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Abstmct- A very important issue in multi-agent 
systems is that of adaptability to other agents, be 
it to cooperate or to compete. In competitive do­
mains, the knowledge about the opponent can give 
any player a clear ad1llllltage. In previous work, we 
acquired models of another agent (the opponent) 
based only on tbe observation of its inputs and out­
puts (its behavior) by formulating the problem as 
a classification task. In this paper we extend this 
previoWl work to the RoboCup domain. However, 
we have ·found that models based on a single classi­
fier have bad accuracy, To solve this problem, in this 
papeJ' we propose to decompose the learning task 
into two tasks: learning the action name (I.e. kick 
or dash) and learning the parameter of that action. 
By using this hierarchical learning approach accu­
racy results improve, and at worst, the agent can 
know what action tbe opponent will carry out, even 
if tbere is no high accuracy on the action parameter. 

Keywonla--opponent's model, robosoccer, machine 
learning 

I. INTRODUCTION 

In competitive domains, the knowledge about the op­
ponent can give any player a clear advantage. This idea 
lead us to propose an approach to acquire models of an­
other agent (the opponent) based only on the observa­
tion of its inputs and outputs (it's behavior) by solving 
a classification task [2}_ A model of another agent was 
built 88 one classifier that would take the saJ11e inputs as 
the opponent and would produce its predicted output. 
In this paper we present an extension of this previous 
work to a well known test domain, the RoboCup [6). 
Here, models ba.sed on only one classifier ha.ve poor re­
suIts, so we ha.ve extended this idea with a structure of 
classifiers. 

The behavior of a player in the robosoccer can be un­
demtood in terms of its inputs (sensors readings) and 
outputs (actions). Therefore, we can draw an analogy 
with 8 classification task in which. each input sensor 
reading of the player will be represented as an attribute 
that can have as many values as the corresponding input 
parameter. Also, we can define a class for ea.ch possible 
output. Therefore, the task of acquiring the opponent 
model has been translated into a classification task. 

In previous papers we have presented results for 
agents whose outputs, are discrete [2], agents with con­
tinuous and discrete outputs [9] and an implementa­
tion of the acquired model in order to test its accu­
racy [8). Here, "" use the logs produced by another 

team's player to predict its actions using a hierarchical 
learning scheme. 

Recent work aiso related with modeling opponent's 
model applied to the RoboCup domain can be fouod 
in [17), [15). [5). 

The remainder of the paper is organized as follows. 
Section II gives an overview of the Robocup domain. 
Section III presents a short summary on our leaming 
approach to modeling. Section N explains the experi­
mental setup. Actual results are detailed in Section V. 
The paper finishes with some concluding remarks and 
future works, Section VI. 

H. RoBOCUP 

- By the year 2050. develop a team of fully autonomous 
humanoid robots that can win against the human world 
soccer champion team -. This is the long-term ambitious 
challenge of the Robocup. This international initiative 
fosters the research and education in the artificial in­
telligence and robotics fields [7). The main idea is to 
provide a standard problem in which a wide range of 
technologies can be applied and mixed. This initiative 
mainly promotes the development of technologies that 
use cooperation between agents in dynamic multi-agents 
environments. 

The primary domain used by the Robocup organiza­
tion as the standard problem is the soccer game and or­
ganizes RoboCup: The Robot World Cup Soccer Games 
and Conferences. 

Despite the soccer game is the main underlying test­
bed, the Robocup also includes a disasters rescue com­
petition. The soccer competition has four categories, 
simulation, small-size robots, mid-size robots and legged 
robots. In this work we focus on the simulation version 
that we will describe next. 

The base of the simulation league of RoboCup is the 
Soccer Server System [11). This is a server-client soft­
ware system. The Soccer Server provides a virtual field 
in which two soccer teams can play a m$tch. The server 
simulates all movements of the ball and play"", (clients) 
and when the clients send a request to execute an action 
(e.g. turn, run, kick the ball, etc.), the server modifies 
the current state of the world that it has. Additionally, 
the server sends periodically information about the envi­
ronment to each agent (e.g. information about the posi­
tion of other players, ball, goals, etc.). This information 
can be noisy and incomplete. The player only receives 
information about the objects in its vision range. 

The team's members are eleven independent players 
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as well as 8. coach agent. The brain of a each player on 
the field is a client that controls the actions of the player 
and communicates with the server through a standard 
network protocol with well-defined actions. 

