
GENERALIZED WEIGHTED SOBOLEV SPACESAND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS IJos�e M. Rodr��guez�,Venanio �Alvarez, Elena Romera�, Domingo Pestana�1. Introdution and main results.Weighted Sobolev spaes are an interesting topi in many �elds of Mathematis. In the lassial books[Ku℄, [KS℄, we an �nd the point of view of Partial Di�erential Equations. See also [Tr℄ and [HKM℄. (Themain topi of [HKM℄ is non-linear Partial Di�erential Equations and its appliations to quasionformal andquasiregular maps.) We are interested in the relationship between this topi and Approximation Theory ingeneral, and Sobolev Orthogonal Polynomials in partiular.The spei� problems we want to solve are the following:1) Given a Sobolev salar produt with general measures in R, �nd hypotheses on the measures, asgeneral as possible, so that we an de�ne a Sobolev spae whose elements are funtions.2) If a Sobolev salar produt with general measures in R is well de�ned for polynomials, what is theompletion, P k;2, of the spae of polynomials with respet to the norm assoiated to that salar produt?This problem has been studied in some very partiular ases (see e.g. [ELW1℄, [EL℄, [ELW2℄), but at thismoment no general theory has been built.3) What are the most general onditions under whih the multipliation operator, Mf(x) = x f(x),is bounded in the spae P k;2? We know by a theorem in [LPP℄ that the zeroes of the Sobolev orthogonalpolynomials are ontained in the disk fz : jzj � kMkg. The loation of these zeroes allows to prove resultson the asymptoti behaviour of Sobolev orthogonal polynomials (see [LP℄). In the seond part of this paper,[RARP℄, and in [R2℄ and [APRR℄, we answer the question stated also in [LP℄ about general onditions forM to be bounded.This last question is very lose to the de�nition of Sobolev spaes assoiated to these norms, the studyof their ompleteness and the density of C1 funtions. In fat, the de�nition and ompleteness of Sobolevspaes is what we study in the present paper, not only for p = 2, but for 1 � p � 1. An important partof this paper onerns the development of tehnial tools. These tools are ruial not only here but in thepapers [RARP℄, [R1℄, [R2℄, [R3℄, [APRR℄ and [RY℄. The problems about density and about the multipliationoperator are studied in these six papers.The ompleteness that we study now is one of the entral questions in the theory of weighted Sobolevspaes, together with the density of C1 funtions. In partiular, when all the measures are �nite, haveompat support and are suh that C1 (R) is dense in a Sobolev spae that is omplete, then the losure ofthe polynomials is the whole Sobolev spae. This is dedued from Bernstein's proof of Weierstrass' theorem,where the polynomials he builds approximate uniformly up to the k-th derivative any funtion in Ck([a; b℄)(see e.g. [D, p.113℄).In this paper we also prove some inequalities whih generalize lassial results about Sobolev spaeswith respet to Lebesgue measure (see Theorem 4.3).We should remark that there exists another generalization of Sobolev spaes in the ontext of metrispaes (see [H℄, [M℄). In these papers the treatment of this topi is from a di�erent point of view.The �rst part of this artile is devoted to obtain a good de�nition of Sobolev spae, W k;p(�0; : : : ; �k),where �0; : : : ; �k; are very general measures. We allow the measures �0; : : : ; �k; to be almost independentof eah other. The main result that we present in this paper is Theorem 5.1, whih appears in Setion 5. Itstates very general onditions on the measures under whih this Sobolev spae is omplete.2000 AMS Subjet Classi�ation: 41A10, 46E35, 46G10.� Researh partially supported by a grant from DGI (BFM 2000-0206-C04-01), Spain.1
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The main ingredient of the proof of this theorem is Theorem 4.3. It allows to ontrol the L1 norm(in appropriate sets) of a funtion and its dervatives in terms of its Sobolev norm. It is also useful by itsappliations in the papers [RARP℄, [R1℄, [R2℄, [R3℄, [APRR℄ and [RY℄. Furthermore, it is important by itself,sine it answers to the following main question: when the evaluation funtional of f (or f (j)) in a point is abounded operator in W k;p(
; �)?As a onsequene of theorems 4.3 and 5.1, we an prove the density of the spae of polynomials inthese Sobolev spaes (see [RARP℄, [R1℄, [R3℄, [APRR℄ and [RY℄) and the boundedness of the multipliationoperator (see [RARP℄, [R2℄ and [APRR℄).In the paper, the results are numbered aording to the setion where they are proved. Now we presentthe notation we use.Notation. In the paper, k � 1 denotes a �xed natural number; obviously W 0;p(
; �) = Lp(
; �). Allthe measures we onsider are Borel and positive. Also, all the weights are non-negative Borel measurablefuntions. If the measure does not appear expliitly, we mean that we are using Lebesgue measure. We allowmeasures �j whih are not neessarily �-�nite but always assume that d�j = d(�j)s +wj dx, where (�j)s issingular with respet to Lebesgue measure and wj is a Lebesgue measurable funtion (whih an be in�nitein a set of positive Lebesgue measure). We denote by supp � the support of the measure �. If A is a Borelset, jAj; �A , A, int(A) and #A denote, respetively, the Lebesgue measure, the harateristi funtion, thelosure, the interior and the ardinality of A. By f (j) we mean the j-th distributional derivative of f . Whenwe work in the spae W k;p(
; �) we denote by W k�r;p(
; �) the spae W k�r;p(
; (�r; : : : ; �k)). We say thatan n-dimensional vetor satis�es a one-dimensional property if eah oordinate satis�es this property. Pndenotes the set of polynomials with degree less than or equal to n, and a, b arbitrary real numbers witha < b; they are �nite unless the ontrary is spei�ed. Finally, the onstants in the formulae an vary fromline to line and even in the same line.The outline of the paper is as follows. Setion 2 presents most of the de�nitions we need to state ourresults. We prove some useful results on Hardy inequalities and omparable norms in Setion 3. Setion 4is dediated to some tehnial results; some of them are generalizations of lassial results with Lebesguemeasure. Finally, in Setion 5 we prove the theorem on ompleteness.Aknowledgements. We would like to thank F. Marell�an for suggesting us this problem and H. Pijeirafor many useful referenes.2. De�nitions.There are two standard ways to de�ne lassial Sobolev spaes W k;p(
) (with 1 � p < 1) in an opensubset 
 of an Eulidean spae:(1) the ompletion of smooth funtions C1(
) with the normkfkk;p := X� �k kD�fkp ;where kgkp denotes the Lp(
) norm of g with respet to Lebesgue measure, and(2) the funtions f belonging to Lp(
) suh that their weak derivatives up to order k belong also toLp(
).It is well-known that these two de�nitions are equivalent for 1 � p <1 (see e.g. [A, p.52℄, [Ma, p.12℄).However (1) and (2) oinide with the ompletion of C1(Rn) only for smooth domains (see e.g. [A, p.54℄,[Ma, p.14℄).It is possible to de�ne some partiular weighted Sobolev spaes, where the weights onsidered are powersof d(x) = dist(x;K) with K � �
, and even h(d(x)) with h a monotone funtion, following the text [Ku℄. Ifwe want to de�ne more general weighted Sobolev spaes we an use the approah in [KO℄. Before we statethe de�nition in [KO℄, let us observe that the distributional derivative of a Sobolev funtion is also a funtionbelonging to L1lo(
). In order to get the inlusionLp(
; u) � L1lo(
) ; for 1 < p <1 ;2



a suÆient ondition, by H�older's inequality, is that the weight u satis�es u�1=(p�1) 2 L1lo(
) (see [KO,Theorem 1.5℄ or Lemma 3.1 below). With this fat in mind we an understand the de�nition in [KO℄:Given a weight u in 
 let us denote by Mp(u), for 1 < p <1, the losed setMp(u) := nx 2 
 : Z
\U(x) u�1=(p�1)(y) dy =1 for every neighbourhood U(x) of xo:Given w = (w�) � �k a vetorial weight in 
 we an de�ne the exeptional set B := [ � �kMp(w�) andthe Sobolev spae W k;p(
; w) with weight w, as the set of all funtions f 2 Lp(
 n B;w0) suh that theirweak derivatives D�f are elements of Lp(
 nB;w�) for all � with j�j � k.With this de�nition, the weighted Sobolev spae W k;p(
; w) is a Banah spae (see [KO, Setion 3℄).In general, this is not true without removing the set B (see some examples in [KO℄). However, note thatif some w� is identially zero, then Mp(w�) = 
 and 
 nB = ;.But now, we want to de�ne a more general lass of Sobolev spaes appearing in the ontext of orthogonalpolynomials. Sine we are interested in orthogonal polynomials on the real line we only need to onsiderthe ase 
 � R. In this �eld it is usual to work with Sobolev spaes for whih the measures wj(x) dx arereplaed by general measures d�j(x) and some of them may have �j(�
) > 0; so we onsider in our de�nitionSobolev spaes in 
, where 
 is an open set. Therefore, in general, these spaes do not math the de�nitionin [KO℄.Let us start with some preliminary de�nitions.De�nition 1. We say that two funtions u; v are omparable on the set A if there are positive onstants1; 2 suh that 1v(x) � u(x) � 2v(x) for almost every x 2 A. Sine measures and norms are funtionson measurable sets and vetors, respetively, we an talk about omparable measures and omparable norms.We say that two vetorial weights or vetorial measures are omparable if eah omponent is omparable.In what follows, the symbol a � b means that a and b are omparable for a and b funtions, measuresor norms.Obviously, the spaes Lp(A; �) and Lp(A; �) are the same and have omparable norms if � and � areomparable on A. Therefore, in order to obtain results on ompleteness or density we an hange a measure� to any omparable measure �.Next, we shall de�ne a lass of weights whih plays an important role in our results.De�nition 2. We say that a weight w belongs to Bp([a; b℄) if and only ifw�1 2 L1=(p�1)([a; b℄) ; for 1 � p <1 ;w�1 2 L1([a; b℄) ; for p =1 :Also, if J is any interval we say that w 2 Bp(J) if w 2 Bp(I) for every ompat interval I � J . We saythat a weight belongs to Bp(J), where J is a union of disjoint intervals [i2AJi, if it belongs to Bp(Ji), fori 2 A.Observe that if v � w in J and w 2 Bp(J), then v 2 Bp(J).This lass ontains the lassial Ap weights appearing in Harmoni Analysis (see [Mu1℄ or [GR℄). Thelasses Bp(
), with 
 � Rn, and Ap(Rn) (1 < p < 1) have been used in other de�nitions of weightedSobolev spaes in [KO℄ and [K℄ respetively.De�nition 3. We denote by AC([a; b℄) the set of funtions absolutely ontinuous in [a; b℄, i.e. the funtionsf 2 C([a; b℄) suh that f(x) � f(a) = R xa f 0(t) dt for all x 2 [a; b℄. If J is any interval, AClo(J)denotes theset of funtions absolutely ontinuous in every ompat subinterval of J .De�nition 4. Let us onsider 1 � p � 1 and a vetorial measure � = (�0; : : : ; �k). For 0 � j � k wede�ne the open set 
j := fx 2 R : 9 an open neighbourhood V of x with wj 2 Bp(V )g :3



