
GENERALIZED WEIGHTED SOBOLEV SPACESAND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS IJos�e M. Rodr��guez�,Venan
io �Alvarez, Elena Romera�, Domingo Pestana�1. Introdu
tion and main results.Weighted Sobolev spa
es are an interesting topi
 in many �elds of Mathemati
s. In the 
lassi
al books[Ku℄, [KS℄, we 
an �nd the point of view of Partial Di�erential Equations. See also [Tr℄ and [HKM℄. (Themain topi
 of [HKM℄ is non-linear Partial Di�erential Equations and its appli
ations to quasi
onformal andquasiregular maps.) We are interested in the relationship between this topi
 and Approximation Theory ingeneral, and Sobolev Orthogonal Polynomials in parti
ular.The spe
i�
 problems we want to solve are the following:1) Given a Sobolev s
alar produ
t with general measures in R, �nd hypotheses on the measures, asgeneral as possible, so that we 
an de�ne a Sobolev spa
e whose elements are fun
tions.2) If a Sobolev s
alar produ
t with general measures in R is well de�ned for polynomials, what is the
ompletion, P k;2, of the spa
e of polynomials with respe
t to the norm asso
iated to that s
alar produ
t?This problem has been studied in some very parti
ular 
ases (see e.g. [ELW1℄, [EL℄, [ELW2℄), but at thismoment no general theory has been built.3) What are the most general 
onditions under whi
h the multipli
ation operator, Mf(x) = x f(x),is bounded in the spa
e P k;2? We know by a theorem in [LPP℄ that the zeroes of the Sobolev orthogonalpolynomials are 
ontained in the disk fz : jzj � kMkg. The lo
ation of these zeroes allows to prove resultson the asymptoti
 behaviour of Sobolev orthogonal polynomials (see [LP℄). In the se
ond part of this paper,[RARP℄, and in [R2℄ and [APRR℄, we answer the question stated also in [LP℄ about general 
onditions forM to be bounded.This last question is very 
lose to the de�nition of Sobolev spa
es asso
iated to these norms, the studyof their 
ompleteness and the density of C1 fun
tions. In fa
t, the de�nition and 
ompleteness of Sobolevspa
es is what we study in the present paper, not only for p = 2, but for 1 � p � 1. An important partof this paper 
on
erns the development of te
hni
al tools. These tools are 
ru
ial not only here but in thepapers [RARP℄, [R1℄, [R2℄, [R3℄, [APRR℄ and [RY℄. The problems about density and about the multipli
ationoperator are studied in these six papers.The 
ompleteness that we study now is one of the 
entral questions in the theory of weighted Sobolevspa
es, together with the density of C1 fun
tions. In parti
ular, when all the measures are �nite, have
ompa
t support and are su
h that C1
 (R) is dense in a Sobolev spa
e that is 
omplete, then the 
losure ofthe polynomials is the whole Sobolev spa
e. This is dedu
ed from Bernstein's proof of Weierstrass' theorem,where the polynomials he builds approximate uniformly up to the k-th derivative any fun
tion in Ck([a; b℄)(see e.g. [D, p.113℄).In this paper we also prove some inequalities whi
h generalize 
lassi
al results about Sobolev spa
eswith respe
t to Lebesgue measure (see Theorem 4.3).We should remark that there exists another generalization of Sobolev spa
es in the 
ontext of metri
spa
es (see [H℄, [M℄). In these papers the treatment of this topi
 is from a di�erent point of view.The �rst part of this arti
le is devoted to obtain a good de�nition of Sobolev spa
e, W k;p(�0; : : : ; �k),where �0; : : : ; �k; are very general measures. We allow the measures �0; : : : ; �k; to be almost independentof ea
h other. The main result that we present in this paper is Theorem 5.1, whi
h appears in Se
tion 5. Itstates very general 
onditions on the measures under whi
h this Sobolev spa
e is 
omplete.2000 AMS Subje
t Classi�
ation: 41A10, 46E35, 46G10.� Resear
h partially supported by a grant from DGI (BFM 2000-0206-C04-01), Spain.1
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The main ingredient of the proof of this theorem is Theorem 4.3. It allows to 
ontrol the L1 norm(in appropriate sets) of a fun
tion and its dervatives in terms of its Sobolev norm. It is also useful by itsappli
ations in the papers [RARP℄, [R1℄, [R2℄, [R3℄, [APRR℄ and [RY℄. Furthermore, it is important by itself,sin
e it answers to the following main question: when the evaluation fun
tional of f (or f (j)) in a point is abounded operator in W k;p(
; �)?As a 
onsequen
e of theorems 4.3 and 5.1, we 
an prove the density of the spa
e of polynomials inthese Sobolev spa
es (see [RARP℄, [R1℄, [R3℄, [APRR℄ and [RY℄) and the boundedness of the multipli
ationoperator (see [RARP℄, [R2℄ and [APRR℄).In the paper, the results are numbered a

ording to the se
tion where they are proved. Now we presentthe notation we use.Notation. In the paper, k � 1 denotes a �xed natural number; obviously W 0;p(
; �) = Lp(
; �). Allthe measures we 
onsider are Borel and positive. Also, all the weights are non-negative Borel measurablefun
tions. If the measure does not appear expli
itly, we mean that we are using Lebesgue measure. We allowmeasures �j whi
h are not ne
essarily �-�nite but always assume that d�j = d(�j)s +wj dx, where (�j)s issingular with respe
t to Lebesgue measure and wj is a Lebesgue measurable fun
tion (whi
h 
an be in�nitein a set of positive Lebesgue measure). We denote by supp � the support of the measure �. If A is a Borelset, jAj; �A , A, int(A) and #A denote, respe
tively, the Lebesgue measure, the 
hara
teristi
 fun
tion, the
losure, the interior and the 
ardinality of A. By f (j) we mean the j-th distributional derivative of f . Whenwe work in the spa
e W k;p(
; �) we denote by W k�r;p(
; �) the spa
e W k�r;p(
; (�r; : : : ; �k)). We say thatan n-dimensional ve
tor satis�es a one-dimensional property if ea
h 
oordinate satis�es this property. Pndenotes the set of polynomials with degree less than or equal to n, and a, b arbitrary real numbers witha < b; they are �nite unless the 
ontrary is spe
i�ed. Finally, the 
onstants in the formulae 
an vary fromline to line and even in the same line.The outline of the paper is as follows. Se
tion 2 presents most of the de�nitions we need to state ourresults. We prove some useful results on Hardy inequalities and 
omparable norms in Se
tion 3. Se
tion 4is dedi
ated to some te
hni
al results; some of them are generalizations of 
lassi
al results with Lebesguemeasure. Finally, in Se
tion 5 we prove the theorem on 
ompleteness.A
knowledgements. We would like to thank F. Mar
ell�an for suggesting us this problem and H. Pijeirafor many useful referen
es.2. De�nitions.There are two standard ways to de�ne 
lassi
al Sobolev spa
es W k;p(
) (with 1 � p < 1) in an opensubset 
 of an Eu
lidean spa
e:(1) the 
ompletion of smooth fun
tions C1(
) with the normkfkk;p := X� �k kD�fkp ;where kgkp denotes the Lp(
) norm of g with respe
t to Lebesgue measure, and(2) the fun
tions f belonging to Lp(
) su
h that their weak derivatives up to order k belong also toLp(
).It is well-known that these two de�nitions are equivalent for 1 � p <1 (see e.g. [A, p.52℄, [Ma, p.12℄).However (1) and (2) 
oin
ide with the 
ompletion of C1(Rn) only for smooth domains (see e.g. [A, p.54℄,[Ma, p.14℄).It is possible to de�ne some parti
ular weighted Sobolev spa
es, where the weights 
onsidered are powersof d(x) = dist(x;K) with K � �
, and even h(d(x)) with h a monotone fun
tion, following the text [Ku℄. Ifwe want to de�ne more general weighted Sobolev spa
es we 
an use the approa
h in [KO℄. Before we statethe de�nition in [KO℄, let us observe that the distributional derivative of a Sobolev fun
tion is also a fun
tionbelonging to L1lo
(
). In order to get the in
lusionLp(
; u) � L1lo
(
) ; for 1 < p <1 ;2



a suÆ
ient 
ondition, by H�older's inequality, is that the weight u satis�es u�1=(p�1) 2 L1lo
(
) (see [KO,Theorem 1.5℄ or Lemma 3.1 below). With this fa
t in mind we 
an understand the de�nition in [KO℄:Given a weight u in 
 let us denote by Mp(u), for 1 < p <1, the 
losed setMp(u) := nx 2 
 : Z
\U(x) u�1=(p�1)(y) dy =1 for every neighbourhood U(x) of xo:Given w = (w�) � �k a ve
torial weight in 
 we 
an de�ne the ex
eptional set B := [ � �kMp(w�) andthe Sobolev spa
e W k;p(
; w) with weight w, as the set of all fun
tions f 2 Lp(
 n B;w0) su
h that theirweak derivatives D�f are elements of Lp(
 nB;w�) for all � with j�j � k.With this de�nition, the weighted Sobolev spa
e W k;p(
; w) is a Bana
h spa
e (see [KO, Se
tion 3℄).In general, this is not true without removing the set B (see some examples in [KO℄). However, note thatif some w� is identi
ally zero, then Mp(w�) = 
 and 
 nB = ;.But now, we want to de�ne a more general 
lass of Sobolev spa
es appearing in the 
ontext of orthogonalpolynomials. Sin
e we are interested in orthogonal polynomials on the real line we only need to 
onsiderthe 
ase 
 � R. In this �eld it is usual to work with Sobolev spa
es for whi
h the measures wj(x) dx arerepla
ed by general measures d�j(x) and some of them may have �j(�
) > 0; so we 
onsider in our de�nitionSobolev spa
es in 
, where 
 is an open set. Therefore, in general, these spa
es do not mat
h the de�nitionin [KO℄.Let us start with some preliminary de�nitions.De�nition 1. We say that two fun
tions u; v are 
omparable on the set A if there are positive 
onstants
1; 
2 su
h that 
1v(x) � u(x) � 
2v(x) for almost every x 2 A. Sin
e measures and norms are fun
tionson measurable sets and ve
tors, respe
tively, we 
an talk about 
omparable measures and 
omparable norms.We say that two ve
torial weights or ve
torial measures are 
omparable if ea
h 
omponent is 
omparable.In what follows, the symbol a � b means that a and b are 
omparable for a and b fun
tions, measuresor norms.Obviously, the spa
es Lp(A; �) and Lp(A; �) are the same and have 
omparable norms if � and � are
omparable on A. Therefore, in order to obtain results on 
ompleteness or density we 
an 
hange a measure� to any 
omparable measure �.Next, we shall de�ne a 
lass of weights whi
h plays an important role in our results.De�nition 2. We say that a weight w belongs to Bp([a; b℄) if and only ifw�1 2 L1=(p�1)([a; b℄) ; for 1 � p <1 ;w�1 2 L1([a; b℄) ; for p =1 :Also, if J is any interval we say that w 2 Bp(J) if w 2 Bp(I) for every 
ompa
t interval I � J . We saythat a weight belongs to Bp(J), where J is a union of disjoint intervals [i2AJi, if it belongs to Bp(Ji), fori 2 A.Observe that if v � w in J and w 2 Bp(J), then v 2 Bp(J).This 
lass 
ontains the 
lassi
al Ap weights appearing in Harmoni
 Analysis (see [Mu1℄ or [GR℄). The
lasses Bp(
), with 
 � Rn, and Ap(Rn) (1 < p < 1) have been used in other de�nitions of weightedSobolev spa
es in [KO℄ and [K℄ respe
tively.De�nition 3. We denote by AC([a; b℄) the set of fun
tions absolutely 
ontinuous in [a; b℄, i.e. the fun
tionsf 2 C([a; b℄) su
h that f(x) � f(a) = R xa f 0(t) dt for all x 2 [a; b℄. If J is any interval, AClo
(J)denotes theset of fun
tions absolutely 
ontinuous in every 
ompa
t subinterval of J .De�nition 4. Let us 
onsider 1 � p � 1 and a ve
torial measure � = (�0; : : : ; �k). For 0 � j � k wede�ne the open set 
j := fx 2 R : 9 an open neighbourhood V of x with wj 2 Bp(V )g :3



