfied by the components of multi-indices n with norm suffi-
ciently large that belong to a sequence A C Z7'(®;p1,...,Pm) such that for all
n e Any —n, < C, where C is a constant. In fact, it is satisfied for all

n € Z7(®;p1,...,pm) such that ny, > 1.

Now, we need to introduce some notation similar to that presented in Section

4.6
5e - { 1, if Ag is to the left of Agyq,
k=

—1, if Ay is to the right of Agyq.

For k > 2, set
—0k0k—1, if Il>k+1,
AkJ = Ok_1, if e {k’ - 1,]€},
1, if I<k-2.
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If k=1,

1, if I=1,
&*{—% if 1>2.

Recall that €y, 5 denotes the sign of the measure an‘:l"((;)gjiﬁ)(m) on supp(og).

Lemma 4.6.1 can be rewritten as

Lemma 5.5.3. For any n,n' € Z7(®)

€n,j

) J
Enl = H Ak,l . (545)
k=1

Definition 5.5.4. We define the following functions

()
. S oo
d&@%Zfﬁé%LlL 1<j<m-—1. (5.46)
e ¥ (2)

Notice that Lp;cljl = pk_1, where )1 was previously defined in (5.34).

Theorem 5.5.5. Let S = N'(01,...,0m,) and A C Z7(®;p1,...,pm) be a
sequence of distinct multi-indices such that for allm € A,ny — n,, < C, where
C is a constant. Then, for each k € {0,1,...,m},

1 )
neA U ()

=Gr(zp1,...,pm), K CC\ (supp(ox) Usupp(oxi1)), (5.47)

where Gy is analytic and never vanishes in the indicated region. For each
k= {0,...,m — 1} and all sufficiently large |n|,n € A, U, has exactly
Np ki1 = Ng41 + - + Ny zeros in C \ supp(oy), supp(ox41) is an attractor of
the zeros of {\T!n’k}, n € A, in this region, and each point in supp(ogy1) \ £k+1
is a 1 attraction point of zeros of {‘I/n,k},n € A. When the coefficients of the
polynomials pr., k =1,...,m, are real, all the statements above remain valid for

A C ZTH(®). An expression for Gy, is given in (5.50)-(5.51) below.
Proof. For k =0, (5.47) is (1.24) since {Iv/n)o = @n and ¥y, o = Qn; therefore,
Go(2:p15- -+, Pm) = F(23p1, -, Pm) -
By (5.35), we know that

. Meng k-1 Ko 1 (@ng -1 Rug—1)(2)
neA Qno,k(z)

I S
(z—bl)(i—al)pA(le(z)) ; -
\/(z—bkfl)(z—akfl)pA(6@]6_1(2:))7 k _37"'7m7
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uniformly on compact subsets of C\ (supp(oi_1) Usupp(ox)). Also, see (5.22),

. 1 _
rlllenll\gno,k—lhno,k(z) = ) KccC \ Supp(ak—l)'

V(z=be1)(z —ax—1)

Thus, since limpep Aj, = ¢, we conclude that

i Bok-1(2) K2 . (Qnok-1Rnk-1)(2) _
neA \Ijnmk—l(z) neA ’ (hﬂ(),ano,k)(z)

palp1(2))/c, k=2,
pA(Opr—1(2))/c, k=3,...,m,
uniformly on compact subsets of C\ (supp(ox_1) Usupp(og)).

Recall that n; = (ny — deg(p2 - - pm) + 4,12 — deg(p3 -+ - Pm)s - - -y o). It is
easy to see that

(5.48)

2
Uno -1 Qnok Qnjk—1 Eng k-1 hng,k €0y b1 a1
= 5 .
\I/nj,k—l an,k Qno,k—l 5nj,k—1hnj,k Enp,k—1 Kno,kfl

From this expression, applying Proposition 5.3.2 and (5.45), we obtain that the
following limit holds uniformly on compact subsets of C\ (supp(c_1)Usupp(oy))
(1) ;
. Uagk-1(2) (2N, (1)
lim —Book=1\Z) A A J(~ )
neA U, k-1(2) (Be-r1 1) F,El)(z) (=1 Mt

.

Now, from (5.29) and (5.30), we have

FED () (1) (1)
= = sg(,21(00))Y 21 (2),
FV(z) o),

and from (5.29)
(1

1 1 1) Cp~
o = IR
Ck
Thus,
. U k-1(2) a 1 1 ;
lim R = (A AP (s (o) ()
n;,k—
Set

B o= (Apor,1 e Ay ) 380 P (Ap g e Ay o) B0 (5.49)

Using the same arguments above, on an appropriate consecutive collection of
multi-indices, one proves that

Jj=1 (902;‘7_)1 (Z))deg(pj+1"~pm)
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uniformly on compact subsets of C\ (supp(o_1)Usupp(oy)). Therefore, writing

Rar-1(2)  Rng—1(2) ¥nor-1(2)

‘Iln,k—l(z) \Ilno,k—l(z) \I’n,k—l(z) ’

using the expression of ps, applying (5.48), and Lemma 5.5.1, for k = 2 we get

V1 (2) (L @1(2) — ei(zaa)\ e
lim = S H (¢1(2) = polz1.))™ [ [ ( = )
v=1

neA \I/n 1 Z @1(2) Z T 22w

« H H (901 — 0p;-1(2;, u))Tj,u (5.50)

et eI (2)

uniformly on compact subsets of C \ (supp(c;) U supp(oz)), and for k > 3 we
obtain

~ 1 l2

C Baa(s) o T (m1(2) = r(an )y
i Gz~ o [L00e () —g0(ea)) II( oo )

v=1

X ﬁ (5¢k;k151) — 00r—1(2k,0 )Tkv f[ ll:[ (5% 1 5%71(%:/))”*”

A Gl P [ &t“()

(5.51)
uniformly on compact subsets of C\ (supp(cx_1) Usupp(cy)). Therefore, (5.47)
is proved.

From the expression of the limit functions one sees that GGy, does not vanish
in C\ (supp(ox) Usupp(ck+1)). The statements concerning the number of zeros
of \Tln,k for k € {0,...,m — 1} and their limit behavior follows at once from
(5.47), on account of the argument principle and the corresponding behavior of
the zeros of the polynomials @y, 1+1 described in Proposition 5.3.1. Recall that
the zeros of Qp k41 are those of Wy, ;. in C \ supp(oy).

Now, let us assume that the coefficients of the polynomials p; are real and
A C Z7(®). Since

2

\I/nl,krfl . in,k: Qn,krfl Enl,krflhnl,k En,k—1 Kn,krfl
- 2

Ynk-1 @nk Ont k-1 Enk-1lnk Ent -1 Koy

)

applying (5.27), (5.28), (5.22), and (5.45), we conclude that the ratio asymp-

totics
lim ‘I’nl,k—l(z)

neA Uy 1(2) K C C\ (supp(oy_1) Usupp(o)),

holds and the limit does not vanish in the indicated region.
Since each measure py, oy, is real with constant sign, we can define the poly-
nomials Qnx,1 < k < m, as the monic polynomials of degree Ny ; whose
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simple zeros are located at the points where \Ifn,k,l vanishes on Aj. Let
Qn,0 = Qn,m+1 = 1. We also introduce the associated notions

v Qn,k—lqln,k—l

, cm+1, (5.52)
Qn,k

En,k as the sign of ﬁn,k(I)Pk(ﬂf)dak(ﬂﬂ)/@n,k—l(I)én,kﬂ(l’) on supp(oy), and

o~ —-1/2
Knp:= | [ @2 xg“;’fH“”“(x)pf(x)dak(x)> : 5.53
. ( [ @@ T NS (5.53)

The formulas (5.27), (5.28), (5.22), and (5.45) are independent of the orthogo-
nality measures, hence

. {Ivlnl,krfl(z) T \Ilnl,kfl(z)
lim ————+* = lim ———~

neA Uy po(2)  med Unpoi(2)

Applying the same argument used in the last two paragraphs of the proof of
Theorem 1.3.5 for the polynomial case, we conclude that (5.47) is valid for
A CZ(®).