Observe that we always have wj 2 Bp(
j) for any 0 � j � k. In fat, 
j is the largest open set U withwj 2 Bp(U). Obviously, 
j depends on p and �, although p and � do not appear expliitly in the symbol
j . Lemma 3.1 below gives that if f (j) 2 Lp(
j ; wj) with 0 � j � k, then f (j) 2 L1lo(
j), and thereforef (j�1) 2 AClo(
j) if 1 � j � k.Hypothesis. From now on we assume that wj is identially 0 on the omplement of 
j .We need this hypothesis in order to obtain omplete Sobolev spaes (see[KO℄ and setions 4 and 5).Remark. This hypothesis is satis�ed, for example, if we an modify wj in a set of zero Lebesgue measurein suh a way that there exists a sequene �n & 0 with w�1j f(�n;1℄g open for every n. If wj is lowersemiontinuous, then this ondition is satis�ed.Let us onsider 1 � p � 1, an open set 
 � R, w = (w0; : : : ; wk) a vetorial weight in 
 and y 2 
.To obtain a greater regularity of the funtions in a Sobolev spae we onstrut a modi�ation of the weightw in a neighbourhood of y, using Mukenhoupt weighted version of Hardy inequality (see [Mu2℄, [Ma, p.44℄or Setion 3 below). This modi�ed weight is equivalent in some sense to the original one (see Theorem 4.3).De�nition 5. A vetorial weight w = (w0; : : : ; wk) is a right ompletion of w with respet to y, if wk = wkand there is an " > 0 suh that wj = wj in the omplement of [y; y + "℄ andwj(x) = wj(x) + ewj(x) ; for x 2 [y; y + "℄ and 0 � j < k ;where ewj is any weight satisfying:i) ewj 2 L1([y; y + "℄) if 1 � p <1,ii) ewj 2 L1([y; y + "℄) if p =1,iii) �p( ewj ; wj+1) <1, with�p(u; v) := supy<r<y+"�Z ry u� kv�1kL1=(p�1)([r;y+"℄) ; for 1 � p <1 ;�1(u; v) := ess supy<r<y+"u(r) Z y+"r v�1 :Example. It an be shown that the following onstrution is always a ompletion: we hoose ewj := 0 ifwj+1 =2 Bp((y; y + "℄); if wj+1 2 Bp([y; y + "℄) we set ewj(x) := 1 in [y; y + "℄; and if wj+1 2 Bp((y; y + "℄) nBp([y; y + "℄) we take ewj(x) := 1 for x 2 [y + "=2; y + "℄, andewj(x) := ddxn�Z y+"x w�1=(p�1)j+1 ��p+1o = (p� 1)wj+1(x)�1=(p�1)� R y+"x w�1=(p�1)j+1 �p ; if 1 < p <1 ;ewj(x) := kw�1j+1k�1L1([x;y+"℄) + ddx�kw�1j+1k�1L1([x;y+"℄)� ; if p = 1 ;ewj(x) := minn1; �Z y+"x w�1j+1��1o ; if p =1 ;for x 2 (y; y + "=2).Remarks.1. We an de�ne a left ompletion of w with respet to y in a similar way.2. If for every 0 < � � �0 � " we have wj+1 =2 Bp((y; y + �℄), then there exists some Æ > 0 suh thatevery ewj must be 0 almost everywhere in (y; y+ Æ) (where " is the onstant orresponding to w). Moreover,the onstant Æ depends on �0 and wj+1, but not on ewj .3. If wj+1 2 Bp([y; y + "℄), then �p( ewj ; wj+1) <1 for any weight ewj 2 L1([y; y+ "℄) if 1 � p <1 andfor any bounded weight ewj if p =1. In partiular, �p(1; wj+1) <1.4. If w; v are two weights suh that wj �  vj for j = 0; : : : ; k and v is a right ompletion of v, thenthere is a right ompletion w of w, with wj �  vj for j = 0; : : : ; k (it is enough to take ewj = evj). Also, if4



w; v are omparable weights, v is a right ompletion of v if and only if it is omparable to a right ompletionw of w.5. The hypotheses i) and ii) are not restritive at all; if we are interested in the regularity of Sobolevfuntions we must hoose weights without \big" singularities.6. We always have wk = wk and wj � wj for 0 � j < k.7. If w is a right ompletion of w with onstant " > 0, the weight w� = (w�0; : : : ; w�k) de�ned byw�j (x) = � wj(x) ; x 2 [y; y + Æ℄ ;wj(x) ; x =2 [y; y + Æ℄ ;for some 0 < Æ < ", is a right ompletion of w with onstant Æ.De�nition 6. For 1 � p � 1 and w a vetorial weight in 
, we say that a point y 2 
 is right j-regular(respetively, left j-regular), if there exist " > 0, a right ompletion w (respetively, left ompletion) andj < i � k suh that wi 2 Bp([y; y + "℄) (respetively, Bp([y � "; y℄)). Also, we say that a point y 2 
 isj-regular, if it is right and left j-regular.Remarks.1. A point y 2 
 is right j-regular (respetively, left j-regular), if at least one of the following propertiesis veri�ed:(a) There exist " > 0 and j < i � k suh that wi 2 Bp([y; y+ "℄) (respetively, Bp([y� "; y℄)). Here wehave hosen ewj = 0 and w = w.(b) There exist " > 0, j < i � k, � > 0, Æ < Æp, with Æp := (i� j)p�1 if 1 � p <1 and Æ1 := i� j�1,suh that wi(x) � � jx� yjÆ ; for almost every x 2 [y; y + "℄(respetively, [y � "; y℄). See Lemma 3.4 below.2. If y is right j-regular (respetively, left), then it is also right i-regular (respetively, left) for eah0 � i � j.3. We an take i = j + 1 in this de�nition sine by the third remark after De�nition 5 we an hoosewl = wl + 1 2 Bp([y; y + "℄) for j < l < i, if j + 1 < i.4. If we de�ne k0 := maxf0 � j � k : 9 � > 0 with wj 2 Bp((y; y + �℄)g ;the ompletion w in De�nition 6 an be hosen as wj = wj for k0 � j � k and wk0 = wk0 2 Bp((y; y + "℄).This is an immediate onsequene of remarks 2 and 7 to De�nition 5.When we use this de�nition we think of a point fbg as the union of two half-points fb+g and fb�g.With this onvention, eah one of the following sets(a; b) [ (b; ) [ fb+g = (a; b) [ [b+; ) 6= (a; ) ;(a; b) [ (b; ) [ fb�g = (a; b�℄ [ (b; ) 6= (a; ) ;has two onneted omponents, and the set (a; b) [ (b; ) [ fb�g [ fb+g = (a; b) [ (b; ) [ fbg = (a; ) isonneted.We only use this onvention in order to study the sets of ontinuity of funtions: we want that iff 2 C(A) and f 2 C(B), where A and B are union of intervals, then f 2 C(A [ B). With the usualde�nition of ontinuity in an interval, if f 2 C([a; b))\C([b; ℄) then we do not have f 2 C([a; ℄). Of ourse,we have f 2 C([a; ℄) if and only if f 2 C([a; b�℄)\C([b+; ℄), where, by de�nition, C([b+; ℄) = C([b; ℄) andC([a; b�℄) = C([a; b℄). This idea an be formalized with a suitable topologial spae.Let us introdue some more notation. We denote by 
(j) the set of j-regular points or half-points, i.e.,y 2 
(j) if and only if y is j-regular, we say that y+ 2 
(j) if and only if y is right j-regular, and we saythat y� 2 
(j) if and only if y is left j-regular. Obviously, 
(k) = ; and 
j+1 [ � � � [ 
k � 
(j). Observethat 
(j) depends on p (see De�nition 6). 5



Remark. If 0 � j < k and I is an interval, I � 
(j), then the set I n (
j+1 [ � � � [ 
k) is disrete. Ify+ 2 I n (
j+1 [ � � � [ 
k), there exist " > 0, a right ompletion w and j < i � k with wi 2 Bp([y; y + "℄).Then there exist Æ > 0 and i � l � k with wl 2 Bp((y; y + Æ℄) and onsequently (y; y + Æ) � 
j+1 [ � � � [
k(see the seond remark to De�nition 5). Obviously the same is true for y�.De�nition 7. We say that a funtion h belongs to the lass AClo(
(j)) if h 2 AClo(I) for every onnetedomponent I of 
(j).De�nition 8. We say that the vetorial measure � = (�0; : : : ; �k) is p-admissible if (�j)s(R n 
(j)) = 0,for 1 � j < k, and (�k)s � 0. We say that a p-admissible vetorial measure, �, is strongly p-admissible ifsupp(�j)s � 
(j); for 1 � j < k.We use the letter p in p-admissible in order to emphasize the dependene on p (reall that 
(j) dependson p).Remarks.1. Observe that there is not any restrition on supp(�0)s.2. Every absolutely ontinuous measure is p-admissible and even strongly p-admissible.3. We want to remark that this de�nition of p-admissibility does not oinide with the one in [HKM℄.De�nition 9. (Sobolev spae in the losure of an open set.) Let us onsider 1 � p � 1, an open set 
 � Rand a p-admissible vetorial measure � = (�0; : : : ; �k) in 
. We de�ne the Sobolev spae W k;p(
; �) as thespae of equivalene lasses ofV k;p(
; �) := nf : 
! C = f (j) 2 AClo(
(j)) for j = 0; 1; : : : ; k � 1 andkf (j)kLp(
;�j) <1 for j = 0; 1; : : : ; ko ;with respet to the seminormskfkWk;p(
;�) := � kXj=0 kf (j)kpLp(
;�j)�1=p ; for 1 � p <1 ;kfkWk;1(
;�) := max0�j�k kf (j)kL1(
;�j) :Here kgkL1(
;�j) := max� ess supx2
 jg(x)wj(x)j; supx2supp(�j)s jg(x)j	 ;where ess sup refers to Lebesgue measure, and we assume the usual onvention sup ; = �1.Remarks.1. This de�nition is natural sine when the (�j)s-measure of the set where jf (j)j is not ontinuous ispositive, the integral R jf (j)jpd(�j)s does not make sense.2. If we onsider Sobolev spaes with real valued funtions, every result in this paper also holds.An example of Sobolev spae as we have just de�ned is the following: W 2;2([0; 6℄; �), wherekfk2W 2;2([0;6℄;�) = Z 64 jf j2 + jf(6)j2 + Z 10 jf 0j2px+ Z 53 jf 0j2px� 3 + jf 0(1)j2 + Z 31 jf 00j2(3� x) :In this example, w0 2 B2([4; 6℄), w1 2 B2([0; 1℄ [ [3; 5℄), w2 2 B2([1; 3)), and onsequently 
0 = (4; 6),
1 = (0; 1)[ (3; 5) and 
2 = (1; 3); therefore, 
(1) = [1; 3) and 
(0) = [0; 5℄. Observe that 3 is right 0-regularsine w1 2 B2([3; 5℄), and that 3 is left 0-regular sine we an take ew1 = 1 in [1; 3℄. If we add Æa to �1, weobtain a p-admissible measure (and the Sobolev spae is well de�ned) if and only if a 2 [1; 3). We an addÆa to �0 for any a 2 R, and we an not add Æa to �2 for any a 2 R. Obviously, in this de�nition f 0(1) standsfor f 0(1+), sine f 0 2 AClo([1; 3)). 6



