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1. Introduction

Let us consider a linear functional U : P — C defined on the linear space P of polynomials with complex coefficients. A
sequence of monic polynomials {P,(x)},, such that

deg(P,(x)) n and (U,Py(X)Pm(X)) Kndpm with k,#=0, n,m >0,

is said to be the sequence of monic orthogonal polynomials (SMOP) associated with /. The existence of a SMOP can be char
acterized in terms of the infinite Hankel matrix H = [u;];;., where u,  (U,x"),n > 0, are called the moments associated
with U. Indeed, {P,(x)},., exists if and only if the leading principal submatrices

H, [uiﬁ]g‘ 0o n20,

of H are nonsingular. In this situation, ¢/ is said to be a quasi definite or regular [3]. On the other hand, if for every
n > 0,detH, > 0, is said to be positive definite and it has the integral representation

(,q(x) /E qdu(x),

where p is a nontrivial positive Borel measure supported on some infinite subset E C R. Assuming up 1, the most familiar
sequences of orthogonal polynomials are the so called classical families: Jacobi, Laguerre and Hermite polynomials. They cor

respond to the cases when E has bounded support (E [ 1,1]), E is the positive real axis, and E R, respectively, and the
corresponding probability measures are the Beta, Gamma and normal distributions. There are several ways to characterize
the classical orthogonal polynomials: as polynomial solutions of a hypergeometric differential equation, as polynomials
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expressed by a Rodrigues formula, and as the only sequences of orthogonal polynomials whose derivatives also constitute an
orthogonal family.
One of the most important properties of orthogonal polynomials is that they satisfy the three term recurrence relation

XPp(x)  Ppy1(X) + bpPr(x) + apPy 1(x), n =0, (1)
where P 1(x): 0,b, € R,n > 0, and a, # 0,n > 1. If U is positive definite, we have a, > 0,n > 1. In a matrix form,
xP(x)  JP(x),

where P(x)  [Po(x),P1(x),...]" and J is the tridiagonal infinite matrix

bp 1 O
a, b] 1

J : (2)
0 a; b2

called the monic Jacobi matrix associated with {P,(x)} .. It is straightforward to see that the zeros of P, are the eigenvalues
of J,, the n x n principal leading submatrix of J. On the other hand, given arbitrary sequences {b,},., and {a,},-, with b, ¢ R
and a, # 0, you can define J as in (2) and construct {P,(x)},., by using (1). Then, {P,(x)},., is orthogonal with respect to
some linear functional /. This relevant fact is known in the literature as Favard’s theorem (see [3]).

Recently, in [20], a matrix characterization for classical orthogonal polynomials was introduced. Let write

n
Po(x) Y anX, n >0,
jo

and let define the infinite matrix A with entries a,j, for 0 <j < n,n > 0, and zero otherwise. Notice that A is a lower trian
gular matrix whose nth row contains the coefficients of the nth degree orthogonal polynomial with respect to the canonical
basis {x"}. ,. Furthermore, since P, is monic, the diagonal entries are a,, 1 and, therefore, A is nonsingular. We say that A
is the matrix associated with the sequence {P,(x)},.,. If the polynomials are classical, we will say that A is classical.

Following the notation used in [20], we say that a matrix B is a lower semi matrix if there exists an integer m such that
bi; 0 whenever i j < m. The entry b;; is in the mth diagonal i j m. If B is non zero, we say that B has index m,
ind(B) m, if m is the minimum integer such that B has at least one nonzero entry in the mth diagonal, also if all the entries
in its diagonal of index m are equal to 1, B is called monic. Finally, B is said to be (n,m) banded if there exists a pair of inte
gers (n,m) with n < m and all the nonzero entries of B lie between the diagonals of indices n and m. It is easy to see that the
set of banded matrices is closed under addition and multiplication, despite the fact that the inverse of a banded matrix might
not be banded.

Let define the matrices

000 0 .7 01 0 0 .. 010 0 .7
100 0 .. 0012 0 .. 0010
p |[020 0 ../, p |00 0 13 ..[ x [0001
003 0 .. 00 0 0 .. 000 0

then we get the following matrix characterization for the orthogonality of a sequence of polynomials.

Theorem 1. Let {P;(X)},., be a monic polynomial sequence and let A be its associated matrix. Then, the sequence {Pn(x)}, is
orthogonal with respect to some linear functional if and only if] AXA™'isa( 1,1) banded matrix whose entries in the diagonals
of indices 1 and 1 are all nonzero.