The rest of the statements regarding the zeros of ‘Tfn,k and their limit be-
havior follows as in the case of polynomials with complex coefficients. O

Corollary 5.5.6. Let S = N'(01,...,0m). Consider the perturbed Nikishin
system N(%O’l, . ’q’m om), where pi,qr denote relatively prime polynomials
whose zeros lie in C\ U Ag. Let A C ZT(®;p141,- - ., Pmqm) be a sequence
of distinct multi-indices such that for all n € A, ny —n,y, < C, where C is a
constant. Let Qn be the monic multiple orthogonal polynomial of smallest degree

relative to the Nikishin system N(%Jl, R %O’m) and n, whereas ¥y, 0 <

k < m, denote the second type functions defined in (5.44), with px replaced by
pi/qr. Then, for each k € {0,...,m}, and K C C\ (supp(ok) U supp(ok+1))

li \I]n,k:<z) _ Gk(Z;p]_,..-,pm)
im =
neA U, 1 (2) Ge(z;q1, -+, Gm)

. (5.54)

For each k = {0,...,m — 1} and all sufficiently large |n|,n € A, CI}n,k has ex-
actly Ny gy1 zeros in C\ supp(oy), supp(or4+1) is an attractor of the zeros of
{\Tln,k}, n € A, in this region, and each point in supp(oj41) \Ek.ﬂrl s a 1 attrac-
tion point of zeros of{\ffnﬁk}, n € A. When the polynomials px, qr, k = 1,...,m,
have real coefficients, all the statements remain valid when A C 27 (®).

Proof. We consider the auxiliary Nikishin system

Sl:=N< a_ . Um),

lga®” 7 lgm
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and define the related second type functions

U7 0(2) == @n(2),

n(2) 1= / e
’ z—x qr(x)?
where @}, denotes the multiple orthogonal polynomial associated to S; and n.
Notice that if we perturb the generator of system S7 multiplying the k-th
measure by the real polynomial |gx|? we get the generator of the original Nikishin
system S. Thus, applying Theorem 5.5.5, we obtain that for all k € {0,...,m}

\Iln,k(z)

lim T ) Gr(zlal?, .- laml?), K C C\ (supp(ok) Usupp(oki1)) -
The perturbed system Sy := N(%al, ey Iq)—mam) can be written as
_ 01 _  Om
Szz/\/(plq T Pmd 7)
Hal? T g2

Therefore, employing the same argument

U, _
EGHK szz; = Gr(%,7Gys - PmGm), K C C\ (supp(ox) Usupp(opi1))-
We conclude that

, U, () Ge(21Tys- - Pinlm)  Grl(2ip1,- - D)
1m = — — — )
neA \Iln,k(z) Gk(Z§Q1Q17-~7qum) Gk(2§q17-~~7qm)

uniformly on compact subsets of C \ (supp(cy,) Usupp(ox+1)). The statements
concerning the zeros can be proved as in the case of polynomial perturbation.
When the polynomials pg,qr, k = 1,...,m, have real coefficients, it follows
from Theorem 5.5.5 that (5.54) remains valid for A C ZT'(®). The statements
concerning the zeros are derived immediately. O

5.6 Relative asymptotics for the polynomials Qy

In this section, we will restrict our attention to the case when the polynomials
Dk, gk, k = 1,...,m, have real coeflicients (and of course their zeros lie in C \
U Ag). Accordingly, we use the objects Qn k, Hn k, Kn i, and &n k, introduced
at the end of the proof of Theorem 5.5.5 (see (5.52) and (5.53)). Here, we study
the asymptotics of the ratios Qn i/Qn. k-

Lemma 5.6.1. For any n € Z7'(®)
k

22k — ] sign(pi, supp(0s)). (5.55)

fnk G0
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Proof. By definition ey, i, is the sign of Hy i (2)do(2)/Qn k—1()@n k+1(x) on
supp(oy) and &y is the sign of Hn i (z)pr(z)dok(x)/Qnk—1(2)Qn k+1(z) on
supp(ox). If &k = 1 these measures reduce respectively to doi(x)/Qn,2(x) and
D1 (x)dm(x)/@n,g(x). Since Qn,2 and vag are monic polynomials of the same
degree and their zeros are located in As, which is disjoint with supp(oy), it
follows that Qn 2 and @mg have the same sign on supp(oy). Therefore,

£ .
ol sign(p1,supp(o1)) .
€n,1

To conclude the proof we show that

€n,k €n,k—1

—— = sign(pg, supp(og)) = .
En.k €n,k—1

Notice that Qn k-1 and @n,k_l have the same sign on supp(ox) by an ar-
gument similar to the one explained above. The same holds for Qpn x+1 and
vak“. Therefore

Enk _ sign(Ha,k,supp(ox))

gn,k Sign(pkﬁn,k:a supp(dk)) '
By (5.18), we know that

Qi —1(t) Ho o1 (t)dog_1 (t)
Ap_1 x—t Qn,k—Q(t)Qn,k(t) ’

Hni(z) =

and

S [ Qhaea(®) Ha i (Opeer ()do— (1)
ol )/A“ =t Qui—a(DQui(t)

Consequently,

sign(Hn k, SUPP(0k)) _ €nk-1

)

sigh(Hn k,supp(ox))  Enk—1

and the claim follows. O
We are ready to state and prove

Theorem 5.6.2. Let S = N'(01,...,0m) and A C Z7(®) be a sequence of
distinct multi-indices such that for all m € A;ny —n,, < C, where C is a

constant. Assume that the polynomials pr,k = 1,..., m, have real coefficients.
For each k € {1,...,m},

. Qni(2) =

1 : =Fr(z;p1,--,pm), KcCC , 5.56

nlgjl\ Qn,k(z) k(Zaph » D ) - \Supp(gk) ( )
where Fi(2;p1, - - -, Ppm) is analytic and never vanishes in C \ supp(oy) and

~ v
lim K121,k- _ Iz, sign(pi, supp(o4))

= 5.57
ned K7, Gr(00;p1, .-+, Pm) (97
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Forke{l,...,m—1} and z € C\ (supp(oy) Usupp(cgi1))
o Gilzip )

Frr1(Zip1, oo pm) = NS EERRE UV 5.58

b1{EP1 o Pm) E)Gi(oomh---,pm) (5.58)

where Gi(z;p1,- .. ,Dm) is the function given in (5.47).

Proof. If A C Z7(®;p1,...,Pm), from (5.35) and Lemma 5.5.1, we have that

ok D Uy h
1im/\f15no,k71Kﬁo,k,1Q 0 k=1(2) Pk pm) () ¥n p-1(2)

neA Qno.k(2) -
1
———————pa(p1(2)), k=2,
v (Emb)(Ema) B (5.59)
\/(szk,l)(zfak,l)pA(6@’“*1(Z)) , k=3,...,m.

By Proposition 5.3.1, we know that

~ o~ 1 _
lim & x K2 Hn 2) = , K c C\ supp(ox), (5.60
lim & 1 K i k+1(2) CETACET) \ supp(ox), (5.60)

where [ag, by] = Ag. Formula (5.52) implies

Mneno k1 K2 1 1Qnok—1(2)(Pk - Pm)(2)Vn k—1(2)
Ense—1 K 1 M 1o (2) Qno 1o (2)

K2 0

€ng,k— ng,k— ng,k—1(% n,k\Z

AL ~o,k 17 nok—1 Q~ 0,k 1(2) Qni(2) (- pm)(2) . (5.61)
En,k—1 K121,k—1 Qn,k_l(z) Qno,k(z)

Using (5.59), (5.60), and (5.61), we obtain

K? 0
Jim A Enok=t Mhndot Czno,kfl(z) Qn,k(2) (P pm)(2) =
neA €n,k—1 Kﬁ,k—l Qnykfl(z) Qno,k(z)

(p1(2)) k=2,
{ zi((g;k—l(z)) , k=3,...,m. (5.62)

Using the results on ratio asymptotics for the constants Ky i, Kn ; and the

polynomials Qn k, Qvn,k, it follows that (5.62) is also valid for A C Z7"(®).
Since

Eng,k—1 - €ng,k—1 €n,k—1

~ ~ ’
En,k—1 €n,k—1 €n,k—1

applying Lemma 5.6.1, (5.45), and (5.49), we obtain

k—1
51’10,]{)71

o = =g H sign(p;, supp(oy)) . (5.63)
n,x— =1
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‘We have ) ) )
Kno,k—l . Kno,k'—l Kn,k—l
72 K2 12
Kn k—1 nk—1 Kn,k—l

)

and by (5.27)

K2 met ,
}lléI/l\ 1120,]671 = H (/{gz) N K’(ﬁzll)fszg(pH»l'”pm) .
n,k—1 i=1
Write
Qno,k—l(z) _ Qno,k—l(z) Qn,k—l(z)
Qni-1(2)  Qni-1(2) Qui_1(2)
and _ ~
Qn,k(z) _ Qn,k(z) Qn,k(z)
Qno,k(z) Qn,k(z) Qno,k(z)
Notice that )
- Quor—1(2) T30 —ded(piage
1 , — F eg(pit1--pm)
nleA Qn’kil(@ };[1 ( ;%1(2))
Qui(2) T

_ FW (5))degPitrpm)
neA Qnmk(Z) Z:HI( k ( ))