3. Appliations of Hardy and Mukenhoupt inequalities.First of all we reall the lassial results.Hardy inequality. ([HLP℄) If 1 � p <1 and Æ > p� 1, thenZ 10 ��� Z 1x g(t) dt���pxÆ�p dx � � pÆ � p+ 1�p Z 10 jg(x)jpxÆ dx ;for any measurable funtion g in (0;1).First Mukenhoupt inequality. ([Mu2℄, [Ma, p.44℄) Let us onsider 1 � p < 1 and �0; �1 measures in(0;1) with w1 := d�1=dx. Then there exists a positive onstant  suh that Z 1x g(t) dtLp((0;1);�0) �  kgkLp((0;1);�1)for any measurable funtion g in (0;1), if and only ifsupr>0 �0((0; r℄)kw�11 kL1=(p�1)([r;1)) <1 :The same proof of the �rst Mukenhoupt inequality with the real numbers a; b instead of 0; 1, givesthe following result.Seond Mukenhoupt inequality. Let us onsider 1 � p < 1 and �0; �1 measures in (a; b℄ with w1 :=d�1=dx. Then there exists a positive onstant  suh that Z bx g(t) dtLp((a;b℄;�0) �  kgkLp((a;b℄;�1)for any measurable funtion g in (a; b℄, if and only if�p(�0; �1) := supa<r<b�0((a; r℄)kw�11 kL1=(p�1)([r;b)) <1 :There are previous results to these inequalities due to Talenti [T℄ and Tomaselli [To℄. Also, there is aontemporary work of the Mukenhoupt inequalities, by Chisholm and Everitt [CE℄, revised in the subsequentpaper with Littlejohn [CEL℄.In fat, the Hardy and Mukenhoupt inequalities are more general, but these versions are good enoughfor us. Let us prove now the �rst lemma we need for our estimates.Lemma 3.1. Let us onsider 1 � p � 1 and w 2 Bp((a; b)). For any ompat interval I � (a; b), there isa positive onstant 1, whih only depends on p; w and I, suh thatkgkL1(I) � 1kgkLp(I;w) � 1kgkLp([a;b℄;w) ; for any g 2 Lp([a; b℄; w):If furthermore w 2 Bp([a; b℄), there is a positive onstant 2, whih only depends on p and w suh thatkgkL1([a;b℄) � 2kgkLp([a;b℄;w) ; for any g 2 Lp([a; b℄; w):Consequently, if w 2 Bp([a; b℄) and f 0 2 Lp([a; b℄; w), then f 2 AC([a; b℄).Remark. The hypothesis w 2 Bp([a; b℄) is neessary if we want to have g 2 L1([a; b℄) as shows the followingexample. For 1 < p <1 let us onsider w(x) = xp�1 in [0; 1=2℄. (Observe that x� 2 Bp([0; 1=2℄) if and onlyif � < p� 1.) The funtion g(x) = �1=(x logx) belongs to Lp([0; 1=2℄; w) but it is not integrable in [0; 1=2℄.It is easy to onstrut similar examples in the ases p = 1 and p =1.7



Proof. Let us �x any ompat interval I � (a; b).Let us begin with the ase 1 � p <1. Using H�older's inequalityZI jgj = ZI jgjw1=pw�1=p � kgkLp(I;w)kw�1k1=pL1=(p�1)(I);whih is the �rst part of the lemma with onstant 1 = kw�1k1=pL1=(p�1)(I).Next, set p =1. Observe that jg(x)j � kgkL1(I;w)w(x)�1 for almost every x 2 I , and onsequentlyZI jgj � kgkL1(I;w) ZI w�1:For any ase 1 � p �1, if w 2 Bp([a; b℄) we obtain the same result hanging I by [a; b℄.The last onlusion of Lemma 3.1 is an immediate onsequene of these estimates.The following result generalizes the seond Mukenhoupt inequality.Lemma 3.2. Let us onsider 1 � p � 1, t > 0 and �0; �1 measures in (a; b℄ with a+ t � b, w0 := d�0=dxand w1 := d�1=dx, satisfying if a + t < b: (i) w1 2 Bp([a + t; b℄); (ii) �0((a; b℄) < 1 if 1 � p < 1, (iii)w0 2 L1([a+ t; b℄) if p =1. Let us assume that �0p(�0; �1) <1, where�0p(�0; �1) := supa<r<a+t�0((a; r℄)kw�11 kL1=(p�1)([r;b℄) ; for 1 � p <1 ;�01(�0; �1) :=8>>><>>>: ess supa<r<a+tw0(r)Z br w�11 ; if (�0)s((a; b℄) = 0 ;maxn ess supa<r<a+tw0(r)Z br w�11 ; Z b� w�11 o ; if (�0)s((a; b℄) > 0 ;where � := min(supp(�0)s). Then �p(�0; �1) < 1 and this implies that there exists a positive onstant suh that  Z bx g(s) dsLp((a;b℄;�0) �  kgkLp((a;b℄;�1)for any measurable funtion g in (a; b℄, where �p(�0; �1) is de�ned hanging a + t by b in the de�nition of�0p(�0; �1).Proof. We omit the proof for 1 � p < 1, whih is only a omputation that uses Mukenhoupt inequality.If p =1 and a+ t < b, we have that �1(�0; �1) <1, sine �01(�0; �1) <1 andess supa+t�r<bw0(r)Z br w�11 � kw0kL1([a+t;b℄)Z ba+t w�11 <1 ;sine w1 2 B1([a+ t; b℄) and w0 2 L1([a+ t; b℄) beause a+ t < b.Then we have���w0(r)Z br g(s) ds��� � w0(r)Z br jg(s)jw1(s)w1(s)�1 ds � w0(r)Z br w1(s)�1 ds kgkL1((a;b℄;w1) ;and therefore ess supa<r<b ���w0(r)Z br g(s) ds��� � �1(�0; �1)kgkL1((a;b℄;w1) ;for any measurable funtion g in (a; b℄. The same argument without w0 givessupr2supp(�0)s ��� Z br g(s) ds��� � sup��r�b ��� Z br g(s) ds��� � Z b� w1(s)�1ds kgkL1((a;b℄;w1) ;for any measurable funtion g in (a; b℄. These inequalities give the ase p =1.The following lemma allows us to bound the norm in W k;p([a; b℄; w).8



Lemma 3.3. Let 1 � p � 1 and let w = (w0; : : : ; wk) be a vetorial weight on (a; b), with wk0 2 Bp((a; b℄)for some 0 < k0 � k. If we onstrut a right ompletion w of w with respet to the point a taking " = b� a,and wj = wj for k0 � j � k, then there exist positive onstants j suh thatj kg(j)kLp([a;b℄;wj) � k0Xi=j kg(i)kLp([a;b℄;wi) + k0�1Xi=j jg(i)(b)j ;for all 0 � j < k0 and g 2 V k;p([a; b℄; w). In partiular, there is a positive onstant  suh that kgkWk;p([a;b℄;w) � kgkWk;p([a;b℄;w) + k0�1Xj=0 jg(j)(b)j ; for all g 2 V k;p([a; b℄; w) :Proof. The fat wj = wj for k0 � j � k and the �rst inequality give the seond one. Then we only need toprove the �rst inequality. Lemma 3.2 (with a+ t = b) gives kg(j)(x)� g(j)(b)kLp([a;b℄;ewj) � kg(j+1)kLp([a;b℄;wj+1) ;for 0 � j < k0. Then we have kg(j)kLp([a;b℄;ewj) � kg(j+1)kLp([a;b℄;wj+1) + jg(j)(b)j ;sine ewj 2 L1([a; b℄) if 1 � p <1 and ewj 2 L1([a; b℄) if p =1. This inequality now gives kg(j)kLp([a;b℄;wj) � kg(j)kLp([a;b℄;wj) + kg(j+1)kLp([a;b℄;wj+1) + jg(j)(b)j ;for 0 � j < k0. This fat and the fat that wk0 = wk0 prove the �rst inequality.Lemma 3.4. Let 1 � p � 1 and let w = (w0; : : : ; wk) be a vetorial weight on (a; b), with wk(x) � �(x�a)Æfor almost every x 2 (a; b), where � > 0 and Æ < Æp, with Æp := kp� 1 if 1 � p <1 and Æ1 := k � 1. Thenthere exist a right ompletion w and a positive onstant  suh that w1 2 Bp([a; b℄) and kgkL1([a;b℄) � kgkWk;p([a;b℄;w) + k�1Xj=0 jg(j)(b)j ; for all g 2 V k;p([a; b℄; w) :Proof. By Lemmas 3.1 and 3.3 it is enough to prove w1 2 Bp([a; b℄).Changing Æ by a slightly greater number, if it is neessary, we an suppose that (Æ + 1)=p is not aninteger if 1 � p <1 and Æ is not an integer if p =1.Let us onsider �rst the ase 1 � p < 1. We prove now by reverse indution on j that there isa weight w with wj(x) � �j (x � a)Æ�(k�j)p for x 2 (a; b) if Æ > (k � j)p � 1. If we take ewj(x) =(Æ � (k � j)p+ 1) (x� a)Æ�(k�j)p, we obtainZ xa ewj = (x� a)Æ�(k�j)p+1;if Æ > (k � j)p� 1.If 1 < p <1, Z bx w�1=(p�1)j+1 �  (x� a)(�Æ+(k�j)p�1)=(p�1):If p = 1, kw�1j+1kL1([x;b℄) �  (x� a)�Æ+k�j�1:Then, if 1 � p <1, we have �p( ewj ; wj+1) <1 and wj(x) � �j (x�a)Æ�(k�j)p for x 2 (a; b) if Æ > (k�j)p�1.9



