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1. Introduction and main results.

Weighted Sobolev spaces are an interesting topic in many fields of Mathematics. In the classical books
[Ku], [KS], we can find the point of view of Partial Differential Equations. See also [Tr] and [HKM]. (The
main topic of [HKM] is non-linear Partial Differential Equations and its applications to quasiconformal and
quasiregular maps.) We are interested in the relationship between this topic and Approximation Theory in
general, and Sobolev Orthogonal Polynomials in particular.

The specific problems we want to solve are the following;:

1) Given a Sobolev scalar product with general measures in R, find hypotheses on the measures, as
general as possible, so that we can define a Sobolev space whose elements are functions.

2) If a Sobolev scalar product with general measures in R is well defined for polynomials, what is the
completion, P*2_ of the space of polynomials with respect to the norm associated to that scalar product?
This problem has been studied in some very particular cases (see e.g. [ELW1], [EL], [ELW2]), but at this
moment no general theory has been built.

3) What are the most general conditions under which the multiplication operator, M f(z) = = f(z),
is bounded in the space P*2? We know by a theorem in [LPP] that the zeroes of the Sobolev orthogonal
polynomials are contained in the disk {z : |z| < ||M]|}. The location of these zeroes allows to prove results
on the asymptotic behaviour of Sobolev orthogonal polynomials (see [LP]). In the second part of this paper,
[RARP], and in [R2] and [APRR], we answer the question stated also in [LP] about general conditions for
M to be bounded.

This last question is very close to the definition of Sobolev spaces associated to these norms, the study
of their completeness and the density of C'*° functions. In fact, the definition and completeness of Sobolev
spaces is what we study in the present paper, not only for p = 2, but for 1 < p < co. An important part
of this paper concerns the development of technical tools. These tools are crucial not only here but in the
papers [RARP], [R1], [R2], [R3], [APRR] and [RY]. The problems about density and about the multiplication
operator are studied in these six papers.

The completeness that we study now is one of the central questions in the theory of weighted Sobolev
spaces, together with the density of C'°° functions. In particular, when all the measures are finite, have
compact support and are such that C°(R) is dense in a Sobolev space that is complete, then the closure of
the polynomials is the whole Sobolev space. This is deduced from Bernstein’s proof of Weierstrass’ theorem,
where the polynomials he builds approximate uniformly up to the k-th derivative any function in C*([a, b])
(see e.g. [D, p.113]).

In this paper we also prove some inequalities which generalize classical results about Sobolev spaces
with respect to Lebesgue measure (see Theorem 4.3).

We should remark that there exists another generalization of Sobolev spaces in the context of metric
spaces (see [H], [M]). In these papers the treatment of this topic is from a different point of view.

The first part of this article is devoted to obtain a good definition of Sobolev space, W*P(pq, ..., ur),
where g, ..., U, are very general measures. We allow the measures uo, ..., ix, to be almost independent
of each other. The main result that we present in this paper is Theorem 5.1, which appears in Section 5. It
states very general conditions on the measures under which this Sobolev space is complete.
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The main ingredient of the proof of this theorem is Theorem 4.3. It allows to control the L> norm
(in appropriate sets) of a function and its dervatives in terms of its Sobolev norm. It is also useful by its
applications in the papers [RARP], [R1], [R2], [R3], [APRR] and [RY]. Furthermore, it is important by itself,
since it answers to the following main question: when the evaluation functional of f (or f(4)) in a point is a
bounded operator in W*?(Q, u)?

As a consequence of theorems 4.3 and 5.1, we can prove the density of the space of polynomials in
these Sobolev spaces (see [RARP], [R1], [R3], [APRR] and [RY]) and the boundedness of the multiplication
operator (see [RARP], [R2] and [APRR]).

In the paper, the results are numbered according to the section where they are proved. Now we present
the notation we use.

Notation. In the paper, k > 1 denotes a fixed natural number; obviously WOP(Q,u) = LP(Q,pu). All
the measures we consider are Borel and positive. Also, all the weights are non-negative Borel measurable
functions. If the measure does not appear explicitly, we mean that we are using Lebesgue measure. We allow
measures p; which are not necessarily o-finite but always assume that du; = d(u;)s + wj dz, where (p;)5 is
singular with respect to Lebesgue measure and w; is a Lebesgue measurable function (which can be infinite
in a set of positive Lebesgue measure). We denote by supp v the support of the measure v. If A is a Borel
set, [A], X 4, A, int(A) and #A denote, respectively, the Lebesgue measure, the characteristic function, the
closure, the interior and the cardinality of A. By f() we mean the j-th distributional derivative of f. When
we work in the space W*P(Q, 1) we denote by W*="P(Q, 1) the space W*="P(Q, (1, ..., ur)). We say that
an n-dimensional vector satisfies a one-dimensional property if each coordinate satisfies this property. P,
denotes the set of polynomials with degree less than or equal to n, and a, b arbitrary real numbers with
a < b; they are finite unless the contrary is specified. Finally, the constants in the formulae can vary from
line to line and even in the same line.

The outline of the paper is as follows. Section 2 presents most of the definitions we need to state our
results. We prove some useful results on Hardy inequalities and comparable norms in Section 3. Section 4
is dedicated to some technical results; some of them are generalizations of classical results with Lebesgue
measure. Finally, in Section 5 we prove the theorem on completeness.

Acknowledgements. We would like to thank F. Marcelldn for suggesting us this problem and H. Pijeira
for many useful references.

2. Definitions.

There are two standard ways to define classical Sobolev spaces W*P(Q) (with 1 < p < o) in an open
subset () of an Euclidean space:
(1) the completion of smooth functions C'*°(2) with the norm

1fllew = D ID*fllp,

a <k

where ||g||, denotes the LP(2) norm of g with respect to Lebesgue measure, and

(2) the functions f belonging to LP(Q) such that their weak derivatives up to order k belong also to
LP(Q).

It is well-known that these two definitions are equivalent for 1 < p < oo (see e.g. [A, p.52], [Ma, p.12]).
However (1) and (2) coincide with the completion of C°°(R™) only for smooth domains (see e.g. [A, p.54],
[Ma, p.14]).

It is possible to define some particular weighted Sobolev spaces, where the weights considered are powers
of d(x) = dist(z, K) with K C 99, and even h(d(z)) with h a monotone function, following the text [Ku]. If
we want to define more general weighted Sobolev spaces we can use the approach in [KO]. Before we state
the definition in [KO], let us observe that the distributional derivative of a Sobolev function is also a function
belonging to Lj,.(2). In order to get the inclusion

LP(Qu) C L, (), forl<p<oo,
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a sufficient condition, by Hélder’s inequality, is that the weight u satisfies u='/~1 ¢ LI (Q) (see [KO,

loc

Theorem 1.5] or Lemma 3.1 below). With this fact in mind we can understand the definition in [KO]:
Given a weight u in Q let us denote by M,(u), for 1 < p < oo, the closed set

Mp(u) == {CU €N: u™" P~ (y)dy = 0o for every neighbourhood U (z) of CU}
QNU(z)

Given w = (wq) o <k a vectorial weight in 2 we can define the exceptional set B := U , < M,(w,) and
the Sobolev space W*?(Q, w) with weight w, as the set of all functions f € LP(2\ B,wp) such that their
weak derivatives D f are elements of LP(Q2\ B,w,) for all a with |a| < k.

With this definition, the weighted Sobolev space W*?(Q,w) is a Banach space (see [KO, Section 3]).
In general, this is not true without removing the set B (see some examples in [KO]). However, note that
if some wy,, is identically zero, then M,(w,) = Q and Q\ B = 0.

But now, we want to define a more general class of Sobolev spaces appearing in the context of orthogonal
polynomials. Since we are interested in orthogonal polynomials on the real line we only need to consider
the case & C R. In this field it is usual to work with Sobolev spaces for which the measures w;(z) dz are
replaced by general measures du;(z) and some of them may have p;(9€) > 0; so we consider in our definition
Sobolev spaces in Q, where  is an open set. Therefore, in general, these spaces do not match the definition
in [KO].

Let us start with some preliminary definitions.

Definition 1. We say that two functions u,v are comparable on the set A if there are positive constants
1, ¢y such that cyv(z) < u(z) < cov(x) for almost every x € A. Since measures and norms are functions

on measurable sets and vectors, respectively, we can talk about comparable measures and comparable norms.
We say that two vectorial weights or vectorial measures are comparable if each component is comparable.

In what follows, the symbol a < b means that a and b are comparable for a and b functions, measures
Or norms.

Obviously, the spaces LP(A, 1) and LP(A,v) are the same and have comparable norms if y and v are
comparable on A. Therefore, in order to obtain results on completeness or density we can change a measure
[t to any comparable measure v.

Next, we shall define a class of weights which plays an important role in our results.

Definition 2. We say that a weight w belongs to Bp([a,b]) if and only if

wt e VO (b)), for 1<p<oo,
w € L'([a,D]), for p=c0.

Also, if J is any interval we say that w € B,(J) if w € B,(I) for every compact interval I C J. We say
that a weight belongs to B,(J), where J is a union of disjoint intervals U;eaJ;, if it belongs to B,(J;), for
i€ A.

Observe that if v > w in J and w € By(J), then v € B,(J).