From (5.30) and (5.29) it follows that
FO() s se(y(00)
FO ) ) wlhie)

; ; ci’C
(ng) o KS) 1)2 1 “k—1

g
Therefore, using (5.46), we get

() 0)
~(i i B = @k—l(z) .
FIE—)1(Z)("5§ ) “1&11)2

Taking into consideration (5.63)-(5.70), we conclude that

i \* ERosk=1 Kﬁo,k—l Qng. k—1(2) én,k(z)

= (Pr -+ pm)(2) =
neA €n,k—1 Kﬁ7k71 ank_l(z) Qﬂo,k(z)

k-1 m—1

_ . i e, . Qn, —-1{%
¢Zy, [ sign(pi, supp(os)) T (o} ()25 17) limm Qnk-1(2)
i=1 i=1 nEA Qn k—1(2)

K3 k-1 Quu(2)
X (P -+ - P ) (2) lim ——— 22 ,
(pk p )( )neA Krzl o Qn,k(z)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)
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provided that the limits on the right-hand side exist.
In Theorem 1.3.5 we proved (5.56) for k = 1. Assume that k = 2. Equations
(5.62) and (5.71) yield
li Kﬁ,l Qn,Q(Z)
im =
necA Kr21,1 Qnyz(z)

_ palp1(2)F (2301, -+, Pm)
¢ Za sign(pr, supp(e1)) (p2 -+ pn) (2) [T1; (017 (2))destpira )

uniformly on compact subsets of C \ supp(c). Using (5.50), we have

pa(p1(2)) ‘
cZs (p2--pm)(2) H?;_ll(wgl)(z))deg(pi+l.upm)

Consequently,

=Gi1(z;p1,- - Pm) -

- K21 Qna(2) _ F(zp1yeespn) Gi(zip1, - )
neA K2, @n2(2) sign(p1, supp(o1))

Evaluating at infinity, we obtain (F(oco;p1,...,pm) =1)

lim Kia _ Gi(03p1, .- Pm)
ncA |2 sign(pi,supp(o1))

Therefore, (5.57) and (5.58) are satisfied for k = 1, since Gp = F.
Define the functions

. @n k(z)
: <y Pm) = 1 ’
fk(zvpb P ) nlél/l\ Qn,k(z)

provided the limit exists. From (5.51) it follows that for any k& > 3,

pA(5<Pk—1(z))
CZk (P pm)(2) TIES (ph) (2)) doBpisapm)

As a consequence, using (5.71), we obtain that for any k > 3,

=Gr-1(z:p1,-- - Pm) -

o Kako1 Qnk(z) _ Frma(zp1, - D) Grr (2391, Pim)
neA K20 Qn,k(2) Hf;ll sign(p;, supp(o;))

Therefore, using an induction process one proves (5.56)-(5.58). O

Corollary 5.6.3. Let S = N'(01,...,0m). Consider the perturbed Nikishin
system N(%O’l, ceey ’q’m om), where pi,qr denote relatively prime polynomials
with real coefficients whose zeros lie in C\ U1 Ay. Let A C Z7(®) be a
sequence of distinct multi-indices such that for alln € A, ny —n,,, < C, where
C is a constant. Let Qny,1 < k < m, be the monic polynomials of degree
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Nn.i, whose simple zeros are located at the points where \Iln,;g,l vanishes on Ay,
where ¥y, 1,0 < k < m, denote the second type functions defined in (5.44), with

pr replaced by py/qr. Let f(n,k, 1 < k < m be the constants defined in (5.53),
with py, replaced by py/qi. Then, for each k € {1,...,m},

- Qui(z) _ Fi(zpy. o) _
2R Qnsl) » KcClsu : 5.72
ned Qni(2)  Fr(ziqi, .- qm) \ supp (o) (5.72)

and _ .
K2, Gr(o05 q1 4m)
im 2% — TT sign(pi /g; ) k05, s Gm) 5.73
in iz, = [etos/aswplo) g o s 7

Proof. By @y, denote polynomials associated with the auxiliary Nikishin
system N (01/q1,...,0m/qm), corresponding to the indices n, k. On account of
Theorem 5.6.2, we have that

i @n,k(z)

lim Qi) = Fr(z:p1,---,Pm), K CC\supp(ox).

and

li Qn,k(z)

m
neA Q;’k(z)

Therefore, (5.72) is obtained. Using the same idea, (5.73) follows from (5.57).
g

=Fi(ziq1,-- - qm), K CC\ supp(oy).

Remark 5.6.4. Theorem 5.5.5 and Corollary 5.5.6 allow to define polynomials
Qnk.k =1,...,m, in the case when py,qr have complex coefficients as those
monic polynomials which carry the zeros of \Tlnﬁk,l lying in C\ Ap_1. For such
polynomials @n,k; results analogous to those expressed in Theorem 5.6.2 and
Corollary 5.6.3 can be proved.



6. RATIO ASYMPTOTICS REVISITED

This chapter is organized as follows. In Section 6.2 we introduce and study
an auxiliary system of second type functions. These second type functions are
specially reviewed in Section 6.3 when m = 2, 3 to exemplify their construction.
An interlacing property for the zeros of the polynomials (), and of the second
type functions is proved in Section 6.4. Using the interlacing property of zeros
and results on ratio and relative asymptotics of polynomials orthogonal with
respect to varying measures, in Section 6.5 a system of boundary value problems
is derived which allows to conclude the proof of the main result of this chapter,
Theorem 6.5.2.

6.1 Preliminaries and notation

Let S = N(o1,...,0m). Fix a multi-index n = (n1,...,n,,) € Z7. Let Qq
be an n-th monic multiple orthogonal polynomial with respect to S. That is,
@n # 0 is monic, degQn < |n| =n1 + -+ + n,y, and

/Qn(x)x”dsk(x) =0, v=0,...,nx—1, k=1,...,m. (6.1)

If (6.1) implies that deg@n = |n|, the multi-index n is normal and the
corresponding monic multiple orthogonal polynomial is uniquely determined. In
addition, if the zeros of @y, are simple and lie in the interior of Co(supp(oy)), the
multi-index is said to be strongly normal. For Nikishin systems with m = 1,2, 3,
all multi-indices are strongly normal (see [22]). An open question is whether
or not this is true for all m € N. (Recently, U. Fidalgo Prieto and G. Lépez
Lagomasino claimed to have proved that all multi-indices are strongly normal.)
The best result known when m > 4 is that all multi-indices in the class

Z0(x) ={neZl:A1<i<j<k<m, with n; <nj; <ng}

are strongly normal (see [20]).

In [5], a Rakhmanov type theorem was proved for Nikishin systems such
that |o,| > 0 a.e. on Co(supp(ox)),k =1,...,m, and sequences of multi-indices
contained in

Z7(®) ={neZP:1<i<j<m=n; <n;+1}.

It is easy to see that ZT'(®) C Z7'(x). Here, we assume that supp(oy) =

ApUey,k=1,...,m, where Ay is a bounded interval of the real line, loy.| >0
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a.e. on Ek, er is a set without accumulation points in R\ ﬁk, and the sequence
of multi-indices on which the limit is taken is in Z'7 ().

As in Theorem 1.3.4, the proof of the corresponding result under these
weaker assumptions, Theorem 6.5.2 below, uses the construction of second type
functions. Now, this construction depends on the relative value of the com-
ponents of the multi-indices in Z7'(x) under consideration. As we saw before,
a crucial step consists in proving an interlacing property for the zeros of the
second type functions corresponding to “consecutive” multi-indices. For this
purpose, we need to be sure that the second type functions are built using the
same procedure. To distinguish different classes of multi-indices which respond
for the same construction of second type functions, we introduce the following
definition.

Definition 6.1.1. Suppose that n = (ni,...,n,) € Z7'. Let 7, denote the
permutation of {1,2,...,m} given by

@) =i if {nj>nk for k<ij, k&{m(),...,m(@E—-1)}
n n; >n, for k>j, ké&{m(),...,m(—-1)}

In words, m,(1) is the subindex of the first component of n (from left to
right) which is greater or equal than the rest, 7,(2) is the subindex of the first
component which is second largest, and so forth. For example, if ny > -+ > n,,
then 7, is the identity.

Let 7 denote a permutation of {1,2,...,m}. Set

Z0 (%, 7) ={n € Z'(*) : Tn = T} .
Let n € Z7 and [ € {1,...,m}. Define
n = (ny,.oo,n—,n+ Lnge, oo )

(In Chapters 1 to 4 this was denoted by n'! but here we will need to give that
notation a different meaning.)

The relevant Riemann surface in this chapter coincides with the one pre-
sented in Chapter 5. The main result of this chapter is Theorem 6.5.2.

