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Summary

Given the increasing availability of data and the evolution of computation,

there is a growing body of theory and applications taking advantage of mul-

tivariate datasets. By including many variables in the analysis (even hun-

dreds), we can exploit more complete information as well as improve the

robustness of the estimators obtained (Stock and Watson, 2006).

In this dissertation, we work with multivariate time series. With the aim of

forecasting vectors of time series, well known approaches in time series litera-

ture are AutoRegressive Integrated Moving Average (ARIMA, working with

each variable independently) and Vector AutoRegressive Integrated Moving

Average (VARIMA, working with a few variables at a time) models.

However, when there are many interrelated series, these approaches either

fail to include interconnections, or rapidly present methodological constraints

when more than few series are considered simultaneously. ARIMA models

fail to account for the variables’ mutual influence; while VARIMA mod-

els can present an overwhelming complexity and possibly unfeasibility when

the number of time series is large. As a consequence of these limitations,

a large portion of research has focused on dimensionality reduction tech-

niques. These allow to exploit the relation between the series, as well as

their dynamic nature, and have the virtue of employing a reduced number of

1
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parameters, thus circumventing the “curse of dimensionality” often associ-

ated with multivariate data. In particular, in this thesis we focus on Factor

Models (FM).

The purpose of this dissertation is to improve the forecasts of high-dimensional

vectors of time series. Even with the expansion of research in this area, many

issues are still open. We explore some of the questions that arise with the

use of FM. In particular, we take an alternative approach for decisions re-

garding the number of underlying common factors and what models these

factors follow (Chapter 2). On the other hand, even if the factors are ac-

curately estimated, and their estimation taken as observations in posterior

calculations, it is not unusual to deal with bias of the estimates of the pa-

rameters for the model of the common factors, especially when the sample

size is small. Therefore, in Chapter 3 we work with techniques to correct

this bias and deal strictly with the e↵ect of the time dimension, T .

Our discussion focuses on statistical and econometrical developments that

have been employed to address questions in the context of economics, busi-

ness, and demographics. For empirical examples we work with electricity

prices and industrial production indexes of European countries.

The rest of the dissertation is organized as follows. In Chapter 1 we introduce

the theory and challenges related to the estimation of factor models. We

address the reasons for employing dimensionality reduction, the techniques

that may be employed in the estimation of FM, the alternative criteria for

selecting the number of unobservable common factors, and what models are

usually employed for the common factors.

In Chapter 2 we work with the combination of forecasts, motivated by the

unsolved issues of selecting a number of common factors and selecting a

model for each of them. Instead of applying a particular criterion, we esti-

mate several specifications, with alternative numbers of common factors and
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alternative models for them. Afterwards, we evaluate the performance of five

easy to apply combination techniques in an application to electricity prices of

the Iberian and Italian markets. Even though the improvements that result

from the combinations are not big, it must be acknowledged that they are

maintained during a long period of time and are statistically significant for

some of the combinations considered, according to an Analysis of Variance

(ANOVA).

In Chapter 3 we propose two alternative techniques to correct the bias in AR

models for the estimated common factors, specifically when these are highly

persistent and the sample has a small time dimension (T is small). These

are the Bootstrap Bias-Correction methodology (Clements and Kim, 2007)

and Roy-Fuller’s methodology (Roy and Fuller, 2001). Though not originally

intended for factor models, these techniques contribute to reduce the bias of

AR coe�cients, and by employing Monte Carlo simulations we show that the

improvement in the factors’ coe�cients produces more accurate forecasts.

We obtain forecasting intervals, and present results in terms of coverage

and interval length. We apply these extensions to data of the Industrial

Production Index (IPI) for a group of European countries.

Finally, in Chapter 4 conclusions and further lines of research are summa-

rized.





Chapter 1

Introduction to the Factor

Model

1.1 The Factor Model

Multivariate time series are datasets containing several interrelated time se-

ries. When the number of series, N , is small, standard approaches are VAR

or VARIMA modeling. However, nowadays the large amount of informa-

tion available results in a larger value of N , which implies di↵erent modeling

approaches. One of them, the Factor Model (FM), is a dimensionality re-

duction technique that works on the premise that a large portion of the

N series’ variation can be explained by a small number, R, of unobserved

factors. One advantage of these factors is that they could be employed to

forecast variables of interest, using a parsimonious model. Also, a one factor

model has been shown to outperform univariate ARIMA as well as pooled

forecasts under reasonable assumptions (Peña and Poncela, 2004, they also

extend the conclusion to multifactor models).

4
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In other words, dimensionality reduction techniques capture complex rela-

tions between the time series included in the study, while keeping the number

of parameters to estimate manageable1. On the contrary, depending on the

number of variables involved, from the computational perspective estimation

of typical time series models such as VARIMA2 or ARIMA3 may turn out

to be ine�cient or even unfeasible, not to mention other problems such as

highly correlated coe�cients (Peña and Box, 1987).

Consider an N -dimensional vector of centred observed time series, yyy
t

, where

t = 1, ..., T and T is the historical length. According to the theory of factor

models, the variation of yyy
t

can be decomposed into variation due to a few

common latent factors, FFF
t

and variation due to specific or idiosyncratic com-

ponents, """
t

, both unobservable. The model in vector form is the following

yyy
t

= ⌦⌦⌦FFF
t

+ """
t

, (1.1)

where FFF
t

has dimension R ⇥ 1, R ⌧ N , and it captures the part of the

behavior shared by the series. Alternatively, we may want only to represent

the system more simply (a particular rotation of the series) without dimen-

sionality reduction, R = N (Peña and Box, 1987). """
t

, on the other hand, is

a vector of dimension N ⇥ 1 and it captures the variation that is a specific

characteristic of each time series. ⌦⌦⌦ is a matrix of unknown loads or weights

with dimension N ⇥ R and rank R. Each element of ⌦⌦⌦ associates a factor

1Dimensionality reduction has also been successfully applied to functional data
(Hörmann et al., 2015).

2Even though VARIMA models allow to capture the relations between the series of
the dataset, the “curse of dimensionality” can easily become a problem in estimation. For
example, take N = 25, which for many situations is not a very large number of series to
include. A simple VAR(1), yyyt = ���yyyt�1 +wwwt, would require the estimation of a matrix of
coe�cients ��� of size 25⇥ 25 relating the value of each variable in time t to the values of
all the variables (itself and the others) at t� 1.

3Using an ARIMA model for each series would ignore all together any cross-correlation
between them. ARIMAX models on the other hand, which incorporate exogenous vari-
ables as predictors, most likely will present multicollinearity and would be unfeasible when
T is not large enough.
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of vector FFF
t

with a variable in vector yyy
t

, thus indicating the variable’s sensi-

tivity to changes in the underlying factors. The term ⌦⌦⌦FFF
t

is usually known

as the common component. As for notation, notice that, even though one is

written in capital letters, both yyy
t

and FFF
t

are vectors; FFF
t

is written in capital

letter in order to indicate that it represents the actual (unobserved) factors,

while the estimated factors will be denoted by fff
t

.

In this context, alternative assumptions may be made. In the so-called “clas-

sical factor analysis”, the number of series included, N , is considered fixed,

and N ⌧ T (Bai, 2003). Additionally, """
t

is white-noise, independently and

identically distributed usually normal, with full-rank diagonal covariance

matrix (Peña and Box, 1987). This last requirement describes the so called

Exact FM: the specific factors are mutually uncorrelated for all leads and lags

(Geweke and Singleton, 1981; Chamberlain and Rothschild, 1983, though

they call it strict rather than exact). One way to interpret this assumption

is that any correlation between the studied time series is originated in the

common factors, either because they have heavy weights in the same factors,

or because the common factors are correlated between them (Geweke and

Singleton, 1981).

Alternatively, in the “approximate factor analysis”, some correlation in vec-

tor """
t

is allowed. For example, Stock and Watson (2010) allow for cross and

serial correlation, while Chamberlain and Rothschild (1983) and Forni et al.

(2005) allow some cross correlation. In this case, the series in """
t

may be

modeled as dynamic processes themselves. Additionally, there has been a

trend in the literature to include a large number of series (for practical pur-

poses, N > 100), more than has been usual in classical applications (Boivin

and Ng, 2006).

A further assumption both in approximate and classical factor analysis is

that specific factors are uncorrelated with common factors. However, it is
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possible for the common factors to present cross-correlation and it is also

possible for any of the latent variables to be serially correlated (Geweke and

Singleton, 1981).

Notice that, because both ⌦⌦⌦ and FFF
t

are unknown, their product is undefined

under rotations. This means there are infinite configurations of ⌦⌦⌦ and FFF
t

that would fit in equation (1.1) since, for instance, ⌦⌦⌦⇤FFF ⇤
t

= ⌦⌦⌦VVV VVV �1FFF
t

verifies

the model (for any non-singular matrix, VVV ). The literature proposes two

alternatives to deal with the indeterminacy. On the one hand, we can make

assumptions for the matrix of weights. Most often, it is assumed that ⌦⌦⌦⌦⌦⌦0 =

III
N⇥N

, where III stands for the identity matrix (for example, see Peña and Box,

1987). Alternatively, it can be assumed that FFF 0
t

FFF
t

= III
T⇥T

(for example, see

Chamberlain and Rothschild, 1983). Notice that, whatever the restriction

imposed, there are no consequences for the commonality ⌦⌦⌦FFF
t

.

Equation (1.1) is also known as the “static factor model”, given that the

common factors enter the equation only contemporaneously. In other words,

this specification excludes lags of FFF
t

and a lagged polynomial loading ma-

trix ⌦(L)⌦(L)⌦(L) which constitute the Dynamic Factor Model (DFM); the same

approach is followed by Bai (2003). Notwithstanding, this does not mean

that the common factors do not exhibit some sort of dynamic behavior; on

the contrary, their evolution could be explained by a model of the following

type

�(L)�(L)�(L)FFF
t

= ⌘⌘⌘
t

, (1.2)

where �(L)�(L)�(L) represents a polynomial containing the lag operator L. In this

dissertation we will consider seasonal ARIMA and AR models for the com-

mon factors, depending on the feature we study. Other options are, for

example, using Vector Autorregressive (for example Poncela et al., 2011),

or even Factor Augmented Vector Autorregressive (Poncela et al., 2014, in
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which a common factor is related to fundamentals, financial and uncertainty

variables) models for the common factors.

The static factor model could be considered a particular case of the more

general dynamic factor model (Geweke and Singleton, 1981), in which the

e↵ect of lagged factors is included as well. In that case, ⌦⌦⌦ in Equation

(1.1) is replaced by a lagged polynomial matrix ⌦(L)⌦(L)⌦(L) or some other sort of

time dependence. For instance, Stock and Watson (2002) present the loads’

time-dependence with an equation like ⌦⌦⌦
r,t

= ⌦⌦⌦
r,t�1

+ g
r

&&&
r,t

, where g
r

is a

scalar and &&&
r,t

a vector of variables. These authors show that in order for

principal components to continue to be consistent under this approach, some

assumptions are needed: the change between consecutive periods (g
r

) and

the cross-sectional dependence in &&&
r,t

should both be small.

We focus on the static factor model because its properties have received

more attention than those of dynamic models and because, while the static

approach is easier to understand and estimate, the two approaches produce

similar forecasts (Bai and Ng, 2008).

Last, notice that the matrix of variance-covariance for yyy
t

, ⌃⌃⌃
y

, can be ex-

pressed as the sum of the variation due to the commonality and the variation

that is specific to each series (Stock and Watson, 2006). As explained before,

we are working under the assumption that common and specific factors are

uncorrelated (for all leads and lags). Then,

⌃⌃⌃
y

= ⌦⌦⌦⌃⌃⌃
F

⌦⌦⌦+⌃⌃⌃
"

. (1.3)

Additionally, the variance of the specific components, ⌃⌃⌃
"

, should be much

smaller than the one for the common factors, ⌃⌃⌃
F

; otherwise, variability that

is specific to each series may take part of the estimated common factors

(Mardia et al., 1979, pp.276). Similarly, the lagged covariance matrix for yyy
t

is a function of the lagged covariance for the common factors. As the factors
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are assumed to be uncorrelated, the eigenvectors of the lagged covariance

matrix for yyy
t

are the columns of the matrix of weights (Peña, 2009).

1.2 Estimation of the Common Factors

Some of the alternatives available to estimate FM are: Maximum Likelihood,

Principal Components Analysis, hybrid techniques, and Bayesian techniques.

Gaussian Maximum Likelihood Estimation

A widely extended technique is Gaussian Maximum Likelihood Estimation

(MLE). In this case, the Kalman filter is employed to obtain estimates for the

factors4, innovations, and their variance-covariance matrix. To estimate the

matrix of loads, the constants of the model (if any), the variance-covariance

matrix of the specific factors, and the parameters of the factors’ model,

direct maximization of the log likelihood function can be attempted, for

instance, employing Newton-Raphson’s algorithm. Or, other techniques can

be employed, such as the Expectation Maximization (EM) algorithm. Since

these techniques are usually employed for factors following VARIMA models,

and we will be modeling the common factors as ARIMA models instead,

we refer to Stock and Watson (2010) or Alonso et al. (2011) for detailed

explanations and applications.

An advantageous property of this technique is that the estimates for the

factors are e�cient (Stock and Watson, 2010) and misspecification5 has a

negligible e↵ect in the factors’ estimates when N and T are large (Doz et al.,

2012). Additionally, it can be employed even when there is missing data

(Stock and Watson, 2010; Doz et al., 2012), which is useful for nowcasting.

4Interval estimates for the common factors can also be obtained. See Ruiz and Poncela
(2015a).

5Ignoring serial correlation of the observed variables, or wrongly assuming that the
specific factors are not cross correlated.
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Ruiz and Poncela (2015b) analyze the uncertainty of estimating the common

factors with the Kalman Filter for finite N and T .

Given that the number of parameters to estimate grows with the number of

series N , a drawback of this approach is that estimation involves non linear

optimization. Therefore, for practical purposes N should not be too large

(Stock and Watson, 2006, 2010).

Principal Components Analysis

Among non-parametric estimation techniques (Stock and Watson, 2010), a

popular option is to employ a dynamic adaptation of Principal Components

Analysis (PCA). The Principal Components (PC) act as estimates of the

common factors. This allows to work with a large N while maintaining the

number of parameters low, and computation is easier than for parametric

techniques.

Peña and Box (1987) presented the PCA extension for stationary series.

They use a canonical transformation to obtain a structure for the underlying

factors. They decompose vector yyy
t

into an ARMA(1,1) process for R factors;

and a white noise process (with dimension N � R). However, as Stock and

Watson (2010) point out, FFF
t

is not estimated directly, which is a drawback

for obtaining forecasts.

Lee and Carter (1992), working with mortality rates, proposed to estimate

the matrix of loads, ⌦̂̂⌦̂⌦, by Singular Value Decomposition (SVD) of the

variance-covariance matrix of the centred dataset, ⌃̂̂⌃̂⌃
y

. Normalization condi-

tions for weights and factors are imposed to obtain a unique solution. See

the appendix of Garćıa-Martos et al. (2012) for a derivation from the opti-

mization process to finding the eigenvectors.

Following Lee and Carter (1992) we use the matrix of centred data YYY
N⇥T

and calculate the sample variance-covariance ⌃̂̂⌃̂⌃
y

, of dimension N ⇥N which
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is assumed to be consistent (Bai, 2003). The SVD of this matrix renders N

eigenvectors. Each eigenvector is associated to an eigenvalue. The greater

the eigenvalue, the greater the percentage of variability of the data explained

by the associated factor. Thus, as Stock and Watson (2010) explain, ⌦̂̂⌦̂⌦
N⇥R

consists of the R eigenvectors corresponding to the highest R eigenvalues.

The matrix of common factors, F̂̂F̂F , is therefore estimated as a linear combi-

nation of the time series: F̂̂F̂F
T⇥R

= YYY
T⇥N

⌦̂̂⌦̂⌦
N⇥R

.6 The specific or idiosyncratic

factors are the portion of the data not captured by the R common factors

included, """
N⇥T

= YYY
N⇥T

� ⌦̂̂⌦̂⌦
N⇥R

F̂̂F̂F 0
R⇥T

.

Equivalently, this is the solution to the problem

min
F

F

F

t

,⌦

⌦

⌦

(NT )�1

NX

i=1

TX

t=1

(y
it

� !
i

F
it

)2

s.t. ⌦⌦⌦0⌦⌦⌦/N = III
R⇥R

.

(1.4)

Instead, when there are more series than time periods (N > T ), it is com-

putationally advantageous to perform the optimization with respect to the

matrix of loads, replacing the condition in (1.4) by FFFFFF 0/T = III
R⇥R

(Stock

and Watson, 2002). In this case the estimated factors are equal to the

R eigenvectors associated to the R highest eigenvalues of Y YY YY Y 0 (instead of

Y 0YY 0YY 0Y / ⌃̂̂⌃̂⌃
y

). However relevant in many current applications, we will not

study this specification. See Bai (2003) for theoretical developments and

empirical applications in this context. In any case, an N > T situation may

be transformed into N < T . Boivin and Ng (2006) explain that, when there

exists correlation between the idiosyncratic factors, pre-screening the series

to include in the factor model may result in better forecasts than using a

6Note on notation: FFF t represents the R⇥ 1 vector of true factors at time t (unknown),
F̂̂F̂F represents the R ⇥ T matrix of estimated factors, and fff t represents the R ⇥ 1 vector
of estimated factors at time t. We are assuming R is known, though in practice this is
estimated as well.
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very large N . In their empirical example they reduce the number of series

from 147 to 40.

In the static form, Stock and Watson (2002) establish that the estimator of

principal components is consistent for the space spanned by the factors when

N, T ! 1.7 This is true as long as the specific errors are stationary and the

loads of the factors are not trivial. This conclusion is maintained even when

the specific factors exhibit weak cross-sectional or serial correlation (Stock

and Watson, 2002, investigate this issue in simulations). Additionally, the

estimator is robust to small and idiosyncratic changes of the factors’ weights

(Stock and Watson, 2002).

Even if we do not have N and T very large in real data applications, research

achieves a high degree of accuracy for the factors’ estimates for values of N, T

as small as 30 (Bai and Ng, 2008) or 40 (Boivin and Ng, 2006, for N). This

result is key to support a second step estimation in which the factors are

taken as observed; in other words, the estimation error is considered to be

negligible (see Bai, 2003, for an assessment of the conditions in which this

assumption is reasonable).

In the classical approach (large T , N fixed), the estimated PC is asymptot-

ically normal (Bai, 2003). In practice, this is the case even if some of the

assumptions are altered, such as allowing some correlation and heteroscedas-

ticity in the series (Bai, 2003).

When the variables are normally distributed, the PC estimator is asymp-

totically equivalent to the maximum likelihood estimator (Bai, 2003, also

considering large values of N and T ).

Another interesting property is studied by Bai and Ng (2008) for non-sta-

tionary data: “even if each cross-section equation is a spurious regression,

7Stock and Watson (2002) indicate that there are no restrictions regarding the rates
of growth of N vs. T .
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the common stochastic trends are well defined and can be consistently es-

timated, if they exist”. In this case the factors are estimated by PC after

di↵erenciating the data. This approach considers that non stationary data

may be caused by FFF
t

⇠ I(1), or """
t

⇠ I(1), or both. It is di↵erent from Lee

and Carter (1992) in that the latter estimates FFF
t

as a random walk with drift

(so, non-stationary factor) but ignores the specific error implicitly assuming

"""
t

⇠ I(0).

There are many variations and approaches for particular situations and for

dropping assumptions. For instance, in the case in which the specific com-

ponents are correlated, feasible generalized PC can be employed (feasibility

has to do with the fact that ⌃⌃⌃
"

is unknown) (Stock and Watson, 2010).

When the model is dynamic (incorporating lags of the factors in (1.1)), it

may be re-written as static and PCA may still be employed; while dynamic

confirmatory factor models work with the frequency domain (Geweke and

Singleton, 1981). Forni et al. (2005) also work with frequency domain tech-

niques and propose a predictor that takes advantage of the data’s dynamic

covariance structure and which weights the variables by an estimation of the

signal-to-noise ratio. Weighted PCA allows to gain e�ciency when there are

non spherical specific factors. For instance, Boivin and Ng (2006) propose

alternative weighing schemes, including the option of ruling out series that

do not contribute relevant information. Last, as a generalization of PCA for

non-Gaussian data and independent components, Independent Component

Analysis can be used (Garćıa-Ferrer et al., 2011, 2012).

Hybrid Techniques

Stock and Watson (2010) indicate the possibility of employing hybrid tech-

niques that combine state space models and principal components for the

estimation of the factors. For static factors, the common factors are esti-

mated by PC, and then the matrix of weights is obtained by regressing yyy
t
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on the estimated factors. The �(L) coe�cients for the model of the com-

mon factors are obtained from the estimated factors as well. See Stock and

Watson (2010) for details on the estimation when the factors are taken to

be dynamic.

Doz et al. (2012) summarize the advantages of this approach: possible im-

provements in e�ciency, it allows handling missing data, and it has benefits

characteristic of parametric models such as the possibility of imposing con-

straints in the weights.

Bayesian Techniques

Bayesian techniques may also be employed. They incorporate prior distribu-

tions that allow to include the researcher’s a-priori beliefs and are specially

helpful for models that involve non Gaussian errors (Stock and Watson,

2010). Markov Chain Monte Carlo (MCMC) techniques are employed to

estimate the parameters of the FM and the factors themselves.

Some examples of the implementation of this approach are: Otrok and

Whiteman (1998), Kim and Nelson (1998), and Peña and Safadi (2008).

The first one presents an empirical application for local economic data in

the United States. The authors estimate one underlying factor using data

augmentation and MCMC to sample from the posterior distribution of the

factor. The second one is a work to model the business cycle, producing

inference for a dynamic factor model with regime switching and obtaining

Bayesian estimates for a common unobserved factor (‘growth component’)

and a regime switching variable, also with United States data. Last, Peña

and Safadi (2008) use Bayesian estimation to perform an estimation of a

dynamic factor model to associate air pollution with mortality in Brazil.
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1.3 Selection of the Number of Factors

A source of uncertainty in the estimation of factor models is how many com-

mon factors to include, since the actual number, R, is unknown. There

are several criteria to obtain an estimate (r), though there is no definite

assessment as to which one is the most accurate for forecasting (Poncela

et al., 2011, obtain that more components may not result in better fore-

casts). Fortunately, the asymptotic distributions of the estimated factors

and their loadings are una↵ected by the estimation of the number of factors

(Bai, 2003). Furthermore, in a model with specific factors either mutually

uncorrelated or correlated, Boivin and Ng (2006) find that estimating r < R

implies a loss in e�ciency, while r > R only slightly a↵ects the forecasts. As

previously mentioned, we focus in the static case, in which the factors enter

equation (1.1) only contemporaneously.

A popular, somewhat arbitrary, criterion for deciding the number of common

factors to include in the model is selecting r such that the explained data

variability is at least 80%. The percentage of variability explained by each

factor can be calculated by �
i

/
P

N

i=1

�
i

, where � represents the eigenvalues

resulting from the SVD. This approach is employed, for instance, in Forni

et al. (1999) and Garćıa-Martos et al. (2012).

Other approach to obtain the estimate r is the scree plot. Scree plots are

a visual diagnostic tool which starts by arranging the eigenvalues of ⌃̂̂⌃̂⌃
y

in

descending order. Some tests based on them consist of calculating the ratio

of adjoining eigenvalues and selecting the maximum (Ahn and Horenstein,

2013), the maximum ratio of adjoining growth rates of residual variances

(Ahn and Horenstein, 2013), and a test to identify changes in the curvature

of the scree plot for factor models with correlated normal specific errors

(Onatski, 2006).
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Alternatively, Peña and Box (1987) obtain r from the rank of the lagged

covariance matrices (stationary factors), while Peña and Poncela (2006) pro-

pose a test based on the �2 which is valid for the static and the dynamic

factor model.

The problem of determining r can also be seen as a problem of model selec-

tion. Bai and Ng (2002) indicate that there is a trade o↵ between fit and

e�ciency: including more common factors in the model tends to improve fit,

but at the cost of lower e�ciency because more factor weights need to be

estimated. Because the factors are not observable, the Bayesian Information

Criterion (BIC) may not provide with a consistent estimator of R; while

Akaike Information Criterion (AIC) tends to over-estimate R (Bai and Ng,

2002). See Bai and Ng (2002) for details on the conditions under which it is

still useful to employ the well known AIC or BIC.

Bai and Ng (2002) and Bai and Ng (2008), among others, developed alter-

native information criteria. In their review, Bai and Ng (2008) discuss two

criteria with the important feature that the penalty function, g(N, T ), de-

pends on both dimensions: the number of series as well as the number of

observations8. Under some conditions that control over and under fitting,

the proposed criteria render r (estimated number of factors) that converges

in probability to the true number of factors R, taking N, T ! 1. These

criteria are (Bai and Ng, 2002)9:

r̂
PCP

= argmin
0rr

max

PCP (r), (1.5)

8Bai and Ng (2002) show that a consistent estimation of R requires a penalty that
depends on N,T instead of including only one of these dimensions.

