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Context-based scene recognition from visual data in smart homes:
an Information Fusion approach

Juan Gómez-Romero • Miguel A. Serrano •

Miguel A. Patricio • Jesús Garcı́a • José M. Molina

Abstract Ambient Intelligence (AmI) aims at the devel-

opment of computational systems that process data

acquired by sensors embedded in the environment to sup-

port users in everyday tasks. Visual sensors, however, have

been scarcely used in this kind of applications, even though

they provide very valuable information about scene

objects: position, speed, color, texture, etc. In this paper,

we propose a cognitive framework for the implementation

of AmI applications based on visual sensor networks. The

framework, inspired by the Information Fusion paradigm,

combines a priori context knowledge represented with

ontologies with real time single camera data to support

logic-based high-level local interpretation of the current

situation. In addition, the system is able to automatically

generate feedback recommendations to adjust data acqui-

sition procedures. Information about recognized situations

is eventually collected by a central node to obtain an

overall description of the scene and consequently trigger

AmI services. We show the extensible and adaptable nature

of the approach with a prototype system in a smart home

scenario.

Keywords Ambient intelligence � Computer vision �
Data and information fusion � Context � Ontologies

1 Introduction

Ambient Intelligence (AmI) envisions a future information 
society where users are ‘‘proactively, but sensibly’’ pro-

vided with services that support their activities in everyday 
life [1]. AmI scenarios depict intelligent environments 
capable of unobtrusively recognize the presence of indi-

viduals and seamlessly react to them [2]. To achieve this 
goal, AmI systems embed a multitude of sensors in the 
environment that acquire and exploit data in order to gen-

erate an adequate response through actuators. Different 
sensor and network technologies are usually applied: short-

range (e.g. RFID, NFC); medium-range (e.g. Wi-Fi, 
Ultrawideband); and large-range (e.g. 4G cell networks). 
Nevertheless, visual sensors have received less attention, 
despite the large amount of interesting data that they can 
obtain from the environment. This gap is mainly due to two 
reasons: (1) processing visual data is computationally 
expensive and needs powerful equipment, including a 
considerable bandwidth to transmit captured images; (2) 
interpreting visual data is a complex task which may require 
the use of complex data models, as well as the incorporation 
of heterogeneous and maybe distributed data sources.

Data and information fusion (DIF) research area studies 
theories and methods to effectively ‘‘combine data from 
multiple sensors and related information to achieve more 
specific inferences that could be achieved by using a single, 
independent sensor’’ [3]. DIF defines scene recognition (or
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situation assessment) as ‘‘the estimation and prediction 
of structures of parts of reality (i.e., of the aggregation of 
relationships among entities and their implications for the 
states of the related entities)’’ [4]. Scene recognition is 
central to AmI, since the system can selectively start proper 
services according to the user current situation and 
expected needs.

Classical techniques—those strongly based on observa-

tional data and a priori knowledge models—have proved to 
be insufficient to successfully recognize situations in 
unpredictable and complex scenarios [5]. A solution to 
overcome these problems has been to provide image-pro-

cessing algorithms with additional knowledge not directly 
provided by the cameras; i.e., context knowledge. Context 
is defined as the ‘‘set of circumstances surrounding a sit-

uation of interest that are potentially of relevance to its 
completion’’ [6]. In video processing, context encompasses 
any external knowledge used to complete the quantitative 
data about the scene computed by straightforward image-

analysis algorithms, including [7]: (1) the scene environ-

ment: structures, static objects, illumination and other 
behavioral characteristics, etc.; (2) the parameters of the 
recording: camera, image, and location features; (3) stored 
information: past detected events; (4) soft information 
provided by human users. In this sense, DIF involves 
fusion of data with different semantics and abstraction 
level, namely sensor data and context information, besides 
integration of data generated by distributed sensors.

In this paper we present an AmI framework that jointly 
manages visual sensor data and contextual information to 
support the construction of a symbolic description of the 
current scene. The knowledge model of the framework is 
an ontology [8], which allows representation and reasoning 
with these types of knowledge. Visual data is firstly pro-

cessed at single smart cameras to achieve a local inter-

pretation of the situation expressed with instances of the 
scenario ontology. Different procedures to obtain this local 
interpretation can be plugged into the framework; in this 
work, we depict the use of rules involving the terms of the 
ontology. The configuration o r t he b ehavior o f low-level 
image processing algorithms may be modified according to 
the local interpretation. Eventually, these interpretations 
are sent to a coordination agent, which manages the global 
view of the scene. Information fusion is performed at two 
levels: (1) heterogeneous data (contextual and sensor-

based) is used to obtain local scene interpretations; (2) 
multi-camera information is gathered to build the overall 
picture of the scenario.

1.1 Contributions and structure of the paper

Most research works in the Computer Vision literature

have only taken into account local context measures

(computed from the pixel values surrounding an object) to 
accomplish scene recognition [9, 10]. These methods 
are hardly extensible to different domains, since they 
usually apply application-dependent heuristic calculations. 
In contrast, cognitive approaches [11, 12]—like the one 
presented here—propose to build a symbolic model of the 
world expressed in a logic-based language to represent 
environment objects and relations. Thus, the latter are 
more extensible, although they require the development 
of suitable data acquisition and information processing 
procedures.

A novelty of our proposal is the creation of an ontology-

based cognitive model of visual data, context, and situa-

tions. The model allows symbolic manipulation of scene

data, in contrast to the classical numerical proposals.

Objects and relations—particularly, spatial and topologi-

cal—are abstractly represented. Symbolic representations

may lack the precision of numerical approaches, but we

claim that this is not crucial in most AmI applications. As

explained through this paper, a qualitative representation of

the objects’ relative positions is enough in most cases to

obtain a convenient interpretation of the scenario. More-

over, low-level calibration of the cameras may not be

necessary. In addition, the model could be populated by

other sensor systems in addition to the visual sensor net-

work (VSN)—as long as they are able to express acquired

data in terms of the ontology, thus providing support to

multi-modal AmI. Different activity interpretation proce-

dures can be used within the framework as well.

Using ontologies as the knowledge representation for-

malism of the model provides several advantages. Ontol-

ogies are suitable for representing and reasoning with 
context and sensor data, especially when visual inputs are 
to be interpreted [13]. Besides, ontologies have strong 
underpinnings in Description logics (DL) and are widely 
supported with standards languages (e.g., the Ontology 
Web Language (OWL) [14]) and tools. Last but not least, 
ontologies promote knowledge exchange and reusability—

our framework offers a set of high-level ontologies that 
represent the basic semantics present in any AmI applica-

tion to be specialized in particular scenarios.

It is important to highlight that the hierarchical archi-

tecture implemented in the framework allows task distri-

bution among the cameras while minimizing the amount

of exchanged information. This reduces computational

requirements and bandwidth consumption of the system.

