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This paper deals with the optimal quadratic control problem for non-Gaussian discrete-time
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problem for partially observable dynamic linear systems with asymmetric observation errors.
For this purpose an asymmetric version of the Kalman filter based on asymmetric least squares
estimation is used. We illustrate the applicability of our approach with numerical results
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1. Introduction

   The Linear Gaussian control problem with Quadratic cost functional (LQG) is probably the
most well-known quadratic control problem in both cases: discrete-time and continuous-time.
Unfortunately, no explicit controller design has been obtained in general for optimal control
problems with unobserved states. However, in adaptive control problems, the separation or
certainty equivalence principle provides a specific solution, and  the control is determined by
two steps: construct the optimal control as if the system were observable and replace the
unknown state in the control by the corresponding estimate (online); see [3] and [9]. In recent
terminology, this model can be viewed as a special case of a controlled HMM (Hidden
Markov Model); see [6].
   In control engineering there is an increasing interest in non-Gaussian systems because a
realistic statistical description of the quantities of interest, includes bimodal distributions, heavy
tailed distributions or in general non-Gaussian behaviours; see [7] and [8]. The Kalman Filter
(KF) has widely been used to construct the optimal solution for linear quadratic controlled
systems; see [1]. Departures from the Gaussianity of the noise distribution can drastically
disturb standard estimation and prediction procedures in dynamic linear systems.. In the recent
statistical literature several alternatives to the standard KF have been suggested; see [4].
Unexpected observed values (outliers) of LQG problems has been treated in [13].
   In this paper we give an explicit solution for the optimal control problem of discrete time
LQG system in the presence of asymmetry in the observation errors. It means that unexpected
asymmetric observation values are obtained, and then the Gaussian hypothesis does not hold.
We develop our approach provided the estimation step in the separation principle is carried
out through a modified version of the KF.
   The article is organized as follows. Section 2 discusses the model and summarises the main
results under Gaussian hypotheses. Our main result (Theorem 2.1) is then formulated. Section
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3 contains the proof of Theorem 2.1. For this purpose an asymmetric version of the KF is
introduced. In Section 4, numerical results showing best performance of the linear control
based on the Asymmetric KF are presented. Conclusions are in Section 5.

2. Model and set-up

We consider the discrete stochastic system

xt+1 = Ft xt + Ct ut + wt, (2.1)
yt = Ht xt + vt, (2.2)

where xt ∈ Rn  is the state vector, yt ∈ Rm is the measurement or observation vector and the
exogenous variable ut ∈ Rp is selected according to some policy based on the past
observations (separated policy). Ft ,Ct and Ht  are non-stochastic time-varying known
matrices of appropriate dimensions.
   The noise terms wt and vt are independent random variables with multinormal distributions
N(0,Qt) and N(0,Rt), respectively. We assume that the covariance matrices Qt and Rt are
known. The initial conditions are given by the Gaussian variable x0 following the multinormal
distribution N(0,P0) and the covariance matrix P0.
  The information available at time t is given by zt = (Yt,  Ut-1) = (y0,..., yt,  u0,...,ut-1). The
sequences of variables zt and Yt generate the same σ-field. The error term considered here is
a martingale difference with respect to the increasing sequence of σ- fields zt. We observe that
the control variable ut influences both the future state xt+1 and the future available information
zt+1.
  From this general formulation some particular cases can be considered. For instance, if
Ht = I and vt = 0, we have a perfectly observable stochastic system. The filtering problem is
obtained in the non-controlled case (Ct = 0 or ut = 0).
  Let us consider the case ut = 0. We have a linear Gaussian system (LG) for which the
standard KF gives explicit expressions for the estimator and the predictor. The random
variables xt, xt+1 and Yt are jointly Gaussian.  The conditional density functions of the random
variables (xt/zt) and (xt/zt-1) are given by the multinormal distributions N(xt

t, Pt
t) and N(xt

t-1, Pt
t-

1) respectively, where,

xt
t := E {xt/Yt}, (2.3)

 Pt
t := E {(xt-xt

t)(xt-xt
t)T/Yt  }. (2.4)

We have similar expression for the one-step-ahead predictor

xt
t-1 := E {xt/Yt-1}, (2.5)

Pt
t-1 := E {(xt-xt

t-1)(xt-xt
t-1)T/Yt-1}, (2.6)

Notice that xt
t is sufficient to characterise the probabilistic behaviour of the information state.

