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1 Introduction 

The interest in Partial Least Squares (PLS) methods from the statistical 
point of view is very recent (Stone and Brooks (1990), Frank and Friedman 
(1993), Breiman and Friedman (1997)). The traditional regression methods 
used with highly collinear data, such as Principal Components Regression 
(PCR) and Ridge Regression (RR) , have been compared with PLS in term 
of prediction ability (Relland and Alm\1iy (1994)). They conclude that in a 
lot of cases PLS is the better option. 

Outliers in high dimensions are difficult to detect, but they generally 
affect the estimation. Robust techniques for ordinary least squares (OLS) 
regression have been widely developed, but the estimators are still affected 
by multicollinearity. The PLS algorithm solves the problem of collinearity, 
but it is still affected by the outliers. For example, the new Quantitative 
Structure-Activity Relationship (QSAR) procedures (in the Chemometrics 
field) have prediction problems when there are outliers in the data. Sorne 
robust solutions have been lately proposed, but the refiection in the statistic 
literature is still scarce. 

In this section, we present the classical version of the PLSll algorithm. 
Section 2 describes the robust methods that exist in the literature. Section 3 
presents the methods that we propose. Section 4 contains a simulation study 
and graphics with the most significant results. Finally, section 5 collects 
sorne conclusions and possible extensions. 

PLSl algorithm 

Let X be a matrix of dimension n x m. \Ve want to use this matrix to predict 
future values of the vector y , which has dimension n x 1. \Ve suppose that 
the data are centred. PLSl is a technique for dimensionality reduction, which 
is focused on maximizing the predictive power. The method calculates a new 
matrix T of dimension n x A (where A ::; m), whose columns are linear 
combinations of the columns of X . The algorithm is the following: 

1. Supose that A is a fixed and known value. Give starting values for the 
residual matrices. 

a 
Eo 
fo 

1 
X 
Y 

(1) 

1 PLS regression methods with univariate response are known as PLSl. If the response 
is multivariate, then are known as PLS2. In this article, we often use PLS to refer to 
PLSl. 
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2. Calculate the loading2 vector W a and then calculate the corresponding 
scores vector ta. 

W a ex: E~_lfa-l 
ta Ea-lWa 

(2) 

3. Calculate m + 1 simple regressions between the columns of the residual 
matrices and the new scores vector ta' Since ta is a linear combina­
tion of the columns of X , it also has mean equal to zero. Thus the 
regressions have zero intercepts. 

fa-l 

Ea-1,j 

qata + efa-l 

Pa,jta + eEa_1,j j = 1,2, ... ,m 
(3) 

4. Update the residual matrices using the residuals estimated in the pre­
vious step as the new column vectors. 

fa efa-l 

Ea = [eEa_l,l' eEa_l,2' ... ,eEa_l,m] 
(4) 

5. If a is less than A, then in crease its value by 1 and return to step 2. If 
a is equal than A, then the algorithm stops and the estimated vector 
y is 

(5) 

The above algorithm requires that A is known but in practice this value 
is unknown and must be estimated, for example by leave-one-out cross­
validation methods. Let Yi be the ith element of the vector y , and let Y(i),A 
be the estimate of y which comes from PLS with A components when we 
have eliminated the ith observation. Then, the value of Predictive Residual 
Error Sum of Squares (PRESS) is 

P RESS(A) = t (Yi - (Y(i),A)i)2 
n 

i=l 

and we choose the number of components A that minimizes this value 

A = arg min{P RESS(k)} 
k 

(6) 

2In the literature, the veetors w a are ealled weight vectors beeause they give a weight 
to eaeh \'ariable Xj to form the seo res veetors ta. In this article, the vectors W a are 
ealled loading vectors in order to avoid the eonfusion with the weight vectors of the robust 
methods 
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2 Robust-PLS based on Reweighting techniques 

We start this section by emphasizing that all the robust PLS methods that 
have been proposed before in the literature use iterative reweighting tech­
niques. Therefore, we first summarize iteratively reweighted regression and 
then robust PLS methods. 