Observe that we always have wj 2 Bp(
j) for any 0 � j � k. In fa
t, 
j is the largest open set U withwj 2 Bp(U). Obviously, 
j depends on p and �, although p and � do not appear expli
itly in the symbol
j . Lemma 3.1 below gives that if f (j) 2 Lp(
j ; wj) with 0 � j � k, then f (j) 2 L1lo
(
j), and thereforef (j�1) 2 AClo
(
j) if 1 � j � k.Hypothesis. From now on we assume that wj is identi
ally 0 on the 
omplement of 
j .We need this hypothesis in order to obtain 
omplete Sobolev spa
es (see[KO℄ and se
tions 4 and 5).Remark. This hypothesis is satis�ed, for example, if we 
an modify wj in a set of zero Lebesgue measurein su
h a way that there exists a sequen
e �n & 0 with w�1j f(�n;1℄g open for every n. If wj is lowersemi
ontinuous, then this 
ondition is satis�ed.Let us 
onsider 1 � p � 1, an open set 
 � R, w = (w0; : : : ; wk) a ve
torial weight in 
 and y 2 
.To obtain a greater regularity of the fun
tions in a Sobolev spa
e we 
onstru
t a modi�
ation of the weightw in a neighbourhood of y, using Mu
kenhoupt weighted version of Hardy inequality (see [Mu2℄, [Ma, p.44℄or Se
tion 3 below). This modi�ed weight is equivalent in some sense to the original one (see Theorem 4.3).De�nition 5. A ve
torial weight w = (w0; : : : ; wk) is a right 
ompletion of w with respe
t to y, if wk = wkand there is an " > 0 su
h that wj = wj in the 
omplement of [y; y + "℄ andwj(x) = wj(x) + ewj(x) ; for x 2 [y; y + "℄ and 0 � j < k ;where ewj is any weight satisfying:i) ewj 2 L1([y; y + "℄) if 1 � p <1,ii) ewj 2 L1([y; y + "℄) if p =1,iii) �p( ewj ; wj+1) <1, with�p(u; v) := supy<r<y+"�Z ry u� kv�1kL1=(p�1)([r;y+"℄) ; for 1 � p <1 ;�1(u; v) := ess supy<r<y+"u(r) Z y+"r v�1 :Example. It 
an be shown that the following 
onstru
tion is always a 
ompletion: we 
hoose ewj := 0 ifwj+1 =2 Bp((y; y + "℄); if wj+1 2 Bp([y; y + "℄) we set ewj(x) := 1 in [y; y + "℄; and if wj+1 2 Bp((y; y + "℄) nBp([y; y + "℄) we take ewj(x) := 1 for x 2 [y + "=2; y + "℄, andewj(x) := ddxn�Z y+"x w�1=(p�1)j+1 ��p+1o = (p� 1)wj+1(x)�1=(p�1)� R y+"x w�1=(p�1)j+1 �p ; if 1 < p <1 ;ewj(x) := kw�1j+1k�1L1([x;y+"℄) + ddx�kw�1j+1k�1L1([x;y+"℄)� ; if p = 1 ;ewj(x) := minn1; �Z y+"x w�1j+1��1o ; if p =1 ;for x 2 (y; y + "=2).Remarks.1. We 
an de�ne a left 
ompletion of w with respe
t to y in a similar way.2. If for every 0 < � � �0 � " we have wj+1 =2 Bp((y; y + �℄), then there exists some Æ > 0 su
h thatevery ewj must be 0 almost everywhere in (y; y+ Æ) (where " is the 
onstant 
orresponding to w). Moreover,the 
onstant Æ depends on �0 and wj+1, but not on ewj .3. If wj+1 2 Bp([y; y + "℄), then �p( ewj ; wj+1) <1 for any weight ewj 2 L1([y; y+ "℄) if 1 � p <1 andfor any bounded weight ewj if p =1. In parti
ular, �p(1; wj+1) <1.4. If w; v are two weights su
h that wj � 
 vj for j = 0; : : : ; k and v is a right 
ompletion of v, thenthere is a right 
ompletion w of w, with wj � 
 vj for j = 0; : : : ; k (it is enough to take ewj = evj). Also, if4



w; v are 
omparable weights, v is a right 
ompletion of v if and only if it is 
omparable to a right 
ompletionw of w.5. The hypotheses i) and ii) are not restri
tive at all; if we are interested in the regularity of Sobolevfun
tions we must 
hoose weights without \big" singularities.6. We always have wk = wk and wj � wj for 0 � j < k.7. If w is a right 
ompletion of w with 
onstant " > 0, the weight w� = (w�0; : : : ; w�k) de�ned byw�j (x) = � wj(x) ; x 2 [y; y + Æ℄ ;wj(x) ; x =2 [y; y + Æ℄ ;for some 0 < Æ < ", is a right 
ompletion of w with 
onstant Æ.De�nition 6. For 1 � p � 1 and w a ve
torial weight in 
, we say that a point y 2 
 is right j-regular(respe
tively, left j-regular), if there exist " > 0, a right 
ompletion w (respe
tively, left 
ompletion) andj < i � k su
h that wi 2 Bp([y; y + "℄) (respe
tively, Bp([y � "; y℄)). Also, we say that a point y 2 
 isj-regular, if it is right and left j-regular.Remarks.1. A point y 2 
 is right j-regular (respe
tively, left j-regular), if at least one of the following propertiesis veri�ed:(a) There exist " > 0 and j < i � k su
h that wi 2 Bp([y; y+ "℄) (respe
tively, Bp([y� "; y℄)). Here wehave 
hosen ewj = 0 and w = w.(b) There exist " > 0, j < i � k, � > 0, Æ < Æp, with Æp := (i� j)p�1 if 1 � p <1 and Æ1 := i� j�1,su
h that wi(x) � � jx� yjÆ ; for almost every x 2 [y; y + "℄(respe
tively, [y � "; y℄). See Lemma 3.4 below.2. If y is right j-regular (respe
tively, left), then it is also right i-regular (respe
tively, left) for ea
h0 � i � j.3. We 
an take i = j + 1 in this de�nition sin
e by the third remark after De�nition 5 we 
an 
hoosewl = wl + 1 2 Bp([y; y + "℄) for j < l < i, if j + 1 < i.4. If we de�ne k0 := maxf0 � j � k : 9 � > 0 with wj 2 Bp((y; y + �℄)g ;the 
ompletion w in De�nition 6 
an be 
hosen as wj = wj for k0 � j � k and wk0 = wk0 2 Bp((y; y + "℄).This is an immediate 
onsequen
e of remarks 2 and 7 to De�nition 5.When we use this de�nition we think of a point fbg as the union of two half-points fb+g and fb�g.With this 
onvention, ea
h one of the following sets(a; b) [ (b; 
) [ fb+g = (a; b) [ [b+; 
) 6= (a; 
) ;(a; b) [ (b; 
) [ fb�g = (a; b�℄ [ (b; 
) 6= (a; 
) ;has two 
onne
ted 
omponents, and the set (a; b) [ (b; 
) [ fb�g [ fb+g = (a; b) [ (b; 
) [ fbg = (a; 
) is
onne
ted.We only use this 
onvention in order to study the sets of 
ontinuity of fun
tions: we want that iff 2 C(A) and f 2 C(B), where A and B are union of intervals, then f 2 C(A [ B). With the usualde�nition of 
ontinuity in an interval, if f 2 C([a; b))\C([b; 
℄) then we do not have f 2 C([a; 
℄). Of 
ourse,we have f 2 C([a; 
℄) if and only if f 2 C([a; b�℄)\C([b+; 
℄), where, by de�nition, C([b+; 
℄) = C([b; 
℄) andC([a; b�℄) = C([a; b℄). This idea 
an be formalized with a suitable topologi
al spa
e.Let us introdu
e some more notation. We denote by 
(j) the set of j-regular points or half-points, i.e.,y 2 
(j) if and only if y is j-regular, we say that y+ 2 
(j) if and only if y is right j-regular, and we saythat y� 2 
(j) if and only if y is left j-regular. Obviously, 
(k) = ; and 
j+1 [ � � � [ 
k � 
(j). Observethat 
(j) depends on p (see De�nition 6). 5