This class contains the classical A, weights appearing in Harmonic Analysis (see [Mul] or [GR]). The
classes B,(Q), with @ C R", and A,(R") (1 < p < o) have been used in other definitions of weighted
Sobolev spaces in [KO] and [K] respectively.

Definition 3. We denote by AC([a,b]) the set of functions absolutely continuous in [a,b], i.e. the functions
f € C([a,b]) such that f(z) — f(a) = fax f'(@)dt for all € [a,b]. If J is any interval, AC),.(.J)denotes the
set of functions absolutely continuous in every compact subinterval of J.

Definition 4. Let us consider 1 < p < oo and a vectorial measure y = (uo,...,ux). For 0 < j < k we
define the open set

Q; :={z € R : 3 an open neighbourhood V of x with w; € B,(V)}.
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Observe that we always have w; € Bp(2;) for any 0 < j < k. In fact, ; is the largest open set U with
w; € By(U). Obviously, ; depends on p and g, although p and p do not appear explicitly in the symbol
Q;. Lemma 3.1 below gives that if f(/) € LP(Q;,w;) with 0 < j < k, then fU) € L}, (Q;), and therefore
FUTY € ACie () if 1 < j < k.

Hypothesis. From now on we assume that w; is identically 0 on the complement of ;.
We need this hypothesis in order to obtain complete Sobolev spaces (see[KO] and sections 4 and 5).

Remark. This hypothesis is satisfied, for example, if we can modify w; in a set of zero Lebesgue measure
in such a way that there exists a sequence a,, N\, 0 with wj_l{(an,oo]} open for every n. If w; is lower
semicontinuous, then this condition is satisfied.

Let us consider 1 < p < oo, an open set Q@ C R, w = (wo, ..., w;) a vectorial weight in Q and y € Q.
To obtain a greater regularity of the functions in a Sobolev space we construct a modification of the weight
w in a neighbourhood of y, using Muckenhoupt weighted version of Hardy inequality (see [Mu2], [Ma, p.44]
or Section 3 below). This modified weight is equivalent in some sense to the original one (see Theorem 4.3).

Definition 5. A vectorial weight W = (W, ..., W) is a right completion of w with respect to y, if Wy = wy,
and there is an € > 0 such that W; = w; in the complement of [y,y + €] and

wj(z) = w;i(z) +w;(r), forzely,y+eland0<j <k,

where w; is any weight satisfying:
i) @y € Ly, +2)) if 1 <p < o0,
it) @; € L2 ([y,y + ) if p = o0,
iii) Ap(iﬂj,m.hq) < 00, with

-
Ap(u,v) :=  sup (/ u> ||v71||L1/(p71)([,ﬂ7y+6]) , for 1<p<oo,
y<r<y-+e y

y+e
Aoo(u,v) := ess sup u(r)/ vt
y<r<y-+te r

Example. It can be shown that the following construction is always a completion: we choose w; := 0 if
Wj1 ¢ Bp((y,y +¢)); if Wi1 € Bp(ly,y +¢]) we set @;(z) :=11in [y,y+¢]; and if W41 € Bp((y,y +¢]) \
By([y,y + €]) we take w;(z) := 1 for z € [y + /2,y +¢], and

_ d g (" _—1i/p-n) P _ (= D)W () VY ,
w;(z) —%{(/z W ) } = N ifl<p<oo,
e Wit
d
~ o =—1 =1 ——1 -1 H —
() = LIS sy + 2 (0T yrey) - P=1,

wi(z) == min{l, (/ mj:&l)fl}, if p=o0,

for z € (y,y +¢/2).

Remarks.

1. We can define a left completion of w with respect to ¢ in a similar way.

2. If for every 0 < n < no < & we have Wjt1 ¢ Bp((y,y + 1)), then there exists some ¢ > 0 such that
every w; must be 0 almost everywhere in (y,y + ) (where ¢ is the constant corresponding to w). Moreover,
the constant ¢ depends on 779 and W;4, but not on w;.

3. If w41 € By([y,y +¢]), then Ay (w;,w;4+1) < oo for any weight w; € L*([y,y +¢]) if 1 < p < oo and
for any bounded weight @; if p = co. In particular, A,(1,Wj41) < oco.

4. If w, v are two weights such that w; > cv; for j = 0,...,k and 7 is a right completion of v, then
there is a right completion w of w, with w; > ¢v; for j = 0,...,k (it is enough to take w; = v;). Also, if
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w, v are comparable weights, T is a right completion of v if and only if it is comparable to a right completion
w of w.

5. The hypotheses i) and ii) are not restrictive at all; if we are interested in the regularity of Sobolev
functions we must choose weights without “big” singularities.

6. We always have wy = wy, and w; > w; for 0 < j < k.

7. If @ is a right completion of w with constant € > 0, the weight w* = (w, ..., w}) defined by

wj(m)a ZL’E[y,y-F(s],

“J*'(“””:{wj(x), 2 ¢ lyy+9),

for some 0 < § < ¢, is a right completion of w with constant §.

Definition 6. For 1 < p < 0o and w a vectorial weight in Q, we say that a point y € Q is right j-reqular
(respectively, left j-regular), if there exist € > 0, a right completion W (respectively, left completion) and
j < i < k such that w; € Bp([y,y + €]) (respectively, By([y — ¢,y])). Also, we say that a point y € Q is
j-reqular, if it is right and left j-regqular.
Remarks.

1. A point y € Q is right j-regular (respectively, left j-regular), if at least one of the following properties
is verified:

(a) There exist ¢ > 0 and j < ¢ < k such that w; € Bp([y,y +¢]) (respectively, B,([y —¢,y])). Here we
have chosen w; = 0 and w = w.

(b) Thereexiste >0,j <i<k,a>0,0 <dp, withd, :=(i—j)p—1if1 <p<ooandds :=i—j—1,
such that

wi(z) > alr —yl°, for almost every = € [y, y + €]

(respectively, [y —e,y]). See Lemma 3.4 below.
2. If y is right j-regular (respectively, left), then it is also right i-regular (respectively, left) for each
0<i<j.
3. We can take ¢ = j + 1 in this definition since by the third remark after Definition 5 we can choose
W =w +1€B,([y,y+e]) for j <1<i,if j+1<i.
4. If we define
ko := max{0 < j <k : In>0 with w; € B,((y,y +nl)},

the completion W in Definition 6 can be chosen as w; = w; for ky < j < k and W, = wi, € Bp((y,y + €])-
This is an immediate consequence of remarks 2 and 7 to Definition 5.

When we use this definition we think of a point {b} as the union of two half-points {b*} and {b~}.
With this convention, each one of the following sets

(a,b) U (b,c) U{bT} = (a,b) U[bT,¢c) # (a,c),
(a,b) U (b,c) U{b™} = (a,b7] U (b,c) # (a,c),

has two connected components, and the set (a,b) U (b,e) U{b~} U {b*} = (a,b) U (b,c) U {b} = (a,c) is
connected.

We only use this convention in order to study the sets of continuity of functions: we want that if
f € C(A) and f € C(B), where A and B are union of intervals, then f € C(4A U B). With the usual
definition of continuity in an interval, if f € C([a, b)) NC([b, c]) then we do not have f € C([a,c]). Of course,
we have f € C([a,c]) if and only if f € C([a,b ])NC([b*, c]), where, by definition, C([b", c]) = C([b,c]) and
C(la,b7]) = C([a,b]). This idea can be formalized with a suitable topological space.

Let us introduce some more notation. We denote by Q) the set of j-regular points or half-points, i.e.,
y € QU if and only if y is j-regular, we say that y* € Q) if and only if y is right j-regular, and we say
that y~ € Q) if and only if y is left j-regular. Obviously, Q%) = and Q;4; U---UQ; C QU). Observe
that Q) depends on p (see Definition 6).



Remark. If 0 < j < k and [ is an interval, I C Q)| then the set I\ (Qj41 U---U Q) is discrete. If
yt €I\ (Qjp1 U---UQy), there exist € > 0, a right completion @ and j < i < k with @w; € By(ly,y + ¢]).
Then there exist ¢ > 0 and ¢ <1 < k with w; € B,((y,y + ¢]) and consequently (y,y +0) C Qjpq1 U--- UQy
(see the second remark to Definition 5). Obviously the same is true for y—.

Definition 7. We say that a function h belongs to the class AC;,.(QY)) if h € ACjo.(I) for every connected
component I of Q).

Definition 8. We say that the vectorial measure pn = (juo, ..., jux) is p-admissible if (u;)s(R\ QW) = 0,
for1 < j <k, and (ur)s = 0. We say that a p-admissible vectorial measure, u, is strongly p-admissible if
supp(p;)s € QU), for 1 <j <k.

We use the letter p in p-admissible in order to emphasize the dependence on p (recall that Q) depends
on p).
Remarks.

