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CHAPTER 1. INTRODUCTION 

MOTIVATION 

 Some diseases are no longer among us in developed countries. 

Moreover, some of them are or were extinct like smallpox (thanks to Edward 

Jenner who discovered a vaccine for this illness in 1798). However, the chasm 

between rich and poor has only widened, due to deprivation and war. This 

situation has produced a global relapse of some of these diseases, like 

tuberculosis, inside developing countries. Diagnose has been proven to be a 

limiting step regarding medical treatment, present as a determinant factor for 

quick patient healing. The conditions are extremely challenging for a help-less 

person to access any of the fairy simple medical treatments available for TB 

(There are several well known antibiotics which are effective against this 

infection[1]). In addition there is a need for high sensitivity diagnostic tools, able 

to detect the presence of this infection even in its latent state (the effective 

number of particles of interest is lower) Although both diagnosis and treatment 

for the disease are fairly simple, medical centres use to be inexistent, far away 

and/or overwhelmed in disaster or isolated zones. Further more, it is paramount 

to provide a reliable identification of the bacterial family causing the infection as 

specific antibiotics have to be administered to fight each of them.  

 Point Of Care Testing (POCT) is often accomplished through the use of 

transportable, portable, and handheld instruments (e.g., blood glucose meter, 

nerve conduction study device) and test kits (e.g., CRP, HBA1C, Homocystein, 

HIV salivary assay, etc.). Devices like this are a robust approach of effective 

healthcare delivery within places with these conditions. In addition to this very 

urgent issue, a significant reduction of the patient turnaround time at hospitals 

around the world can be achieved inexpensively, provided the low-cost batch 

fabrication and operation of the devices. The standardization of miniaturized 

technology within hospitals would also reduce human labour costs. Additionally, 

the scale reduction of the whole diagnosis procedure implies also a reduction in 

the amount of reagents, waste generation and energy consumption. The 

reasons are countless to participate in such a laudable project, regardless the 

negligible personal profit involved. 

 The principal aim of the work is to help in the development of a low-cost 

biosensor capable of providing a reliable diagnosis to inexpert users. Rather 

than being a precise measurement instrument like mass spectrometers, this 

biosensor should be able to qualitatively detect and distinguish between the 

most relevant families of the bacteria causing mycobacterium tuberculosis in 

human fluids. Other approaches pursue outstanding sensitivity relying on 

expensive materials and microfabrication processes. Despite other requisites, 
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low-cost imposes certain criteria regarding materials, systems, fabrication 

techniques and user interfaces to be included in the device.    

 This work is part of the PLADEBACT project (Platform for Detection of 

Bacteria in Human Fluids).  It carries on with the already finished intramural 

project Nanophor. Several research groups are collaborating within this 

platform: 

COORDINATOR RESEARCH GROUP:   GIB-US 

PRINCIPAL INVESTIGATOR: Javier Reina 

OTHER GROUPS: 

 Group: GBT-UPM PI: José Javier Serrano 

 Group: GBIO-CNM PI: Jordi Aguiló 

CLINICAL GROUPS: 

 Institution: Unit of Nephrology – University Hospital Virgen Macarena 

(UN-UHVM, Sevilla) 

 PI: Nuria Aresté Fosalba (Mercedes Salgueira) 

EXTERNAL GROUPS: 

 Institution/ Company: Centro de Investigación y Desarrollo Tecnológico 

de la Industria  Electro-Electrónica e Informática de Colombia (CIDEI) 

 PI: Vicente García 

 Institution/ Company: Experimental Microbiology Laboratory, Institute of 

Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano 

Heredia: EMLIMT-UPCH. 

 PI: Palmira Ventosilla (José Chauca) 

 

 The aim of my group's work in the long term is at developing a prototype 

of quartz balance for the detection of Koch bacillus. Based on several 

simulations performed with COMSOL program, monophasic circuitry modelling 

was used to simulate the electrical behaviour of the system looking forward to 

its probing. To do so, a data acquisition system was also theorized and later 

prototyped in LabView. The next step is to build a simple prototype with a real 

crystal in order to exhaustively characterize the optimal configurations of 

media, stimulation regimes, and data acquisition strategies. The availability of 
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the prototype can shed light on the real problems regarding requisites, 

biofunctinalization, noise filtering, performance and operation sequences. Other 

groups like the one from UPCH are focused on the biofunctionalization of the 

device and the identification of potential biological targets to be detected. 

Nevertheless techniques related to electrode biofunctionalization and 

characterization of the biosensor will also be addressed. The bacteria detection 

itself is out of scope of this half-course work, but different approaches towards 

bacterial detection techniques will be covered.  

 In general terms, the working principles of the biosensor rely on the 

change in frequency spectrum response of a thickness shear oscillating quartz 

crystal due to the adsorption of specific biomolecular species present in the 

analyte at low concentrations on the surface of a gold electrode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.  