Remark. If 0 � j < k and I is an interval, I � 
(j), then the set I n (
j+1 [ � � � [ 
k) is dis
rete. Ify+ 2 I n (
j+1 [ � � � [ 
k), there exist " > 0, a right 
ompletion w and j < i � k with wi 2 Bp([y; y + "℄).Then there exist Æ > 0 and i � l � k with wl 2 Bp((y; y + Æ℄) and 
onsequently (y; y + Æ) � 
j+1 [ � � � [
k(see the se
ond remark to De�nition 5). Obviously the same is true for y�.De�nition 7. We say that a fun
tion h belongs to the 
lass AClo
(
(j)) if h 2 AClo
(I) for every 
onne
ted
omponent I of 
(j).De�nition 8. We say that the ve
torial measure � = (�0; : : : ; �k) is p-admissible if (�j)s(R n 
(j)) = 0,for 1 � j < k, and (�k)s � 0. We say that a p-admissible ve
torial measure, �, is strongly p-admissible ifsupp(�j)s � 
(j); for 1 � j < k.We use the letter p in p-admissible in order to emphasize the dependen
e on p (re
all that 
(j) dependson p).Remarks.1. Observe that there is not any restri
tion on supp(�0)s.2. Every absolutely 
ontinuous measure is p-admissible and even strongly p-admissible.3. We want to remark that this de�nition of p-admissibility does not 
oin
ide with the one in [HKM℄.De�nition 9. (Sobolev spa
e in the 
losure of an open set.) Let us 
onsider 1 � p � 1, an open set 
 � Rand a p-admissible ve
torial measure � = (�0; : : : ; �k) in 
. We de�ne the Sobolev spa
e W k;p(
; �) as thespa
e of equivalen
e 
lasses ofV k;p(
; �) := nf : 
! C = f (j) 2 AClo
(
(j)) for j = 0; 1; : : : ; k � 1 andkf (j)kLp(
;�j) <1 for j = 0; 1; : : : ; ko ;with respe
t to the seminormskfkWk;p(
;�) := � kXj=0 kf (j)kpLp(
;�j)�1=p ; for 1 � p <1 ;kfkWk;1(
;�) := max0�j�k kf (j)kL1(
;�j) :Here kgkL1(
;�j) := max� ess supx2
 jg(x)wj(x)j; supx2supp(�j)s jg(x)j	 ;where ess sup refers to Lebesgue measure, and we assume the usual 
onvention sup ; = �1.Remarks.1. This de�nition is natural sin
e when the (�j)s-measure of the set where jf (j)j is not 
ontinuous ispositive, the integral R jf (j)jpd(�j)s does not make sense.2. If we 
onsider Sobolev spa
es with real valued fun
tions, every result in this paper also holds.An example of Sobolev spa
e as we have just de�ned is the following: W 2;2([0; 6℄; �), wherekfk2W 2;2([0;6℄;�) = Z 64 jf j2 + jf(6)j2 + Z 10 jf 0j2px+ Z 53 jf 0j2px� 3 + jf 0(1)j2 + Z 31 jf 00j2(3� x) :In this example, w0 2 B2([4; 6℄), w1 2 B2([0; 1℄ [ [3; 5℄), w2 2 B2([1; 3)), and 
onsequently 
0 = (4; 6),
1 = (0; 1)[ (3; 5) and 
2 = (1; 3); therefore, 
(1) = [1; 3) and 
(0) = [0; 5℄. Observe that 3 is right 0-regularsin
e w1 2 B2([3; 5℄), and that 3 is left 0-regular sin
e we 
an take ew1 = 1 in [1; 3℄. If we add Æa to �1, weobtain a p-admissible measure (and the Sobolev spa
e is well de�ned) if and only if a 2 [1; 3). We 
an addÆa to �0 for any a 2 R, and we 
an not add Æa to �2 for any a 2 R. Obviously, in this de�nition f 0(1) standsfor f 0(1+), sin
e f 0 2 AClo
([1; 3)). 6



3. Appli
ations of Hardy and Mu
kenhoupt inequalities.First of all we re
all the 
lassi
al results.Hardy inequality. ([HLP℄) If 1 � p <1 and Æ > p� 1, thenZ 10 ��� Z 1x g(t) dt���pxÆ�p dx � � pÆ � p+ 1�p Z 10 jg(x)jpxÆ dx ;for any measurable fun
tion g in (0;1).First Mu
kenhoupt inequality. ([Mu2℄, [Ma, p.44℄) Let us 
onsider 1 � p < 1 and �0; �1 measures in(0;1) with w1 := d�1=dx. Then there exists a positive 
onstant 
 su
h that


 Z 1x g(t) dt


Lp((0;1);�0) � 
 kgkLp((0;1);�1)for any measurable fun
tion g in (0;1), if and only ifsupr>0 �0((0; r℄)kw�11 kL1=(p�1)([r;1)) <1 :The same proof of the �rst Mu
kenhoupt inequality with the real numbers a; b instead of 0; 1, givesthe following result.Se
ond Mu
kenhoupt inequality. Let us 
onsider 1 � p < 1 and �0; �1 measures in (a; b℄ with w1 :=d�1=dx. Then there exists a positive 
onstant 
 su
h that


 Z bx g(t) dt


Lp((a;b℄;�0) � 
 kgkLp((a;b℄;�1)for any measurable fun
tion g in (a; b℄, if and only if�p(�0; �1) := supa<r<b�0((a; r℄)kw�11 kL1=(p�1)([r;b)) <1 :There are previous results to these inequalities due to Talenti [T℄ and Tomaselli [To℄. Also, there is a
ontemporary work of the Mu
kenhoupt inequalities, by Chisholm and Everitt [CE℄, revised in the subsequentpaper with Littlejohn [CEL℄.In fa
t, the Hardy and Mu
kenhoupt inequalities are more general, but these versions are good enoughfor us. Let us prove now the �rst lemma we need for our estimates.Lemma 3.1. Let us 
onsider 1 � p � 1 and w 2 Bp((a; b)). For any 
ompa
t interval I � (a; b), there isa positive 
onstant 
1, whi
h only depends on p; w and I, su
h thatkgkL1(I) � 
1kgkLp(I;w) � 
1kgkLp([a;b℄;w) ; for any g 2 Lp([a; b℄; w):If furthermore w 2 Bp([a; b℄), there is a positive 
onstant 
2, whi
h only depends on p and w su
h thatkgkL1([a;b℄) � 
2kgkLp([a;b℄;w) ; for any g 2 Lp([a; b℄; w):Consequently, if w 2 Bp([a; b℄) and f 0 2 Lp([a; b℄; w), then f 2 AC([a; b℄).Remark. The hypothesis w 2 Bp([a; b℄) is ne
essary if we want to have g 2 L1([a; b℄) as shows the followingexample. For 1 < p <1 let us 
onsider w(x) = xp�1 in [0; 1=2℄. (Observe that x� 2 Bp([0; 1=2℄) if and onlyif � < p� 1.) The fun
tion g(x) = �1=(x logx) belongs to Lp([0; 1=2℄; w) but it is not integrable in [0; 1=2℄.It is easy to 
onstru
t similar examples in the 
ases p = 1 and p =1.7



Proof. Let us �x any 
ompa
t interval I � (a; b).Let us begin with the 
ase 1 � p <1. Using H�older's inequalityZI jgj = ZI jgjw1=pw�1=p � kgkLp(I;w)kw�1k1=pL1=(p�1)(I);whi
h is the �rst part of the lemma with 
onstant 
1 = kw�1k1=pL1=(p�1)(I).Next, set p =1. Observe that jg(x)j � kgkL1(I;w)w(x)�1 for almost every x 2 I , and 
onsequentlyZI jgj � kgkL1(I;w) ZI w�1:For any 
ase 1 � p �1, if w 2 Bp([a; b℄) we obtain the same result 
hanging I by [a; b℄.The last 
on
lusion of Lemma 3.1 is an immediate 
onsequen
e of these estimates.The following result generalizes the se
ond Mu
kenhoupt inequality.Lemma 3.2. Let us 
onsider 1 � p � 1, t > 0 and �0; �1 measures in (a; b℄ with a+ t � b, w0 := d�0=dxand w1 := d�1=dx, satisfying if a + t < b: (i) w1 2 Bp([a + t; b℄); (ii) �0((a; b℄) < 1 if 1 � p < 1, (iii)w0 2 L1([a+ t; b℄) if p =1. Let us assume that �0p(�0; �1) <1, where�0p(�0; �1) := supa<r<a+t�0((a; r℄)kw�11 kL1=(p�1)([r;b℄) ; for 1 � p <1 ;�01(�0; �1) :=8>>><>>>: ess supa<r<a+tw0(r)Z br w�11 ; if (�0)s((a; b℄) = 0 ;maxn ess supa<r<a+tw0(r)Z br w�11 ; Z b� w�11 o ; if (�0)s((a; b℄) > 0 ;where � := min(supp(�0)s). Then �p(�0; �1) < 1 and this implies that there exists a positive 
onstant 
su
h that 


 Z bx g(s) ds


Lp((a;b℄;�0) � 
 kgkLp((a;b℄;�1)for any measurable fun
tion g in (a; b℄, where �p(�0; �1) is de�ned 
hanging a + t by b in the de�nition of�0p(�0; �1).Proof. We omit the proof for 1 � p < 1, whi
h is only a 
omputation that uses Mu
kenhoupt inequality.If p =1 and a+ t < b, we have that �1(�0; �1) <1, sin
e �01(�0; �1) <1 andess supa+t�r<bw0(r)Z br w�11 � kw0kL1([a+t;b℄)Z ba+t w�11 <1 ;sin
e w1 2 B1([a+ t; b℄) and w0 2 L1([a+ t; b℄) be
ause a+ t < b.Then we have���w0(r)Z br g(s) ds��� � w0(r)Z br jg(s)jw1(s)w1(s)�1 ds � w0(r)Z br w1(s)�1 ds kgkL1((a;b℄;w1) ;and therefore ess supa<r<b ���w0(r)Z br g(s) ds��� � �1(�0; �1)kgkL1((a;b℄;w1) ;for any measurable fun
tion g in (a; b℄. The same argument without w0 givessupr2supp(�0)s ��� Z br g(s) ds��� � sup��r�b ��� Z br g(s) ds��� � Z b� w1(s)�1ds kgkL1((a;b℄;w1) ;for any measurable fun
tion g in (a; b℄. These inequalities give the 
ase p =1.The following lemma allows us to bound the norm in W k;p([a; b℄; w).8



Lemma 3.3. Let 1 � p � 1 and let w = (w0; : : : ; wk) be a ve
torial weight on (a; b), with wk0 2 Bp((a; b℄)for some 0 < k0 � k. If we 
onstru
t a right 
ompletion w of w with respe
t to the point a taking " = b� a,and wj = wj for k0 � j � k, then there exist positive 
onstants 
j su
h that
j kg(j)kLp([a;b℄;wj) � k0Xi=j kg(i)kLp([a;b℄;wi) + k0�1Xi=j jg(i)(b)j ;for all 0 � j < k0 and g 2 V k;p([a; b℄; w). In parti
ular, there is a positive 
onstant 
 su
h that
 kgkWk;p([a;b℄;w) � kgkWk;p([a;b℄;w) + k0�1Xj=0 jg(j)(b)j ; for all g 2 V k;p([a; b℄; w) :Proof. The fa
t wj = wj for k0 � j � k and the �rst inequality give the se
ond one. Then we only need toprove the �rst inequality. Lemma 3.2 (with a+ t = b) gives
 kg(j)(x)� g(j)(b)kLp([a;b℄;ewj) � kg(j+1)kLp([a;b℄;wj+1) ;for 0 � j < k0. Then we have
 kg(j)kLp([a;b℄;ewj) � kg(j+1)kLp([a;b℄;wj+1) + jg(j)(b)j ;sin
e ewj 2 L1([a; b℄) if 1 � p <1 and ewj 2 L1([a; b℄) if p =1. This inequality now gives
 kg(j)kLp([a;b℄;wj) � kg(j)kLp([a;b℄;wj) + kg(j+1)kLp([a;b℄;wj+1) + jg(j)(b)j ;for 0 � j < k0. This fa
t and the fa
t that wk0 = wk0 prove the �rst inequality.Lemma 3.4. Let 1 � p � 1 and let w = (w0; : : : ; wk) be a ve
torial weight on (a; b), with wk(x) � �(x�a)Æfor almost every x 2 (a; b), where � > 0 and Æ < Æp, with Æp := kp� 1 if 1 � p <1 and Æ1 := k � 1. Thenthere exist a right 
ompletion w and a positive 
onstant 
 su
h that w1 2 Bp([a; b℄) and
 kgkL1([a;b℄) � kgkWk;p([a;b℄;w) + k�1Xj=0 jg(j)(b)j ; for all g 2 V k;p([a; b℄; w) :Proof. By Lemmas 3.1 and 3.3 it is enough to prove w1 2 Bp([a; b℄).Changing Æ by a slightly greater number, if it is ne
essary, we 
an suppose that (Æ + 1)=p is not aninteger if 1 � p <1 and Æ is not an integer if p =1.Let us 
onsider �rst the 
ase 1 � p < 1. We prove now by reverse indu
tion on j that there isa weight w with wj(x) � �j (x � a)Æ�(k�j)p for x 2 (a; b) if Æ > (k � j)p � 1. If we take ewj(x) =(Æ � (k � j)p+ 1) (x� a)Æ�(k�j)p, we obtainZ xa ewj = (x� a)Æ�(k�j)p+1;if Æ > (k � j)p� 1.If 1 < p <1, Z bx w�1=(p�1)j+1 � 
 (x� a)(�Æ+(k�j)p�1)=(p�1):If p = 1, kw�1j+1kL1([x;b℄) � 
 (x� a)�Æ+k�j�1:Then, if 1 � p <1, we have �p( ewj ; wj+1) <1 and wj(x) � �j (x�a)Æ�(k�j)p for x 2 (a; b) if Æ > (k�j)p�1.9