Iteratively Reweighted Least Squares (IRLS) 

Suppose that we want to calculate the multiple regression of y on X . The 
IRLS method is the following: 

1. Calculate the initial value to the regression coefficient j3 = (X'X)-lX'y 

2. Calculate the residuals of the regression r = y - xj3 

3. CaIcuIate weights3 for each observation according to the corresponding 
residuals. The observations which have a small residuals have high 
weights (close to 1), and the observations which have a high residuals 
have small weights (close to O). Construct a diagonal matrix <I> from 
the weight vector. 

4. Apply the weights and calculate a new regression coefficient 

5. Choose sorne convergence criterion and repeat the steps from 2 to 4 
until the criterion has been satisfied. 

2.1 Internal Iterative Reweighting: IRLS into PLS 

\VakeIing and Macfie (1992) were the first to write about the robustification 
of PLS. They work with the PLS2 algoritm, which they present in the form of 
many simple regressions. Next, they replace these regressions with weighted 
regressions. To avoid confusion, we do not include here the formulation of 
PLS2 since we are only working in this article with the PLS1 algorithm. 

Following the previous methodology, Griep, \Vakeling, Vankeerberghen, 
and Massart (1995) carry out comparison among three different methods of 
robust regression and they study their incorporation into PLS1 algorithm. 
To understand better the concepts, it can be seen from table 1 that PLS1 can 
be presented so that it uses four different regression steps. In principIe, it is 

3Cummins and Andrews (1995) present a checking of the weight functions used in IRLS. 
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} 
/ 

PLS1 Algorithm 
Classical Version Version with Regressions 
w=X'y w = X'y/y'y Regression 

w=w/llwll w =w/llwll Normalization 
t=Xw t = (X')'w /w'w Regression 
p = X't/t't P = X't/t't Regression 
b = y't/t't b = y't/t't Regression 
X=X-tp' X=X-tp' Residual Matrix X 
y = y - bt Y = Y - bt Residual Vector y 

Table 1: Two equivalent forms to present the steps of PLS1 algorithm. 

possible to replace all the steps by one of the robust procedures which would 
make the procedure completely robusto On the other hand, replacement 
of one or two selected steps instead of all steps together could still have a 
good performance in terms of handling outliers. Such a procedure is called 
semirobust. 

In their study, they replace the first step with three different methods of 
robust regression: Least Median of Squares(LMS), Siegel's Repeated Median 
(RM) and Iteratively Reweighted Least Squares (IRLS). On the basis of their 
results, the best option is to use IRLS. 

In fact the first step of PLS is not just one regression but it is formed from 
the simple regressions of each variable X j on y . Thus the application of IRLS 
in this first step consists of the application of IRLS to each simple regression. 
Therefore, a criticism of the work of Griep, \Vakeling, Vankeerberghen, and 
~1assart (1995) is that they look for outliers in the projections of the data onto 
the planes {Xl, y}, {X2 , y}, ... ,{Xp , y}, but they forget the multivariate 
nature of the data. In fact, there may exist outliers in high dimensions that 
can not be detected when we project onto these planes. 

2.2 External Iterative Reweighting: IRPLS 

Cummins and Andrews (1995) propose to generalize iteratively reweighted 
regression to the PLS1 algorithm. The idea is the same one as in IRLS but 
in this case using the residuals of the PLS regression. The steps are: 

1. Perform an ordinary PLS regression analysis. 

2. Pass the regression residuals from step1 into the weight function. 

3. Perform a weighted PLS regression analysis using the weights just ob­
tained. 
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4. Pass the residuals4 from step 3 into the weight function. 

5. If the convergence criterion is met then stop; else go to step 3. 

A convergen ce criterion could compare the cross-validated R2 

R2 = 1- PRESS 
cv SSTotal 

(7) 

from the current iteration with its value from the previous iteration and the 
stopping rule might be to stop if the value has changed by less than 5%. 
They found that convergence occurs very quickly. 

In step 3, the weighted PLS is first done with cross-validation to choose 
the optimal number of components, then a final run is performed using that 
number of components. The criterion for choosing the optimal number of 
components is that of maximizing the cross-validated R2 , which is equivalent 
to minimizing the P RESS value. 

The problem that this method could have is that the residuals for each 
sample would depend strongly on the number of components calculated in 
PLS. In this case, different criteria for choosing the number of components 
could cause different weights for each sample. It would be interesting to 
study if in this case there are convergence problems. 