The proof can be found in [20]. Notice that this is a matrix version of the Favard’s theorem, and the entries of J, i.e., the
coefficients of the recurrence relation for the orthogonal polynomials, can be obtained from the matrix A. On the other hand,
AD has index 1 and its kth row is the vector [ay 1,20k, 30k3, ..., Kayk, 0,...], which corresponds to the derivative of P (x).
Therefore the matrix A DAD is a monic matrix of index zero and it is associated with the sequence {PE”(X)}HEO, where
Pl (x) P, ,(x)/(n+1). Using the fact that a sequence of orthogonal polynomials is classical if and only if the sequence
of their derivatives is also orthogonal, the following matrix characterization for classical polynomials is also given in [20].

Theorem 2. Let A be the matrix associated with {Pn(x)}, . Then A is classical if and only if AA~" is a (0,2) banded monic matrix.



2. A matrix characterization for semiclassical polynomials

Let ¢(x) ax'+ +dag,y(X) bx' +  + by be non zero polynomials such that a;b; # 0,t > 0,1 > 1. (¢, ) is called an
admissible pair if eithert 1slor,t 1 [landnay;+b #0,n > 0.A quasi definite linear functional ¥/ is said to be semi
classical if there exists an admissible pair (¢,y) such that U satisfies

D(pU) YU, 3)
where D denotes the distributional derivative. The corresponding sequence of orthogonal polynomials is called

semiclassical.
The class of a semiclassical linear functional is the non negative integer

s min{max{deg(¢) 2,deg(y) 1}:(¢,¥)is an admissible pair}.

The class of a semiclassical SMOP has been characterized as follows.

Proposition 3 [18]. Let U a semiclassical linear functional given by (3). The class of U is s if and only if one of the following
statements holds

i. The polynomials ¢(x) and y(x) ¢'(x) are coprime.
ii. If c is a common zero of ¢(x) and y(x) ¢'(x), then

(U 0e0) + 9(x)) #0,
where

(X)) (x O¢x) and Y(x) Fx) (X Ope(x).

The previous conditions can be written as

[T (W ¢+ (U +9.x))]) >0,

{ceC:¢(c) 0}
or, equivalently,

I[I (v© ¢El+[(Uopx) Gox)) >0,

{ceC:¢p(c) 0}
where 0.p(x) EXPO for p e p.

There are several characterizations of semiclassical orthogonal polynomials in terms of the so called structure relations.
Some of them are listed in the following theorem.

Theorem 4. Let U be a quasi definite linear functional and let {Pn(X)},. be its corresponding SMOP. Then, the following
statements are equivalent

e There exist non zero polynomials ¢,y of degrees t > 0,1 > 1, respectively, such that (3) holds.
o [18] (First structure relation) There exist a polynomial ¢ of degree t and sequences {a,;} such that {P,(x)},., satisfies
n+t
Ql’(x)PLl](x) Z An Pe(x), n=s, aups#0,n>=>s5+1, (4)
kns
where s is a positive integer such that t < s+ 2.
e [17] (Second structure relation) There exist non negative integers t,s, and sequences {dny}, {bnx}, such that

n+s n+s

ST aulPux) > buP)'(x), n > max{s,t},

kns knt

holds, where ann.s bnnys  1,n = max{s,t+ 1},
e [2] There exist a non negative integer s and sequences {b,;} and {c,;} such that {P,(x)},., satisfies the structure relation

s s+2
> bun P j®) D Can iPY®), bun Can 1, n=s+1 (5)
jo jio

Notice that (5) can be expressed in matrix form as

BA (A, (6)



where Bisa (0,s) banded monic matrix, and Cis a (0,s + 2) banded monic matrix. Indeed, the entries on the jth diagonal of
B (resp. C) are the coefficients by, j (resp. ¢, j), for 0 < j < s (resp. s + 2). Thus, the previous theorem means that {P,(x)}
is semiclassical (of class at most s) if and only if there exist those matrices B and C such that (6) holds.

On the other hand, if {P,(x)},., is semiclassical of class at most s, it follows from (6) that BAA ! is a (0,s +2) banded
monic matrix. Conversely, if there exists a (0,s) banded monic matrix B such that BAA ' is a (0,s +2) banded monic
matrix, then (6) holds, and therefore, {P,(x)},., is semiclassical. As a consequence, we have the following straightforward
generalization of Theorem 2 for semiclassical polynomials.

n=0

Theorem 5. Let {Pn(x)},- be a SMOP with respect to some linear functional U. Then, U is semiclassical of class at most s if and
only if there exists a semi infinite (0,s) banded monic matrix B such that BAA~"' is a (0,s +2) banded monic matrix.