9We adapted their notation to provide continuity with the one employed throughout
this dissertation.
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where PCP (r) = S(r) + r�̄2g(N, T ), �̄2 = S(r
max

) (r
max

is set in advance),

and

r̂
IC

= argmin
0rr

max

IC(r), (1.6)

where IC(r) = ln(S(r)) + rg(N, T ). Both criteria are loss functions and in

both cases S(r) = 1

NT

P
N

i=1

P
T

t=1

(y
it

� !̂r

0
i

F̂ r

t

)2, with common factors esti-

mated by a principal components procedure. Some alternatives for g(N, T )

are (Bai and Ng, 2002):

g
1

(N, T ) =
N + T

NT
ln

✓
NT

N + T

◆
, (1.7)

g
2

(N, T ) =
N + T

NT
ln(C2

NT

), (1.8)

and

g
3

(N, T ) =
ln(C2

NT

)

C2

NT

, (1.9)

where C2

NT

= min(N, T ).

Some drawbacks of these criteria are that their behavior in small samples may

diverge (see Bai and Ng, 2002, for their performance in di↵erent scenarios)

and that the penalty factor is arbitrary. For other scenarios such as DFM or

the general dynamic case, other criteria are appropriate (for instance Hallin

and Liska, 2007).

A further possibility consists of working with a set of possible specifications

and then combining their forecasts. Caggiano et al. (2011) employ forecast

combination of models with alternative number of lags, with r fixed. Al-

ternatively, in Chapter 2 we employ this approach to circumvent the need

to select a particular number of common factors. We estimate models with

di↵erent number of common factors and weight their forecasts in alternative

ways.
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1.4 Models for the Factors

We may employ alternative approaches to compute forecasts of the variables

of interest. Stock and Watson (2010) consider ‘direct multistep (t+ h) fore-

casts’, obtained by regressing yyy
t+h

on fff
t

, yyy
t

, and their lags, and ‘iterated

multistep forecasts’, which consists of using a one-step forecast equation for

yyy
t+1

and the model for the factors to iterate and obtain yyy
t+2

, ..., yyy
t+h

. A the-

oretical pronunciation regarding the best technique would require knowledge

of the true generating process (Marcellino et al., 2006) and empirical results

are inconclusive for deciding which one is best (Stock and Watson, 2010).

Our approach, thus, follows part of the literature on DFM, including Garćıa-

Martos et al. (2012) and Alonso et al. (2011). It is a case of ‘iterated mul-

tistep forecasts’ in which yyy
t+h

depends only on estimates of FFF
t+h

(obtained

by iteration of the model for the common factors), and in which instead of

estimating a forecasting equation for yyy
t+h

we use the weight estimates of the

FM in equation (1.1), implicitly assuming that the matrix of loads is time

invariant.

To forecast FFF
t+h

alternative models can be employed. We will present the

cases of factors that follow ARIMA or VARIMA models. Either way the fac-

tors are modeled, alternative assumptions can also be considered regarding

variances, correlations, and the behavior of the errors ⌘⌘⌘
t

. These assumptions

could prove reasonable or not depending on empirical circumstances.

Authors that model the common factors as ARIMA are the following. Peña

and Box (1987) assume FFF
t

which follows an ARMA process and general-

izes to factors with dynamic dependence and allowing the noise matrix to

have contemporaneous dependency. Garćıa-Martos et al. (2012) use com-

mon factors that follow univariate seasonal ARIMA models. The same for

Garćıa-Ferrer et al. (2011) except they estimate the common factors with an
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Independent Component Analysis (ICA) algorithm. Lee and Carter (1992)

have a model with a single factor which follows a random walk with drift

(an ARIMA(0,1,0)). Peña and Poncela (2004) work mainly with models of

one common factor following ARIMA specifications, but also generalize their

conclusions for a model with three common factors, each specified as an ARI

model.

Notice that in this case the factors are taken as independent (any cross-

correlation between them is ignored). Expanding equation (1.2) for detail,

the ARIMA model for each estimated factor f
i,t

, i = 1, . . . , r would be the

following

(1� L)d(1� Ls)D�
i

(L)�
i

(Ls)f
i,t

= c
i

+ ✓
i

(L)⇥
i

(Ls)⌘
i,t

, (1.10)

where �
i

(L) = (1 � �
i,1

L � �
i,2

L2 � . . . � �
i,p

i

Lp

i), �
i

(Ls) = (1 � �
i,1

Ls �

�
i,2

L2s � . . . � �
i,P

i

LP

i

s), ✓
i

(L) = (1 � ✓
i,1

L � ✓
i,2

L2 � . . . � ✓
i,q

i

Lq

i) , and

⇥
i

(Ls) = (1 � ⇥
i,1

L � ⇥
i,2

L2s � . . . � ⇥
i,Q

i

LQ

i

s). L is the lag operator

such that Lf
i,t

= f
i,t�1

. The roots of the polynomials are outside the unit

circle, which translates in stationary (for the AR part) and invertible (for

the MA part) processes. The innovations ⌘
i,t

are assumed to be white noise;

it is customary to assume that they are uncorrelated for all leads and lags

E(⌘
i,t

⌘
i,t+h

) = 0 (h 6= 0), as well as uncorrelated with the specific factors

E(⌘
i,t

"
j,t

) = 0, j = 1, . . . , N . d and D are the number of regular and seasonal

di↵erences, respectively, needed to make the series of the common factor

stationary.

When the factors are expected to be cross-correlated at di↵erent lags of time

they are modeled as VARIMA. Among others, this is the case of Stock and

Watson (2010), who consider a DFM with factors following a VAR model

and Alonso et al. (2011), who work with seasonal common factors.
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In this case, the polynomials in equation (1.10) are replaced by r ⇥ r poly-

nomial matrices ���(L),���(Ls),✓✓✓(L),⇥⇥⇥(Ls). We would as well replace f
i,t

and

⌘
i,t

by vectors fff
t

and ⌘⌘⌘
t

, respectively. The same assumptions for the errors

are usually maintained (ex. Stock and Watson, 2010).

Notice that the parameters of the factors’ model may be estimated simul-

taneously with the common component (this is usually the case of a factor

model in which F
t

F
t

F
t

is modeled as a VARIMA, which can be estimated by ML)

or in a second step after the common factors are obtained (this is usually

the case when each f
i,t

is modeled as an ARIMA).

In Chapter 2 we consider common factors that follow seasonal ARIMA mod-

els. This specification will allow rapid computation of several models (for

alternative parameters). We use a more parsimonious version, AR factors,

in Chapter 3 in order to assess a possible bias in the estimation of the AR

coe�cients when the sample size (T ) is small and the factors are highly

persistent.

1.5 Outline of the Dissertation

The techniques and applications contributed in this thesis are presented in

chapters 2 and 3. Their objective is to improve the forecasting results for

multivariate time series datasets when working with factor models. We ad-

dress two problems that we find have not been studied in depth in the existing

literature. On the one hand, we consider the rigidity involved in selecting a

‘best’ model to produce forecasts. This implies selecting a number of common

factors and model them in a particular way. To introduce some flexibility

and improve forecasts, we use forecast combinations. On the other hand,

we study the problem of biased estimates for highly persistent AR common
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factors, specially when the dataset consist of a small sample in the time

dimension (small T ).

In Chapter 2 we study whether forecast combination techniques have the

ability to outperform a benchmark FM selected with a popular information

criterion. Our motivations are decisions the researcher must make when em-

ploying FM to reduce the dimensionality of a dataset and produce forecasts.

In particular, we consider estimating several specifications for the common

factors and employing models with alternative numbers of those factors, in

lieu of a criteria to select a number of common factors and one model for

them. Having a group of specifications allows to apply combination tech-

niques to produce forecasts. In particular, we evaluate the performance of

five combination techniques in applications to electricity prices of the Iberian

and Italian markets.

In Chapter 3 we work with two techniques to correct the bias of AR estimates:

Bootstrap Bias-Correction (Clements and Kim, 2007) and Roy-Fuller’s (Roy

and Fuller, 2001). These techniques are particularly successful when the se-

ries are highly persistent and the sample size (T ) is small. We innovate by

employing them in a context of AR common factors. We use Monte Carlo

simulations to show that the improvement in the factors’ coe�cients trans-

lates into more accurate forecasts, under diverse conditions. Additionally, we

illustrate the performance of these techniques in an empirical setting consist-

ing of data for the Industrial Production Index (IPI) for a group of European

countries.

Finally, in Chapter 4 we summarize the conclusions and present further lines

of research that could derive from our work.
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Electricity Prices Forecasting

by Averaging Factor Models

2.1 Introduction

Nowadays, electricity trading is liberalized in most countries of the Western

world. Due to the particular characteristics of supply and demand, predic-

tion of electricity prices in this context is complex. Notwithstanding the

di�culties, forecasts are necessary for several reasons:

• this is a strategic sector of the economy,

• there are financial implications due to the trading of forwards and

options,

• forecasts help optimize and plan consumption and production.

As with other commodities, there are various ways to operate in this market

(see Weron, 2014; Conejo et al., 2010a, for detailed market descriptions). We

22
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focus on prices that result from a pool

1 in which there is a central auction.

In this pool, prices could be settled for each hour of the day, or every half

hour, depending on the market.

In the first case, the 24 hourly prices for day t are cleared at the same instant

in day t�1, with the same common information for all the hours. Therefore,

for each day, a 24-dimensional vector is generated (p
1,t

, p
2,t

, . . . , p
24,t

); where

p
hour,t

represents the price of hour = 1, 2, . . . , 24 at day t. Consequently,

prices can be presented in a T⇥24 dimensional matrix, where T is the number

of days in the sample, and modeling should be multivariate (as in Huisman

et al., 2007; Garćıa-Martos et al., 2007; Panagiotelis and Smith, 2008; Alonso

et al., 2011). Even more, modeling could be attempted by transforming

hourly (discrete) prices into functional data (see Hörmann et al., 2015, for a

methodology of dimension reduction for time series functional data).

In several fields, there has been an increasing interest in the development

of methodology to deal with multivariate time series or a high dimensional

vector of series like the ones in electricity markets. By the end of the 1970s,

Sargent and Sims (1977) (these authors presented a factor model for sta-

tionary time series vectors) and Geweke (1977) were the first to propose a

Dynamic Factor Model. Later, Lee and Carter (1992) contributed by extend-

ing the idea of Principal Components to the dynamic case. More recently,

dimensionality reduction techniques have gained popularity, in particular

since the work by Stock and Watson (2002). For example, Peña and Poncela

(2004) and Peña and Poncela (2006) extended Sargent and Sims (1977)’s

model for the non-stationary case.

Regarding applications in electricity markets, Garćıa-Martos et al. (2012)

extended Lee and Carter (1992) and Peña and Box (1987) to prices with

seasonality. Working with data for the Iberian market for 2007-2009, they

1Among others, a reference including balancing settlement markets is Morales et al.
(2014).
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propose extracting common factors from the 24-dimensional price vector and

modeling such factors as univariate seasonal AutoRegressive Integrated Mov-

ing Average (ARIMA) processes. Another example is Alonso et al. (2011),

who propose a technique called Seasonal Dynamic Factor Analysis (SeaDFA),

which involves the estimation of a Vector AutoRegressive Integrated Moving

Average (VARIMA) model for unobserved common factors having seasonal

patterns. The work in Maciejowska and Weron (2015) also uses a Factor

Model, including hours and locations.

In an independent path, Forecast Combination or Model Averaging has been

developed as a technique to take advantage of the availability of alternative

forecasting approaches. This methodology consists of weighting a set of fore-

casts corresponding to alternative models and combining them to obtain a

single forecast. In this way, model selection uncertainty is incorporated.

According to Clemen (1989), ‘the idea of combining forecasts implicitly as-

sumed that one could not identify the underlying process, but that di↵erent

forecasting models were able to capture di↵erent aspects of the information

available for prediction’. Other justifications for model averaging are: doubts

of the existence of a ‘best model’ (Sánchez, 2006), ‘portfolio diversification’,

a better adaptation to structural breaks, or to average out omitted variables

bias (Bjørnland et al., 2010).

Applications of model averaging in electricity markets are given by Bordignon

et al. (2013), for the British Market and Nowotarskia et al. (2014), for Eu-

ropean and USA markets. Furthermore, Raviv et al. (2015) obtain forecasts

for the daily average price employing dimensionality reduction techniques as

well as Forecast Combination of several models for hourly prices. Other ref-

erences are Monteiro et al. (2015), who use averaging to obtain wind speed,

solar irradiation, and temperature forecasts, which are then employed to esti-

mate prices; and Garćıa-Martos et al. (2015), who forecast hourly electricity
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prices for the Spanish market by weighting seasonal ARIMA (with exogenous

variables) and seasonal Dynamic Factor Models of similar performance.

In spite of its advantages, a major drawback of dimensionality reduction

techniques is the uncertainty concerning the ‘correct’ model: how many fac-

tors to include and what models they follow. The literature is not definite in

regards to the best technique for estimating the number of underlying factors

that would contain enough information to make accurate predictions, and it

should be considered that, as the number of factors included increases, so

does estimation complexity and computational burden. As previously indi-

cated, there is not either a unique model for the factors that outperforms all

other models, in all circumstances (Weron, 2014).

In this work it is assumed that the major decisions involved in forecasting by

using dimensionality reduction techniques may be resolved in a less arbitrary

way if we rely on Forecast Combination. In order to follow this line of

thought, alternative models, including di↵erent numbers of common factors,

are estimated. Forecasts for prices are obtained by transforming the factors’

forecasts back to the data units, according to the relations established in

the dimensionality technique employed. Subsequently, Forecast Combination

approaches are used to weight each of the forecasts obtained and thus provide

a single prediction.

Summing up, factor models extract information ex ante (before any fore-

cast is obtained) while Forecast Combination works ex post (after forecasts

are available). The contribution of this work is to amalgamate both tech-

niques. A reduced number of latent unobserved variables is estimated and

their forecasts are combined in order to obtain a single prediction.

We apply these techniques to one-day to two-month-ahead electricity prices

for the Iberian spot Market for a period of five years (2008-2012); and for
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the Italian spot Market for a period of three and a half years (mid 2009-

2012). Several ARIMA specifications2 are estimated for the factors and

used to obtain forecasts of the prices for each hour, which makes the task

computationally intensive. Next, these forecasts are combined. We study

alternative ways to combine forecasts because their performance may vary

depending on the data-set. The predictions concern mainly the medium-

and long-term (one and two months).

The rest of the chapter is organized as follows. Fundamentals containing a

mathematical description of the proposed methodology are presented in Sec-

tion 2.2, which includes definitions on Factor Models, classical techniques for

Forecast Combination, and Bayesian Model Averaging. Section 2.3 describes

the methodology for this chapter. In section 2.4, we present the results of the

empirical applications. This section is divided into sub-sections presenting

the data, an Analysis of Variance (ANOVA) comparing specifications, and

forecasting results. Finally, section 2.5 concludes with remarks, limitations

and possible extensions.

2.2 Fundamentals

An outline of the methodology used in this proposal is presented below as

well as the drawbacks of other approaches, which we attempt to resolve.

2.2.1 Factor Model

Factor Models (FM) are a widely applied dimensionality reduction technique.

It is employed when the researcher believes there are fundamental factors

2For each one of the common factors included in the analysis 36 choices of parameters
are available: p = 1,2,3, d = 0, q = 1,2,3, P = 0,1, D = 1, Q = 0,1, s = 7. These pre-
defined models are all automatically estimated with the software TRAMO, by its Matlab
interface, intervening outliers.
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driving several variables in a data-set. These factors, like the variables,

evolve through time, and allow to obtain information about the larger data-

set with a simpler model. The explanation here follows Garćıa-Martos et al.

(2012). As there, once the common factors are obtained, univariate seasonal

ARIMA models are fitted to them. The forecasts of these models are then

combined to obtain one improved forecast.

Let yyy
t

be an N -dimensional observed time series vector, generated by an

R-dimensional vector of unobserved common factors with R ⌧ N . In the

Iberian and Italian electricity markets N = 24 and the matrix of observed

series has as many rows as days are considered in the historic data-set. As

in Lee and Carter (1992), it is assumed that vector yyy
t

can be written as a

linear combination of the unobserved common factors FFF
t

, plus a vector of

specific components or factors """
t

:

yyy
t

= ⌦⌦⌦FFF
t

+ """
t

, (2.1)

where⌦⌦⌦ is an N⇥R matrix of loads relating the set of R common unobserved

factors with the vector of observed series yyy
t

(the vector of the 24 hourly prices

for our application) and """
t

is anN -dimensional vector of specific components.

To estimate the factors FFF
t

, singular value decomposition (SVD) is used (as

in Lee and Carter, 1992) for the covariance of the 24 dimensional vector

of centred prices (Garćıa-Martos et al., 2012). This consists in calculating

the eigevalues and their associated eigenvectors, for the sample covariance

matrix, and thereupon calculating the matrix of common factors, fff , as a

linear combination of the time series: fff
T⇥R

= YYY
T⇥N

⌦̂̂⌦̂⌦
N⇥R

.

The common factors FFF
t

may be non-stationary, including regular or seasonal

unit roots in addition to auto-regressive and moving average (regular and

seasonal) components. These ARIMA(p, d, q) ⇥ (P,D,Q)s models are used

to obtain factors’ forecasts, and from them prices’ forecasts. For instance,
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the i-th factor at date t, F
it

, would be modeled by

(1� L)d(1� Ls)D�
i

(L)�
i

(Ls)F
it

= c
i

+ ✓
i

(L)⇥
i

(Ls)⌘
it

, (2.2)

where i = 1,2, . . . , R is the i-th factor, �
i
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i1
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i2
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�
ip

i
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Ls ��
i2
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i
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i

s), ✓
i
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i) , and ⇥
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i2

L2s � . . . � ⇥
iQ

i

LQ

i

s)

are polynomials, L is the lag operator such that LF
i,t

= F
i,t�1

. The roots

of |�
i

(L)| = 0, |�
i

(Ls)| = 0, |✓
i

(L)| = 0, |⇥
i

(Ls)| = 0, satisfy the usual

stationarity and invertibility conditions, and ⌘
it

⇠N(0,W
i

) are uncorrelated

E(⌘
it

⌘0
it�h

) = 0, h 6= 0 . It is also assumed that the error term of the common

factors ⌘
it

is uncorrelated with the specific components E(⌘
it

"0
t�h

) = 0, 8h.

c
i

is the constant of the model for the common factors and its inclusion

in the common factors model (2.2) can be particularly relevant to calculate

long-term forecasts in the non-stationary case, which is the case of electricity

prices. Furthermore, in this work the specific components are assumed to

be independent and have no dynamic structure along them (e.g. Peña and

Poncela, 2006).

It should be noticed that we work in two consecutive steps: firstly we esti-

mate the factors fff and secondly we estimate the ARIMA models like (2.2)

(�̂, �̂, ✓̂, ⇥̂ are estimated for each common factor f
i

). Morever, the estimation

of the first factor is the same when R = 1 or R > 1, which is natural con-

sequence of the SVD procedure. Nevertheless, the selection of R a↵ects the

forecasting errors for the series. The more factors are included (greater r),

the greater the variability of the data explained by the model. On the other

hand, the cost of incorporating more factors is an increase in the number of

parameters to estimate.

To summarize, a key stage when estimating this kind of models is the selec-

tion of the number of common factors, R, as well as the model they follow,
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which implies selecting the orders: p, d, q, P,D,Q. r could be obtained by

using existing tests such as the ones proposed in Peña and Poncela (2006) or

Bai and Ng (2002), and could also be selected such that diagnostic checking

results3 are reasonable (Alonso et al., 2011). However, alternative values

could satisfy these criteria. Because selecting one value for R and the other

parameters will likely not render the best results in every scenario, we will

instead keep the alternatives and combine their forecasts. Forecast Combi-

nation is presented in the following subsection.

2.2.2 Forecast Combination

Empirically, the improvements of using Forecast Combination instead of a

“best single model” have been shown for di↵erent types of models (for in-

stance see Poncela et al., 2011; Kuzin et al., 2012; Mart́ınez-Álvarez et al.,

2015), and in various research areas (Clemen, 1989; Stock and Watson, 2004).

However, Weron (2014) points out that Forecast Combination techniques

have not been fully exploited for electricity prices.

In general, we can think of the combination equation as follows:

ŷC
t+h|t =

KX

i=1

w(h)

t,i

ŷ(i)
t+h|t, (2.3)

where w(h)

t,i

is the i-th model weight at time t for the forecast horizon h, K

the total number of models considered, and ŷ(i)
t+h|t the forecast obtained with

the i-th model for the forecast horizon h.

Combinations will vary depending on the weights they use and the set of

models they include. There are classical and Bayesian techniques. In the

3Specific factors and errors of the observation equation must be uncorrelated between
them, and specific factors without any cross correlation.
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next subsections we briefly summarize the literature on both classical ap-

proach and an approximation to Bayesian combination, mentioning their

drawbacks and advantages. This will help us justify our methodological

proposal presented in Section 2.3.

2.2.2.1 Classical techniques for Forecast Combination

One easy way to obtain a Forecast Combination is the simple average, in

which all alternative forecasts are given the same weight. This approach

often works very well in comparison with more complex ones. One possible

reason for this is that ‘complicated combining methods pursuing “optimal”

behavior often lead to unstable weights and the combined forecast even per-

forms significantly worse than the individual forecasts’ (Yang, 2004). Al-

ternatively, a simple combination method outperforming more complex ones

might be explained by a larger variability of the latter (Yang, 2004). In

this regard, Bjørnland et al. (2010) advice to use a simple average when the

alternative models to combine have similar forecast error variance.

A di↵erent approach to assign weights consists of estimating weights that

minimize a loss function with the forecast error of the models to combine as

explanatory variables (Elliott et al., 2006).

A further option is a combination using only a subset d
m

of the best models.

Possible advantages of this approach are: to reduce the variability of the

combination (Yang, 2004) and to avoid under-weighting independent infor-

mation when the models are correlated (Bjørnland et al., 2010). The set d
m

could change through time depending on the most recent performance of the

models (Bjørnland et al., 2010)4, or it could be fixed (Swanson and Zeng,

2001).

4These authors evaluate model performance based on the sum squared errors. The
results they obtain with a time-varying subgroup of models outperform those of the simple
average of all the models.
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Another way to combine forecasts would be to employ the median prediction

(Kuzin et al., 2012). Alternatively, some authors employ a combination

regression of the form

y
t+h

= ↵
0

+
PX

i=1

↵
i

p
i,t

+ ✏
t+1

,

where y
t+h

is the forecast resulting from the combination and p
i,t

are the

predictions of the alternative models. Swanson and Zeng (2001) use the

Bayesian Information Criterion (BIC)(Schwarz, 1978) or the Akaike Infor-

mation Criterion (AIC) to select the best combination. There are also some

drawbacks to this regression based approach. Swanson and Zeng (2001) in-

dicate collinearity in the competing forecasts and over-fitting due to outliers;

Wright (2008) adds that while in-sample fit is improved, out-of-sample pre-

diction tends to be worse than using the average to combine. Poncela et al.

(2011) also outperform this type of model with combination techniques that

involve dimension reduction.

Even using complex combinations, empirical findings in Swanson and Zeng

(2001) suggest that, in some cases, the di↵erence between alternative com-

bination methods is not significant, a result that will also be obtained at

points in this work.

2.2.2.2 Bayesian techniques for Forecast Combination

With this approach, the predictive distribution of a new observation is ob-

tained by averaging with di↵erent weights the predictive distribution of each

model considered. The idea was initially introduced by Leamer (1978) and

allows to incorporate the uncertainty regarding the variety of available mod-

els (Leamer, 1978). It has been applied in statistics (Raftery, 1995; Raftery



Chapter 2 32

et al., 1997; Chipman et al., 2001) and econometrics (Koop and Potter, 2003;

Cremers, 2002).

According to Wright (2008), an advantage of Bayesian Model Averaging

(BMA) is that ‘One does not have to be a subjectivist Bayesian to believe in

the usefulness of BMA, or of Bayesian shrinkage techniques more generally. A

frequentist econometrician can interpret these methods as pragmatic devices

that may be useful for out-of-sample forecasting in the face of model and

parameter uncertainty’.

As Wright (2008) explains, the procedure takes under consideration a large

number of alternative models’ forecasts, assuming one of them is the ‘true’

data-generating model; however, the researcher is unaware of which one is

this. A prior regarding which model is the correct one is set, and then a

posteriori probabilities of the di↵erent models being the true one are obtained

to weight the predictions.

Alternative models’ weights can be time evolving. For instance, Billio et al.

(2011) work with weights that change depending on the predictive densities

past performance and learning mechanisms.

Following Wright (2008): let K be the total number of models M
1

, . . . ,M
K

.