   Thus the estimate and the covariance error matrix are given by

xt
t = xt

t-1 + Kt (yt -Ht  xt
t-1), (2.7)

Pt
t = Pt

t-1 - Kt Ht Pt
t-1, (2.8)
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where the gain matrix Kt   is

Kt := Pt
t-1 Ht

T [Ht Pt
t-1 Ht

T + Rt]-1. (2.9)

 The one-step-ahead predictor and the covariance error matrix are given by

xt
t-1 = Ft-1 xt-1

t-1 , (2.10)
Pt

t-1 = Ft-1 Pt-1
t-1 Ft-1

T + Qt-1, (2.11)

   In the general case, ut is selected according to some feedback policy g={g0, g1....}. Then the
system is described by equations (2.1) and (2.2) with state and observation variables given by
xg,t and yg,t  respectively. The control variable is given by ug,t = gt ( zg

t) = gt (yg,0, yg,1, …, yg,t,

ug,0, ug,1, …, ug,t-1). If the function gt is not linear, the corresponding processes xg,t, yg,t and ug,t

are not Gaussian even if x0, wt and vt are Gaussian,. However, we can ensure a Gaussian
conditional density for the information state even if the feedback function gt is nonlinear.
Moreover, the conditional density functions of the random variables (xg,t/zg

t) and (xg,t/zg
t-1) are

given by the multinormal distributions N(xg,t
t, Pt

t) and  N(xg,t
t-1, Pt

t-1) respectively.
   Thus the estimate and the predictor are given by

xg,t
t = xg,t

t-1 + Pt
t [yg,t- Ht xg,t

t-1] , (2.12)
xg,t

t-1 = Ft-1 xg,t-1
t-1+Ct-1 ug,t-1. (2.13)

The error covariance matrices Pt
t and Pt

t-1and the gain matrix Kt are given by (2.8), (2.11) and
(2.9) respectively.
   The state estimator has an intuitive interpretation. It reproduces the structure of the linear
model including a third term in the output-prediction error weighted with the gain matrix.
Notice that (2.12) and (2.13) follow because zg,t and Yg

t generate the same σ-field. The
covariance error matrix does not depend on the feedback law and can be precomputed as in
the classical KF for LG systems. Also notice that the control law g affects the conditional
mean xg,t

t , but not the covariance matrix Pt
t. This drastically simplifies the optimal control

problem.
   If the basic variables x0, wt and vt are non-Gaussian, but their moments are as above, the
moments of the processes {xg,t} and {yg,t}remain the same as if the basic variables were
Gaussian. Then xg,t

t as in (2.12) is only the best linear estimate and not the conditional mean
which is the best nonlinear estimate if the Gaussian hypothesis does not hold.
   We consider feasible control policies of the form ut = gt (zt). Let g = (g0,…,gN-1). Then the
finite horizon quadratic control problem  is to find, for a finite time horizon N, the optimal
policy g that minimises the functional

J(g) := Eg {�t=0
N-1 ct(xt,ut) + cN(xN)}, (2.14)

where the one-stage cost functions ct are given by
ct(xt,ut) = xt

T At xt + ut
T Tt ut, 

cN = xN At xN
T,
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with At and Tt symmetric positive definite matrices.

