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Abstract

This paper deds with the optimal quadratic control problem for non- Gaussan discrete-time
gochaedtic systems. Our main result gives explicit solutions for the optima quadratic control
problem for partidly observable dynamic linear systems with asymmetric observation errors.
For this purpose an asymmetric verson of the Kaman filter based on asymmetric least squares
estimation is used. We illugtrate the applicability of our approach with numerical results
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1. Introduction

The Linear Gaussian control problem with Quadratic cost functiond (LQG) is probably the
most well-known quadratic control problem in both cases: discrete-time and continuous-time.
Unfortunately, no explicit controller design has been obtained in genera for optimd control
problems with unobserved states. However, in adaptive control problems, the separation or
certainty equivalence principle provides a specific solution, and  the control is determined by
two steps. condtruct the optima control as if the system were observable and replace the
unknown state in the control by the corresponding estimate (online); see [3] and [9]. In recent
terminology, this model can be viewed as a specid case of a controlled HMM (Hidden
Markov Model); see[6].

In control engineering there is an increasing interest in non-Gaussian systems because a
redigtic datistica description of the quantities of interest, includes bimoda distributions, heavy
taled digributions or in generd non- Gaussan behaviours; see [7] and [8]. The Kdman Filter
(KF) has widely been used to congtruct the optima solution for linear quadratic controlled
systems, see [1]. Departures from the Gaussanity of the noise didribution can dradticaly
disturb standard estimation and prediction procedures in dynamic linear systems.. In the recent
datistical literature severa dternatives to the standard KF have been suggested; see [4].
Unexpected observed values (outliers) of LQG problems has been treated in [13].

In this paper we give an explicit solution for the optimal control problem of discrete time
LQG system in the presence of asymmetry in the observation errors. It means that unexpected
asymmetric observation values are obtained, and then the Gaussan hypothesis does not hold.
We develop our approach provided the estimation step in the separation principle is carried
out through amodified version of the KF.

The aticle is organized as follows. Section 2 discusses the modd and summarises the main
results under Gaussan hypotheses. Our main result (Theorem 2.1) is then formulated. Section



3 contains the proof of Theorem 2.1. For this purpose an asymmetric verson of the KF is
introduced. In Section 4, numerical results showing best performance of the linear control
based on the Asymmetric KF are presented. Conclusions arein Section 5.

2. Modd and set-up
We consider the discrete stochastic system

X1 = R X+ Gl + W, (2.1)
Vi = He X + v, (22

wherex T R" isthe state vector, y; I R" is the measurement or observation vector and the
exogenous varisble u T RP is sdected according to some policy based on the past
observations (separated policy). F ,C; and H; ae non-stochastic time-varying known
matrices of gppropriate dimensions.

The noise terms w and v; are independent random variables with multinorma digtributions
N(0,Q)) and N(O,R), respectively. We assume that the covariance matrices Q and R, are
known. The initid conditions are given by the Gaussan variable % following the multinormd
distribution N(0O,P,) and the covariance matrix P.

The information available a timetisgivenby Z = (Y, U = (Yo,..., Yo W,..slh). The
sequences of variables Z and Y' generate the same s -fidd. The error term considered here is
amartingae difference with respect to the increasing sequence of s - fidlds Z. We observe that
the control variable u influences both the future state %., and the future available information
"

From this generd formulation some particular cases can be conddered. For ingance, if
H: =1 and v, = 0, we have a perfectly observable stochastic system. The filtering problem is
obtained in the non-controlled case (C; = 0 or i = 0).

Let us congder the case u = 0. We have a liner Gaussan sysem (LG) for which the
gandard KF gives explicit expressons for the estimator and the predictor. The random
variables x, X1 and Y' arejointly Gaussan. The conditiona density functions of the random
variables (x/7) and (x/Z™) are given by the multinormal distributions N(x!', P) and N(x"*, P"
') respectively, where,

X' =E{x/Y'}, (2.3
P! = E{(%-x)(%-%) /Y }. (2.4)

We have smilar expression for the one-step-ahead predictor

x = E{x/Y", (2.5)
Ptt—l = E {(Xt_xtt—l)(xt_xtt—l)T/Yt—l} 1 (26)

Notice that X' is sufficient to characterise the probabilistic behaviour of the information tate.
Thus the estimate and the covariance error matrix are given by

X =%+ Ko (e -He X7, 2.7)
Pl =P - K H P, (2.8)



where the gain matrix K; is
Ke:=R™ H [H PR HT +R]™ (2.9)
The one-step-ahead predictor and the covariance error matrix are given by