The remainder of this paper is structured as follows. In 
Sect. 2, we overview some related work pertaining to the 
use of formal context knowledge models in Information 
Fusion and Computer Vision, whereas in Sect. 3 we 
describe the issues of VSNs with a particular focus on AmI 
applications. In Sect. 4 we introduce the architecture of the 
framework. In Sect. 5, we detail our proposal of a multi-
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layer model for representing and reasoning with perceived 
and contextual information; structure, spatio-temporal 
knowledge management, and reasoning procedures are 
described. Section 6 includes an AmI test scenario where 
the framework has been applied, along with some imple-

mentation details. Section 7 briefly introduces how the 
framework integrates scene descriptions obtained by single 
cameras. Finally, the paper concludes with a discussion on 
the results and plans for future research work.

2 Related work

Most works in the literature on general AmI systems tackle 
the problem of representing and exploiting context infor-

mation. Nevertheless, few of them deal with visual infor-

mation, as previous surveys show [15]. Currently, there are 
some promising approaches resulting from the synergies 
between AmI and the video-surveillance research area—a 
typical application domain of video-based systems, since 
both of them are concerned with the monitoring of complex 
environments. Some of these proposals combine multi-

model information to achieve scene recognition [16], 
although they usually apply numerical techniques, which 
are less flexible and sometimes hardly extensible. Not 
surprisingly, the need of integrating heterogeneous sensor/

context data and the existence of several distributed data 
sources has resulted in the application of DIF paradigms 
and techniques to the problem [17, 18].

In this section, we will focus on research works that 
apply ontologies to model situations recognized from 
visual data in AmI applications. One of the most notable 
contributions is presented in [19]. The authors describe 
some issues and methodologies for the creation of ontol-

ogies supporting AmI applications focused on surveillance 
and security. Rules are used to create expressions to detect 
complex events. Some of the main problems that appear in 
this kind of systems are tackled: event representation, 
spatial reasoning, uncertainty management, etc. Previously, 
other approaches—such as PRISMATICA [20]—had also 
studied the problems that appear in surveillance-related 
AmI applications, though they are more focused in the 
management of the VSN, instead of the possible contri-

butions of this technology to AmI.

More recently, ontologies and visual inputs have been 
combined to detect abnormal behaviors, also in the sur-

veillance domain. We shall mention the research works in 
[21, 22], which describe a multi-agent knowledge-based 
system to characterize and detect abnormal situations in 
surveillance areas. Interestingly enough, this proposal 
incorporates imprecise and vague information in the 
knowledge representation. Multi-agent systems are also 
used in GerAmi, an AmI environment to supply care and

support to elderly people which strongly relies on RFID 
and Wi-Fi technologies [23].

Insofar as general and high-level ontology-based scene 
recognition is concerned, an ad hoc proposal for scene 
interpretation based on DL is presented in [24]. The paper 
shows how the reasoning features of the Renamed Abox 
and Concept Expression Reasoner (RACER) reasoning 
engine provide functionalities that support scene recogni-

tion. The approach is hardly extensible, but it illustrates the 
expressivity of DL for such tasks, as well as the existence 
of appropriate tools. DL are also used for modeling and 
reasoning about complex situations in [25]. This paper 
discusses the features required to an ontological model for 
context-based situation recognition from sensor data, as 
well as the architectural and implementation details of the 
corresponding AmI applications. The proposed represen-

tation is very similar to the upper levels of our model, but 
we also solve the grounding problem [12]; i.e., we bridge 
the gap between real-world signals and high-level symbolic 
representations. This problem is not tackled in [25], which 
does not explain how high-level ontological descriptions 
are obtained from camera data.

Alternatively, probability theories, such as Markov logic 
networks, have been also used in fusion-based object and 
scene recognition. The hybrid approach presented in [26] 
successfully combines low-level image processing and 
high-level situation description. In contrast, our framework 
emphasizes the role of the cognitive knowledge model, 
which facilitates reasoning and human interaction, while 
promoting knowledge reuse. However, we require the 
creation of proper abduction procedures, which may be 
difficult in some cases, and assume the existence of accu-

rate tracking and identification m odules, w hich i s not 
always possible.

More details about the structure of the knowledge model 
described in this paper can be found in a previous research 
work [27]. In that paper, we introduced an ontology-based 
framework for cognitive surveillance. In the present paper, 
we specifically f ocus o n t he p roblems t hat a ppear i n AmI 
applications, and explain the development issues that arise 
when implementing the abstract framework in this domain. 
In addition, we study the qualitative representation of 
spatial properties and the reasoning procedures involved, 
and how a rough calibration can be enough in several AmI 
applications; e.g., smart homes.

3 Data and information fusion in visual sensor

networks for AmI

A VSN involves the deployment of a certain number of

cameras in a wide area—probably with overlapping fields

of view—which acquire visual data from the environment.
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Necessarily, suitable procedures to interpret data captured 
by single cameras must be developed, in order to obtain an 
integrated and high-level view of the situation. The DIF 
research area studies the problems arisen from the combi-

nation and interpretation of multiple data sources (maybe at 
different abstraction levels), and specifically t hose that 
appear when data sources are video cameras. Fusion pro-

cesses are classified according to the JDL ( Joint Directors 
of Laboratories) model, the prevailing theory to describe 
fusion systems [28, 29]. JDL classifies fusion processes 
according to the abstraction and the refinement o f the 
involved entities. The canonical JDL model establishes five 
operational levels in the transformation of input signals to 
decision-ready knowledge, namely: signal feature assess-

ment (L0), entity assessment (L1), situation assessment 
(L2), impact assessment (L3), and process assessment (L4).

Low-level data fusion, corresponding to JDL L0 and L1

levels, designates procedures aimed at pre-processing

sensor signal and estimating the properties of isolated

objects. High-level information fusion procedures, corre-

sponding to L2 and L3, aim at obtaining a description of

the relations between the objects in the perceived scenario.

These relations are usually expressed with interpretable

symbolic terms (e.g., actions, intentions, threats), instead of

the usual numerical measures (e.g., density functions,

movement vectors) calculated in L1. L4 tasks are aimed at

planning and performing procedures to improve the whole

fusion process, from low-level data acquisition to high-

level situation assessment.

Below, we summarize some of most important problems

that appear in VSN-based AmI systems at each JDL level,

and briefly present the techniques, algorithms, and proce-

dures that are considered in our framework to solve them.

3.1 Level 0

3.1.1 Camera location

The first decision in a multi-camera system is the physical

installation of the sensors. The amount and the situation of

cameras have a great impact on system cost and capabili-

ties. It is convenient to arrange the cameras in a configu-

ration that minimizes object occlusions and maximizes

overlapping between fields of view, though this is not

always possible.

Our framework is independent from the position of the 
cameras, but will be more effective when more overlapping 
cameras are used. Camera handover mechanisms—to share 
information captured by a camera when an object moves to 
the field of view of an adjacent camera—are not currently 
supported in the framework, but could be implemented by 
relying on the ontological model as in [30].

3.1.2 Camera calibration and data alignment

Information in a VSN must be aligned to a common ref-

erence frame. Camera calibration, or common referencing,

is the process to calculate the homography matrix that

converts from the local coordinates of each camera to a

global coordinate space. Calibration can be an off-line

procedure (based on the correspondence of the position in

the camera plane and in the global plane between of pre-

defined landmarks) or an on-line procedure (based on the

analysis of in-use system data; e.g., correspondences

between automatically detected corners, edges, etc.).