In this section we state our main result. Our purpose now is to give the optimal control for the
partially observed LQG system when observation errors are detected not normally distributed
because they present asymmetry. The problem arises because at the estimation step, the
standard KF can not be applied. Thus, we propose a useful procedure to be used at the
estimation step. We provide a closed solution for the optimal control strategy of the LQG
control problem when the observation errors are non-Gaussian. Our main contribution can be
summarised as follows

Theorem 2.1.  For the Linear Quadratic system given by (2.1) and (2.2) with asymmetric
observation errors vt  (non-Gaussian)

i) the optimal control strategy minimizing the cost functional (2.14) is given by

ug,t = Lt xg,t
t, (2.15)

where the state estimate xg,t
t is constructed from the recursive Asymmetric KF (this is an

asymmetric version of the KF developed in section 3) and

Lt = - [Tt + Ct
T St+1 Ct]-1 Ct

T St+1 Ft, (2.16)

with St recursively obtained backwards from Ft, Ct, At and Tt, with the boundary condition

SN = AN.

ii) the value function is given by

Vt =  (xg,t
t )T St xg,t

t + st , 0≤ t ≤ N, (2.17)

where St is recursively obtained as above, and st is recursively obtained backwards from St+1,
At, Pt

t, Pt+1
t and Pt+1

t+1, with the boundary condition

SN = Tr (AN PN
N)

Theorem 2.1, which is proved in Section 3, is essentially known except for the fact that we
assume asymmetric observation errors vt  (non-Gaussian). As far as we know, our proposal is
new, and general enough to cover a wide variety of  non-Gaussian  real situations.

Remark. Notice that the disturbance variables wt and vt do not appear in the control law.
There is a great similarity between this solution and the optimal control law of the LQG
stochastic control problem for the case of accurate observation of the state (wt = vt  = 0
almost surely). The only difference is that the estimator xg,tt replaces in our case the state xt

itself in the control law. This fact is known as the Separation (or Certainty Equivalence)
Principle.

3. Proof of Theorem 2.1
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To proof  Theorem 2.1 let us first consider the following result for the Gaussian case.

Lemma 3.1. For the LQG problem defined by (2.1), (2.2) and (2.14), the optimal control
policy depending on xg,t

t, is obtained by the linear feedback relation

ug,t = Lt xg,t
t, (3.1)

where

Lt = - [Tt + Ct
T St+1 Ct]-1 Ct

T St+1 Ft, (3.2)

xg,t
t is given by (2.12) and (2.13), and St is recursively obtained backwards by

St = At + Ft {St+1 – St+1Ct [Tt  + Ct
T St+1 Ct ]-1 Ct

T St+1}Ft  , t = N-1, N-2,…,0
(3.3)

with the boundary condition
SN = AN. (3.4)

Proof. Applying dynamic programming methods, this result can be obtained as in [10]. 
n

We develop now the asymmetric version of the KF to be used in our approach.

Asymmetric Kalman filter and asymmetric prediction errors

  The KF implementation is basically a sequence of filtering-prediction equations. The filtering
step is obtained through a least squares minimisation and the prediction step is an update
procedure based on the state equation. It is well known, for instance see [2], that the estimate
xg,t

t in (2.12), for each policy g = {g0, …gN-1}, can be obtained through the following weighted
least squares minimisation, based on predictive values xg,t

t-1 and Pt
t-1 constructed one-step

before

xg,t
t  = argmin{( xg,t

t-1 - xt )T(Pt
t-1) -1(xg,t

t-1 - xt) + (yt - Ht xt)TRt
-1(yt - Ht xt)}(3.5)

   xt ∈Rn

We concentrate ourselves in the case of univariate observations.
   Following [12], we replace the least squares estimation by the asymmetric least squares
estimation. For this purpose we apply the asymmetric least squares estimator at the filtering
step and we solve the following minimisation problem

xg,t
t = argmin ( xg,t

t-1 - xt )T (Pt
t-1) -1 (xg,t

t-1 - xt) +[(yt - Ht xt)-]T (R1
t)-1 [(yt - Ht xt)-]

xt ∈Rn 

+ [(yt - Ht xt )+]T (R2
t)-1 [(yt - Ht xt )+] }, (3.6)
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where

vt
- = min (vt ,0)  and  vt

+ = max(vt , 0), (3.7)

where variances Ri
t , i = 1,2 are the unknown variances of the positive and negative

observation errors and should be estimated at each step. The explicit solution of (3.5) is the
Asymmetric KF

xg,t
t = xg,t

t-1 + Pt
t-1 Ht

T (Ht Pt
t-1 Ht

T + R1
t)-1 [(yt - Ht xt

t-1- Ct ug,t)-]   