1. Observe that there is not any restriction on supp(uo)s-

2. Every absolutely continuous measure is p-admissible and even strongly p-admissible.

3. We want to remark that this definition of p-admissibility does not coincide with the one in [HKM].

Definition 9. (Sobolev space in the closure of an open set.) Let us consider 1 < p < 0o, an open set 3 C R
and a p-admissible vectorial measure p = (pio, ..., pux) in Q. We define the Sobolev space WP (Q, ) as the
space of equivalence classes of

VEP(@, u) = {f:§—> C/f9D e ACL.(QD) for j=0,1,....k —1 and
||f(j)||Lp(§,”j) <0 fOT‘j = 07]-7 . '7k}7

with respect to the seminorms

u . 1/p
||f||wk,p(§,ﬂ):=(Zonf(ﬂn;m)) . for 1<p<oo,
J:

Il @y = 225 W e
Here
19/l (0,p5) = max { esssup |g(z)w; (@), sup  |g(z)]},
zEQ zEsupp(pj)s
where esssup refers to Lebesque measure, and we assume the usual convention sup ) = —oo.
Remarks.

1. This definition is natural since when the (p1;)s-measure of the set where |f()| is not continuous is
positive, the integral [|f)|Pd(u;)s does not make sense.
2. If we consider Sobolev spaces with real valued functions, every result in this paper also holds.

An example of Sobolev space as we have just defined is the following: W22([0, 6], 1), where

6 1 5 3
11 o610 = / P+ 1FO)P + / FIPVa + / FVE=3+ (P + / FPG3 - ).

In this example, wy € B2([4,6]), wi € B2([0,1] U [3,5]), wa € Ba([1,3)), and consequently Qy = (4,6),
Q; = (0,1)U(3,5) and Q5 = (1,3); therefore, Q) = [1,3) and Q(® = [0, 5]. Observe that 3 is right 0-regular
since w1 € B»([3,5]), and that 3 is left 0-regular since we can take w; = 1in [1,3]. If we add d, to p, we
obtain a p-admissible measure (and the Sobolev space is well defined) if and only if a € [1,3). We can add
da to o for any a € R, and we can not add d, to us for any a € R. Obviously, in this definition f’(1) stands
for f'(1%), since f' € ACo:([1,3)).



3. Applications of Hardy and Muckenhoupt inequalities.
First of all we recall the classical results.

Hardy inequality. ([HLP]) If 1 <p < oo and § > p — 1, then

/Ooo‘/;og(t) dt‘pxé—pdm < (6_:%“)')/000 l9(@) P2’ d ,

for any measurable function g in (0, 00).

First Muckenhoupt inequality. ([Mu2], [Ma, p.44]) Let us consider 1 < p < oo and po, 11 measures in
(0, 00) with wy := dpy /dx. Then there exists a positive constant ¢ such that

H /:o o(t) di|

for any measurable function g in (0,00), if and only if

<c (0.0
LP((0,00),10) — gl e ((0,00) 1)

Sli% HO((Oa7"])”“’1_1||L1/(p—1)([r,oo)) < 00.

The same proof of the first Muckenhoupt inequality with the real numbers a, b instead of 0, co, gives
the following result.

Second Muckenhoupt inequality. Let us consider 1 < p < oo and pg,pu1 measures in (a,b] with wy :=
duy /dx. Then there exists a positive constant ¢ such that

| oo

for any measurable function g in (a,b], if and only if

<ec »
Le((ablyo) — Hg”L ((a,b],p1)

Ap(uo,ul) ‘= Ssup MO((aa7“])||wfl||L1/(p—1)([r,b)) <oo.
a<r<b

There are previous results to these inequalities due to Talenti [T] and Tomaselli [To]. Also, there is a
contemporary work of the Muckenhoupt inequalities, by Chisholm and Everitt [CE], revised in the subsequent
paper with Littlejohn [CEL].

In fact, the Hardy and Muckenhoupt inequalities are more general, but these versions are good enough
for us. Let us prove now the first lemma we need for our estimates.

Lemma 3.1. Let us consider 1 < p < 0o and w € By((a,b)). For any compact interval I C (a,b), there is
a positive constant ¢y, which only depends on p,w and I, such that

||g||L1(1) < CIHQHLP(I,w) < Cl”Q”LP([a,b],w) , for any g € L”([a,b],w).

If furthermore w € By([a,b]), there is a positive constant cz, which only depends on p and w such that

lgllzr(qae)) < e2llgllirapiwy, — for any g € LP([a,b], w).

Consequently, if w € Bp([a,b]) and f' € LP([a,b],w), then f € AC([a,b]).

Remark. The hypothesis w € B,([a, b]) is necessary if we want to have g € L ([a, b]) as shows the following
example. For 1 < p < oo let us consider w(z) = P! in [0,1/2]. (Observe that 2% € B,(]0,1/2]) if and only
if « < p—1.) The function g(z) = —1/(xlog ) belongs to L?([0,1/2],w) but it is not integrable in [0,1/2].
It is easy to construct similar examples in the cases p =1 and p = co.
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Proof. Let us fix any compact interval I C (a,b).
Let us begin with the case 1 < p < oo. Using Hélder’s inequality

[1al= [ ol 77157 < gl 1o

which is the first part of the lemma with constant ¢; = ||w_1||L1/(p Dy
Next, set p = oo. Observe that |g(x)| < ||g||re(r,w)w(z) " for almost every = € I, and consequently

/ 191 < Nllz=(r.0) / wt,
I I

For any case 1 < p < o0, if w € By([a,b]) we obtain the same result changing I by [a, b].
The last conclusion of Lemma 3.1 is an immediate consequence of these estimates.
The following result generalizes the second Muckenhoupt inequality.

Lemma 3.2. Let us consider 1 < p < oo, t > 0 and uo, 1 measures in (a,b] with a +t < b, wo := duo/dz
and wy = dwi/dz, satisfying if a +t < b: (i) w1 € Bp([a + t,b]); (i) po((a,b]) < o0 if 1 < p < oo, (iii)
wo € L>®([a+1,b]) if p=oo. Let us assume that A}, (o, j11) < 0o, where

Ay (pos ) := sup  po((a, P)llwy I pare-n (g » for1<p<oo,
a<r<a+t
b
ess sup wo(r)/ wit, if (o)s((a,b]) =0,
’ L a<r<a+t r
Al (po, ) == b b
max{ ess sup wo(r)/ wfl,/ wy 1}, if (po)s((a,b]) >0,
a<r<a+t r o

where « := min(supp(uo)s). Then Ap(po, 1) < 0o and this implies that there exists a positive constant c

such that )
s)ds
H/m g( ) L?((a,b],uo)

for any measurable function g in (a,b], where Ap(po, p1) is defined changing a +t by b in the definition of
Ay (po, pa).
P )

< C”QHLP((a,b],Itl)

Proof. We omit the proof for 1 < p < oo, which is only a computation that uses Muckenhoupt inequality.
If p =00 and a +t < b, we have that Ao (120, 11) < 00, since AL (10, 1) < 0o and

b b
ess sup wo(r)/ wfl < ||w0||Loo([a+t’b])/ wfl < 00,
a+t<r<b r a+t

since wy € Boo([a + t,b]) and wo € L>®([a + t,b]) because a +t < b.
Then we have

b b b
) [ g(6)ds| < o) [ lao)w (s (s) " ds < war) [ wn(5) " dsllglm(capan
and therefore

b
ess sup fuo(r) [ (5)ds| < Ao, gl (010
a<lr<b r

for any measurable function ¢ in (a,b]. The same argument without wg gives

b b
sup ‘/ s)ds| < sup ‘/ g(s) ds‘ S/ wl(s)*lds||g||Loo((a7b]7wl),
resupp(po)s a<r<b r a

for any measurable function g in (a,b]. These inequalities give the case p = co.
The following lemma allows us to bound the norm in W*?([a, b],w).
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Lemma 3.3. Let 1 < p < oo and let w = (wo, ..., wx) be a vectorial weight on (a,b), with wg, € B,((a,b])
for some 0 < ko < k. If we construct a right completion W of w with respect to the point a taking € = b — a,
and W; = wj for kg < j <k, then there exist positive constants c; such that

ko ko—1
i 199 | eqapimy) < D N9 e (awn + Y, 197 B,
i=j i=j

for all 0 < j < ko and g € V¥?([a,b],w). In particular, there is a positive constant c such that

ko—1
cllgllwen oz < lgllwerapw + > 199 @), for all g€ VFP([a,b],w).

=0

Proof. The fact w; = w; for kg < j < k and the first inequality give the second one. Then we only need to
prove the first inequality. Lemma 3.2 (with a + ¢t = b) gives

cllg? @) = 99 O ooy < N9V er qaptmn) »
for 0 < j < ko. Then we have
c||g(j)||Lp([a,b]7gj) < ||g(j+1)||Lp([a,b],Uj+1) + g9 )],
since w; € L' ([a,b]) if 1 < p < 0o and w; € L*>([a,b]) if p = co. This inequality now gives

gD eranz;) < N9V rastw) + 199 Lo(an im0 + 199 0)]
for 0 < j < ko. This fact and the fact that wy, = wy, prove the first inequality.

Lemma 3.4. Let 1 < p < 0o and let w = (wy, . ..,wy) be a vectorial weight on (a,b), with wy,(z) > oz —a)’

for almost every x € (a,b), where & >0 and § < dp, with dp :=kp—1if1 <p < oo and doo :=k —1. Then
there exist a right completion W and a positive constant ¢ such that wi € By([a,b]) and

k—1

c ||g||L°°([a,b]) < ||g||W""P([a,b],w) + Z |g(]) (b)| ) fOT all g€ Vk7p([a’7 b]aw) .
=0

Proof. By Lemmas 3.1 and 3.3 it is enough to prove w; € B,([a, b]).

