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Abstract"-­ _ 

The algorithm of square root Kalman filtering for the case of contaminated 
observations is described in the paper. This algorithm is suitable for the parallel computer 
implementation allowing to treat dynamic linear systems with large number of state variables 
in a robust recursive way. 
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Abstract: The algorithm of square root Kalman filtering for the case of contaminatedI 

observations is described in the paper. This algorithm is suitable for the parallel computer 
implementation allowing to treat dynamic linear systems with large number of state variables 
in a robust recursive way. c 
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1. Introduction. This paper attempts to treat simultaneously two problems connected 
with practical implementation of the Kalman filtering: 

(1) If the number n of state variables (the dimension of state vector) is large then the 
Kalman filter procedure is expensive requiring 0(n3

) operations for each state update. 
Applications with enormous number of state variables appear e.g. in aerodynamics including 
aircraft testing, medicine, robotics, seismology. Some applications in the framework of state­

le space modelling of time series with large numbers of state variables are given e.g. in [3]. 
I However, the complexity of Kalman filter can be reduced by the parallel implementation on 

parallel computers that are used in practice with increasing popularity (see e.g. [1]). 
Nowadays there are numerous parallel Kalman filter algorithms suggested for various 
practical situations. One of possible approaches to this problem consists in the square root 
formulation of Kalman filter allowing to reduce the costs to O(n) operations for each state 
update if the algorithm is implemented on a parallel machine (see e.g. [5], [7]). 
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(2) In practice the Kalman filter must frequently face to various forms of 
contaminated data. The occurrence of outliers and non-Gaussian distributions in the dynamic 
linear systems treated in practice has motivated a number of robust versions of Kalman filter 
(there are even suggestions concerning the robust Kalman filtering for nonlinear systems, see 

c'	 s.g. [2]). For instance, the approach to the Kalman filter robustification by [4] based on the 
M-estimation principle seems to provide good practical results. 

With respect to the mentioned problems (1) and (2), this paper shows that it is not 
difficult to rewrite the robust Kalman filtering from [4] to the square root form. The robust 
Kalman filter [4] for models with contaminated observations is briefly reminded in Section c· 2, its square root form is described in Section 3 and the special case with scalar 
(contaminated) observations is considered in Section 4. 

2. Robust Kalman filter. Let us consider a dynamic linear system with contaminated 
observations of the form 

(2.1) 

Ye = Ht?'e+vel ve- iid e-contamina ted N( 0 I Re) I (2.2) 

where the residuals {wt } and {Vt} are mutually independent. Moreover, some initial conditions 
are required to be fulfilled. The state equation (2.1) describes the development of an n­
dimensional state vector Xt in time while the observations equation (2.2) assigns the state Xt 
to an m-dimensional observation vector Yt. The matrices FI! Ht, QI! Rt of appropriate 
dimensions are supposed to be known at time 1. The e-contamination of the residual Vt means 
that its normal distribution N(O,RJ with acceptable variances is contaminated by a smallc 
fraction e (e.g. e= 0.05) of a symmetric distribution with heavy tails which enables to model 
outliers in observed data. In the standard normal case without contamination the Kalman 
filter provides recursive formulas for the minimum variance state estimator ~tt = E(xtIyt) 
and its covariance matrix P\ = E [(Xt - ~t~ (Xt - ~tt)' / yt] using all available information 
yt = { Yo, yl' ..... 'yt} at time t. 

In the contaminated case (2.1), (2.2), the work [4] replaces these formulas by the 
approximative ones of the form 

(2.3) 

(2.4) 

where the predictive values ~\+l = E(xt+l /Yl) and Ptt+l = E[(xt+l - ~\+I)(Xt+1 - ~\+l)' /Y1 for 
time t+1 at time t are constructed as 

c 
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(2.5) 

(2.6) 

The symbol R
t 
l /2 denotes the square root matrix of Rt 

mxm diagonal matrix with 

w· = ]t 

and Wt = diag {wlt, .... ,Wmt} is the 

(2.7) 

where 'lrl , ..... , 'Irm are suitable robustifying psi-functions and 

b lt Slt 

B t = = R-1/ 2H 
t t' St = = R~1/2Yt (2.8) 

b mt Smt 

c 
(R;112 is the inverse matrix of ~1/2 and b/s are the 1 x n rows of the matrix BJ· 

(" 