+ Pt
t-1 Ht

T (Ht Pt
t-1 Ht

T + R2 t)-1[(yt - Ht xt
t-1- Ct ug,t)+]  (3.8)

where the error covariance matrix Pt
t-1 is still given by (2.11). Notice that if  R1

t = R2
t = Rt  we

have the standard KF.
   The next question is how to update R1

t  and R2
t.   

   We face now the one-step-ahead prediction errors with asymmetric observation errors.
Having in mind the strong dependence of the KF on the Gaussianity of the errors, we select an
approach successfully used in forecasting based on the split-normal distribution. The split
normal distribution is the most natural asymmetric version of the normal distribution. This
generalization is inspired by [11], which includes a discussion about accuracy of forecasting
with asymmetric errors using several methods including a split-normal modelisation. In [5], a
similar approach is suggested for asymmetric recursive estimation of AR(p) models.

The split-normal distribution

Let consider the following asymmetric probability density function

(2σ2/σ1(σ1+σ2)) φ((x-µ)/σ1) for x�µ
f(x)=  

(2σ1/σ2(σ1+σ2)) φ((x-µ)/σ2) for x>µ

where φ stands for the standard normal density. This density is known as the split-normal
density N(µ;σ1

2 , σ2
2). For σ1 = σ2 we have the classical normal distribution. The marginal and

conditional moments of the centred split-normal distribution N(0; σ1
2, σ2

2) are

E[Xk] = ((-1)kσ1
kσ2 + σ2

kσ1) Γ((k+1)/2) 2k/2 / (π1/2 (σ1+σ2)) , for k�1,
Var[X] = σ1 σ2 ,
E[(X-)2/ X<0] =  σ1

2,
E[(X+)2/ X>0] =  σ2

2,

where X- and X+ are defined as in (3.7).

   Using the split-normal N(0; σ1
2, σ2

2) we can adaptively estimate the prediction error
variance one-step-ahead. Let us denote the prediction error by

et = yt - Ht xt
t-1, (3.9)
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   We use a centred split-normal distribution because we predict without bias. Our proposal is
to estimate variances  (σ1

2)t and (σ2
2)t

   by  R1
t  and R2

t at each step as follows:

Ri
t = Ri

t-1 + 1( et-1<0 ).δ.(et-1
2 - Ri

t-1),  i =1,2, (3.10)

where 1(.) is the indicator function and δ is a damping constant with 0<δ<1. Notice that using
this approach we can derive probability limits on prediction based on the split-normal
distribution function. We need starting values R1

0 and R2
0
 provided along with δ.

To illustrate the behaviour of both, the KF and the Asymmetric KF, numerical simulations
have been performed. We filter observations generated by the system (2.1) and (2.2) with
perturbation errors vt generated by the asymmetric distribution  log- (×2

1). We fix Ht = 1 and u
t = 0. Figure 1 displays the performance of the standard KF and the Asymmetric KF. It is
clearly seen that de AKF is closer to the true state than the standard KF.

0 10 20 30 40 50
-5

-4

-3

-2

-1

0

1

2

3

4

Figure 1.Behaviour of the KF (doted line) and the AKF (dashed line)
on 50 iterations. The simulated state (solid line) corresponds to the system
(2.1) and (2.2) with perturbation errors vt generated by the asymmetric
distribution  log- (×2

1).

Proof of Theorem 2.1. The best linear estimate of xg,t given zg
t minimizing (3.6) depends on

the second order properties of xg,t and zg
t, and, moreover, this estimate and the corresponding

error covariance are the same as if xg,t and zg
t were jointly Gaussian. The explicit expression of
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this linear estimate is given by (3.8) which is the Asymmetric KF . The corresponding error
covariance matrices Pt

t and Pt+1
t are also obtained through the Asymmetric KF.