Numerical calibration of the cameras may not be 
required in our framework. As explained in Sect. 4, the 
smart cameras only interchange high-level descriptions of 
the perceived situation in terms of topological relations 
between entities; for example, a person is close to couch_1. 
If we assign the same identifier c ouch_1 i n e very camera 
that is detecting this object, a rough correspondence 
between their view fields i s e stablished. T his correspon-

dence may serve as an implicit calibration to align data in 
the central node. Obviously, this approach is too far to 
completely solve the problem of calibration, but may be 
sufficient in several AmI domains where high precision is 
not required.

3.2 Level 1

3.2.1 Object detection

The most elemental information that can be extracted from

a video sequence is that of the discovery of moving objects.

There are various techniques for object detection: (1)

temporal differencing, based on the calculation of the

pixel-by-pixel difference between consecutive frames; (2)

background subtraction, based on the calculation of the

difference between the current frame and a predefined

background image; (3) statistical methods, based on the

difference of additional features extracted from the image;

(4) optical flow, based on the computation of the flow

vectors of moving objects; and (5) classification, based on

the identification of a pattern in the image with trained

classifiers.

Object detection is not trivial, since in most cases the

conditions of the watched environment change. For

example, changes in the illumination and the shadows of

the objects during daytime (especially in outdoors appli-

cations) and moving objects that become static must be

taken into account. Object detection is performed in the

framework by the tracking layer, which relies on a tracking

procedure. The framework can be configured to use dif-

ferent tracking algorithms.
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3.2.2 Object tracking

Detected objects must be tracked over time; i.e., the system

must segment the moving objects and assign consistent

labels during their complete lifecycle. Specifically, a track

is defined as a set of groups of connected pixels that rep-

resent a moving object with some properties: size, color,

speed, etc. In the simplest case, a track includes a single

group of connected pixels. Tracking is defined as the

estimation of the number of objects in a continuous scene,

together with these properties: locations, kinematic states,

etc. Object tracking has been tackled by applying statistical

prediction and inference methods, such as Kalman or

particle filters, adapted to visual data association.

The tracking layer of the framework performs the 
complete tracking procedure, as explained in Sect. 4. 
Estimation techniques are very sensitive to the particular 
conditions of the scenario, and therefore they may be 
insufficient i n s ome a pplications. T he i ncorporation of 
context knowledge has been regarded as essential to deal 
with complex scenarios with occlusions, illumination 
changes, and object deformations. In our framework, object 
and situation information at levels 2 and 3 (obtained by 
applying context knowledge) is used to change the 
parameters of the tracker according to the current scenario 
and past events.

3.3 Level 2

3.3.1 Classification

Object identification and activity r ecognition a re t wo fun-

damental classification tasks that must be performed in an 
AmI application (VSN-based or not). Object identification 
aims at determining the type of a tracked object; e.g., 
person, bottle, etc. Thus, it can be considered halfway 
between L1 and L2. In the framework, we use a priori rules 
to classify objects according to their features—mainly the 
size (Sect. 6.2). This approach should be extended with 
more advanced techniques and/or machine learning 
enhancements, in order to automatically classify tracks 
according to other features: color, histogram, etc.

Activity recognition, in turn, aims at discerning that an

activity is taking place. Usually, two types of activities are

distinguished: basic activities—i.e. simple activities that

cannot be decomposed into more simple actions (e.g.,

walking), and composite activities—i.e., activities that are

the result of various simple actions (e.g., laying the table).

Activity recognition is an open problem in general

applications, since it requires systems to develop cognitive

capabilities close to human understanding. In this paper,

we use pre-defined rules to identify activities from moving

object properties and context information. The main

strength of rules is that we can express almost any con-

dition by using terms defined in the ontological model. In

contrast, at its current state, they must be manually cre-

ated, which requires a considerable effort. In addition,

other methods could be applied in the framework in

combination to rules to identify complex activities. The

use of the symbolic models facilitates the integration of

these different techniques, since any procedure can be

plugged into the framework as long as its output (i.e.,

recognized activities) is expressed with the same ontology

language.

3.3.2 Model construction

Scene interpretation consists in obtaining a symbolic model 
of the scene activities. Ontologies support the definition of 
a formal vocabulary to create these symbolic models. This 
vocabulary includes the terminological axioms (i.e., axi-

oms about classes and relations) that are used to delimit the 
possible realizations of the model. In DL nomenclature, the 
set of axioms defining c oncepts i s t he T Box o f t he ontol-

ogy, whereas the set of axioms defining p roperties i s the 
RBox of the ontology. The concept and relation instances 
of the ontology are defined with axioms about individuals, 
which represent the evolution in time of the scene tracks, 
objects, situations, etc. These axioms about instances of the 
ontologies compose the ABox. Essentially, scene inter-

pretation is a model-building procedure in which instances 
of the concepts and relations defined i n t he s cene vocab-

ulary are created. We explain in detail the model con-

struction process in the framework in Sects. 4 and 5.

3.4 Level 3

3.4.1 Situation assessment

Level 3 focuses on the estimation of the impact of a sit-

uation of the application domain. In other words, situation

assessment is the process of detecting and evaluating

particular situations that are of special relevance to the

scenario because they relate to some type of threatening,

critical situation, or any other special world state. This

JDL level includes procedures for the identification of

abnormal and hazardous situations, which is especially

relevant in some AmI domains; for example, Ambient

Assisted Living applications require implementing proper

mechanisms to react to an emergency situation if the user

does not follow the normal sequence of activities, falls

down, or abruptly interrupts an ongoing activity. The

framework applies the same rule-based mechanism

explained for Level 2 tasks: rules with terms of the lower

abstraction level are used to create instances representing

information at this level.
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3.5 Level 4

3.5.1 Process enhancement

Process enhancement—also known as active fusion—is 
aimed at the modification of t he data acquisition and pro-

cessing procedures after DIF to enhance results quality. 
Generally speaking, process enhancement consists in 
improving a fusion procedure by using feedback generated 
at a more abstract level. For instance, the behavior of a 
tracking algorithm can be changed once a general inter-

pretation of the scene has been inferred; if the system 
recognizes that an object is moving out of the camera range 
through a door, the tracking procedure could be informed 
to be ready to delete this track in the near future. As pre-

viously mentioned, the framework includes a general 
mechanism to generate recommendations for the tracking 
procedure based on rule triggering. In their basic form, 
these recommendations are direct manipulations of the 
parameters or the data stored by the tracker, as we exem-

plify in Sect. 6.

4 Framework architecture

The architecture of our framework is depicted in Fig. 1. 
The schema shows the two types of nodes that are defined 
in the VSN: the smart cameras and the central node.

Smart cameras are video cameras able to perform DIF

tasks. Cameras capture data, which is processed by a low-

level tracker. Tracking information is then introduced into

the abstract scene model as ontology instances. Reasoning

rules are activated as a result of the changes of scene

objects detected by the tracker. Eventually, as a result of

the model-building process, these rules will create instan-

ces corresponding to situations. Situations detected by

single smart cameras are sent to the central node. The

contents of the messages between smart cameras and the

fusion node are encoded with the same ontology used for

the smart camera scene model. The central node processes

the situations detected by the cameras in order to obtain a

more complete view of the scene.