The i-th model is related to the vector of parameters ✓
i

. The researcher has

a priori knowledge of the probability that the i-th model is the true one,

p(M
i

). Then the data, D, is observed and the probability is updated by

calculating the a posteriori probability that model i-th is the true one:

p(M
i

|D) =
p(D|M

i

)p(M
i

)
KP
i=1

p(D|M
j

)p(M
j

)

, (2.4)

where p(D|M
i

) =
R
p(D|✓

i

,M
i

)p(✓
i

|M
i

)d✓
i

is the marginal likelihood of the

i-th model, p(✓
i

|M
i

) is the a priori density of that model parameters vector,
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and p(D|✓
i

,M
i

) is the likelihood. Inference about a ‘future’ quantity � is

based on

p(�|D) =
KX

i=1

p(�|D,M
i

)p(M
i

|D). (2.5)

In particular, the mean of this posterior distribution can be used as fore-

cast. This procedure minimizes the Mean Squared Forecast Error (MSFE).

It is only necessary to specify the set of models, their priors p(M
i

), and the

parameters’ priors p(✓
i

|M
i

).

A disadvantage of this approach though, is that the conditional probabilities

are, in general, unknown. Therefore, they should be estimated from the

data, which could mean that any benefits of Forecast Combination are lost.

Often, all models will have equal a priori probabilities, i.e. p(M
i

) = 1/K. In

this case, as Raftery (1995) indicates, the posterior probability p(D|M
i

) is

proportional to exp(�(1/2)BIC
i

). Therefore, expression (2.4) can be written

as follows,

p(M
i

|D) ⇡ exp(�(1/2)BIC
i

)
KP
i=1

exp(�(1/2)BIC
i

)

. (2.6)

Expression (2.6) is easy to calculate and no prior densities need to be set

(Raftery, 1995). In this chapter, one of the Forecast Combinations will use

weights obtained as indicated in expression (2.6).

Notice that the selection of equal a priori probabilities is motivated by the

approach of using non-informative a priori probabilities. However, other a

priori probabilities can be considered and, in such cases, expression (2.6)

would be:

p(M
i

|D) ⇡ exp(�(1/2)BIC
i

)p(M
i

)
KP
i=1

exp(�(1/2)BIC
i

)p(M
i

)

. (2.7)
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In this chapter the goal is to derive some feasible and reasonable weights,

not to estimate conditional probabilities. Of course, it is to be expected

that clever a priori probabilities would produce better weights in the sense

of better forecast performance.

2.3 Methodology

Taking into account the limitations of existent approaches in dimensional-

ity reduction, most importantly the issue of selecting a number of common

underlying factors r, as well deciding for a ‘best’ model for them; and given

the advantages of Forecast Combination revisited in the previous sections,

our methodological proposal consists of averaging the forecasts of alternative

models for each factor.

This allows to capture the factors underlying the behavior of large data-sets,

avoiding the risk of committing to a particularly ‘bad’ specification for them.

That is why we consider that this approach improves previously mentioned

solutions to open problems described along sections 2.1 and 2.2.

The complete prediction procedure can be summarized in the following steps,

repeated for each window of time in the data-set. Notice that each window of

time provides a historical data-set as well as out of sample data with which

the forecasts will be compared.

For each window of time, the factors underlying the data are estimated by

means of SVD, as explained in Section 2.2.1. There are as many common

factors as time series in the data-set, N . However, the purpose of applying

dimensionality reduction techniques is to be able to describe the data by

means of a much smaller number of variables, thus R << N . There are many

criteria for estimating the value R that would best represent the underlying
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Select a window of time (considering a historical length)

Use SVD to calculate the weights and derive the common factors,
fff
1

and fff
2

(we work with models of one and two common factors)

Estimate 36a alternative seasonal ARIMA models for each factor

Calculate forecasts employing the estimated
seasonal ARIMA models, f

1,t+h

and f
2,t+h

Transform to competing forecasts of hourly prices using either one
factor (ŷ

T+h

= !
1

f
1,T+h

) or two factors (ŷ
T+h

= !
1

f
1,T+h

+ !
2

f
2,T+h

)

Combine forecasts according to Equation (2.3)
a36 = alternatives for p⇥alternatives for q⇥alternatives for
P⇥alternatives for Q.

trends in the data. In this regard, a contribution of this work is that, instead

of committing to one of them, the possibility of estimating several models

is explored. For this reason, at least two settings are estimated: on the one

hand r = 1, which means that only the most representative underlying factor

is used to forecast; and on the other hand r = 2, which means that the first

and second most important underlying factors are estimated and employed

to obtain forecasts. Based on the percentage of the total variability explained

by the common factors, having up to r = 2 in the case of the Iberian data

corresponds to explaining about 80% of the total variability. However, for

the Italian data we need r = 3 to achieve a similar result in terms of the

percent of variability explained. Therefore, we incorporate the option of

having up to three common factors in the models, and the steps described

should accommodate a third factor fff
3

for this data-set.

As indicated in the flowchart, the next step consists of estimating models
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for the factors. The literature review performed in this work reveals that

it is di�cult, if not impossible, to find a model that by all criteria would

outperform all others. Even more, a good fit does not guarantee an accurate

forecasting performance. To overcome these di�culties, our proposal con-

sists of fitting 36 ARIMA specifications for each estimated factor, in lieu of

selecting a ‘best’ set of parameters. These specifications result from the fol-

lowing parameters: p = {1,2,3}, d = {0}, q = {1,2,3}, P = {0,1}, D = {1},

Q = {0,1}, s = 7. Additional values of the parameters (for example, p > 3)

are excluded because they increase the computational burden but do not

provide a relevant improvement in results.

After forecasts are estimated for all the options of factors (either one, two, or

three) and ARIMA models, they are transformed to forecasts for the original

variables by means of a multiplication by the matrix of weights following

expression (2.1). This will render many forecasts for the data, which will be

combined to present with a single forecast for each variable of the original

data-set.

2.3.1 Forecast Combinations and Accuracy Metrics

We consider five alternative combinations (2 to 6 below) and compare them

to a benchmark (1 in the next enumeration):

1. Forecast resulting from the benchmark model (‘BIC-selected model’ for

future reference). This is the best model according to the BIC (has

the lowest BIC). Selecting only one model is equivalent to assigning it a

weight w
i

= 1 in (2.3) and w
i

= 0 for all other models. The superscript

(h) has been eliminated from expression (2.3) because weights will not be

adaptive to the forecasting horizons and subscript t has also been omitted

to avoid confusion with time-varying weights.
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2. Forecast calculated as the median of the forecasts of all the models

(‘median-based combination’). This is also a case of weights w(h)

i

= 1

for the model with the median forecast and w(h)

i

= 0 for all other models.

3. Forecast equal to the mean of all forecasts (‘mean-based combination’).

In this case, expression (2.3)’s weights are all equal w
i

= 1/K, where K

is the total number of models in the analysis.

4. Forecast obtained using BIC-based weights as in expression (2.6) (‘BIC-

based combination’). This approach involves equal a priori probabilities.

Other sensible sets of a priori probabilities were considered and similar

results were obtained.

5. Forecast obtained with BIC-based weights for the top 50% models (‘BIC-

50% combination’). In other words, half of the models are included ac-

cording to their BIC criterion w
i

= p(M
i

|D) of expression (2.6), and for

the half that has the largest BIC values, w
i

= 0. Let us recall that the

BIC evaluates the fit of the model, not how accurate it is when used to

forecast.

6. Forecast calculated as the mean of the forecasts of the top 50% models

(‘mean BIC-based combination’). Only half of the models are included

(the ‘best’ half models depending on their BIC), and the Forecast Com-

bination is simply their average. In other words, the 50% models with

the lowest BIC are assigned weights w
i

= 2/K and the 50% models with

the greatest BIC are assigned weights w
i

= 0.

In order to evaluate forecasts and assess the most appropriate combination,

we need to define a forecasting accuracy metric. We can evaluate the fore-

casts’ accuracy by means of several alternative metrics, see Conejo et al.

(2005); Hyndman and Koehler (2006); Weron (2014) for detailed reviews.

Some of them are the relative forecast error and the Mean (and Median)
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Average Percentage Error (MAPE). However, these measures are not valid

when the data have negative and/or positive, but close to zero, values (Hyn-

dman and Koehler, 2006), a frequent occurrence for many electricity markets

(Bello et al., 2016; Monteiro et al., 2015, deal with the issue of forecasting

extreme prices in the Spanish electricity market).

Therefore, we use the Mean Absolute Error (MAE) and Median Absolute

Error (MedAE). They can be obtained as follows,

MAEi

⌧

=
1

m

⌧+mX

z=⌧+1

(
1

24

24X

h=1

|(y
h,z

� ŷi
h,z

)|) (2.8)

and

MedAEi

⌧

=
1

m

⌧+mX

z=⌧+1

(median(|y
h,z

� ŷi
h,z

)|)), (2.9)

where m is the number of days in the out-of-sample period, sub-index h is

the hour, and ⌧ is the last observation of the rolling window employed to

estimate the model used to compute the forecasts. The error is defined as

the di↵erence between y
h,z

, the actual price at hour h for z steps ahead, and

the forecast of model or technique i, ŷi
h,z

.

Additionally, in order to simplify the comparison between the benchmark

and Forecast Combinations, the Relative MAE (RelMAE) will be computed.

Following Hyndman and Koehler (2006), we calculate it as follows,

RelMAEi

⌧

= MAEi

⌧

/MAEb

⌧

, (2.10)

where b indicates the benchmark model (BIC-selected model). As indicated

in Hyndman and Koehler (2006), whenever RelMAEi

⌧

< 1 the forecast pro-

vided by the i-th combination is better than the one provided by the bench-

mark and the opposite happens when RelMAEi

⌧

> 1.
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2.4 Results

2.4.1 Data

We study two data-sets of electricity spot prices, one for the Iberian mar-

ket, which includes Spain and Portugal5 (July 2006 - December 2012) and

the other one for the Italian market (January 2008 - December 2012). To

illustrate the behavior of these prices, a few representative time series are

plotted. Figure 2.1a, corresponds to the Iberian market, while Figure 2.1b,

corresponds to the Italian market. Both figures present hours 4, 9, 12, and

20, for the last six months of 2012. In each figure there is a common pat-

tern in the evolution of the hourly series, which is what the common factors

attempt to capture.

2.4.2 ANOVA for Comparison of Alternatives for Mod-

eling

We rely on Design of Experiments (DOE) techniques to assess which is

the forecasting methodology that produces the smallest error, measured by

MAE, in the forecasts of electricity prices. We consider the following factors:

• Logarithm: this factor has two levels, Logarithm= {No, Yes}. Loga-

rithm= No when we use the prices in the same way they are reported

(e per MWh). Logarithm= Yes means that we work with ln(prices).

Taking logarithm has the effect of producing time series with less volatil-

ity.

5Nogales et al. (2002) indicates that for the Spanish market there is more uncertainty
in hours of high demand than in hours of low demand, which affects the accuracy of
forecasts for those hours.
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(b) Italian market.

Figure 2.1: Electricity day-ahead prices for four representative hours
during the last semester of 2012.

• Historical Length: this factor indicates how long is the dataset em-

ployed in each rolling window. It has two levels, Historical Length=

{308 days, 548 days}. Historical Length= 308 days indicates that the

common factors are extracted from series of prices with an extension
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of 44 weeks (Garćıa-Martos et al., 2012). Historical Length= 548 days

(time series that extend for 1.5 years), supporting the well known idea

that the estimation of common factors benefits from extensive data, but

not so extensive as to include sub-periods with large di↵erences in the

variance explained by the common factors (an example of sub-periods

with di↵erent co-movements is in Poncela et al., 2014).

• Moving Average (MA): this factor has two levels, MA= {No,Yes}. MA=

No makes reference to a forecasting methodology in which the common

factors are fitted with AutoRegressive-Integrated (ARI) models. MA=

Yes instead, allows greater complexity since in this case the common fac-

tors are modeled as having an AutoRegressive-Integrated-Moving-Average

(ARIMA) behavior.

• Forecast Combinations : this factor has six levels, Combinations= {1, 2,

3, 4, 5, 6} which were described in Section 2.3.1.

To compare these features, we have performed a computational experiment in

which we computed one-day-ahead to two-month-ahead forecasts for every

hour and day. This involves estimations for every day during five years

(Iberian data), or three and a half years (Italian data), long periods of time

that allow validating the results. There are 2 ⇥ 2 ⇥ 2 ⇥ 6 = 48 treatments

resulting from combining all the levels of the aforementioned factors.

We analyze separately the performance of out-of-sample forecasts for various

forecasting horizons: one-day-ahead (forecasting horizon h = 1), one-week-

ahead (h = 7), one-month-ahead (h = 30), and two-month-ahead (h = 60).

The goal is to select the treatment which results in the smallest forecasting

error possible (measured by MAE) for each of these forecasting horizons h.

Furthermore, given the fact that forecasts have been computed for a large

number of days, the particular Day could also explain some significant part
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of the variability of the response variable, MAE. For instance, if the prices

in one day are rather unexpected for being too low or high, the MAE will be

large, whatever the values for Logarithm, Historical Length, Moving Average

(MA), and Forecast Combinations. Therefore, Day is considered as a block

in the computational experiment. This helps remove a likely correlation

between forecasting errors.

An ANOVA with four factors and one block is conducted to compare the

alternative forecasting methodologies (see Montgomery, 1984, for a complete

reference on ANOVA and Design of Experiments).

The equation of the model is:

MAE
ijkld

= µ+ ↵
i

+ �
j

+ �
k

+ �
l

+ ✏
d

+ u
ijkld

, (2.11)

u
ijkld

⇠ NIID(0, �2

u

),

where µ is the grand mean and ↵
i

, �
j

, �
k

, �
l

, and ✏
d

are known as the main

e↵ects of the factors Logarithm, Historical Length, Moving Average (MA),

Forecast Combinations, and the block Day, respectively. For instance, the

main e↵ect �
l

measures the increase or decrease of the average response of the

Forecast Combinations l = {1,2,3,4,5,6} with respect to the average level.

Similar interpretations apply for the rest of the e↵ects. This is related to

the restrictions
P

i={No,Yes} ↵i

= 0,
P

j={308,548} �j

= 0,
P

k={No,Yes} �k = 0,
P

6

l=1

�
l

= 0, and
P

D

d=1

✏
d

= 0 (D represents the total number of days with

forecasts, this is D = 1 767 for the Iberian data and D = 1 219 for the Italian

data).

The noise term u
ijkld

includes all that is not explicitly taken into account in

the model, but that somehow is able to explain some of the variability of the

response variable MAE
ijkld

.
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Since it is assumed that the error term u
ijkld

is Gaussian, independently and

identically distributed, with zero mean and variance �2

u

, once the model has

been estimated, a diagnostic checking must be performed, testing that the

bu
ijkld

are homoskedastic, Gaussian and independent, where

bu
ijkld

= MAE
ijkld

� bµ� b↵
i

� b�
j

� b�
k

� b�
l

� b✏
d

.

The ANOVA is conducted for each forecasting horizon and the results are

summarized in the next Section 2.4.2.1 and fully described in Appendices

A.1 and A.2. In all the cases, the response variable was transformed after a

first attempt to fit a model to the MAE
ijkld

because the residuals were het-

eroskedastic. The results shown hereafter consider the ln(MAE
ijkld

) as the

response variable. Given that the logarithm is a monotonically increasing

function, the results can be interpreted directly, and the best model corre-

sponds to the smallest ln(MAE
ijkld

), while the worst model to the largest

ln(MAE
ijkld

).

Often, in practice the Gaussianity assumption for the ANOVA residuals does

not hold. Therefore, the p-values to assess whether the Design of Experiment

factor e↵ects are significant or not are recalculated employing bootstrap,

following Davison and Hinkley (1997). Likewise, the confidence intervals

for the mean of the main e↵ects are obtained employing bootstrap. See

Appendix A.3 for further detail on the bootstrap procedures employed.

2.4.2.1 Summarizing the Conclusions from the ANOVA

For the Iberian data-set, for all the forecasting horizons considered, taking

Logarithm of prices does not make a di↵erence in performance. Regarding the

Historical Length of the data, the short window of 308 days is preferred for

the forecasting horizons of 1 and 7-day-ahead (forecasts for the short term)
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while the long window of 548 days is preferred for the forecasting horizons of

30 and 60-day-ahead (long term forecasts); this is consistent with the results

in Alonso et al. (2011). Furthermore, the Moving Average terms for the

factor models are statistically significant for all forecasting horizons, which

means that modeling the common factors as ARIMA reduces the error in

comparison to modeling them as ARI.

Regarding the Forecast Combinations, the median-based combination, mean-

based combination and mean BIC-based combination result in better fore-

casts than the benchmark BIC-selected model and the other combinations

available for most forecasting horizons (h = 7 onward). However, it is not

clear that one of these three is best: the confidence intervals for the median-

based combination, mean-based combination and mean BIC-based combina-

tion usually overlap, indicating no significant di↵erence between them.

In the case of the Italian data-set, employing Logarithm = Yes contributes to

reduce the forecasting error for all the horizons considered. The Historical

Length behaves di↵erently than the way it does for the Iberian data-set

for h = 30, for which case it is convenient to set it to 308 days instead

of the 548 days that are suggested for the peninsula. MA is also a factor

which contributes to reduce the forecasting error, for any forecasting horizon

considered. As it occurs with the results for the Iberian electricity prices,

Forecast Combinations 2, 3 and 6 reveal better results than the benchmark,

and it is also not clear that any of the three would be better than the

other two in all scenarios. On the contrary, Combinations 4 and 5 fail to

outperform the benchmark, specially for the long-term forecasting horizons.

For details of the ANOVA results for each forecasting horizon see Appendices

A.1 and A.2 for the Iberian and Italian markets, respectively.
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2.4.3 Electricity Prices Forecasting

In this section, the results of the Forecast Combinations are presented, in

comparison with the best model selected by the BIC information criterion6.

Forecasts are calculated for a long period, for each day and hour. The

next paragraphs describe technical details involved in estimation. Subsection

2.4.3.1 sheds light on the results involved in the estimation of each rolling

window and Subsection 2.4.3.2 presents the results for all days and hours for

up to 60-day-ahead forecasts.

Prices are transformed using logarithms to mitigate the existing heteroskedas-

ticity, present in most commodity prices’ time series. Therefore, the series

modeled are yyy
t

= ln(PPP
t

+ k), where PPP
t

represents the vector of 24 prices for

day t and k = 1 000.

Most of the literature focuses on short-term forecasts (Nogales et al., 2002),

but we focus on medium- and long-term forecasting in order to provide with

complementary insights. In this case, forecasts of specific components are

negligible. Therefore, we do not model these, but only the unobserved com-

mon factors, which explain the larger portion of the variability and capture

the trend of the series in the long-run. This is in line with the results in

Alonso et al. (2011). The prediction horizon will vary from 1 to 60 days, and

once the factor(s) are modeled and predicted, the loading matrix is used to

obtain the forecasts of the original 24-dimensional vector of prices. Then,

the out-of-sample performance of the forecasts is evaluated.

We work with rolling windows of Historical Length= 548 days, the best

length for medium- and long-term forecasts according to the previous section;

6This model may have one or two common factors for the Iberian data and a third
factor as well for the Italian case, and each common factor extracted is modeled with a
seasonal ARIMA model with parameters selected by BIC. The model is selected anew in
each window.



Chapter 2 46

and estimate one and two common factors for the Iberian data-set and also

a third factor for the Italian data-set.

In each window, 36 alternative seasonal ARIMA(p, d, q)⇥ (P,D,Q)s models

are estimated for each factor: p = {1,2,3}, d = {0}, q = {1,2,3}, P = {0,1},

D = {1}, Q = {0,1}. Weekly seasonality is included in the model, s = 7,

but yearly seasonality is not. This follows Alonso et al. (2011), who found

no improvement in the prediction error when modeling yearly seasonality in

the Iberian market, using a similar length of time for the estimation.

Therefore, in the Iberian case there are 36 models that use only one factor

and 1 296 models that use two factors; a total of 1 332 di↵erent models,

depending on how many factors they include and the parameters of the

ARIMA(p, d, q) ⇥ (P,D,Q)s. For the Italian data-set, because up to three

common factors are estimated, the total number of models for any rolling

window is 47 988 (36 models that use only one factor, 1 296 models that use

two factors, and 46 656 models that use three factors). These figures make it

unfeasible to check the residuals’ behavior for each ARIMA model estimated;

notwithstanding, TRAMO, the software employed to calculate the ARIMA

models, estimates the p-value of the Ljung Box statistic for each model

and shows acceptable values for most cases. Additionally, three of the five

Forecast Combinations under consideration are based on BIC, so “badly”

behaved models (poor fit will be associated to a high residuals variance) will

be assigned small or negligible weights in the final forecast. Furthermore, the

median-based combination is not a↵ected by outliers due to “badly” behaved

models. Only the mean combination may be a↵ected by them but, based

on Tables 2.3 and 2.4, median and mean combinations reveal similar results.

If there were fewer models or the analyses were limited to a shorter period,

residual checking could be performed before forecast averaging. In that case,

it would be reasonable to obtain slightly better results.
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Notwithstanding the large number of models, the estimation for each in-

dividual window of time takes only a few minutes; therefore, the procedure

could be used in real time. Additionally, even though with such a large num-

ber of models some will be superfluous, the combinations that use weights

depending on the BIC will assign them nearly null weights.

For the Iberian market, the complete data-set comprises the period July,

2006, to December, 2012. The data before 2008 is only used as historical

data, therefore the first predicted day is January 1st, 2008 and the last one

December 31st, 2012. Thus, there is a total of 1 767 time rolling windows,

corresponding to 1 827 days in January 1st, 2008-December 31st, 2012 minus

60 days needed for out-of-sample data (used to compare with up to two-

month-ahead forecasts). This data is provided by the market operator (See

Conejo et al., 2010a, for details on the role of the market operator), OMIE

(Iberian Market Operator). For the Italian market, on the other hand, the

complete data-set includes January, 2008 to December, 2012. Therefore, the

first predicted day is July 2nd, 2009 and the last one December 31st, 2012.

There are 1 219 rolling windows in total corresponding to 1 279 days in July

2nd, 2008-December 31st, 2012 minus 60 days needed for out-of-sample data.

The prices for the Italian electricity market are available in the website of

the market operator, GME (The Energy Markets Operator).

2.4.3.1 Illustration in a Single Forecasting Window

Before proceeding with the presentation of the results, this subsection is used

to gain insight into the role of the common factors, as well as the forecasting

combinations. With this aim, the estimation for one window of the Iberian

data-set is analyzed in further detail.

The role of the underlying factors is hereby clarified. Considering as an exam-

ple the first rolling window in the estimation for the Iberian data-set, Figure
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2.2 presents the first and second common factors, as well as the weights as-

signed to them for each of the 24 hours. For the first factor, which explains

64.6% of the data variability, weights are heavy from hours 8 to 24, when

most people are awake. Then, it is possible to interpret that this factor

mainly records the general behavior of prices during hours when people are

awake. On the other hand, the weights of the second factor are positive from

9 to 18 and negative otherwise. This coincides with usual working hours or,

alternatively, sunlight hours. Therefore, the second factor, which accounts

for 13.8% of the data variability, would capture changes in the price relation

of working vs. non working hours. In a way, the factors are distinguish-

ing between peak and o↵-peak hours, which sometimes are modeled as two

groups (Conejo et al., 2010b). Notice that some models would include only

the first factor, while others will include the first and second common fac-

tors. Models with more factors have been excluded from the analysis for the

Iberian electricity prices (setting r  2) because already around 80% of the

data variability is explained by two factors.
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Figure 2.2: Common factors and their weighs, first rolling window of
the Iberian data-set (Historical Length= 548 days).
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Figure 2.3: BIC criteria for models with one and two common factors of
the first rolling window of the Iberian data-set (Historical Length = 548

days).

The massive estimations performed make it unfeasible to provide with the

estimation results for each of the 1 332 models and for each of the 1 767

rolling windows of time. However, as an illustration, for the first rolling

window, taking for example the first factor and the ARIMA model of order

p = 1, q = 1, P = 0, Q = 0, the coe�cients are the following: � =0.7145,

✓ =-0.1319, both significant.

To shed some light on how the alternative models enter the combinations,

Figure 2.3 presents the BIC values for the 1 332 previously mentioned models.
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For illustrative purposes, also the first rolling window of the Iberian data is

employed. The horizontal axis corresponds to the indexes of the models.