3 New Robust-PLS 

Let's assume that the data come from a joint distribution with mean vector 
equal to O and population covariance matrix ~[y,Xl consisting of the following 
elements 

~~[y,Xl = (a; Ó~,x) 
Óy,x ~x 

(8) 

IndependentIy of the original data distribution, the population loading vec­
tors are given by the following equation (Helland 1990): 

Wl ex: Óy,x 

W a+l ex: Óy,x - ~XWa(W~~XWa)-lW~Óy,X 
(9) 

where W a is the matrix whose column vectors are the Wi calculated previ­
ously 

W a = [Wl' W2,'" ,wa} 

4Rather than passing the ordinary residuals into the weight function, they found that 
better results were obtained by passing the predicted residuals into the weight function. 
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Using the expressions given by (9) it is not necessary to calculate the 
components ta' In each step, WaH only depends on the value of the a previous 
vectors Wl, W2,'" 'Wa1 on ~X and on 6y ,X' Moreover, Wl only depends on 
6y ,X' Then we can conclude that the calculating of W a+l is completely fixed 
by the value of ~x and 6y,x, 

\iVith the same notation, Helland (1990) gives the equation for the popu­

latian regression vector calculated by PLS 

(10) 

Just like W a , this vector f3a,PLS only depends of the values of ~x and 6y,x, 
The two previous equations (9) and (10) can be considered as an alter­

native definition of the PLS algorithm. 
The first two methods proposed in the literature (Vlakeling and Macfie 

(1992), Griep, \iVakeling, Vankeerberghen, and Massart (1995)), which have 
been described in the section 2.1, present a robust calculation of the vector 
6y,x but they leave alone the matrix ~x. In the simulations, these methods 
of robustification seem to work well but one possible reason for this good 
behaviour is that in the simulation studies only the vector y is contaminated. 
Therefore, the matrix ~x is not affected by the outliers. 

In this article, \Ve propose three robustifications of the PLS algorithm 
based on robustification procedures, statisticaly tested, for the covariance 
matrix (Maronna and Yohai 1995), for example the Stahel-Donoho estimator 
(SDE) or the minimum volume ellipsoid estimator (MVEE). The first two 
could be considered partial robustification or semirobust, and the third is 
a global robustification. First ",e present the three methods and then we 
explain briefiy the method of robustification of covariance matrices. 

3.1 Partial Robustification 

\Ve follo", the idea of the methods proposed by \iVakeling and Macfie (1992) 
and Griep, \Vakeling, Vankeerberghen, and Massart (1995). \Ve are going to 
calculate the loading vector W a in a robust form and to keep the remainding 
steps of the algorithm ",ithout any modification. The calculation of W a can 
be seen as the normalization of the covariance vector between the matrix 
Ea-l and the vector y. Next we present two possibilities. 
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PLSR 

\Ve can suppose that the data [y, Xl have a sample covariance matrix V witn 
dimension m + 1 

V-( Var(y) Cov(y,x))_(a ó') 
- Cov(y, X)' Var(X) - Ó ~ 

(11) 

In this case, we calculate the matrix V in robust form and the resulting 
matrix is 

(12) 

Next we take WI as the normalization of the vector ór 

In the following iterations, we calculate the loading vector W a in the same 
way, replacing X by Ea-l. 

PLSR2 

In the previous method, \Ve used the information about all the variables 
to estimate the covariance vector in a robust formo Now, following Griep, 
\Vakeling, Vankeerberghen, and Massart (1995), we are going to use only the 
information about two variables in each step. The covariance vector Ó, which 
is defined by equation (11)' consists of the individual covariances between 
y and each column Xj of X. In this case, we estimate in a robust form m 
matrices each with dimension t\Vo 

( 
Var(y) Cov(y, x¡) ) 

Cov(y, Xl) Var(XI) 
(13) 

( 
Var(y) COV(y,xm )) 

COV(y, X m ) Var(xm ) -

and we construct the new vector ór using the elements that have been calcu­
lated individually ór = (b l , b2 , • •. ,bm )'. Finally, we normalize the vector ór 

and the result is the robust loading vector Wl. 

In the following iterations, \Ve calculate the loading vector W a in the same 
way, replacing X by Ea-l. 