A standard game lasts for about 10 minutes, with each 
half being 5 minutes duration. The server work with 
discrete time intervals known as "cycles". A second has 
ten cycles, thus, a standard game have 6000 cycles. In 
each cycle, an agent can send an action to the server, 
and also receive information about the world from the 
server every 6 or 7 times per second. 

ilL AUTOMATIC ACQUISITION OF MODELS 

We will first present a description of a player behav­
ior in terms of its inputs and outputs. H we think in 
all its possible inputs, we could represent them in terms 
of a set of input parameters. Therefore, there is a clear 
analogy with a classification task in which each input pa­
rameter of the player will be represented as an attribute 
that can ha"Ve as many values as the corresponding input 
parameter. With respect to the output, since we have 
selected a set of tasks that have the characteristic of gen­
erating one--step decisions (solutions that do not require 
a set of steps, as in planning), we can think of them as 
atomic outputs. In terms of a classification task, this 
allows to define a class for each possible output. Then, 
the task of modeling (generating a declarative represen­
tation of a player behavior) has been translated. into a 
classification task. 

Once we have a classification task, any classification 
technique, c, could he employed for solving the task: 
instance based learning [1), learning decision trees [12), 
learning rules( [10), [13)), or neural networks [16). How­
ever, we would like to obtain a declarative representa.­
tion so that it is easier to understand and debug the 
knowledge obtained. Therefore, we will use a technique 
that generates symbolic representations, such as deci .. 
sion trees, or rules. 

The actual learning task can be described as follows: 
• Inputs: 

- Set of attributes that models the input parameters 
(sensors readings) of player PI (i.e. from the vision sen ... 
sor: distance to the ball, ball direction, etc). 

- For each attribute, the set of values that its corre.­
sponding input parameter can have (i.e. distance to the 
ball = 0.7 meters, ball direction = -21 degrees). 
- Set of possible outputs in the case of discrete classes, 

and continuous range in the case of continuous classes 
(i.e. action: kick, dash, turn, etcj kick direction = -180 
to 180 degrees). 
- Set of training instances T. 

• Output: a classifier that provideS the same (or ap­
praximate) output as player PI would provide given the 
same input instances. 

The general framework -is described in Figure 1, which 
shows the interrelation among player PI, player P2 that 
tries to learn and reason about a model of PI, the classi­
fication technique c ~ for modeling its behavior, and 
the obtained classifier m (model of PI). This classifier m 
should model the behavior of player PI, in such a way 
that if one presents the same set of input patterns to 

both PI and m the error between the output provided 
by Pl and m should he minimal. 

In this case, the model m is a hierarmical combination 
of several models as we will describe in Section N. 

IV. EXPERIMENTAL SETUP 

This section describes the experimental sequence to 
determine whether the knowledge generated by a player 
1'2 is able to model the behavior of a player PI, taken as 
a black box. To do so we have carried out two phases: a 
player of a good Robocup team plays and we record its 
actiOns; and a training phase for obtaining a model m 
of PI. Currently, the agent to be modeled has no oppo­
nents, so that we can determine whether models can be 
acquired in the simplest of cases. Its goal is to direct the 
ball and kick it to score a goal. The player receives envi· 
ronment information through the soccer server in form 
of aural, vision and body sensors (inputs). The player 
sends the actions through the soccer server (outputs). 

Once the logs of player Pl have been acquired, the 
knowledge that tries to model the behavior of Pt is 
obtained. by two different techniques: a rule modeler 
(C4.5 [13), discretized outputs) and a regression tree 
modeler (M5 [14), continuous outputs). The detailed 
steps for obtaining the opponent model are as follows: 
1. The player Pl plays alone several games. At every 
instant, the readings of the sensorS (inputs) and the 
actions (outputs) are logged to produce a trace of the 
player behavior. From this trace it is straightforward to 
obtain a set of examples T so that another player can 
learn and model Pl. 
2. Let T he the wbole set of available examples from 
PI inputs and outputs. Each example t. E T is made 
of two parts: an n-dimensional vector representing the 
attributes a(ti) and a value c(t.) representing the class 
it belongs to. 
3. When the actions c(~) in T are a combination of dis­
crete and continuous values (e.i. dash 100). we create 
a set of instances T with only the discrete part of the 
actions, and a set T; for each parameter of the action 
using only the examples corresponding to the same ac­
tion. That is, the name of the action and the parameter 
of the action will be learned separately. For instance, 
if the action executed by the player is "dash 100" only 
dash will be part ofT and the value 100 will he in T ... h 

with all the instances whose class is dash. 
4. The set TIs used. to obtain a model of the action 
names (i.e. predict the action that the player will exe­
cute). We used a rule inducer for this task. The T; are 
used to generate the continuous values parameters ass0-

ciated to its corresponding action. We used a regression 
tree inducer for this task. Since the class part of the 
examples in t and T; is generated from the PI outputs, 
the rules model the behavior of PI. 
5. Once all classifiers are built, in order to predict the 
behavior of the opponent, first the classifier that pre­
dicts the action is run in order to know which action 
should be taken. Second, the associated classifier that 
predicts the value of the action parameter is executed. 