Smart cameras process data at two logical levels: (1) the 
tracking layer; (2) the cognitive layer. First, each camera is 
associated with a process that acquires video frames. Next, 
the tracking sub-system sequentially executes various 
image-processing algorithms to detect and trace all the 
targets within the local field of view. The tracking layer is 
arranged in a pipelined structure of several modules, which 
correspond to the successive stages of the tracking process 
[31, 32]: (1) detection of moving objects; (2) region-to-

track multi-assignment; (3) track initialization/deletion; (4) 
trajectory analysis.

Tracking data is introduced into the cognitive layer to 
initiate more complex high-level information fusion pro-

cedures. Smart cameras implement an a posteriori schema 
for context information exploitation [5]. This schema 
proposes the implementation of a processing layer on top 
of the tracking procedure. In this layer, abstract ontologies 
are used to describe abstract entities. The tracking layer 
and the cognitive layer communicate through an interface, 
which offers methods to revise the ontological model in the 
update and initialization/deletion steps. In the next section, 
we describe the structure of the ontologies and the pro-

cesses to create ontology instances in the cognitive layer.

Communication between the smart cameras and the

central node is started when a new situation is detected—

i.e., when a new instance of the concept that represents a

Fig. 1 Architecture of the framework: smart cameras and central node
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situation is created in the symbolic model (see next sec-

tion). The detected situation is sent to the central node,

expressed in the suitable situation ontology. The use of a

formal ontology to communicate situation information

facilitates the incorporation of heterogeneous cameras—or

even other sensors—to the system, as long as they are able

to use the same situation ontology to communicate

information.

The central node gathers camera information to build a 
unified view of the scene. This unified view is  represented 
with instances of the same ontologies used for smart 
cameras. The combination of local camera information has 
been implemented with a rule-based mechanism, as 
explained in Sect. 7.

5 Knowledge representation and reasoning

The ontological model of the cognitive layer encodes the

context information provided by human users, the per-

ceptions acquired by the camera, and the model obtained

after reasoning processes. To manage these three types of

scene knowledge, we propose a set of layered interrelated

ontologies organized according to the abstraction layers

defined by the JDL fusion model.

The overall structure of the ontologies is depicted in 
Fig. 2. We have distinguished between the general 
knowledge (i.e., very abstract knowledge that is common to 
any VSN-based application) and the specific knowledge 
(i.e., knowledge specific t o a  c oncrete A mI application). 
Accordingly, we provide various upper ontologies that 
contain terminological axioms defining basic concepts and 
relations, namely TREN, SCOB, ACTV, IMPC and RECO.

The concepts and relations defined in these upper

ontologies must be specialized in each application. For

example, in the figure we show how the new ontology

SMARTHOME has been defined by refining the concepts

included in the general ontologies. The purpose of this

separation is to provide final application developers with a

general knowledge frame with well-defined building

blocks, in such a way that they only need to extend it to

model new scenarios. For example, the SCOB ontology

defines the OccludingObject class, which—for the sake of

simplicity—is a type of StaticObject. In SMARTHOME, we

define Couch as a subclass of OccludingObject, and

consequently it inherits all its properties.

It is interesting to note that these ontologies are closely

related between them. In fact, they represent the transfor-

mation from low-level tracking data to high-level situation

knowledge. An ontology of an upper abstraction level is

linked (or grounded) to an ontology of a lower abstraction

level. Accordingly, the ontology for scene objects defines

the property hasAssociatedTrack to associate instances

of scene objects to instances corresponding to track data.

Thus, information at object level is described in terms of

objects and objects’ relations, but objects are associated to

the tracks obtained by the tracking layer. Similarly, a more

abstract ontology is defined to represent scene situations;

these situations are grounded to the involved objects rep-

resented in the scene objects ontology.

Contextual objects knowledge is introduced into the

model as instances of the proper ontologies, which is

known as scenario annotation. Annotations include object

position and size, possible occlusions, enter and exit zones,

or any other convenient contextual knowledge. This zero-

point knowledge is used in the reasoning process that is

activated when moving objects are detected in the scene.

Additionally, new reasoning rules (deductive or abduc-

tive) are introduced into the knowledge model (see Sect. 6). 
The combined use of ontology specialization and rules 
allows the definition of very general rules that are triggered 
with objects of the classes and the subclasses. For instance, 
a general rule to detect proximity between a TrackedOb-

ject and an OccludingObject will be fired n ot o nly with 
direct instances of these concepts, but also with instances 
of their subclass; e.g., Person and Couch, respectively. In 
this way, we can describe a new entity as a subclass of 
many existing classes, and consequently define its behavior 
as the composition of the behavior of its superclasses.

In the remainder of this section, we explain the structure

of the terminological part of the general ontologies pro-

vided with the framework. Next, the nature and the

implementation of reasoning procedures within the repre-

sentation model are discussed.

5.1 JDL-based knowledge representation

5.1.1 Tracking data (L1)

The basic TREN (TRacking ENtities) ontology includes 
axioms about concepts and relations to symbolically rep-

resent data obtained by the low-level fusion algorithms (see 
Fig. 3). Instances of this ontology are created as a result of 
the initialization and the update stages of the tracking 
procedure, when new tracks are created or track properties 
change.

The core concepts in TREN are Frame and Track. A  
frame is identified by a numerical ID and is marked with a 
time stamp using an OWL-Time DateTimeDescription 
[33]. Regarding tracks, it is necessary to represent their 
temporal evolution, and not only its state in a given instant. 
We want to keep all the information related to a track 
during the complete sequence (position, size, velocity, 
etc.). Therefore, we must associate to each track various 
sets of property values that are valid only during some 
frames. We have followed an ontology design pattern
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proposed by the W3C Semantic Web Best Practices and 
Deployment Working Group to define ternary relations in 
OWL ontologies [34]. We have associated a set of 
TrackSnapshots to each Track. Each TrackSnapshot, 
representing track feature values, is asserted to be valid in 
various frames.

Additionally, track properties must be defined as general 
as possible, in such a way that they can be easily extended. 
To solve this issue, we have followed the qualia approach, 
used in the upper ontology DOLCE [35]. This modeling

pattern distinguishes between properties themselves and 
the space in which they take values. This way, we have 
associated properties to ActiveTrackSnapshots, such as 
TPosition or TSize. TPosition is related with the property 
TpositionValue to a single value of the TPositionValue-

Space. A  2DPoint is a kind of TPositionValueSpace. 
The definition of geometrical entities has been developed 
according to the proposal described in [36], which defines 
primitive concepts such as Point, PointSet, Curve (as a 
subclass of PointSet), or Polygon (a kind of Curve).

Fig. 2 UML excerpt of the high-level ontologies: main concepts and grounding
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Additional axioms or rules to calculate complex properties 
of tracks (e.g. distances), as well as spatial relationships 
(inclusion, adjacency, etc.), could be considered and cre-

ated in TREN. This kind of reasoning is described in detail 
in Sect. 5.3.