We de�ne kÆ := k � [(Æ + 1)=p℄, where [t℄ denotes the greatest integer whi
h is less or equal than t.Then we have (k � kÆ)p � 1 < Æ < (k � kÆ)p + p � 1 and wkÆ (x) � �kÆ (x � a)Æ�(k�kÆ)p. We also havewkÆ 2 Bp([a; b℄) sin
e Æ � (k � kÆ)p < p� 1. To �nish the proof of this 
ase it is enough to see that kÆ � 1.If kÆ � 0 then Æ > (k � kÆ)p� 1 � kp� 1 whi
h 
ontradi
ts the hypothesis Æ < Æp.Finally, if p =1, the proof is similar with ewj(x) = (x� a)Æ�k+j and kÆ := k � [Æ + 1℄.4. Te
hni
al results.The heart of this 
hapter is Theorem 4.3; in order to prove it, we obtain several results whi
h areparti
ular 
ases.Theorem 4.1. Let us 
onsider 1 � p �1 and a measure �0 on [a; b℄ su
h that supp �0 has at least k points.Let wk be a weight in Bp([a; b℄). Then(1) There exists a positive 
onstant 
1 su
h that
1kg(k�1)kL1([a;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk); for all g with g(k�1) 2 AC([a; b℄).(2) There exists a positive 
onstant 
2 su
h that
2 k�1Xj=0 kg(j)kL1([a;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk); for all g with g(k�1) 2 AC([a; b℄).(3) If k � 2, let �1; : : : ; �k�1 be �nite measures in [a; b℄. If 1 � p <1, there exists a positive 
onstant
3 su
h that
3 k�1Xj=0 kg(j)kLp([a;b℄;�j) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk); for all g with g(k�1) 2 AC([a; b℄).Remark. In fa
t, the proof shows that kg(k)kLp([a;b℄;wk) 
an be repla
ed by kg(k)kL1([a;b℄) in the right handside of (1), (2) and (3).Proof. We only have to prove (1). An indu
tion argument gives (2) if (1) is true, sin
ekg(j)kLp([a;b℄) � 
 kg(j)kL1([a;b℄) ;and 1 is a weight in Bp([a; b℄). The third inequality is an immediate 
onsequen
e of the se
ond one and the�niteness of �1; : : : ; �k�1.Without loss of generality we 
an assume that the fun
tions are real valued, sin
e we 
an 
onsider thereal and imaginary parts. By hypothesis, there exist I1; I2; : : : ; Ik pairwise disjoint 
losed 
onne
ted subsetsof [a; b℄ su
h that �0(Ii) > 0, i = 1; 2; : : : ; k. It is possible to 
hoose ea
h Ii small enough in order to haveeither (i) 0 < �0(Ii) <1, or (ii) �0(Ii) =1 and �0(I) =1 for every 
losed interval I � Ii.Let xi 2 Ii. There exists x0 2 (a; b) su
h thatg(k�1)(x0)(k � 1)! = g[x1; : : : ; xk ℄ ;(see [D, p.65℄) where the di�eren
es g[x1; : : : ; xk℄ are de�ned re
ursively byg[xj ℄ = g(xj); g[xi; xj ℄ = g[xi℄� g[xj ℄xi � xj ; g[x1; : : : ; xk℄ = g[x1; : : : ; xk�1℄� g[x2; : : : ; xk℄x1 � xk :10



Consider " := 1 if k = 1 and " := mini6=j dist(Ii; Ij) if k � 2. A standard indu
tion argument gives��g[x1; : : : ; xk℄�� � "�k�jg(x1)j+�k � 11 �jg(x2)j+ � � �+�k � 1k � 2�jg(xk�1)j+ jg(xk)j�and so, for some positive 
onstant 
3 jg(k�1)(x0)j � 
3 kXi=1 jg(xi)j :If x 2 [a; b℄, Lemma 3.1 gives(4.1) jg(k�1)(x)j � jg(k�1)(x0)j+ Z ba jg(k)j � 
3 kXi=1 jg(xi)j+ 
4kg(k)kLp([a;b℄;wk) :If 1 � p < 1, let us denote by J1 (respe
tively, J2) the set of indi
es 1 � i � k with �0(Ii) < 1(respe
tively, �0(Ii) = 1). If i 2 J2 we 
an assume that g(xi) = 0 (otherwise kgkLp(Ii;�0) = 1 sin
eg 2 C(Ii) and then (1) is obviously true). Consequently, we havejg(k�1)(x)j � 
3 Xi2J1 jg(xi)j+ 
4 kg(k)kLp([a;b℄;wk) :We obtain thatjg(k�1)(x)jp � 
5�Xi2J1 jg(xi)jp + Z ba jg(k)jpwk� ; for all x 2 [a; b℄; xi 2 Ii :Sin
e 0 < �0(Ii) <1 for i 2 J1, we 
an integrate in ea
h xi 2 Ii with respe
t to �0 to obtainjg(k�1)(x)jp � 
6�Z ba jgjp d�0 + Z ba jg(k)jpwk� ; for all x 2 [a; b℄:Therefore, we have obtained
1kg(k�1)kL1([a;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk)for all g with g(k�1) 2 AC([a; b℄).We now deal with the 
ase p = 1. Re
all that in this 
ase we also have (4.1) for all x 2 [a; b℄ andxi 2 Ii. Assume that i satis�es (�0)s(Ii) > 0. Then we have that jg(xi)j � kgkL1([a;b℄;�0) if xi 2 supp (�0)s.If (�0)s(Ii) = 0 for some Ii, then d�0(x) = w0(x) dx in Ii and there exists a positive number ti su
hthat Zfw0�tig\Ii w0(x) dx > 0 ;sin
e �0(Ii) > 0. Therefore jg(xi)j � t�1i jg(xi)jw0(xi) � t�1i kgkL1([a;b℄;�0) ;for almost every xi 2 Ii \ fw0 � tig with respe
t to Lebesgue measure. As we only have a �nite number ofIi, these inequalities and (4.1) �nish the proof for the 
ase p =1.Lemma 4.1. Let us 
onsider x1; : : : ; xk with xj 2 [�j ; �j ℄ where �j < �j+1 for every 1 � j � k � 1, andf 2 Ck�1((�1; �k℄) \ C([�1; �k℄) with real values. Then, there exists x0 = x0(x1; : : : ; xk) for whi
hf (k�1)(x0)(k � 1)! = f [x1; : : : ; xk℄with the property x0(x1; : : : ; xk) � �1 + Æ for some Æ > 0 whi
h is independent of x1; : : : ; xk.11



Proof. Let us de�ne the fun
tion h(x1; : : : ; xk) := (k � 1)! f [x1; : : : ; xk℄ and the set T := h([�1; �1℄ �[�2; �2℄� � � � � [�k; �k℄). T is 
ompa
t sin
e h is 
ontinuous.Also, let us 
onsider for t 2 T �(t) := max �(f (k�1))�1(t)� � (�1; �k℄ :Note that in the proof of Theorem 4.1 above we saw that (f (k�1))�1(t) 6= ; for any t 2 T , and thenT � f (k�1)((�1; �k)).We 
an de�ne �0 := inff�(t) : t 2 Tg :We only need to prove �0 > �1. We have �0 2 [�1; �k℄ and we 
an �nd a sequen
e f�(tn)g1n=1 whose limitis �0 with ftng1n=1 � T . Without loss of generality we 
an assume that tn ! t0 for some t0 2 T sin
e T is
ompa
t, and therefore f (k�1)(�(tn)) = tn �! t0 = f (k�1)(�(t0)) ; as n!1 :Now, observe that f (k�1) is 
ontinuous on [(�(t0) + �1)=2; �k℄, sin
e �(t0) > �1. Then there existpreimages (by f (k�1)) of all the points in T 
lose to f (k�1)(�(t0)) as 
lose as we wish to �(t0). Therefore, forn large enough �(tn) � (�(t0) + �1)=2. Hen
e we must have �0 � (�(t0) + �1)=2 > �1.Theorem 4.2. Let us 
onsider 1 � p � 1 and a p-admissible ve
torial measure � in [a; b℄ su
h that(a; b)(0) \ supp �0 has at least k points and wk 2 Bp((a; b℄). For 0 � j < k and �xed 0 < Æ < b � a let usde�ne aj := 0 if a is right j-regular and aj := 1 otherwise. Then, there exists a positive 
onstant 
 = 
(Æ)su
h that 
 k�1Xj=0 kg(j)kL1([a+Æaj ;b℄) � kgkWk;p([a;b℄;�); for all g 2 V k;p([a; b℄; �):Proof. Without loss of generality we 
an assume that the fun
tions are real valued. For ea
h Æk�1 > 0 smallenough there exists a positive 
onstant 
k�1 = 
k�1(Æk�1) su
h that(4.2) 
k�1 kg(k�1)kL1([a+Æk�1;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a+Æk�1;b℄;wk);for all g 2 V k;p([a; b℄; �). The proof of this fa
t is the same as part (1) in Theorem 4.1. We only need tomake two remarks:(a) We need g(k�1) 2 C((a; b℄), and this is true sin
e wk 2 Bp((a; b℄).(b) Lemma 4.1 allows to 
hoose the point x0 with x0 � a + Æ0k�1 for some Æ0k�1 (independently ofx1; : : : ; xk). Then it is enough to take Æk�1 > 0 verifying 0 < Æk�1 � Æ0k�1.We prove now by reverse indu
tion on j, with 0 � j � k� 1, that there exists Æ0j > 0 su
h that for ea
hÆj with 0 < Æj � Æ0j there exists a positive 
onstant 
j = 
j(Æj) su
h that(4.3) 
j kg(j)kL1([a+Æj ;b℄) � kgkLp([a;b℄;�0) + kg(k)kLp([a+Æj ;b℄;wk);for all g 2 V k;p([a; b℄; �).Inequality (4.2) gives (4.3) for j = k� 1. Assume now that (4.3) holds for j+1, with 1 � j+1 � k� 1.Sin
e 1 2 Bp((a; b℄), (4.2) gives, for some Æ�j > 0, thatd1(Æj)kg(j)kL1([a+Æj ;b℄) � d2(Æj)�kgkLp([a;b℄;�0) + kg(j+1)kLp([a+Æj ;b℄)�� kgkLp([a;b℄;�0) + kg(j+1)kL1([a+Æj ;b℄) ;for all g 2 V k;p([a; b℄; �) and 0 < Æj � Æ�j . This inequality and the indu
tion hypothesis give (4.3) for allg 2 V k;p([a; b℄; �) and 0 < Æj � Æ0j+1. Therefore we have the result by de�ning Æ0j := minfÆ�j ; Æ0j+1g.12