The first 36 values (X axis from 1 to 36) represent models with only one

factor (r = 1), starting with parameters p = 1, q = 1, P = 0, Q = 0 for

X axis= 1, then p = 1, q = 1, P = 0, Q = 1 for X axis= 2, until p = 3,

q = 3, P = 1, Q = 1 for X axis= 36. X axis 37 to 1 336 correspond to

models with two factors (r = 2), we can see an important reduction of the

BIC for these models. In X axis= 1 336 the order of the ARIMA models for

the two factors coincide, p = 3, q = 3, P = 1, Q = 1. For BIC dependent

combinations, the smaller the BIC value, the greater that model’s weight. In

this way, better performing models are rewarded. It is clear that there are

some models with predominant low BIC (i.e. high weights). Of course, if

all considered models had poor goodness of fit, then it would be reasonable

that the combinations would inherit that bad performance. The claim in

this work is that those combinations would be, at least, as good as the best

considered model.
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2.4.3.2 Forecasting Results

Given that, according to the ANOVA, many of the combinations resulted

significantly better than the benchmark, in this section we study more closely

those improvements. As it was previously indicated, in this section we work

with DOE’s factors that have the following characteristics: Logarithm =

Yes, Historic Length = 548 days, and MA = Yes. We will consider all the

Combinations.

Tables 2.1 and 2.2 present some descriptive statistics of interest for the daily

average MAE (expression (2.8)). As expected, the error increases with the

forecasting horizon h, for all the forecasts available and for both markets.

For h = 1, the Combinations do not usually do better than the benchmark

model, either comparing means or quartiles. Though this may seem contra-

dictory to the ANOVA’s findings, it is not: as we explained in subsection

2.4.3.1, we are not employing the suggested values for the DOE factors for

short-run forecasts. The ANOVA’s outcomes indicate an advantage of using

the short Historic Length, which we do not do here. The reason for this is

to focus on the performance of a particular specification, which in this case

reflects an interest in medium- and long-run forecasts rather than short-run

forecasts.

On the contrary, we find that, for longer forecasting horizons (h � 7), the

Combinations consistently render smaller errors than the benchmark. In

particular, Combinations 2, 3 and 6 perform well in these horizons, for both

data-sets.

For evaluating the performance of the Combinations in direct comparison

to the benchmark we use the relative MAE (RelMAE). This is presented in

Figures 2.4a and 2.4b. For most forecast horizons considered, all combina-

tions of forecasts included hereby outperform the best factor model selected
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Table 2.1: Descriptive statistics for MAE. Iberian Market.

Forecasting BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
horizon model Combination Combination Combination Combination Combination

mean 5.3389 5.3617 5.4107 5.3346 5.3346 5.3276
h=1 Q1 3.2591 3.2709 3.2850 3.2632 3.2632 3.2496

Q2 4.5014 4.5198 4.5973 4.4970 4.4970 4.4989
Q3 6.3009 6.3391 6.3991 6.2910 6.2910 6.2734

mean 6.3261 6.1562 6.1648 6.3142 6.3142 6.1400
h=7 Q1 3.6423 3.5485 3.5326 3.6457 3.6457 3.5344

Q2 5.1323 4.9770 4.9612 5.1261 5.1261 4.9754
Q3 7.4496 7.4044 7.3966 7.4500 7.4500 7.3105

mean 7.8677 7.5395 7.5531 7.8411 7.8411 7.4725
h=30 Q1 4.4447 4.2406 4.2163 4.4416 4.4416 4.1877

Q2 6.3851 6.1435 6.1057 6.3668 6.3668 6.0195
Q3 9.8775 9.5081 9.5525 9.8372 9.8372 9.3183

mean 9.5120 9.1545 9.1496 9.4938 9.4938 9.0772
h=60 Q1 5.2904 4.8470 4.8116 5.2651 5.2651 4.7933

Q2 7.7493 7.2159 7.2676 7.7290 7.7290 7.2704
Q3 11.5845 11.4665 11.4378 11.5386 11.5386 11.2074

Table 2.2: Descriptive statistics for MAE. Italian Market.

Forecasting BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
horizon model Combination Combination Combination Combination Combination

mean 7.7263 7.8204 7.8829 7.7198 7.7198 7.7104
h=1 Q1 4.9388 4.9486 4.9366 4.9253 4.9253 4.8800

Q2 6.5024 6.5837 6.5857 6.5053 6.5053 6.4864
Q3 9.0010 9.2146 9.3917 9.0167 9.0167 9.0471

mean 8.9553 8.8204 8.8323 8.9451 8.9451 8.7682
h=7 Q1 5.3898 5.2714 5.2710 5.3849 5.3849 5.3467

Q2 7.3988 7.2220 7.2518 7.4005 7.4005 7.2698
Q3 10.4787 10.3937 10.3449 10.5152 10.5152 10.1510

mean 10.6954 10.4080 10.4516 10.6815 10.6815 10.3378
h=30 Q1 6.3428 6.1296 6.1021 6.3335 6.3335 6.1352

Q2 8.9068 8.4948 8.5843 8.9069 8.9069 8.4545
Q3 13.1087 12.5893 12.7182 13.0952 13.0952 12.4662

mean 12.2726 11.7872 11.8268 12.2225 12.2225 11.7028
h=60 Q1 7.3961 7.2301 7.3933 7.4088 7.4088 7.2269

Q2 10.6249 10.0720 10.0532 10.5705 10.5705 10.0262
Q3 15.1359 14.2388 14.1938 14.9273 14.9273 14.1697

by the BIC (RelMAE< 1). Though for the very short time, the median-

based and mean-based Combinations are worse than the benchmark, they

outperform it in the medium- and long-run, which is the aim of this section’s

exercise. The mean BIC-based Combination is better than the others for all

forecasting horizons and for both data-sets. After a certain h, the perfor-

mance of the Combinations relatively to the benchmark becomes stable as

the forecasting horizon increases, an advantage when the focus is obtaining

accurate forecasts in the long-run. On the contrary, the vast majority of
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methods proposed in the literature are only appropriate for short-term fore-

casting, because their performance dramatically degrades when extending

the forecasting horizon.
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Figure 2.4: Relative MAE, forecast horizon from 1- to 60-day-ahead.
Values smaller than one indicate a result outperforming the benchmark.
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Table 2.3: Weekly, monthly, and bi-monthly MAE and MedAE for the
Iberian Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
MAE 5.9455 5.8690 5.8965 5.9384 5.9384 5.8397
MedAE 5.3515 5.2433 5.2677 5.3444 5.3444 5.2275

Monthly
MAE 6.9069 6.6952 6.7097 6.8934 6.8934 6.6526
MedAE 6.3635 6.1179 6.1367 6.3484 6.3484 6.0882

Bi-Monthly
MAE 7.8184 7.5456 7.5512 7.8014 7.8014 7.4867
MedAE 7.3047 7.0081 7.0157 7.2844 7.2844 6.9539

Table 2.4: Weekly, monthly, and bi-monthly MAE and MedAE for the
Italian Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
MAE 8.5488 8.4687 8.5109 8.5418 8.5418 8.3989
MedAE 7.2800 7.2110 7.2525 7.2752 7.2752 7.1404

Monthly
MAE 9.7019 9.5744 9.6197 9.6902 9.6902 9.4794
MedAE 8.3685 8.2531 8.3021 8.3579 8.3579 8.1718

Bi-Monthly
MAE 10.6000 10.3025 10.3310 10.5779 10.5779 10.2186
MedAE 9.1880 8.9105 8.9379 9.1656 9.1656 8.8332

Last, in Tables 2.3 and 2.4, the MAE and MedAE for the BIC-selected model

and for the alternative Combinations are presented for weekly, monthly and

bi-monthly forecasts7. Results are consistent with those of the previous

tables. Similar outcomes were obtained with a di↵erent accuracy metric, the

Root Mean Squared Error (RMSE, see Appendix A.4 for details) (Hyndman

and Koehler, 2006).

In conclusion, there is an improvement in prediction when using Forecast

Combinations, specially median-based, mean-based, and median-BIC-based

Combinations, in comparison with the best model selected according to the

BIC criterion. Even though the decrease in the errors is small, it is steady,

7Weekly values are obtained by dividing the average of the week (the MAE of horizons
h = 1 to h = 7) by the forecasting horizon (h = 7). Similarly for the monthly and
bi-monthly values.
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supporting the conclusion obtained in the ANOVA, in which some combina-

tions are statistically significant better than the benchmark.

2.5 Concluding Remarks

In this chapter, Factor Models and Forecast Combination techniques have

been jointly employed to obtain predictions of spot market electricity prices

in the Iberian and Italian Markets. The main contribution consists, there-

fore, of combining two streams of literature in order to obtain forecasts that

outperform those resulting from the individual models. In this respect, there

are three combinations that clearly outperform the benchmark: the median-

based combination, the mean-based combination, and the mean BIC-based

combination. This conclusion is supported by the ANOVA of the combi-

nations for forecast horizons 1-day-ahead, 7-day-ahead, 30-day-ahead and

60-day-ahead.

In the process of trying to obtain the best possible results, di↵erent aspects

of the available models were compared. In this regard, the main conclusions

are that longer historic data-sets benefit longer forecasting horizons and the

error is reduced by the inclusion of MA terms when modeling the unobserved

factors (vs. AR models).

This application reflects how the methodology works in empirical applica-

tions. The numerical results for electricity prices, which is a di�cult to

predict series, are good. An e↵ort has been made to obtain the results for

many time horizons (h = 1 to h = 60), for every day and during several years

and considering several models for the factors, enhancing the validity of our

proposal. In order words, forecasts are obtained for the very short (one day)

and short term (a few days ahead), like most of other works, as well as for

the medium term, which is an extension not customary in the literature. As
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previously explained, this approach can be employed to obtain long term

forecasts not experiencing a degradation of accuracy, which is a drawback

that most applications su↵er from.

Numerous lines of research remain open in relation with this topic. For in-

stance, in this work, few techniques for combining forecasts are employed

besides the mean, and weights depend on the overall performance of the

particular model to be used in the combination in terms of the BIC infor-

mation criterion. However, there are several other, Bayesian and classical

techniques to determine such weights. In particular, it would be interesting

to compare the performance of both types of techniques. Moreover, in this

article we have worked with fixed weights; however, these could change in

a predefined way for di↵erent forecasting horizons. Furthermore, weights

could be adaptive to the performance of the models (as in Sánchez, 2006).

The use of ARIMA models for the common factors allows to maintain the

number of parameters to estimate low, but it may also signify a constraint in

the improvement that can be achieved from the combinations of forecasts. A

future line of work would be to include other models for the factors, such as

the SeaDFA, which assumes that vector F
t

follows a VARIMA model, mod-

eling heteroskedasticity in the common factors (Garćıa-Ferrer et al., 2012;

Pascual et al., 2004, for obtaining prediction intervals), or even including

scenarios for pool prices (Pineda et al., 2009).

It is also left for future work to incorporate in the Forecast Combination

other forecasting methods, not necessarily involving FM. For example, the

predictions obtained by Garćıa-Martos et al. (2007) mixed model, which

presents extremely accurate short-term predictions for the Iberian market.

With weights evolving for di↵erent time-horizons, including this model for

short-term predictions could improve the results.
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A further improvement could consist of employing explanatory variables that

drive spot prices as well as other type of models. Some examples could be in-

cluding data for demand, weather conditions, fuel prices, excess capacity, and

prices of the futures markets (when these are developed and liquid enough).

Interesting references in these fields are Bello et al. (2016), Monteiro et al.

(2015), Cosmo (2015), and Conejo et al. (2010b). It would also be interesting

to include models with stochastic producers: Iversen et al. (2014) and Iversen

et al. (2016) forecast wind power and solar irradiance and estimates their as-

sociated uncertainty. Participation in regulation and adjustment markets

is not considered in this work either (Conejo et al., 2010a; Morales et al.,

2014) . However, it would be necessary to assess if the uncertainty in the

prediction of the explanatory variables does not outweigh the improvement

in the forecast of the price. In a similar line of research, regime switching

models could be employed to deal with spikes in the price series.

Last, bootstrap procedures could be used to obtain confidence intervals of the

predictions and in this way assess the uncertainty involved in the forecasts.
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Bias Correction for Factor

Models

3.1 Introduction

Dimensionality reduction techniques have been employed for decades in the

context of multiple time series data-sets because “when the series are driven

by a set of common factors, (a) a large number of parameters may be needed

to obtain an adequate representation of the system and (b) the estimated

parameters will be highly correlated. Therefore, a complex and badly defined

relationship can appear when, in fact, a simpler and parsimonious model in

terms of a few common factors can be operating.” (Peña and Box, 1987).

This idea that large sets of time series can be modelled and forecast by

using only a few variables that integrate information of all the data has been

successfully applied in diverse research fields. Some examples are:

60
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• Commodities’ prices: Peña and Box (1987) extract common factors

from wheat prices of di↵erent regions, Alonso et al. (2011), Garćıa-

Martos et al. (2012), and Alonso et al. (2016) use dynamic factors for

electricity prices, Garćıa-Martos et al. (2013) employ dynamic factors

to model the volatility of electricity, fuel, and CO
2

, and Poncela et al.

(2014) work with one common factor for non-fuel commodities;

• Macroeconomic variables: Stock and Watson (2002) apply principal

components to 149 economic indicators, Sargent and Sims (1977) work

with index models in the context of business cycles, Forni et al. (1999)

combine dynamic principal components and dynamic factor analysis to

estimate economic activity indexes;

• Demographic variables: Lee and Carter (1992) use singular value de-

composition to estimate indexes that help forecast age specific mortal-

ity in the US, Alonso et al. (2008) employ a dynamic factor model for

mortality and fertility rates of the Spanish population.

In an iterative process, we can obtain forecasts for common factors, that

allow to obtain forecasts for the original data-set or for other dependent

variables. To obtain these forecasts, the common factors are modelled to

follow, for instance, ARIMA models (Jeong and Bienkiewicz, 1997; Garćıa-

Ferrer et al., 2011; Garćıa-Martos et al., 2012) or VAR and VARIMA models

(Stock and Watson, 2002; Alonso et al., 2011; Peña and Poncela, 2006).

In this work we focus on modelling the common factors by means of AR

models because we want to study one feature in particular: small sample

bias-correction of nearly non-stationary AR coe�cients. This aspect has

been explored, among others, by Clements and Kim (2007), Roy and Fuller

(2001), and Clements and Taylor (2001). However, to the best of our knowl-

edge, it has not been studied in the context of factor models, even though
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it is not unusual to find highly persistent common factors. Some examples

of this can be found in Alonso et al. (2011), for electricity prices of the

Spanish market; and Gregory and Head (1999), for macroeconomic relations

between investment, productivity and the current account in a multi-country

setting. A simulation exercise will show that the improvements of employing

the aforementioned corrections do not fade when the factors’ forecasts are

transformed back (through the estimated relation data series-factors) to be-

come forecasts of the original time series. The proposal is illustrated with an

empirical case as well, featuring the Industrial Production Index of several

European countries.

The remainder of the chapter is organized as follows. Section 3.2 describes

the methodology. Section 3.3 presents the experimental design, and Section

3.4 shows the results of the Monte Carlo simulation. Section 3.5 contains

an empirical application of the proposed methodology. Finally, Section 3.6

concludes.

3.2 Methodology

The methodology can be summarized in two steps. Given a vector of vari-

ables yyy
t

, the first step consists of estimating the common factors. In the

second step, an AR model for each factor is estimated. These AR models

allow to obtain h-step-ahead (h being the forecasting horizon) forecasts1 for

the common factors, which, using the corresponding weights, are transformed

to forecasts for yyy
t

.

1See Marcellino et al. (2006) for a comparison between iterated multi-period ahead
forecasts and direct forecasts for time series.
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Though we work with AR models, it would be possible to extend the tech-

nique for seasonal ARIMA models. The complete process is described in the

following subsections.

3.2.1 The Factor Model

As Geweke and Singleton (1981) explain, given an observable vector of time

series, the factor model determines how many common factors there are;

these factors can be interpreted as latent variables underlying the covariance

structure of the series.

In the factor model, a set of observed variables, yyy
t

, is decomposed into

unobserved common factors FFF
t

and specific components """
t

. Let yyy
t

be an

N -dimensional observed vector of variables at time t, generated by an R-

dimensional vector of unobserved common factors, with R ⌧ N . """
t

, the

vector of specific components or idiosyncratic errors, is also N -dimensional.

The factor model can be expressed as

yyy
t

= ⌦⌦⌦FFF
t

+ """
t

, (3.1)

where ⌦⌦⌦ is the matrix of loads or weights and has dimension N ⇥ R. It

indicates the relation of the R unobserved common factors with the observed

series in yyy
t

. The loadings in ⌦⌦⌦ are unknown and we will consider only static

weights (therefore, a static factor model). However, in a more general model,

the e↵ect of lagged factors may be included as well; in that case we would

have a lagged polynomial matrix ⌦⌦⌦(L) instead, where L is the lag operator.

That is the so-called dynamic factor model. Bai and Ng (2008) indicate

that for empirical applications the two approaches render similar forecasts,

but the static approach, for which time domain methods are employed, is

easier to estimate and implies fewer decisions regarding auxiliary parameters
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than the dynamic approach, which is estimated employing frequency domain

analysis.

There are several techniques to estimate the unobserved common factors FFF
t

.

In their survey, Stock and Watson (2010) divide them in three groups: max-

imum likelihood by means of Kalman filter, non-parametric cross-sectional

averaging, and hybrid techniques that combine the former two. See Ruiz

and Poncela (2015a) for a comparison of point and interval factor estimates

for these procedures.

In this work we will use principal components (adapted to time series), which

is included in the second set of methods. One advantage of this methodology

is that it is computationally fast. Moreover, Stock and Watson (2002) prove

that the factors’ estimates obtained by means of principal components are

consistent, even if there is serial or cross-sectional correlation in the specific

components. Stock and Watson (2010) also indicate that when the number

of variables is large, the estimation of the common factors is accurate enough

that it can be included as data in regressions. In this line, Ruiz and Poncela

(2015a) obtain that the factors extracted by the usual alternative procedures

are similar and that the accuracy of point estimates increases only marginally

when adding more variables to a system (they start with N = 11). We will

be operating in a context like this: taking the cross-section dimension of the

data to be high, while varying the length of the time dimension.

We obtain the common factors FFF
t

by means of eigen-decomposition. This

way we transform a matrix of data YYY of size (T ⇥ N), where T represents

the time dimension of the data-set and N the cross sectional dimension,

to a space with fewer dimensions, keeping those in which the data has the

maximum variance. Let us recall the basics of this estimation: given⌃
Y

⌃
Y

⌃
Y

(N⇥

N) (in practice this will be the sample variance-covariance matrix for the
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data-set), we find real values � and vectors e such that

⌃⌃⌃
Y

eee = �eee, (3.2)

where � are the so called eigenvalues of matrix ⌃⌃⌃
Y

and eee are the correspond-

ing eigenvectors. When we do the multiplication in the left side, ⌃⌃⌃
Y

eee, we

are transforming the points of matrix ⌃⌃⌃
Y

into a new coordinates space. The

objective is to keep only a few eigenvectors so that the transformation ren-

ders a space with fewer dimensions than the original data-set (R < N). As

a property, assuming that the eigenvalues are di↵erent, the first component

has greater variance than the second component, the second component has

greater variance than the third component, and so on (Mardia et al., 1979,

pp. 215).

This procedure is equivalent to minimizing a loss function given by the av-

erage squared di↵erence between the data and the commonality, yyy
t

�⌦⌦⌦FFF
t

,

subject to a normalization and orthogonality of the weights (see Stock and

Watson, 2010, for further details).

The estimation results in ⌦̂⌦⌦ equal to a matrix of the eigenvectors of ⌃⌃⌃
Y

asso-

ciated to the greatest R eigenvalues. Notice that it is infeasible to separately

identify the common factors and their weights. Depending on the problem at

hand, it is convenient to establish constrains, either for the factors or for the

weights, that solve the identification problem. For reasons that will become

clear in the simulations, we will constraint the weights to be orthogonal. For

other details regarding the theory of factor models see Bai and Ng (2008).

This procedure for obtaining the factors is alike the dynamic extension (incor-

porates time dimension) of the principal components analysis (PCA) static

case described in the appendix of Garćıa-Martos et al. (2012), and employed

by Stock and Watson (2002). Garćıa-Martos et al. (2012) explain that, while



Chapter 3 66

Peña and Box (1987) dealt with stationary data, Lee and Carter (1992) em-

ployed non stationary data, suggesting that singular value decomposition

(SVD) of the covariance matrix is used to compute the weights.

We are also proceeding similarly to Forni et al. (1999): employ principal

components (PC) to separate the dynamics that create correlations in the

whole panel, from the noise that characterizes each observed series and that

is weakly related to the other observed series; and afterwards we incorporate

the components in lieu of the factors in a factor model. However, since Forni

et al. (1999) work with dynamic PC, they calculate the eigenvalues and

eigenvectors of the spectral density matrix at di↵erent frequencies instead of

those belonging to the data’s covariance matrix.

It will not be an objective of this work to introduce methodology to model

the idiosyncratic components. Therefore, we will take the specific factors "
t

as white noise. Furthermore, the specific factors’ variances should be small

in comparison to the variances of the common factors; otherwise they would

be incorporated into the principal components (Mardia et al., 1979, pp.276).

Finally, we recur to criterion IC
3

of Bai and Ng (2002) to consistently esti-

mate the number of factors R to keep in approximate factor models (meaning

factor models in which the factors are approximated with PC). These au-

thors define the criterion as IC
3

= ln(V (r, F̂FF
r

)) + r(
lnC

2
NT

C

2
NT

), where V (r, F̂FF
r

)

stands for the mean residual variance of employing r factors and
lnC

2
NT

C

2
NT

is

the penalty for over-fitting. C
NT

= min(N, T ), where N is number of time

series included and T is the series’ length. Notice that we have changed their

notation to be in line with the one hereby employed. Also, we use capital

R to indicate the “true” (unknown) number of factors and small r when

referring to the estimated number of factors.
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The advantage of this criterion is that it depends on both N and T, while

other criteria such as the corrected Akaike Information Criterion (AICc, Hur-

vich and Tsai, 1989) or the Bayesian Information Criterion (BIC, Schwarz,

1978) only include one dimension (either N or T is taken as fixed). We se-

lected IC
3

from the criteria proposed by Bai and Ng (2002) because it had

better or equal performance than the others included in that paper, for val-

ues of N, T similar to the ones we employ in the simulation (see Tables I and

II of Bai and Ng, 2002). We obtain an excellent performance of this criterion

in our simulations, but another option would be to use Ahn and Horenstein

(2013) test, which may work better in some circumstances.

3.2.2 AR Factors

The factors FFF
t

described in the previous section can be dynamic, following

a time series model. We consider that each unobservable common factor

F
i,t

is generated by an AR processes. Examples of AR common factors are

given in Gregory and Head (1999) (study of the interactions of productivity,

investment and current account), Peña and Safadi (2008) (five series in a

model for air pollution are fitted with two AR(1) common factors), Doz

et al. (2012) (the authors contemplate estimating VAR factors, but in their

simulation they generate AR factors), Garćıa-Ferrer et al. (2012) (though

they actually use Independent Component Analysis), Garćıa-Martos et al.

(2013) (they estimate univariate GARCH models for common factors which

represent volatility), and Fiorentini et al. (2016) (the authors estimate a

single common factor for sectoral employment data in the United States).

The following transition equation (Gregory and Head, 1999) describes each

factor:
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F
i,t

= �
1

F
i,t�1

+ �
2

F
i,t�2

+ ...+ �
p

F
i,t�p

+ ⌘
i,t

. (3.3)

We consider that the roots of the AR characteristic equation lie inside the

unit circle (i.e. the process is stationary). We will specially pay attention to

processes for which the factors are highly persistent, though not integrated,

thus our focus is on close to unit roots of the characteristic polynomial of

the AR model. For procedures that deal with integrated factors see Peña

and Poncela (2006).

Also, ⌘
i,t

will be normally distributed. However, in Appendix B.2 we will see

that this is not a restriction, and having other distribution for the errors ⌘
i,t

does not alter the conclusions hereby obtained.

This particular type of model for the factors allows to maintain a low number

of parameters to estimate. The AR coe�cients are estimated by means of

Conditional Sum of Squares (CSS) instead of Ordinary Least Squares (OLS)

(Clements and Kim, 2007) in order to facilitate future extensions to include

MA terms. In simulations, we assessed the estimates’ distributions obtained

by OLS and CSS for di↵erent values of the AR coe�cients and we observed

that they overlap almost completely.

In order to select the number of lags, p, in each AR model, we will compare

the performance of the AICc and BIC criteria. An alternative option not

explored in this work would be to employ an endogenous lag order selec-

tion algorithm that re-estimates p in each iteration of the bootstrap (Kilian,

1998b).
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3.2.3 Small Sample Bias Correction

CSS estimators for AR process are consistent.2 However, in small samples

some bias and skewness are often present. We employ two approaches in

order to improve the estimation for highly persistent factors. On the one

hand, the bootstrap bias-corrected estimator of Clements and Kim (2007)

and on the other hand, the Roy-Fuller estimator (Roy and Fuller, 2001).

Clements and Kim (2007) bootstrap bias correction can be interpreted as

a constant bias correction (MacKinnon and Smith, 1998); this means that

the correction depends linearly on the value of the population parameter.

This is a di↵erent approach from Roy and Fuller (2001) in that Roy-Fuller’s

estimate is mainly a function of the unit root test statistic.