Remark 6. In the classical case,i.e,s 0, we get that Bisa (0,0) banded monic matrix, i.e., B is the identity matrix. Hence,
{Pn(x)},5, is classical if and only if BAA '  AA 'isa (0,2) banded monic matrix (result obtained in [20]) or, equivalently,
{Pa(x)},, satisfies the following structure relation (proved in [11])

Pa(x)  PU(X)+con 1PML (%) +Con 2PV, (%), N> 1.

Now, let assume that the linear functional ¢/ in (3) is positive definite, and it has an associated absolutely continuous
positive measure pu supported in [a,b] C R, which can be expressed as du(x) w(x)dx, with the weight o satisfying
limy 4, ¢(X)(x) lim,_p ¢(X)(x) 0. The Pearson Eq. (3) can be expressed in terms of the weight as

(pw) Yo

In such a case, there exists a sequence of orthonormal polynomials {p,(x)},-,, and the corresponding Jacobi matrix is the
symmetric matrix

bo a, 0

- a b

J ; (7)
0 a, b2

satisfying xp(x)  Jp(x), withp(x) (po(®) p(x) ).

In this context, the first structure relation for semiclassical polynomials given in (4) also holds for the corresponding
sequence of orthonormal polynomials {p,(x)},., associated with the semiclassical functional % and can be expressed in
a matrix form as

¢(xp'(x) X Hp(x), (8)

where His a ( t,s) banded matrix whose elements, starting from the row s, are the coefficients appearing in (4) given in
terms of {p,(X)},.o, and p'(x)  [py(X), P;(X), .. J". The following result establishes a relation between H and J.

Theorem 7. Let {p,(X)},-, be a semiclassical sequence of orthonormal polynomials and let H be the ( t,s) banded matrix
associated with the first structure relation (8). Then, we have

(i) J.XH  ¢()),
(i) H+H"  y())

where [J,X"H] JX"H X"HJ and ¢,y are the polynomials appearing in the Pearson equation.

Proof. Notice that taking the derivative with respect to the variable x in (7), we get
Xp'(X) +p(x)  Jp'(x)-

Multiplying by ¢(x) and using (8), we obtain
XX"Hp(x) + ¢(x)p(x)  JX"Hp(x).

Taking into account (7), we get
X"HJp(x) + #()p(x)  JX"Hp(x).

Therefore, (i) follows. In order to prove (ii), from the Pearson equation we have

/pn )P (%) ($)'( /pn P (X)W (X) 0 (X)X,



and after integration by parts we get

b
/MMMMWWwWM Pu(X)P (%) /¢ )P, ()P (X /¢ P (X)Pa () (X)d.

Notice that the first term in the right hand side vanishes, and the second and third terms are the entries n,m and m, n of H,
respectively. Furthermore, the integral in the left hand side is the m,n entry of y(J). As a consequence, (ii) follows. O

Remark 8. Let us remember the symmetric and skew symmetric components of a matrix M, i.e, M; (M + M")/2 and
M, (M M")/2, respectively, so M M; + M,. Then,

e (ii) becomes
B 2ul)
1 P .
e IfH X"H, then from (i) we get
o Ao~ 1 ~ ~ T
T ] 5[e0) e0)] o,
and JH; is a symmetric matrix. On the other hand,
JN .o~ 1 ~ ~ T -
T HJ s[e+e0)] ¢0).
Finally, taking into account that P(x) AY withY (1,x,x?,.. .)T, we get P'(x) ADY. Then, multiplying by ¢(x) and using
(4) in a matrix form as (8), this is ¢(x)P'(x) X"HP(x) (or¢(x)XP'(x) HP(x)), we obtain
XTHAY AD¢(x)Y (orHAY XAD¢(x)Y).
If p(x) S 0E?y,xk, then
deg(p deg() . T deg(¢) .
pX)Y Z VX ) V(XL Z nXY  (X)Y.
k0
As a consequence, we have the following result.

Proposition 9. Let {P,(x)},-, be a semiclassical SMOP with associated matrix A. Then, if H is the matrix associated with the first
structure relation (4), we have

X'H AD$(X)A ' (orH XAD$(X)A ‘).