Assume that a is right j-regular for some 0 � j < k. Then there exists " > 0 and a right 
ompletion wof w su
h that wj+1 2 Bp([a; a+ "℄) (see Remark 3 to De�nition 6). Lemma 3.1 giveskg(j)(x)� g(j)(a+ ")kL1([a;a+"℄) � kg(j+1)kL1([a;a+"℄) � 
 kg(j+1)kLp([a;a+"℄;wj+1) :This inequality and Lemma 3.3 give
 kg(j)kL1([a;a+"℄) � kgkWk;p([a;a+"℄;w) + k�1Xi=0 jg(i)(a+ ")j :Inequality (4.3) gives for 0 � i � k � 1
ijg(i)(a+ ")j � kgkLp([a;b℄;�0) + kg(k)kLp([a;b℄;wk) ;and then 
 kg(j)kL1([a;a+"℄) � kgkWk;p([a;b℄;�) :This inequality together with (4.3) give the result.Corollary 4.1. Let us 
onsider 1 � p � 1 and a p-admissible ve
torial measure, �, in [a; b℄ su
h that(a; b)(0) \ supp�0 has at least k + 1 points and wk 2 Bp((a; b)). If Ij is a 
ompa
t interval 
ontained in(a; b)(j) for 0 � j < k, then
 k�1Xj=0 kf (j)kL1(Ij) � kfkWk;p([a;b℄;�); for every f 2 V k;p([a; b℄; �):Remark. As a 
onsequen
e of Theorem 4.3 we have that Corollary 4.1 is true even if (a; b)(0) \ supp�0 hasonly k points, but we 
annot use this argument now sin
e Corollary 4.1 is used in the proof of Theorem 4.3.Proof. Let us 
onsider k + 1 points x1 < � � � < xk+1 in (a; b)(0) \ supp�0. Theorem 4.2 applied to theintervals [a; xk℄ and [x2; b℄ gives the result. (In fa
t, we apply to the interval [x2; b℄ the symmetri
 result ofTheorem 4.2 for left 
ompletions with wk 2 Bp([x2; b)).)Corollary 4.2. Let us 
onsider 1 � p � 1, wk 2 Bp((a; b)) and w = (0; : : : ; 0; wk). If Ij is a 
ompa
tinterval 
ontained in (a; b)(j) for 0 � j < k, then
 k�1Xj=0 kf (j)kL1(Ij) � kfkWk;p([a;b℄;w) = kf (k)kLp([a;b℄;wk);for every f 2 V k;p([a; b℄; w) with f(t) = f 0(t) = � � � = f (k�1)(t) = 0 for some t 2 (a; b).Proof. Observe that the formula f(x) = Z xt f (k)(s) (x� s)k�1(k � 1)! dstogether with Lemma 3.1 give for �xed " > 0 with t 2 [a+ "; b� "℄
 kfkLp([a+";b�"℄) � 
 kfkL1([a+";b�"℄) � 
 kf (k)kL1([a+";b�"℄) � kf (k)kLp([a;b℄;wk) :Then, for those fun
tions f the norm kfkWk;p([a;b℄;w�) is 
omparable to kfkWk;p([a;b℄;w), where the weightw� = (w�0 ; 0; : : : ; 0; wk) is de�ned by w�0 = �[a+";b�"℄ . So, by Corollary 4.1
 k�1Xj=0 kf (j)kL1(Ij ) � 
 kfkWk;p([a;b℄;w�) � kfkWk;p([a;b℄;w) = kf (k)kLp([a;b℄;wk):Lemma 4.2. Let us suppose that 1 � p � 1 and w = (w0; : : : ; wk) is a ve
torial weight in 
. If I is a
ompa
t interval 
ontained in 
j+1 [ � � � [ 
k for some 0 � j < k, and I \ 
s 6= ; for some 0 � s � j thenthere exists a positive 
onstant 
 su
h that
 kf (j)kL1(I) � kf (s)kWk�s;p(I;w) � kfkWk;p(
;w); for every f 2 V k;p(
; w):13



Proof. Without loss of generality we 
an assume that s = 0 and I \ 
k 6= ;.If I = [�; �℄ then �; � 2 
j+1 [ � � � [ 
k. Choose now the maximum �1 su
h that [�; �1) is 
ontainedin 
i(0) for some j + 1 � i(0) � k. If �1 � � we 
hoose the maximum �2 su
h that [�1; �2) is 
ontained in
i(1) for some j + 1 � i(1) � k and de�ne re
ursively the intervals [�n; �n+1) in a similar way if �n � �.We obtain a �nite sequen
e of numbers f�ng, sin
e there exists somem for whi
h �m+1 > �. If this werenot true, then we would obtain an in�nite in
reasing sequen
e f�ng1n=1 with limn!1 �n = �� � �. In that
ase �� 2 [�; �℄ � 
j+1 [ � � � [
k and there exist " > 0 and j + 1 � i� � k with (�� � "; �� + ") � 
i� . Letus 
onsider �N 2 (�� � "; ��); we have [�N ; �� + ") � 
i� and then �N+1 � �� + " > ��, whi
h 
ontradi
tsthat f�ng is an in
reasing sequen
e to ��.As the sets 
j+1; : : : ;
k are all open we 
an 
hoose " > 0 su
h that � < �1 � 2" andH0 := [�; �1 � "℄ � 
i(0) ;H1 := [�1 � 2"; �2 � "℄ � 
i(1) ;...Hm := [�m � 2"; �℄ � 
i(m) :Then H0 [ � � � [Hm = I and jHr \Hr+1j = " for 0 � r < m.For j + 1 � i � k, 
onsider now the sets Lr;i := Hr if Hr � 
i and Lr;i := ; otherwise, and de�ne alsoIi := [mr=0Lr;i � 
i:Obviously [ki=j+1Ii = I and wi 2 Bp(Ii) for j + 1 � i � k. If we modify slightly our weights byw� := (w�0 ; : : : ; w�k) ; w�k := wk; w�i := wi + �Ii+1[���[Ik for j + 1 � i < k ;we have that w�i 2 Bp(Ii [ � � � [ Ik). Then we 
laim
 kf (i)kLp(I;w�i ) � kfkWk;p(I;w);for j + 1 � i � k and every f 2 V k;p(
; w).We pro
eed by reverse indu
tion in i, with j + 1 � i � k. It is true for i = k. Assume now that it istrue for i+ 1; we prove now the result for i. It is enough to see that
 kf (i)kL1(Ii+1[���[Ik) � kfkWk;p(I;w):Observe that the indu
tion hypothesis gives(4.4) 
 kf (i+1)kLp(I;w�i+1) � kfkWk;p(I;w):Let M be a 
onne
ted 
omponent of Ii+1 [ � � � [ Ik. If M 6= I , there exists j + 1 � l � i su
h thatjM \ Ilj � " sin
e I is 
onne
ted, and then by Theorem 4.1(2)
 iXh=l kf (h)kL1(M) � kf (l)kLp(M;wl) + kf (i+1)kLp(M;w�i+1);sin
e w�i+1 2 Bp(Ii+1 [ � � � [ Ik).If M = I , then jM \ 
0j > 0, sin
e M \ 
0 = I \ 
0 6= ;, 
0 is open and M is an interval. Using theprevious argument with l = 0, we obtain
 iXh=0 kf (h)kL1(M) � kfkLp(M;w0) + kf (i+1)kLp(M;w�i+1):Consequently, in any 
ase we have
 kf (i)kL1(M) � kfkWk;p(M;w) + kf (i+1)kLp(M;w�i+1):As we only have a �nite number of 
onne
ted 
omponents of Ii+1 [ � � � [ Ik, the last inequality togetherwith the estimate (4.4) prove the desired result for i.14



If we take now i = j + 1 in the 
laim we have proved, we obtain
 kf (j+1)kLp(I;w�j+1) � kfkWk;p(I;w) ;where w�j+1 2 Bp(Ij+1[� � �[Ik) = Bp(I). Remember that by hypothesis jI\
0j > 0, and therefore Theorem4.1(1) gives 
 kf (j)kL1(I) � 
 (kfkLp(I;w0) + kf (j+1)kLp(I;w�j+1)) � kfkWk;p(I;w) :This ends our proof.Lemma 4.3. Let us suppose that 1 � p � 1 and w = (w0; : : : ; wk) is a ve
torial weight in 
. If I = [�; �℄is 
ontained in 
(j) for some 0 � j < k, I \ 
s 6= ; for some 0 � s � j and (�; �) � 
j+1 [ � � � [ 
k, thenthere exists a positive 
onstant 
 su
h that
 kf (j)kL1(I) � kf (s)kWk�s;p(I;w) � kfkWk;p(
;w); for every f 2 V k;p(
; w):Proof. Without loss of generality we 
an assume that s = 0. The 
ase I � 
j+1 [ � � � [ 
k is the previouslemma. Assume that � =2 
j+1 [ � � � [ 
k, � 2 
j+1 [ � � � [ 
k. Sin
e � is right j-regular, then there exist0 < " < � � � and a right 
ompletion w of w su
h that wj+1 2 Bp([�; � + "℄). By Remark 4 to De�nition6, if we de�ne k0 := maxf0 � i � k : 9 � > 0 with wi 2 Bp((�; � + �℄)g, we 
an 
hoose w with wi = wi fork0 � i � k and wk0 2 Bp((�; �+ "℄). Obviously we have j + 1 � k0.Now, Lemma 3.3 gives that
 kf (j+1)kLp([�;�+"℄;wj+1) � kfkWk;p([�;�+"℄;w) + k0�1Xi=j+1 jf (i)(�+ ")j ;if j+1 < k0. If j+1 = k0, the sum does not appear and the inequality is trivial sin
e wk0 = wk0 . ThereforeLemma 3.1 implies(4.5) 
 kf (j)kL1([�;�+"℄) � 
 (kf (j+1)kLp([�;�+"℄;wj+1) + jf (j)(�+ ")j)� kfkWk;p([�;�+"℄;w) + k0�1Xi=j jf (i)(�+ ")j ;sin
e wj+1 2 Bp([�; � + "℄). We know there is some 0 < Æ < " su
h that J := [� + Æ; �℄ has non-emptyinterse
tion with 
0, so applying Lemma 4.2(4.6) 
 kf (j)kL1(J) � kfkWk;p(J;w);sin
e J � 
j+1 [ � � � [
k. Then Theorem 4.1(2) implies
 k0�1Xi=j jf (i)(�+ ")j � 
 k0�1Xi=j kf (i)kL1([�+Æ;�+"℄) � kf (j)kLp([�+Æ;�+"℄) + kf (k0)kLp([�+Æ;�+"℄;wk0 );sin
e wk0 2 Bp((�; �+ "℄) � Bp([� + Æ; �+ "℄). Now, applying (4.6) we obtain
 kf (j)kLp([�+Æ;�+"℄) � 
 kf (j)kL1(J) � kfkWk;p(J;w);and then 
 k0�1Xi=j jf (i)(�+ ")j � kfkWk;p(J;w):Therefore (4.5) gives 
 kf (j)kL1([�;�+"℄) � kfkWk;p(I;w):This inequality and (4.6) yield the result.The 
ases � 2 
j+1 [ � � � [ 
k, � =2 
j+1 [ � � � [ 
k and � =2 
j+1 [ � � � [ 
k, � =2 
j+1 [ � � � [ 
k aresimilar. 15