To verify the accuracy of prediction intervals obtained based on these cor-

rections, we will perform an extensive Monte Carlo experiment in Section

3.4.

3.2.3.1 Bootstrap Bias Correction

The procedure for Clements and Kim bootstrap bias correction may be sum-

marized in the following steps. This description follows Clements and Kim

(2007) and we adapt their notation to indicate that we are doing the correc-

tion in the models for the common factors, an extension of their procedure

for a single series.

This process takes place after a first estimation of the AR model for each

factor by means of CSS; we identify these coe�cients as �̂
1

, �̂
2

, ..., �̂
p

. Notice

that there is a small di↵erence of our approach with the one in Clements and

2Robinson (2006) shows that the CSS estimation converges a.s. in the context of long
memory models. Also for long memory models, SARFIMA, Egrioglu et al. (2011) use
simulation to show that CSS does better than a two-stage methodology.
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Kim (2007); these authors use OLS in their estimations while we employ

CSS in order to be able to incorporate MA terms in a future extension of

this work. We take a shortcut and drop the sub-indexes for the factors since

the procedure is the same for all of them.

1. Generate a bootstrap replica of the common factor f ⇤
t

employing the

estimated AR coe�cients �̂
1

, �̂
2

, ..., �̂
p

, randomly selected residuals (⌘⇤
t

)

and the first p estimates of the factor as starting values, f
1

, f
2

, ..., f
p

.3

We will repeat this step a number of times B.

f ⇤
t

= �̂
1

f ⇤
t�1

+ �̂
2

f ⇤
t�2

+ ...+ �̂
p

f ⇤
t�p

+ ⌘⇤
t

. (3.4)

2. Obtain the so called bootstrap estimates by re-estimating the AR coef-

ficients for each pseudo-data-set f ⇤
1

, f ⇤
2

, ..., f ⇤
T

generated in the previous

step. This means we will have B values �̂⇤
1

, �̂⇤
2

, ..., �̂⇤
p

.

3. Clements and Kim (2007) explain that the bias can be estimated with

the formula

bias = mean(�̂⇤)� �̂. (3.5)

They obtain the bias-corrected estimator, �̂BC , by subtracting the bias

from the OLS estimate (CSS for us instead here) and get

�̂BC = 2⇥ �̂�mean(�̂⇤). (3.6)

4. Last, if needed, Kilian (1998a)’s algorithm is employed in order to

adjust bootstrap estimates when they fall outside the stationary region.

Any of the next three situations may arise:

3The notation for the common factors is in lowercase to emphasize that at this point
we are working with factors that are estimates themselves; in other words, for each factor,
F̂ = f .
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• When the original CSS estimates �̂ are not stationary, we do not

perform a bootstrap bias correction, thus �̂BC = �̂.

• The corrected �̂BC estimates should be used directly if they are

stationary and the CSS �̂ estimates are stationary as well.

• When the estimates of �̂ are stationary but �̂BC is not, then iterate

i times until �̂BC

i

becomes stationary in the following way. We

start with the values �
1

= 1, �
1

= bias (calculated in (3.5))

and calculate �̂BC

1

= �̂ � �
1

. We will iterate i times, each time

calculating �
i+1

= �
i

�
i

, �
i+1

= �
i

�0.01, �̂BC

i

= �̂��
i

, until the

estimates imply stationarity.

Kilian (1998a) shows that, because of small sample bias and skewness, bias-

corrected bootstrap intervals are usually more accurate than the intervals ob-

tained with other techniques, such as delta method, standard bootstrap, and

Monte Carlo integration. This author works with bivariate models including

VAR models, random walk models, and cointegrated processes, though not

particularly with AR models like we do. Interestingly, Kilian (1998a) indi-

cates that the procedure in step 4 does not have an e↵ect asymptotically and

it is not constraining the OLS estimator because it a↵ects the estimation of

the bias and does not directly a↵ect the OLS estimate.

3.2.3.2 Roy Fuller Estimator

As an alternative, we consider the estimator developed by Roy and Fuller

(2001). The explanation in this section summarizes the relevant parts of that

reference for this work. These authors’ purpose is to obtain an estimator

which provides with considerable gains in terms of mean square error for

models that are close to the unit root, while maintaining a small loss in

mean square error e�ciency for the remainder parameter space. According
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to their simulations, the bias is reduced even if the process is not highly

persistent.

Roy and Fuller (2001) start with a regression that works as an ARX (Auto

Regressive with Exogenous Variables) with exogenous variables given by the

lagged di↵erences of the process, as it is done to test for a unit root in an

AR(p) process. Since at this point we would be working with the estimated

common factors, f , for our problem the regression would be

f
t

= ✓̂
1

f
t�1

+ ✓̂
2

�f
t�1

+ ...+ ✓̂
p

�f
t�p+1

+ u
t

, (3.7)

where ✓̂
1

= �
P

p

i=1

�̂
i

, ✓̂
i

= �
P

p

j=i

�̂
j

, and �f
t

= f
t

� f
t�1

. Roy and Fuller

(2001)’s correction depends on the LS estimator ✓̂
1

(in our case estimated

by CSS by adding up the auto-regressive coe�cients �̂
i

), its standard error

�̂
1

, the unit root test statistic ⌧̂ = (

ˆ

✓1�1)

�̂1
, and a function C

p

that corrects

the bias and adapts depending on how close to the unit root the process is.

Based on their paper, for us Roy-Fuller’s corrected estimate would be,

✓̂RF

1

= ✓̂CSS

1

+ [C
p

(⌧̂) + C�p

(⌧̂)]�̂1/2

1

, (3.8)

where the authors have established

C
p

(⌧̂) =

8
>>>>>><

>>>>>>:

0 for ⌧̂  �(k
1

)1/2

bp+1

2

cn�1⌧̂ � (s+ 1)⌧̂�1 for (k
1

)1/2 < ⌧̂  K

bp+1

2

cn�1⌧̂ � (s+ 1)(⌧̂ + k
2

(⌧̂ �K))�1 for K < ⌧̂  ⌧
0.5

�⌧
0.5

+ d
n

(⌧̂ � ⌧
0.5

) for ⌧
0.5

 ⌧̂ ,

(3.9)

k
1

= b(p+1)/2c�1(s+1)n, k
2

= [(1+b(p+1)/2cn�1)⌧
0.5

(⌧
0.5

�K)]�1[(s+1)�

b(p+1)/2cn�1⌧ 2
0.5

]; ⌧
0.5

is the median of ⌧ when there is unit root; and d
n

is

a slope set to 0.1111 in Roy and Fuller (2001)’s simulations. Also K = 5 and

s is the rank of exogenous explanatory variables (if any). Functions C
p

(⌧̂)
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and C�p

(⌧̂) are defined similarly. Clements and Kim (2007) indicate that

C�p

(⌧̂) is close to null for most time series employed in economics because

these tend to have a unit root, or be close to unit root processes. See Roy

and Fuller (2001) for details on this function.

3.2.4 Complete Process: Obtaining Forecasting Inter-

vals

For calculating forecast intervals, we employ a bootstrap procedure based on

Alonso et al. (2008). We follow the same steps, but we exclude estimation

and forecasts of specific factors in the factor model and we include bias

corrections in the estimation of the AR coe�cients.

We are using a parametric bootstrap, since we are estimating the model from

the data only once and then using this model as if it were the true model.4

Ignoring model uncertainty will not be a problem when we specify in advance

the value of p, known in simulations, but can definitely a↵ect the estimation

when p is unknown.

The process can be summarized in the next steps:

1. Using multiple series in a matrix, Y , we extract common factors by

eigen-decomposition of the variance-covariance matrix.

Then, we conduct steps 2 to 4 separately for each extracted common factor.

2. Estimate an AR model for each factor. This involves two steps: first,

selecting p̂, and then estimating �̂
0

, �̂
1

, ..., �̂
p̂

, �̂2

⌘

and ⌘̂
t

. To estimate

4See Alonso et al. (2004) for a discussion on how to introduce model selection in the
bootstrap algorithm and an assessment of results of alternative methods for the estimation
of prediction intervals.
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the coe�cients �̂ we can decide to use the small sample bias correction

methods outlined in the previous section.5

3. Residuals re-sampling: in this step the residuals are centred. We

name their distribution �
⌘̂

. To avoid excessive notation, we do not

use superscripts, but it should be clear that if we use bias correction

(�̂BC) then the residuals will correspond to these coe�cients, with a

distribution �
⌘̂

BC , and analogously for Roy-Fuller’s correction. We

draw a random sample from the residuals’ distribution function �
⌘̂

for t = T + 1, ..., T + H, H being the maximum forecasting horizon

considered.

4. Recursively generate factor’s forecasts by using the AR estimated coef-

ficients (with or without correction of the bias), the re-sampled residu-

als ⌘̂
T+h

, and the last values for the common factor f
T�p+1

, ..., f
T

(See

Pascual et al., 2004, for bootstrap estimates not conditional on the last

p observations of the process).

f̂
T+h

= �̂
1

f̂
T+h�1

+ �̂
2

f̂
T+h�2

+ ...+ �̂
p

f̂
T+h�p

+ ⌘̂
T+h

. (3.10)

Notice that by using the last values of f we are conditioning on the “ob-

served”6 sample realization (following Pascual et al., 2001).

Steps 3 and 4 are carried out B times (B = 500 in our simulation study)

and they render an empirical forecast distribution for each factor, �
f

. We

employ Efron percentiles to obtain prediction intervals for f
T+h

, h = 1, ..., H.

Therefore, for a nominal coverage of (1 � ↵) and forecasting horizon h, the

interval for factor f is given by [��1

ˆ

f

T+h

(↵/2),��1

ˆ

f

T+h

(1� ↵/2)]. As an advan-

tage, this bootstrap approach does not assume normality in the errors of the

5If so, we adapted package BootPR in the software R to use CSS to get the bias
corrected �̂.

6 “observed” is between quotes because the factors are not actually observed, but they
themselves are estimates.
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models for the factors (Fresoli et al., 2015, for an assessment of the e↵ect of

this assumption in forecasting densities of VAR(2) models with �2 errors).

5. Calculate forecasts for the series using the forecasts for each factor and

the estimated weights (equation 3.11, in vector notation). We also

obtain prediction intervals for the series employing Efron percentiles.

ŷyy
T+h

= ⌦̂⌦⌦f̂ff
T+h

+ """
T+h

, (3.11)

where ŷyy
T+h

is a vector that contains the forecasts for the N series, ⌦̂⌦⌦

is the (N ⇥ r) estimated matrix of loadings, and f̂ff
T+h

the forecasted

factors (r ⇥ 1).

3.3 Experimental Design

We employ simulated data-sets to illustrate the performance of the method-

ology. The data matrix YYY has dimension N ⇥ T , N = 25 being the number

of time series included and T = 50, 100, 200, the time dimension. No-

tice that T assumes three alternative values in order to allow comparison

of the estimation’s performance for di↵erent sample sizes. As Clements and

Kim (2007) indicate, we expect the bias in the estimates of the AR coe�-

cients to be worse the smaller the series’ length. The data matrix YYY results

from pre-specified AR common factors, orthonormal weight vectors (follow-

ing Stock and Watson, 2002), and normally distributed idiosyncratic errors

"
t

⇠ N(0, 0.1) with mean and standard deviation values like Alonso et al.

(2011). In particular, we start with weights following model 2 of Alonso

et al. (2011)7 and then transform them into orthonormal vectors to obtain

7Alonso et al. (2011) loading matrix ⌦⌦⌦ is made up of vectors !!!1 =
[1, 1, 1, 1, 2, 1, 1, 1, 1,�0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T and !!!2 = 0.3 ⇥
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3]T .



Chapter 3 76

the following weights:

 
!
1

!
1

!
1

!
2

!
2

!
2

!
T

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.19 0
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0.19 0.02
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0.19 0.02

0.19 0.02

�0.1 0.51

0.19 0.02

0.19 0.02
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0.19 0.02

0.19 0.02

0.19 0.02
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0.19 0.02

0.19 0.02
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0.19 0.02
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Even if Principal Components allows to identify the factor space by assuming

orthonormal common factors, we need to impose the condition that the first

load of the second factor equals 0 in order to identify the individual common

factors in a two-factor model and model each of them as independent AR(p)

processes. We experimented with alternative, in particular more diverse

weights, and obtained similar results.

Additionally, the factors are created with no cross correlation between them
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and the variance pertaining to the first factor is strictly greater than the

one of the second factor �2

F1

> �2

F2

. The persistence in the factors will be

such that their variances will maintain this relation. This is in line with

assumption F1.b of Stock and Watson (2002) : “E(FFF
t

FFF 0
t

) = ⌃⌃⌃
FF

, where

⌃⌃⌃
FF

is a diagonal matrix with elements �
ii

> �
jj

> 0 for i < j”.

We consider AR models of orders one and two for the common factors. The

data generating process is deliberately simple in order to easily compare the

e↵ects of sample size, as well as the proximity to unit root.

Also, ⌘
1,t

⇠ N(0, 1) while ⌘
2,t

⇠ N(0, 0.5), according to the principle that

the variance of the second factor should be smaller than the variance of the

first factor.

We perform a Monte Carlo study (10 000 trials) to evaluate the benefits of

small sample bias correction. To separate the sources of uncertainty (simi-

larly to Ruiz and Poncela, 2015b), the estimations will be evaluated in these

two situations:

• the number of factors and their AR order are known,

• the number of factors and their AR order are unknown.

Even though known number of factors and AR order is an infeasible scenario,

it will allow us to isolate any influence the estimation of these parameters

may cast. The forecasting horizon ranges from 1 to 10. The bootstrap for

the AR coe�cients (in the bootstrap bias-corrected approach) and for the

prediction intervals (all approaches) are based on 500 replications.

We compare the performance of not using a bias correction (denoted as none

in the tables), the bootstrap bias-corrected estimator of Clements and Kim

(2007) (denoted as BC ), and Roy-Fuller estimates of Roy and Fuller (2001)

(denoted as RF ). We evaluate their performance for a 95% nominal coverage.
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In order to assess performance, for the prediction intervals we obtain average

coverage rates (C
m

), average length (L
m

), and CQ
m

(a measure combining

C
m

and L
m

) introduced in Alonso et al. (2002). The coverage rates are

estimated as the average of the Monte Carlo trials coverage rates for the

prediction intervals. The e↵ective coverage rate in each Monte Carlo trial

is the relative frequency indicating the proportion of “true observations” in-

cluded in the bootstrap interval. These “true processes” or continuations are

created following Alonso et al. (2002). Furthermore, like these authors, we

calculate a “theoretical” interval length (L
t

) that can be used for compari-

son. Last, CQ
m

is calculated as CQ
m

= |1 � C
m

/C
t

| + |1 � L
m

/L
t

|, where

C
t

is the nominal coverage and L
t

the estimated theoretical mean interval

length (Alonso et al., 2002).

3.4 Results for the Simulation

In this section we present the results for the Monte Carlo simulation. To

make a clear presentation, we divide them in two parts. In the first part we

present the results when the number of factors R and the factors’ AR order

p are known. In the second part (Section 3.4.2) we present the results when

R and p are unknown and selected using IC
3

and BIC, respectively.

3.4.1 Number of Factors and AR orders Known

Firstly, we present the results for factors that follow AR(1) models. In order

to ensure a higher variance of the first factor, its AR coe�cient �
F1

= 0.975

is greater than the corresponding one to the second factor, �
F2

= 0.90, and

the same for the variance of the noise (⌘
t,F1

= 1 while ⌘
t,F2

= 0.50).
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Results are obtained for sample sizes T = 50, 100, 200. Tables 3.1, 3.2, and

3.3 present the outcomes that correspond to five representative series (Y 1,

Y 2, Y 5, Y 10, and Y 25) out of the N = 25 observed series generated. The

tables in appendix B.1 present results and explanations in detail for the

factors.

In Table 3.1, for T = 50, we obtain that the coverage of the intervals, though

usually well below the 95% theoretical value, is improved when using BC

and RF (in comparison to none). Furthermore, the improvement is more

noticeable the longer the forecasting horizon, i.e. h = 10 presents a greater

improvement than h = 1. In this line, Clements and Taylor (2001) explain

that the bias can increase with the forecasting horizon h because we power

up the biased estimates to produce forecasts.

Be aware that there are very small di↵erences in the standard errors (referred

as “se”), presented between parenthesis. The average length of all the inter-

vals, L
m

, is larger when a correction is performed. Most often, the interval

length for none underestimates the theoretical length, while bias correction

renders intervals with length closer to the theoretical length reported. Last,

CQ
m

is never worse for the estimations with correction, with the exception

of Y 25 for h = 1. Recall that a value of CQ
m

= 0 would mean a per-

fect estimation in the sense that both coverage and length coincide with the

theoretical values.

Table 3.2 corresponds to a sample size T = 100. C
m

of BC and RF are

always better than that for none. And again, the improvement of using

corrections is more noticeable in long (h = 10) than short horizons (h = 1).

The gains in C
m

of using BC or RF are smaller than those for the smaller

sample size of T = 50, which is consistent with the idea that, the smaller the

sample, the greater the bias and the more useful the role of bias correction in

the AR estimates. L
m

continues to be greater when a correction is performed
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and in most cases closer to L
t

. Furthermore, in some cases, for the shortest

horizons (h = 1) the value of CQ
m

for none results equal than that for BC

or RF.

Table 3.3 for T = 200 obtains that coverage C
m

is always better for BC and

RF than for none, and like in the previous cases, the improvement is more

noticeable for long than for short horizons. As expected, the improvement

in terms of coverage tends to be smaller (across forecasting horizons and

estimation techniques) than for the smaller sample sizes. Like in the previous

cases, L
m

tends to be greater (and closer to L
t

) when some type of correction

is performed. CQ
m

tends to be better (equal for h = 1) when performing

a correction, though the improvements are usually not as good as those for

smaller sample sizes. Finally, as expected, the behavior (in terms of C
m

, L
m

,

and CQ
m

) of the three procedures improves with the series’ length.

Tables 3.4 to 3.6 provide with the results when the factors follow AR(2)

models instead. The two roots for the characteristic equation of the factors

are: a1
F1

= 0.50, a2
F1

= 0.975, a1
F2

= 0.50, a2
F2

= 0.90. The findings are similar

to those obtained for AR(1) models. As before, the improvements from using

small sample bias corrections deteriorate as the sample size increases from

T = 50 to T = 200. Again, the improvements from the corrections are more

noticeable as the prediction horizon increases. And even though coverage is

always better for the estimations with bias correction, the interval length L
m

and CQ
m

are sometimes similar for corrected and none, specially for h = 1.
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Table 3.1: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both fol-
lowing AR(1) models with normal errors and coe�cients �

F1

=0.975,
�
F2

=0.90. T = 50. 95% nominal coverage.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 90.68 (0.052) 0.98 (0.001) 1.05 (0.000) 0.11
BC 91.11 (0.049) 0.99 (0.001) 1.05 (0.000) 0.10
RF 91.30 (0.048) 0.99 (0.001) 1.05 (0.000) 0.09

h=5 none 85.29 (0.088) 1.67 (0.003) 2.01 (0.001) 0.27
BC 88.91 (0.077) 1.87 (0.004) 2.01 (0.001) 0.13
RF 90.25 (0.072) 1.92 (0.004) 2.01 (0.001) 0.10

h=10 none 80.36 (0.112) 1.92 (0.005) 2.55 (0.001) 0.40
BC 86.33 (0.105) 2.34 (0.006) 2.55 (0.001) 0.17
RF 89.11 (0.094) 2.47 (0.007) 2.55 (0.001) 0.09

Y2 h=1 none 87.36 (0.059) 0.71 (0.001) 0.84 (0.000) 0.24
BC 87.92 (0.057) 0.72 (0.001) 0.84 (0.000) 0.22
RF 88.17 (0.055) 0.72 (0.001) 0.84 (0.000) 0.22

h=5 none 83.73 (0.090) 1.30 (0.002) 1.63 (0.001) 0.33
BC 87.78 (0.080) 1.45 (0.003) 1.63 (0.001) 0.19
RF 89.54 (0.074) 1.48 (0.003) 1.63 (0.001) 0.15

h=10 none 77.99 (0.121) 1.54 (0.004) 2.15 (0.001) 0.46
BC 84.86 (0.114) 1.89 (0.005) 2.15 (0.001) 0.23
RF 88.19 (0.105) 1.98 (0.005) 2.15 (0.001) 0.15

Y5 h=1 none 91.15 (0.048) 1.55 (0.002) 1.65 (0.001) 0.10
BC 91.58 (0.045) 1.57 (0.002) 1.65 (0.001) 0.09
RF 91.84 (0.044) 1.57 (0.002) 1.65 (0.001) 0.08

h=5 none 84.93 (0.088) 2.77 (0.005) 3.38 (0.001) 0.29
BC 88.79 (0.076) 3.10 (0.006) 3.38 (0.001) 0.15
RF 90.41 (0.070) 3.18 (0.006) 3.38 (0.001) 0.11

h=10 none 79.16 (0.116) 3.26 (0.008) 4.43 (0.002) 0.43
BC 85.71 (0.109) 4.00 (0.010) 4.43 (0.002) 0.19
RF 88.90 (0.097) 4.19 (0.011) 4.43 (0.002) 0.12

Y10 h=1 none 92.13 (0.051) 1.13 (0.002) 1.13 (0.000) 0.03
BC 92.48 (0.048) 1.14 (0.002) 1.13 (0.000) 0.03
RF 92.56 (0.048) 1.14 (0.002) 1.13 (0.000) 0.03

h=5 none 86.74 (0.085) 1.78 (0.004) 2.05 (0.001) 0.22
BC 89.83 (0.077) 1.99 (0.005) 2.05 (0.001) 0.08
RF 90.67 (0.075) 2.05 (0.005) 2.05 (0.001) 0.05

h=10 none 83.36 (0.101) 1.95 (0.005) 2.43 (0.001) 0.32
BC 87.87 (0.099) 2.36 (0.007) 2.43 (0.001) 0.10
RF 89.64 (0.092) 2.50 (0.008) 2.43 (0.001) 0.09

Y25 h=1 none 92.78 (0.048) 1.66 (0.003) 1.64 (0.001) 0.04
BC 93.14 (0.045) 1.68 (0.003) 1.64 (0.001) 0.04
RF 93.25 (0.044) 1.68 (0.003) 1.64 (0.001) 0.05

h=5 none 86.66 (0.085) 2.66 (0.005) 3.07 (0.001) 0.22
BC 89.83 (0.077) 2.97 (0.007) 3.07 (0.001) 0.09
RF 90.82 (0.073) 3.06 (0.007) 3.07 (0.001) 0.05

h=10 none 82.85 (0.104) 2.94 (0.007) 3.71 (0.002) 0.33
BC 87.62 (0.101) 3.56 (0.010) 3.71 (0.002) 0.12
RF 89.66 (0.090) 3.77 (0.011) 3.71 (0.002) 0.07
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Table 3.2: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both fol-
lowing AR(1) models with normal errors and coe�cients �

F1

=0.975,
�
F2

=0.90. T = 100. 95% nominal coverage.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 91.93 (0.037) 0.99 (0.001) 1.05 (0.000) 0.09
BC 92.06 (0.036) 0.99 (0.001) 1.05 (0.000) 0.09
RF 92.13 (0.036) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 89.84 (0.057) 1.82 (0.003) 2.01 (0.001) 0.15
BC 91.77 (0.049) 1.94 (0.003) 2.01 (0.001) 0.07
RF 92.26 (0.047) 1.97 (0.003) 2.01 (0.001) 0.05

h=10 none 87.01 (0.076) 2.16 (0.004) 2.55 (0.001) 0.23
BC 90.53 (0.067) 2.45 (0.005) 2.55 (0.001) 0.08
RF 91.55 (0.061) 2.52 (0.005) 2.55 (0.001) 0.05

Y2 h=1 none 89.50 (0.040) 0.73 (0.001) 0.84 (0.000) 0.19
BC 89.64 (0.039) 0.73 (0.001) 0.84 (0.000) 0.18
RF 89.82 (0.039) 0.74 (0.001) 0.84 (0.000) 0.18

h=5 none 89.08 (0.057) 1.43 (0.002) 1.63 (0.001) 0.19
BC 91.21 (0.049) 1.53 (0.002) 1.63 (0.001) 0.10
RF 91.95 (0.045) 1.56 (0.002) 1.63 (0.001) 0.08

h=10 none 85.86 (0.082) 1.77 (0.003) 2.15 (0.001) 0.27
BC 89.92 (0.072) 2.03 (0.004) 2.15 (0.001) 0.11
RF 91.25 (0.066) 2.09 (0.004) 2.15 (0.001) 0.07