Xt = Fxa ™, (2.10)
Pt =Fa Pu™ Ry + Q1 (2.11)

In the genera case, u is selected according to some feedback policy g={ do, ¢1....}. Then the
system is described by equations (2.1) and (2.2) with state and observation variables given by
Xqt and Yy, respectively. The control variableisgivenby Uy = g (z) = & (Yo.00 Your ---» Yo,
U0, Ug1, ---, Ugt1)- If thefunction g is not linear, the corresponding processes Xg 1, Yg,: and Uy«
are not Gaussan even if % w; and v; are Gaussan,. However, we can ensure a Gaussan
conditiond dengty for the information State even if the feedback function g is nonlinear.
Moreover, the conditional density functions of the random variables (x,1/z,") and (X,/z,™") are
given by the multinormal ditributions N(x,+', P) and N(xg:", Pi"™") respectively.

Thus the estimate and the predictor are given by

Xgi = Xgi ™+ P [yge Hexg ], (2.12)
Xg,tt_l = Fa Xg,t—lt_1+ct—l Ug,t-1. (2.13)

The error covariance matrices P and P,""and the gain matrix K, are given by (2.8), (2.11) and
(2.9) respectively.

The date estimator has an intuitive interpretation. It reproduces the structure of the linear
model including athird term in the output-prediction error weighted with the gain matrix.
Notice that (2.12) and (2.13) follow because z,; and Y, generate the same s-field. The
covariance error matrix does not depend on the feedback law and can be precomputed as in
the classcd KF for LG systlems. Also natice that the control law g affects the conditiona
mean X' , but not the covariance matrix Py. This dragticaly smplifies the optima control
problem.

If the basic variables %, w; and v; are non-Gaussian, but their moments are as above, the
moments of the processes {X;:} and {yy:}reman the same as if the basc variables were
Gaussian. Then Xy asin (2.12) is only the best linear estimate and not the conditional mean
which is the best nonlinear estimate if the Gaussian hypothesis does not hold.

We consider feasible control policies of the form u = g (Z). Let g = (o,...,0n-1). Thenthe
finite horizon quadratic control problem isto find, for afinite time horizon N, the optimal
policy g that minimises the functiond

J0) = B { Do Ci(X,W) + o)}, (2.14)

where the one-stage cost functions ¢, are given by
CW) =% Acxet U’ Til,
Cn =X A



with A; and T, symmetric positive definite matrices.

In this section we state our main result. Our purpose now is to give the optima control for the
partialy observed LQG system when observation errors are detected not normally distributed
because they present asymmetry. The problem arises because at the etimation step, the
standard KF can not be applied. Thus, we propose a useful procedure to be used at the
esimation step. We provide a closed solution for the optima control strategy of the LQG
control problem when the observation errors are non- Gaussan. Our main contribution can be
summarised asfollows

Theorem 2.1. For the Linear Quadratic system given by (2.1) and (2.2) with asymmetric
observation errorsv; (non-Gaussan)

i) the optimal control strategy minimizing the cost functiond (2.14) isgiven by

Uy = Lo X (2.15)

where the state etimate X' is congtructed from the recursive Asymmetric KF (this is an
asymmetric verson of the KF developed in section 3) and

Li=-[Ti+C St CI'C SR (2.16)
with § recursively obtained backwards from F, C;, A; and T,, with the boundary condition
Si=Aw.
ii) the vaue function is given by
Viz X' )" SiXg +5,0EtEN, (2.17)

where S isrecursvely obtained as above, and s is recursively obtained backwards from S.4,
A, P, Pus' and Pas™, with the boundary condition

S=Tr (A PyY)

Theorem 2.1, which is proved in Section 3, is essentidly known except for the fact that we
assume asymmetric observation errors v, (non-Gaussian). As far as we know, our proposd is
new, and generd enough to cover awide variety of non-Gaussan red stuations.

Remark. Notice that the disturbance variables w and v do not appear in the control law.
There is a great amilarity between this solution and the optimd control law of the LQG
stochastic control problem for the case of accurate observation of the state (W, = v = 0
admost surdly). The only difference is that the estimator Xy, replaces in our case the state X,
itsdf in the control law. This fact is known as the Separation (or Certainty Equivalence)
Principle.

3. Proof of Theorem 2.1



To proof Theorem 2.1 let usfirst consder the following result for the Gaussian case.