5.1.2 Scene objects (L1–L1/2)

The SCOB (SCene OBjects) ontology includes axioms about

concepts and relations to symbolically represent real-world

objects and their correspondence with detected tracks. For

example, a track with suitable properties would be inferred

to correspond to a person (possibly by applying context

information in a classification procedure). Thus, a new

Person instance is created in SCOB and connected to the

track instance of TREN.

The SCOB ontology includes both static and dynamic 
objects. Static objects (class StaticObject) are scene 
objects defined a  p riori. N ot surprisingly, most o f contex-

tual entities are instances of the StaticObject class. 
Dynamic objects (class TrackedObject) are scene objects 
detected during the functioning of the system. Instances of 
dynamic objects are created as a result of correspondence 
and reasoning procedures, as depicted in Sect. 6. Static-

Object and TrackedObject are subclasses of SceneOb-

ject, the root concept in the SCOB ontology. SceneObjects

Fig. 3 UML excerpt of the TREN ontology: representation of track properties and track snapshots
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have properties; e.g. position, illumination, behavior, etc.,

which may vary in the sequence. To represent properties,

we have applied the same combined snapshot/qualia

approach as in the TREN ontology. It can be noticed that

tracked object property values may be different from the

property values of the associated track snapshots, but most

of these object property values will be easily inferred from

the associated track.

5.1.3 Activities (L2)

The ACTV (ACTiviTies) ontology includes axioms about

concepts and relations to describe relations between objects

that last in time. This ontology includes axioms involving

concepts and relations to describe simple and complex

activities. For convenience, these relations have been rei-

fied as classes descending from a top concept named Sit-

uation. We have introduced as well some properties to

establish the temporal duration of the situations that fol-

lows the same pattern based on snapshots described for the

lower layers of the model.

As mentioned in Sect. 3, this ontology is also used for 
communication between smart cameras and the fusion 
node of the architecture. Simple activities, expressed as 
instances of the ACTV ontology, are sent to the central node 
to be combined with other inferences to eventually detect a 
complex situation. Complex situations are also introduced 
as instances of ACTV, in this case in the local instantiation 
of the ontology managed by the central node.

5.1.4 Impacts and threats (L3)

The IMPC (IMPaCts) ontology has been defined on top of

the ACTV ontology. This ontology includes relations to

associate situations (instances of the Situation concept)

and impact evaluations (instances of the IMPC concept

Impact). This value is a simple numerical assessment or,

more probably, a complex expression suggesting or pre-

dicting future actions. Impact and threats are the most

application-dependent knowledge of the ontological

model; therefore, they must be conveniently specialized in

a given domain. To allow the representation of different

impact evaluations, the qualia approach has been also

applied in this ontology.

5.1.5 Process assessment (L4)

Process assessment knowledge includes certain meta-

information about the functioning of the framework that is

used to improve it. Accordingly, the RECO (RECOmmen-

dations) ontology includes concepts and relations to rep-

resent actions that must be carried out to modify either the

instances of the ontologies or the behavior of the basic

tracking algorithm.

The main concept in RECO is Action, which abstractly

represent any action that can be understood and carried out

by the framework. In the simplest case, these recommen-

dations are instances generated as a result of rule trigger-

ing. Once a recommendation is created, it is synchronously

executed, since delaying the modification may be unpro-

ductive or error-prone. A more complex policy for han-

dling recommendations could be developed; as a matter of

fact, the basic mechanism could be extended to implement

a priority queue to asynchronously retrieve, interpret, and

carry out the procedures specified by Action instances.

5.2 Deductive and abductive reasoning

Standard ontology reasoning procedures are performed

within the ontological ontologies to infer additional

knowledge from the explicitly asserted facts. To name

some of them, the inference engine supports tasks such as

classification (i.e., to determine the class hierarchy of an

ontology) and instance checking (i.e., to determine the

classes which an instance belongs to).

Ontology Web Language standard does not directly 
support deductive rules, but several extensions have been 
proposed. One of the most extended is SWRL (Semantic 
Web Rule Language) [37], which allows deductive infer-

ence within OWL ontologies. Rule-based formalisms can be 
used with limitations, since reasoning with models com-

bining rules and OWL is decidable only under certain safety 
restrictions [38]. Deductive rules are used to maintain the 
consistency of the ontology and to explicitly assert axioms 
involving existing instances. An example of deductive rule 
would be ‘‘the position of a tracked object must be the same 
as the position of the last associated track snapshot’’.

Monotonicity of ontology languages forbids adding new 
knowledge to the models while reasoning, which is 
required in scene interpretation. Actually, scene interpre-

tation is a paradigmatic case of abductive reasoning, in 
contrast to the DL deductive reasoning [39]. Abductive 
reasoning is defined as a  form of reasoning that takes a  set 
of facts as input and draws a suitable hypothesis that 
explains them—sometimes with an associated degree of 
confidence o r p robability. T his t ype o f r easoning i s also 
called Inference to the Best Explanation (IBE). Visual data 
interpretation can be regarded as an IBE process: we want 
to figure o ut w hat i s h appening i n t he s cene f rom the 
observed and the contextual facts. In terms of the knowl-

edge model presented in the previous section, scene 
interpretation can be seen as an abductive process to gen-

erate ontology individuals of a higher-level ontology from 
instances of a lower level ontology.
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Abduction is not directly supported by DL ontologies, 
but it is simulated in some reasoning engines by defining 
non-standard inference rules. These rules allow the creation 
of new instances in the consequent, which is forbidden in 
standard rules to satisfy the safety condition. RACER [40], 
which is used in this work, supports abductive reasoning 
through extension rules that create or modify instances of 
the ontology representing scene interpretations. Please note 
that these rules do not directly support representation of 
uncertain knowledge. As shown in the next section, 
uncertainty management may not be essential in simple 
AmI scenarios, but it must be considered in more complex 
domains involving scene recognition [41]. This remains as 
a prospective direction for future work.

In our model, we have two types of non-standard rules:

bottom-up rules and top-down rules. Bottom-up rules are

used in scene interpretation, and as mentioned, they obtain

instances of upper-level ontologies from instances of

lower-level ontologies. For instance, some rules could be

defined to identify objects from track measures; i.e., to

obtain instances of the scene objects ontology from

instances of the tracking data ontology. An example rule is

‘‘create a person instance when an unidentified track larger

than a predefined size is detected inside a region of the

image’’.

Top-down rules are used to create instances of the

Action concept in RECO from the current interpretation of

the scene, the historical data, and the predictions. Top-

down rules may result in corrections to the low-level fusion

procedure: tracking parameters, data structures, etc. A

simple rule would recommend ‘‘to ignore a track associated

to a person which is inside an area previously annotated as

a mirror’’.