We de�ne kÆ := k � [(Æ + 1)=p℄, where [t℄ denotes the greatest integer whih is less or equal than t.Then we have (k � kÆ)p � 1 < Æ < (k � kÆ)p + p � 1 and wkÆ (x) � �kÆ (x � a)Æ�(k�kÆ)p. We also havewkÆ 2 Bp([a; b℄) sine Æ � (k � kÆ)p < p� 1. To �nish the proof of this ase it is enough to see that kÆ � 1.If kÆ � 0 then Æ > (k � kÆ)p� 1 � kp� 1 whih ontradits the hypothesis Æ < Æp.Finally, if p =1, the proof is similar with ewj(x) = (x� a)Æ�k+j and kÆ := k � [Æ + 1℄.4. Tehnial results.The heart of this hapter is Theorem 4.3; in order to prove it, we obtain several results whih arepartiular ases.Theorem 4.1. Let us onsider 1 � p �1 and a measure �0 on [a; b℄ suh that supp �0 has at least k points.Let wk be a weight in Bp([a; b℄). Then(1) There exists a positive onstant 1 suh that1kg(k�1)kL1([a;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk); for all g with g(k�1) 2 AC([a; b℄).(2) There exists a positive onstant 2 suh that2 k�1Xj=0 kg(j)kL1([a;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk); for all g with g(k�1) 2 AC([a; b℄).(3) If k � 2, let �1; : : : ; �k�1 be �nite measures in [a; b℄. If 1 � p <1, there exists a positive onstant3 suh that3 k�1Xj=0 kg(j)kLp([a;b℄;�j) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk); for all g with g(k�1) 2 AC([a; b℄).Remark. In fat, the proof shows that kg(k)kLp([a;b℄;wk) an be replaed by kg(k)kL1([a;b℄) in the right handside of (1), (2) and (3).Proof. We only have to prove (1). An indution argument gives (2) if (1) is true, sinekg(j)kLp([a;b℄) �  kg(j)kL1([a;b℄) ;and 1 is a weight in Bp([a; b℄). The third inequality is an immediate onsequene of the seond one and the�niteness of �1; : : : ; �k�1.Without loss of generality we an assume that the funtions are real valued, sine we an onsider thereal and imaginary parts. By hypothesis, there exist I1; I2; : : : ; Ik pairwise disjoint losed onneted subsetsof [a; b℄ suh that �0(Ii) > 0, i = 1; 2; : : : ; k. It is possible to hoose eah Ii small enough in order to haveeither (i) 0 < �0(Ii) <1, or (ii) �0(Ii) =1 and �0(I) =1 for every losed interval I � Ii.Let xi 2 Ii. There exists x0 2 (a; b) suh thatg(k�1)(x0)(k � 1)! = g[x1; : : : ; xk ℄ ;(see [D, p.65℄) where the di�erenes g[x1; : : : ; xk℄ are de�ned reursively byg[xj ℄ = g(xj); g[xi; xj ℄ = g[xi℄� g[xj ℄xi � xj ; g[x1; : : : ; xk℄ = g[x1; : : : ; xk�1℄� g[x2; : : : ; xk℄x1 � xk :10



Consider " := 1 if k = 1 and " := mini6=j dist(Ii; Ij) if k � 2. A standard indution argument gives��g[x1; : : : ; xk℄�� � "�k�jg(x1)j+�k � 11 �jg(x2)j+ � � �+�k � 1k � 2�jg(xk�1)j+ jg(xk)j�and so, for some positive onstant 3 jg(k�1)(x0)j � 3 kXi=1 jg(xi)j :If x 2 [a; b℄, Lemma 3.1 gives(4.1) jg(k�1)(x)j � jg(k�1)(x0)j+ Z ba jg(k)j � 3 kXi=1 jg(xi)j+ 4kg(k)kLp([a;b℄;wk) :If 1 � p < 1, let us denote by J1 (respetively, J2) the set of indies 1 � i � k with �0(Ii) < 1(respetively, �0(Ii) = 1). If i 2 J2 we an assume that g(xi) = 0 (otherwise kgkLp(Ii;�0) = 1 sineg 2 C(Ii) and then (1) is obviously true). Consequently, we havejg(k�1)(x)j � 3 Xi2J1 jg(xi)j+ 4 kg(k)kLp([a;b℄;wk) :We obtain thatjg(k�1)(x)jp � 5�Xi2J1 jg(xi)jp + Z ba jg(k)jpwk� ; for all x 2 [a; b℄; xi 2 Ii :Sine 0 < �0(Ii) <1 for i 2 J1, we an integrate in eah xi 2 Ii with respet to �0 to obtainjg(k�1)(x)jp � 6�Z ba jgjp d�0 + Z ba jg(k)jpwk� ; for all x 2 [a; b℄:Therefore, we have obtained1kg(k�1)kL1([a;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk)for all g with g(k�1) 2 AC([a; b℄).We now deal with the ase p = 1. Reall that in this ase we also have (4.1) for all x 2 [a; b℄ andxi 2 Ii. Assume that i satis�es (�0)s(Ii) > 0. Then we have that jg(xi)j � kgkL1([a;b℄;�0) if xi 2 supp (�0)s.If (�0)s(Ii) = 0 for some Ii, then d�0(x) = w0(x) dx in Ii and there exists a positive number ti suhthat Zfw0�tig\Ii w0(x) dx > 0 ;sine �0(Ii) > 0. Therefore jg(xi)j � t�1i jg(xi)jw0(xi) � t�1i kgkL1([a;b℄;�0) ;for almost every xi 2 Ii \ fw0 � tig with respet to Lebesgue measure. As we only have a �nite number ofIi, these inequalities and (4.1) �nish the proof for the ase p =1.Lemma 4.1. Let us onsider x1; : : : ; xk with xj 2 [�j ; �j ℄ where �j < �j+1 for every 1 � j � k � 1, andf 2 Ck�1((�1; �k℄) \ C([�1; �k℄) with real values. Then, there exists x0 = x0(x1; : : : ; xk) for whihf (k�1)(x0)(k � 1)! = f [x1; : : : ; xk℄with the property x0(x1; : : : ; xk) � �1 + Æ for some Æ > 0 whih is independent of x1; : : : ; xk.11



Proof. Let us de�ne the funtion h(x1; : : : ; xk) := (k � 1)! f [x1; : : : ; xk℄ and the set T := h([�1; �1℄ �[�2; �2℄� � � � � [�k; �k℄). T is ompat sine h is ontinuous.Also, let us onsider for t 2 T �(t) := max �(f (k�1))�1(t)� � (�1; �k℄ :Note that in the proof of Theorem 4.1 above we saw that (f (k�1))�1(t) 6= ; for any t 2 T , and thenT � f (k�1)((�1; �k)).We an de�ne �0 := inff�(t) : t 2 Tg :We only need to prove �0 > �1. We have �0 2 [�1; �k℄ and we an �nd a sequene f�(tn)g1n=1 whose limitis �0 with ftng1n=1 � T . Without loss of generality we an assume that tn ! t0 for some t0 2 T sine T isompat, and therefore f (k�1)(�(tn)) = tn �! t0 = f (k�1)(�(t0)) ; as n!1 :Now, observe that f (k�1) is ontinuous on [(�(t0) + �1)=2; �k℄, sine �(t0) > �1. Then there existpreimages (by f (k�1)) of all the points in T lose to f (k�1)(�(t0)) as lose as we wish to �(t0). Therefore, forn large enough �(tn) � (�(t0) + �1)=2. Hene we must have �0 � (�(t0) + �1)=2 > �1.Theorem 4.2. Let us onsider 1 � p � 1 and a p-admissible vetorial measure � in [a; b℄ suh that(a; b)(0) \ supp �0 has at least k points and wk 2 Bp((a; b℄). For 0 � j < k and �xed 0 < Æ < b � a let usde�ne aj := 0 if a is right j-regular and aj := 1 otherwise. Then, there exists a positive onstant  = (Æ)suh that  k�1Xj=0 kg(j)kL1([a+Æaj ;b℄) � kgkWk;p([a;b℄;�); for all g 2 V k;p([a; b℄; �):Proof. Without loss of generality we an assume that the funtions are real valued. For eah Æk�1 > 0 smallenough there exists a positive onstant k�1 = k�1(Æk�1) suh that(4.2) k�1 kg(k�1)kL1([a+Æk�1;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a+Æk�1;b℄;wk);for all g 2 V k;p([a; b℄; �). The proof of this fat is the same as part (1) in Theorem 4.1. We only need tomake two remarks:(a) We need g(k�1) 2 C((a; b℄), and this is true sine wk 2 Bp((a; b℄).(b) Lemma 4.1 allows to hoose the point x0 with x0 � a + Æ0k�1 for some Æ0k�1 (independently ofx1; : : : ; xk). Then it is enough to take Æk�1 > 0 verifying 0 < Æk�1 � Æ0k�1.We prove now by reverse indution on j, with 0 � j � k� 1, that there exists Æ0j > 0 suh that for eahÆj with 0 < Æj � Æ0j there exists a positive onstant j = j(Æj) suh that(4.3) j kg(j)kL1([a+Æj ;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a+Æj ;b℄;wk);for all g 2 V k;p([a; b℄; �).Inequality (4.2) gives (4.3) for j = k� 1. Assume now that (4.3) holds for j+1, with 1 � j+1 � k� 1.Sine 1 2 Bp((a; b℄), (4.2) gives, for some Æ�j > 0, thatd1(Æj)kg(j)kL1([a+Æj ;b℄) � d2(Æj)�kgkLp([a;b℄;�0) + kg(j+1)kLp([a+Æj ;b℄)�� kgkLp([a;b℄;�0) + kg(j+1)kL1([a+Æj ;b℄) ;for all g 2 V k;p([a; b℄; �) and 0 < Æj � Æ�j . This inequality and the indution hypothesis give (4.3) for allg 2 V k;p([a; b℄; �) and 0 < Æj � Æ0j+1. Therefore we have the result by de�ning Æ0j := minfÆ�j ; Æ0j+1g.12