Changing ¢ by a slightly greater number, if it is necessary, we can suppose that (§ + 1)/p is not an
integer if 1 < p < 0o and ¢ is not an integer if p = oo.

Let us consider first the case 1 < p < oco. We prove now by reverse induction on j that there is
a weight @ with @;(z) > a; (z — a)’~ k=P for z € (a,b) if § > (k — j)p — 1. If we take w;(z) =
(6 —(k—7p+1)(x—a)’ * 9P we obtain

a

ifo>(k—j4)p-1.
If1<p<oo,
b
/ T < oz — a)PHE DD/

Ifp=1,

1074 oo (o)) < € (@ —a) "FF 7T

Then, if 1 < p < oo, we have A, (@, W;41) < oo and @, (z) > o (x—a)’~ k=P for x € (a,b) if § > (k—j)p—1.
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We define ks := k — [(6 + 1)/p], where [t] denotes the greatest integer which is less or equal than ¢.
Then we have (k — ks)p— 1 < 6 < (k— ks)p+p — 1 and Wy, (z) > oy, (x — a)® k)P We also have
Wy, € Bp([a,b]) since 6 — (k — ks)p < p — 1. To finish the proof of this case it is enough to see that ks > 1.
If k5 <0 then § > (k — ks)p — 1 > kp — 1 which contradicts the hypothesis ¢ < J,.

Finally, if p = oo, the proof is similar with w;(z) = (z — a)° %7 and ks := k — [ + 1].

4. Technical results.

The heart of this chapter is Theorem 4.3; in order to prove it, we obtain several results which are
particular cases.

Theorem 4.1. Let us consider 1 < p < oo and a measure py on [a,b] such that supp uo has at least k points.
Let wy, be a weight in By([a,b]). Then

(1) There exists a positive constant ¢y such that

erllg®Vlpoetapy < Ngller (@bl o) + 19 Lo ta b, for all g with g%~ € AC([a,b]).
(2) There exists a positive constant co such that

k—1
c2 > 199N o tap) < N9l1zo (tato) + 19 2o (aptwn)s  for all g with g* =) € AC([a,b]).

=0

(3) If k > 2, let pa, ..., ux—1 be finite measures in [a,b]. If 1 < p < oo, there exists a positive constant
c3 such that

k—1

cs > N9 N Leabs) < N9lze (et + 19PN Lo (apgwn,  for all g with g*=") € AC([a,b]).
=0

Remark. In fact, the proof shows that ||g(’“)||Lp([a’b]’wk) can be replaced by ||g(’“)||L1([a,b]) in the right hand
side of (1), (2) and (3).

Proof. We only have to prove (1). An induction argument gives (2) if (1) is true, since

||g(j)||Lp([a7b]) <c ||g(j)||Lm([a,b]) )

and 1 is a weight in Bp([a,b]). The third inequality is an immediate consequence of the second one and the
finiteness of p1,..., tg—1-

Without loss of generality we can assume that the functions are real valued, since we can consider the
real and imaginary parts. By hypothesis, there exist I, I, ..., I} pairwise disjoint closed connected subsets
of [a, b] such that uo(l;) > 0,i=1,2,...,k. It is possible to choose each I; small enough in order to have
either (1) 0 < po(I;) < 00, or (ii) po(I;) = oo and poe(I) = oo for every closed interval I C I;.

Let x; € I;. There exists zo € (a,b) such that

(k=1)
g (o) _
(k—l)' _g[xla"'axk]a
(see [D, p.65]) where the differences g[z1,...,z;] are defined recursively by
. o glw] — gz _glmns e mea] = glwe, - @]
g[.fL'J]—g(l']), g[l‘l,l']]— T — ) g[mla"'axk]_ T, — Tg .
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Consider € := 1if k =1 and ¢ := min;; dist(f;, [;) if k¥ > 2. A standard induction argument gives

atorseanl) < & lgteol+ (F 7 ot + 4 (73 lton0l + 1ot

and so, for some positive constant cs

k
g%~ (zo)| < s Z lg(@:)] -

i=1

If z € [a,b], Lemma 3.1 gives

b k
(4.1) 9" (@)] < 9% (o) +/ 9" < es D lg(@a)l + callg™ |l o (taby) -

i=1

If 1 < p < oo, let us denote by J; (respectively, Jo) the set of indices 1 < i < k with po(l;) < oo
(respectively, po(I;) = o0). If i € Jo we can assume that g(x;) = 0 (otherwise ||g||Lr(z; ) = 00 since
g € C(I;) and then (1) is obviously true). Consequently, we have

9" (@) < es D lg@a)l + eallg™ Nl Lo (a,b ) -
i€Jy

We obtain that

b
g D@ < es (S lgtaa)l? + / 9P Pwe),  forall @ € [a,b], mi € T
i€Jy @

Since 0 < uo(I;) < oo for i € Ji, we can integrate in each z; € I; with respect to o to obtain

b b
gtV (@) < cﬁ(/ lg1? dpzo +/ 9wy ), for all 3 € [a, B
Therefore, we have obtained

ctlg* N poo o) < Nallzrastio) + 195 e (a0

for all g with g*~1) € AC([a,D]).
We now deal with the case p = co. Recall that in this case we also have (4.1) for all z € [a,b] and
z; € I;. Assume that i satisfies (uo)s(l;) > 0. Then we have that |g(z)| < [|gl|z([a,6],u0) if i € SUPP (110)s-

If (po)s(L;) = 0 for some I;, then dug(z) = wo(z)dz in I; and there exists a positive number ¢; such

that
/ wo(z)dz >0,
{wo >t; }ﬂ]i

since po(I;) > 0. Therefore

lg(z:)| <t g(xi)| wo(z:) <57 gl ((a,6],m0) -

for almost every z; € I; N {wp > t;} with respect to Lebesgue measure. As we only have a finite number of
I;, these inequalities and (4.1) finish the proof for the case p = co.

Lemma 4.1. Let us consider x1,. ..,z with x; € [a;,B;] where §; < ajy1 for every 1 < j <k —1, and
feC* Y ((as, Br])) N C([ar, Bi]) with real values. Then, there exists o = xo(1,...,zk) for which
SE) () _
S flza, ..z

with the property xo(x1,...,Tk) > a1 + 0 for some § > 0 which is independent of x1,. .., xy.
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Proof. Let us define the function h(zy,...,zx) := (kK — 1)! flz1,..., 2] and the set T := h([ay, 1] X
[ava, B2] X - -+ X [ag, Br]). T is compact since h is continuous.

Also, let us consider for t € T
£(t) = max (f*~) 71 (1) C (an, Bi]-

Note that in the proof of Theorem 4.1 above we saw that (f(*~1)=1(¢) # § for any t € T, and then
T C ¥ ((ax, Br))-
We can define
& :=1inf{{(t) : t € T}.

We only need to prove & > ai. We have & € [a1, (k] and we can find a sequence {£(t,)}52; whose limit
is &o with {t,}52, C T. Without loss of generality we can assume that ¢, — to for some to € T since T is
compact, and therefore

FED(E(tn) = ta — to = FEV(E(t0)),  asn — 0.

Now, observe that f(*~1) is continuous on [(£(ty) + a1)/2, k], since &(tp) > a;. Then there exist
preimages (by f(*~1)) of all the points in T close to f*~1)(&(ty)) as close as we wish to &(to). Therefore, for
n large enough &(t,) > (£(to) + «1)/2. Hence we must have & > (£(to) + @1)/2 > ay.

Theorem 4.2. Let us consider 1 < p < oo and a p-admissible vectorial measure p in [a,b] such that
(a,b)® Nsupp po has at least k points and wy, € By((a,b]). For0<j <k and fited )0 <6 <b—a let us

define a; := 0 if a is right j-reqular and a; := 1 otherwise. Then, there exists a positive constant ¢ = c(d)
such that
k—1
CZ 199N oo (jat505.00) < Ngllwrr(anye,  for all g € VEP((a,b], ).
7=0

Proof. Without loss of generality we can assume that the functions are real valued. For each §;_; > 0 small
enough there exists a positive constant cx_1 = ¢—1(dx—1) such that

(4.2) k=1 19 oo (tatsn_rb)) < 191 Lrablime) T+ 1951120 (ot der bl s

for all g € V*?([a,b], ). The proof of this fact is the same as part (1) in Theorem 4.1. We only need to
make two remarks:

(a) We need g(*=!) € C((a, b]), and this is true since wy € B,((a,b]).

(b) Lemma 4.1 allows to choose the point zo with z9 > a + 6% ; for some d2 , (independently of
T1,...,2x). Then it is enough to take d;_1 > 0 verifying 0 < 651 < 87 _,.