Lemma 3.1. For the LQG problem defined by (2.1), (2.2) and (2.14), the optima control
policy depending on X', is obtained by the linear feedback relation

Uy = L Xy (3.1)
where

Li=-[Ti+C S CI' G S R, (3.2
Xqt iSgiven by (2.12) and (2.13), and S is recursively obtained backwards by

S=A+F{Ss1—SuC [T + C Su1 G ]_1 C' Su}pFe, t=N-1,N-2,...,0
(3.3

with the boundary condition
SN = AN. (34)

Proof. Applying dynamic programming methods, this result can be obtained asin [10].
|

We develop now the asymmetric version of the KF to be used in our gpproach.
Asymmetric Kalman filter and asymmetric prediction errors

The KF implementation is badicaly a sequence of filtering-prediction equations. The filtering
dep is obtained through a least squares minimisation and the prediction step is an update
procedure based on the state equation. It iswell known, for instance see [2], that the estimate
Xgt N (2.12), for each policy g ={Qo, ...On-1}, can be obtained through the following weighted
least squares minimisation, based on predictive values %, and R™* congtructed one-step
before

X! = agming (3™ - %) () 0™ - %) + (¥ - Ho) R - Ho)}3.5)
X1 R

We concentrate oursalves in the case of univariate observations.

Following [12], we replace the least squares estimation by the asymmetric least squares
esimation. For this purpose we gpply the asymmetric least squares estimator & the filtering
sep and we solve the following minimisation problem

Xgt =& gmin (%™ = %) (P ™ (™ = %)+ - Hox) T (RR)™ [y - Hex)]
x| R

+ [0 - Hox)'TT (R [ve - Hiox )T}, (3.6)



where
vi =min (v ,0) and v" =max(v , 0), (3.7)

where variances R, i = 12 are the unknown variances of the postive and negative
observation errors and should be estimated at each step. The explicit solution of (3.5) is the
Asymmetric KF

Xot = Xg T H P HT (H P HT + RY™ (W - Hox™ Crg)]

+ P HT (H PO HT + RO - Hex- Cowg)'] (38)

where the error covariance matrix P is il given by (2.11). Noticethat if R = R% = R, we
have the standard KF.
The next question is how to update R, and R..

We face now the one-step-ahead prediction errors with asymmetric observation errors.
Having in mind the strong dependence of the KF on the Gaussianity of the errors, we select an
approach successfully used in forecasting based on the split-norma didtribution. The plit
norma didribution is the most naturd asymmetric verson of the norma digribution. This
generdization is inspired by [11], which includes a discussion about accuracy of forecasting
with asymmetric errors usng severa methods including a split-norma moddisation. In [5], a
gmilar gpproach is suggested for asymmetric recursive estimation of AR(p) modéls.

The split-normal distribution
Let congder the following asymmetric probability dengty function

2S5 ,/S1(S11S2)) f ((X-m)/s 1) for xOm
fx)= i
&2s1/s2(S1+S2)) f (X-M)/s ) for x>m

where f gtands for the standard norma density. This dengty is known as the split-normal
density N(ms 1%, s?). For s; = s, we have the dassical normd distribution. The margina and
conditional moments of the centred split-normal digtribution N(0; s 1%, s5°) are

E[X"] = (((D)*s1*s, + s5*s1) G(k+1)/2) 22/ (pY? (s1+S2)) , for KOI1,
Va[X] =s1S2,
E[(X)% X<0] = s+,
E[(X")% X>0] = s,
where X" and X" are defined asin (3.7).

Using the split-normal N(O; s.% s.°) we can adeptivdy estimate the prediction error
variance one-step-ahead. L et us denote the prediction error by

&=y - Hox™, (3.9)



We use a centred split-normal distribution because we predict without bias. Our proposa is
to estimate variances (s %) and (s;?); by R% and R at each step asfollows:

Ri=Rui+ 1( &.4<0 ).d.(a-lz - Rit-l); I =12, (3.10)

where 1(.) isthe indicator function and d is a damping constant with O<d<1. Notice that usng
this approach we can derive probability limits on prediction based on the split-norma
distribution function. We need starting values R', and R%, provided dong with d.

To illugrate the behaviour of both, the KF and the Asymmetric KF, numerica smulations
have been performed. We filter observations generated by the system (2.1) and (2.2) with
perturbation errors v; generated by the asymmetric distribution log- (x%). Wefix H =1 and u
+ = 0. Figure 1 displays the performance of the sandard KF and the Asymmetric KF. It is
clearly seen that de AKF is closer to the true state than the standard KF.
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Figure 1.Behaviour of the KF (doted line) and the AKF (dashed line)

on 50 iterations. The smulated state (solid line) corresponds to the system
(2.1) and (2.2) with perturbation errors v; generated by the asymmetric
distribution log- (x%).