Displacements in resonant frequency of the QCM depending on the composition of 
the analyte. 
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BRIEF HISTORY OF THE QUARTZ MICROBALANCE 

 

-Piezoelectricity 

In 1881 the Curie brothers (Pierre and Jacques) observed for the first time in 

documented science the phenomenon of piezoelectricity, on which the 

biosensor is based. It is true that long time ago, in 1672 sodium and potassium 

mixed tartarate (KNaC4H4O6·4H2O), commonly known as Seignette's salt or 

Rochelle's salt (also piezoelectric) was discovered by Pierre Seignette working 

for Rochelle pharmaceutics. The phenomenon consists in the creation of an 

electron current inside matter due to a deformation suffered by crystalline 

networks and vice versa. Despite the fact that only 21 of the 32 crystalline 

structures known do show the asymmetry needed for piezoelectricity, 31 of 

them showed piezoelectric behaviour to a greater or lesser extent. If pressure is 

exerted along the polar axis, polarization is increased depending on the rate of 

variation in the deformation associated to that pressure. 

  One of its first uses was as an electric lighter (another piece slammed 

the quartz crystal generating a voltaic arc that could light something else). 

During First World War the piezoelectric phenomenon was widely used in sonar, 

clocks, and electronics. It was quickly included in the design of audio systems 

like microphones. In 1949 Mason[2] used it to study the viscoelasticity of certain 

fluids. Its use is widespread as oscillator in informatics to synchronize the 

operation of the CPU and its peripherals, due to its unmatched stability in 

frequency, purity in phase, and outstanding invariability under significant 

changes in temperature and moisture. Nowadays high-precision systems like 

GPS or space shuttles use atomic oscillators. However, this approach is much 

more expensive and requires cutting-edge technologies so quartz is still in use 

for many household applications.  

 Piezoelectricity is everywhere in our technology today. The piezoelectric 

capability of exerting and recording extremely low deformations  make them 

really useful for micro-manipulation systems like digital microscope, scanning 

tip microscopy, high resolution ink printers and high-precision injectors for 

internal combustion engines. In general, another step was taken towards the 

manipulation of the micro-scale, setting up some of the bases for 

nanotechnology.  

-State of the Art 

 Techniques involving a Quartz Micro Balance (QCM) commonly use a 

small disk of quartz (from 5 to 20 mm of diameter) with a thickness ranging 
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from some sets of tens of microns to 1mm approximately. Its resonant 

frequency depends on its piezoelectric properties, its dimensions, the type of 

cut and the mass of the metal electrodes deposited on its surfaces. A variable 

potential can be applied to the electrodes producing a variable deformation of 

the crystal. The ability to measure the resonant frequency in situ at the same 

time metal is deposited on the surface allows for precise determination of the 

crystals resonance reaching ppm. Resonant frequencies of this systems range 

from some kHz to sets of tens of MHz.   

 Many specialized approaches using this core technology have arisen. Its 

usefulness in many fields of science was been proven worldwide specially in 

electrochemistry. Within this field, electrochemical QCM technology shed light 

onto the reaction mechanisms involved in many phenomena like: Li 

intercalation, electrodeposition, corrosion studies, electropolymerization, 

ion/solvent adsorption and transport binding events. It was the advance in 

electrochemistry what made flourish QCM technologies the most. 

 Advances in microfabrication allow for high resolution designs and high 

precision cuts. This is the key for Multichannel QCM[3], in which different 

measurements can be carried on simultaneously on a single quartz crystal. For 

that means, small electrodes have to be precisely deposited over the quartz at 

specific resonance points. This involves cutting-edge microfabrication and 

micromanipulation technologies. 

 There is a global tendency to couple QCM cells to other systems like 

spectrometers[4], AFMs Atomic Force Microscopes and SECMs (Scanning 

Electrochemical Microscopes). By using combined technologies, several 

parameters can be estimated at the same time for a sample, resulting in a 

synergistic complement of calculations for high-level analysis. A great example 

is the development of a quartz crystal microbalance with dissipation coupled to 

on-chip MALDI-ToF ( Matrix-Assisted Laser Desorption/Ionization Time-of-

Flight) mass spectrometry as a tool for characterising proteinaceous 

conditioning films on functionalised surfaces.  

 By taking advantage of this technological breakthroughs, some groups 

have been able to study the dynamics of several biomacromolecular interactions 

like lipid-protein, protein-protein and membrane based biosensors[5]. The core 

technology here is the use of dissipation monitoring QCM (QCM-D). This allows 

for viscosity measurements and conditions control. It has been used to 

characterize supported lipid bilayers[5] (SLBs) which are an interesting platform 

to develop new biosensing technologies. They mimic the actual cell membrane 

and are supported by the substrate, in this case, the QCM electrode. New 

insights in molecular biology are coming up thanks to this technique. 
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CHAPTER 2. MATERIALS AND METHODS 

MATERIALS 

 The materials used for the development of the experiments were as 

follows: 

- Electronics laboratory circuitry 

- PC (COMPAQ presario) 

- Data acquisition card (National Instruments USB X SERIES) 

- Digital oscilloscope (Tektronix TDS 2024B) 

- Analog oscilloscope (Tektronix TDS 524A) 

- Electronic components (R, C, L) 

- Electric welder + Sn + Cu connection board 

- Function generator (TTi TG5011) 

- Multimeter 

- LabView  

- COMSOL (simulations by Luis Armando Carvajal) 

- SketchUp 

- https://www.circuitlab.com/ 

All this equipment was facilitated by the Bioinstumentation and Nanomedicine 

Laboratory (UPM) under the supervision of Javier Serrano Olmedo and with the 

close collaboration of Luis Armando Carvajal. There exist pictures of the 

equipment used listed within the annex. 