3.2 Global Robustification: PLSMR 

"Te have seen before that in the calculation of WI, ... ,Wa using the iterative 
procedure (9) only the values of ~x and óy,x are necessary. If we replace 
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these population values by the sample values, they can be infiuenced by the 
presence of outliers. A global robust version can come from using again the 
robust covariance matrix 

As in PLSR, we take Wl as the normalization of the vector 6r , but now the 
succeeding values of W a can be calculated in a robust form using 

(14) 

3.3 Robustification of covariance luatrices 

The two robustification methods for covariance matrices most widely used 
are the Stahel-Donoho Estimator (SDE) and the Minimum Volume Ellipsoid 
Estimator (MVEE). Maronna and Yohai (1995) carry out a broad simulation 
study where they compare the behaviour, among others, of both estimators. 
They conclude that SDE has the best bias and variability properties and 
therefore, it will be the choosen method in this work. 

Stahel-Donoho Estimator (SDE) 

Let X be a matrix with n samples (columns) andp variables (rows). Denoting 
by Xi the ith column of X, the location and scale SDE (tSDE(X), V SDe(X)) 
are defined as 

(15) 

and 

with Wi = w(r(xi, X)), where 

{ 
Id'Xi - fL(d'X)I } 

r(xi, X) = sup (d'X) 
Ildll=l CJ 

(17) 

Maronna and Yohai (1995) make sorne recommendations that have been 
used in this article: 
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• The weight function is Huber's function. 

{ 
1 si 

w(r) = (~)2 si 
r~c 

r>c 
(18) 

• A good choice for the constant e in Huber's function is the following 

(19) 

• The maximum breakdown point is attained when JL is the median and 
(J is the average of the k1th and the k2 th smallest absolute deviations 
about JL, with 

k1 P - 1 + [(n + 1)/2] 
k2 P - 1 + [(n + 2) /2] 

Alternative subsampling scheme 

The SDE is not usually calculated in its exact form because the computa­
tional cost is very high. In general, approximate methods \vith subsampling 
procedures are used. In this article, \Ve have used an alternative subsampling 
procedure proposed by Juan and Prieto (1995) \Vhich has the follm\'ing form 

1. Construct N subsamples of size P + 2. 

2. Remove from each subsample the observation having the largest Ma­
halanobis distance. 

3. Compute the direction orthogonal to each of the P + 1 subsets of p 
observations that can be formed from the final subsample of size p + 1. 

4. Compute r(xi, X), replacing Ildll = 1 \Vith the set of directions obtained 
in step 3. 

4 Comparative results 

4.1 Measuring performance 

Let Xc and yC be the contaminated data. Using simulation, \Ve want to 
compare the PLS algorithm and the robust methods, and see how they are 
affected by the contamination. \Vith this intention, we need to define some 
criteria of comparison that depend on the true values. 
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Before defining the criteria of comparison, we must emphasize that there 
are at least two possibilities for defining the true values of PLS: the first of 
them consists of choosing the values resulting from applying PLS to the non­
contaminated data; the second consists of choosing the population5 values of 
PLS. In this work we use simulation and we will see the results of comparison 
for both criteria. 

In classical regress~on the comparison between the true parameter vector 
f3 and the estimated f3 can give an idea about the robustness of the estima­
tion. In PLS, the values that define the estimation are the loading vectors 
W1, ... ,W A. \Vakeling and Macfie (1992) carry out the comparison between 
the real and the estimated loading vectors. "Te are going to compare these 
vectors too, but moreover \Ve are going to compare the true regression vec­
tor f3 P LS and the estimated vectors using the other methods. The proposed 
comparison measures are the follo\Ving: 

• Every vector Wi has nonn equal to 1. Therefore, as one measure of 
comparison, it seems reasonable to choose the angle bet\Veen them. 
Using the two comparison criteria, we have the following discrepancy 
measures: 

angw1,i,j 

angw2,i,j 

ang(Wi,poú; Wi,[yc,xc],j) 

ang(wi,[y,X],PLS; wi,[yc,xc],j) 

(20) 

(21) 

where ang(v1; V2) is the function that calculates the angle in degrees 
between the vectors V1 and V2; i = 1,2, ... ,A indicates the number 
of components calculated in PLS; and j = 1,2, ... ,6 indicates the 
method used: PLS, PLSR, PLSR2, PLSMR, PLSIR, IRPLS. 