3. A matrix characterization for the coherence of orthogonal polynomials

We say that two non trivial probability measures, du, and du,, constitute a (k,0) coherent pair of order m, with k,m € Ny
fixed constants, if for each n € N, the monic orthogonal polynomial P, ( ; du,) can be expressed as a linear combination of the
set P (5dug),....P™ (. dpt). The coherence is classified in terms of k and m. The concept of coherence was introduced
by Iserles et al. in [9] and deeply analyzed in [10]. They established that a pair of regular linear functionals (2, V) in the
linear space of polynomials with complex coefficients is said to be a (1,0) coherent pair of order 1, or simply (1,0) coherent

pair, if their corresponding SMOP {P,(x)},., and {Q,(x)},., satisfy the structure relation
PU(x) + Py (x)  Qu(x), n >0, 9)
where
Pria (¥)
n+1’

{Ca}ns0 is @ sequence of complex numbers such that ¢, # 0 for n > 1, and ¢, is a free parameter. In this context, they also
introduced the concept of symmetrically coherent pair, when the two measures are symmetric and the subscripts in (9)
are changed appropriately.

The main reason why they studied these relations, was that (9) gives a sufficient condition for the existence of a relation

n+1
P (x) + n ——CiPa(%)  Spa (X )+Cn/5 (*4), n=1, (10)



where {¢;,},., are rational functions in 2 > 0 and {Su(x; )}, is the SMOP associated with the Sobolev inner product

[ plordug + 4 [ peortodu (9, >0,

where p(x) and r(x) are polynomials with real coefficients. They studied the case when the first measure dy, is either the
Gamma or the Beta distribution, whose corresponding sequences of orthogonal polynomials are the Laguerre and Jacobi
SMOP, respectively.

They implemented an algorithm to compute the Fourier Sobolev coefficients {f,(1)/s.(4)},., with

Fad) (FX), 8% 2));,  and  sy(4)  (Sa(X;4),Sa(X; ), n =0,

for the Fourier expansion

nO

for a smooth function f(x) in the Sobolev space
W2l o ) {f 1R € L (. €L}, (D},

where [ is an open interval of R. It is important to mention that this algorithm does not need the explicit expressions of the
Sobolev orthogonal polynomials S, (x; 2),n > 0. The authors in [9] have tested the algorithm for a comparison between the
Legendre Fourier expansion and Legendre Sobolev Fourier expansion and their behavior at the ends of the interval for a
smooth function. It reveals that Gibbs phenomenon does not appear in the second one and thus you have a better under
standing how the Fourier expansion reflects the behavior of the function and its derivatives. From the point of view of appli
cations, the potential interest of such Sobolev orthogonal polynomials appears when you consider spectral (Galerkin and
collocation) methods for boundary value problems associated with Schrédinger equations whose potentials are related with
such coherent pairs.

In 1997, in [19], Meijer determined all (1,0) coherent pairs (U, V) of regular linear functionals. He proved that at least
one of the linear functionals (2/ or V) must be classical (Laguerre or Jacobi). Moreover, he showed that there exist non zero
polynomials o (x) and ¢(x), with deg(o(x)) < 2 and deg(g(x)) 1, such that the linear functionals U and V are related by

oX)U o(X)V.

&

Later on, in 2005, Delgado and Marcellan [8] extended the notion of coherent pair to generalized coherent pairs (we call
them (1,1) coherent pairs) studying the relation

PU(X) + Py () Qu(X) +baQy 1(x), € #0,n> 1.

They proved that this is a necessary and sufficient condition for the relation (10). They also determined all the (1,1) coherent
pairs of linear functionals (b, can be zero). They showed that at least one of the regular linear functionals must be semiclas
sical of class at most 1, generalizing the results by H. G. Meijer for (1,0) coherent pairs. In addition, they showed that the
linear functionals ¢ and <V satisfy the relation o(x)U ¢(x)V, where o(x) and ¢(x) non zero polynomials such that
deg(a(x)) < 3 and deg(o(x)) 1.