A gen~al description of the hierarchicalleaming ap­
proach is shown in Figure 2. 
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Fig. 2. Hierarchica1leaming a.pproach. 

V. RESULTS 

For the experimental evaluation Of the approach pre­
sented in this paper, the player whose actions will he 
predicted is a member of TsinghuAeolus [18], \he cham­
pion team of the 2001 RoboCup edition. The techniques 
to model this player have been C4.5 [13] and M5 [14]. 
c4.5 generates rules and M5 generates regression trees. 
The la.tter are also rules, whose then-part is a linear 
combination of the ~ues of the input parameters. In 
the first series of experiments, we did not use the hier­
archicallea.rning scheme described in Section IV and in 
the second series we used this scheme. 

A. Simple Step 

As a first approximation to the problem, we saved the 
logs of one TsingbuAeolus's player in a raw manner to 
apply a machine learning technique in order to obtain 
a model. In this caoe we only saved the logs of a half 
time of the match (291 instances). We used 140 at­
tributes including the infonnation about the field flaga­
and the ball (vision sensor), and· the information from 
the sen.se body (stamina, speed, head angle, etc). The 
class was any combination of the actions that can be exe­
cuted at the same cycle (e.g. dash-turn..neck) with the 
correspo"uding numeric value if it has parameters. (e.g. 
dashlOO- turn..neckl03.13). These numeric values were 
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obtained discretizing the original values using a variant 
of the generalized Lloyd algorithm [4J. This is referred 
as trial 01 in Table L This configuration obtains more 
than 45% accuracy of prediction of action to be per­
formed by the opponent plus its associated discreti2ed 
parameters, which, considering there are 51 classes is 
not a bad percentage, but we felt we needed to obtain 
better results. In all the experiments that we have car­
ried out, the accuracy column is a result of a ten-fold 
cr~validation. 

In order to improve the results, we increased the num­
ber of instances by increasing the duration of the game. 
We also added two derived attributes: the X and Y c0-

ordinates. In this way, they do not have to be learned 
from the field Bags, a.nd the learning task should become 
easier. As a consequence, the number of attributes is 
greatly reduced by eliminating the attributes related to 
most of the field flags (only the main flags were left). 
In this trial the number of classes were increased be­
cause there are many more instances, and the numeric 
ranges are wider. We also applied the variant of the 
generalized Lloyd algorithm to the continuous class for 
discreti2ing those classes. Results can be seen in trial 
02 of Table I. A 55.72% of accoracy is achieved, even 
though the number of classes was increased. 

In the analysis of the resulting model of the previ­
ous IDcperiment, we saw that the attributes with a large 
number of missing values generated a model which is 
very difficult to understand. Therefore, we substituted 
the unknown values of some attributes with large real 
values for attributes belonging to objects which were 
out of view (for instance, when a flag is too far to be 
seen). By dOing so, the accuracy remains almost the 
same (55.57%) but the model makes more sense. Re­
sults can be seen in trial 03 of Table I. 

We analyzed the resulting confusion matrix from trial 
03 and found that there were many classes with very 
few instances, which made them very difficult to learn. 
We decided to test what accuracy could be obtained by 
trying to predict the actions only, without their param­
eters, therefore reducing greatly the number of classes. 
For instance, all classes like dashlOO - turn_neck103.13 
would be compacted to dash - turn..neck, leaving pa­
rameter learning for later. The number of classes is re-­
duced now to 7: narrowhigh-tum-turnne<k, wide--high, 
dash, dash-turnneck, kick, turn, and turnneck. Dash­
turnneck means that both actions are performed con­
currently. Like in the previous trials we did experi­
ments with and without missing values. Classification 
accuracy improves to 69.66% (trial 04, with missing val­
ues) and 72.82% (trial 05, without missing values), as 
shown in Table L Those prediction 8ccuracies are rea­
sonable enough for our purposes in such a noisy domain 
as Robocup is. 

B. Hiemrchicallearning 

After the first approximation to the problem de­
scribed in the previous section, we decided to learn the 
actions and their parameters separately. We also de­
cided to learn only the four main actions (view, dash, 
kick and turn) because those are the most relevant when 

TABLE I 
FIRST EXPERIMENTS. >lE MEANS NO MISSING VALUES 

Trial 
01 
02 
03' 
04 
05' 

Instances 
291 
2595 
2595 
2595 
2595 

Attributes 
140 
32 
32 
32 
32 

Classes 
51 
69 
69 
7 
7 

Accuracy 
45.36% 
55.72% 
55.57% 
69.66% 
72.82% 

predicting the opponent's behavior. In these experi~ 
ments we used only 32 attributes (main field flags and 
sensor body information), like in trial 05 of Table I. 