6.2 Functions of second type and orthogonality properties

Fix n = (n1,...,nm) € Z7T(x) and consider @, the n-th multi-orthogonal
polynomial with respect to a Nikishin system S = N (X), ¥ = (01,...,0m). As
before, A, = Co(supp(oy)), k = 1,...,m. Inductively, we define functions of sec-
ond type ¥y, 1, k = 0,1,...,m, systems of measures X* = (UEH, ek k=
0,1,...,m—1, Co(supp(a}“)) C A, which generate Nikishin systems, and multi-
indices n* € Z7*(x),k =0,...,m — 1. Take ¥y, g0 = Qpn,n° = n, and X° = 3.

Suppose that n* = (n’,jH,...,n,’jl), vk = (OQH,...,U,’;) and ¥, 5 have
already been defined, where 0 < k < m — 2. Let

nftl = (nzié, . ,nfjl) e Z:'_L_k_l(*)
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be the multi-index obtained deleting from n* the first component n’;k which
verifies
nk :max{nf: E+1<j<m}.

Tk

The components of n*t1 and n* are related as follows
np =ngty, ok g =nlttnk L o=nltl ek =k
Denote
Uh pt1(2) = / M ds]ﬁlC (), (6.2)
Apyy 2T
where sf = (of,y,...,0F ) is the corresponding component of the Nikishin

system S¥ = N(3F) = (sf,,,...,s5).
In order to define £**! we introduce the following notation. Set

sp;=(oF,...,0f),  k+1<i<j<m,

where of, ..., aj? are measures in X¥. In page 390 of [30] it is proved that there

exists a finite measure Tikj with constant sign such that

Co(supp(Tfj)) C Co(supp(sf’,j))

/S\ﬁ](z) Z,]( ) ’L,]( )
where lﬁj is a certain polynomial of degree 1. That Co(supp(sﬁj)) C A; easily
follows by induction. We wish to remark that the continuous part of supp( ’f”' )
and supp(7; k ) coincide, but not their isolated parts. In fact, zeros of 5F S;; on
A (there is one such zero between two consecutive mass points of s¥ ) become

poles of 7 i,j (mass points of T, ”)
Suppose that r, = k£ + 1. In this case, we take

yhtl = (U’g+2,...,afn) (afi;,...,oﬁjl)

deleting the first measure of X*. If 7, > k + 2, then XF*! is defined by

k ~k k ~k S k
(Tk+2,rk ’ 5k+2,7’k di—&-S,rk? R Srk—l,rk dTrk Th? rk Tk dgrk+17 rE+20 Um) ’
where Co(su k“ CA;,j=k+2,...,m. Any two consecutive measures in
7> ’ ’ Yy

the system EkH are supported on disjoint intervals; therefore, ¥**! generates
a Nikishin system. To conclude we define

\Pn,m,(z) — /A Mdsﬁfl(x).

o z—zx
If nq Z - > nm, we have that n* = (ngi1,...,7m), 2% = (Cha1,-. ., 0m)
and ¥y, i ( fA “2" ;(x) dok(z),k =1,...,m. Basically, this is the situation

cons1dered in [5] and in Chapter 5.
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6.3 Some examples when m = 2,3

To fix ideas let us turn our attention to the cases m = 2 and m = 3. We denote
by C(f;u) the Cauchy transform of fdu; that is,

e = [ T ).

In the tables below, we omit the line corresponding to k£ = 0 because by defini-
tion X0 =%, ¥, o = Qn and n° = n.

Tab. 6.1: m=2
m=2 k| me_1 Wik >k nF
ni>ng |1 1 C(Qn;o1) (o2) | (n2)
ny < ng 1 2 C(Qn;<01,0'2>) (7'2) (nl)
Tab. 6.2: m =3
m=3 k| me_1 Yok >F nF
ni>ng >ng | 1 1 C(Qn;o1) (o2,03) (n2,ns3)
2 2 C(\I’n,l;O'Q) (03) (n3)
ni>nz >ng | 1 1 C(Qn;o1) (02,03) (n2,n3)
2 3 C(¥n,1;{02,03)) (3) (n2)
ng>ni>ng | 1 2 C(Qn; (01,02)) (12, (03,02)) (n1,n3)
2 2 C(¥n,1;72), ({o3,02)) (n3)
ng>n3>ni | 1 2 C(Qn; (01,02)) (12, (03,02)) (n1,n3)
2 3 C(Vn,1;{m2,03,02)) (73,2) (n1)
ng >ny >ng | 1 3 C(Qn;(o1,02,03)) | (72,3,(13,02,03)) | (n1,n2)
2 2 C(Wn,1;72,3) ((r3,02,03)) (n2)

In Theorem 2 of [23] it was proved that the functions ¥y, j, verify the following
orthogonality relations. For each £ =0,1,...,m — 1,
/ a:”\I/nyk(x)dsf(x) =0, v=0,1,...,n =1, i=k+1,...,m, (6.3)

Apt1
where s¥ = (0f, 1,...,0F).

We wish to underline that since Z2 (x) = Z2, all multi-indices with two
components have associated functions of second type. However, for m = 3 the
case n1 < ny < mgz has not been considered (see Table 6.2). The rest of this
section will be devoted to the construction of certain functions Wy j for this
case and to the proof of the orthogonality relations they satisfy. We use the
following auxiliary result.

Lemma 6.3.1. Let s32 = (03,02). Then

/ §3,2(l‘) d7'273(1‘)
A, 03(7)

where Cp = 03(A2)/s2,3(A2).

+01:/?-2ﬁ’

525(2) (6.4)

P z € C\ supp(o2),
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Proof. We employ two useful relations. The first one is

72(€) 73(¢) = 52,3(¢) +832(¢), ¢ € C\ (supp(o2) Usupp(os)). (6.5)

The proof is straightforward and may be found in Lemma 4 of [22]. The second
one was mentioned above and states that there exists a polynomial l5 3 of degree
1 and a measure 75 3 such that

= =T23(2) +123(2), 2 € C\supp(oz). (6.6)

Notice that

220 o g (1) € H(T\ Ay).

/8\273(2)

On the other hand, from (6.5) and (6.6) it follows that

o2 0203 S93+ 832 1 839 S3.9
= = < =< = == :7+712,3+T7'2,3~
S2,3 03823 03823 o3 03 03

gg—f are analytic on a neighborhood of Ag, from (2.4)

Since % + % lo 3 and
the thesis readily follows. O

We are ready to define the functions of second type and to prove the orthog-
onality properties they verify for multi-indices with 3 components not in Z3 (x)
(Wlth ny <ng < 713).

Lemma 6.3.2. Fizn = (ny1,n9,ng) € Z3+ where ny < ny < ng and consider Qn
the n-th orthogonal polynomial associated to a Nikishin system S = (s1, s2,S3) =
N(o1,02,03). Set ¥ o= Qn,

‘I’n = )
1) = [ D a0 (67
Uy 1(z) S3.2(x)
v, = : — . .
o) = [ PR B () (63)
Then
tY \I/n’()(t)dsl’j(ﬂ = 0, 0 S v S ’I’Lj - 1, 1 S] S 3 (69)
Ay
/ tu \I’n,l(t) dT2,3(t) = O7 0 S 14 S ny — 1 (610)
Ao
v 53,2(t) _
U () 22 (1) =0, 0<v<ny—1 (6.11)
As a3 (t)

/ t¥ \Ifn’g(t) = dTg’Q(t) = 0, 0 S v S ny — 1. (612)
As o2(t)



6. Ratio asymptotics revisited 97

Remark 6.3.3. The measure S39drs 3/03 supported on Ag cannot be written
in the form (72,3, 1) for some measure p supported on As, so there is no ' and
St in this case.

Proof of Lemma 6.3.2. The relations (6.9) follow directly from the definition
of Qn. Let us justify (6.10) and (6.11).
For 0 < v <nj — 1(< n3 — 3), applying Fubini’s theorem,

v _ v [ @n(z)
[t vainaw = [ [ G sy dna)

v — ¥+

— N Qn(x) /A2 ﬁdTQ)?,(t) d51,3(.’1:)

Qn(‘r)pu(ir) d81,3($) - /A xVQn(x) 712,3(@ d81,3($),

where p, (z ng P z” dra,3(t) is a polynomial of degree at most n; —2. Since
dsys(x) = 52,3( )doi(x) and T 3(z) S2,3(x) = 1 — I 3(x) S2,3(x), the measure
To,3(x) ds1,3(x) is equal to doq(z) — la 3(x) ds1 3(x). Therefore, applying (6.9)
both integrals vanish and we obtain (6.10). Actually, we only needed that
ny § nsg — 1.