Finally, in a recent work by de Jesis et al. [5], the more general case for coherence was characterized. They studied the
structure relation

ZC‘”Pn+m i(X) Zb’"ka i n=0,

where, M, N, m, k are non negative integers and the constants {c;,}, {bi,} satisfy some natural conditions. That relation was
called (M, N) coherence of order (m, k). They concluded that the corresponding functionals 2/ and <V are semiclassical, when
ever m # k, and they are related by an expression of rational type. When k 0, they also generalized the obtained results in
the framework of Sobolev orthogonal polynomials and their connections with coherent pairs, considering the Sobolev inner
product

P00 [ PR+ [P GOr du (0, 2> 0. (11)

On the other hand, in [15], Marcellan and Pinzén Cortés considered a matrix interpretation of (M, N) coherence of order
m. They established a relation between the Jacobi matrices associated with (M, N) coherent pairs of linear functionals of
order m and the Hessenberg matrix associated with the multiplication operator in terms of the basis of monic polynomials
orthogonal with respect to the Sobolev inner product (11).

The aim of our contribution is to provide a matrix characterization of coherent pairs of measures and to show with some
illustrative examples how you can implement, from a numerical point of view, the matrices involved therein.



3.1. (1,0) Coherence

In [19], a complete classification of (1,0) coherent pairs of regular linear functionals was given. However, the (1,0)
coherent pairs have been also studied in [1,12 14].

We can establish a relation between the matrices corresponding to sequences of orthogonal polynomials associated with
a coherent pair of linear functionals, i.e., that satisfy (9).

Lemma 10. If {P;(x)},-o and {Q,(X)},-, are SMOP with associated matrices A and Q, respectively, then
-~ 2. ~
(Axa)'AQ ' AQ'N (12)
holds, where A DAD and N is the Jacobi matrix associated with Q.

Proof. From Theorem 1 we can see that QX NQ holds, hence X Q 'NQ and, as a consequence, X> Q 'NQQ '
NQ Q 'N?Q.Thus AX’Q ' AQ 'N?, or equivalently

(Axa 1)2AQ 1 AQ 'N.

Theorem 11. Let {P,(x)},., and {Q,(X)},-, be SMOP with associated matrices A and Q, respectively. Then {P,(x)},., and
{Qn (%)}, constitute a (1,0) Coherent pair if and only if QA ' is lower bidiagonal with ones in the main diagonal and nonzero
entries in the subdiagonal.

Proof. Assume ({Pn(X)},-¢,{Qn(X)},50) is a (1,0) coherent pair, i.e., the relation
PUx) +cPl () Qu(x), cn#0, n>0, (13)
holds. Since A is the matrix associated with {P}'(x)},. ., then (13) can be written in matrix form as
A+X"A q,
where C  diag(co, c1, . ..). Another way to write the above equation is
(I+axMa q
and, since A is nonsingular,
I+cX" QA

So QA ' is clearly lower bidiagonal with ones in the diagonal and non zero entries in the subdiagonal, since ¢, = 0,n > 0.
For the converse, if QA-1 T is bidiagonal with ones in the main diagonal and non zero elements in the subdiagonal, then

TA Q,
SO {Pn(X)},50 and {Q,(x)},-, constitute a (1,0) Coherent pair of SMOP.

Remark 12. Notice that, in the particular case when {P,(x)},., is an orthogonal classical family, then {PE(]X)} . is also
nz

orthogonal (and classical), and it has an associated Jacobi matrix M AXA ! (after monic normalization). In this situation
(12) becomes

M?T TN? O,

which is a particular case of a Sylvester equation. As a consequence, the coherence coefficients ¢, can be obtained using the
Bartels Stewart algorithm.

Remark 13. Notice that T QA 'is a (0,1) banded matrix.

Example 14. (1,0) Coherence example

As an illustrative example, we consider the coherent measures du, [x 1]|(1 X)"°(1+x)°dx and du,
(1 x)°(1+x)7dx and the corresponding SMOP, a perturbation of Jacobi polynomials with parameters o f .5 for
dp, and the Jacobi polynomials with parameters o« .5 for du,. We obtained the explicit expresions for the perturbed
polynomials by using the formula in [3].

We construct the A and Q matrices with the coefficients of {Pn(x)},., and {Qn(X)} 50,



[ 1.0000 0 0 0 0 0 0 0 0 0
1.2500 1.0000 0 0 0 0 0 0 0 0
0.6786 2.1429 1.0000 0 0 0 0 0 0 0
0.3413 2.5385 3.1346 1.0000 0 0 0 0 0 0
0.1707 2.3402 5.4201 4.1340 1.0000 0 0 0 0 0