 

 

 

 

 

 

 

https://www.circuitlab.com/


 10 

THE QUARTZ CRYSTAL RESONATOR 

 The type of crystal used for the biosensing application is an AT cut 

quartz slab. The reason why this particular orientation for the slab is used 

resides in its vibration mode. A standing wave is set up in the crystal blank by 

the reflection at both major surfaces of traversal waves travelling in the 

thickness direction. The major mechanical displacement is in the plane of the 

crystal at right angles to the direction of propagation. At resonance an odd 

number of half wave lengths are contained in the thickness plane of the crystal 

blank. Therefore the thickness is the primary frequency determining dimension. 

Here is an illustration of the vibration mode: 

 

  

 

                             

 

 

 

 

 

 

For each vibration mode there is certain angle of the cut that optimizes 

temperature stability of the resonant frequency. Here there are two images 

showing possible cuts with respect to the original crystal and variation in 

frequency due to temperature changes in AT cuts at different angles from 

35º15': 

 

Fig.2. 
Graphic representation of the thickness shear mode and its third overtone. 
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 In order to relate the change in the resonant frequency of the system 

due to the addition of some mass at the surface the Sauerbrey equation[6] has 

been used since 1958. A simplified solution is: 

 

Where fs is the series resonant frequency, μQ is the quartz's dynamic viscosity, 

ρQ is the quartz's density and A is the slab's area between the electrodes 

(piezoelectricaly active). The fundamental frequency, which is be the resonant 

frequency for the mechanical system formed by the piezoelectric material, can 

be calculated as: 

 

Fig.3. 
 The quartz crystal and its different cuts (left), AT and BT cuts (top right) and 
the dependence of the frequency shift in ppms from the resonant frequency 
due to changes in temperature (bottom right). 
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Where v is the acoustic wave speed in quartz and tq is the thickness of the 

crystal. 

 It is of remarkable importance to indicate that Sauerbrey calculations 
only apply for solid depositions of layers over the electrode's surface when 
exposed to air.  

 The sensor is thought to work surrounded by the analyte (liquid 

containing the target biomolecules). In order to include the presence of viscous 

fluids in the system like the analyte, Kanazawa and Gordon equation[7] has 

been profusely used for large enough liquid layers. It explains the frequency 

shift of the resonator due to the presence of the liquid. 

 

Being f0  the resonant frequency and ηl the viscosity of the liquid. 

 

 When a crystal coated with a thin rigid film operates in a fluid, the 

interference between mass and viscosity effects is negligible and the problem 

can be treated in an additive manner. Thus, the shift in frequency appears as 

the sum of two independent phenomena[8]: 

 

 Consequently, shift in frequency measurements are not sufficient to fully 

characterize the acoustic response of a quartz crystal loaded with a viscoelastic 

layer due to a mass increment. Another quantity must be considered in order to 

quantify the energy dissipation. The half-band-half-width named Γ is 

particularly convenient for this purpose as it enables to generalise the 

resonance frequency in a complex quantity defined by[9,10]: 

 

Whose change can be related to the acoustic impedance of the additional layer 

in the small load approximation by[9,11]: 

 

Where: 
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is the characteristic acoustic impedance of the quartz crystal and Zlayer is the 

acoustic impedance of the layer. For a viscoelastic layer of finite thickness, this 

impedance takes the following form[9,12]: 

 

Where Glayer is the complex shear modulus of the viscoelastic material 
(Gl=G'l+iG''l) 

However, it can be noticed that low viscosity fluids do not disperse the 
impedance data below 250MHz[13]. 

 Electric analogies can be made for mechanical systems. Electrical 
conductance measurements against changes in stimulation frequency are key to 
understand the intrinsic mechanisms of the resonator. Here there are real 
measurements from another group [14].  

 

 

Fig.4. Conductance spectrum of a quartz resonator. 
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Note the dissymmetry in the peak, coming from real scenario conditions later 
discussed. The dissymmetry of the peaks increases with overtone number[15]. 

 

 Without measuring the thickness of the adsorbed layer, the mass can not 

be calculated knowing the other physical parameters. However, it has been 

proposed a method [15] which implies lowering the temperature until the 

coupling can be considered rigid to estimate the missing parameter, in this 

case, the thickness. 

 Johannssmann[16] proposed another approach to overcome the 

mathematical complexity arising from the lack of experimental information. It 

consist in the substitution of the tangent of the impedance by a third order 

Taylor expansion. This only holds when the layer's thickness is very small, 

leading to linear functions of the square root of the overtone number "n": 

 

Where mf is the mass per unit area of the film and Jf is the shear viscoelastic 

compliance (1/Gf). Jf=J'f-iJ''f 

 Unfortunately, the real behaviour of crystal resonators is subjected to 

several effects disregarded by this model such as quartz anisotropy, finite 

crystal boundary conditions, piezoelectric stiffening, energy trapping and 

anharmonic resonances. 

 

Fig.5. 