5.3 Spatial reasoning

One key aspect of our model is representation and rea-

soning with qualitative spatial properties. Ontologies do 
not directly support spatial reasoning, which has given rise 
to the development of joint approaches that incorporate 
suitable additional constructors [42, 43]. One of the most 
used is the Region Connection Calculus (RCC), a logic 
theory for qualitative spatial knowledge representation and 
reasoning [44, 45]. RCC is an axiomatization of certain 
spatial concepts and relations in first order logic. The basic 
theory assumes just the primitive dyadic relation C(x, y)—

read as x connects with y, being x and y spatial regions. 
This relation is reflexive and symmetric.

The most used version of RCC is RCC-8, which defines

eight relations: DC (is disconnected from), EC (is externally

connected with), PO (partially overlaps), TPP (is a tan-

gential proper part of), NTPP (is a non-tangential proper

part of), TPPi (inverse of TPP), NTPPi (inverse of NTPP)

and EQUAL. These relations have been proved to compose

a jointly exhaustive and pairwise disjoint set. Similar sets

of one, two, three, and five relations are also defined

(respectively, RCC-1, RCC-2, RCC-3, and RCC-5).

RACER includes support for RCC through the activa-

tion of an extended reasoning layer, namely the substrate,

which allows the use of RCC predicates in representations

and queries while preserving RCC semantics. In addition,

user-defined relations can be extended with RCC seman-

tics; in the simplest case, this means to make a user-defined

relation equivalent to a RCC predicate.

Region Connection Calculus predicates (and RCC-

equivalent user-defined properties) must be i nstantiated in 
the knowledge base. This implies the creation of an 
instance of a RCC relation between two instances to rep-

resent that the corresponding scene entities are discon-

nected, partially overlapping, etc. To calculate the 
instantiation of RCC properties, calculations must be per-

formed to obtain the distance between the bounding boxes 
of two tracks (or objects). This can be alternatively 
achieved: (a) by using supported lambda calculus expres-

sions to be executed by RACER [46]; (b) by performing a 
topological analysis in a pre-processing step [47]. Our 
experiences prove that the second approach is more 
appropriate; otherwise the performance of the reasoning 
process is seriously compromised, because RCC properties 
of moving objects must be often recalculated. Additionally, 
pre-processing facilitates the implementation of additional 
optimizations and the use of third-party tools supporting 
topological calculations.

The framework includes a pre-processing module to 
instantiate RCC properties. This module is executed when 
a new contextual object is annotated in the scenario 
(infrequent) or when a tracked object changes its position 
(very frequent). The module is based on the OpenGIS 
Simple Features standard, which is a specification for 
storage of geographical, spatial, and non-spatial attributes 
and operators [48]. OpenGIS is implemented in the pro-

gramming interface Java Topology Suite1 (JTS). RCC and 
OpenGIS are not directly compatible, but translations 
between both specifications can be easily carried out.

Additional improvements could be implemented in the

pre-processing module to increase the computation speed.

It is interesting to highlight that checking object spatial

relations, and particularly RCC relations, has a complexity

O(n2)—the test must be performed between each pair of

elements. Thus, it would be convenient to build a data

structure able to maintain a hierarchical spatial partition on

the Euclidean space. Tree structures, such as R-Tree, R*,

and quad-trees can be applied, though it must be taken into

account that applications with large number of dynamic

1 http://www.vividsolutions.com/jts/. Last accessed 7 March 2011.
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objects and frequent updates will require very often tree

rebuilding. Currently, our framework does not support

these improvements, which remains as a promising line for

future work.

6 Application example

In this section, we provide an example of the use of our 
framework in a smart home application. Firstly, we 
describe how the knowledge model is adapted to the sce-

nario; i.e., the creation of contextual rules and ontology 
instances. Secondly, we describe the reasoning procedures 
performed by the framework: object identification, tracking 
enhancement, and single camera scene identification. We 
will use the video sequences included in the LACE dataset 
of the University of Rochester.2 This dataset includes 
footage taken from several cameras covering a room that 
reconstructs the living room and the kitchen of a studio. 
Only one moving person is present in the videos. For the 
sake of simplicity, we will use the output of three cameras 
located in the room as depicted in Fig. 4, which have 
considerable overlapping fields of view.

The framework allows interoperation between the 
General Tracking Layer and the Cognitive Layer through 
the implementation of a Java interface based on ViPER-GT 
(Video Performance Evaluation Resource-Ground Truth 
authoring tool) [49] and OWLAPI 2 [50]. The interface 
stores the ontological model, facilitates scenario annota-

tion, communicates with the low-level tracking proce-

dure(s), interacts with the RACER reasoner to perform 
inference tasks, and graphically presents the information 
generated by the framework (tracks, scene objects, etc.) 
along with the video sequence. In combination with 
RacerPorter (a graphical user interface to RACER), the 
software allows the operator to check the results provided 
by the tracking procedure and the outcomes of the fusion 
process. The system has been tested with the trackers 
presented in [32, 51]. Notice that each camera runs an 
instance of the software and has a different context model.

More details and additional information (ontologies, 
videos, etc.) about the examples described in this section 
can be found in the authors’ web page.3

6.1 Scenario annotation

Before starting the processing, the framework must be 
configured; particularly, the scenario viewed by each 
camera must be annotated. As explained in Sect. 4, w e

have created an application-specific ontology, namely

SMARTHOME, by extending the general ontologies of the

framework. Among others, SMARTHOME includes new

concepts for situations and objects:

• Concepts:

Objects: Person, Door, Couch, Table, Fridge

Scenes: Eating, UsingFridge

• Axioms:

Person Y TrackedObject (a person is a tracked

object)

Table Y OccludingObject (a table is an occluding

object)

Couch Y OccludingObject (a couch is an occluding

object)

Fridge Y StaticObject (a fridge is a static object)

Figure 5 shows the use of the annotation tool to create the 
context object instances that are initially inserted into the 
ontology. We have marked the same objects in cameras 1, 2 
and 3: exit door, couch, table and fridge. The tool auto-

matically inserts proper instances of the respective concepts 
in the ontology, and assigns property values—mainly, 
position points. The figure d epicts t he correspondence 
between ontology instances and scenario information. We 
show an excerpt of the OWL code corresponding to the 
definition of fridge1 as an instance of the Fridge class with a 
point of the bounding polygon at position (687, 144).

This procedure must be repeated to initialize the context 
model of each camera. It is interesting to highlight that we 
assign the same identifier to an object regardless of the 
camera scenario that is being annotated (Fig. 6). For

Fig. 4 Scenario plane: camera and static objects location

2 http://www.cs.rochester.edu/*spark/muri/. Last accessed 7 January

2011.
3 http://www.giaa.inf.uc3m.es/miembros/jgomez/et/.
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example, the fridge has the object identifier 1 in camera 1

and camera 2.

6.2 Context-based object identification

After initialization, the SMARTHOME ontology (with corre-

sponding instances) is loaded into the RACER reasoning

engine running on the contextual layer of a smart camera.

Contextual rules (abductive and deductive) are also intro-

duced into the reasoning engine in this step. These rules

can be either general reused rules from the proposed top-

level ontologies, or particular rules only applicable to the

field of view of the camera.