Lemma 4.4. Let us suppose that 1 � p � 1, and that � is a p-admissible ve
torial measure in 
. Assumethat 
1[� � �[
k is 
onne
ted. Let Kj be a �nite union of 
ompa
t intervals 
ontained in 
(j), for 0 � j < k.Then there exists an integer 0 � l � k, independent of K1; : : : ;Kk�1, with the following properties:(1) If l < k, there exists a positive 
onstant 
0 = 
0(K0; : : : ;Kk�1) su
h that
0 k�1Xj=l kg(j)kL1(Kj) � kgkWk;p(
;�); 8g 2 V k;p(
; �):(2) If l > 0, mj := #fsupp �j \ 
(j)g <1 for 0 � j < l.Remark. In fa
t, we 
an obtain in (2) mj < l � j, but the inequality mj < 1 is good enough for ourpurposes.Proof. Let us de�ne A := f1 � j � k : 
j 6= ;g :If A = ;, we 
an take l = 0 and there is nothing to prove, sin
e Kj � 
(j) = ;. If A 6= ; we de�nek0 = minA. Without loss of generality we 
an suppose that 
k 6= ;.For the 
ase k0 < k we 
laim that(4.7) 
 k�1Xj=k0 kg(j)kL1(Kj) � kgkWk;p(
;�) :Let us �x k0 � j < k. In order to prove this 
laim, without loss of generality we 
an assume that Kjis a single 
ompa
t interval. The remark before De�nition 7 gives that Kj n (
j+1 [ � � � [ 
k) is a dis
reteset; sin
e Kj is 
ompa
t, we have that Kj n (
j+1 [ � � � [ 
k) is �nite. Then, we 
an assume also thatint (Kj) � 
j+1 [ � � � [ 
k.We 
an 
hoose a 
ompa
t interval I withKj � I � 
(j), int (I) � 
j+1[� � �[
k and I\(
k0[� � �[
j) 6=;, sin
e (
k0 [ � � � [ 
j) [ (
j+1 [ � � � [ 
k) = 
1 [ � � � [ 
k is 
onne
ted.Then, there exists a k0 � s � j with I \
s 6= ;. Lemma 4.3 gives
 kg(j)kL1(I) � kg(s)kWk�s;p(I;w) � kgkWk;p(
;�):Consequently, we have (4.7) for k0 < k.De�ne B := f0 � j < k0 : mj =1g and the non-negative integer l as follows, l := minB if B 6= ;, andl := k0 if B = ;.If l = k0, we have B = ;. This implies (2) sin
e l = k0 � 1. If l = k0 < k, inequality (4.7) gives (1).We denote by (�; �) the interval 
1 [ � � � [
k.If 0 < l < k0, we have (2). If l < k0, we also have l < k and ml = 1. For ea
h l � j < k0, we 
an
hoose a 
ompa
t interval Ij verifying:(i) Kj � Ij � 
(j).(ii) The minimum point of Ij is � if � is right j-regular and is �+Æ (with 0 < Æ < (���)=2 independentof j) otherwise.(iii) The maximum point of Ij is � if � is left j-regular and is � � Æ otherwise.(iv) #fsupp�l \ [�+ Æ; � � Æ℄g � k0 � l.(Re
all that 
(l); : : : ;
(k0�1) are intervals with the same interior, sin
e 
k0 [ � � � [ 
k = 
1 [ � � � [ 
kis 
onne
ted.)We 
an now �nish the proof of Lemma 4.4 in the 
ase k0 < k. The 
ase k0 = k is simpler.16



The remark to Theorem 4.1(2) gives
 k0�1Xj=l kg(j)kL1([�+Æ;��Æ℄) � kg(l)kLp([�+Æ;��Æ℄;�l) + kg(k0)kL1([�+Æ;��Æ℄):By the argument at the beginning of the proof of Lemma 4.2 we 
an split [�+ Æ; �� Æ℄ = E [ F , whereE, F are �nite unions of 
ompa
t intervals with E � 
k0 and F � 
k0+1 [ � � � [ 
k � 
(k0). Then Lemma3.1 gives 
 kg(k0)kL1(E) � kg(k0)kLp(E;wk0 ) � kgkWk;p(
;�);sin
e wk0 2 Bp(E). Inequality (4.7) with F instead of Kk0 implies
 kg(k0)kL1(F ) � 
 kg(k0)kL1(F ) � kgkWk;p(
;�);sin
e F � 
(k0). So, joining these two inequalities
 kg(k0)kL1([�+Æ;��Æ℄) � 
 (kg(k0)kL1(E) + kg(k0)kL1(F )) � kgkWk;p(
;�):Therefore we 
on
lude(4.8) 
 k0�1Xj=l kg(j)kL1([�+Æ;��Æ℄) � kgkWk;p(
;�):We bound now the norm of g(j) in L1([�; � + Æ℄) if � is right j-regular. The 
ase L1([� � Æ; �℄) issymmetri
. If � is not right l-regular there is nothing to prove. Assume that � is right j-regular for somel � j < k. If we de�ne k1 := maxf0 � i � k : 9 � > 0 with wi 2 Bp((�; �+ �℄)g ;by Remark 4 to De�nition 6 there exist " > 0 and a right 
ompletion w with wj+1 2 Bp([�; � + "℄),wk1 2 Bp((�; � + "℄) and wi = wi for k1 � i � k. Obviously k1 � j + 1.Lemma 3.3 gives
 kg(j+1)kLp([�;�+"℄;wj+1) � kgkWk;p([�;�+"℄;�) + k1�1Xi=j+1 jg(i)(�+ ")j :Now we 
on
lude with Lemma 3.1(4.9) 
 kg(j)kL1([�;�+"℄) � kgkWk;p([�;�+"℄;�) + k1�1Xi=j jg(i)(�+ ")j :We 
an assume, perhaps with a smaller Æ, that � + " 2 [� + Æ; � � Æ℄ (this new Æ obviously satis�esproperties (i)-(iv)). Inequality (4.8) gives
 k0�1Xi=j jg(i)(�+ ")j � kgkWk;p(
;�):If k1 > k0, inequality (4.7) implies 
 k1�1Xi=k0 jg(i)(�+ ")j � kgkWk;p(
;�);sin
e �+ " is left (k1 � 1)-regular. These two last inequalities give
 k1�1Xi=j jg(i)(�+ ")j � kgkWk;p(
;�):This fa
t and (4.9) imply 
 kg(j)kL1([�;�+"℄) � kgkWk;p(
;�):This �nishes the proof of Lemma 4.4. 17



Let us de�ne a subspa
e, K(
; �), of V k;p(
(0); �j
(0)) whi
h plays an important role in the theory.De�nition 10. We de�ne K(
; �) asK(
; �) := �g : 
(0) �! C= g 2 V k;p�
(0); �j
(0)�; kgkWk;p�
(0);� 
(0)� = 0	 :The 
ase in whi
h k � kWk;p(
; �) is a norm is the most interesting. However we need something more inorder to prove part (a) of Theorem 4.3 below: this additional 
ondition is what we present in the followingde�nition of 
lass C0. Roughly speaking, � 2 C0 if k � kWk;p(Mn; �) is a norm for some sequen
e of 
ompa
tsets fMng growing to 
. This 
ondition is exa
tly what we need sin
e in the proof of Theorem 4.1 weapproximate 
 by 
ompa
t sets.If � =2 C0 we still 
an prove part (b) of Theorem 4.3 by adding some Dira
 deltas to �0; we only add theexa
t amount that we need. This leads to the de�nition of 
lass C.De�nition 11. Let us 
onsider 1 � p � 1, an open set 
 � R and a p-admissible ve
torial measure �in 
. We say that (
; �) belongs to the 
lass C0 if there exist 
ompa
t sets Mn, whi
h are �nite unions of
ompa
t intervals, su
h thati) Mn interse
ts at most a �nite number of 
onne
ted 
omponents of 
1 [ � � � [ 
k,ii) K(Mn; �) = f0g,iii) Mn �Mn+1,iv) [nMn = 
(0).We say that (
; �) belongs to the 
lass C if there exists a measure �00 = �0 +Pm2D 
mÆxm with 
m > 0,fxmg � 
(0), D � N and (
; �0) 2 C0, where �0 = (�00; �1; : : : ; �k) is minimal in the following sense:there exists fMng 
orresponding to (
; �0) 2 C0 su
h that if �000 = �00 � 
m0Æxm0 with m0 2 D and �00 =(�000 ; �1; : : : ; �k), then K(Mn; �00) 6= f0g if xm0 2Mn.Remarks.1. The 
ondition on (
; �) is very general. In fa
t, the Remark after the proof of Theorem 4.3 belowgives that if 
(0) n (
1 [ � � � [ 
k) has only a �nite number of points in ea
h 
onne
ted 
omponent of 
(0),then (
; �) 2 C. If, furthermore, K(
; �) = f0g, we have (
; �) 2 C0.2. Sin
e the restri
tion of a fun
tion of K(
; �) to Mn is in K(Mn; �) for every n, then (
; �) 2 C0implies K(
; �) = f0g.3. If (
; �) 2 C0, then (
; �) 2 C, with �0 = �.4. The proof of Theorem 4.3 below gives that if for every 
onne
ted 
omponent � of 
1 [ � � � [ 
k wehave K(�; �) = f0g, then (
; �) 2 C0. Condition #supp �0j�\
(0) � k implies K(�; �) = f0g.The following result is the main ingredient of the proof of Theorem 5.1, whi
h is the most importantresult that we present in this paper. It is also useful by its appli
ations in the papers [RARP℄, [R1℄, [R2℄,[R3℄ and [APRR℄. Furthermore, it is important by itself, sin
e it answers to the following main question:when the evaluation fun
tional of f (or f (j)) in a point is a bounded operator in W k;p(
; �)?Theorem 4.3. Let us 
onsider 1 � p � 1, an open set 
 � R and a p-admissible ve
torial measure � in
. Let Kj be a �nite union of 
ompa
t intervals 
ontained in 
(j), for 0 � j < k and w a right (or left )
ompletion of w. Then:(a) If (
; �) 2 C0 there exist positive 
onstants 
1 = 
1(K0; : : : ;Kk�1) and 
2 = 
2(w;K0; : : : ;Kk�1)su
h that
1 k�1Xj=0 kg(j)kL1(Kj) � kgkWk;p(
;�); 
2 kgkWk;p(
;w) � kgkWk;p(
;�); 8g 2 V k;p(
; �):(b) If �
; �� 2 C there exist positive 
onstants 
3 = 
3(K0; : : : ;Kk�1) and 
4 = 
4(w;K0; : : : ;Kk�1)su
h that for every g 2 V k;p(
; �), there exists g0 2 V k;p(
; �), independent of K0; : : : ;Kk�1, 
3, 
4 and w,with kg0 � gkWk;p(
;�) = 0 ;18