In this notation, Wi,Pob indicates the value of Wi when \Ve use the popu­
lation covariance matrix given by (8), wi,[y,X],PLS indicates the estimate 
OfWi \\'hen we apply PLS to the non contaminated data, and Wi,[yc,xc],j 

indicates the estimate of Wi ",hen ",e apply the jth method to the con­
taminated data . 

• To compare the vectors f3 ",e can follow the method and the notation 
used \Vith the vectors Wi to define the following discrepancy measures: 

ang!31,j 

ang!32,j 

ang(f3pob; ,6[yc,XC]) 

ang(,6[y,X],PLS; ,6[yc,xc],j) 

(22) 

(23) 

5In real data, these population values are unknown but in simulated data we can know 
the theoretical covariance matrix which generates the data. 
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Additionally, the vectors {3 have different norms and therefore, a com­
parison measure among the norms is interesting too. Three possible 
comparison measures are: the norm of the difference of the vectors; 
the quotient between the norm of the difference of the vectors and the 
norm of the true vector {3; and finally, the quotient between the norm 
of the estimated vector and the true vector. We have choosen the last 
measure because it reflects better the difference in the behaviour of the 
different methods. The measures are the following 

norm{3l,j 
11.B[yc,xc),j 11 

(24) 
11 {3Pob II 

norm{32,j 
11.B[yc,xc),j11 

(25) -
11.B[y,xj,P LS 11 

The ideal behaviour of a robust method would consist of having values of 
angw and ang{3 close to 0, and the value of normf3 close to 1. In this work, 
we analyze all the comparison measures for all the presented methods. 

4.2 Design of the study 

There are two possible options, to use real data or use simulated data, and we 
have choosen the latter. The reason is to avoid possible initial contaminations 
in the data, and make sure that the only contaminations in the data are those 
that \Ve inserto 

To simulate the data, we use a covariance matrix V that we take as 
population covariance matrix. A way to choose this matrix, in such a way 
that it respects the structure of the data used in PLS, is to calculate it as the 
sample covariance matrix of sorne data used previously in the literature. In 
this \York, we have choosen the data of Nres (1985, table 3) that consist of 9 
explanatory variables Xl, X2, ... ,Xg and one explained variable y. To avoid 
problems we have used only the 38 first observations, since the others have 
been classified as abnormal by the author himself. The covariance matrix of 
the data is presented in the table 2. 

From this covariance matrix V we can calculate the population values 
of the vectors W a and {3 using the equations (9) and (10). These values are 
fixed for all the simulations. 

The simulation procedure consists of generating N data matrices [y, X](i) , 
with dimension n x 10, from a multivariate normal distribution with mean 
vector equal to zero and covariance matrix equal to V. For each matrix 
[y, X] (i), \Ve can calculate the vectors W a and the vector {3 applying PLS and 
we can take these values as the true values. 

12 



y XI X2 X3 X4 X5 X6 X7 X8 Xg 

y 13.7467 0.3458 0.3081 0.2692 0.2744 0.2580 0.2684 0.2836 0.2836 0.1716 
XI 0.3458 0.0147 0.0135 0.0120 0.0120 0.0109 0.0107 0.0113 0.0114 0.0068 
X2 0.3081 0.0135 0.0124 0.0110 0.0111 0.0100 0.0098 0.0103 0.0104 0.0062 
X3 0.2692 0.0120 0.0110 0.0099 0.0099 0.0090 0.0088 0.0093 0.0093 0.0056 
X4 0.2744 0.0120 0.0111 0.0099 0.0100 0.0091 0.0088 0.0093 0.0094 0.0056 
Xs 0.2580 0.0109 0.0100 0.0090 0.0091 0.0083 0.0081 0.0085 0.0086 0.0052 
X6 0.2684 0.0107 0.0098 0.0088 0.0088 0.0081 0.0080 0.0084 0.0085 0.0051 
X7 0.2836 0.0113 0.0103 0.0093 0.0093 0.0085 0.0084 0.0089 0.0089 0.0054 
X8 0.2836 0.0114 0.0104 0.0093 0.0094 0.0086 0.0085 0.0089 0.0090 0.0054 
Xg 0.1716 0.0068 0.0062 0.0056 0.0056 0.0052 0.0051 0.0054 0.0054 0.0033 

Table 2: Sample covariance matrix of the data of NéBS (1985) using only 
the first 38 observations. The elements on the diagonal (in bold) are the 
variances of each variable 

Let E be the percentage of contamination in the data which we consider 
fixed through the N simulations. "Te choose E % of the elements of the 
matrix [y, X]li) randomly, and add to them an element that is generated 
from a normal distribution with mean equal to zero and variance 111 times 
that of the corresponding variable. The new matrix of contaminated data is 
denoted by [yC, XC](i). For each i = 1, ... ,N, \Ve apply PLS and the other 
robust methods to the contaminated data and then compute the values of 
the comparison measures. 