A rule that has been introduced in the reasoning engine

is the following: ‘‘if a track is bigger than a predefined size,

then it corresponds to a person’’ (rule [1]). This rule is used

to identify people appearing on the camera view. The

syntax of the rule, expressed in the Lisp-based nRQL

language of RACER, is presented. The rule has been cre-

ated in the context model managed by camera 3 to create a

new person instance when a non-identified track larger than

(20 9 50) is detected. This value could be stored in the

ontology itself as a property of the camera. To do so, the

rule checks if there is a track not associated to an object

that is currently valid and whose size properties are

appropriate. (Notice that terms preceded with ? are vari-

ables that are bound to instances of the ontologies.)

The rule is triggered in frame 45 (Fig. 7); consequently, a 
new instance of the Person class is created. The name of this 
instance is automatically generated by RACER from the 
provided prefix (person-ins) a nd t he s uffix (?t). The 
property hasAssociatedTrack is assigned to the new 
instance to point to the track that has caused the rule firing, 
and the previous association is removed from the knowledge 
base. The formulation of the rule shows that retrieving the 
property values of the current snapshot is not trivial as a result

Fig. 5 Camera 1: contextual

objects annotation
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of the qualia approach used to represent generic relations.

Nevertheless, RACER offers the possibility of defining stored

queries to be re-used in subsequent rules or queries. There-

fore, a convenient stored query has been created to retrieve

the properties of the current snapshot of a given track.

6.3 Tracking enhancement

Rules have been as well defined to create actions to

enhance the functioning of the low-level tracking proce-

dure. A typical case is finding that a tracked object is

overlapping with an occlusive object, in order to predict

that it will be only partially detected (or even not detected)

in the next frames. As a matter of example, in this section

we present a rule that detects that a person track is

overlapping with an occluding object (rule [2]). This rule

creates an instance of the Action class stating that an

occlusion situation has started. If the tracker detects a

dramatic change of the size of the track involved in the

overlapping situation between consecutive frames while

the occlusion is active, it is recommended to keep the

previous size of the track.

Fig. 6 Camera 2: contextual

objects annotation
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This rule combines context knowledge, dynamic knowl-

edge, and RCC-based reasoning (with the ‘partially over-

laps’ PO predicate). We assume that the: po predicate is 
instantiated as a result of the spatial reasoning performed by 
the pre-processing. It can be seen that variables involved in 
RCC predicates must be noted with a special symbol (?*).4

The rule is triggered in frame 118 of the sequence, being

person1 and couch1 the objects that match the rule

antecedent. (Notice that couch1 is not a direct instance of

OcluddingObject, but an instance of the Couch subclass.)

Therefore, an instance of the Occlusion class is created 
(Fig. 8).

After the new Occlusion instance is created, and while 
the situation is not finished, t he f ramework w atches the 
changes in the size of the occluded object in order to keep 
the consistency and avoid the effects due to the occlusion. In 
this example, we have configured the procedure to reassign 
the size and the position of the track to the previous obser-

vation when a size change over 80% is detected. Figure 9 
shows the bounding box of the track as calculated by the 
tracker without context and the bounding box as estimated 
by the cognitive layer as a result of the reasoning procedure.

Figure 10 shows a comparison between the positions of 
the person as detected by the tracking procedure and the

Fig. 7 Camera 1:

correspondence rule is fired

4 Additional information to represent when the recommendation has

been created and the starting and ending frames should be added. For

the sake of simplicity, we omit this information.
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positions as recalculated by the cognitive layer during the

occlusion—the ground truth has been manually obtained. It

can be seen that the use of the context layer considerably

improves the results of the tracker.

The Root Mean Square Error (RMSE) of the track size 
obtained by the general tracking layer and the cognitive 
layer are, respectively, 940.4 and 486.6 (Fig. 11). The 
modification a pplied b y t he c ognitive l ayer i s q uite con-

servative, which is correct in this sequence since the 
changes in the person are not very significant. The graphs 
show that if actual position changes occurs (e.g., the person 
falls behind the couch), this policy will lead to errors. 
Nevertheless, additional rules can be easily created to 
model these situations and react conveniently.

The context model includes a similar rule to detect the

end of the occlusion. Conversely, the rule for the end of

occlusion uses the RCC predicate DC (disconnected). The

occlusion is finished, which means that the valid period is

closed. In terms of the ontological model, that means

assigning a frame other than unknown frame to the isVal-

idEnd property of the situation. Subsequently, the frame-

work stops watching the size of the track involved in the

occlusion. In addition, it must be taken into account that

the occlusion detection rule will be also triggered when the

person is in front of the couch. Nevertheless, in this case

the tracker does not detect any noticeable change in the

track size, and therefore the track size is not corrected. The

creation of a false occlusion instance, as well as other

problems resulting from the 2-dimension information

managed by local cameras, is avoided by using the infor-

mation of more than one camera, as described in Sect. 7.

6.4 Single-camera simple scene recognition

Additional rules have been defined in the model to

interpret what is happening in the scene from tracking and

object data acquired by a single camera. Our framework

focuses on discovering RCC-based spatial relations

between annotated objects. These simple situations are

represented in the model as instances of the Situation

class in ACTV ontology. Therefore, single-camera rules for

Fig. 8 Camera 3: occlusion

detected

Fig. 9 Camera 3: occlusion correction. a Tracker output, b cognitive

layer output
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scene interpretation include object conditions in the

antecedent and instructions for ACTV instances creation in

the consequent.

For example, we have defined a rule (rule [3]) in camera

2 to detect if a person is enclosed into the fridge object

(RCC NTPP predicate)—that means that the person is

operating the fridge. If the rule is triggered, a new instance

of the Enclosing situation (defined in the SMARTHOME

ontology) is created, as well as a relation between the

involved objects via the enclosed and enclosing

properties.

This rule is fired in camera 2 at frame 39 of the test video 
(Fig. 12). At this point of the execution, a new Situation 
instance is created in the knowledge model of the camera.

Fig. 10 Position (x, y)—’Tracking’ versus ‘Tracking ? Context’
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Additional AmI services may be launched as a result of this

situation; for example, if we had unsafe equipment instead

of the fridge as the touched object, we could launch a

warning to the person or to the remote operator. The situ-

ation is finished when the termination rule is fired. This

second rule also uses the RCC relation DC to detect that the

person is no longer overlapping with the fridge.

Besides, the new situation information—i.e., the new

instances of the Action class and other related instances—

is sent as soon as detected to the central node. This

knowledge is processed and combined with situations

detected by other cameras, as described in the next section.

Similar rules have been defined f or o ther c ameras. For 
example, a similar rule has been defined for camera 1 (rule 
[4]). In this case, we are interested in detecting the over-

lapping between the person and the fridge bounding boxes, 
which is represented with the RCC predicate PO (partially 
overlap). In this manner, the system detects when the 
person is inside the fridge area, which usually means that 
he or she is interacting with the object (Fig. 13).

Fig. 11 Size—’Tracking’ versus ‘Tracking ? Context’
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7 Multi-camera scene identification

In the last example of Sect. 6, we have described how a 
single camera detects the situation when a person is oper-

ating the fridge as a result of the instantiation of the RCC 
property PO. Nevertheless, this situation might be also 
detected when the person is in front of the fridge, because 
the rule antecedent is also true. As shown in Fig. 14, that 
results in the misinterpretation of a situation.