Assume that a is right j-regular for some 0 � j < k. Then there exists " > 0 and a right ompletion wof w suh that wj+1 2 Bp([a; a+ "℄) (see Remark 3 to De�nition 6). Lemma 3.1 giveskg(j)(x)� g(j)(a+ ")kL1([a;a+"℄) � kg(j+1)kL1([a;a+"℄) �  kg(j+1)kLp([a;a+"℄;wj+1) :This inequality and Lemma 3.3 give kg(j)kL1([a;a+"℄) � kgkWk;p([a;a+"℄;w) + k�1Xi=0 jg(i)(a+ ")j :Inequality (4.3) gives for 0 � i � k � 1ijg(i)(a+ ")j � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk) ;and then  kg(j)kL1([a;a+"℄) � kgkWk;p([a;b℄;�) :This inequality together with (4.3) give the result.Corollary 4.1. Let us onsider 1 � p � 1 and a p-admissible vetorial measure, �, in [a; b℄ suh that(a; b)(0) \ supp�0 has at least k + 1 points and wk 2 Bp((a; b)). If Ij is a ompat interval ontained in(a; b)(j) for 0 � j < k, then k�1Xj=0 kf (j)kL1(Ij) � kfkWk;p([a;b℄;�); for every f 2 V k;p([a; b℄; �):Remark. As a onsequene of Theorem 4.3 we have that Corollary 4.1 is true even if (a; b)(0) \ supp�0 hasonly k points, but we annot use this argument now sine Corollary 4.1 is used in the proof of Theorem 4.3.Proof. Let us onsider k + 1 points x1 < � � � < xk+1 in (a; b)(0) \ supp�0. Theorem 4.2 applied to theintervals [a; xk℄ and [x2; b℄ gives the result. (In fat, we apply to the interval [x2; b℄ the symmetri result ofTheorem 4.2 for left ompletions with wk 2 Bp([x2; b)).)Corollary 4.2. Let us onsider 1 � p � 1, wk 2 Bp((a; b)) and w = (0; : : : ; 0; wk). If Ij is a ompatinterval ontained in (a; b)(j) for 0 � j < k, then k�1Xj=0 kf (j)kL1(Ij) � kfkWk;p([a;b℄;w) = kf (k)kLp([a;b℄;wk);for every f 2 V k;p([a; b℄; w) with f(t) = f 0(t) = � � � = f (k�1)(t) = 0 for some t 2 (a; b).Proof. Observe that the formula f(x) = Z xt f (k)(s) (x� s)k�1(k � 1)! dstogether with Lemma 3.1 give for �xed " > 0 with t 2 [a+ "; b� "℄ kfkLp([a+";b�"℄) �  kfkL1([a+";b�"℄) �  kf (k)kL1([a+";b�"℄) � kf (k)kLp([a;b℄;wk) :Then, for those funtions f the norm kfkWk;p([a;b℄;w�) is omparable to kfkWk;p([a;b℄;w), where the weightw� = (w�0 ; 0; : : : ; 0; wk) is de�ned by w�0 = �[a+";b�"℄ . So, by Corollary 4.1 k�1Xj=0 kf (j)kL1(Ij ) �  kfkWk;p([a;b℄;w�) � kfkWk;p([a;b℄;w) = kf (k)kLp([a;b℄;wk):Lemma 4.2. Let us suppose that 1 � p � 1 and w = (w0; : : : ; wk) is a vetorial weight in 
. If I is aompat interval ontained in 
j+1 [ � � � [ 
k for some 0 � j < k, and I \ 
s 6= ; for some 0 � s � j thenthere exists a positive onstant  suh that kf (j)kL1(I) � kf (s)kWk�s;p(I;w) � kfkWk;p(
;w); for every f 2 V k;p(
; w):13



Proof. Without loss of generality we an assume that s = 0 and I \ 
k 6= ;.If I = [�; �℄ then �; � 2 
j+1 [ � � � [ 
k. Choose now the maximum �1 suh that [�; �1) is ontainedin 
i(0) for some j + 1 � i(0) � k. If �1 � � we hoose the maximum �2 suh that [�1; �2) is ontained in
i(1) for some j + 1 � i(1) � k and de�ne reursively the intervals [�n; �n+1) in a similar way if �n � �.We obtain a �nite sequene of numbers f�ng, sine there exists somem for whih �m+1 > �. If this werenot true, then we would obtain an in�nite inreasing sequene f�ng1n=1 with limn!1 �n = �� � �. In thatase �� 2 [�; �℄ � 
j+1 [ � � � [
k and there exist " > 0 and j + 1 � i� � k with (�� � "; �� + ") � 
i� . Letus onsider �N 2 (�� � "; ��); we have [�N ; �� + ") � 
i� and then �N+1 � �� + " > ��, whih ontraditsthat f�ng is an inreasing sequene to ��.As the sets 
j+1; : : : ;
k are all open we an hoose " > 0 suh that � < �1 � 2" andH0 := [�; �1 � "℄ � 
i(0) ;H1 := [�1 � 2"; �2 � "℄ � 
i(1) ;...Hm := [�m � 2"; �℄ � 
i(m) :Then H0 [ � � � [Hm = I and jHr \Hr+1j = " for 0 � r < m.For j + 1 � i � k, onsider now the sets Lr;i := Hr if Hr � 
i and Lr;i := ; otherwise, and de�ne alsoIi := [mr=0Lr;i � 
i:Obviously [ki=j+1Ii = I and wi 2 Bp(Ii) for j + 1 � i � k. If we modify slightly our weights byw� := (w�0 ; : : : ; w�k) ; w�k := wk; w�i := wi + �Ii+1[���[Ik for j + 1 � i < k ;we have that w�i 2 Bp(Ii [ � � � [ Ik). Then we laim kf (i)kLp(I;w�i ) � kfkWk;p(I;w);for j + 1 � i � k and every f 2 V k;p(
; w).We proeed by reverse indution in i, with j + 1 � i � k. It is true for i = k. Assume now that it istrue for i+ 1; we prove now the result for i. It is enough to see that kf (i)kL1(Ii+1[���[Ik) � kfkWk;p(I;w):Observe that the indution hypothesis gives(4.4)  kf (i+1)kLp(I;w�i+1) � kfkWk;p(I;w):Let M be a onneted omponent of Ii+1 [ � � � [ Ik. If M 6= I , there exists j + 1 � l � i suh thatjM \ Ilj � " sine I is onneted, and then by Theorem 4.1(2) iXh=l kf (h)kL1(M) � kf (l)kLp(M;wl) + kf (i+1)kLp(M;w�i+1);sine w�i+1 2 Bp(Ii+1 [ � � � [ Ik).If M = I , then jM \ 
0j > 0, sine M \ 
0 = I \ 
0 6= ;, 
0 is open and M is an interval. Using theprevious argument with l = 0, we obtain iXh=0 kf (h)kL1(M) � kfkLp(M;w0) + kf (i+1)kLp(M;w�i+1):Consequently, in any ase we have kf (i)kL1(M) � kfkWk;p(M;w) + kf (i+1)kLp(M;w�i+1):As we only have a �nite number of onneted omponents of Ii+1 [ � � � [ Ik, the last inequality togetherwith the estimate (4.4) prove the desired result for i.14



If we take now i = j + 1 in the laim we have proved, we obtain kf (j+1)kLp(I;w�j+1) � kfkWk;p(I;w) ;where w�j+1 2 Bp(Ij+1[� � �[Ik) = Bp(I). Remember that by hypothesis jI\
0j > 0, and therefore Theorem4.1(1) gives  kf (j)kL1(I) �  (kfkLp(I;w0) + kf (j+1)kLp(I;w�j+1)) � kfkWk;p(I;w) :This ends our proof.Lemma 4.3. Let us suppose that 1 � p � 1 and w = (w0; : : : ; wk) is a vetorial weight in 
. If I = [�; �℄is ontained in 
(j) for some 0 � j < k, I \ 
s 6= ; for some 0 � s � j and (�; �) � 
j+1 [ � � � [ 
k, thenthere exists a positive onstant  suh that kf (j)kL1(I) � kf (s)kWk�s;p(I;w) � kfkWk;p(
;w); for every f 2 V k;p(
; w):Proof. Without loss of generality we an assume that s = 0. The ase I � 
j+1 [ � � � [ 
k is the previouslemma. Assume that � =2 
j+1 [ � � � [ 
k, � 2 
j+1 [ � � � [ 
k. Sine � is right j-regular, then there exist0 < " < � � � and a right ompletion w of w suh that wj+1 2 Bp([�; � + "℄). By Remark 4 to De�nition6, if we de�ne k0 := maxf0 � i � k : 9 � > 0 with wi 2 Bp((�; � + �℄)g, we an hoose w with wi = wi fork0 � i � k and wk0 2 Bp((�; �+ "℄). Obviously we have j + 1 � k0.Now, Lemma 3.3 gives that kf (j+1)kLp([�;�+"℄;wj+1) � kfkWk;p([�;�+"℄;w) + k0�1Xi=j+1 jf (i)(�+ ")j ;if j+1 < k0. If j+1 = k0, the sum does not appear and the inequality is trivial sine wk0 = wk0 . ThereforeLemma 3.1 implies(4.5)  kf (j)kL1([�;�+"℄) �  (kf (j+1)kLp([�;�+"℄;wj+1) + jf (j)(�+ ")j)� kfkWk;p([�;�+"℄;w) + k0�1Xi=j jf (i)(�+ ")j ;sine wj+1 2 Bp([�; � + "℄). We know there is some 0 < Æ < " suh that J := [� + Æ; �℄ has non-emptyintersetion with 
0, so applying Lemma 4.2(4.6)  kf (j)kL1(J) � kfkWk;p(J;w);sine J � 
j+1 [ � � � [
k. Then Theorem 4.1(2) implies k0�1Xi=j jf (i)(�+ ")j �  k0�1Xi=j kf (i)kL1([�+Æ;�+"℄) � kf (j)kLp([�+Æ;�+"℄) + kf (k0)kLp([�+Æ;�+"℄;wk0 );sine wk0 2 Bp((�; �+ "℄) � Bp([� + Æ; �+ "℄). Now, applying (4.6) we obtain kf (j)kLp([�+Æ;�+"℄) �  kf (j)kL1(J) � kfkWk;p(J;w);and then  k0�1Xi=j jf (i)(�+ ")j � kfkWk;p(J;w):Therefore (4.5) gives  kf (j)kL1([�;�+"℄) � kfkWk;p(I;w):This inequality and (4.6) yield the result.The ases � 2 
j+1 [ � � � [ 
k, � =2 
j+1 [ � � � [ 
k and � =2 
j+1 [ � � � [ 
k, � =2 
j+1 [ � � � [ 
k aresimilar. 15