A 0.0854 1.8760 6.9762 9.3039 5.1340 1.0000 0 0 0 0
0.0427 13763 7.4971 152463 14.1877 6.1340 1.0000 0 0 0
0.0213 09500 7.1295 20.4177 28.1510 20.0718 7.1340 1.0000 0 0
0.0107 0.6273 6.2052 23.7353 45.0212 46.6892 26.9559 8.1340 1.0000 0

1 0.0053 04005 5.0501 24.8362 61.7192 86.6923 71.8613 34.8398 9.1340 1.0000 |

[1.0000 0 0 0 0 0 0 0 0 0
1.0000 1.0000 0 0 0 0 0 0 0 0
0.7500 2.0000 1.0000 0 0 0 0 0 0 0
0.5000 2.5000 3.0000 1.0000 0 0 0 0 0 0
0.3125 2.5000 5.2500 4.0000 1.0000 0 0 0 0 0

¢ 0.1875 2.1875 7.0000 9.0000 5.0000 1.0000 0 0 0 0
0.1094 1.7500 7.8750 15.0000 13.7500 6.0000 1.0000 0 0 0
0.0625 1.3125 7.8750 20.6250 27.5000 19.5000 7.0000 1.0000 0 0

0.0352 0.9375 7.2188 24.7500 44.6876 45.5000 26.2500 8.0000 1.0000 0
10.0195 06445 6.1875 26.8125 62.5625 85.3125 69.9999 34.0000 9.0000 1.0000 |

with this, we compute the matrix T

r1 0 0 0 0 0 0 0 0 07

0.0714 1 0 0 0 0 0 0 0 0

0 0.0897 1 0 0 0 0 0 0 0

0 0 0.1005 1 0 0 0 0 0 0

0 0 0 0.1072 1 0 0 0 0 0
4 0 0 0 0 0.1116 1 0 0] 0 0|

0 0 0 0 0 0.1148 1 0 0 0

0 0 0 0 0 0 0.1172 1 0 0

0 0 0 0 0 0 0 0.1191 1 0

L O 0 0 0 0 0 0 0 0.1206 1

and we can see that it is an (0,1) banded matrix with the coherence coefficients in the diagonals.

3.2.(1,0) Coherence of order m

The notion of coherence can be generalized for higher order of derivatives as follows. A pair of regular linear functionals
(U, V) in the linear space of polynomials P with complex coefficients is said to be a (1,0) coherent pair of order m, if their
corresponding sequences of monic orthogonal polynomials (SMOP) {P,(x)},., and {Q,(x)},., satisfy the structure relation

PI(X) + cuPi" () Qu(x), n =0, (14)



where {cn},, is a sequence of complex numbers such that ¢, # 0 for n > 1,¢, is a free parameter, P ;(x) 0, and PJ"(x)
denotes the monic polynomial of degree n
pm

[m] n+m(X)
Py (%) mt1),’ n=0o,

where (n + 1),, is the Pochhammer symbol defined by (), o(x+1) (x+n 1),n>1,and («), 1.

A particular case of higher order derivatives was studied by Branquinho and Rebocho in [2], where they consider m 2.
The general case was studied by Marcellan and Pinzén Cortés in [16], where they characterized the (1,0) coherence of order
m, and deduced the connection with Sobolev orthogonal polynomials (which depends on m), the relations between these
functionals and their corresponding formal Stieltjes series.

To see the structure relation (14) from a matrix point of view, we define D, : D™, and D, : D™, they are the diagonal
matrices of index m and index m,

r 0 0 0 0 ..7 [0 ... 1/n+1),, O 1
0 00 00 1/(n),,
D, |@m+1), 0 0 . Dbu o o 0 7
0 (m, : 0 0 0 0 0

respectively, where (o), a(x+1) (x+n 1),n>1,(x), 1isthePochhammer symboland then, using the same argu
ment as before, we obtain the following results.

Lemma 15. If {Py(X)},-o and {Q(x)},-o are SMOP with associated matrices A and Q, respectively, then
(A[’”]XA“”] ‘)ZAMQ 1AM N2
holds, where A™  D,,AD,, is the matrix associated with the sequence {P™ (%)}, and N is the Jacobi matrix associated with Q.

Theorem 16. Let {P,(x)},., and {Q,(x)},-, be SMOP with associated matrices A and Q, respectively. Then {Py(x)},., and

{Qu(X)},5 constitute a (1,0) coherent pair of order m if and only if QA™ " is lower bidiagonal with ones on the main diagonal
and nonzero entries in the subdiagonal.