The values that have been chosen for the different parameters in this 
study are the following: the number of simulations, for each fixed value of E 

and 111, is N = 100; the number of observations in the data matrix is n = 50; 
the percentages of contamination used are E = 0.5,1,3,5,10,20,30; and the 
sizes of the contaminations are 111 = 3,5,10,20. 

In order to fix the number of components calculated by PLS in each 
simulation, we have carried out a previous simulation. '¡Ve have generated 
100 data matrices with n = 50 observations from a multivariate normal 
with mean vector equal to zero and covariance matrix equal to V. For 
each of them, we have calculated the PRESS value when the number of 
components A varies from 1 to 9. The results are presented in the figure 1. 
It must be emphasized that, though the minimum value of P RESS is not 
always attained for A = 3, the decrease is very small from 3 onwards. This 
conclussion agrees with that of Hardy, MacLaurin, Haswell, de Jong, and 
Vandeginste (1996, page 126) from the real data. 

4.3 Results 

'Ve have chosen a specific case with E = 5 % and 111 = 3 to present the 
results for graphic form and compare in the six described methods, including 
PLS, the values of the performance measures proposed previously. In all the 
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400.------.---,------.---,------.---,-----.------, 

2 3 4 5 6 7 8 9 

Figure 1: PRESS values calculate with 100 simulations of a multivariate 
normal distribution with mean vector equal to zero and covariance matrix 
V given by the table 2. The number of generated observations in each simual­
tion has been fixed at n = 50 

graphics presented in the figures 2, 3 and 4, the result on the left corresponds 
to PLS with the contaminated data. Next we comment on these graphics in 
more detail. 

In figure 2 are presented the distributions that correspond to the angles 
defined by equation (21), for j = 1,2. The results corresponding to Wl appear 
on the left. \Ve can emphasize sorne important points. In the first place, the 
methods that obtain the better results (the smaller angles) are precisely those 
that use SDE jointly in all the variables, PLSR and PLSMR. In the second 
place, the remaining robust methods do not achieve significant improvements 
over PLS. The results corresponding to W2 appear on the right. In this case, 
all the robust methods except IRPLS achieve significant decreases in the 
angles compared with PLS. Again, PLSR and PLSMR are best. 

In figure 3 are presented the distributions that correspond to the angles 
defined by the equation (21), for j = 3, and equation (23). The results 
corresponding to W3 appear on the left. Most outstanding are the small 
angles obtained by PLSMR in all the simulations. The other methods have 
similar behaviour to PLS, with a very high percentage of angles larger that 75 
degrees. This could indicate that the power of robustification decreases as the 
number of components increases. The results corresponding to {3 appear on 
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Figure 2: Boxplots of the angles, measured in degrees, between the vectors 
Wl (left graphic) and W2 (right graphic) using the contaminated data and 
the corresponding vectors calculated with the non-contaminated data. The 
values of the parameters are the follO\ving: N = 100 simulations; n = 50 
observations; the percentage of contamination is E = 5 %; and the size of 
contamination is 111 = 3 

the right. Again, most out standing is the clear difference between PLSIvIR 
and the resto The methods PLSR, PLSR2 and PLSIR have been defined 
as semirobust, so it is quite logical that its angles are a little smaller than 
the angles obtained by PLS, but without becoming as good as the global 
robust procedure. The case of IRPLS is more surprising since initially this 
method appears to be a global robust procedure. The lack of convergence 
which has been detected in sorne simulations is a possible reason for the 
bad results obtained by this method. Specifically, ",e fixed the maximum 
number of iterations at 500 and this number has been attained in 7 of the 100 
simulations. \Ve must emphasize at this point that we have implemented the 
IRPLS method keeping fixed the number of components, whereas Cummins 
and Andrews (1995) choose the number of components that minimizes Rb", 
and this number is variable. 