Y5 h=1 none 92.66 (0.033) 1.59 (0.002) 1.65 (0.001) 0.06
BC 92.79 (0.032) 1.59 (0.002) 1.65 (0.001) 0.06
RF 92.93 (0.031) 1.60 (0.002) 1.65 (0.001) 0.05

h=5 none 89.89 (0.056) 3.04 (0.004) 3.38 (0.001) 0.15
BC 91.89 (0.048) 3.26 (0.004) 3.38 (0.001) 0.07
RF 92.54 (0.045) 3.30 (0.004) 3.38 (0.001) 0.05

h=10 none 86.55 (0.080) 3.72 (0.007) 4.43 (0.002) 0.25
BC 90.41 (0.069) 4.25 (0.008) 4.43 (0.002) 0.09
RF 91.64 (0.064) 4.37 (0.008) 4.43 (0.002) 0.05

Y10 h=1 none 93.00 (0.034) 1.12 (0.001) 1.14 (0.000) 0.03
BC 93.11 (0.034) 1.12 (0.001) 1.14 (0.000) 0.03
RF 93.11 (0.034) 1.12 (0.001) 1.14 (0.000) 0.03

h=5 none 90.74 (0.054) 1.91 (0.003) 2.05 (0.001) 0.12
BC 92.40 (0.049) 2.03 (0.003) 2.05 (0.001) 0.04
RF 92.54 (0.049) 2.05 (0.003) 2.05 (0.001) 0.03

h=10 none 88.67 (0.067) 2.14 (0.004) 2.42 (0.001) 0.18
BC 91.33 (0.063) 2.40 (0.005) 2.42 (0.001) 0.05
RF 91.76 (0.062) 2.45 (0.005) 2.42 (0.001) 0.05

Y25 h=1 none 93.73 (0.032) 1.66 (0.002) 1.64 (0.001) 0.03
BC 93.85 (0.031) 1.66 (0.002) 1.64 (0.001) 0.03
RF 93.87 (0.031) 1.67 (0.002) 1.64 (0.001) 0.03

h=5 none 90.84 (0.054) 2.86 (0.004) 3.07 (0.001) 0.11
BC 92.54 (0.048) 3.05 (0.005) 3.07 (0.001) 0.03
RF 92.76 (0.047) 3.09 (0.005) 3.07 (0.001) 0.03

h=10 none 88.49 (0.069) 3.26 (0.006) 3.71 (0.002) 0.19
BC 91.35 (0.063) 3.67 (0.007) 3.71 (0.002) 0.05
RF 91.94 (0.060) 3.76 (0.008) 3.71 (0.002) 0.05
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Table 3.3: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both fol-
lowing AR(1) models with normal errors and coe�cients �

F1

=0.975,
�
F2

=0.90. T = 200. 95% nominal coverage.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 92.55 (0.027) 1.00 (0.001) 1.05 (0.000) 0.08
BC 92.59 (0.027) 1.00 (0.001) 1.05 (0.000) 0.08
RF 92.59 (0.027) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 92.36 (0.035) 1.91 (0.002) 2.01 (0.001) 0.08
BC 93.29 (0.032) 1.98 (0.002) 2.01 (0.001) 0.03
RF 93.42 (0.031) 1.99 (0.002) 2.01 (0.001) 0.03

h=10 none 90.96 (0.047) 2.33 (0.003) 2.55 (0.001) 0.13
BC 92.81 (0.041) 2.51 (0.003) 2.55 (0.001) 0.04
RF 93.11 (0.040) 2.55 (0.003) 2.55 (0.001) 0.02

Y2 h=1 none 90.66 (0.029) 0.74 (0.001) 0.84 (0.000) 0.16
BC 90.69 (0.029) 0.74 (0.001) 0.84 (0.000) 0.16
RF 90.71 (0.029) 0.75 (0.001) 0.84 (0.000) 0.16

h=5 none 91.86 (0.034) 1.51 (0.001) 1.63 (0.001) 0.10
BC 92.93 (0.030) 1.58 (0.001) 1.63 (0.001) 0.06
RF 93.10 (0.029) 1.59 (0.001) 1.63 (0.001) 0.05

h=10 none 90.44 (0.049) 1.94 (0.002) 2.15 (0.001) 0.15
BC 92.53 (0.043) 2.10 (0.003) 2.15 (0.001) 0.05
RF 92.91 (0.041) 2.14 (0.003) 2.15 (0.001) 0.02

Y5 h=1 none 93.47 (0.024) 1.61 (0.001) 1.65 (0.001) 0.04
BC 93.52 (0.024) 1.61 (0.001) 1.65 (0.001) 0.04
RF 93.51 (0.024) 1.61 (0.001) 1.65 (0.001) 0.04

h=5 none 92.52 (0.034) 3.21 (0.003) 3.37 (0.001) 0.07
BC 93.50 (0.030) 3.34 (0.003) 3.37 (0.001) 0.03
RF 93.68 (0.029) 3.37 (0.003) 3.37 (0.001) 0.02

h=10 none 90.93 (0.048) 4.05 (0.005) 4.42 (0.002) 0.13
BC 92.89 (0.042) 4.39 (0.006) 4.42 (0.002) 0.03
RF 93.24 (0.040) 4.47 (0.006) 4.42 (0.002) 0.03

Y10 h=1 none 93.33 (0.026) 1.11 (0.001) 1.14 (0.000) 0.04
BC 93.36 (0.026) 1.11 (0.001) 1.14 (0.000) 0.04
RF 93.35 (0.026) 1.11 (0.001) 1.14 (0.000) 0.04

h=5 none 92.84 (0.034) 1.98 (0.002) 2.05 (0.001) 0.06
BC 93.66 (0.031) 2.04 (0.002) 2.05 (0.001) 0.02
RF 93.68 (0.031) 2.05 (0.002) 2.05 (0.001) 0.01

h=10 none 91.68 (0.044) 2.27 (0.003) 2.42 (0.001) 0.10
BC 93.11 (0.040) 2.41 (0.003) 2.42 (0.001) 0.03
RF 93.21 (0.040) 2.43 (0.003) 2.42 (0.001) 0.02

Y25 h=1 none 94.09 (0.024) 1.65 (0.001) 1.64 (0.001) 0.02
BC 94.11 (0.024) 1.65 (0.001) 1.64 (0.001) 0.02
RF 94.11 (0.024) 1.65 (0.001) 1.64 (0.001) 0.02

h=5 none 93.00 (0.034) 2.98 (0.003) 3.07 (0.001) 0.05
BC 93.83 (0.031) 3.09 (0.003) 3.07 (0.001) 0.02
RF 93.84 (0.031) 3.10 (0.003) 3.07 (0.001) 0.02

h=10 none 91.72 (0.044) 3.48 (0.005) 3.70 (0.002) 0.10
BC 93.26 (0.039) 3.71 (0.005) 3.70 (0.002) 0.02
RF 93.37 (0.039) 3.74 (0.005) 3.70 (0.002) 0.03
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Table 3.4: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both follow-
ing AR(2) models with normal errors. Model with coe�cients �F1

1

=1.475,
�F1

2

=-0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 50. 95% nominal coverage.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 89.88 (0.059) 0.98 (0.001) 1.05 (0.000) 0.12
BC 90.46 (0.056) 1.00 (0.001) 1.05 (0.000) 0.10
RF 90.72 (0.054) 1.00 (0.002) 1.05 (0.000) 0.10

h=5 none 83.06 (0.116) 2.75 (0.006) 3.29 (0.001) 0.29
BC 87.28 (0.101) 3.06 (0.007) 3.29 (0.001) 0.15
RF 88.46 (0.089) 3.06 (0.007) 3.29 (0.001) 0.14

h=10 none 76.52 (0.144) 3.39 (0.010) 4.61 (0.002) 0.46
BC 83.76 (0.137) 4.22 (0.013) 4.61 (0.002) 0.20
RF 86.67 (0.113) 4.29 (0.013) 4.61 (0.002) 0.16

Y2 h=1 none 86.06 (0.065) 0.70 (0.001) 0.84 (0.000) 0.26
BC 86.71 (0.062) 0.71 (0.001) 0.84 (0.000) 0.25
RF 87.10 (0.061) 0.71 (0.001) 0.84 (0.000) 0.24

h=5 none 81.90 (0.117) 2.13 (0.005) 2.65 (0.001) 0.33
BC 86.22 (0.105) 2.37 (0.006) 2.65 (0.001) 0.20
RF 87.96 (0.090) 2.37 (0.005) 2.65 (0.001) 0.18

h=10 none 74.35 (0.152) 2.75 (0.008) 3.89 (0.002) 0.51
BC 82.22 (0.146) 3.41 (0.011) 3.89 (0.002) 0.26
RF 85.96 (0.120) 3.47 (0.010) 3.89 (0.002) 0.20

Y5 h=1 none 90.06 (0.055) 1.53 (0.002) 1.65 (0.001) 0.12
BC 90.66 (0.052) 1.55 (0.002) 1.65 (0.001) 0.10
RF 91.00 (0.050) 1.56 (0.002) 1.65 (0.001) 0.10

h=5 none 82.51 (0.116) 4.55 (0.010) 5.55 (0.002) 0.31
BC 86.83 (0.101) 5.07 (0.012) 5.55 (0.002) 0.17
RF 88.41 (0.087) 5.06 (0.011) 5.55 (0.002) 0.16

h=10 none 75.10 (0.148) 5.79 (0.018) 8.08 (0.003) 0.49
BC 82.87 (0.141) 7.20 (0.023) 8.08 (0.003) 0.24
RF 86.36 (0.115) 7.32 (0.022) 8.08 (0.003) 0.18

Y10 h=1 none 91.51 (0.061) 1.15 (0.002) 1.13 (0.000) 0.05
BC 92.00 (0.056) 1.16 (0.002) 1.13 (0.000) 0.06
RF 92.20 (0.055) 1.17 (0.002) 1.13 (0.000) 0.06

h=5 none 84.21 (0.117) 2.94 (0.007) 3.36 (0.001) 0.24
BC 88.10 (0.103) 3.28 (0.008) 3.36 (0.001) 0.10
RF 88.78 (0.093) 3.28 (0.008) 3.36 (0.001) 0.09

h=10 none 79.46 (0.136) 3.42 (0.010) 4.37 (0.002) 0.38
BC 85.39 (0.130) 4.24 (0.014) 4.37 (0.002) 0.13
RF 87.24 (0.110) 4.33 (0.014) 4.37 (0.002) 0.09

Y25 h=1 none 92.14 (0.057) 1.69 (0.003) 1.64 (0.001) 0.07
BC 92.66 (0.053) 1.71 (0.003) 1.64 (0.001) 0.07
RF 92.85 (0.051) 1.72 (0.003) 1.64 (0.001) 0.07

h=5 none 84.19 (0.115) 4.41 (0.011) 5.06 (0.002) 0.24
BC 88.16 (0.100) 4.92 (0.012) 5.06 (0.002) 0.10
RF 88.94 (0.091) 4.92 (0.012) 5.06 (0.002) 0.09

h=10 none 78.91 (0.136) 5.21 (0.015) 6.73 (0.003) 0.40
BC 85.20 (0.128) 6.46 (0.021) 6.73 (0.003) 0.14
RF 87.36 (0.109) 6.59 (0.021) 6.73 (0.003) 0.10
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Table 3.5: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both follow-
ing AR(2) models with normal errors. Model with coe�cients �F1

1

=1.475,
�F1

2

=-0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 100. 95% nominal coverage.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 91.70 (0.041) 1.00 (0.001) 1.05 (0.000) 0.08
BC 91.91 (0.039) 1.01 (0.001) 1.05 (0.000) 0.08
RF 91.97 (0.039) 1.01 (0.001) 1.05 (0.000) 0.07

h=5 none 89.55 (0.067) 3.02 (0.005) 3.29 (0.001) 0.14
BC 91.39 (0.057) 3.20 (0.005) 3.29 (0.001) 0.07
RF 91.52 (0.054) 3.19 (0.005) 3.29 (0.001) 0.07

h=10 none 85.91 (0.092) 3.92 (0.008) 4.61 (0.002) 0.24
BC 89.71 (0.079) 4.45 (0.010) 4.61 (0.002) 0.09
RF 90.43 (0.071) 4.49 (0.010) 4.61 (0.002) 0.07

Y2 h=1 none 89.11 (0.043) 0.73 (0.001) 0.84 (0.000) 0.19
BC 89.39 (0.042) 0.74 (0.001) 0.84 (0.000) 0.18
RF 89.50 (0.041) 0.74 (0.001) 0.84 (0.000) 0.18

h=5 none 89.12 (0.066) 2.38 (0.004) 2.65 (0.001) 0.16
BC 91.00 (0.057) 2.52 (0.004) 2.65 (0.001) 0.09
RF 91.42 (0.051) 2.51 (0.004) 2.65 (0.001) 0.09

h=10 none 85.03 (0.096) 3.25 (0.007) 3.89 (0.002) 0.27
BC 89.14 (0.084) 3.69 (0.008) 3.89 (0.002) 0.11
RF 90.25 (0.073) 3.71 (0.008) 3.89 (0.002) 0.09

Y5 h=1 none 92.31 (0.037) 1.59 (0.002) 1.65 (0.001) 0.06
BC 92.52 (0.035) 1.60 (0.002) 1.65 (0.001) 0.06
RF 92.64 (0.035) 1.60 (0.002) 1.65 (0.001) 0.05

h=5 none 89.42 (0.067) 5.06 (0.008) 5.55 (0.002) 0.15
BC 91.29 (0.057) 5.36 (0.008) 5.55 (0.002) 0.07
RF 91.62 (0.052) 5.34 (0.008) 5.55 (0.002) 0.07

h=10 none 85.39 (0.095) 6.80 (0.014) 8.08 (0.003) 0.26
BC 89.40 (0.082) 7.73 (0.016) 8.08 (0.003) 0.10
RF 90.39 (0.072) 7.78 (0.016) 8.08 (0.003) 0.09

Y10 h=1 none 92.84 (0.040) 1.14 (0.001) 1.13 (0.000) 0.03
BC 93.01 (0.039) 1.15 (0.001) 1.13 (0.000) 0.03
RF 93.00 (0.039) 1.15 (0.001) 1.13 (0.000) 0.03

h=5 none 90.18 (0.066) 3.16 (0.005) 3.35 (0.001) 0.11
BC 91.84 (0.058) 3.34 (0.006) 3.35 (0.001) 0.04
RF 91.69 (0.057) 3.33 (0.006) 3.35 (0.001) 0.04

h=10 none 87.20 (0.085) 3.82 (0.008) 4.37 (0.002) 0.21
BC 90.37 (0.077) 4.33 (0.010) 4.37 (0.002) 0.06
RF 90.48 (0.073) 4.37 (0.010) 4.37 (0.002) 0.05

Y25 h=1 none 93.53 (0.037) 1.69 (0.002) 1.64 (0.001) 0.05
BC 93.66 (0.036) 1.70 (0.002) 1.64 (0.001) 0.05
RF 93.67 (0.036) 1.70 (0.002) 1.64 (0.001) 0.05

h=5 none 90.21 (0.065) 4.75 (0.008) 5.05 (0.002) 0.11
BC 91.89 (0.057) 5.04 (0.008) 5.05 (0.002) 0.04
RF 91.82 (0.055) 5.02 (0.008) 5.05 (0.002) 0.04

h=10 none 87.03 (0.085) 5.86 (0.012) 6.72 (0.003) 0.21
BC 90.29 (0.076) 6.63 (0.014) 6.72 (0.003) 0.06
RF 90.59 (0.071) 6.70 (0.014) 6.72 (0.003) 0.05
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Table 3.6: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both follow-
ing AR(2) models with normal errors. Model with coe�cients �F1

1

=1.475,
�F1

2

=-0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 200. 95% nominal coverage.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 92.51 (0.029) 1.01 (0.001) 1.05 (0.000) 0.07
BC 92.55 (0.029) 1.01 (0.001) 1.05 (0.000) 0.07
RF 92.58 (0.029) 1.01 (0.001) 1.05 (0.000) 0.07

h=5 none 92.36 (0.039) 3.15 (0.004) 3.29 (0.001) 0.07
BC 93.14 (0.035) 3.25 (0.004) 3.29 (0.001) 0.03
RF 93.05 (0.035) 3.24 (0.004) 3.29 (0.001) 0.03

h=10 none 90.67 (0.053) 4.25 (0.006) 4.61 (0.002) 0.12
BC 92.47 (0.046) 4.57 (0.007) 4.61 (0.002) 0.04
RF 92.48 (0.045) 4.58 (0.007) 4.61 (0.002) 0.03

Y2 h=1 none 90.50 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16
BC 90.57 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16
RF 90.65 (0.030) 0.75 (0.001) 0.84 (0.000) 0.15

h=5 none 92.16 (0.038) 2.51 (0.003) 2.65 (0.001) 0.08
BC 92.95 (0.035) 2.59 (0.003) 2.65 (0.001) 0.04
RF 92.94 (0.033) 2.59 (0.003) 2.65 (0.001) 0.04

h=10 none 90.38 (0.055) 3.55 (0.005) 3.89 (0.002) 0.13
BC 92.23 (0.049) 3.83 (0.005) 3.89 (0.002) 0.04
RF 92.37 (0.046) 3.84 (0.005) 3.89 (0.002) 0.04

Y5 h=1 none 93.35 (0.026) 1.62 (0.001) 1.65 (0.001) 0.04
BC 93.41 (0.026) 1.62 (0.001) 1.65 (0.001) 0.03
RF 93.47 (0.025) 1.62 (0.001) 1.65 (0.001) 0.03

h=5 none 92.42 (0.038) 5.33 (0.006) 5.56 (0.002) 0.07
BC 93.19 (0.034) 5.49 (0.006) 5.56 (0.002) 0.03
RF 93.14 (0.033) 5.48 (0.006) 5.56 (0.002) 0.03

h=10 none 90.58 (0.054) 7.43 (0.010) 8.08 (0.003) 0.13
BC 92.41 (0.048) 8.00 (0.011) 8.08 (0.003) 0.04
RF 92.53 (0.045) 8.03 (0.011) 8.08 (0.003) 0.03

Y10 h=1 none 93.24 (0.029) 1.13 (0.001) 1.13 (0.000) 0.02
BC 93.28 (0.029) 1.13 (0.001) 1.13 (0.000) 0.02
RF 93.27 (0.029) 1.13 (0.001) 1.13 (0.000) 0.02

h=5 none 92.56 (0.038) 3.24 (0.004) 3.35 (0.001) 0.06
BC 93.29 (0.035) 3.34 (0.004) 3.35 (0.001) 0.02
RF 93.11 (0.036) 3.33 (0.004) 3.35 (0.001) 0.03

h=10 none 91.04 (0.050) 4.06 (0.006) 4.37 (0.002) 0.11
BC 92.65 (0.045) 4.34 (0.006) 4.37 (0.002) 0.03
RF 92.49 (0.047) 4.34 (0.006) 4.37 (0.002) 0.03

Y25 h=1 none 93.91 (0.027) 1.67 (0.001) 1.64 (0.001) 0.03
BC 93.94 (0.027) 1.67 (0.001) 1.64 (0.001) 0.03
RF 93.94 (0.028) 1.68 (0.001) 1.64 (0.001) 0.04

h=5 none 92.57 (0.037) 4.89 (0.006) 5.06 (0.002) 0.06
BC 93.29 (0.034) 5.03 (0.006) 5.06 (0.002) 0.02
RF 93.17 (0.035) 5.02 (0.006) 5.06 (0.002) 0.03

h=10 none 90.96 (0.050) 6.23 (0.009) 6.73 (0.003) 0.12
BC 92.54 (0.045) 6.66 (0.010) 6.73 (0.003) 0.04
RF 92.46 (0.046) 6.67 (0.010) 6.73 (0.003) 0.04
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3.4.2 Number of Factors and AR orders Unknown

We consider a model of two factors in this experiment and use a sample

size of T = 100 (see Appendix B.3 for other values of T ). The number of

factors is estimated by IC
3

of Bai and Ng (2002), as explained in Subsection

2.1. This criterion correctly estimated the number of factors R in more than

99.9% of cases.

We consider factors that are AR(2), as Clements and Kim (2007) explain,

in order to allow under and over specification of p. The lag order estimated

is restricted to at most six and for selection criteria we compare AICc and

BIC. We did not endogenise the selection of p in the bootstrap algorithm

because of the small improvements obtained by doing so in Clements and

Kim (2007).

Table 3.7 presents the results when we use BIC as the criteria for selecting p

and Table 3.8 presents the results when AICc is the criteria for selecting p.

In both cases, for the selected series coverage C
m

, length L
m

, and CQ tend

to be better for the models that use bias-corrected estimators than for none

(the correction never results in worse o↵ results than none). Furthermore,

we can verify the same pattern than in the previous section: improvements

become more noticeable the longer the forecasting horizon.

Last, comparing the two selection criteria we can see that BIC does a much

better job selecting p than AICc (see Table 3.9 for a comparison of the

distribution of p̂) and it translates in better values of C
m

as well as a slight

general improvement in CQ
m

.
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Table 3.7: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created with both common factors following
AR(2) processes with normal errors. Model with coe�cients �F1

1

=1.475,
�F1

2

=-0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 100. 95% nominal coverage.
IC

3

used in the estimation of R, BIC used in the selection of p̂.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 91.39 (0.042) 1.00 (0.001) 1.05 (0.000) 0.09
BC 91.55 (0.040) 1.00 (0.001) 1.05 (0.000) 0.09
RF 91.66 (0.040) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 89.27 (0.068) 3.01 (0.005) 3.29 (0.001) 0.15
BC 91.07 (0.059) 3.18 (0.005) 3.29 (0.001) 0.07
RF 91.24 (0.056) 3.17 (0.005) 3.29 (0.001) 0.07

h=10 none 85.66 (0.094) 3.92 (0.008) 4.61 (0.002) 0.25
BC 89.43 (0.082) 4.45 (0.010) 4.61 (0.002) 0.09
RF 90.16 (0.073) 4.48 (0.010) 4.61 (0.002) 0.08

Y2 h=1 none 88.72 (0.045) 0.73 (0.001) 0.84 (0.000) 0.20
BC 88.95 (0.045) 0.73 (0.001) 0.84 (0.000) 0.20
RF 89.10 (0.043) 0.73 (0.001) 0.84 (0.000) 0.19

h=5 none 88.71 (0.071) 2.37 (0.004) 2.65 (0.001) 0.17
BC 90.56 (0.063) 2.51 (0.004) 2.65 (0.001) 0.10
RF 91.02 (0.056) 2.50 (0.004) 2.65 (0.001) 0.10

h=10 none 84.70 (0.102) 3.25 (0.007) 3.88 (0.002) 0.27
BC 88.75 (0.091) 3.69 (0.008) 3.88 (0.002) 0.12
RF 89.92 (0.078) 3.71 (0.008) 3.88 (0.002) 0.10

Y5 h=1 none 91.98 (0.039) 1.58 (0.002) 1.65 (0.001) 0.07
BC 92.18 (0.038) 1.59 (0.002) 1.65 (0.001) 0.07
RF 92.32 (0.037) 1.59 (0.002) 1.65 (0.001) 0.06

h=5 none 89.07 (0.069) 5.04 (0.008) 5.55 (0.002) 0.15
BC 90.91 (0.060) 5.33 (0.009) 5.55 (0.002) 0.08
RF 91.25 (0.055) 5.31 (0.008) 5.55 (0.002) 0.08

h=10 none 85.10 (0.099) 6.80 (0.014) 8.07 (0.003) 0.26
BC 89.05 (0.087) 7.72 (0.017) 8.07 (0.003) 0.11
RF 90.09 (0.075) 7.76 (0.017) 8.07 (0.003) 0.09

Y10 h=1 none 92.56 (0.041) 1.14 (0.001) 1.14 (0.000) 0.03
BC 92.70 (0.040) 1.14 (0.001) 1.14 (0.000) 0.03
RF 92.73 (0.040) 1.14 (0.001) 1.14 (0.000) 0.03

h=5 none 89.89 (0.068) 3.15 (0.005) 3.35 (0.001) 0.12
BC 91.54 (0.061) 3.33 (0.006) 3.35 (0.001) 0.04
RF 91.46 (0.060) 3.32 (0.006) 3.35 (0.001) 0.05

h=10 none 86.98 (0.087) 3.83 (0.008) 4.37 (0.002) 0.21
BC 90.09 (0.080) 4.33 (0.010) 4.37 (0.002) 0.06
RF 90.24 (0.076) 4.36 (0.010) 4.37 (0.002) 0.05

Y25 h=1 none 93.26 (0.039) 1.68 (0.002) 1.64 (0.001) 0.04
BC 93.41 (0.038) 1.69 (0.002) 1.64 (0.001) 0.05
RF 93.45 (0.037) 1.69 (0.002) 1.64 (0.001) 0.05

h=5 none 89.85 (0.068) 4.75 (0.008) 5.06 (0.002) 0.12
BC 91.55 (0.060) 5.02 (0.009) 5.06 (0.002) 0.04
RF 91.51 (0.058) 5.01 (0.008) 5.06 (0.002) 0.05

h=10 none 86.69 (0.090) 5.88 (0.012) 6.72 (0.003) 0.21
BC 90.04 (0.081) 6.65 (0.015) 6.72 (0.003) 0.06
RF 90.35 (0.074) 6.68 (0.015) 6.72 (0.003) 0.05
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Table 3.8: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both follow-
ing AR(2) models with normal errors. Model with coe�cients �F1