There are two main solutions for this problem. On the 
one hand, it is possible to perform a low-level calibration 
of the cameras and use a numerical procedure to fuse object 
positions in local coordinates acquired by different cameras 
to obtain a combined position in global coordinates. This 
approach has been explored in previous works and has 
some drawbacks and advantages [52].

On the other hand, consistently with our architecture, it

is possible to process local scene interpretations at the

central node. The ACTV ontology is used to communicate

local scenes to the central node. This information is

encoded as instances of the Situation concept of ACTV,

besides additional instances that may be interesting—e.g.,

the objects involved in the action. The Situation instances

are tagged to identify the camera that has detected them

with the capturedBy property. When the detected situa-

tions are received by the central node, they are also

asserted as instances as the Recent concept, which

includes all the situations in the current temporal window.

Periodically, the central node runs an update procedure to

retract situations as Recent and assert them as NotRecent,

in such a way that they are marked as outdated and will be

no longer able to trigger certain reasoning procedures.

After receiving situation information, the central node 
applies rule-based reasoning to discard or confirm the 
information provided by single cameras. In the example 
depicted in Figs. 12 and 13, the central node receives the

Fig. 12 Camera 2: simple

scene recognition (enclosing)

Fig. 13 Camera 1: simple

scene recognition (touch)
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situation information obtained by camera 1 and camera 2 at

the same temporal window. Camera 1 informs of a Touch

situation involving person1 and fridge1. Camera 2

informs of an Enclosing situation involving person1 and

fridge1. A rule to create a proper ConfirmScene instance

of the RECO ontology has been created in the context model

of the central node (rule [5]).

Notice that the rule implicitly assumes that there is only

one person on the scenario. The rule creates a new instance

of ConfirmScene related with the situations sent by

camera 1 and camera 2. In this case, no further processing

is performed, since cameras are by default confident with

their local interpretations. The fusion node behaves as a

high-level tracker, since it calculates a better estimation of

the position of the person from situation information pro-

vided by single cameras. The consequent of the rule can be

easily extended to assert the confirmed scene as an instance

of the UsingFridge class as well, thus creating a unified

view of the scenario.

Likewise, similar rules can be created to discard scenes

when they change to the NotRecent state and have not

been confirmed. In this case, the cameras are notified to

retract the unconfirmed situations from their context model.

A RetractScene instance would be sent back to the

Fig. 14 Camera 1: bad scene

recognition (touch)
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cameras to adapt their behavior to the global situation, in a 
similar way as we have done for tracking enhancement. 
That means that the camera is recommended to remove the 
instances of its cognitive model representing the uncon-

firmed s ituation—for e xample, t he T ouch situation 
involving person1 and fridge1 in camera 1 detected in 
Fig. 14, thus preventing the execution of the rules with 
matching situation conditions in their antecedent. The local 
instantiation of the context model is therefore adapted 
without modifying the rule base.

These features of the central node are envisioned to

provide support for more complex scene recognition pro-

cedures. For instance, let us imagine that camera 2 detects

that a milk bottle has been left on the table after the Us-

ingFridge situation. At this point of the execution, we

would have a previous situation (confirmed by camera 1

and camera 2) that states that the person was using the

fridge, and a situation that states that the bottle is on the

table. We could define a rule such as: if the ‘‘person has

been using the fridge’’ and the ‘‘bottle on the table’’, then

we can infer that the person is preparing breakfast. Obvi-

ously, this rule is too simple and should be improved to

avoid false positives (e.g., daytime can be also considered),

but it shows the potential of the cognitive model and how

the system can be compositionally extended with new sit-

uation detection heuristics. Extending and testing the

framework to deal with these situations is the most prom-

ising direction for future research.

8 Conclusions and future work

Despite of the several advantages that visual sensor provides

to AmI applications, the use of cameras is quite infrequent. In

this paper, we have described a Computer Vision framework

to acquire, represent, and reason with visual data to provide

AmI services. We have presented an ontological model to

symbolically represent and reason with context information

and sensor data to achieve scene understanding as a first step

towards the provision of customized functionalities. The

framework has been designed according to the JDL process

model, the canonical specification to describe multi-sensor

systems proposed by the information fusion research area.

The framework can be included into the category of high-

level fusion systems, since it achieves an abstract interpre-

tation of the complete scene in terms of objects and situations

from multi-level and multi-source data. Incidentally, high-

level scenario annotation avoids explicit calibration of cam-

eras in some cases. The features and the advantages of the

framework have been illustrated with an example of a smart

home environment.

One of the main advantages of the proposed framework

draws from the use of ontologies to represent and reason

with the cognitive scene model. Ontologies support the

creation of a model skeleton defining top-level concepts

and relations, thus allowing domain-specific applications to

extend and reuse it. In addition, the use of a common

cognitive model facilitates the incorporation of new sen-

sors to the network, since they can communicate with the

central node as long as they use the proper ontology to

encode information. In general, processing algorithms and

techniques could be transparently replaced, which makes

the framework more extensible. Besides, symbolic scene

representations are more interpretable, which facilitates

participation of human users in the system, as well as

debugging and adjusting the algorithms. The graphical tool

is a first step towards the incorporation of the human

operator in the system—which is called Level 5 fusion.

The proposal presents some limitations. The main one is

that we have shown a prototype implementation of the

system with simplified rules, but real-world applications

must be still developed and tested. The management of

single camera situations to recognize complex scenes is the

final objective of this research. In addition, we have

overlooked some problems that appear in a real applica-

tion; e.g., errors in the tracking procedure, latency pro-

duced by the reasoning procedures, and overhead due to

irrelevant minor changes between scenes. Moreover, we

suppose that only one person appears in the scene, which is

a strong assumption; more sophisticated fusion and/or

calibration procedures would be necessary in more crow-

ded scenarios. Likewise, suitable rules and scenario anno-

tations need to be created for each camera field of view,

which certainly demands a considerable effort. Machine

learning methods could be considered to semi-automati-

cally acquire part of this knowledge.

Another interesting research direction is the incorpora-

tion of uncertain and vague information representation and

reasoning formalisms. Classical ontologies do not provide

support for this kind of knowledge, which is inherent to

applications involving abductive reasoning procedures:

sensor data may be imprecise; local scene interpretation

procedures may be uncertain; information fusion might be

partially trusted; etc. Furthermore, it may be interesting to

add imprecise knowledge to the cognitive model; e.g.,

imprecise spatial predicates (RCC predicates that hold to a

certain degree) and additional fuzzy spatio-temporal rela-

tions (close, far, recently, etc.).
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30. Gómez-Romero J, Garcı́a J, Patricio MA, Molina JM (2011)

Communication in distributed tracking systems: an ontology-

based approach to improve cooperation. Expert Syst (to appear)

31. Besada JA, Garcı́a J, Portillo J, Molina JM, Varona A (2005)

Airport surface surveillance based on video images. IEEE Trans

Aerosp Electron Syst 41(3):1075–1082
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