First, we used the complete set of instances to learn 
a model that can predict the action that the opponent 
will perform using c4.5. Results can be seen in trial 06 
in Table II. A 72.74% accuracy is obtained, similarly to 
the previous section. Then, for every action, a regre&­
sion tree was learned by the M5 algorithm, to model the 
parameters (which are continuous values). These pa.­
rameters are: turn-angle (TA), dash-power (DP), kick­
power (KP) and kick-direction (KD). Results can be 
seen in trials 07 to 10 in Table n. C mea.ns that the 
class is continuous and CC means that the accuracy is 
expressed 88 a Correlation Coefficient. 

Trial Predict o. Main 
action 

01 TA 
08 OP 
09 KP 
10 KO 
11 KO 
12 TA 
13 KO 
14 TA 

TABLE 11 
HIERARCHICAL LEARNING 

Algorithm Instances 
c4.5 2594 

M5 321 
M5 1331 
M5 92. 
M5 .2' 

c4.5 '2' 
c4.5 321 

NBayes .2' 
NBayes 321 

ClastIe8 Accuracy 

• 72.74% 

C 0.52CC 
C 0.94CC 
C 0.83CC 
C 0.58CC 
5 62.10% 
5 62.30% 
5 45.64% 
5 48.91% 

Results for the Dash-power (DP) and Kick-power 
(KP) are quite good (0.9SCC and 0.83CC, respectively). 
But for the angle-related parameters Turn-angle (TA) 
and Kick-direction (KD), the correla.tion coefficients are 
worse (0.52% and 0.58%, respectively). For this reason 
we discretized by hand the continuous values of these 
parameters and then we usect two algorithms (c4.5 AND 

NAIVE BAYES) for discrete classes. After discretization, 
5 classes reeulted: center (5O"to _50°), center-left (50° 
to 100°), center-right (_50° to -100"), left (100° to 180°), 
and right (-lOO" to _180°). We tried to have a finer dis­
cretization at those angles where predicting the oppo-. 
nent IS behavior is more useful. For instance, we con· 
sidered that it is more useful to predict the direction 
of the movement (or the ball kick direction) when the 
opponent moves forward than when it goes backward. 
Results can be seen in trials 11, 12, 13, and 14 (Ta­
ble 11). They are better when using c4.5 {62.1O% KD 
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and 62.30% TA) than Naive Bayes (45% KD and 48.91% 
TA). We also wanted to compare discretized results with 
previously obtained continuous results. This is difficult, 
because discretized results given by c4.5 are less pre­
cise than continuous values returned by M5, and there­
fore the predicted behaviour of the opponent is more 
uncertain. But assuming that predicting the 5 discrete 
classes (center, center~rightt ete) is all we need, then M5 
and c4.5 can be compared by diBcretizing M5's output 
into the 5 classes and computing the percentage accu­
racy. To achieve this, we &plitted randomly the instances 
into a training and a test sets (80%/20%). With respect 
to the Turn-angle, c4.5 obtains 64% whereas M5 gives 
a 54% accuracy. Similar results are obtained for the 
Kick-direction: 61% for c4.5 and 44% for M5. SO, if 
the diBcretized output is all we need, c4.5 is the best 
option. 

VI. CONCLUSION ANI> FUTURE WORKS 

A very important issue in multi-agent systems is that 
of adaptability to other agents, be it to cooperate or to 
compete. This can be achieved by learning techniques. 
In this paper we have studied several issues related to 
predicting the behavior of opponent's actions in the ~ 
bosoccer domain. Several experiments have been carried 
out to determine how many attributes should be used, 
how the readability of the model can be improred, and 
how useful is discretization in this domain. But the 
most important contribution is to separate the oppo­
nent's prediction in two parts. First, we learn what the 
other agent is going to do, then we learn the numerical 
parameter of its action. By doing this, the prediction 
of the opponent's action is increased. This is important 
because, even jf we do not know the strength of the 
kick, the agent knows at least that it is going to kick, 
instead of dashing. We ha"" called this schema hierar­
chical learning. Other learning levels could be set on 
top of them, like learning the sequence of actions, etc. 

In the future, we would like to get better accuracies 
for the Thrn-angle and Kick-direction classes. We ob­
served that the center class includes most of the in­
stances, so misclassifying instances belonging to other 
classes is less important for the algorithm. This could 
be solved by carrying out cost-based learning [3[, so 
that classes with few instances have a higher cost when 
misclassified. Also, although cross-validation results re­
ported here give a good approximation about the qual­
ity of the prediction, actual results can only be obtained 
when the resulting model is used by an agent to predict 
the opponent's behavior. We plan to do this in the near 
future. 
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