Lemma 4.4. Let us suppose that 1 � p � 1, and that � is a p-admissible vetorial measure in 
. Assumethat 
1[� � �[
k is onneted. Let Kj be a �nite union of ompat intervals ontained in 
(j), for 0 � j < k.Then there exists an integer 0 � l � k, independent of K1; : : : ;Kk�1, with the following properties:(1) If l < k, there exists a positive onstant 0 = 0(K0; : : : ;Kk�1) suh that0 k�1Xj=l kg(j)kL1(Kj) � kgkWk;p(
;�); 8g 2 V k;p(
; �):(2) If l > 0, mj := #fsupp �j \ 
(j)g <1 for 0 � j < l.Remark. In fat, we an obtain in (2) mj < l � j, but the inequality mj < 1 is good enough for ourpurposes.Proof. Let us de�ne A := f1 � j � k : 
j 6= ;g :If A = ;, we an take l = 0 and there is nothing to prove, sine Kj � 
(j) = ;. If A 6= ; we de�nek0 = minA. Without loss of generality we an suppose that 
k 6= ;.For the ase k0 < k we laim that(4.7)  k�1Xj=k0 kg(j)kL1(Kj) � kgkWk;p(
;�) :Let us �x k0 � j < k. In order to prove this laim, without loss of generality we an assume that Kjis a single ompat interval. The remark before De�nition 7 gives that Kj n (
j+1 [ � � � [ 
k) is a disreteset; sine Kj is ompat, we have that Kj n (
j+1 [ � � � [ 
k) is �nite. Then, we an assume also thatint (Kj) � 
j+1 [ � � � [ 
k.We an hoose a ompat interval I withKj � I � 
(j), int (I) � 
j+1[� � �[
k and I\(
k0[� � �[
j) 6=;, sine (
k0 [ � � � [ 
j) [ (
j+1 [ � � � [ 
k) = 
1 [ � � � [ 
k is onneted.Then, there exists a k0 � s � j with I \
s 6= ;. Lemma 4.3 gives kg(j)kL1(I) � kg(s)kWk�s;p(I;w) � kgkWk;p(
;�):Consequently, we have (4.7) for k0 < k.De�ne B := f0 � j < k0 : mj =1g and the non-negative integer l as follows, l := minB if B 6= ;, andl := k0 if B = ;.If l = k0, we have B = ;. This implies (2) sine l = k0 � 1. If l = k0 < k, inequality (4.7) gives (1).We denote by (�; �) the interval 
1 [ � � � [
k.If 0 < l < k0, we have (2). If l < k0, we also have l < k and ml = 1. For eah l � j < k0, we anhoose a ompat interval Ij verifying:(i) Kj � Ij � 
(j).(ii) The minimum point of Ij is � if � is right j-regular and is �+Æ (with 0 < Æ < (���)=2 independentof j) otherwise.(iii) The maximum point of Ij is � if � is left j-regular and is � � Æ otherwise.(iv) #fsupp�l \ [�+ Æ; � � Æ℄g � k0 � l.(Reall that 
(l); : : : ;
(k0�1) are intervals with the same interior, sine 
k0 [ � � � [ 
k = 
1 [ � � � [ 
kis onneted.)We an now �nish the proof of Lemma 4.4 in the ase k0 < k. The ase k0 = k is simpler.16



The remark to Theorem 4.1(2) gives k0�1Xj=l kg(j)kL1([�+Æ;��Æ℄) � kg(l)kLp([�+Æ;��Æ℄;�l) + kg(k0)kL1([�+Æ;��Æ℄):By the argument at the beginning of the proof of Lemma 4.2 we an split [�+ Æ; �� Æ℄ = E [ F , whereE, F are �nite unions of ompat intervals with E � 
k0 and F � 
k0+1 [ � � � [ 
k � 
(k0). Then Lemma3.1 gives  kg(k0)kL1(E) � kg(k0)kLp(E;wk0 ) � kgkWk;p(
;�);sine wk0 2 Bp(E). Inequality (4.7) with F instead of Kk0 implies kg(k0)kL1(F ) �  kg(k0)kL1(F ) � kgkWk;p(
;�);sine F � 
(k0). So, joining these two inequalities kg(k0)kL1([�+Æ;��Æ℄) �  (kg(k0)kL1(E) + kg(k0)kL1(F )) � kgkWk;p(
;�):Therefore we onlude(4.8)  k0�1Xj=l kg(j)kL1([�+Æ;��Æ℄) � kgkWk;p(
;�):We bound now the norm of g(j) in L1([�; � + Æ℄) if � is right j-regular. The ase L1([� � Æ; �℄) issymmetri. If � is not right l-regular there is nothing to prove. Assume that � is right j-regular for somel � j < k. If we de�ne k1 := maxf0 � i � k : 9 � > 0 with wi 2 Bp((�; �+ �℄)g ;by Remark 4 to De�nition 6 there exist " > 0 and a right ompletion w with wj+1 2 Bp([�; � + "℄),wk1 2 Bp((�; � + "℄) and wi = wi for k1 � i � k. Obviously k1 � j + 1.Lemma 3.3 gives kg(j+1)kLp([�;�+"℄;wj+1) � kgkWk;p([�;�+"℄;�) + k1�1Xi=j+1 jg(i)(�+ ")j :Now we onlude with Lemma 3.1(4.9)  kg(j)kL1([�;�+"℄) � kgkWk;p([�;�+"℄;�) + k1�1Xi=j jg(i)(�+ ")j :We an assume, perhaps with a smaller Æ, that � + " 2 [� + Æ; � � Æ℄ (this new Æ obviously satis�esproperties (i)-(iv)). Inequality (4.8) gives k0�1Xi=j jg(i)(�+ ")j � kgkWk;p(
;�):If k1 > k0, inequality (4.7) implies  k1�1Xi=k0 jg(i)(�+ ")j � kgkWk;p(
;�);sine �+ " is left (k1 � 1)-regular. These two last inequalities give k1�1Xi=j jg(i)(�+ ")j � kgkWk;p(
;�):This fat and (4.9) imply  kg(j)kL1([�;�+"℄) � kgkWk;p(
;�):This �nishes the proof of Lemma 4.4. 17



Let us de�ne a subspae, K(
; �), of V k;p(
(0); �j
(0)) whih plays an important role in the theory.De�nition 10. We de�ne K(
; �) asK(
; �) := �g : 
(0) �! C= g 2 V k;p�
(0); �j
(0)�; kgkWk;p�
(0);� 
(0)� = 0	 :The ase in whih k � kWk;p(
; �) is a norm is the most interesting. However we need something more inorder to prove part (a) of Theorem 4.3 below: this additional ondition is what we present in the followingde�nition of lass C0. Roughly speaking, � 2 C0 if k � kWk;p(Mn; �) is a norm for some sequene of ompatsets fMng growing to 
. This ondition is exatly what we need sine in the proof of Theorem 4.1 weapproximate 
 by ompat sets.If � =2 C0 we still an prove part (b) of Theorem 4.3 by adding some Dira deltas to �0; we only add theexat amount that we need. This leads to the de�nition of lass C.De�nition 11. Let us onsider 1 � p � 1, an open set 
 � R and a p-admissible vetorial measure �in 
. We say that (
; �) belongs to the lass C0 if there exist ompat sets Mn, whih are �nite unions ofompat intervals, suh thati) Mn intersets at most a �nite number of onneted omponents of 
1 [ � � � [ 
k,ii) K(Mn; �) = f0g,iii) Mn �Mn+1,iv) [nMn = 
(0).We say that (
; �) belongs to the lass C if there exists a measure �00 = �0 +Pm2D mÆxm with m > 0,fxmg � 
(0), D � N and (
; �0) 2 C0, where �0 = (�00; �1; : : : ; �k) is minimal in the following sense:there exists fMng orresponding to (
; �0) 2 C0 suh that if �000 = �00 � m0Æxm0 with m0 2 D and �00 =(�000 ; �1; : : : ; �k), then K(Mn; �00) 6= f0g if xm0 2Mn.Remarks.1. The ondition on (
; �) is very general. In fat, the Remark after the proof of Theorem 4.3 belowgives that if 
(0) n (
1 [ � � � [ 
k) has only a �nite number of points in eah onneted omponent of 
(0),then (
; �) 2 C. If, furthermore, K(
; �) = f0g, we have (
; �) 2 C0.2. Sine the restrition of a funtion of K(
; �) to Mn is in K(Mn; �) for every n, then (
; �) 2 C0implies K(
; �) = f0g.3. If (
; �) 2 C0, then (
; �) 2 C, with �0 = �.4. The proof of Theorem 4.3 below gives that if for every onneted omponent � of 
1 [ � � � [ 
k wehave K(�; �) = f0g, then (
; �) 2 C0. Condition #supp �0j�\
(0) � k implies K(�; �) = f0g.The following result is the main ingredient of the proof of Theorem 5.1, whih is the most importantresult that we present in this paper. It is also useful by its appliations in the papers [RARP℄, [R1℄, [R2℄,[R3℄ and [APRR℄. Furthermore, it is important by itself, sine it answers to the following main question:when the evaluation funtional of f (or f (j)) in a point is a bounded operator in W k;p(
; �)?Theorem 4.3. Let us onsider 1 � p � 1, an open set 
 � R and a p-admissible vetorial measure � in
. Let Kj be a �nite union of ompat intervals ontained in 
(j), for 0 � j < k and w a right (or left )ompletion of w. Then:(a) If (
; �) 2 C0 there exist positive onstants 1 = 1(K0; : : : ;Kk�1) and 2 = 2(w;K0; : : : ;Kk�1)suh that1 k�1Xj=0 kg(j)kL1(Kj) � kgkWk;p(
;�); 2 kgkWk;p(
;w) � kgkWk;p(
;�); 8g 2 V k;p(
; �):(b) If �
; �� 2 C there exist positive onstants 3 = 3(K0; : : : ;Kk�1) and 4 = 4(w;K0; : : : ;Kk�1)suh that for every g 2 V k;p(
; �), there exists g0 2 V k;p(
; �), independent of K0; : : : ;Kk�1, 3, 4 and w,with kg0 � gkWk;p(
;�) = 0 ;18