We prove now by reverse induction on j, with 0 < j < k —1, that there exists 5? > 0 such that for each
d; with 0 < 6; < &7 there exists a positive constant ¢; = ¢;(d;) such that

(4.3) i 199 Nz (as65.00) < N9 Eeat o) + 19" Lr(lat-6;.800)

for all g € V¥2([a,b], u).
Inequality (4.2) gives (4.3) for j = k— 1. Assume now that (4.3) holds for j+ 1, with 1 <j+1<k—1.
Since 1 € By((a,b]), (4.2) gives, for some 05 > 0, that

di ()9 N tats; 1) < d2(87) (191l o (aspluo) + 199 Lo (lass;.00))
< Ngllzrtaste) + 1199 Lo (ats; ) »

for all g € V¥2([a,b],u) and 0 < &; < &5. This inequality and the induction hypothesis give (4.3) for all

g € VF2([a,b],u) and 0 < 6; < 89, . Therefore we have the result by defining 69 := min{6%,467,, }.
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Assume that a is right j-regular for some 0 < j < k. Then there exists € > 0 and a right completion w
of w such that W;1 € Bp([a,a + ¢]) (see Remark 3 to Definition 6). Lemma 3.1 gives

19" (z) — g9 (a + E)llL(fasate)) < ||g(j+1)”L1([a,a+s]) <c|lglitt

This inequality and Lemma 3.3 give

) ”LP([a,ast],ﬁjJrl) -

k—1

¢ ||g(j)||L°°([a,a+s]) < ||g||W’“’P([a,a+s],w) + Z |g(l) (a' + 8)| .
i=0

Inequality (4.3) gives for 0 <i <k —1
cilg® (a+e)| <gllLe(asmo) + 19" Lo (as]u0) 5
and then .
c||g(J)||L°°([a,a+s]) < gllwrre((a,],p) -
This inequality together with (4.3) give the result.

Corollary 4.1. Let us consider 1 < p < oo and a p-admissible vectorial measure, p, in [a,b] such that
(a,b)®) N supp po has at least k + 1 points and wy € B,((a,b)). If I; is a compact interval contained in
(a,b)D for 0 < j <k, then

k—1
e N DNzeo(zy) < Nfllwen(apsuys  for every f € VFP([a,b],p).

j=0

Remark. As a consequence of Theorem 4.3 we have that Corollary 4.1 is true even if (a, b)(®) Nsupp po has
only k points, but we cannot use this argument now since Corollary 4.1 is used in the proof of Theorem 4.3.

Proof. Let us consider k 4+ 1 points #; < -+ < Zg41 in (a,b)© N supp py. Theorem 4.2 applied to the
intervals [a, z1] and [z2, ] gives the result. (In fact, we apply to the interval [z2, b] the symmetric result of
Theorem 4.2 for left completions with wy, € B,([x2,b)).)

Corollary 4.2. Let us consider 1 < p < oo, wy, € By((a,b)) and w = (0,...,0,wg). If I; is a compact
interval contained in (a,b)?) for 0 < j < k, then

k—1
e NPz < NFllwee s = 1F e (abwe)

7j=0
for every f € VFP([a,b],w) with f(t) = f'(t) =--- = fED(t) =0 for some t € (a,b).
Proof. Observe that the formula
N PN Gt A
fa) = [ 1) G ds

together with Lemma 3.1 give for fixed € > 0 with ¢ € [a +¢,b — €]

N fllrares—e < cllflloares—en < clF PN ares—ay < 1FP N Lrabnme) -
Then, for those functions f the norm || f||lywx.z((a,p),w+) i8S comparable to || f|lww.»(a,b],w), Where the weight

w* = (w§,0,...,0,wy) is defined by w§ = Xlatepe]’ So, by Corollary 4.1

k—1
DN Meiryy < ellfllwrrqaswey < W llwer o = 17D e go,00)-
j=0
Lemma 4.2. Let us suppose that 1 < p < oo and w = (wo,-..,wg) is a vectorial weight in Q. If I is a

compact interval contained in Qjiq U---UQy for some 0 < j <k, and I NQ; # O for some 0 < s < j then
there exists a positive constant ¢ such that

NF N ey < NF Nwr—swrw) < Wfllweruwy,  for every f € VEP(Q,w).
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Proof. Without loss of generality we can assume that s = 0 and TN Qy, # 0.

If I = [a, 8] then o, f € Q11 U--- U Q. Choose now the maximum a4 such that [a, a1) is contained
in Q;(g) for some j +1 <i(0) < k. If ay < B we choose the maximum as such that [y, as) is contained in
Q1) for some j 4+ 1 <i(1) < k and define recursively the intervals [y, apy1) in a similar way if a,, < 3.

We obtain a finite sequence of numbers {«,, }, since there exists some m for which a,,+1 > 8. If this were
not true, then we would obtain an infinite increasing sequence {a,}52; with lim,_,« @, = a* < 8. In that
case a* € [a, B] C Q11 U---UQy and there exist € > 0 and j + 1 <¢* < k with (a* —¢,a* +¢) C Q. Let
us consider ay € (a* —¢g,a*); we have [an,a* +¢) C Q;« and then a1 > o* + & > o*, which contradicts
that {c,} is an increasing sequence to a*.

As the sets Qj11,...,8 are all open we can choose € > 0 such that o < oy — 2¢ and
Hy = [Oé,Oél - E] - Q1(0) )
Hy = [a; — 26,00 — €] € Q1) 5

Hm = [am — QE,ﬁ] g Qz(m) -
Then HyU---UH,, =TI and |H, N Hyp1| =€ for 0 < r < m.
For j +1 < < k, consider now the sets L, ; := H, if H, C Q; and L, ; := 0 otherwise, and define also
I; .= UT:OLT‘J C Q,.
Obviously Uf:jHIi =TI and w; € By(I;) for j +1 < i < k. If we modify slightly our weights by

L * * * . * .
w* = (wg,...,wE), wy, 1= Wy, w; = w;

+Xpoeon,  frit1<i<k,

we have that w} € B,(I; U---UI}). Then we claim

c”f(i)”LP(I,w;‘) < llwwr (1,w)s
for j +1 <i <k and every f € VFP(Q,w).

We proceed by reverse induction in 7, with j + 1 <4 < k. Tt is true for 4 = k. Assume now that it is
true for i + 1; we prove now the result for 7. It is enough to see that
N F Do (ripyomone) < WFllwew(r,w)-

Observe that the induction hypothesis gives
(4.4) c||f(i+1)||LP(I,w;‘+1) < L fllwer(z,w)-

Let M be a connected component of I;4; U---U I,. If M # I, there exists j + 1 < I < i such that
|M N I;| > e since I is connected, and then by Theorem 4.1(2)

i+1

e > NP Npean) NP zoarwy + 1 earwr, )
h=l

since wy,; € Bp(liy1U---UI}).
If M =1, then |[M N Q| > 0, since M NQy =INQ # B, Qo is open and M is an interval. Using the
previous argument with | = 0, we obtain

Tr)

e Y P Npoe oy < Mooy + 17 o (a0
h=0

Consequently, in any case we have

NF DN e ary < NFllwrw(arw) + ||f(i+1)||LP(M,wl.*+1)-

As we only have a finite number of connected components of I;11 U---U I}, the last inequality together
with the estimate (4.4) prove the desired result for i.
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If we take now ¢ = j + 1 in the claim we have proved, we obtain
c||f(j+1)||LP(I,w;.‘+1) < fllwwrr,w) »
where w},; € Bp(Ij+1U---Ul) = By(I). Remember that by hypothesis [INQg| > 0, and therefore Theorem
4.1(1) gives . '
Nl F N roery < e (N Fllbr(rwe) + ||f(]+1)||LP(I,w;.‘+1)) < [ fllwwr (1,w) -

This ends our proof.

Lemma 4.3. Let us suppose that 1 <p < oo and w = (wo, - .., wg) is a vectorial weight in Q. If I = [a, (]
is contained in QU) for some 0 < j <k, INQ, #0 for some 0 < s < j and (o, B) C Qip1U---UQy, then
there exists a positive constant ¢ such that

c”f(j)”Lm(I) < ||f(8)||W"’_S’P(I,w) < ||f||Wk.p(§7w)7 fOT every f € Vk7p(ﬁaw)'

Proof. Without loss of generality we can assume that s = 0. The case I C Q44 U---U ) is the previous
lemma. Assume that a ¢ Q41 U---UQ, B € Qjpq U---U Q. Since « is right j-regular, then there exist
0 < e < — a and a right completion w of w such that ;41 € Bp([o, @ +¢]). By Remark 4 to Definition
6, if we define ko := max{0 <i < k: In > 0 with w; € Bp((a, @ + 1))}, we can choose W with w; = w; for
ko <i <k and wg, € Bp((a, @ + €]). Obviously we have j + 1 < ko.
Now, Lemma 3.3 gives that
ko—1
NF9 ™ o (aatelmsen) < NFllwen (o atelw) + Z 1D (a+e)l,

i=j+1
if j+1<ko. If j+1= ko, the sum does not appear and the inequality is trivial since Wy, = wg,. Therefore
Lemma 3.1 implies

llf DN aate) < U™ e aatemn + 179 (@ +e)])

(4.5) ko 1 0
< ||f||W’°vP([a7a+6]7w) + Z |f (a +5)|,

i=j

since Wj1 € Bp([o,a + €]). We know there is some 0 < § < ¢ such that J := [a + J, 3] has non-empty
intersection with Qg, so applying Lemma 4.2

(4.6) cllFPNzeiry < N llwer s
since J C Q41 U---UQ. Then Theorem 4.1(2) implies

ko—1 ko—1
e 1N a+e) < e DN lrearsatey < NP Nwoatsate) + 1F N Lo(arsatelwng):
i—j i—j

since wy, € Bp((a, @ +¢€]) C By([a + d, + €]). Now, applying (4.6) we obtain

cNF N o arsarey < lF Doy < NFllwer (),

and then
ko—1

e Y A+ o) <N fllwes ()
i=j
Therefore (4.5) gives _
N F N L aatel) < IFllwer(r,mw)-
This inequality and (4.6) yield the result.