3 k�1Xj=0 kg(j)0 kL1(Kj) � kg0kWk;p(
;�) = kgkWk;p(
;�); 
4 kg0kWk;p(
;w) � kgkWk;p(
;�):Furthermore, if g0; f0 are these representatives of g; f respe
tively, we have for the same 
onstants 
3; 
4
3 k�1Xj=0 kg(j)0 � f (j)0 kL1(Kj) � kg � fkWk;p(
;�); 
4 kg0 � f0kWk;p(
;w) � kg � fkWk;p(
;�):Proof of Theorem 4.3. Without loss of generality we 
an assume that 
(0) is 
onne
ted. This 
onditionis not restri
tive sin
e otherwise we 
an work in ea
h 
onne
ted 
omponent. Let us 
onsider the 
onne
ted
omponents f��g�2A of 
1 [ � � � [ 
k. Re
all that 
(0) n (
1 [ � � � [ 
k) is a dis
rete set sin
e 
(0) is
onne
ted (see the Remark before De�nition 7). Moreover this set 
annot have any a

umulation point in
(0). Therefore we 
an take the set of indi
es A as one of the following sets: Z; Z+; Z� or f1; : : : ; Ng forsome natural number N , with the property that sup�� = inf ��+1 if �; �+ 1 2 A.For 0 � j < k 
onsider the 
ompa
t set Kj � 
(j), whi
h is a �nite union of intervals. It 
ontains atmost a �nite number of points whi
h are not in 
1 [ � � � [ 
k, sin
e 
(0) n (
1 [ � � � [ 
k) is a dis
rete setand Kj is 
ompa
t. Therefore ea
h Kj is 
ontained at most in the union of a �nite number of ��.Let us �x � 2 A. From now on, we work on �� (whi
h may have in�nite length). Denote by Jj the �niteunion of 
ompa
t intervals Jj := Kj \ ��. In ea
h ��, Lemma 4.4 gives that there exist 
; l (depending on�) su
h that 
 k�1Xj=l kg(j)kL1(Jj) � kgkWk;p(��;�) ;if l < k. If l > 0 we have the additional 
ondition mj := #fsupp �j \ �(j)� g < 1 for 0 � j < l, and so in�(j)� we 
an write ea
h �j as �0 = a10Æx10 + � � �+ am00 Æxm00 ;�1 = a11Æx11 + � � �+ am11 Æxm11 ;... ... ...�l�1 = a1l�1Æx1l�1 + � � �+ aml�1l�1 Æxml�1l�1 ;with aij > 0 and xij 2 �(j)� for 0 � j < l, 1 � i � mj . Without loss of generality we 
an assume that Jj isan interval and xij 2 Jj for 0 � j < l, 1 � i � mj (as in the proof of Lemma 4.4). If �� = (�; �), we 
anassume also that � 2 Jj if � is right j-regular and � 2 Jj if � is left j-regular.We now study the stru
ture of K(
; �). Let q be a fun
tion in K(
; �). Let us prove that q(k) � 0 inea
h ��:If for some � we have l = k, then �� � 
k. Sin
e q 2 K(
; �) we have thatZ�� jq(k)(x)jpwk(x) dx = 0:Lemma 3.1 gives that kq(k)kL1(I) = 0, for every 
ompa
t interval I � ��; then kq(k)kL1(��) = 0 and sin
eq(k�1) is lo
ally absolutely 
ontinuous in ��, it has to be 
onstant there, and 
onsequently q(k) � 0 in ��.Then qj�� 2 Pk�1, sin
e �� is a 
onne
ted set.If for some � we have l < k, Lemma 4.4 gives 
kq(l)kL1(J) � kqkWk;p(��;�) = 0 for any 
ompa
t intervalJ � �(l)� . Then q(l) � 0 in any 
ompa
t interval J � �(l)� and we have q(l) � 0 in �(l)� and so, qj�� 2 Pl�1.19



Consequently, in any 
ase (0 � l � k) we obtain qj�� 2 Pl�1 if we de�ne P�1 := f0g. Besides, in ea
h
onne
ted 
omponent �� one has(4.10) q(j)(xij) = 0 for 0 � j < l; 1 � i � mj :If we write in �� q(x) = �l�1xl�1 + � � �+ �1x+ �0;we see that (4.10) is a homogeneous linear system of m0 + � � � + ml�1 equations with the l unknowns�l�1; : : : ; �1; �0, whose solution represents the restri
tion of the fun
tions in K(
; �) to �� in the basisfxl�1; : : : ; x; 1g of Pl�1. Observe that the 
oeÆ
ients �i obviously depend on �.On the other hand, if �; �+ 1 2 A and � = sup�� = inf ��+1, we have(4.11) q(j)(��) = q(j)(�+) ; if � is j-regular,where as usual q(j)(��) and q(j)(�+) denotes respe
tively the left and right derivatives.Then we have that K(
; �) is the solution of the system given by (4.10) for every � 2 A and (4.11) forevery � 2 A su
h that �+ 1 2 A. Consequently the elements of K(
; �) are splines.Claim. If �� = (�; �), then given any weight w� whi
h is a right 
ompletion of w with respe
t to �and a left 
ompletion of w with respe
t to �, there exists a positive 
onstant 
 su
h thatkg(l)kLp([�;�℄;w�l ) � 
 kgkWk;p([�;�℄;�); for every g 2 V k;p([�; �℄; �):Lemma 3.3 gives if l < k
 kg(l)kLp([�;�+"℄;w�l ) � kgkWk;p([�;�+"℄;w) + k�1Xi=l jg(i)(�+ ")j ;for some 0 < " < ���, with �+" 2 
k. If we take 0 < Æ < ", with [�+Æ; �+"℄ � 
k � 
(k�1) � � � � � 
(l),Lemma 4.4 gives k�1Xi=l jg(i)(�+ ")j � k�1Xi=l kg(i)kL1([�+Æ;�+"℄) � 
 kgkWk;p([�;�℄;�):We 
on
lude kg(l)kLp([�;�+"℄;w�l ) � 
 kgkWk;p([�;�℄;�);for l � k (the 
ase l = k is immediate sin
e then w�k = wk).In a similar way we have kg(l)kLp([�+";�℄;w�l ) � 
 kgkWk;p([�;�℄;�):The last inequalities �nish the proof of the 
laim.In order to prove (a) we 
an 
hoose n 2 N with K0 [ � � � [ Kk�1 � Mn and K(Mn; �) = f0g, sin
e(
; �) 2 C0. We denote by An the �nite set of indi
es � 2 A with ��\Mn 6= ;. Then the �nite linear systemof equations, whi
h we denote by Tn, given by (4.10) and (4.11) for � 2 An su
h that every point appearingin the equations belongs to Mn, has unique solution.Given g 2 V k;p(
; �), for ea
h � 2 An �x a 2 Mn \ int (J0) and let f be the fun
tion de�ned in ea
h�� = (�; �) by f(x) := g(x) if l = 0, andf(x) := Z xa g(l)(t) (x� t)l�1(l � 1)! dt ;otherwise. In ea
h ��, we have g = f + r with r := 0 if l = 0, andr(x) := g(a) + g0(a) (x � a) + � � �+ g(l�1)(a) (x� a)l�1(l � 1)! ;20



otherwise. For 0 � j < l we havef (j)(x) = Z xa g(l)(t) (x� t)l�j�1(l � j � 1)! dt and f (l)(x) = g(l)(x) ;in ��. Consequently it is 
lear using Corollary 4.2, Lemma 4.4 and the 
laim that there exist positive
onstants whi
h are independent of g and f su
h that(4.12) k�1Xj=0 kf (j)kL1(Jj) = l�1Xj=0 kf (j)kL1(Jj) + k�1Xj=l kg(j)kL1(Jj)� 
 (kg(l)kLp(��;w�l ) + kgkWk;p(��;�))� 
 kgkWk;p(��;�) ;with w� a suitable 
ompletion of w. Observe that if l = 0 or l = k, the sum Pl�1j=0 orPk�1j=l does not appearin (4.12).If 0 � j < l and H := mini;j;� aij (for 0 � j < l, 1 � i � mj and � 2 An), we obtain for xij 2Mnjg(j)(xij)jp � H�1aij jg(j)(xij)jp � H�1kg(j)kpLp(Mn;�j) ; for 1 � p <1 ;and jg(j)(xij)j � kg(j)kL1(Mn;�j) ; for p =1 :Therefore, using also (4.12), we have for 1 � p �1,jr(j)(xij)j = jg(j)(xij)� f (j)(xij)j � H�1=pkg(j)kLp(Mn;�j) + 
 kgkWk;p(Rn;�);where Rn := [�2An��, for 0 � j < l, 1 � i � mj and � 2 An with xij 2Mn, that is, there exists a positive
onstant 
, whi
h is independent of g and r su
h that(4.13) 
 jr(j)(xij)j � kgkWk;p(Rn;�) ; for 0 � j < l; 1 � i � mj ; � 2 An; with xij 2Mn:If �; �+ 1 2 An and � = sup�� = inf ��+1 is j-regular, we haver(j)(��) = g(j)(�) � f (j)(��) ; r(j)(�+) = g(j)(�)� f (j)(�+) ;and then r(j)(��)� r(j)(�+) = f (j)(�+)� f (j)(��) :Re
all that if �� = (�; �), we are assuming that � 2 Jj if � is right j-regular and � 2 Jj if � is left j-regular.Consequently (4.12) gives(4.14) 
 jr(j)(��)� r(j)(�+)j � kgkWk;p(Rn;�) :The fun
tion rjMn is determined by a �nite linear system whose 
oeÆ
ient matrix is the 
oeÆ
ientmatrix of Tn and whose non-homogeneous terms are bounded by (4.13) and (4.14), sin
e Tn has uniquesolution.Consequently, there is a positive 
onstant 
, independent of � 2 An, g and r, su
h that(4.15) 
 k�1Xj=0 kr(j)kL1(Kj) � kgkWk;p(Rn;�) :Inequalities (4.12) (with � 2 An) and (4.15) and the relation g = f + r give the �rst inequality of (a) inTheorem 4.3. The se
ond inequality of (a) is an immediate 
onsequen
e of the �rst one and Lemma 3.3.21