3 k�1Xj=0 kg(j)0 kL1(Kj) � kg0kWk;p(
;�) = kgkWk;p(
;�); 4 kg0kWk;p(
;w) � kgkWk;p(
;�):Furthermore, if g0; f0 are these representatives of g; f respetively, we have for the same onstants 3; 43 k�1Xj=0 kg(j)0 � f (j)0 kL1(Kj) � kg � fkWk;p(
;�); 4 kg0 � f0kWk;p(
;w) � kg � fkWk;p(
;�):Proof of Theorem 4.3. Without loss of generality we an assume that 
(0) is onneted. This onditionis not restritive sine otherwise we an work in eah onneted omponent. Let us onsider the onnetedomponents f��g�2A of 
1 [ � � � [ 
k. Reall that 
(0) n (
1 [ � � � [ 
k) is a disrete set sine 
(0) isonneted (see the Remark before De�nition 7). Moreover this set annot have any aumulation point in
(0). Therefore we an take the set of indies A as one of the following sets: Z; Z+; Z� or f1; : : : ; Ng forsome natural number N , with the property that sup�� = inf ��+1 if �; �+ 1 2 A.For 0 � j < k onsider the ompat set Kj � 
(j), whih is a �nite union of intervals. It ontains atmost a �nite number of points whih are not in 
1 [ � � � [ 
k, sine 
(0) n (
1 [ � � � [ 
k) is a disrete setand Kj is ompat. Therefore eah Kj is ontained at most in the union of a �nite number of ��.Let us �x � 2 A. From now on, we work on �� (whih may have in�nite length). Denote by Jj the �niteunion of ompat intervals Jj := Kj \ ��. In eah ��, Lemma 4.4 gives that there exist ; l (depending on�) suh that  k�1Xj=l kg(j)kL1(Jj) � kgkWk;p(��;�) ;if l < k. If l > 0 we have the additional ondition mj := #fsupp �j \ �(j)� g < 1 for 0 � j < l, and so in�(j)� we an write eah �j as �0 = a10Æx10 + � � �+ am00 Æxm00 ;�1 = a11Æx11 + � � �+ am11 Æxm11 ;... ... ...�l�1 = a1l�1Æx1l�1 + � � �+ aml�1l�1 Æxml�1l�1 ;with aij > 0 and xij 2 �(j)� for 0 � j < l, 1 � i � mj . Without loss of generality we an assume that Jj isan interval and xij 2 Jj for 0 � j < l, 1 � i � mj (as in the proof of Lemma 4.4). If �� = (�; �), we anassume also that � 2 Jj if � is right j-regular and � 2 Jj if � is left j-regular.We now study the struture of K(
; �). Let q be a funtion in K(
; �). Let us prove that q(k) � 0 ineah ��:If for some � we have l = k, then �� � 
k. Sine q 2 K(
; �) we have thatZ�� jq(k)(x)jpwk(x) dx = 0:Lemma 3.1 gives that kq(k)kL1(I) = 0, for every ompat interval I � ��; then kq(k)kL1(��) = 0 and sineq(k�1) is loally absolutely ontinuous in ��, it has to be onstant there, and onsequently q(k) � 0 in ��.Then qj�� 2 Pk�1, sine �� is a onneted set.If for some � we have l < k, Lemma 4.4 gives kq(l)kL1(J) � kqkWk;p(��;�) = 0 for any ompat intervalJ � �(l)� . Then q(l) � 0 in any ompat interval J � �(l)� and we have q(l) � 0 in �(l)� and so, qj�� 2 Pl�1.19



Consequently, in any ase (0 � l � k) we obtain qj�� 2 Pl�1 if we de�ne P�1 := f0g. Besides, in eahonneted omponent �� one has(4.10) q(j)(xij) = 0 for 0 � j < l; 1 � i � mj :If we write in �� q(x) = �l�1xl�1 + � � �+ �1x+ �0;we see that (4.10) is a homogeneous linear system of m0 + � � � + ml�1 equations with the l unknowns�l�1; : : : ; �1; �0, whose solution represents the restrition of the funtions in K(
; �) to �� in the basisfxl�1; : : : ; x; 1g of Pl�1. Observe that the oeÆients �i obviously depend on �.On the other hand, if �; �+ 1 2 A and � = sup�� = inf ��+1, we have(4.11) q(j)(��) = q(j)(�+) ; if � is j-regular,where as usual q(j)(��) and q(j)(�+) denotes respetively the left and right derivatives.Then we have that K(
; �) is the solution of the system given by (4.10) for every � 2 A and (4.11) forevery � 2 A suh that �+ 1 2 A. Consequently the elements of K(
; �) are splines.Claim. If �� = (�; �), then given any weight w� whih is a right ompletion of w with respet to �and a left ompletion of w with respet to �, there exists a positive onstant  suh thatkg(l)kLp([�;�℄;w�l ) �  kgkWk;p([�;�℄;�); for every g 2 V k;p([�; �℄; �):Lemma 3.3 gives if l < k kg(l)kLp([�;�+"℄;w�l ) � kgkWk;p([�;�+"℄;w) + k�1Xi=l jg(i)(�+ ")j ;for some 0 < " < ���, with �+" 2 
k. If we take 0 < Æ < ", with [�+Æ; �+"℄ � 
k � 
(k�1) � � � � � 
(l),Lemma 4.4 gives k�1Xi=l jg(i)(�+ ")j � k�1Xi=l kg(i)kL1([�+Æ;�+"℄) �  kgkWk;p([�;�℄;�):We onlude kg(l)kLp([�;�+"℄;w�l ) �  kgkWk;p([�;�℄;�);for l � k (the ase l = k is immediate sine then w�k = wk).In a similar way we have kg(l)kLp([�+";�℄;w�l ) �  kgkWk;p([�;�℄;�):The last inequalities �nish the proof of the laim.In order to prove (a) we an hoose n 2 N with K0 [ � � � [ Kk�1 � Mn and K(Mn; �) = f0g, sine(
; �) 2 C0. We denote by An the �nite set of indies � 2 A with ��\Mn 6= ;. Then the �nite linear systemof equations, whih we denote by Tn, given by (4.10) and (4.11) for � 2 An suh that every point appearingin the equations belongs to Mn, has unique solution.Given g 2 V k;p(
; �), for eah � 2 An �x a 2 Mn \ int (J0) and let f be the funtion de�ned in eah�� = (�; �) by f(x) := g(x) if l = 0, andf(x) := Z xa g(l)(t) (x� t)l�1(l � 1)! dt ;otherwise. In eah ��, we have g = f + r with r := 0 if l = 0, andr(x) := g(a) + g0(a) (x � a) + � � �+ g(l�1)(a) (x� a)l�1(l � 1)! ;20



otherwise. For 0 � j < l we havef (j)(x) = Z xa g(l)(t) (x� t)l�j�1(l � j � 1)! dt and f (l)(x) = g(l)(x) ;in ��. Consequently it is lear using Corollary 4.2, Lemma 4.4 and the laim that there exist positiveonstants whih are independent of g and f suh that(4.12) k�1Xj=0 kf (j)kL1(Jj) = l�1Xj=0 kf (j)kL1(Jj) + k�1Xj=l kg(j)kL1(Jj)�  (kg(l)kLp(��;w�l ) + kgkWk;p(��;�))�  kgkWk;p(��;�) ;with w� a suitable ompletion of w. Observe that if l = 0 or l = k, the sum Pl�1j=0 orPk�1j=l does not appearin (4.12).If 0 � j < l and H := mini;j;� aij (for 0 � j < l, 1 � i � mj and � 2 An), we obtain for xij 2Mnjg(j)(xij)jp � H�1aij jg(j)(xij)jp � H�1kg(j)kpLp(Mn;�j) ; for 1 � p <1 ;and jg(j)(xij)j � kg(j)kL1(Mn;�j) ; for p =1 :Therefore, using also (4.12), we have for 1 � p �1,jr(j)(xij)j = jg(j)(xij)� f (j)(xij)j � H�1=pkg(j)kLp(Mn;�j) +  kgkWk;p(Rn;�);where Rn := [�2An��, for 0 � j < l, 1 � i � mj and � 2 An with xij 2Mn, that is, there exists a positiveonstant , whih is independent of g and r suh that(4.13)  jr(j)(xij)j � kgkWk;p(Rn;�) ; for 0 � j < l; 1 � i � mj ; � 2 An; with xij 2Mn:If �; �+ 1 2 An and � = sup�� = inf ��+1 is j-regular, we haver(j)(��) = g(j)(�) � f (j)(��) ; r(j)(�+) = g(j)(�)� f (j)(�+) ;and then r(j)(��)� r(j)(�+) = f (j)(�+)� f (j)(��) :Reall that if �� = (�; �), we are assuming that � 2 Jj if � is right j-regular and � 2 Jj if � is left j-regular.Consequently (4.12) gives(4.14)  jr(j)(��)� r(j)(�+)j � kgkWk;p(Rn;�) :The funtion rjMn is determined by a �nite linear system whose oeÆient matrix is the oeÆientmatrix of Tn and whose non-homogeneous terms are bounded by (4.13) and (4.14), sine Tn has uniquesolution.Consequently, there is a positive onstant , independent of � 2 An, g and r, suh that(4.15)  k�1Xj=0 kr(j)kL1(Kj) � kgkWk;p(Rn;�) :Inequalities (4.12) (with � 2 An) and (4.15) and the relation g = f + r give the �rst inequality of (a) inTheorem 4.3. The seond inequality of (a) is an immediate onsequene of the �rst one and Lemma 3.3.21