The cases @ € Qjy1 U---UQy, B¢ Qi U---UQpanda ¢ Qi U---UQg, & Qi U---UQy are
similar.
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Lemma 4.4. Let us suppose that 1 < p < oo, and that u is a p-admissible vectorial measure in Q. Assume
that Q U---UQy, is connected. Let K; be a finite union of compact intervals contained in Q9 for0<j<k.
Then there exists an integer 0 <[ < k, independent of K1, ..., Ky_1, with the following properties:

(1) If I < k, there exists a positive constant co = co(Ko,...,Kr_1) such that

k—1

o Y 9Dy < Nollwrwpy: Y9 € VEP(@Q, p).
7=l

(2) If 1 > 0, mj := #{supp y; NQWY < oo for 0<j < 1.

Remark. In fact, we can obtain in (2) m; < I — j, but the inequality m; < oo is good enough for our
purposes.

Proof. Let us define
A={1<j<k: Q; #0}.

If A =0, we can take [ = 0 and there is nothing to prove, since K; C QW) = ). If A # () we define
ko = min A. Without loss of generality we can suppose that Qg # 0.

For the case kg < k we claim that

k—1
(17) e 3 109 i~ ryy < Nalhgonce -
Jj=ko

Let us fix ko < j < k. In order to prove this claim, without loss of generality we can assume that K
is a single compact interval. The remark before Definition 7 gives that K; \ (41 U---U Q) is a discrete
set; since K; is compact, we have that K; \ (@11 U---U Q) is finite. Then, we can assume also that
int (KJ) - Qj+1 U---U Q.

We can choose a compact interval I with K; C I C QW int (I) C Q;1,U---U Qg and IN(Qp, U- - -U Q) #
0, since (o U---UQ;) U (Qjpa U---UQg) =Qq U---UQ is connected.

Then, there exists a kg < s < j with I N Qs # (). Lemma 4.3 gives

ellgDneory < 119 lwr-sm (1) < 91l (@, p0)-

Consequently, we have (4.7) for kg < k.

Define B := {0 < j < ko : m; = oo} and the non-negative integer [ as follows, [ := min B if B # ), and
[:=koif B=0.

If | = ko, we have B = ). This implies (2) since I = kg > 1. If [ = ko < k, inequality (4.7) gives (1).

We denote by («, ) the interval Q; U --- U Q.

If 0 <1 < ko, we have (2). If | < ko, we also have | < k and m; = oco. For each | < j < ko, we can
choose a compact interval I; verifying:

(i) K; CI; CQU).

(ii) The minimum point of I; is « if & is right j-regular and is a+6 (with 0 < 0 < (8 —«a)/2 independent
of j) otherwise.

(iii) The maximum point of I; is B if 3 is left j-regular and is 8 — ¢ otherwise.

(iv) #{supppu N+, 8 — 8]} > ko — 1.

(Recall that QO ... Qko—1) are intervals with the same interior, since Qo U---UQ =Q U---U Qg
is connected.)

We can now finish the proof of Lemma 4.4 in the case kg < k. The case kg = k is simpler.
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The remark to Theorem 4.1(2) gives
ko—1 )
¢ > 19PNz (arsg-5 < 190 zr (as6.8-61m) + 195 |21 ((ars,5-7) -
7=l
By the argument at the beginning of the proof of Lemma 4.2 we can split [¢ 4+ 0,3 — 0] = EU F, where
E, F are finite unions of compact intervals with £ C Q, and F C Qg1 U---UQ C Q) Then Lemma
3.1 gives
cllg® oz < ||g(k0)||LP(E,wko) < gl @,
since wy, € Bp(E). Inequality (4.7) with F instead of K}, implies

cllg® ey < ellg®reery < N9l @
since F' C Qk0) So, joining these two inequalities

cllg™ Mo qaras—apy < cUlg™ N + 195 o) < Ngllwen@,-
Therefore we conclude
ko—1
(4.8) ¢ Y N9V eo(tats,5-a) < N9llwn @0
j=l

We bound now the norm of g¥) in L®°([a,a + d]) if « is right j-regular. The case L>°([3 — 4§, ]) is
symmetric. If a is not right I-regular there is nothing to prove. Assume that « is right j-regular for some
I <j<k. If we define

ki1 :=max{0 <i<k: 3In >0 with w; € B,((a, a + 7))},

by Remark 4 to Definition 6 there exist ¢ > 0 and a right completion @ with W;11 € Bp([a, a + €]),
Wi, € Bp((o, a0 + €]) and w; = w; for ky; <i < k. Obviously k1 > j + 1.
Lemma 3.3 gives

ki—1
c||g(]+1)||L1’([a,a+s],ﬁj+1) < ||g||W’°-P([oz,a+s],u) + Z |g(l) (Oé +5)| .
i=j+1
Now we conclude with Lemma 3.1
ki—1
(4.9) cllgP Nl (aate) < lgllweraatem + P 197 (@ +e)l.
i=j

We can assume, perhaps with a smaller §, that o+ € [a + 6,8 — §] (this new & obviously satisfies
properties (i)-(iv)). Inequality (4.8) gives
ko—1
CZ|9 a+5|<||g||wkp9u)

If k1 > ko, inequality (4.7) implies
k1—1

CZ|9 a+5|<||g||wkp9u)
i= ko

since a + € is left (k3 — 1)-regular. These two last inequalities give

ki1—1
o 3 WO+ <ol

This fact and (4.9) imply .
cllgPNpe e < 19w @
This finishes the proof of Lemma 4.4.
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Let us define a subspace, (2, i), of V¥?(Q0), u|ow ) which plays an important role in the theory.
Definition 10. We define K(Q, 1) as

’C(ﬁﬂ IU/) = {g : Q(O) — C/ g€ Vk’p(wauk)(o))a ||g||W""P (Wm’ (0)) = 0} -

The case in which [ - ||y +.»(q, ,) is @ norm is the most interesting. However we need something more in
order to prove part (a) of Theorem 4.3 below: this additional condition is what we present in the following
definition of class Co. Roughly speaking, u € Co if || - [lyr.r(ar,, 4) i @ norm for some sequence of compact
sets {M,} growing to . This condition is exactly what we need since in the proof of Theorem 4.1 we
approximate {2 by compact sets.

If u ¢ Co we still can prove part (b) of Theorem 4.3 by adding some Dirac deltas to po; we only add the
exact amount that we need. This leads to the definition of class C.

Definition 11. Let us consider 1 < p < oo, an open set @ C R and a p-admissible vectorial measure p
in Q. We say that (Q,p) belongs to the class Cy if there exist compact sets M,,, which are finite unions of
compact intervals, such that

i) M, intersects at most a finite number of connected components of Q1 U---U Q,

i) K(My, 1) = {0},

m) M, - Mn+17

) U, M, = Q),
We say that (0, p) belongs to the class C if there exists a measure ply = o + Y mep CmOz,, with ¢y > 0,
{z,} € QO D C N and (0, u') € Co, where p' = (b, pu1, ..., k) is minimal in the following sense:
there exists {M,} corresponding to (Q,u') € Co such that if pli = ulh — CmoOz,,, With mo € D and p" =
(g s o1y -« s k), then IK(Mp, ') # {0} if 2, € M.

Remarks.

1. The condition on (Q, i) is very general. In fact, the Remark after the proof of Theorem 4.3 below
gives that if Q(®)\ (Q; U---U Q) has only a finite number of points in each connected component of Q)
then (Q, ) € C. If, furthermore, K(Q, ) = {0}, we have (0, u) € Co.

2. Since the restriction of a function of K(Q,u) to M, is in K(M,, u) for every n, then (Q,u) € Co
implies (2, ) = {0}.

3. If (Q,p) € Co, then (Q,p) € C, with ' = p.

4. The proof of Theorem 4.3 below gives that if for every connected component A of Q; U---U Q we
have K(A, ) = {0}, then (€, 1) € Co. Condition #supp po|x5 g > k implies K(A, ) = {0}.

The following result is the main ingredient of the proof of Theorem 5.1, which is the most important
result that we present in this paper. It is also useful by its applications in the papers [RARP], [R1], [R2],
[R3] and [APRR]. Furthermore, it is important by itself, since it answers to the following main question:
when the evaluation functional of f (or f()) in a point is a bounded operator in W*? (€, 1)?