Example 17. (1,0) Coherence of order m,(m 4)
In this example we consider the monic Laguerre polynomials that satisfy the following structure relation

d4

Notice that we are in presence of a (1,0) coherent pair of order 4 with coherence coefficients equal to n. We can represent
(15) in a matrix form as

cA¥ Q.

We calculate the explicit monic Laguerre polynomials in (15) by using the computational software Mathematica and, thus,
construct their associated matrices A% and Q

1 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0
72 18 1 0 0 0 0 0 O
720 270 30 1 0 0 0 0 0
A 7920 3960 660 44 1 0 0 0 0],
95040 59400 13200 1320 60 1 0 0 O
1235520 926640 257400 34320 2340 78 1 0 0
17297280 15135120 5045040 840840 76440 3822 98 1 0
| 259459200 259459200 100900800 20180160 2293200 152880 5880 120 1 |



I 1 0 0 0 0 0 0 0 0]
7 1 0 0 0 0 0 0 O
56 16 1 0 0 0 0 0 o0
504 216 27 1 0 0 0 0 O

Q 5040 2880 540 40 1 0 0 0 O0].

55440 39600 99000 1100 55 1 0 0 O
665280 570240 178200 26400 1980 72 1 0 O
8648640 8648640 3243240 600600 60060 3276 91 1 0

1121080960 138378240 60540480 13453440 1681680 122304 5096 112 1|

Finally we compute the matrix C QA “

[1 0 O 00 0
1

O O O O o N =
O O O O Ww = 0O
O O O b = O O O
O O wunl = O O O
o o= O O O O
N — O O O O o o
- O O O O o o

O O O O o o
- O O O O O o o o

0 0O

o

0 0

o

8

which is monic lower bidiagonal and contains the coherence coefficients in the sub diagonal that turn out to be exactly n as
in the structure relation formula (15).

3.3. (M,0) Coherence

Another generalization of the notion of coherence can be obtained by adding a finite number of terms on the left hand
side of (13). In this case, the pair of regular linear functionals (2, V) is said to be a (M, 0) coherent pair. Indeed, their corre
sponding sequences of monic orthogonal polynomials (SMOP) {P,(x)},., and {Q,(X)},., satisfy the structure relation

M
> el (%) Qu(x), n=0, (16)
i0

where {Cin},.0,0 < i< M, is a sequence of complex numbers such that cy, # 0if n > M and ¢;, 0 if i > n. This case has
been studied in [2,4 7]. We characterize this relation in a matrix form as is shown in the following result.

Theorem 18. Let {Pn(x)},-, and {Q,(X)},-o be the SMOP with associated matrices A and Q, respectively. Then {Py(x)},., and
{Qn(x)} 50 constitute a (M,0) Coherent pair if and only if QA" is (0,M) banded with ones on the main diagonal.

Proof. Let assume ({Py(X)},-0,{Qn(X)},50) is @ (M,0) coherent pair, i.e., the relation (16) holds. Since A is the matrix asso
ciated with {P(x)},_,, then (16) can be written in a matrix form as

A+YA Q,

n=0’

where Y [QXT + CZXT2 +...+ CMXTM and C; is a diagonal matrix of index 0 with entries c,.;,,n > 0,1 <i < M. Another
way to write the above equation is

I+Y)A Q,
and, since A is nonsingular,
(I+Y) QA1

so, QA 1 is clearly (0, M) banded.
For the converse, since QA1 T is (0,M) banded with ones in the main diagonal, we have

TA Q,
SO {Pn(X)},50 and {Q,(x)},-, are (1,0) Coherent.
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Example 19. (M,0) Coherence example (M = 2)
For this example we consider M 2 and, following Remark 6, we use the monic Jacobi polynomials with parameters
o« B 0.5 and its corresponding derivatives. The matrix equation then is Q CQ, with

[1.0000 0 0 0 0 0 0 0 0 T
1.0000 1.0000 0 0 0 0 0 0 0
0.7500 2.0000 1.0000 0 0 0 0 0 0
0.5000 2.5000 3.0000 1.0000 0 0 0 0 0

Q 0.3125 2.5000 5.2500 4.0000 1.0000 0 0 0 0
0.1875 2.1875 7.0000 9.0000 5.0000 1.0000 0 0 0
0.1094 1.7500 7.8750 15.0000 13.7500 6.0000 1.0000 0 0