We deal now with part (b). Sine (
; �) belongs to the lass C, there exist a measure �00 = �0 +Pm2D mÆxm with m > 0, fxmg � 
(0) and (
; �0) 2 C0, where �0 = (�00; �1; : : : ; �k) is minimal. Wehoose fMng orresponding to (
; �0) 2 C0 suh that we an apply the minimality of �0.If g 2 V k;p(
; �) we an hoose r 2 K(
; �) (de�ned as 0 in the omplement of 
(0)) with kg �rkWk;p(
;�0) = kgkWk;p(
;�), i.e. suh that kg � rkLp(
(0); �00��0) = 0, that is, g(xm) = r(xm) for everym 2 D. To see this we proeed in the following way: as in the proof of part (a), for eah n onsider the�nite linear system of equations Tn whih desribes q 2 K(Mn; �0) and the system T �n obtained by hangingin Tn the equations of the form q(xm) = 0 with m 2 D by q(xm) = g(xm). Every solution of T �n belongs toK(Mn; �).There exists a unique funtion rn 2 K(Mn; �) satisfying T �n : By the minimality of �0, eah equationin Tn of the form q(xm) = 0 with m 2 D is linearly independent of the other equations in Tn. Thisimplies the existene of rn. We also have the uniqueness of rn sine Tn has a unique solution (reall thatK(Mn; �0) = f0g).Observe that every equation of T �n is in T �n+1, sine Mn �Mn+1, and therefore rn+1jMn = rn. Then, wean de�ne r in 
(0) by r(x) := rn(x) if x 2 Mn. So r 2 K(
; �) sine r 2 \nK(Mn; �) and every equationof K(
; �) is in some Tn, and also r(xm) = g(xm) for every m 2 D.The funtion g0 := g�r satis�es kg0�gkWk;p(
;�) = krkWk;p(
;�) = 0. We haveKj � 
(j) for 0 � j < k(observe that 
(j) is the same for W k;p(
; �) and W k;p(
; �0)). Then we have3 k�1Xj=0 kg(j)0 kL1(Kj) � kg0kWk;p(
;�0) = kg0kWk;p(
;�) = kgkWk;p(
;�) ;4 kg0kWk;p(
;w) � kg0kWk;p(
;�0) = kgkWk;p(
;�) ;sine g0(xm) = 0 for every m 2 D.The other inequalities in (b) an be proved in a similar way.This �nishes the proof of Theorem 4.3.Remark. In order to prove Remark 1 to De�nition 11 we an assume that 
(0) is onneted. Then, if
(0) n (
1 [ � � � [ 
k) has only a �nite number of points, we an split 
1 [ � � � [ 
k = �1 [ � � � [ �N in itsonneted omponents. Now, the result is trivial sine the linear system that de�nes K(
; �) is �nite.We obtain the following orollary of Theorem 4.3.Corollary 4.3. Let us onsider 1 � p � 1, an open set 
 � R and a p-admissible vetorial measure � in
. Let Kj be a �nite union of ompat intervals ontained in 
(j), for 0 � j < k. Then:(a) If (
; �) 2 C0 there exists a positive onstant 1 = 1(K0; : : : ;Kk�1) suh that1 k�1Xj=0 kg(j+1)kL1(Kj) � kgkWk;p(
;�); 8g 2 V k;p(
; �):(b) If �
; �� 2 C there exists a positive onstant 2 = 2(K0; : : : ;Kk�1) suh that for every g 2V k;p(
; �), there exists g0 2 V k;p(
; �) (the same funtion as in Theorem 4:3), withkg0 � gkWk;p(
;�) = 0 ; 2 k�1Xj=0 kg(j+1)0 kL1(Kj) � kg0kWk;p(
;�) = kgkWk;p(
;�):Furthermore, if g0; f0 are these representatives of g; f respetively, we have for the same onstant 22 k�1Xj=0 kg(j+1)0 � f (j+1)0 kL1(Kj) � kg � fkWk;p(
;�):22



Proof. We only prove part (a) sine (b) is similar. Fix 0 � j < k. Sine Kj � 
(j), given any pointy 2 Kj , there exist an interval Jy and a ompletion wy of w with wyj+1 2 Bp(Jy). The ompatness of Kjgives that there exists a �nite set of points y1; : : : ; yl with Kj � Jy1 [ � � � [ Jyl .If we de�ne w�j+1 :=Pli=1 wyij+1�Jyi , the seond inequality in Theorem 4.3(a) gives kg(j+1)kLp(Kj ;w�j+1) � kgkWk;p(
;�) ;and Lemma 3.1 �nishes the proof, sine w�j+1 2 Bp(Kj).We have another orollary.Corollary 4.4. Let us suppose that 1 � p �1 and that � = (�0; : : : ; �k) is a p-admissible vetorial measurein [a; b℄ with wk 2 Bp([a; b℄). Then:(a) There exists a positive onstant 1 suh that1 k�1Xj=0 kg(j)kL1([a;b℄) � kgkWk;p([a;b℄;�); 8 g 2 V k;p([a; b℄; �);if and only if K([a; b℄; �) = f0g.(b) There exists a positive onstant 2 suh that for every g 2 V k;p([a; b℄; �), there exists g0 withkg0 � gkWk;p([a;b℄;�) = 0 ; 2 k�1Xj=0 kg(j)0 kL1([a;b℄) � kg0kWk;p([a;b℄;�) = kgkWk;p([a;b℄;�):Proof. Sine 
(0) = [a; b℄ and 
(0) n (
1 [ � � � [ 
k) = fag [ fbg is �nite, Remark 1 to De�nition 11 saysthat ([a; b℄; �) 2 C. Then, if we take Kj = [a; b℄ for 0 � j < k, Theorem 4.3(b) gives (b).If K([a; b℄; �) = f0g, we also have ([a; b℄; �) 2 C0 by Remark 1 to De�nition 11, with the hoie Mn =[a; b℄. Then, Theorem 4.3(a) gives one impliation of (a). For the other impliation, it is enough to remarkthat if there exists g 2 V k;p([a; b℄; �) not identially zero with kgkWk;p([a;b℄;�) = 0, the inequality kgkL1[a;b℄ �0 does not hold.Corollary 4.4 gives the following result about omparable norms.Corollary 4.5. Let us onsider 1 � p < 1, �; � �nite p-admissible vetorial measures in [a; b℄, withabsolutely ontinuous parts w; v, respetively. Assume that wk 2 Bp([a; b℄), wk � vk and K([a; b℄; �) =K([a; b℄; �) = f0g. Then:(1) The norm in W k;p([a; b℄; �) of any funtion g 2 V k;p([a; b℄; �) is omparable tok�1Xj=0 kg(j)kL1([a;b℄) + kg(k)kLp([a;b℄;wk) :(2) The norms in W k;p([a; b℄; �) and W k;p([a; b℄; �) are omparable.Remark. The ase p =1 is also true if we hange the hypothesis �; � �nite by w0; : : : ; wk�1; v0; : : : ; vk�1 2L1([a; b℄).5. Main result.Theorem 5.1. Let us onsider 1 � p � 1, an open set 
 � R and a p-admissible vetorial measure� = (�0; : : : ; �k) in 
 with (
; �) 2 C. Then the Sobolev spae W k;p(
; �) is omplete.23



Remark. The hypothesis of p-admissibility is natural (see de�nitions 8 and 9 and their remarks). Also theondition (
; �) 2 C is not very restritive (see De�nition 11 and its remarks in Setion 4).Proof. Let ffng be a Cauhy sequene inW k;p(
; �). Therefore, for eah 0 � j � k, ff (j)n g is a Cauhysequene in Lp(
; �j) and it onverges to a funtion gj 2 Lp(
; �j).First of all, let us show that gj an be extended to a funtion in C(
(j)) (if 0 � j < k) and in L1lo(
(j�1))(if 0 < j � k).If 0 � j < k, let us onsider any ompat interval K � 
(j). Theorem 4.3(b) gives that there existsa representative (independent of K) of the lass of fn 2 W k;p(
; �) (whih we also denote by fn) and apositive onstant  suh that for every n;m 2 N kf (j)n � f (j)m kL1(K) � kXi=0 kf (i)n � f (i)m kLp(
;�i) :As ff (j)n g � C(K), there exists a funtion hj 2 C(K) suh that kf (j)n � hjkL1(K) � kXi=0 kf (i)n � gikLp(
;�i) :Sine we an take as K any ompat interval ontained in 
(j), we obtain that the funtion hj an beextended to 
(j) and we have in fat hj 2 C(
(j)). It is obvious that gj = hj in 
(j) (exept for at mosta set of zero �j-measure), sine f (j)n onverges to gj in the norm of Lp(
; �j) and to hj uniformly on eahompat interval K � 
(j). Therefore we an assume that gj 2 C(
(j)).If 0 < j � k, let us onsider any ompat interval J � 
(j�1). Now Corollary 4.3(b) gives kf (j)n � f (j)m kL1(J) � kXi=0 kf (i)n � f (i)m kLp(
;�i) :As ff (j)n g � L1(J), there exists a funtion uj 2 L1(J) suh that kf (j)n � ujkL1(J) � kXi=0 kf (i)n � gikLp(
;�i) :Sine we an take as J any ompat interval ontained in 
(j�1), we obtain that the funtion uj an beextended to 
(j�1) and we have in fat uj 2 L1lo(
(j�1)). It is obvious that gj = uj in 
(j) (exept for atmost a set of zero Lebesgue measure), sine f (j)n onverges to uj in L1lo(
(j)) and to gj loally uniformly in
(j). Let us onsider a set A whih onentrates the mass of (�j)s, with jAj = 0; we an take uj = gj inA. We only need to show uj = gj in 
j n (
(j) [ A) (reall that by hypothesis wj = 0 in R n 
j), but thisis immediate sine wj 2 Bp(
j) and the onvergene in Lp(
j ; wj) implies the onvergene in L1lo(
j) (byLemma 3.1). Therefore we an assume that gj 2 L1lo(
(j�1)).In fat, we have seen that ff (j)n g onverges to gj in L1lo(
(j)) (if 0 � j < k) and in L1lo(
(j�1)) (if0 < j � k).Let us see now that g0j = gj+1 in the interior of 
(j) for 0 � j < k. Let us onsider a onnetedomponent I of int (
(j)). Given ' 2 C1 (I), let us onsider the onvex hull K of supp '. We have that Kis a ompat interval ontained in I � 
(j). The uniform onvergene of ff (j)n g in K and the L1 onvergeneof ff (j+1)n g in K gives thatZK '0 gj = limn!1 ZK '0 f (j)n = � limn!1 ZK 'f (j+1)n = � ZK 'gj+1 :Then gj+1 = g(j+1)0 in int (
(j)) and g(j)0 2 AClo(int (
(j))) for 0 � j < k. In order to see that g(j)0 2AClo(
(j)), it is enough to reall that (g(j)0 )0 = gj+1 2 L1lo(
(j)).24
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