Ifo<v<ng—1(<ng—2),

/A w0 22 gy = /A a2l [ 0n@) y0 gm0

6'\3(75) Og(t) Aq t—x

tY — ¥ + ¥ S5 Q(t)
= n /\’ d : t d
AlQ (z) /AZ PR D) T2,3(t) ds1,3(x)

o v /8\3’2(15) dTQ,g(t)
= A, Qn(x) xr Az m ﬁdsl.ﬁ(fb) .

By Lemma 6.3.1, the last expression is equal to

o [ Qule)a* dsis@) - [ Qula)ar 22

N N F2s(2) ds1 3()

— Qn(x)z¥ ds12(z) =0,
Ay

taking into account that ds; 3(x) = S2,3(x) do1 () and (6.9). This proves (6.11).
It would have been sufficient to require no < ngs.
Let us prove (6.12). Take 0 < v < nj; — 1, we have

S2.3( ) 33, 2( ) S2.3(t)
tY WU, o(t) = dra 3(z) = dr3 o(t
/AS 2220 /A /A 288 ) 22 it

S3.9(x Y —a¥ +a¥ Syt
= / \Ilnyl(:c) 3’2( ) / 373( )dTgyg(t) dTng(lE)
A2 AB

o3(7) t—x ga(t)
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= / Pu(x) U 1(x) S32(2) dro 3()
Ao

o3(z)
\I’ml(l‘) ¥ §3,2(x) :9\2,3(0 dTg,g(t) - -
R B e

where p, () is the polynomial defined by

tY — ¥ S53(t
/ : 5273()6”372(75),
Az

t—z  Ga(t)

of degree < n; — 2. Applying (6.11), the first integral after the last equality
equals zero since n; < ng (though n; < ng 4+ 1 would have been sufficient). If
we interchange the sub-indices 2 and 3 in Lemma 6.3.1, we obtain

/ s23(t) drs2(t)  o3(2)
A

5 a\'g(t) t—x o /8\3’2(75)

where Cy = 03(A3)/s3,2(As). Therefore, using (6.13), (6.11) and (6.10), it fol-

lows that R R
/ \Iln,l(ii) g 83’2(t) / SE’S(t) dTg’Q(t) dTQ’g(.’E)
As o3(7) A, O2(t) t—a
/8\3 Q(t) ( 6’3({1,‘) )
= Uhi(x)z” = Cy — = dro3(x) =0,
f @ 5 (6 5 e
since ny < no. This completes the proof. O

6.4 Interlacing property of zeros of polynomials and second type
functions

As we have pointed out, from the definition Z7'(x) = Z?',m = 1,2. We have
introduced adequate functions of second type also when m = 3 and ny < ny < ng
which were the only multi-indices initially not in Z‘j_(*) To unify notation, in
the rest of this chapter we will consider that Z3 (x) = Z3.

In this section, we show that for n € Z7'(x),m € N, the functions ¥y, 3,k =
0,...,m — 1, have exactly |n*| simple zeros in the interior of Ay, and no
other zeros on C\ Ay. The zeros of “consecutive” U, j satisfy an interlacing
property. These properties are proved in Lemma 6.4.1 below which complements
Theorem 2.1 (see also Lemma 2.1) in [5] and substantially enlarges the class of
multi-indices for which it is applicable.

Theorem 1 of [22] proves that Lemma 1.2.3 remains valid for any n € Z3
and m = 2. Recall that in this chapter n; denotes the multi-index obtained
adding 1 to the I-th component of n.

The following lemma resumes some properties proved in Chapter 2 for multi-
indices in Z''(e) which we need to extend for the more general class of multi-
indices Z7'(x). The proof follows the same guidelines employed before. For
the sake of completeness we reproduce them here since there are some slight
modifications.
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Lemma 6.4.1. Let S = N(0y,...,0m). Let n € Z7'(x),m € N, then for each
kE=0,...,m—1, the function ¥y, . has exactly |n*| simple zeros in the interior
of Agy1 and no other zeros on C\Ay. Let I denote the closure of any one of the
connected components of Agi1 \supp(a,’§+1), then Uy i has at most one simple
zero on I. Assume that | € {1,2,...,m} is such that n,n; € Z7'(*,7) for a
fized permutation 7. Then, for each k € {0,...,m —1} between two consecutive
zeros of Wy, i lies exactly one zero of Uy i and viceversa (that is, the zeros of
Uy, k and Uy on Agyq interlace).

Proof. Assume that n,n; € Z7(x,7). We claim that for any real constants
A,B,|A|+|B| >0, and k € {0,1,...,m — 1}, the function

gn,k(x) = A\I/n,k(m) + B\Ilnl,k(x)
has at most |n®| + 1 zeros in C\ A (counting multiplicities) and at least |n*|
simple zeros in the interior of Ag11 (Ag = ). We prove this by induction on k.
Let & = 0. The polynomial G, g = AVy 0+ B¥y, o is not identically equal to
zero, and |n| < deg(Gn,0) < |n|+ 1. Therefore, G, o has at most [n|+1 zeros in
C. Let hj,j =1,...,m, denote polynomials, where deg(h;) < n; —1. According
to (6.3),

Gno(x) D hj(2)s2,(x)doy () = 0 (6.14)
Al j:1
(521 =1).
In the sequel, we call change knot a point on the real line where a function
changes its sign. Notice that for each k € {0,...,m —1}, G, is a real function

when restricted to the real line. Assume that G, ¢ has N < |n|—1 change knots
in the interior of A;. We can find polynomials h;,j = 1,...,m,deg(h;) <
n; — 1, such that Z;nzl h;52 ; has a simple zero at each change knot of G, g on
A; and a zero of order n| — 1 — N at one of the extreme points of A;. By
Lemma 1.2.3, (1,522, ...,52,,) forms an AT system with respect to n € Z7(x);
therefore, 37" | h;55 ; can have no other zero on Ay, but this contradicts (6.14)
since Gn o Z;”Zl h;s> ;j would have a constant sign on A; (and supp(o1) contains
infinitely many points). Therefore, Gn ¢ has at least |n| change knots in the
interior of A;. Consequently, all the zeros of G, ¢ are simple and lie on R as
claimed.

Assume that for each k € {0,...,x — 1},1 < & < m — 1, the claim is
satisfied whereas it is violated when £ = k. Let h; denote polynomials such
that deg(h;) < nf —1,k+1 < j < m. Using (6.3) or (6.9)-(6.12) according
to the situation (to simplify the writing we use the notation of (6.3) but the
arguments are the same when m = 3 and n; < ny < ng; in particular, in this
case, dsgo = d81,3, dS}W1 = §3,2d7'2,3/6'\3 and dé)‘g2 = §2,3d7'3,2/6'\2)

| Gan@) 3 my@ts @il =0 (6.15)

j=r+1
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(8F 42,541 = 1). Arguing as above, since (1,57, 5 . 9,---,5m42,,) forms an AT
system with respect to n" € Z"""(x), we conclude that G, . has at least |n"|
change knots in the interior of A,1.

Let us suppose that Gy, . has at least [n"|+2 zeros in C\ A, and let Wy, , be
the monic polynomial whose zeros are those points (counting multiplicities). The
complex zeros of Gy . (if any) must appear in conjugate pairs since Gy «(Z) =
Gn K( ); therefore, the coefficients of Wy, ,; are real numbers. On the other hand,
from (6.3) ((6.9) or (6.11) when necessary)

ne— 1 nc— 1
’"n 1 —qp "k—1
_ -1
0= / Gn,r—1( P —ds; (z).
Therefore,
1 3371?':_11 gn n—l(x)d r—1 O 1
QAAQ_ZMJLAK P @ =0 ) A

and taking into consideration the degree of Wy, ,., we obtain

ngn,n

Whn_0< )eH@\A) §=0,...,n" 7 +1.

Let T be a closed Jordan curve which surrounds A, and such that all the
zeros of Wy, lie in the exterior of I Using Cauchy’s theorem, the integral
expression for Gy, ., Fubini’s theorem, and Cauchy’s integral formula, for each
j=0,...,[n"" + 1, we have

1 zZ gn m gn,n—l(x) k—1 o
27”/ War() Ja. dsy - (z)dz =

~ omi n7,{( z2—x

fjgn,nfl () w1
A Wn,n(x) dsr,{_l(‘r) )

which implies that G, ,—1 has at least |n"””*1| + 2 change knots in the interior of
A,. This contradicts our induction hypothesis since this function can have at
most [n"~!| +1 zeros in C\ A,_1 D A,. Hence G, . has at most [n*| + 1 zeros
in C\ A, as claimed.