Theorem 4.3. Let us consider 1 < p < 0o, an open set 0 C R and a p-admissible vectorial measure i in
Q. Let K; be o finite union of compact intervals contained in Q) for 0 < j < k and W a right (or left)
completion of w. Then:

(a) If () € Co there exist positive constants c¢; = c1(Ko,..., Ky 1) and ¢z = co(W, Ko,...,Ki 1)
such that

k—1
e S N9V =) < ollyn@ye 2 lollwrn@m < lollwon,y Vo€ VAP 0).
j=0

(b) If (ﬁ, ,u) € C there exist positive constants cz = c3(Ko,...,Kr—1) and ¢4 = e4(w, Ko, ..., Kr_1)
such that for every g € VEP(Q, 1), there exists go € VFP(Q, 1), independent of Ky, ..., Kp_1, c3, ¢4 and w,
with

||gU - gHWk.p(ﬁ’u) = 07
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k—1
es 3 N9 i) < Ngollwrn,y = lollwrr@,ye ctllgollwrn@am < N9lwen@,-
j=0

Furthermore, if go, fo are these representatives of g, f respectively, we have for the same constants cs, ¢4

k—1
es D M98 = F e iy <Nl = Flwenyy: € llgo = follwrn@m < 19— Fllwrr @,
j=0

Proof of Theorem 4.3. Without loss of generality we can assume that Q(°) is connected. This condition
is not restrictive since otherwise we can work in each connected component. Let us consider the connected
components {Ax}rea of Q3 U---U Q. Recall that ) \ (1 U---U Q) is a discrete set since QO g
connected (see the Remark before Definition 7). Moreover this set cannot have any accumulation point in
Q) Therefore we can take the set of indices A as one of the following sets: Z, Z*, Z~ or {1,...,N} for
some natural number N, with the property that sup Ay =inf Ayyq if A, A+ 1€ A.

For 0 < j < k consider the compact set K; C 0, which is a finite union of intervals. It contains at
most a finite number of points which are not in Q; U --- U Qy, since Q(©) \(QU---UQy) is a discrete set
and K; is compact. Therefore each K is contained at most in the union of a finite number of Aj.

Let us fix A € A. From now on, we work on A (which may have infinite length). Denote by .J; the finite
union of compact intervals J; := K; N Ax. In each Ay, Lemma 4.4 gives that there exist ¢, | (depending on

A) such that
-1
Y NPy < Nllwrw, o »
j=l

if I < k. If I > 0 we have the additional condition m; := #{supp u; N Ag‘j)} < oo for 0 < j <, and so in
AY) we can write each p; as

— 1 mo
Ho —aoém(l) +---+a0 (nglo,

_ 1 mi
M1 _altsz% -|-----|-(],1 6301"17

_ 1 mi—1
Hi—1 = al—15z}_1 to oy 595;’:11—17

with a? > 0 and z} € AE\j) for 0 < j <1,1<i<mj. Without loss of generality we can assume that .J; is
an interval and a:; € Jjfor0<j<l!,1<i<m; (asin the proof of Lemma 4.4). If A\ = (a, 5), we can
assume also that a € J; if a is right j-regular and g € J; if 3 is left j-regular.

We now study the structure of (€, 1). Let ¢ be a function in K(Q, ). Let us prove that ¢*) =0 in
each Ay:

If for some A we have [ = k, then Ay C Q4. Since ¢ € K(2, u) we have that
[ 1 @) e =o
Ax

Lemma 3.1 gives that ||q(k)||L1(1) = 0, for every compact interval I C Ajy; then ||q(k)||L1(AA) = 0 and since
¢'*=1 is locally absolutely continuous in Ay, it has to be constant there, and consequently ¢(¥) = 0 in Aj.
Then ¢|a, € Pr_1, since Ay is a connected set.

If for some A we have | < k, Lemma 4.4 gives c||q(! lLo () < ||q||W,w,(XA , = 0 for any compact interval

JC AE\Z). Then ¢¥ = 0 in any compact interval J C Ag‘l) and we have ¢ =0 in Ag‘l) and so, q|a, € P—1.
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Consequently, in any case (0 <! < k) we obtain ¢|x, € P,—1 if we define P_; := {0}. Besides, in each
connected component Ay one has

(4.10) ¢V (ai)y=0  for0<j<l, 1<i<m;.

If we write in Ay
q(r) = ay_1z"t + -+ a7 + ao,

we see that (4.10) is a homogeneous linear system of mg + --- + m;—; equations with the [ unknowns
aj_1,...,a1,0q, whose solution represents the restriction of the functions in (2, ) to Ay in the basis
{z'=1 ... 2,1} of P,_;. Observe that the coefficients a; obviously depend on A.

On the other hand, if A, A+ 1 € A and f = sup A\ = inf Ay;1, we have
(4.11) gV (B7)=qP (%),  if Bis j-regular,

where as usual ¢\9)(87) and ¢/ (81) denotes respectively the left and right derivatives.
Then we have that (€, u) is the solution of the system given by (4.10) for every A € A and (4.11) for
every A € A such that A+ 1 € A. Consequently the elements of K({2, i) are splines.

Claim. If Ay = (o, ), then given any weight w* which is a right completion of w with respect to «
and a left completion of w with respect to 3, there exists a positive constant ¢ such that

19 zo ((a81,0p) < € llgllwrn (a,a1» for every g € V¥ ([a, 8], ).

Lemma 3.3 gives if [ < k

k—1
c ||g(l)||LP([a,a+E],wl*) < ||g||W’“>P([a,a+E],w) + Z |g(l) (a + 5)| )
i=l
for some 0 < ¢ < B—a, with a+¢ € Q. If wetake 0 < § < €, with [a+6,a4+¢] C Q) CQFD C ... Cc QO]

Lemma 4.4 gives
k—1

k—1
S 19 a+e)] <D 19V (tass.aren < cllgllwer((a,m)-
i=l i=l
We conclude
||g(l)||LP([a,a+E],wl*) <c ||g||W’C’P([a,B],u)7
for I <k (the case [ = k is immediate since then w; = wy,).
In a similar way we have
||9(l)||Lp([a+sﬁ]7w,*) < cHg”W’“’P([a,B],u)-
The last inequalities finish the proof of the claim.
_ In order to prove (a) we can choose n € N with KoU---U K1 C M, and K(M,,u) = {0}, since
(Q, 1) € Cy. We denote by A, the finite set of indices A € A with Ay N M,, # 0. Then the finite linear system
of equations, which we denote by T,, given by (4.10) and (4.11) for A € A,, such that every point appearing
in the equations belongs to M,,, has unique solution.
Given g € VFP(Q, ), for each A € A, fix a € M, Nint (Jp) and let f be the function defined in each
Ax = (o, B) by f(z) :=g(x) if | =0, and
. (x — )1
fla) = [ a0 G .
otherwise. In each Ay, we have g = f +r with r := 0 if [ = 0, and
(x —a)!

rla) 2= gla) + /(a) (2~ @) 4 -+ 90D (@) G
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otherwise. For 0 < 7 <[ we have
) x _ f\l—j-1
0@ = [0 5 a0 =0,

in A). Consequently it is clear using Corollary 4.2, Lemma 4.4 and the claim that there exist positive
constants which are independent of g and f such that

k—1 -1 k—1
SNz = D MF Doy + D 19Dz (,)
7j=0 7j=0 j=l

(4.12) o
<c(llg ||LP(K)\7U)?) + ||g||W’“vP(K>\,u))

<c ”gHWk.p(KM”) )
with w* a suitable completion of w. Observe that if { = 0 or | = k, the sum Eé;t or Z;:ll does not appear
in (4.12).

If0§j<landH::m‘ir)‘1a§ (for 0<j<l,1<i<m; and/\EAn),weobtainfor@EMn
27.77

9P (@H)IP < H  aflgD @))P < H MgV,

) forl<p< oo,

and o ‘
9D @) < g poe (M) s forp=o0.
Therefore, using also (4.12), we have for 1 < p < oo,

PP @) =199 (@) = SO @) < H 219D ne (0t ) + ellgllwrn (o)

where R, :=Uxea, Ay, for 0<j<1,1<i< m; and A € A,, with 3:; € M, that is, there exists a positive
constant ¢, which is independent of g and r such that

(4.13) c|r9D (@) < lgllwrr (ry 0 for 0 <j <, 1<i<my, A€ Ay, withz}e M,.
IfAXAN+1€ A, and B =supAy =inf Ayyq is j-regular, we have
rD(B7) = gD (B) - f9B7),  r9(BY) =g (B) - fO(B),
and then _ _ ‘ _
UCR RGOS SUCIES S CE

Recall that if Ay = (, 3), we are assuming that a € J; if a is right j-regular and g € J; if 3 is left j-regular.
Consequently (4.12) gives

(4.14) elr@(87) =D (BN < llgllwer (ry ) -

The function 7|y, is determined by a finite linear system whose coefficient matrix is the coefficient
matrix of T}, and whose non-homogeneous terms are bounded by (4.13) and (4.14), since Tj, has unique
solution.

Consequently, there is a positive constant ¢, independent of A € A,,, g and r, such that

k—1

(4.15) e D (x;) < Nlgllwer (ry ) -
7=0

Inequalities (4.12) (with A € A,) and (4.15) and the relation g = f + r give the first inequality of (a) in
Theorem 4.3. The second inequality of (a) is an immediate consequence of the first one and Lemma 3.3.
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We deal now with part (b). Since (Q, 1) belongs to the class C, there exist a measure p) = o +
> e CmOaz,, With ¢ > 0, {zn} C QO and (O, 1) € Co, where p' = (uf,pu1, ..., ) is minimal. We
choose {M,,} corresponding to (2, ') € Co such that we can apply the minimality of p'.