   The linear feedback law of the optimal control (3.1) is constructed following Theorem
7.1.11 in [10]; then i) holds. The explicit expression  of the value function (3.3) is obtained as
in Lemma 7.5.5 in [10], thus ii) holds. n

Notice that the disturbance variables wt and vt do not appear in the control law, which
depends linearly on the state estimate. This control law is obtained by some certainty
equivalence principle.

5. Numerical results

We  consider the following system

xt+1 = Ft xt + Ct ut + wt,
yt = Ht xt + vt,

as in (2.1) and (2.2), where xt ∈ 3, yt ∈ 3, and ut ∈ 3, and Ft = 0.99 , Ct = 1,  Ht  = 1.1,  Qt =
1.5 and  Rt  = 4. We assume that the state errors {wt} are independent  N(0,1) random
variables and the observations errors are independent  log-(Χ2

1) random (asymmetric)
variables.

 In order to initialise the standard KF and the Asymmetric KF, the initial values are taken x0 =
0, P0 =1 , R1

0 = 4.94 and R2
0 = 1.5. The value x0 is the mean of the random unobservable

initial state xt  at t = 0 and P0 is the variance of this initial state. We assume that this variable is
independent of the error variables wt. The cost functional is given by (2.14) with At≡A  and
Tt≡T. We fix the damping constant δ = 0.25. We implement the optimal linear regulator (3.1)
for this system based on the standard KF, and  the optimal linear regulator (2.15 based on the
Asymmetric KF. To check the performance of these optimal controls, 500 replicated Monte
Carlo simulations were  obtained under the same conditions in both cases. Our experimental
design changes the values (A, T) for each time horizon. Table 2 shows averaged index J values
for each design. Each cell gives the index Jstandard   at the first row and the index Jasymmetric at the
second row.

Horizon = 20 Horizon = 50 Horizon = 100 Horizon = 500
A=1

T=0.1
56.8363
37.3368

149.4878
97.89.9

303.3282
202.1712

2.2097e+003
1.4901e+003

A=1 74.3893 196.1582 403.6085 2.0118e+003
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T=0.5 47.5302 124.7092 250.4215 1.287e+003
A=1

T=0.9
88.4834
53.7725

209.5412
190.5484

483.8569
290.1906

2.4469e+003
1.4849e+003

A=1.5
T=0.1

83.8060
55.0692

219.2159
144.3561

436.2675
290.3682

2.2106e+003
1.4898e+003

Table 2. Monte Carlo simulations on optimal linear regulator based on standard KF
(first value) and Asymmetric KF (second value) of the LQG system given by (2.1),
(2.2) and (2.14), with asymmetric observation errors generated by a log-Χ2

1

distribution. 500 replicates. Reported the averaged index J for each design: the first
value in each cell is Jstandard and the second value is Jasymmetric.

Finally, the cost percentage reduction ((Jstandard – Jasymmetric) / Jstandard)Í100 gives the economy
obtained if the Asymmetric approach is used. From Table 2, the cost percentage reduction
takes values in the interval  (32,16 , 40,02). Thus, as expected, the best behaviour
corresponds to the asymmetric approach..

6.  Conclusions.

   The paper presents a useful construction of the optimal linear control for LQG systems with
asymmetric observation errors. It has been obtained in a closed form given by a recursive
algorithm. This is a very attractive computational feature of our proposal. The Separation
Principle drives the feedback control law. The estimation step is based on an asymmetric
version of the Kalman Filter. High performance of the asymmetric optimal control versus the
standard optimal control has been shown. There is no extra computational cost using the
asymmetric optimal control solution, even if a nominal gaussian hypothesis holds. Although we
simulate asymmetric errors by a log-Χ2

1 distribution, our approach is general enough to be
used with any other asymmetric model.
   This methodology is also useful in estimation and smoothing problems such as autoregressive
time series models.

For numerical purposes we develop a Matlab code, which is available on request to the
author.
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