Taking B = 0 the assumption n; € Z'(*,7) is not required, and the argu-
ments above lead to the proof that U,, , has at most [n*| zeros on C\ Ay, since
@Qn = Uy o has at most |n| zeros on C. Consequently, the zeros of ¥y, ;, in C\ Ag
are exactly the |n*| simple ones it has in the interior of Ay ;.

Let I be the closure of a connected component of Ay \supp(a,’iH) and let
us assume that I contains two consecutive simple zeros x,za of ¥y ;. Taking
B =0and A =1, we can rewrite (6.15) as follows

K

m

/A (x\IJnk(I) Z hj(w)%u,j(x)(x —x1)(z — :vg)da,’§+1(x) =0,

_ ;(:1)(.%‘ — 3?2) =kt ( )
6.16
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where deg(h;) <n¥—1,j = k+1,...,m. The measure (x —x1)(x —z2)dof_, (z)
has a constant sign on Ayy1 and U, x(2)/(z — 21)(z — x2) has |n*| — 2 change
knots on Agyi. Using again Lemma 1.2.3, we can construct appropriate poly-
nomials h; to contradict (6.16). Therefore, I contains at most one zero of Uy, 4.

Fix y € R\ Ay and k € {0,1,...,m — 1}. It cannot occur that ¥y, x(y) =
Up 1 (y) = 0. If this was so, y would have to be a simple zero of Uy, ,, and Uy, 1.
Therefore, (¥n, )" (y) # 0 # (Unk)'(y). Taking A =1,B = -V ,(y)/V;, x(¥),
we find that

Gnk(y) = (AVn i + By, 1) (y) = (Gni) (y) =0,

which means that G, ;. has at least a double zero at y against what we proved
before.
Now, taking A = ¥y, 1(y), B = =¥, 1 (y), we have that |A|+ |B| > 0. Since

\Pnl,k(y)an,k(y) - \Iln,k(y)\:[lnl,k(y) = Oa

and the zeros on R\ Ay of Uy, 1 (4)¥nx(2) — ¥n k(y)Un, x(z) with respect to
x are simple, using again what we proved above, it follows that

Uy k(W) 1 (1) = Uk (y) Uy, 1o (y) # 0.

But Wy, £ (¥) ¥, () — Ynk(y) ¥y, £ (y) is a continuous real function on R\ Ay
so it must have constant sign on each one of the intervals forming R\ Ag; in
particular, its sign on Agi is constant.

We know that Wy, , has at least |n*| simple zeros in the interior of Ajy1.
Evaluating W, (y) ¥}, 1 (¥) = Ynk(y) ¥}, 1 (¥) at two consecutive zeros of Wy, ,
since the sign of \Ilfm),c at these two points changes the sign of ¥, ; must also
change. Using Bolzano’s theorem we find that there must be an intermediate
zero of W, ;. Analogously, one proves that between two consecutive zeros of
Wk on Agyq there is one of Wy, . Thus, the interlacing property has been
proved. O

Let Qnk+1,k = 0,...,m — 1, denote the monic polynomial whose zeros
are equal to those of ¥y, 5 on Agi;. From (6.3) ((6.9), (6.11), or (6.12) when

necessary )
k k
2" — "y

0:/ \Ilnﬁkxids’ﬁx
el s @)

(Recall that when m = 3 and ny < ny < ng, we take ds) = dsi3,ds} =
§372d7'273/33 and ds%z = ,5\273d7'372/32.) Therefore,

k
1 ey, (x 1

\Ijn’k"—l(z) Y / 7k( )dsvlfk (‘T) =0 (ﬂ"—i—l) » 2T 00,
Ak+1 Z Tk

U zZ—T

and taking into consideration the degree of Qp 42 (by definition Qn m41 = 1),
we obtain

A\ 1
WZO(z) € H(C\ Agy1),  j=0,...,|[n"-1.
Qn,k+2 Z
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On account of (2.3), it follows that (take Qno = 1)

: Mo gor1(2)dsy, (2)
0:/ ! Qn 1 (x) = Tk , k=0,...,m—1, (6.17)
Api1 * Qn,k(CE)Qn,kJrz(l")
where OV
M1 = b0k kE=0,...,m,
Qn,k+1
has constant sign on Agiq.
This last relation implies that
z) — Q(z Hupt1(z)dsk (z
(2) — Q(x) Qe () +1(z)ds;, (x) o,
Ak+1 2= Qn,k(x)Qn,k;—‘,-Q(x)

where @ is any polynomial of degree < |n*|. If we use this formula with Q =

Qn,k+1 and Q = Qn k2, respectively, we obtain

Qnot1(7) Ha g1 (x)dsy, (2) _
Akt 2= Qn,k(x)Qn,k+2($)

1 Q2 1 (%) Hupi1 (2)ds (2)
Qni+1(2) Jay,, 22— 7 Qnr(®)Qnki2(2)
and
Quis1(2) Hnpia (@)dsy, (@) 1 / W i (w)dsk, (2)
Apyr  ~#°7T Qn,k(x)Qn,k+2($) Qn,k+2(2) N Z— ’

Equating these two relations and using the definition of ¥y, ;41 and Hy j+2, we
obtain

Qi7k+1(aj) Hn,k+1($)d51ﬁk (z)

Ha = ’
Jt2(2) Apsr 2T Qni(T)Qnki2(T)

k=0,...,m—1. (6.18)

Notice that from the definition H, 1 = 1.

For each k =1,...,m, set
n,k— \Ijn — d sﬁill x
KJiZ/ Q2 () | Lot 10 i (2) or,_, () . (6.19)
’ Ag ’ Qn.k () ‘Qn’kfl(m)Qn,k%l(m)‘
where |s| denotes the total variation of the measures s. Take
Kn k
Kno=1, kpnr=—"—, k=1,....m.
0 ok Kn,k—l

Define
dn,k = Hn,an,k y hn,k = Kﬁ,k—lHnJ@ ) (6‘2())
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and
hn,k(sc)dsk*1 (2)

_ Tk—1

Qn,kfl(‘r)Qn,kJrl(‘r) '
Notice that the measure pn  has constant sign on Ay. Let e,k be the sign of
Pn,k- From (6.17) and the notation introduced above, we obtain

dpn k() (6.21)

/x”qn,k(x)d|pn7k|(x):0, v=0,...,n" -1, k=1,...,m, (6.22)
Ay

and gy, . is orthonormal with respect to the varying measure |pn i|. On the other
hand, using (6.18) it follows that
2
T 1 ()
nsa(9) = s [ B dlpul(0), k=Loom. (629
Ag zZ—XT
Let us state the analogue of Lemma 4.3.1 in this context. The proof is
similar, so we refrain from repeating it and refer to [36] for the details should it
be necessary.

Lemma 6.4.2. Let S = N'(01,...,0m). Let A C Z7(x) be an infinite sequence
of distinct multi-indices with the property that ma[)\c(k max mmnj, — In|) < oco.
ne =1,....m

For any continuous function f on supp(a’,:_l)
1 dx
lim [ f(2)gq (2)dlpnil(z) == [ f(z) , o (6.24)
neA Ja, . T JAg (br — z)(z — ax)

where Ay, = [ak, bg]. In particular,

1
(z—bg)(z —ag)
where \/(z —bg)(z —ag) > 0 if z > bg. Consequently, for k = 1,...,m, each
point of supp(a’ljfl) \Ak, is a limit of zeros of {Qnx},n € A.

, KcC\ supp(a’,jfl) , (6.25)

rlniél}\ En,khn,k-i-l (Z) =

As in Section 4.3, from Lemma 6.4.2 we obtain the following analogue of
Lemma 4.3.1 (see [36] for details).

Lemma 6.4.3. Let S = N'(01,...,0m). Let A C Z7(x) be an infinite sequence
of distinct multi-indices such that

- < 0.
W2, e~ D < o0

Assume that there exists I € {1,...,m} and a fized permutation 7 of {1,...,m}
such that for all n € A we have that n,n; € Z7'(*,7). Then, for each k =
1,...,m, and each compact set K C (C\supp(a,’jfl) there exist positive constants
Ci1(K), Cr2(K) such that
o | Qnyk(2) Qn, k()
Cr1(K) < inf | 2222220 < 2L < Cra(KC
= 1 Q@ | = 2R [ Quate) | = 2

for all sufficiently large |n|,n € A.
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6.5 Proof of Theorem 6.5.2

In this final section, S = N’(01,...,0m); that is, supp(og) = Ap Uep, bk =
1,...,m, where Ay is a bounded interval of the real line, |oy.| > 0 a.e. on A,
and ey, is a set without accumulation points in R\ Aj. Let A C 7T (%) be a
sequence of distinct multi-indices. Let us assume that there exists I € {1,...,m}
and a fixed permutation 7 of {1,...,m} such that for all n € A we have that

n,n; € Z7 (7). From Lemma 6.4.3 we know that the sequences
{in,k/Qn,k}neA, k::l,...,m,

are uniformly bounded on each compact subset of C\ Supp(U,lj*l) for all suf-
ficiently large |n|. By Montel’s theorem, there exists a subsequence of multi-
indices A’ C A and a collection of functions F ! holomorphic in C \ supp(a} 1),
respectively, such that

nmwzﬁg“(z), K c C\supp(oF™), k=1,...

ned Qni(z) ,m.  (6.26)

In principle, the functions 15,5” may depend on A’. We shall see that this
is not the case and, therefore, the limit in (6.26) holds for n € A. First, let us

obtain some general information on the functions ﬁ,ﬁl).