If g € VFP(Q,u) we can choose r € K(Q,u) (defined as 0 in the complement of Q) with |lg —
rlwrr@uy = N9llwren@,s e such that |lg = rllzs 0 4 —ye) = 0, that is, g(zm) = r(zm) for every
m € D. To see this we proceed in the following way: as in the proof of part (a), for each n consider the
finite linear system of equations T}, which describes g € K(M,, ') and the system T obtained by changing
in T, the equations of the form ¢(x,,) = 0 with m € D by ¢(z») = g(z.,). Every solution of T,¥ belongs to
K(Mn, p)-

There exists a unique function r, € K(Mp, ) satisfying T*: By the minimality of u’, each equation
in T,, of the form ¢(x,) = 0 with m € D is linearly independent of the other equations in T,. This
implies the existence of r,. We also have the uniqueness of r, since T}, has a unique solution (recall that
K(Mp,p') = {0}).

Observe that every equation of T}y is in T}y, since M,, C M, 1, and therefore r,;1|rs, = 7. Then, we
can define r in QO by r(z) := r,(2) if z € M,,. So r € K(Q, p) since r € N, K(M,, 1) and every equation
of K(Q, ) is in some T}, and also r(z,,) = g(x,,) for every m € D.

The function gy := g —r satisfies ||go—g||Wk,p(§ W = ||r||Wk,p(§ ) = 0. We have K; C QU) for 0 < j < k
(observe that Q) is the same for W*?(Q, 1) and W*»?(Q, i')). Then we have

k—1
es O g5 = () < Mol @y = 190llwrn@,y = 191l @
j=0

Cq ||90||Wk,p(§,m) < ||90||Wk.p(§7,/) = ||g||Wk.p(§7u)7

since go(xym,) = 0 for every m € D.
The other inequalities in (b) can be proved in a similar way.

This finishes the proof of Theorem 4.3.

Remark. In order to prove Remark 1 to Definition 11 we can assume that Q% is connected. Then, if
0o \ (@ U---U Q) has only a finite number of points, we can split Oy U--- Uy = A U---UAp in its
connected components. Now, the result is trivial since the linear system that defines (€, i) is finite.

We obtain the following corollary of Theorem 4.3.

Corollary 4.3. Let us consider 1 < p < oo, an open set @ C R and a p-admissible vectorial measure p in
Q. Let K; be a finite union of compact intervals contained in QW for 0 < j < k. Then:

(a) If (Q, ) € Co there exists a positive constant ¢, = ¢1(Ko, ..., Kx_1) such that

k—1

e 3 M99 s ) < Nlallwinye Yo € VEP (@ ).
7=0

(b) If (ﬁ, u) € C there exists a positive constant co = co(Ky,...,Ki_1) such that for every g €
1,

VEP(Q, ), there exists go € VFP(Q, 1) (the same function as in Theorem 4.3), with

k—1
j+1
lgo = llwrmuy =0 c2 3 llag" Nz < Ngollwn @y = N9lliwrr s,
=0

Furthermore, if go, fo are these representatives of g, f respectively, we have for the same constant co
k—1
+1 j+1
2 3 g8 = £ Ny < Mg = Fllwrn @
7=0
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Proof. We only prove part (a) since (b) is similar. Fix 0 < j < k. Since K; C QW) given any point
€ Kj, there exist an interval J, and a completion @w¥ of w with @}, , € B,(J,). The compactness of K;
gives that there exists a finite set of points yi,...,y with K; C J,, U---U Jy,.

If we define w},; = Eizl WYX 0 the second inequality in Theorem 4.3(a) gives

(j+1

C||g )||LP(Kj,w;.‘+1) < ||g||Wk.p(§“u) )

and Lemma 3.1 finishes the proof, since wj,,; € By(Kj).
We have another corollary.

Corollary 4.4. Let us suppose that 1 < p < oo and that u = (uo, - - ., k) is a p-admissible vectorial measure
in [a,b] with wy, € Bp([a,b]). Then:

(a) There exists a positive constant ¢y such that

k—1
1 > 199N zeo (qapy < Ngllweor (fa,5),0); Vg eV ([a,b], p),
7j=0
if and only if K([a,b], ) = {0}.
(b) There exists a positive constant co such that for every g € V*P([a,b], u), there exists go with

k—1
llgo — gllwe.r(fa,p),n) =0, 2y ||g(()j)||L°°([a7b]) < lgollwrr (ta,p1.m) = 19llwer(a,00,0)-
i=0

Proof. Since Q) = [a,b] and QO \ (Q; U---U Q) = {a} U {b} is finite, Remark 1 to Definition 11 says
that ([a,b], ) € C. Then, if we take K; = [a,b] for 0 < j < k, Theorem 4.3(b) gives (b).

If K([a,b],x) = {0}, we also have ([a,b], ) € Co by Remark 1 to Definition 11, with the choice M,, =
[a,b]. Then, Theorem 4.3(a) gives one implication of (a). For the other implication, it is enough to remark
that if there exists g € V7 ([a, b], 1) not identically zero with ||g|lwe.»((a,p),4) = O, the inequality ||g|| (a0 <
0 does not hold.

Corollary 4.4 gives the following result about comparable norms.

Corollary 4.5. Let us consider 1 < p < oo, p,v finite p-admissible vectorial measures in [a,b], with
absolutely continuous parts w,v, respectively. Assume that wy € Bp([a,b]), wr < v and K([a,b], ) =
K(la,b],v) = {0}. Then:
(1) The norm in W¥P([a,b], u) of any function g € V¥P([a,b], u) is comparable to

=1

> Mgz o + 195 Lo (la,br ) -

7j=0
(2) The norms in W*P([a,b], 1) and W*P([a,b],v) are comparable.

Remark. The case p = 0o is also true if we change the hypothesis u, v finite by wq, ..., wg_1,v0,...,0%—1 €
L>([a, b]).

5. Main result.

Theorem 5.1. Let us consider 1 < p < oo, an open set & C R and a p-admissible vectorial measure
= (po,...,px) in Q with (Q,n) € C. Then the Sobolev space W*P(Q, 1) is complete.
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Remark. The hypothesis of p-admissibility is natural (see definitions 8 and 9 and their remarks). Also the
condition (€2, u) € C is not very restrictive (see Definition 11 and its remarks in Section 4).

Proof. Let {f,} be a Cauchy sequence in W*P(Q, 1). Therefore, for each 0 < j < k, {f,(Lj)} is a Cauchy
sequence in LP(Q, u1;) and it converges to a function g; € LP(Q, u;).

First of all, let us show that g; can be extended to a function in C(Q()) (if 0 < j < k) and in L}, .(QU=1)
(if 0 < j<k).

If 0 < j <k, let us consider any compact interval K C Q0). Theorem 4.3(b) gives that there exists
a representative (independent of K) of the class of f, € WHP(Q, ) (which we also denote by f,) and a
positive constant ¢ such that for every n,m € N

k
IS = 15 ) < SIS = 19
i=0
As {fﬁj)} C C(K), there exists a function h; € C(K) such that

k
cllf¥ - hjll Lo (k) < Z [P gi||Lp(§,,“) .
=0

Since we can take as K any compact interval contained in Q)| we obtain that the function h; can be
extended to Q) and we have in fact h; € C(QU)). Tt is obvious that g; = hj in Q) (except for at most
a set of zero p;-measure), since 7(1]) converges to g; in the norm of LP(Q, p;) and to h; uniformly on each
compact interval K C Q). Therefore we can assume that g; € C(Q)).

If 0 < j <k, let us consider any compact interval J C QU1 Now Corollary 4.3(b) gives
. . k 3 3
eFS = FD Ny < SSIED = 00 o
i=0
As {f} C L1(J), there exists a function u; € L'(J) such that

k
cllf¥ - wjlliny < Z £ — gi||Lp(§7,“.) .
i=0

Since we can take as J any compact interval contained in QU~1), we obtain that the function u; can be
extended to QU1 and we have in fact u; € L}, (QU~Y). Tt is obvious that g; = u; in Q) (except for at

most a set of zero Lebesgue measure), since f,(f) converges to u; in L}OC(QU)) and to g; locally uniformly in
Q). Let us consider a set A which concentrates the mass of (u;)s, with |A| = 0; we can take u; = g; in
A. We only need to show u; = g; in ; \ () U A) (recall that by hypothesis w; = 0 in R\ ©;), but this
is immediate since w; € B,(2;) and the convergence in LP(§;,w;) implies the convergence in L} .(2;) (by
Lemma 3.1). Therefore we can assume that g; € L}, (QU~).

In fact, we have seen that {f\/’} converges to g; in L2 (UD) (if 0 < j < k) and in L},
0<j<k).

Let us see now that g; = gj1 in the interior of QW for 0 < j < k. Let us consider a connected

component I of int (Q1)). Given ¢ € C>°(I), let us consider the convex hull K of supp ¢. We have that K

(QU=1)Y (if

is a compact interval contained in 7 C Q). The uniform convergence of { f,(Lj )} in K and the L' convergence
of {f™} in K gives that

/ ¢gi=lim [ ¢ fP=—lim [ ofy*) =—/ P Y -
K K K K

n—o0 n—oo

Then gj4+1 = g(()jH) in int (V) and g(()j) € AC,c(int () for 0 < j < k. TIn order to see that g(()j) €
AC1, (W), it is enough to recall that (g\))' = ;11 € L1 _(Q0)).

loc
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