Viscosity effect 
illustrated with 
the conductance 
spectrum of a 
6MHz crystal on 
its 13th overtone. 
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SHEAR WAVE IN A SEMI-INFINITE FLUID 

 The simplest model to address the behaviour of viscous fluids in contact 

with the shear resonator includes the use of the conductance vector G. Its real 

component, G', represents the elastic constant of the material, while its 

imaginary part, G'', represents the viscous energy losses. When a material is 

perturbed with an angular frequency ω, the tangent of losses =G''/G' 

represents the amount of energy lost as heat in each cycle of the material 

perturbation.  

 In the case of rigid materials, G''->0 and so all the energy is stored 

in the material, behaving like a "spring" as hard as high is G'. On the other 

hand, in perfect newtonian liquids, G'->0 and ∞, so no energy is stored at 
all and is rather spent in the viscous agitation of the fluid having a viscosity 

=G''/ It is important to note that G' and G'' are dependent onin the sense 

that a fluid showing newtonian characteristics at some frequency can behave a 

a rigid solid at other frequency. This happens because of the dependence of 

some molecular properties of the material, expressed as macroscopic 

parameters, on the time scale in which the perturbation produced. 

 For viscous fluids, we can find Sauerbrey like behaviours when the 

thickness of the fluid is very small. On the other hand, when the layers are thick 

enough, we enter the Kanazawa zone, behaving like a semi-infinite liquid. For 

intermediate thicknesses the behaviour is more complex as it neither follows 

Sauerbrey nor Kanazawa approximations.  

 Here is a figure showing the evolution of a newtonian fluid expressed 

through the equivalent electric impedance of the liquid film Zf as the thickness is 

increased, considering its real and imaginary components, namely the real part 

Rf (resistance) and the imaginary part XLf (inductance)[17]  
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Note the evolution of the electric impedance against thickness "d", going from 
the linear Sauerbrey behaviour to the independence from d in the Kanazawa 
zone. 

 

 Bearing in mind the medium properties, it is possible to model the 
behaviour of the shear waves induced by the resonator inside the fluid. To 
simplify the model an incompressible fluid is are considered.  

Here there is a scheme of the oscillatory flow and the deviatoric stress state on 
a infinitesimal fluid element: 

 

Fig.7. 
Oscillatory flow due 
to the movement of a 
plane and deviatoric 
state of a differential 
element. 

Fig.6. 
Impedance parametric 
evolution with increases 
in liquid layer thickness. 
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 The modelling of a shear wave inside sputum is extremely complicated. 
However, a sample preconditioning step before the measurement is expected. 
This means the sensor will not face sputum directly, instead, it will face diluted 
sputum in some organic solvent (similar to the model proposed). The 
mathematic appearance of the shear waves in a semi-infinite linear viscoelastic 
fluid is as follows [18]. 

 Taking into account the no-slip condition and the far-field boundary 
condition (vx(y=0,t)=V(t) and Limy->∞(vx(y, t))=0, respectively), the velocity 
field within the liquid is: 

 
 
Where i 1/is the penetration length scale (until extinction of the 
perturbation) and 2is the oscillation length scale. Note that vx is a non-
dimensional variable (time is expressed as ). The Reynolds number 

determines both variables through   with  
 As discussed before, for the device to work properly, it is needed to 
obtain the vector G experimentally for the analyte using the expressions: 
 

 
 By rewriting the expression in physical terms, the formulas of Ferry et al. 
appear [19]

: 

 
 In this equation the dependency of the G vector on the angular 
frequency is revealed. Its relationship with the actual viscosity '-j'' (being 
' the dynamic shear viscosity and '' the out-of-phase viscosity, also named 
elasticity) follows this expression [13]

:
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ELECTRIC MODEL 

 

 The elaboration of the electrical model begins with the theorization of 

the circuit diagram. Butterworth-van-Dyke (BVD) equivalent circuit is widely 

used in the literature [20] and its graphical representation is: 

 

 There exists a principal branch called "mobile" or "series" (RLC), which 
represents the acoustics of the quartz crystal and its electrodes. In parallel to 
this branch there is a parasitic capacitance C0 representing the actual electric 
capacitance in the electrodes-quartz system, and thus does not stand for any 
mechanical compliance. Each component in the series branch addresses 
different phenomena within quartz resonance. C is the mechanical compliance 
of the quartz, L is the inertial component of the electrodes-quartz system and R 
stands for the energy losses during resonance.  
 Based on the impedance spectrum analysis of the COMSOL model (by 
Luis Armando Carvajal at CTB-UPM) calculations were made in monophasic 
circuitry modelling programs to design the circuit. The values for the different 
elements were estimated to maintain the same impedance behaviour in 
frequency as the in silico experiments.  
The resonant frequency fr and the half-width-half-maximum can be calculated 
as: 

 

 
 
 However there is also a way to graphic the data using the admittance 
Y(Y=1/Z) in order to obtain the values of R, C, L and illustrate at the same time 
the effect of the real electric capacitance C0

[17]. Y can be expressed as the sum 
of its components, "G" conductance and "B" susceptance. 
 