The points in supp(a,’j_l) \ Ay are isolated singularities of f‘él). Let ¢ €
supp(a,’j_l) \ Ay. By Lemma 6.4.2 each such point is a limit of zeros of Qn
and Qn, k as |n| — oco,n € A, and in a sufficiently small neighborhood of them,
for each n € A, there can be at most one such zero of these polynomials (so
there is exactly one, for all sufficiently large |n|). Let limpep ¢o = ¢ where

Qn,k(Cn) = 0. From (6.26)
i = G)ua(2)

lm o = G- ORE), Kc(C\suwploi ™) u{ch

and (z — C)ﬁ,gl)(z) is analytic in a neighborhood of ¢. Hence ( is not an es-
sential singularity of ﬁél). Taking into consideration that Qn, rx,n € A also
has a sequence of zeros converging to (, from the argument principle it follows
that ¢ is a removable singularity of F ,gl) which is not a zero. By Lemma 6.4.3
we also know that the sequence of functions |Qn, t/@n k|, € A, is uniformly
bounded from below by a positive constant for all sufficiently large |n|. There-
fore, in C\ supp(a,’jfl) the function F, ,El) is also different from zero. According
to the definition of Qnx and Qn, r and Lemma 6.4.1, for k = 1,...,771(]),
we have that degQn,x = Inf™!| = |n*~!'| + 1 = degQnyx + 1 whereas, for
k=7"")+1,...,m, we obtain that deg Qn, x = n}~'| = [n*~!| = deg Qn,s-
Consequently, for k = 1,...,771(1), the function ﬁ,gl) has a simple pole at in-
finity and (fél))’(m) = 1, whereas, for k = 771(I) + 1,...,m, it is analytic at
infinity and Z*:,El)(oo) =1.
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Now let us prove that the functions F ,gl) satisfy a system of boundary value

problems.

Lemma 6.5.1. Let S = N'(01,...,0m). Let A C Z7(x) be an infinite sequence
of distinct multi-indices such that

- < 00.
a2, e~ I < o0

Assume that there exists I € {1,...,m} and a fized permutation 7 of {1,...,m}
such that for all n € A we have that n,n; € Z7 (%, 7). Take A" C A such that

(6.26) holds. Then, there exists a normalization F,gl), k=1,...,m, by positive

constants, of the functions ﬁ,gl), k=1,...,m, given in (6.26), which verifies the
system of boundary value problems

1) FY 1/FY e H(C\ Ay),
2)  (FY(00) >0, k=1,....,7 Y1),

2)  FO0)>0, k=10 +1,...,m, (6.27)
1 .
(R, B ()]

where Fél) = F(l) = 1.

m—+1
Proof. The assertions 1), 2), and 2’) were proved above for the functions f,gl).
Consequently, they are satisfied for any normalization of these functions by
means of positive constants.
From (6.22) applied to n and ny, for each k =1,...,m, we have

/ xVQn,k(J?)C“,On,k (.73) =0, v=_0,..., |nk71| -1,
Ay
and
/A 2" Qn, k() gn .k (2)d|pn x| () =0, v=0,..., |n;€_1| -1,
k
where
g k(z) _ ‘Qn,k—l(x)Qn,k—O—l(x)‘ |hl’ll,k(‘r)| dp k(l') _ hn’k(x)dsﬁk_—ll ((E)
™ |Qny k—1(2)Qny k1 ()| k()] " Qn,k—1(2)Qn k+1(x)
From (6.25) and (6.26)
. ~) = _
lim gn i(2) = [(F2, B @) (6.28)

uniformly on Ay.
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Fix k € {77*() + 1,...,m}. As mentioned above, for this selection of k
we have that degQn, r = degQnr = [n*~1|. Using Lemmas 4.2.3, 4.2.4, and
(6.26), it follows that

lim Ql‘luk(z) _ Sk(z)
neA’ Qnyk(z) Sk(OO)

= Si(z) = FP(z), K cC\supp(of™"), (6.29)

where S;, denotes the Szegdé function on C \ Ay with respect to the weight
|F,£l_)1(x)F,§:)_1(m)\*1,x € Ay. The function Sy is uniquely determined by

1) Sk1/Sp€ HT\Ay),
2 S >0,
) k(00) ) (6.30)
3) |Sk($>|2#:17 .’L‘E&k.
(RLFL) @)
Now, fix k € {1,...,771(])}. In this situation degQn, » = degQnr +1 =
[n*~1| 4+ 1. Let @y, x(z) be the monic polynomial of degree |n*~1| orthogonal

with respect to the varying measure gn ;d|pn, k|- Using the same arguments as
above, we have

lim nk(?) _ Si(2)
neN’ ka(z) Sk(OO)

On the other hand, since deg Qn,,x = deg @y, ,+1 and both of these polynomials
are orthogonal with respect to the same varying weight, by Lemma 4.2.3 and
(6.26), it follows that

Qn, k(2)  wr(2)

neA’ ;‘lk(z) N ¢y (00

= 5k(2), K < C\supp(oy ). (6.31)

] = ¢r(2), KcC\ Supp(allj_l) , (6.32)

where ¢, denotes the conformal representation of C\ Ay onto {w : |w| > 1}
such that ¢y (00) = 0o and ¢}, (c0) > 0. The function ¢y, is uniquely determined
by

D ek 1/or e HC\ Ag),

9)  Yi(c0) >0, (6.33)

3)  lew(@)|=1, zely.

From (6.31) and (6.32), we obtain

. an K (Z)
o Onr(?)

Thus,

= (Sipr)(2) = F’(2), K CC\supp(of™!).  (6.34)

~) Se@r, k=1,...,77Y),
FO ) 2 6.35
k { Se, k=1Y)+1,...,m, (6.35)
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and from (6.30) and (6.35) it follows that

F,gl>(x>|2m:;, €Ay, k=1,....m, (6.36)
where (Skeh)?(00), k=1,...,771()

Wk = { 5% (00), 7 szLl(l7)+1,..7.,m. (6.37)

Now, let us show that there exist positive constants ¢y, k = 1,...,m, such

that the functions F,El) = ckﬁél) satisfy (6.27). In fact, according to (6.36) for
any such constants c; we have that

l 1 c2 ~
FO@P—g—g—— = ——2—,  zeAy,  k=1..m,
|(Fk_1Fk+1)(g:)| Ch—1Chk41Wk

where ¢y = ¢, +1 = 1. The problem reduces to finding appropriate constants ¢y,

such that
2
—k  —1, k=1,...,m. (6.38)
Ck—1Ck41WE

Taking logarithm, we obtain the linear system of equations

2log ¢y, — logck—1 — log cry1 = loguwy, , k=1,....m (6.39)
(co = ¢m+1 = 1) on the unknowns log ¢y . This system has a unique solution
with which we conclude the proof. O

Consider the (m + 1)-sheeted compact Riemann surface R introduced in
Chapter 5 and a conformal representation of R onto the extended complex
plane )1 € {1,...,m}, such that

1
=% s 0(3). 2o

Tz
YO (2) =Coz+0(1), z— ool

where C; and Cy are nonzero constants. As before, the branches of /() corre-
sponding to the different sheets k = 0,1,...,m of R are denoted

PO = iy

and 1) is normalized as in (5.23).
We are ready to state and prove

Theorem 6.5.2. Let S = N'(01,...,0m) and A C Z7'(x) be a sequence of
distinct multi-indices such that

R e, e = ) < oo
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Let us assume that there exists I € {1,...,m} and a fized permutation T of
{1,...,m} such that for alln € A we have that n,n; € Z7 (x,7). Let {Qnk}1y,
n € A, be the corresponding sequences of polynomials defined in Section 6.4.
Then, for each fixed k € {1,...,m}, we have

lim Ony 1(2) = ﬁél)(z), z€ K C C\supp(of ) (6.40)

neA Qn,k(z)
where
1 —1
R = s (H v <“><oo>> I v . (6.41)
v=~k v=k

Proof. Since the families of functions
{invk/ank}neA 5 k:l,,,,7m7

are uniformly bounded on each compact subset K C (C\supp(a’,:_l) for all suffi-
ciently large |n|,n € A, uniform convergence on compact subsets of the indicated
region follows from proving that any convergent subsequence has the same limit.
According to Lemma 6.5.1 the limit functions, appropriately normalized, of a
convergent subsequence satisfy the same system of boundary value problems
(6.27). According to Lemma 4.2 in [5] this system has a unique solution.