1

=1.475,
�F1

2

=-0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 100. 95% nominal coverage.
IC

3

used in the estimation of R, AICc used in the selection of p̂.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 90.73 (0.045) 0.98 (0.001) 1.05 (0.000) 0.11
BC 90.88 (0.044) 0.99 (0.001) 1.05 (0.000) 0.11
RF 91.00 (0.044) 0.99 (0.001) 1.05 (0.000) 0.10

h=5 none 88.35 (0.073) 2.97 (0.005) 3.29 (0.001) 0.17
BC 90.27 (0.065) 3.14 (0.005) 3.29 (0.001) 0.09
RF 90.42 (0.061) 3.12 (0.005) 3.29 (0.001) 0.10

h=10 none 84.77 (0.100) 3.90 (0.008) 4.61 (0.002) 0.26
BC 88.59 (0.089) 4.41 (0.010) 4.61 (0.002) 0.11
RF 89.25 (0.079) 4.39 (0.010) 4.61 (0.002) 0.11

Y2 h=1 none 87.98 (0.048) 0.72 (0.001) 0.84 (0.000) 0.22
BC 88.27 (0.048) 0.72 (0.001) 0.84 (0.000) 0.21
RF 88.41 (0.047) 0.72 (0.001) 0.84 (0.000) 0.21

h=5 none 87.75 (0.076) 2.34 (0.004) 2.65 (0.001) 0.19
BC 89.69 (0.069) 2.47 (0.004) 2.65 (0.001) 0.12
RF 90.15 (0.062) 2.46 (0.004) 2.65 (0.001) 0.12

h=10 none 83.76 (0.109) 3.22 (0.007) 3.88 (0.002) 0.29
BC 87.84 (0.099) 3.65 (0.008) 3.88 (0.002) 0.14
RF 88.95 (0.084) 3.63 (0.008) 3.88 (0.002) 0.13

Y5 h=1 none 91.35 (0.042) 1.56 (0.002) 1.65 (0.001) 0.09
BC 91.53 (0.041) 1.57 (0.002) 1.65 (0.001) 0.08
RF 91.68 (0.040) 1.57 (0.002) 1.65 (0.001) 0.08

h=5 none 88.13 (0.074) 4.96 (0.008) 5.55 (0.002) 0.18
BC 90.09 (0.066) 5.26 (0.008) 5.55 (0.002) 0.10
RF 90.46 (0.060) 5.23 (0.008) 5.55 (0.002) 0.11

h=10 none 84.19 (0.106) 6.75 (0.015) 8.07 (0.003) 0.28
BC 88.20 (0.095) 7.64 (0.017) 8.07 (0.003) 0.12
RF 89.16 (0.081) 7.61 (0.017) 8.07 (0.003) 0.12

Y10 h=1 none 91.91 (0.047) 1.12 (0.001) 1.14 (0.000) 0.04
BC 92.00 (0.046) 1.13 (0.001) 1.14 (0.000) 0.04
RF 92.07 (0.046) 1.13 (0.001) 1.14 (0.000) 0.04

h=5 none 89.02 (0.076) 3.12 (0.005) 3.35 (0.001) 0.13
BC 90.76 (0.068) 3.29 (0.006) 3.35 (0.001) 0.06
RF 90.60 (0.066) 3.27 (0.006) 3.35 (0.001) 0.07

h=10 none 86.09 (0.094) 3.81 (0.008) 4.37 (0.002) 0.22
BC 89.26 (0.088) 4.28 (0.010) 4.37 (0.002) 0.08
RF 89.27 (0.082) 4.27 (0.010) 4.37 (0.002) 0.08

Y25 h=1 none 92.55 (0.044) 1.66 (0.002) 1.64 (0.001) 0.04
BC 92.75 (0.043) 1.66 (0.002) 1.64 (0.001) 0.04
RF 92.80 (0.043) 1.67 (0.002) 1.64 (0.001) 0.04

h=5 none 88.98 (0.075) 4.69 (0.008) 5.06 (0.002) 0.14
BC 90.78 (0.066) 4.96 (0.009) 5.06 (0.002) 0.06
RF 90.70 (0.064) 4.93 (0.008) 5.06 (0.002) 0.07

h=10 none 85.80 (0.097) 5.84 (0.013) 6.72 (0.003) 0.23
BC 89.17 (0.090) 6.57 (0.015) 6.72 (0.003) 0.08
RF 89.38 (0.082) 6.55 (0.015) 6.72 (0.003) 0.08
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Table 3.9: Comparison of relative frequencies in the estimation of p̂ by
BIC and AICc. The values correspond to a Monte Carlo simulation with
10 000 replications. Two common factors, both following AR(2) models
with normal errors. Model with coe�cients �F1

1

=1.475, �F1

2

=-0.4875,
�F2

1

=1.4, �F2

2

=-0.45. T = 100. 95% nominal coverage.

Factor p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ = 5 p̂ = 6
BIC
F1 0.23 82.47 10.15 3.94 1.85 1.36
F2 1.84 78.47 12.32 4.01 1.95 1.41
AICc
F1 0.02 36.66 16.17 13.50 14.13 19.52
F2 0.22 33.94 17.52 14.28 13.96 20.08

3.5 Empirical Example

As an application, we employ data of industrial production (486 seasonally

adjusted monthly observations of the Industrial Production Index, IPI, from

January, 1975, to June, 2015) in 13 European countries. These include Aus-

tria, Denmark, Finland, France, Germany, Italy, Luxembourg, Netherlands,

Norway, Portugal, Spain, Sweden, and the United Kingdom. Other Euro-

pean countries with available data have been excluded for having small cross

correlations with the former. The data was obtained from OECD Statistics.

See Figure 3.1 for a graph of the series included in the analysis.

In order to compare the results of the corrections we start with a rolling

window of length T = 50 and forecast from h = 1 to h = 12 steps ahead.

This means that, for the vector of 13 countries, the first window starts from

the first observation in the data-set (January, 1975), until T = 50 (February,

1979). We work with this window to extract common factors8, specify an

AR model for each factor, and generate forecasts for the next 12 observations

(March, 1979, to February, 1980). Repeating this process to the last window

8For an assessment of the factors’ loads see Figure 3.3a in Subsection 3.5.1.
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Figure 3.1: Industrial Production Index. January, 1975 to June, 2015.
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(from May, 2010, to June, 2014), we obtain 424 one- to twelve-step-ahead

forecasts. The AR model for each factor is selected in each window, employ-

ing BIC. The prediction intervals will have 95% nominal coverage rates. We

also performed these estimations employing longer windows of time T = 100

and T = 200, particularly to show how coverage rates C
m

are linked to T in

this data-set.

Some additional features outside the scope of the simulations of the previous

sections help improve forecasts (equally for none, BC, and RF ) in this ap-

plication. Outliers are intervened beforehand using the statistical software
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Figure 3.2: Industrial Production Index with intervention of outliers
performed using TRAMO. January, 1975 to June, 2015.
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TRAMO, through its Matlab interface. Figure 3.2 shows the series after in-

tervening outliers. Furthermore, we obtained an important improvement of

using three rather than two common factor to reduce the dimension of this

data-set. Last, while in the simulations we know that the specific factors

are white noise, in this practical application these are modeled as AR when

necessary.

The analysis is performed for the logarithm of the series, but this transfor-

mation does not a↵ect the conclusions.
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To compare the results of using none, BC, and RF as small sample bias

correction methods in the AR models for the common factors, we present

actual coverage rates C
m

, mean interval lengths L
m

, and Mean Absolute

Error (MAE). The MAE is calculated in the following way,

MAEj =
1

W

WX

w=1

 
1

13

13X

i=1

|(y
i,z

� ŷj
i,z

)|
!
, (3.12)

where W is the number of months in the out of sample period (the total

number of rolling windows), i = 1, ..., n the series included (in this case we

have n = 13), and j = {none,BC,RF}. It is calculated for each forecasting

horizon h.

3.5.1 Description of Loads

A feature of interest in the empirical estimation are the factors’ loads. Be-

cause we are working with rolling windows (of diverse length T ), loads are

estimated together with the unobserved common factors in each window and

may change from on window to the next. For this reason, in Figure 3.3a we

present the loads we would obtain for the whole data-set instead of any par-

ticular window of time; we do this to get an approximate representation of

the matrix of weights. We also include box plots of the logarithm of centred

IPI for the countries in this study, to identify similarities and di↵erences in

the distributions by country.

Oftentimes it is possible to visually find associations between loads and pat-

terns or groupings in the data. The estimated weights for the first factor

are highly associated to the variance of IPI in each country (see Table 3.10).

The weights for the second factor distinguish two groups of countries: Den-

mark, Italy, Norway, Portugal, and the United Kingdom on the one hand,

and Austria, Germany and, to a lesser degree, Finland, on the other hand.
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Last, the weights for the third factor (which, of course, contributes less to

the total variability of the data than the other two) separate Germany and

Portugal from Italy, Spain and Sweden.
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Loads for the First Factor
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(a) Loads corresponding to three unobserved common factors.
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(b) Boxplots of the logarithm of the centred IPI, by country.

Figure 3.3: Loads and boxplots for the IPI with outliers intervened
(T = 485).
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Table 3.10: IPI complete data-set January, 1975, to June, 2015 (T =
485). Loads of the first common factor and variances for 13 European

countries.

Loads first factor Variances IPI
Austria 0.44 0.16

Denmark 0.20 0.04
Finland 0.44 0.16
France 0.13 0.01

Germany 0.24 0.05
Italy 0.13 0.02

Luxembourg 0.35 0.10
Netherlands 0.20 0.03

Norway 0.34 0.10
Portugal 0.27 0.07

Spain 0.19 0.03
Sweden 0.29 0.07

UK 0.13 0.01

3.5.2 Results

In Tables 3.11 to 3.13 we present the average of the results for the 13 series

and in Tables 3.14 to 3.16 we present detailed results for four countries

selected to represent diversity in coverage levels.

There are several findings. Firstly, for T = 50, the performance of the predic-

tion intervals is short of the 95% nominal coverage. In this regard, Clements

and Kim (2007) explain that a small-sample deterioration of the results of

high-order models (they employ an AR(6) for United States industrial pro-

duction data) in comparison to low-order models (like those employed in the

simulations) is to be expected. The coverage, C
m

, for this empirical example,

is highly responsive to the size of the historical data (T ) considered in the

rolling windows: while for T = 50 we obtain C
m

deteriorates to C
m

=56.50%

(h = 12, none), Table 3.13 shows that, for T = 200, C
m

is closer to the 95%

nominal coverage (the worst coverage is C
m

=78.50%, for h = 12 in none).

For h = 1, comparing Tables 3.11, 3.12, and 3.13 we can see that the mean
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coverage, C
m

, increases from 89.22 (averaging none, BC, and RF for h = 1)

for T = 50, to 92.31 for T = 100, and almost reaches the nominal value

for T = 200 (94.74 on average for h = 1). In other words, large sample

sizes, though not always available in practice, contribute to more accurate

forecasting intervals.

Secondly, in line with the results obtained in simulations, for one-step-ahead

forecasts the improvements of BC and RF appear small; however, as the

forecasting horizon increases, C
m

and MAE reveal an evident advantage of

employing the corrections, especially RF. For RF, the advantage in compar-

ison to none reaches up to 10.38 percentage points (see Table 3.11, h = 12).

Last, interval lengths L
m

tend to be greater for BC and RF than for none.

Table 3.11: IPI forecasting results for 13 European countries. The
average of the series is obtained for Interval Coverage C

m

(in %), Mean
Absolute Error MAE, and Interval’s Length L

m

. Standard Errors are
provided between parenthesis. T = 50.

Horizon Correction C
m

(se) MAE (se) L
m

(se)
h=1 none 88.82 (1.53) 1.47 (0.02) 6.03 (0.06)

BC 89.56 (1.48) 1.46 (0.02) 6.07 (0.06)
RF 89.29 (1.50) 1.46 (0.02) 6.06 (0.06)

h=6 none 71.74 (2.17) 2.78 (0.07) 7.67 (0.11)
BC 76.50 (2.05) 2.65 (0.06) 8.17 (0.13)
RF 77.60 (2.02) 2.58 (0.06) 8.21 (0.13)

h=12 none 56.50 (2.37) 4.29 (0.14) 8.46 (0.17)
BC 64.90 (2.28) 4.12 (0.13) 9.68 (0.21)
RF 66.52 (2.26) 3.85 (0.10) 9.74 (0.20)

Contrary to C
m

, for this application the MAE does not seem to respond as

much to sample size. This may seem odd, but it must be considered that

the number of windows included in the estimation is smaller for Tables 3.12

and 3.13 because they have longer historical data-sets, than in Table 3.11.

In Tables 3.14 to 3.16 we present the results for Denmark, Finland, Lux-

embourg and Spain. Finland is the country with the highest coverage C
m

in the short term while Luxembourg has the lowest coverage for the first
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Table 3.12: IPI forecasting results for 13 European countries. The
average of the series is obtained for Interval Coverage C

m

(in %), Mean
Absolute Error MAE, and Interval’s Length L

m

. Standard Errors are
provided between parenthesis. Rolling windows of size T = 100.

Horizon Correction C
m

(se) MAE (se) L
m

(se)
h=1 none 92.20 (1.37) 1.47 (0.02) 6.59 (0.05)

BC 92.41 (1.34) 1.46 (0.02) 6.60 (0.05)
RF 92.31 (1.36) 1.46 (0.02) 6.61 (0.05)

h=6 none 80.97 (2.01) 2.74 (0.06) 9.19 (0.11)
BC 83.36 (1.91) 2.67 (0.06) 9.55 (0.12)
RF 84.04 (1.88) 2.62 (0.06) 9.59 (0.12)

h=12 none 69.91 (2.34) 4.12 (0.11) 10.75 (0.17)
BC 74.61 (2.22) 3.99 (0.11) 11.84 (0.20)
RF 76.55 (2.17) 3.82 (0.09) 11.90 (0.19)

Table 3.13: IPI forecasting results for 13 European countries. The
average of the series is obtained for Interval Coverage C

m

(in %), Mean
Absolute Error MAE, and Interval’s Length L

m

. Standard Errors are
provided between parenthesis. Rolling windows of size T = 200.

Horizon Correction C
m

(se) MAE (se) L
m

(se)
h=1 none 94.73 (1.31) 1.46 (0.03) 7.33 (0.07)

BC 94.82 (1.30) 1.46 (0.03) 7.36 (0.07)
RF 94.67 (1.32) 1.46 (0.03) 7.34 (0.06)

h=6 none 87.29 (1.98) 2.84 (0.08) 10.78 (0.11)
BC 88.45 (1.88) 2.81 (0.07) 10.95 (0.11)
RF 88.48 (1.88) 2.78 (0.07) 10.96 (0.11)

h=12 none 78.50 (2.46) 4.33 (0.13) 13.11 (0.16)
BC 80.50 (2.38) 4.22 (0.12) 13.69 (0.17)
RF 81.43 (2.32) 4.14 (0.12) 13.71 (0.17)

forecasting horizons. The results of Denmark and Spain are closer to the

average results.

There may be some concerns regarding the way to best model this data that

must be taken into account when interpreting the results. For instance, the

models may be incorrectly specified (perhaps more sophisticated approaches

should be used to model the factors), or there may be structural breaks in

the data (in particular, this could be true for the windows containing the

2008 stock market crash) that are entirely ignored. However, these e↵ects
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are out of the scope of this work and the empirical illustration still serves the

purpose of demonstrating how bias-correcting the models for the common

factors improves forecasting outcomes.

3.6 Concluding Remarks

Following Clements and Kim (2007) we have studied the behavior, in small

samples, of three estimators for the AR parameters in a context of highly

persistent models. Taking the applications of the methodology one step fur-

ther, we have employed it in AR models for common factors, when we believe

there are underlying unobserved factors driving the behavior of several time

series. In all the cases we use the same bootstrap procedure to obtain pre-

diction intervals (Alonso et al., 2008), so the only divergence originates in

the estimation of the aforementioned AR parameters.

To evaluate this methodology, we carried out several Monte Carlo simula-

tions, with alternative settings. These consisted of alternative sample sizes

(in the time dimension) T = 50, 100, 200, di↵erent models for the behavior

of the common factors (AR(1) and AR(2) factors), and various assumptions

in regard to the information and tools available to the researcher, such as

previous knowledge (or not) of the number of common factors to obtain and

their AR order and employing AICc or BIC criteria to select p, as well as

the possibility of having non-Gaussian residuals.

Our most important finding is that in all the settings considered, the two

techniques BC and RF succeed at obtaining improved coverage rates in com-

parison with the situation when no correction is performed. Furthermore,

RF tends to be the most advantageous.
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Another outcome of the simulations is that, as expected, the smaller the

sample (T ), the greater the improvement due to bias correction. Therefore,

it is more e↵ective to use correction techniques when the sample size is

small (which we have represented with T = 50) than for larger samples (in

particular, we have worked with T = 200).

Additionally, the edge of the techniques employed over none augments for

longer forecasting horizons, another result in line with Clements and Kim

(2007).

Lastly, though the empirical results turn out to be rather modest measured

by coverage rates, still reveal large di↵erences in performance of the cor-

rected methods vs. none. In agreement with the simulations’ outcomes, the

improvements are more noticeable as the forecasting horizon increases.

Possible extensions include exploring the bias when the common factors fol-

low alternative specifications. For instance, MA terms could be included to

the AR models hereby studied. Also, seasonality may be modelled if needed.

Another option would be to include VAR specifications for the common fac-

tors instead of AR.





Chapter 4

Conclusions and Possible

Extensions

4.1 Conclusions

In this dissertation we explore some of the questions that arise with the

use of factor models. In particular, we take a di↵erent approach to the

questions of the number of common factors to use and the model they follow.

This approach consists of combining the forecasts of di↵erent models for the

common factors. These models vary depending on the number of common

factors they include and their ARIMA specification. We apply this approach

to two data-sets for electricity prices and obtained improved results with the

median-based combination, the mean-based combination, and the mean BIC-

based combination in comparison to the benchmark (best model according to

the BIC). Additionally, we find that using longer historic data-sets especially

improve results for the longer forecasting horizons we consider (one to two

months). Also, we obtain that the forecasting error is reduced when we
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include MA terms for modeling the unobserved factors rather than using

only AR alternatives.

Another issue we address concerns the bias in the AR coe�cient of the

common factors when these are close to the unit root. Using Monte Carlo

simulations, we find that the bias is stronger for samples that have a small

time dimension (low values of T ). The techniques we use to correct this bias

are the Bootstrap Bias-Correction of Clements and Kim (2007) and Roy-

Fuller’s estimator by Roy and Fuller (2001). These bias corrections obtain

more accurate forecasts than if the bias is not corrected, and this conclusion

is maintained in alternative settings such as varying data lengths or having

non-Gaussian residuals. Furthermore, we find that RF tends to perform

better than BC.

4.2 Possible Extensions

Selection of the Data-Set: The availability of large amounts of data

may tempt us to include a very large number of variables N . However,

not all the time series will be equally informative of the underlying factors

and “extracting information from a large data-set (...) can be suboptimal

because of oversampling and error correlation” (Caggiano et al., 2011). One

possibility is to verify the importance of the common component on each

time series and proceed to exclude the least critical ones. Another option in

the same line consists of selecting a subset of N to obtain the commonality.

Boivin and Ng (2006) obtain improvements in e�ciency by doing so. They

introduce two rules for reducing the number of series included in the N used

to estimate the factors. One drops those series which idiosyncratic error is

most correlated to some other series and the other one reduces the data even

further by dropping also the series which error is second most correlated
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to others. Caggiano et al. (2011) also obtain forecasts improvements by

pre-selecting variables according to Boivin and Ng (2006) in an empirical

investigation with European data.

Outliers: Weron (2014) points out a disagreement in the literature regarding

the inclusion of price spikes in the estimation of statistical models. It is not

clear whether we should intervene outliers directly in the original data, or if

we should handle outliers once the factors are estimated and when we intend

to estimate their models. Lee and Carter (1992) employ a factor model for

mortality rates in the United States and address the issue of how to treat the

1918 epidemic (an extreme behavior of the series). Their discussion starts

once the common factor has been estimated, not before. They decide to

intervene the outlier, but recognize that this may not be desirable, because

it is necessary to recognize this uncertainty in the forecasting intervals, if it

is believed that such an event may re-occur.

A further problem caused by the presence of outliers in the data is the

reliability of the sample variance-covariance matrix, and thus of the results

of the SVD. There are alternative approaches to robust estimation. An

interesting approach is that of Xu et al. (2012). These authors work with

convex optimization to obtain the exact low-dimensional subspace of the

common factors. Their technique may be employed even when all the time

series are corrupted at a point t in time, which can be beneficial in many real-

life settings, and not only produces robust principal components estimates,

but it also identifies the outliers. Peña and Prieto (2007) also work with

outlier detection and robust estimation of the covariance of high dimensional

data basing their procedure on projections.

Alternative Models for the Common Factors: including alternative

specifications could reduce the forecasting error even more. As extensions

to Chapter 2, alternative VARIMA models for the common factors could



Appendix A 106

enter the combinations as well (like the SeaDFA). On the other hand, other

techniques for forecast combination could be tested. One example of this

is to employ Bayesian weights, which could be calculated based on prior

distributions that incorporate knowledge of the particular data to model.

Also, though we work with weights that are fixed for each window of time,

weights tailored to the forecasting horizon may be successful.

With regard to the bias correction techniques of Chapter 3, the models for the

common factors could be extended to ARMA instead of only AR models.

If the common factors were correlated, the bias of VAR models could be

studied as well. A further extension would be to compare the small sample

bias when Principal Components are used to estimate the factors, vs. other

techniques, such as the generalized Dynamic Factor Model of Forni et al.

(2005).



Appendix A

Appendix to Chapter 2

A.1 Details of ANOVA for a Comparison of

the Alternatives for Modeling. Results

for the Iberian Electricity Market.

In this section, we describe in detail the results for the ANOVA performed

for the forecasting horizons h = 1, 7, 30, 60, for the data-set of prices in the

Iberian electricity market. In order to be robust against departures from the

Gaussianity assumption, we employ bootstrap to calculate the ANOVA’s p-

values, as well as the confidence intervals for the means of the DOE’s factors.

Table A.1 presents a summary of the results described in the following sub-

sections. For each DOE’s factor it indicates the best level. For instance, for

h = 1, Historical Length= 308 days outperforms the alternative Historical

Length= 548 days. We work with ln(MAE) as dependent variable in order

to eliminate heteroskedasticity.
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Table A.1: Summary of results of the Analysis of Variance for ln(MAE)
for all forecasting horizons. Iberian market.

h = 1 h = 7 h = 30 h = 60

Logarithm ns ns ns ns
Hist Length (days) 308 308 548 548
MA Yes Yes Yes Yes
Combinations {6} {2, 3, 6} {2, 3, 6} {2, 3, 6}

Notes: Significance level of at least ↵ =0.01. ns: not significant.

A.1.1 Minimizing Forecasting Error for One-Day-

Ahead Forecasts

To assess the results for one-day-ahead forecasts (h = 1), see Figure A.1

and Table A.2. In Figure A.1, the horizontal axis presents the alternative

values of the DOE’s factors (Logarithm, Historical Length, Moving Average,

Forecast Combinations) and the vertical axis shows the logarithm of MAE

corresponding to the means and 95% confidence intervals.

The e↵ect of DOE factor Logarithm is not significant. On the contrary,

when considering Historical Length, we can see a significant di↵erence: us-

ing the short historic window gives significantly better forecasts in terms of

forecasting accuracy - a smaller MAE - than using the long historic window

(548 days). Regarding the Moving Average component, significantly better

results are obtained when incorporating an MA term in the model of the

unobserved common factors (the alternative being modeling as ARI). Last,

Forecast Combination 6 (mean BIC-based combination) outperforms most

of the others.
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Table A.2: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 1, Iberian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 0.02 0.02 0.67 0.4331
Hist Length 1 1.56 1.56 59.45 0.0020
MA 1 111.24 111.24 4240.25 0.0020
Combinations 5 0.35 0.07 2.70 0.0140
Day 1766 22166.97 12.55 478.46 0.0020
Residuals 83041 2178.51 0.03

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.
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Figure A.1: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 1, Iberian market.
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Table A.3: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 7, Iberian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 0.07 0.07 2.66 0.1218
Hist Length 1 0.60 0.60 23.07 0.0020
MA 1 7.71 7.71 295.44 0.0020
Combinations 5 8.37 1.67 64.18 0.0020
Day 1766 25363.03 14.36 550.59 0.0020
Residuals 83041 2166.09 0.03

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.