Fig.8. 
Representation 
of the 
equivalent 
electric circuit. 
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 These are the cases for C0=0 and C0 different from zero. In the second 
case, the value for  with phase=0º (B=0) is displaced, both the series and the 
parallel angular frequencies. It is important to comment the effect of C0 
regarding the total behaviour of the system. As C0 is increased both frequencies 
tend to collapse in the same value. When C0>1/2R the system does not 
resonate any longer.  
 The quality factor Q is of paramount importance regarding frequency 
resolution of the acquired signal. In an ideal RLC circuit the quality factor can 
be calculated as: 

 

It can also be approximated by the expression [13]: 

 

Fig. 9. 
Evolution of admittance in frequency with and without considering the 
electric capacitance of the system electrodes-quartz. 
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Where: RQ is the resistance of the quartz, RL is the resistance of the layer in 
terms of energy dissipation, LQ + LL represent the inertial mass of the system 
quartz-layer. 
 This information is enough to build the model provided an estimation of 
one parameter. The most restrictive element in terms of dimensions and prices 
was, in this case, the 250F inductor. Also, it is a critical factor in the 
establishment of a proper resonant frequency in the circuit. Bearing this in mind 
the following circuitry was built using a welder, Sn, and a Cu connection board. 
 

                   
 
 

In this image the final circuit is shown. All the components at the right 
from the first resistor represent the quartz resonator. White is ground, yellow 
the excitation signal and green the probe for assessing the behaviour of the 
resonator. The lower capacitor stands for the electrical capacity of the 
resonator while the rest of the resonator equivalent represents the mechanical 
behaviour. 
 
 This is the scheme of the electric model together with the excitation 
signal. Here the series branch is found on the far right and the electrical 
capacitance is represented by C0. The resonator probe is positioned as shown 
below in order to observe in the oscilloscope the state of the resonator. 
  

Fig.10.  
Equivalent 
electric 
resonator. 
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 Here is a list of the components used in the circuit: 
-Two 362,5 Ohm resistors. 

-Two 18pF capacitors 

-Three 2.2pF capacitors 

-One 250μH inductor 

The circuit was probed with an analog oscilloscope and then fed with a 

frequency tuneable 10Vpp sinusoidal signal in order to check the resonant 

frequency of the circuit. 

 

Fig.11. 
Schematic representation of the electric circuit. 
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DISCRETE MODULATION (NARROWBAND SIGNALS) 

 In the next lines a system for discrete amplitude modulation is 

explained[21], in which the signals are considered periodic, namely, the 

modulating signal x[n] and the carrier signal c[n]. The bases of this method are 

the Fourier transform and its properties: 

 

 The properties arising from the study of continuous time signals are also 

valid for discrete time signals (specifically the property which indicates that the 

multiplication in the time domain is the convolution in the frequency domain).  

Here, the function named with a capital letter as function of a complex 

exponential is the Fourier transform of the small case function. 

 

 

 The carrier has an special shape in the Fourier domain. In the time 

domain it exists as a complex exponential while in the frequency domain it 

turns out to be a train of deltas. 
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This is an illustration of a continuous time complex exponential, whose discrete 

form is used in this case as the carrier. 

 This relationship between the complex exponential and its real and 

imaginary parts is well is well understood through the trigonometric circle. This 

is the origin of the so called Euler's Formula.                                                                             

 

 The delta-train shape of the Fourier transform of a signal like this added 

the properties of the Fourier transform are ideal for sampling purposes. The 

convolution of this train of deltas with other periodic function will displace c in 

frequency the original spectrum. In this way the system would work as follows: 

Considering the form of x[n] and c[n] in frequency domain:    

Fig.12. 
Continuous 
time 
complex 
exponential 
function. 

Fig.13. 
Trigonometric 
circle. 
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Note that in order to recover the signal, it must be fulfilled that: 

 

 Remember that Y(jω) is the convolution of X(jω) with C(jω). The 

resulting function is just a displaced version of the original spectrum of the 

modulating signal.  

 In the case of this sensor, the signal generated is a sine with some of its 

harmonics its harmonics and noise. The signal spectrum is a series of peaks 

which decay exponentially in magnitude with the distance to the central one, 

situated at the signals frequency. In a simplified version of the signal we can 

consider it as a pure sine, which Fourier transform will be just an anti-

symmetric pair of deltas.     

Fig.14. 
Sampling 
with 
Fourier 
tranform. 
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 This would mean an ideal narrowband signal. In the real case this peaks 

will have a defined bandwidth, although small enough for modulation purposes 

taking into account the Nyquist theorem (fs>=2*bandwidth). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15. 
Sine function and its Fourier tranform. 
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CHAPTER 3. RESULTS 

THE CASE 

Here are some images of the case made with SketchUp (note that in order to 

get some resolution within the programme, ten millimetres of the SketchUp 

design are one of the real model) 

 

 

 

In the left view we can see the general arrangement of the QCM and the case. 

Following what appears in the literature, O-rings were thought as suitable 

mechanical support. The top right image shows the capping of the system. Two 

big cylindrical holes were drawn for the inlet and outlet connections. Typical 

size screws were considered to be used and the pertinent orifices were created. 

Fig.16. 
Images of the whole case (left), the cap (top right) and the support (bottom right). 
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In the bottom right image it is shown the supporting system. It has cavities for 

the screws and prismatic holes for the electrode connections with the 

piezoelectric. It also includes (as does the cap) small features for the isolation 

of the piezoelectric to steadily fit inside the case.  