It remains to show that the functions defined in (6.41) satisfy (6.27). When
multiplying two consecutive branches, the singularities on the common slit can-

cel out; therefore, 1) takes place since only the singularities of 1/1,(; ) on Kk
remain. From the definition of (" ) it also follows that for k = 1,--- , 77 1(1),
F,gl) has at infinity a simple pole, whereas it is regular and different from zero
when k = 771(l) + 1,--- ,m. The factor sign in front of (6.41) guarantees the
positivity claimed in 2) and 2').

In order to verify 3), notice that F\"/F) = sg( (Til(l))(oo))/i/)(Til(l))
) k=1 k—1 k=1 -

Therefore, if k =2,...,m,
F@P V@)
L @F @) V@)

on account of (5.25). For k = 1, from the definition and (5.25)

=1, LCE&M

F(l) 2)|2 1 m _ m _ ~
% = |yt (l))(x”z‘ H wl(/‘r 1(l))(x)| = | H 1/,1(; 1(l))(gc)| =1, z €Ay,
[Fy ()] v=2 v=0
since [, 1/157_1(0) is constantly equal to 1 or —1 on all C. O
Let 1 =(1,...,1). An immediate consequence of Theorem 6.5.2 is

Corollary 6.5.3. Let S = N'(o1,...,04,). Let A C ZT'(*) be an infinite
sequence of distinct multi-indices such that

a2, e~ b < o
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Then, for each k=1,...,m,

— Qui1k(2) 1T RO k-1
lim ————= = || F, . 4
i Gty ~IIAG.  keCimm@t™. (o4
Proof. Let
A =ANZY(x,7),
where 7 is a given permutation of {1,...,m}. We are only interested in those

A, with infinitely many terms. There are at most m! such subsequences. For
n € A; fixed, denote n,(;,j € {1,...,m}, the multi-index obtained adding
one to all j components 7(1),...,7(j) of n. (Notice that this notation differs
from that introduced previously for n;.) In particular, n ¢, = n+1. It is
easy to verify that for all j € {1,...,m}, n.;) € A;. For all n € A, and each
ke{l,...,m}, we have

m—1
Qn+1,k _ an(j+1)ak
Qn,(j),k ’

ka

Jj=0

where Qn_ o)k = @n,k- From (6.40) it follows that

. Qn+1k oF k—1
nléA e HF , K Cc C\supp(oy ).

The right side does not depend on [, since all possible values intervene. There-
fore, the limit is the same for all 7 and thus (6.42) is obtained. O

The following corollary complements Theorem 6.5.2. The proof is similar to
that of Corollary 4.5.1.

Corollary 6.5.4. Let S = N'(01,...,0m) and A C ZT(*) be a sequence of
distinct multi-indices such that

Ifllél/{((kfmﬁ)f mny, — |n|) < oco.

Let us assume that there exists I € {1,...,m} and a fized permutation T of
{1,...,m} such that for all n € A we have that n,n; € Z7'(x,7). Let {qnr =
Enk@n ki, € A, be the system of orthonormal polynomials as defined in
(6.20) and {Kn i} y,n € A, the values given by (6.19). Then, for each fized
k=1,...,m, we have

. Rn; k 1)
lim —Rek 6.43
nlenll\ Rn,k Hk ’ ( )
S SR O B0\
. Kap 4R (640
and
m k) OFO e e supp(afY), (6.45)

neA g k(2)
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where
@ l _
NON clgl>:{ () (<), b=Loor™ D),
OO F =71 1,...
Cgczlc;jrl k (OO)’ k T (l)+ ’ M,
(6.46)

and the F,El) are defined by (6.41).

Proof. By Theorem 6.5.2, we have limit in (6.28) along the whole sequence
A. Reasoning as in the deduction of formulas (6.29) and (6.34), but now in
connection with orthonormal polynomials, it follows that

o ek (2) { (Sker)(z), k=1,....,771(1), K c C\supp(ar™1),

ned qni(z) | Sk(2), k=7t +1,...,m,

where Sy, is defined in (6.30). This formula, divided by (6.29) or (6.34) according

to the value of k gives

. Knk Ck
lim 2= = o = ———— ,
neA Knk V/Ck—1Ck+1

where wy, is defined in (6.37), and the ¢, are the normalizing constants found
solving the linear system of equations (6.39) which ensure that

Fél)zckﬁél), k=1,....,m,

with F,El) satisfying (6.27) and thus given by (6.41). Since (ﬁél))’(oo) =1,k=
1,...,77 (1), and (ﬁ,il))(oo) =1Lk=7"11)+1,...,m, formula (6.43) immedi-
ately follows with nl(f) as in (6.46).
From the definition of ky 1, we have that
Kn,k = Rn,1" " Kn)k -

)

Taking the ratio of these constants for the multi-indices n and n; and using
(6.43), we get (6.44). Formula (6.45) is an immediate consequence of (6.43) and
(6.40). O

Remark 6.5.5. We have imposed two types of restrictions on the class of multi-
indices under consideration. The first one refers to being in Z7'(x). This is
connected with the long standing question in the theory of multiple orthogonal
polynomials of whether or not for any m all multi-indices of a Nikishin system
are strongly normal. We have proved our results in the largest class of multi-
indices known to be strongly normal. Should this conjecture be solved in the
positive sense (as it appears to be the case), the methods exposed in this chapter
should allow to eliminate this condition as we have done for the casesm = 1,2, 3.
The second restriction

max( max mny — n|) < oo
neA k=1,..., m
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1s connected with the use of Lemma 6.4.2. This condition means that all com-
ponents of the multi-indices are of the same order and that orthogonality is,
basically, equally distributed between all the measures. The proof of (6.24) re-
quires the density of certain classes of rational functions with fixed poles (in
our case at the zeros of the polynomials Qn x—1@Qn k+1 and numerator of degree
twice the order of orthogonality) in the space of continuous functions on a given
interval. In general, this is not true if the rational functions are such that the
degree of the denominator is much larger in order than that of the numerator
(as |n| — o00). This is what may occur if we eliminate the restriction above. It
can be relazed to ny, = |n|/m + O(log|n|),k = 1,...,m, without changing the
structure of the Riemann surface which describes the solution of the problem, but
not much more. In applications, the diagonal case (ny, = |n|/m,k=1,...,m)
and nearby indices seem to be the most important.



7. CONCLUDING REMARKS

We have obtained the logarithmic and ratio asymptotics of mixed type multiple
orthogonal polynomials associated with two Nikishin systems of measures. The
results have been proved under assumptions that match those required in the
case of standard orthogonality as far as the measures is concerned. So in this
sense they are sharp. Possible extensions would require relaxing the assumptions
on the systems of multi-indices. In this connection see Remark 6.5.5 whose
statements are valid for the mixed type case. The strong asymptotics for type II
Nikishin multiple orthogonal polynomials was obtained in [3]. It would be nice to
extend that result to mixed type orthogonality when the generating measures are
in the Szegb6 class. The Riemann-Hilbert approach could also give new light to
the strong asymptotics of mixed type Nikishin multiple orthogonal polynomials
giving finer strong asymptotics for special classes of generating measures. In
this direction little has been achieved. Another area of further research would
be the consideration of measures with unbounded support and the study of the
contracted asymptotics of the corresponding multiple orthogonal polynomials.

We also proved relative asymptotics for type II multiple orthogonal poly-
nomials in which the perturbation is given by rational functions. This result
allows to give a Markov type theorem for simultaneous Padé approximants of
the corresponding system of Cauchy transforms. The result can be extended to
mixed type multiple orthogonal polynomials combining the methods exhibited
in Chapter 5 and the results from Chapter 4. Nevertheless, here we are far from
achieving our initial goals. We would have liked to give the relative asymptotics
under the assumption that the perturbation is due to functions gx, k= 1,...,m,
such that pkg,id € L>(oy) for some appropriate polynomials px, k = 1,...,m.
This would correspond with what is known for standard orthogonality (see [50],
[51], [65]). The technical difficulty here was of a different character. We were
unable to provide the normality of the sequences of {@nk /Q@n .k }nen, under this
weaker assumption on the perturbation functions. An immediate application
would be the following. In [3], strong asymptotics was proved for measures
given by weights in the Szegd class. This result could be extended to general
measures in the Szegd class.
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