The formulas (2.3) - (2.6) can be easily rewritten to the predictive form 

~;+l = F0g-1+Kt(yt-Ht X~-l) , (2.9) 

(2.10) 

c. 

where Ret is the innovation covariance matrix of the form 

R = H pt-1H .. +R1/ 2 W-1R1/ 2 
et t t t t t t 

(2.11) 

and ~ is the Kalman gain matrix of the form 
(2.12) 

Specially, if m =1 so that the observations Yt are scalar in the observation equation 
and, in addition, if we use the Huber's psi-function 'lrH of the form 
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z , Izl~c, 

(2.13) 

c sgn(z) , Izl>c 

c 
(it can be shown that this choice of psi-function in the case of e-contaminated normal 
distribution provides robust estimates that are optimal in the min-max sense) then the 
approximative formula (2.9) can be replaced by the non-approximative one of the form 

(2.14) 

where 

(2.15) 

(2.16)
( 

The covariance matrix P\+ I is let in the form 

(2.17) 

3. Square root robust Kalman filter. The square root formulation of the classical Kalman 
filter (see e.g. [5], [6], [7]) takes advantage of the matrix factorization that can be written 

C for a positive semidefinite matrix X as 

x = LDL",	 (3.1) 

where L is a lower triangular matrix with units on its main diagonal and D is a diagonal 
matrix. 

c 
In the case of the robust Kalman filter from Section 2, its square root formulation will 

maintain the matrices Ptl and ReI in the factorized form (3.1), i.e. 

(3.2) 

C	 where Lpll Lel are lower triangular matrices with units on the main diagonal and D pl, Del are 
diagonal matrices. 
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c 
The input for the corresponding square root robust algorithm at time t involves the 

matrices Fu Hu Ru Qu the observation vector Yt and the predictive value ~tt-l for time t. 

c 
Let us construct matrices 

(3.3) 

c 
of the dimension (m +n) x (m +2n) (Im is the mxm identity matrix) and 

(3.4) 

c of the dimension (m +2n) x (m +2n). The substantial procedure of the algorithm consists in 
the following factorization 

UVU' = LDL', (3.5) 

where the (m+n) x (m+2n) matrix Land (m+2n) x (m+2n) matrix D are required to be 
of the same type as in (3.1). It is not difficult to show that the matrices L and D will have 
the form 

( Loo· O. 0) (3.6)L -
KtLet , Lp, t+l' 0 

and 

[Dot' a, 

;.]D = 0, Dp, t+l' 
(3.7) 

0, a, 

where D· may be an arbitrary diagonal nxn matrix. 

c 

Then the output of the algorithm at time t contains 

X;+l = F~g-l+ (KcLec ) L~~ (Yt-H~g-l) , (3.8) 

(3.9) 

where the matrices Let' KtLeu Lp,t+l' Dp,t+l are taken from (3.6) and (3.7) (moreover, the 
matrices Lp,t+l' Dp,t+l form the input for time t+ 1). 
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All procedures of this square root robust algorithm can be performed efficiently in 
the framework of the parallel implementation. For instance, an array of (m +n) x (m +2n) 
parallel processors using the scan-with-add operation is suitable for the factorization (3.5) 
(see [7]). 

4. The case of scalar observations. If the observations are scalar (m = 1) and, in addition, 
the Huber's psi-function (2.13) is chosen then the robust Kalman filter from Section 2 
reduces to the form (2.14)-(2.17). 

The corresponding square root formulation will be more simple using the matrices 

( 
1,

U= 
0, 

of the dimension (1 +n) x (1 +2n) and 

htLpt , 

FtLpt ' 

0 J 
In 

(4.1) 

V· (~':' D;:, ~J (4.2) 

c 
of the dimension (1 +2n)x(1 +2n). Then the matrices L,D in the factorization (3.5) will have 
the form 

( 
1, 0, 0) 

L = Kt' Lp ,t+l' 0 
(4.3) 

c 

c 

and 

providing the values rell Kt for (2.14) and Lp,t+\, Dp,t+\ for (3.9) (and for input at time t+ 1). 

The suggested square root robust Kalman filter seems to be suitable for the practical 
treatment of systems with large numbers of state variables and with contaminated 
observations. Its implementation on parallel computers is the object of continuing work. 

( 

r et l 

D = 0, 

0, 

0 , 

0, ;.] 
(4.4) 
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