 

NATIONAL INSTRUMENTS DATA ACQUISITION CARD (USB-6351) 

 Thanks to the simple user interface and its ease of setup, the card was 

quickly installed in the PC. This card had several channels for analog and digital 

signals. The drivers were so that no further modification was needed to use it 

within LabView as both products are from the same company. Anyhow, the 

maximum sampling frequency supported by the DAC was 1,25 MS/s (1,25 

million samples per second). This was a great disadvantage as this digitalization 

setup seriously restricted the acquisition of the interesting signals (~10MHz). 

Furthermore, all efforts were made in order to accomplish reliable data 

acquisition for one channel, which would be tremendously difficult for two 

channels as it would be necessary to access the internal clock of the central 

processing unit and couple it to the DAC (the final system may work in parallel 

with another reference sensor). 

 

VIRTUAL INSTRUMENTS IN LABVIEW 

 The first experience with LabView after its installation was getting 

familiar with the programmes functions. After being able to generate a virtual 

band-pass 2nd order Butterworth filter (99900-100100 Hz) and test it against 

different digital signals generated in silico, the filter was connected to a function 

generator. After feeding white noise to the digital filter, it was observed the well 

functioning of the filter.     

 Then the next step would be to acquire a pure sinusoid signal in the 

range of the 10MHz coming from the function generator. This was challenging 

due to the fact that this frequency was approximately ten fold that of the 

sampling frequency in the DAC. This is when narrowband width signal 

demodulation comes into play. Being the minimum period measured by the DAC 

0,8 microseconds, it was then needed to develop a sampling criteria which 

would not exceed this limit. Then a carrier signal was used to be modulated by 

the one coming from the generator.  

 The carrier, after some conservative calculations, was set to have an 

angular frequency of 24960Hz (around the fifth part of the maximum sampling 

frequency in the DAC) which was approximated to 25kHz. The results were 
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good, with high temporal resolution, but the acquisition time was not optimized. 

After using 990,099kHz as the sampling frequency (less than the max sampling 

frequency) and adjusting the band-pass filter, the results were optimized for 

one channel. More than one analysis of the input signal frequency were carried 

out each second.  

Here are both, an image of the virtual instrument on LabView and an image of 

the users display: 

 

 

 

  

 Other approaches were studied and implemented. In order to lower the 

noise in the signal coming from pseudo periodic events in the real scenario, it 

Fig.17. 
Image of the virtual instrument created for data analysis. 

Fig.18. 
Image of the data display. 
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was intended to randomize the carrier signal; this is sampling at random 

increments of time within some working limits to discard events occurring at the 

sampling frequency.  

 Also it was tested the possibility to excite a real sensor with the PC. 

Making use of the DAC, whose maximum sampling frequency was 1,25MS/s, it 

was impossible to continuously recreate a 10MHz sinusoid for excitation of the 

analog circuit.  

 

ELECTRIC MODEL TEST 

 After the tests carried out only using the function generator, the electric 

circuit equivalent to the piezoelectric system was built. Luis Carvajal supervised 

the whole building procedure. Based on the theoretical calculations using 

monophasic circuitry modelling programmes, the components were bought 

from RS Components International, being the inductor the most expensive and 

restrictive (250μH). 

 The circuit described above, was fed with a 10Vpp and 10MHz sinusoidal 

signal. The system was probed by potential difference at the ends of the 

pseudo-piezo component (ResonatorProbe illustrated in the schematic of the 

circuit) with the analog oscilloscope, including the capacitance components 

coming from the theoretical intrinsic capacitance to the dielectric layer of the 

capacitor. The digital oscilloscope was useless here as it had not enough time 

resolution to make the calculations needed in real time. Problems were 

observed without capping the power supply to 20MHz, probably due to over 

excitation of overtones inside the crystal and spurious modes close to the 

resonant frequency. The observations were clear that the resonant frequency of 

the model was 10MHz as expected, measuring when the phase between the 

excitation and the resonance was 0º.  

Here is an image of the analog oscilloscope screen: 
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Note that: Ch1 is the power supply, Ch2 is the signal coming from the pseudo-

quartz and the frequency in the image is 10MHz (T=99,2ns). 

 It was pleasant to observe in real time the behaviour of the model at 

difference frequencies. At really low frequency the system behaves like a pure 

resistor. Then, with increasing frequency, capacitive behaviour takes the lead 

while inductive reactions begin to appear. After crossing the 0º phase point, at 

which resonance occurs, if frequency was increased further more the induction 

takes it all, producing a 180º phase signal of low voltage. 

 

 

 

 

Fig.19. 
Picture of the analog oscilloscope screen at resonance of the electric equivalent. 
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CHAPTER 4. DISCUSSION 

 

THE CASE. FABRICATION AND MATERIALS 

 While all the programmes involved were being installed in the PCs 

available in the laboratory, the design of the external case was theorized. The 

material to be used was theorized taking into account requisites such as size, 

smallest feature resolution, and anti-fouling properties of its surface. In this 

manner, PMMA ((Poly(methyl methacrilate)) was found to be suitable for this 

case. Its intrinsic inexpensiveness and its cheap sculpting with enough 

resolution (by CO2 laser) make it a clear candidate for low-cost batch 

fabrication. Also it shows little adsorption of DNA and proteins (which could be 

deleterious for the acquired signal). However, regarding other further 

functionalities of the biosensor to be added, it is to be known that PMMA show 

some auto-fluorescence (which could disenable different kinds of in situ optical 

measurements). Furthermore, its glass transition temperature (105 ºC) and its 

high thermal expansion coefficient, interdict any high temperature operation 

regime. Although raster scanning is a time consuming technique, the use of 

advanced digital mirror devices could help keeping the fabrication time per unit 

extremely low. 