We deal now with part (b). Sin
e (
; �) belongs to the 
lass C, there exist a measure �00 = �0 +Pm2D 
mÆxm with 
m > 0, fxmg � 
(0) and (
; �0) 2 C0, where �0 = (�00; �1; : : : ; �k) is minimal. We
hoose fMng 
orresponding to (
; �0) 2 C0 su
h that we 
an apply the minimality of �0.If g 2 V k;p(
; �) we 
an 
hoose r 2 K(
; �) (de�ned as 0 in the 
omplement of 
(0)) with kg �rkWk;p(
;�0) = kgkWk;p(
;�), i.e. su
h that kg � rkLp(
(0); �00��0) = 0, that is, g(xm) = r(xm) for everym 2 D. To see this we pro
eed in the following way: as in the proof of part (a), for ea
h n 
onsider the�nite linear system of equations Tn whi
h des
ribes q 2 K(Mn; �0) and the system T �n obtained by 
hangingin Tn the equations of the form q(xm) = 0 with m 2 D by q(xm) = g(xm). Every solution of T �n belongs toK(Mn; �).There exists a unique fun
tion rn 2 K(Mn; �) satisfying T �n : By the minimality of �0, ea
h equationin Tn of the form q(xm) = 0 with m 2 D is linearly independent of the other equations in Tn. Thisimplies the existen
e of rn. We also have the uniqueness of rn sin
e Tn has a unique solution (re
all thatK(Mn; �0) = f0g).Observe that every equation of T �n is in T �n+1, sin
e Mn �Mn+1, and therefore rn+1jMn = rn. Then, we
an de�ne r in 
(0) by r(x) := rn(x) if x 2 Mn. So r 2 K(
; �) sin
e r 2 \nK(Mn; �) and every equationof K(
; �) is in some Tn, and also r(xm) = g(xm) for every m 2 D.The fun
tion g0 := g�r satis�es kg0�gkWk;p(
;�) = krkWk;p(
;�) = 0. We haveKj � 
(j) for 0 � j < k(observe that 
(j) is the same for W k;p(
; �) and W k;p(
; �0)). Then we have
3 k�1Xj=0 kg(j)0 kL1(Kj) � kg0kWk;p(
;�0) = kg0kWk;p(
;�) = kgkWk;p(
;�) ;
4 kg0kWk;p(
;w) � kg0kWk;p(
;�0) = kgkWk;p(
;�) ;sin
e g0(xm) = 0 for every m 2 D.The other inequalities in (b) 
an be proved in a similar way.This �nishes the proof of Theorem 4.3.Remark. In order to prove Remark 1 to De�nition 11 we 
an assume that 
(0) is 
onne
ted. Then, if
(0) n (
1 [ � � � [ 
k) has only a �nite number of points, we 
an split 
1 [ � � � [ 
k = �1 [ � � � [ �N in its
onne
ted 
omponents. Now, the result is trivial sin
e the linear system that de�nes K(
; �) is �nite.We obtain the following 
orollary of Theorem 4.3.Corollary 4.3. Let us 
onsider 1 � p � 1, an open set 
 � R and a p-admissible ve
torial measure � in
. Let Kj be a �nite union of 
ompa
t intervals 
ontained in 
(j), for 0 � j < k. Then:(a) If (
; �) 2 C0 there exists a positive 
onstant 
1 = 
1(K0; : : : ;Kk�1) su
h that
1 k�1Xj=0 kg(j+1)kL1(Kj) � kgkWk;p(
;�); 8g 2 V k;p(
; �):(b) If �
; �� 2 C there exists a positive 
onstant 
2 = 
2(K0; : : : ;Kk�1) su
h that for every g 2V k;p(
; �), there exists g0 2 V k;p(
; �) (the same fun
tion as in Theorem 4:3), withkg0 � gkWk;p(
;�) = 0 ; 
2 k�1Xj=0 kg(j+1)0 kL1(Kj) � kg0kWk;p(
;�) = kgkWk;p(
;�):Furthermore, if g0; f0 are these representatives of g; f respe
tively, we have for the same 
onstant 
2
2 k�1Xj=0 kg(j+1)0 � f (j+1)0 kL1(Kj) � kg � fkWk;p(
;�):22



Proof. We only prove part (a) sin
e (b) is similar. Fix 0 � j < k. Sin
e Kj � 
(j), given any pointy 2 Kj , there exist an interval Jy and a 
ompletion wy of w with wyj+1 2 Bp(Jy). The 
ompa
tness of Kjgives that there exists a �nite set of points y1; : : : ; yl with Kj � Jy1 [ � � � [ Jyl .If we de�ne w�j+1 :=Pli=1 wyij+1�Jyi , the se
ond inequality in Theorem 4.3(a) gives
 kg(j+1)kLp(Kj ;w�j+1) � kgkWk;p(
;�) ;and Lemma 3.1 �nishes the proof, sin
e w�j+1 2 Bp(Kj).We have another 
orollary.Corollary 4.4. Let us suppose that 1 � p �1 and that � = (�0; : : : ; �k) is a p-admissible ve
torial measurein [a; b℄ with wk 2 Bp([a; b℄). Then:(a) There exists a positive 
onstant 
1 su
h that
1 k�1Xj=0 kg(j)kL1([a;b℄) � kgkWk;p([a;b℄;�); 8 g 2 V k;p([a; b℄; �);if and only if K([a; b℄; �) = f0g.(b) There exists a positive 
onstant 
2 su
h that for every g 2 V k;p([a; b℄; �), there exists g0 withkg0 � gkWk;p([a;b℄;�) = 0 ; 
2 k�1Xj=0 kg(j)0 kL1([a;b℄) � kg0kWk;p([a;b℄;�) = kgkWk;p([a;b℄;�):Proof. Sin
e 
(0) = [a; b℄ and 
(0) n (
1 [ � � � [ 
k) = fag [ fbg is �nite, Remark 1 to De�nition 11 saysthat ([a; b℄; �) 2 C. Then, if we take Kj = [a; b℄ for 0 � j < k, Theorem 4.3(b) gives (b).If K([a; b℄; �) = f0g, we also have ([a; b℄; �) 2 C0 by Remark 1 to De�nition 11, with the 
hoi
e Mn =[a; b℄. Then, Theorem 4.3(a) gives one impli
ation of (a). For the other impli
ation, it is enough to remarkthat if there exists g 2 V k;p([a; b℄; �) not identi
ally zero with kgkWk;p([a;b℄;�) = 0, the inequality kgkL1[a;b℄ �0 does not hold.Corollary 4.4 gives the following result about 
omparable norms.Corollary 4.5. Let us 
onsider 1 � p < 1, �; � �nite p-admissible ve
torial measures in [a; b℄, withabsolutely 
ontinuous parts w; v, respe
tively. Assume that wk 2 Bp([a; b℄), wk � vk and K([a; b℄; �) =K([a; b℄; �) = f0g. Then:(1) The norm in W k;p([a; b℄; �) of any fun
tion g 2 V k;p([a; b℄; �) is 
omparable tok�1Xj=0 kg(j)kL1([a;b℄) + kg(k)kLp([a;b℄;wk) :(2) The norms in W k;p([a; b℄; �) and W k;p([a; b℄; �) are 
omparable.Remark. The 
ase p =1 is also true if we 
hange the hypothesis �; � �nite by w0; : : : ; wk�1; v0; : : : ; vk�1 2L1([a; b℄).5. Main result.Theorem 5.1. Let us 
onsider 1 � p � 1, an open set 
 � R and a p-admissible ve
torial measure� = (�0; : : : ; �k) in 
 with (
; �) 2 C. Then the Sobolev spa
e W k;p(
; �) is 
omplete.23



Remark. The hypothesis of p-admissibility is natural (see de�nitions 8 and 9 and their remarks). Also the
ondition (
; �) 2 C is not very restri
tive (see De�nition 11 and its remarks in Se
tion 4).Proof. Let ffng be a Cau
hy sequen
e inW k;p(
; �). Therefore, for ea
h 0 � j � k, ff (j)n g is a Cau
hysequen
e in Lp(
; �j) and it 
onverges to a fun
tion gj 2 Lp(
; �j).First of all, let us show that gj 
an be extended to a fun
tion in C(
(j)) (if 0 � j < k) and in L1lo
(
(j�1))(if 0 < j � k).If 0 � j < k, let us 
onsider any 
ompa
t interval K � 
(j). Theorem 4.3(b) gives that there existsa representative (independent of K) of the 
lass of fn 2 W k;p(
; �) (whi
h we also denote by fn) and apositive 
onstant 
 su
h that for every n;m 2 N
 kf (j)n � f (j)m kL1(K) � kXi=0 kf (i)n � f (i)m kLp(
;�i) :As ff (j)n g � C(K), there exists a fun
tion hj 2 C(K) su
h that
 kf (j)n � hjkL1(K) � kXi=0 kf (i)n � gikLp(
;�i) :Sin
e we 
an take as K any 
ompa
t interval 
ontained in 
(j), we obtain that the fun
tion hj 
an beextended to 
(j) and we have in fa
t hj 2 C(
(j)). It is obvious that gj = hj in 
(j) (ex
ept for at mosta set of zero �j-measure), sin
e f (j)n 
onverges to gj in the norm of Lp(
; �j) and to hj uniformly on ea
h
ompa
t interval K � 
(j). Therefore we 
an assume that gj 2 C(
(j)).If 0 < j � k, let us 
onsider any 
ompa
t interval J � 
(j�1). Now Corollary 4.3(b) gives
 kf (j)n � f (j)m kL1(J) � kXi=0 kf (i)n � f (i)m kLp(
;�i) :As ff (j)n g � L1(J), there exists a fun
tion uj 2 L1(J) su
h that
 kf (j)n � ujkL1(J) � kXi=0 kf (i)n � gikLp(
;�i) :Sin
e we 
an take as J any 
ompa
t interval 
ontained in 
(j�1), we obtain that the fun
tion uj 
an beextended to 
(j�1) and we have in fa
t uj 2 L1lo
(
(j�1)). It is obvious that gj = uj in 
(j) (ex
ept for atmost a set of zero Lebesgue measure), sin
e f (j)n 
onverges to uj in L1lo
(
(j)) and to gj lo
ally uniformly in
(j). Let us 
onsider a set A whi
h 
on
entrates the mass of (�j)s, with jAj = 0; we 
an take uj = gj inA. We only need to show uj = gj in 
j n (
(j) [ A) (re
all that by hypothesis wj = 0 in R n 
j), but thisis immediate sin
e wj 2 Bp(
j) and the 
onvergen
e in Lp(
j ; wj) implies the 
onvergen
e in L1lo
(
j) (byLemma 3.1). Therefore we 
an assume that gj 2 L1lo
(
(j�1)).In fa
t, we have seen that ff (j)n g 
onverges to gj in L1lo
(
(j)) (if 0 � j < k) and in L1lo
(
(j�1)) (if0 < j � k).Let us see now that g0j = gj+1 in the interior of 
(j) for 0 � j < k. Let us 
onsider a 
onne
ted
omponent I of int (
(j)). Given ' 2 C1
 (I), let us 
onsider the 
onvex hull K of supp '. We have that Kis a 
ompa
t interval 
ontained in I � 
(j). The uniform 
onvergen
e of ff (j)n g in K and the L1 
onvergen
eof ff (j+1)n g in K gives thatZK '0 gj = limn!1 ZK '0 f (j)n = � limn!1 ZK 'f (j+1)n = � ZK 'gj+1 :Then gj+1 = g(j+1)0 in int (
(j)) and g(j)0 2 AClo
(int (
(j))) for 0 � j < k. In order to see that g(j)0 2AClo
(
(j)), it is enough to re
all that (g(j)0 )0 = gj+1 2 L1lo
(
(j)).24
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