0.0625 13125 7.8750 20.6250 27.5000 19.5000 7.0000 1.0000 0
10.0352 0.9375 7.2188 24.7500 44.6876 45.5000 26.2500 8.0000 1.0000 |

and
[1.0000 0 0 0 0 0 1
1.0000 1.0000 0 0 0 0
0.8333 2.0000 1.0000 0 0 0
0

0.6250 2.6250 3.0000 1.0000 0
Q 0.4375 2.8000 5.4000 4.0000 1.0000 0
0.2916 2.6250 7.5000 9.1666 5.0000 1.0000 0
0.1875 22500 8.8392 15.7143 13.9286 6.0000 1.0000 0
0.1171 1.8047 9.2812 22.3438 284375 19.6875 7.0000 1.0000 0
10.0716 1.3750 8.9375 27.8056 47.3958 46.6666 26.4444 8.0000 1.0000 |

o ©O © © o
O O O O o o
O OO o o oo

from where we can easily obtain C QQ ! by using Mathematica to compute it

! 0 0 0 0 0 0 0 0]

0 1 0 0 0 0 0 00
00833 0 1 0 0 0 0 00

0 26250 O 1 0 0 0 00

C 0 0 01500 0 1 0 0 0 0|
0 0 0 01666 0 1 0 00

0 0 0 0 01786 0 1 00

0 0 0 0 0 01875 0 1 0

L0 0 0 0 0 0 1944 0 1)

We can see that this is a (0,2) banded matrix as it should and we can explicitly obtain the coherence coefficients from the
entries of the matrix.

3.4. (M,0) Coherence of order m

The case when we take m derivatives for (M, 0) coherence, i. e.
M
> cnPl(x)  Qux), n >0,
io

with PI" defined as in Section 3.2. This case of coherence is considered by de Jesis et al. in [5 7]. They show that the linear
functionals associated with the corresponding SMOP are semiclassical and they are related by a rational factor.

Following the notation used in Section 3.2, we establish the following result for (M, 0) coherence of order m in a matrix
form.

Theorem 20. Let {Pn(x)},-, and {Q,(X)},-o be the SMOP with associated matrices A and Q, respectively. Then {Py(X)},-, and
{Qn(X)} 50 constitute a (M,0) Coherent pair of order m if, and only if QAI™ "is (0,M) banded with ones on the main diagonal.
The proof uses the same arguments as in Theorem 16.

Example 21. (M,0) Coherence of order m,(M 2,m 2)
In this case we consider the monic Laguerre polynomials that satisfy the following structure relation

11



1 d2 o ol ol o
m+2)n+1) ad (Lnﬁ () + c,;nLnﬁ(x) + Cin 1Ln+2(x)) Ly (x), n>0, (17)

where {ci,},., are the coherence coefficients for this (2,0) coherent pair of order 2. We can express (17) in a matrix form as
CAZ A,

where A is the lower triangular matrix associated with the monic Laguerre polynomials {L"*(x)},., and A? is defined as in
Section 3.2.
Using Mathematica we compute explicitly the monic Laguerre polynomials and construct the matrices A and A,

I 1 0 0 0 0 0 0 0 0]
4 1 0 0 0 0 0 0 O
20 10 1 0 0 0 0 0 O
120 90 18 1 0 0 0 0o o0
A 840 840 252 28 1 0 0 0 0},
6720 8400 3360 560 40 1 0 0 O
60480 90720 45360 10080 1080 54 1 0 o0
604800 1058400 635040 176400 25200 1890 70 1 O
| 6652800 13305600 9313920 3104640 554400 55440 3080 88 1|
I 1 0 0 0 0 0 0 0 0]
6 1 0 0 0 0 0 0 0O
42 14 1 0 0 0 0 0 0O
336 168 24 1 0 0 0 0 0
AP 3024 2016 432 36 1 0 0 0 0O
30240 25200 7200 900 50 1 0 0 O
332640 332640 118800 19800 1650 66 1 0 0
3991680 4656960 1995840 415800 46200 2772 84 1 0
| 51891840 69189120 34594560 8648640 1201200 96096 4368 104 1 |

and, in a straightforward way, we obtain C AA 2

00 0 0 0 0 0 O]
210 0 0 0 0 0 O
241 0 0 0 0 0 O
066 1 0 0 0 0 0
c |[oo128 1 0 0 0 of,
000 20101 0 0 0
000 0 30121 0 0
000 O O 42 141 0
000 0 0 0 5 16 1]

which is a (0,2) banded matrix with ones in the main diagonal as expected and contains the coherence coefficients in the
sub diagonals.
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