 Several designs in literature were studied and compared in order to 

create a simple model for further experiments. Although the free ScketchUp 

version was used, the file can be opened in the pro version. This would allow to 

create objects called "solids" so their internal volume would be also considered 

by the programme. With this new file, Slic3r can be used to create arbitrary 

binary tomographies, which can later be fed to a 3D printer to create a 

prototypical case for experiments at the laboratory. As the smallest feature is 

around one millimetre, this can be challenging for many DIY deposition 3D 

printers available. The model is still to be tested in a real scenario. 

 

VIRTUAL INSTRUMENTS IN LABVIEW. OPTIMIZATION 

 The method developed has theoretically enough time resolution 

regarding the nature of the biomolecular complex formation and detection. All 

the measurements obtained have an error below 1% of the theoretical value. It 

is remarkable here that the aim by this time of the work was to have enough 

frequency resolution of the signal. With this method, differences of 1Hz were 

successfully measured in the PC as the signal from the function generator was 
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varied. In theory, the differences created by the addition of biomolecules on a 

viscous film of a few tens of nm, is in the order of the kHz.   

 In order to get rid of noise in the real scenario, the other modes of the 

piezoelectric should be considered to suppress the harmonics in the signal. 

Although this crystals show a great behaviour in air, they see reduced their 

quality factor due to the viscosity of the medium. In frequency this will be a 

broadening in frequency of the peak detected. Its is also important to remark 

that shear waves inside the analyte are only able to travel a few hundreds of 

nm. This will prevent them from coming back to the piezoelectric surface and 

complicating the signal. In any case, if the aim of the final device is to give a 

qualitative measurement regarding only one bacterial family, the signal to be 

measured would have a much larger magnitude than the noise considered.  

 The use of hopping-frequency sampling was promising but required four 

times more waiting between measurements. However, this possibility should be 

considered regarding the real scenario noise sources. 

 Experiences with signal generation from the DAC aiming a real quartz 

sensor indicate us the incompatibility of continuous mode excitation methods 

with our digitalization set up. However, the spacing between excitation 

sequences can be affordable measuring the decay constant for viscosity 

estimations. This is due to the fact that excitation and measurement need to be 

synchronized, allowing the system to prepare the signals in the meantime. 

 

ELECTRIC MODEL. NEXT STEPS 

  Although results were surprisingly similar to those expected 

theoretically, it must be considered for the real case scenario that the medium 

itself would represent an increase of this capacitive component, represented in 

the model as a parallel capacitor.  

 The theory involved indicates that the viscosity of the medium can be 

modelled changing the resistance in the circuit. This can be achieved with an 

increase in resistance proportional to the increase in viscosity, calculated in 

terms of energy dissipation. 

 The previous experiences with the digital oscilloscope indicate that a 

digitalization phase regarding measurement, filtering and calculation may 

increase the acquisition time and price of the final device.  

 Further work could be focused on the emulation of different physical 

media and conditions within the electrical model. In order to do so, a tuneable 
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inductor and a simple potentiometer could be used to emulate different media. 

This data could be also compared to existing experimental data, providing 

potential useful analogies with the real scenario for system calibration. 

 

ELECTRODE BIOFUNCTIONALIZATION 

 Here it will be discussed the use of Self Assembling Monolayers together 

with the QCM technology as a new approach for electrode biofunctionalization. 

The information below was studied in class during the BioMEMS course in the 

UC3M, addressing the lecture about micropatterns of SAMs, given by Cristina 

Sánchez López de Pablo. Notions from the course about Nanotechnology in 

Biomedicine were also applied. 

 These layers are formed by ethileneglycol polymers with reactive groups 

at its ends, being able to form a nanosized layer of material over a substrate. 

The resulting interface can be impermeable to proteins and water by adding 

Acrylamide chains on the substrate before adding the PEG chains. This is due to 

the formation of the so called interpenetrating networks within the layer.  

 

 The viscosity of this layers depends on their thickness, which is 

determined by the number of monomers in each chain. This number can be 

varied during the synthesis of the PEG chains. If the length is too large, the 

molecules surrender to thermal noise, collapsing the brush conformation. On 

the other hand, if these chains are too short, the interaction with the substrate 

would be higher than between chains, resulting in the adsorption of the chains 

and consequently hindering the brush conformation. The vertical disposition of 

Fig.20. 
PEG chain over 
Si glass. 
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the chains is critical regarding the complete exposition of the active recognition 

site of the receptor biomolecule. This disposition could be achieved designing a 

reaction targeting the N-terminus of the peptides involved. In the case of DNA, 

phosphodiester bond would be a good strategy to confine the bioreceptor on 

the exposed surface . 

  

In terms of the physics behind, the addition of this layer would mean a third 

phase through which the acoustic waves are propagating. In the electrical 

model, this could be calibrated with the addition of a resistor in series with the 

resonator, mimicking the effect of the viscosity in terms of energy dissipation. 

However, the resonant frequency depends mostly on the inertial and capacitive 

components, being Q, the quality factor, the only one affected (reduced in this 

case). The calculation of the total mass and compliance of the SAM can be 

estimated depending on the length of the individual chains, calculations 

required for the optimization of the device. 