In figure 4 are presented the distributions of the ratios of the norms of 
the vectors (3 corresponding to the equations (24) and (25), left and right 
respectively. The PLSMR method seems to behave ",ell in both cases with 
values around 1, though there is a larger variability in the comparison with 
the population vector (3. The other methods, including PLS, have a similar 
behaviour when they are applied to the contaminated data: the norms of the 
estimated vectors (3 are a lot smaller than the norms of the true vectors (3. 
The effect is to shrink even more the shrunk vector (3 that is obtained by 
PLS. 

In summary, these previous graphis indicate the better behaviour of 
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Figure 3: Boxplots of the angles, measured in degrees, between the vectors 
W3 (left graphic) and {3 (right graphic) using the contaminated data and 
the corresponding vectors calculated with the non-contaminated data. The 
values of the parameters are the following: N = 100 simulations; n = 50 
observations; the percentage of contamination is E = 5 %; and the size of 
contamination is ./'v1 = 3 

M \ E 0.5 1 3 5 10 20 30 
3 3.36(1.93) 3.53(1.71) 4.64(2.48) 5.25(2.52) 9.80(5.64) 35.43(16.00) 69.40(20.09) 
5 2.99(1.34) 3.74(2.13) 4.95(2.83) 4.98(2.60) 9.96(4.72) 38.16(14.62) 70.31(19.88) 
10 3.34(1.79) 3.12(1.60) 4.50(2.78) 5.69(3.01) 9.03( 4.93) 43.89(21. 79) 78.10(20.78) 
20 3.13(1.93) 3.54(1.87) 4.51(2.31) 5.71(2.90) 9.90(5.17) 46.05(22.28) 76.36(21.71) 

Table 3: Mean and standard deviation (in brackets) of the angles between 
(3[X,y),FLS and (3[xc,yC),FLSMR' For each value of the parameters E and 111, the 
number of simulations is N = 100 with n = 50 observations. 

PLSMR for all the comparison measures \Vhen \Ve use the values E = 5 % 
and ~M = 3. The rest of the simulations with different values for E and M 
have a behaviour very similar to this particular case. Therefore, we are going 
to concentrate on this method and study its behaviour when \Ve change the 
values of E and M. 

Table 3 presents the mean and the standard deviation of the angles cal­
culated by equation (23) for the different simulations (i.e. different values of 
E and M). Vve note that the size of the outliers (M) does not seem to affect 
the size of the angles, therefore the angles only depend on the percentage E 

of contamination. The behaviour of PLSMR can be considered very good, 
which means small angles, at least up to values of E = 10 %. A more com­
prehensive study would be necessary to determine exactIy up to \Vhat value 
of E the method gives acceptable results. 

Finally, we have carried out a simulation with non-contaminated data 
and again \Ve use the same 6 methods. In figure 5 are presented the resuIts 
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Figure 4: Boxplots of the diserepaney measures norm(31,j (left graphie) and 
norm(32,i (right graphie). The values of the parameters are the following: 
N = 100 simulations; n = 50 observations; the pereentage of contamination 
is E = 5 %; and the size of eontamination is AI = 3 

of this simulation for the measures given by the equations (22) and (23), left 
and right respectively. The angles for all the robust and semirobust methods 
are similar, with the exeeption of PLSR2 whieh has the worst behaviour. 

5 Canel usians and extensians 

The semirobust methods, those defined in the literature and the two proposed 
by us in this article, obtain small improvements over the clasical PLS, but 
the angles remain very high. 

The global robust method PLSMR has a good behaviour with all the 
comparison measures that have been proposed in this article. In this spe­
cifie simultation study, PLSMR has a large advantage over the semirobust 
methods. It wouId be interesting to repeat this simulation study with other 
population covariance matrices V, with other numbers of variables and ob­
servations, etc. It would also be interesting to apply PLSMR to real data 
and observe its behaviour in this case. 

\Ve have used the SDE to calcuIate the robust covariance matrix, but 
eould be replaeed by any other estimator with better properties that might 
appear in the future. 
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Figure 5: Boxplots of the discrepancy measures angj31,j (left graphic) and 
angj32,j (right graphic). The values have been calculated with N = 100 
simulations of non contaminated data. The number of observations is N = 

50. 
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