Proof of Theorem 2.1. The best linear estimate of Xy given z;" minimizing (3.6) depends on
the second order properties of X, and z;', and, moreover, this estimate and the corresponding
error covariance arethe same asif x4 and z, were jointly Gaussian. The explicit expression of



this linear estimate is given by (3.8) which is the Asymmetric KF . The corresponding error
covariance matrices P, and P.,;' are so obtained through the Asymmetric KF.

The linear feedback law of the optima control (3.1) is congtructed following Theorem
7.1.11in[10]; then i) holds. The explicit expresson of the vaue function (3.3) is obtained as
inLemma7.5.5in[10], thusii) holds. [

Notice that the disturbance variables w and v; do not appear in the control law, which
depends linearly on the date estimate. This control law is obtained by some certainty
equivaence principle.

5. Numerical results
We consder the following system

X1 = Fe X + G+ W,
Vi = He % + W,

asin(2.1) and (2.2), wherex 1 3,y;1 3,andul 3,andR=0.99,C,=1, H =11, Q=
15and R = 4. We assume that the dtate errors {w;} are independent N(0O,1) random
variables and the observations errors are independent  log-(C%) random (asymmetric)
variables.

In order to initidise the sandard KF and the Asymmetric KF, the initial values are taken x, =
0, P, =1, Ry=4.94 and R, = 1.5. The value % is the mean of the random unobservable
initid gatex; att =0 and P, isthe variance of thisinitia sate. We assume that this variable is
independent of the error variables w.. The cogt functiond is given by (2.14) with A°A and
T T. Wefix the damping congant d = 0.25. We implement the optima linear regulator (3.1)
for this system based on the standard KF, and the optima linear regulator (2.15 based on the
Asymmetric KF. To check the performance of these optimal controls, 500 replicated Monte
Carlo smulations were obtained under the same conditions in both cases. Our experimenta
design changesthe vaues (A, T) for each time horizon. Table 2 shows averaged index Jvalues
for each design. Each cdll givesthe index Jianaaa & the first row and the index Jeymmeric @ the
second row.

Horizon =20 | Horizon=50 | Horizon =100 | Horizon = 500

A=1 56.8363 149.4878 303.3282 2.2097e+003
T=0.1 37.3368 97.89.9 202.1712 1.4901e+003
A=1 74.3893 196.1582 403.6085 2.0118e+003




T=0.5 47.5302 124.7092 250.4215 1.287e+003
A=1 88.4834 209.5412 483.8569 2.4469e+003
T=0.9 53.7725 190.5484 290.1906 1.4849e+003
A=15 83.8060 219.2159 436.2675 2.2106e+003
T=0.1 55.0692 144.3561 290.3682 1.4898e+003

Table 2. Monte Carlo smulations on optimal linear regulator based on standard KF
(first value) and Asymmetric KF (second value) of the LQG system given by (2.1),
(2.2) and (2.14), with asymmetric observation errors generated by a log-C?
distribution. 500 replicates. Reported the averaged index J for each design: the first
value in each cell is Jgangard N the second value IS Jasymmetric:

Findly, the cost percentage reduction ((Jsandard — Jasymmetriq / Jsandara) A 100 gives the economy
obtained if the Asymmetric approach is used. From Table 2, the cost percentage reduction
takes vaues in the interva (32,16 , 40,02). Thus, as expected, the best behaviour
corresponds to the asymmetric approach..

6. Conclusions.

The paper presents a useful condruction of the optima linear control for LQG systems with
asymmetric observation errors. It has been obtained in a closed form given by a recursve
agorithm. This is a very aitractive computationa festure of our proposa. The Separation
Principle drives the feedback control law. The estimation step is based on an asymmetric
verson of the Kaman Filter. High performance of the asymmetric optima control versus the
gandard optima control has been shown. There is no extra computational cost usng the
asymmetric optima control solution, even if anomind gaussan hypothesis holds. Although we
smulate asymmetric errors by a log-C? digtribution, our approach is genera enough to be
used with any other asymmetric mode.

This methodology is dso ussful in estimation and smoothing problems such as autoregressve
time seriesmodds.

For numerical purposes we develop a Matlab code, which is available on request to the
author.
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