 The synthesis of SAMs has been profusely investigated. It basically 

involves some basic organic chemistry. In this case, the addition of the 

bioreceptor molecule should be kept in mind for the design of the synthetic 

procedure. Also, the phisio-chemical reactivity of the SAM against the analyte 

solution should be taken into account. Alkenethiols seem to be a good approach 

for gold electrode biofuntionalization. The thiol groups at the end form a dative 

bond with the metallic surface, acting as an anchor. 

 In any case, there is the need for a medium length crosslinker between 

the bioreceptor molecules (disposed outwards from the electrodes surface) and 

the electrodes surface. 

 

 

Fig.21. 
Types of 
SAMs for 
different 
substrates. 



 35 

The combination of well known gold-micropatterning techniques with 

microfluidics systems could allow the multiplication of the channels on the 

quartz surface. This means the assembly of several SAMs forming a biosensors 

array, presenting different bioreceptors for different measurements. From the 

literature it is known the promising results of Multichannel-QCM[5]
.
 

Here are some illustrations of the device and a real picture of a gold 

micropattern: 

                            

 

 

 

 

 Regarding the use of SAMs as a biofuntinalizing agent, several tests can 

be performed to asses the homogeneity and functionality of the biofilm. At 

some point, Atomic Force Microscopy (AFM) appears as a required technique for 

this purpose. However, using Green Fluorescent Protein (GFP) reporter systems 

can be an inexpensive alternative provided the availability of a fluorescence 

microscope (household equipment in a cell biology laboratory). The test in this 

case would consist in checking the homogeneous distribution of a fluorescent 

reporter over the film provided the attachment to the target molecule.  

  

 

Fig.22.  
Schematic of the SAMs. 

Fig.23. 
Schematic micropatterned SAM and 
real gold micropaterning picture. 
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CHAPTER 5. CONCLUSIONS 

 

DATA ACQUISITION 

 This method is compatible with the observation of small mass increments 

during the adhesion of molecules, which only represent a change in the position 

of the peak, leaving its bandwidth almost intact. Furthermore, if the biological 

detection is performed using a functionalized self-assembling monolayer, we 

can make use of a Sauerbrey like approximation, considering the film as almost 

rigidly coupled to the electrode due to the small thickness of the chains (~24nm 

for a PEG n=70) and thus simplifying the calculations down to the viscoelastic 

effects of the liquid around the sensor. However, the solvent used to form the 

analyte solution should be characterized beforehand to recalibrate the system. 

Other interesting approach to bypass this lack of experimental data would be to 

place a bioinactive second sensor inside the medium so it would provide a 

reference of the viscous effects of the analyte. This effect can be estimated 

effectively with the Kanazawa approach. 

 It must not be forgotten the fact that low-cost systems for qualitative 

diagnosis should be as simple as possible. Regarding data acquisition, 

outstanding high mass sensitivity and temporal resolution can be sacrificed, 

reducing the electronics and costs involved.  

 

EXCITATION METHODS 

 Other excitation methods are used within the field of QCM such as the 

pulse excitation and the decay measurement. The first approach shows 

promising results[5] regarding quality factor and the associated signal to noise 

ratio of the measurement. The later involve the estimation of the decay 

constant of the signal modelled as Ae-Dtsin(wt). This D is related to the viscosity 

of the medium (in this case the biofilm plus the medium). In order to do so, a 

better coordination between the power signal and the digitalization card is 

needed to precisely probe the viscous phenomena in between. However, the 

intrinsic sequentiality of this measurement allows the proposed digital set up to 

prepare the signals for excitation, being also suitable for this technique.  

 Despite the benefits in signal acquisition and sensitivity of these 

alternative methods, the excitation pulses shape is difficult to acquire, involving 

more and more sophisticated circuitry in the device. Clinging to a simple analog 
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set up inspired in the optimized digital version would reduce the costs in terms 

of number of components and ease of fabrication. 

 It is of remarkable importance the availability of the data required 

beforehand in the design of the device. Parameters like thickness of the biofilm, 

its complex shear modulus and physical properties of the analyte should be 

established to reduce the amount of feedback, electronics and circuitry within 

the device. 

 It is left to say that the proposed system could also be used to asses the 

properties of different media. Regarding its frequency sensitivity, small changes 

in the resonant frequency coming from the medium alone can be measured. 

Many efforts are made today looking for reliable measurement of the physical 

properties of human fluids such as viscosity or density. For example, there is a 

growing tendency to measure glucose indirectly by how it affects the viscosity 

of its environment (sweat, interstitial fluid, tears), looking for a non-invasive 

constant monitoring of the glucose levels in blood. 
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DATA ACQUISITION PICTURES 



It is shown the frequency shift indicated by the data acquisition system and the  real 

frequency of the signal. 

 

f=10MHz; fshift=0,00482355Hz 

 

f=10,000001MHz; fshift=1,00158Hz 



 

f=10,000002MHz; fshift=1,99834Hz 

 

f=10,000010MHz; fshift=9,97243Hz 



 

f=10,000100MHz; fshift=100,678Hz 

 

f=10,001000MHz; fshift=1006,76Hz 

 

 

 

 

 