A.1.2 Minimizing Forecasting Error for Seven-Day-

Ahead Forecasts

Table A.3 and Figure A.2 present the results for seven-day-ahead forecasts

(h = 7). There are three Forecast Combinations which outperform the

benchmark: 2, 3 and 6. Furthermore, there is a significant di↵erence be-

tween the two values for Historical Length: employing historic data-sets of

308 days provides with significantly better forecasts than 548 days. Sig-

nificantly better results are obtained when incorporating a Moving Average

component in the unobserved common factors’ models. Last, the e↵ect of

Logarithm continues to be not significant.

A.1.3 Minimizing Forecasting Error for One-Month-

Ahead Forecasts

Details on the results for thirty-day-ahead forecasts (h = 30) can be found

in Table A.4 and Figure A.3. For Forecast Combinations, we obtain similar

results to h = 7. Contrary to shorter forecasting horizons, the Historical

Length of 548 days presents significantly better forecasts than the shorter

window, an intuitive result. Again, significantly better results are obtained
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Figure A.2: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 7, Iberian market.

with a Moving Average component in the model for unobserved common

factors. The e↵ect of Logarithm continues to be not significant.

A.1.4 Minimizing Forecasting Error for Two-Month-

Ahead Forecasts

The longest forecasting horizon considered in this assessment is sixty-day-

ahead (h = 60). The results are presented in Table A.5 and Figure A.4. As
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Table A.4: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 30, Iberian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 0.01 0.01 0.33 0.5669
Hist Length 1 19.90 19.90 458.58 0.0020
MA 1 10.34 10.34 238.25 0.0020
Combinations 5 11.35 2.27 52.31 0.0020
Day 1766 24319.88 13.77 317.31 0.0020
Residuals 83041 3604.00 0.04

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.
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Figure A.3: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 30, Iberian market.
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Table A.5: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 60, Iberian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 0.01 0.01 0.15 0.6946
Hist Length 1 126.98 126.98 2359.20 0.0020
MA 1 6.73 6.73 125.11 0.0020
Combinations 5 20.82 4.16 77.37 0.0020
Day 1766 25660.02 14.53 269.97 0.0020
Residuals 83041 4469.42 0.05

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.

for h = 7 and h = 30, we obtain that the three most successful Forecast

Combinations are 2, 3 and 6. Employing a Historical Length of 548 days

provides with significantly better forecasts in terms of forecasting accuracy

than using the shorter option. Additionally, significantly better results are

obtained when incorporating a Moving Average component to model the

unobserved common factors. Last, there is no change with respect to the

conclusions for Logarithm.

A.2 Details of ANOVA for a Comparison of

the Alternatives for Modeling. Results

for the Italian Electricity Market

In this section, we describe in detail the results for the ANOVA performed

for the forecasting horizons h = 1, 7, 30, 60, for the data-set of prices in the

Italian electricity market. In order to be robust against departures from the

Gaussianity assumption, we employ bootstrap to calculate the p-values of

the analysis, as well as the confidence intervals for the means of the DOE’s

factors.
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Figure A.4: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 60, Iberian market.

Table A.6 presents a summary of the results described in the following sec-

tions. Notice that we work with ln(MAE) for dependent variable in order to

eliminate heteroskedasticity.
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Table A.6: Summary of results of the Analysis of Variance for ln(MAE)
for all forecasting horizons. Italian market.

h = 1 h = 7 h = 30 h = 60

Logarithm Yes Yes Yes Yes
Hist Length (days) 308 308 308 548
MA Yes Yes Yes Yes
Combinations {2 : 6} {2 : 6} {2, 3, 6} {6}
Notes: Significance level of at least ↵ =0.01. ns: not significant.

Table A.7: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 1, Italian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 49.61 49.61 1092.13 0.0020
Hist Length 1 25.78 25.78 567.39 0.0020
MA 1 220.14 220.14 4846.00 0.0020
Combinations 5 5.66 1.13 24.91 0.0020
Day 1218 12469.53 10.24 225.36 0.0020
Residuals 57285 2602.32 0.05

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.

A.2.1 Minimizing Forecasting Error for One-Day-

Ahead Forecasts

For the shortest forecasting horizon considered (h = 1), we obtain that

all the factors included in the DOE a↵ect the forecasting error measured

by ln(MAE) (see Table A.7). Figure A.5 presents 95% confidence intervals

showing the e↵ect of the DOE factors in the mean of ln(MAE). Better results

are obtained when the dependent variable is ln(Prices) rather than Prices

and also when the short Historical Length is used. Employing ARIMA mod-

els for the common factors instead of ARI models also results in a smaller

forecasting error. We find that all the proposed Forecast Combinations, spe-

cially 6, turn out to provide significantly better results than the benchmark

(presented as Combination 1 in the plot).
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Figure A.5: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 1, Italian market.

A.2.2 Minimizing Forecasting Error for Seven-Day-

Ahead Forecasts

For h = 7, all the factors included in the DOE a↵ect the forecasting error

measured by ln(MAE) (see Table A.8). The confidence intervals showing

the e↵ect of the DOE’s factors in the mean of ln(MAE) are presented in

Figure A.6. Similar results to h = 1 are obtained for Logarithm, Historical

Length, Moving Average, and Forecast Combinations. Especially Forecast
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Table A.8: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 7, Italian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 17.17 17.17 530.14 0.0020
Hist Length 1 10.42 10.42 321.78 0.0020
MA 1 60.84 60.84 1878.39 0.0020
Combinations 5 10.03 2.01 61.94 0.0020
Day 1218 13982.28 11.48 354.44 0.0020
Residuals 57285 1855.34 0.03

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.

Table A.9: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 30, Italian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 21.23 21.23 453.13 0.0020
Hist Length 1 6.21 6.21 132.49 0.0020
MA 1 140.73 140.73 3004.28 0.0020
Combinations 5 2.36 0.47 10.09 0.0020
Day 1218 13557.33 11.13 237.62 0.0020
Residuals 57285 2683.40 0.05

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.

Combinations 2,3 and 6, turn out to provide significantly better results than

the benchmark Forecast Combination 1.

A.2.3 Minimizing Forecasting Error for One-Month-

Ahead Forecasts

For h = 30, we obtain similar results to those presented for shorter horizons

(see Table A.9). This is di↵erent from the Iberian case, in which a longer

Historical Length results beneficial for this forecasting horizon. Figure A.7

presents the confidence intervals showing the e↵ect of the factors in the mean

of ln(MAE). In the case of Forecast Combinations, 4 and 5 no longer provide

a significant advantage.
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Figure A.6: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 7, Italian market.

A.2.4 Minimizing Forecasting Error for Two-Month-

Ahead Forecasts

For the largest forecasting horizon considered (h = 60) we obtain that all

the factors included in the DOE are statistically significant (see Table A.10).

Figure A.8 presents the confidence intervals showing the e↵ect of the factors

in the mean of ln(MAE). Better results are obtained when the dependent

variable is ln(Prices) instead of ‘Prices’ and also when the long Historical
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Figure A.7: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 30, Italian market.

Length is used, contrary to what was found in the previous forecasting hori-

zons but supported in the literature. Setting Moving Average= Yes still

improves the results. We continue to find that Forecast Combination 6 pro-

vides significantly better results than the benchmark (Combination 1 in the

figure), but the benefits of using 2 and 3 are not as strong as with h < 60.
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Table A.10: Analysis of Variance for ln(MAE). Main e↵ects. Forecast
horizon h = 60, Italian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 5.21 5.21 110.18 0.0020
Hist Length 1 1.93 1.93 40.86 0.0020
MA 1 83.70 83.70 1770.80 0.0020
Combinations 5 1.69 0.34 7.17 0.0020
Day 1218 13013.62 10.68 226.05 0.0020
Residuals 57285 2707.58 0.05

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error.

P-values are estimated by bootstrap.
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Figure A.8: Bootstrap confidence intervals for the mean ln(MAE) of the
factors Logarithm, Historical Length, Moving Average, and Forecast Com-
binations. Forecast Combinations include: (1) benchmark BIC-selected
model, (2) median-based combination, (3) mean-based combination, (4)
BIC-based combination, (5) BIC-50% combination, (6) mean BIC-based

combination. Forecast horizon h = 60, Italian market.
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A.3 ANOVA Bootstrap Procedures

Davison and Hinkley (1997) indicate that when we have doubts about the

accuracy of the normal approximation, the empirical distribution can be a

fairer approximation of the distribution of the parameter of interest. As

an advantage, we do not need to know the distribution of the underlying

parameter in order to employ bootstrap procedures.

A.3.1 Bootstrap Procedure to Calculate ANOVA P-

values

Usually, the ANOVA relies on the assumption that the residuals u
ijkld

of

expression (2.11) are normally distributed. When the data is normally dis-

tributed, the Sum of Squares has a �2 distribution and the quotient of Mean

Squares follows a distribution Fisher-Snedecor (we call this statistic F -ratio).

The lack of normality in u
ijkld

results in an F -ratio that will most likely not

have a Fisher-Snedecor distribution; therefore, the p-value, determined as

Pr(F�ratio� F
n1,n2,↵)

1, is no longer accurate. To avoid complicating nota-

tion, we keep using the denomination F -ratio even if this statistic does not

have a Fisher-Snedecor distribution.

To be robust to departures from the Gaussianity assumption, we calculate

the ANOVA p-values employing bootstrap, according to the following steps.

We use the DOE factor Logarithm for illustrative purposes, but the procedure

is the same for all the factors considered.

1. We estimate model (2.11), obtaining estimates bu
ijkld

and the F -ratio

of the ANOVA.
1Fn1,n2,↵ is such that Pr(F > Fn1,n2,↵) = ↵ when F follows the Fisher-Snedecor

distribution with n1 and n2 degrees of freedom.
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2. We would like to test if there is an e↵ect to taking logarithm of prices.

In other words, is there a di↵erence in the forecasting error of setting

Logarithm= No vs. Logarithm= Yes? This translates in the null hy-

pothesis H0 : ↵
No

= ↵
Yes

. We estimate (2.11) under null hypothesis

H0 and obtain estimates µ̂R, �̂R

j

, �̂R

k

, �̂R
l

and ✏̂R
d

, where R stands for

‘restricted’ model.

3. We generate synthetic samples for the ln(MAE); each bootstrap repli-

cation needs to satisfy the null hypothesis, though employing a random

sample of the unrestricted model’s estimated residuals, bu⇤
ijkld

. The

replications are independent and the random samples (with replace-

ment) of bu⇤
ijkld

have the same size as the original data-set.

ln(MAE⇤
ijkld

) = µ̂R + �̂R

j

+ �̂R

k

+ �̂R
l

+ ✏̂R
d

+ u⇤
ijkld

. (A.1)

4. For each bootstrap replication we re-estimate model (2.11) to the syn-

thetic data ln(MAE⇤
ijkld

) and obtain the statistic F ⇤
b

-ratio, where the

sub-index b = 1, ..., B represents each of the B bootstrap replicas.

5. We obtain the Monte Carlo p-value as indicated in Davison and Hinkley

(1997),

p̂⇤ =
1 +#{F ⇤

b

� F}
B + 1

, (A.2)

where #{·} indicates the number of times the event in braces occurs.

We employ B = 500 bootstrap replications.

A.3.2 Bootstrap Procedure to Calculate ANOVA Main

E↵ects Confidence Intervals

Also to allow departures from Gaussianity, the confidence intervals for the

main e↵ects need not be estimated with the parametric formula employed for
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normal data. Instead, we recur to a Monte Carlo simulation of the bootstrap.

The procedure is the following.

1. We estimate model (2.11), obtaining estimates for the residuals, bu
ijkld

.

2. For each bootstrap replication, we obtain a random sample of bu
ijkld

and generate a data-set

ln(MAE⇤
ijkld

) = µ̂+ ↵̂
i

+ �̂
j

+ �̂
k

+ �̂
l

+ ✏̂
d

+ u⇤
ijkld

. (A.3)

3. We use each simulated sample to estimate the ANOVA and obtain the

estimates for each value of the factors Logarithm, Historical Length,

MA, and Forecast Combinations.

4. We work with B = 500 replications to obtain a bootstrap distribution

for the mean ln(MAE) at each level of the factors of the DOE. We use

the bootstrap percentile interval (Davison and Hinkley, 1997, chapter

5) to calculate 95% confidence intervals for the mean levels of each

factor, by employing the 2.5 and 97.5 percentiles of the estimates of all

the bootstrap replications.

A.4 Combinations and Benchmark Compar-

ison Using the RMSE

In this section, we present the results analogous to Tables 2.3 and 2.4, but

employing a di↵erent accuracy metric, the Root Mean Squared Error. We

obtain similar results to those for the MAE: for both data-sets, Forecast

Combinations median-based, mean-based, and specially mean-BIC-based,

report noticeable improvements with respect to the benchmark BIC-selected

model.
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Table A.11: Weekly, monthly, and bi-monthly RMSE for the Iberian
Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
RMSE 7.1468 7.0810 7.1103 7.1389 7.1389 7.0393

Monthly
RMSE 8.1668 7.9612 7.9721 8.1533 8.1533 7.9052

Bi-Monthly
RMSE 9.1352 8.8689 8.8705 9.1189 9.1189 8.7971

Table A.12: Weekly, monthly, and bi-monthly RMSE for the Italian
Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
RMSE 10.6280 10.5466 10.5937 10.6194 10.6194 10.4675

Monthly
RMSE 11.9479 11.8175 11.8685 11.9353 11.9353 11.7096

Bi-Monthly
RMSE 12.9861 12.6656 12.6981 12.9637 12.9637 12.5709
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Appendix to Chapter 3

B.1 Details About the Results for the Com-

mon Factors

Because we work with simulated data, we generate and know the values of

the underlying factors, contrary to the situation of working with empirical

data. In this section we take advantage of this setting to understand better

the circumstances surrounding the estimation of the models for the common

factors F
1

F
1

F
1

and F
2

F
2

F
2

. We provide details for the case of two factors that follow

AR(1) processes, both r and p are assumed to be known.

In our simulation, it is straight forward to check the bias for factors that are

AR(1). This is done in Table B.1. The bias of BC and RF is much smaller

than the one for none. Notice however that the estimation rendered by none

gets closer to the true value of the coe�cients �
F1

,�
F2

as the sample gets

larger. Thus, the emphasis in that the correction techniques employed in

this work are particularly beneficial for small samples.

125



Appendix B 126

Table B.1: Bias for common factors following AR(1) processes with
normal errors. Between parenthesis, the variance of the AR estimated co-
e�cients. Monte Carlo simulations of model with coe�cients �

F1

=0.975,
�
F2

=0.90. 10 000 MC replications.

Factor Correction T=50 T=100 T=200
F1 none 0.086 (0.006) 0.045 (0.002) 0.023 (0.001)

BC 0.028 (0.005) 0.011 (0.002) 0.003 (0.001)
RF 0.018 (0.005) 0.005 (0.002) -0.001 (0.001)

F2 none 0.157 (0.013) 0.078 (0.005) 0.040 (0.002)
BC 0.092 (0.015) 0.042 (0.005) 0.021 (0.002)
RF 0.078 (0.017) 0.037 (0.005) 0.021 (0.002)

Tables B.2, B.3, and B.4 present the results of the same simulation, this

time for the factors (instead of the selected series) for each indicated sample

size. We can see that the interval coverage C
m

is oftentimes far from the

theoretical 95%, especially for FFF
2

. Notwithstanding, the performance in

terms of coverage of the series (studied in Subsection 3.4.1) is much better.

Take for instance the estimation of FFF
2

of a sample of size T = 100. In

Figure B.1 we present FFF
2

and its estimate fff
2

for a random sample, of the

model in which factors follow AR(1) processes. Notice that for the last

“observed” value (for time t = 100), FFF
2

and the factor estimation fff
2

are

slightly di↵erent; in this case fff
2

is smaller than the actual value for FFF
2

. As

a consequence, the forecasting interval for fff
2

does not match exactly what

would be the interval for the actual values of FFF
2

.1 In this case the forecasting

interval of fff
2

(blue solid lines) is narrower than the equivalent interval for

the continuations (black dotted lines). This breach has a negative e↵ect in

C
m

for the factor, as we can see in Table B.3, with coverage values around

86.50% for h = 1, and even more when the samples are smaller like in Table

B.2.

Besides this point, we observe the same patterns for the factors than for the

1The interval for the actual values of FFF 2 is obtained using continuations given the
known value of F2(T = 100) and the known value �F2.
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Figure B.1: Example of the estimation ofFFF
2

for a window with T = 100.
Simulation of model with coe�cients �

F1

=0.975, �
F2

=0.90.

0 20 40 60 80 100

−4
−2

0
2
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time

fa
ct
or

F2
f2

series. This is to be expected given that, as previously explained, the time

series are mainly the product of the common factors times some weights.
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Table B.2: Results of Monte Carlo simulation, 10 000 replications. Two
common factors following AR(1) models with normal errors. Model with

coe�cients �
F1

=0.975, �
F2

=0.90. T = 50. Nominal coverage 95%.

Factor Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

F1 h=1 none 90.38 (0.079) 3.73 (0.006) 3.88 (0.002) 0.09
BC 90.68 (0.081) 3.78 (0.006) 3.88 (0.002) 0.07
RF 90.94 (0.079) 3.78 (0.006) 3.88 (0.002) 0.07

h=5 none 85.33 (0.087) 6.87 (0.012) 8.27 (0.003) 0.27
BC 89.02 (0.078) 7.69 (0.013) 8.27 (0.003) 0.13
RF 90.76 (0.071) 7.87 (0.014) 8.27 (0.003) 0.09

h=10 none 79.38 (0.116) 8.16 (0.020) 11.01 (0.005) 0.42
BC 85.93 (0.111) 10.05 (0.025) 11.01 (0.005) 0.18
RF 89.21 (0.100) 10.51 (0.025) 11.01 (0.005) 0.11

F2 h=1 none 82.34 (0.198) 2.02 (0.003) 1.94 (0.001) 0.17
BC 82.42 (0.200) 2.03 (0.003) 1.94 (0.001) 0.18
RF 82.40 (0.201) 2.03 (0.004) 1.94 (0.001) 0.18

h=5 none 84.28 (0.097) 3.02 (0.006) 3.60 (0.002) 0.27
BC 87.50 (0.093) 3.35 (0.008) 3.60 (0.002) 0.15
RF 87.99 (0.094) 3.46 (0.008) 3.60 (0.002) 0.11

h=10 none 82.28 (0.096) 3.18 (0.008) 4.17 (0.002) 0.37
BC 86.58 (0.099) 3.77 (0.012) 4.17 (0.002) 0.18
RF 87.44 (0.101) 4.01 (0.014) 4.17 (0.002) 0.12

Table B.3: Results of Monte Carlo simulation, 10 000 replications. Two
common factors following AR(1) models with normal errors. Model with
coe�cients �

F1

=0.975, �
F2

=0.90. T = 100. Nominal coverage 95%.

Factor Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

F1 h=1 none 92.85 (0.040) 3.83 (0.004) 3.88 (0.002) 0.04
BC 92.92 (0.040) 3.85 (0.004) 3.88 (0.002) 0.03
RF 93.08 (0.040) 3.86 (0.004) 3.88 (0.002) 0.03

h=5 none 90.23 (0.054) 7.52 (0.009) 8.27 (0.003) 0.14
BC 92.18 (0.046) 8.06 (0.010) 8.27 (0.003) 0.06
RF 92.85 (0.043) 8.18 (0.010) 8.27 (0.003) 0.03

h=10 none 86.75 (0.080) 9.32 (0.016) 11.02 (0.005) 0.24
BC 90.60 (0.070) 10.68 (0.019) 11.02 (0.005) 0.08
RF 91.90 (0.064) 10.98 (0.019) 11.02 (0.005) 0.04

F2 h=1 none 86.50 (0.158) 2.02 (0.002) 1.94 (0.001) 0.13
BC 86.49 (0.160) 2.02 (0.002) 1.94 (0.001) 0.13
RF 86.38 (0.161) 2.03 (0.002) 1.94 (0.001) 0.13

h=5 none 89.68 (0.062) 3.32 (0.005) 3.60 (0.001) 0.13
BC 91.39 (0.058) 3.53 (0.005) 3.60 (0.001) 0.06
RF 91.40 (0.059) 3.57 (0.006) 3.60 (0.001) 0.05

h=10 none 88.38 (0.066) 3.61 (0.006) 4.17 (0.002) 0.20
BC 90.96 (0.063) 4.01 (0.008) 4.17 (0.002) 0.08
RF 91.11 (0.065) 4.10 (0.009) 4.17 (0.002) 0.06
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Table B.4: Results of Monte Carlo simulation, 10 000 replications. Two
common factors following AR(1) models with normal errors. Model with
coe�cients �

F1

=0.975, �
F2

=0.90. T = 200. Nominal coverage 95%.

Factor Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

F1 h=1 none 93.95 (0.024) 3.89 (0.003) 3.88 (0.002) 0.01
BC 93.96 (0.024) 3.89 (0.003) 3.88 (0.002) 0.01
RF 93.97 (0.025) 3.90 (0.003) 3.88 (0.002) 0.01

h=5 none 92.76 (0.032) 7.92 (0.007) 8.27 (0.003) 0.07
BC 93.73 (0.028) 8.25 (0.007) 8.27 (0.003) 0.02
RF 93.88 (0.027) 8.32 (0.007) 8.27 (0.003) 0.02

h=10 none 91.06 (0.048) 10.13 (0.012) 11.01 (0.005) 0.12
BC 93.04 (0.041) 11.00 (0.013) 11.01 (0.005) 0.02
RF 93.40 (0.040) 11.21 (0.014) 11.01 (0.005) 0.04

F2 h=1 none 89.96 (0.111) 2.01 (0.002) 1.94 (0.001) 0.09
BC 89.94 (0.112) 2.02 (0.002) 1.94 (0.001) 0.09
RF 89.97 (0.112) 2.02 (0.002) 1.94 (0.001) 0.09

h=5 none 92.59 (0.038) 3.50 (0.003) 3.59 (0.002) 0.05
BC 93.41 (0.035) 3.61 (0.004) 3.59 (0.002) 0.02
RF 93.41 (0.036) 3.62 (0.004) 3.59 (0.002) 0.02

h=10 none 91.81 (0.042) 3.91 (0.005) 4.17 (0.002) 0.10
BC 93.19 (0.039) 4.13 (0.006) 4.17 (0.002) 0.03
RF 93.18 (0.040) 4.14 (0.006) 4.17 (0.002) 0.03
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B.2 Results for Non-Gaussian Errors

In this section we re-run the simulations for AR(1) common factors intro-

ducing non normal errors. In particular, the innovations ⌘
i,t

(in (3.3)) follow

a centred �2(5) distribution (as in Clements and Kim, 2007). The main

di↵erence of this distribution with the normal is that it is not symmetrical.

Table B.5 is the analogous to Table B.1. Notice that the bias does not seem

to worsen with the new distribution of ⌘
i,t

. BC and RF continue to improve

upon none, in a similar measure to the case of normally distributed errors.

Still, as expected, the estimation without any bias correction gets closer to

the true AR coe�cients (�
F1

,�
F2

) as the sample (in the time dimension, T )

gets larger.

Table B.5: Bias for common factors following AR(1) processes with
centred �2(5) errors. Between parenthesis, the variance of the AR esti-
mated coe�cients. Monte Carlo simulations of model with coe�cients

�
F1

=0.975, �
F2

=0.90. 10 000 MC replications.

factor method T=50 T=100 T=200
F1 none 0.083 (0.004) 0.042 (0.001) 0.022 (0.001)

BC 0.015 (0.003) 0.004 (0.001) 0.001 (0.001)
RF 0.002 (0.003) -0.003 (0.001) -0.004 (0.001)

F2 none 0.177 (0.013) 0.078 (0.004) 0.035 (0.001)
BC 0.111 (0.015) 0.042 (0.004) 0.016 (0.002)
RF 0.096 (0.017) 0.036 (0.005) 0.015 (0.002)

The results in terms of coverage, interval length, and CQ
m

, are similar to

those for the process with normal errors, revealing that the bias-corrections

for the underlying non observed factors improve forecasting results even when

they are not normally distributed. For the five selected series, results are

presented in Tables B.6-B.8.
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Table B.6: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both fol-
lowing AR(1) models with centred �2(5) errors. Model with coe�cients

�
F1

=0.975, �
F2

=0.90. T = 50. Nominal coverage 95%.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 91.89 (0.044) 4.60 (0.008) 4.79 (0.003) 0.07
BC 92.26 (0.042) 4.64 (0.008) 4.79 (0.003) 0.06
RF 92.34 (0.041) 4.66 (0.008) 4.79 (0.003) 0.06

h=5 none 85.02 (0.088) 7.36 (0.015) 9.05 (0.004) 0.29
BC 88.64 (0.081) 8.31 (0.018) 9.05 (0.004) 0.15
RF 89.44 (0.079) 8.58 (0.019) 9.05 (0.004) 0.11

h=10 none 81.15 (0.106) 8.23 (0.021) 10.99 (0.005) 0.40
BC 87.09 (0.103) 10.24 (0.030) 10.99 (0.005) 0.15
RF 88.61 (0.100) 10.86 (0.032) 10.99 (0.005) 0.08

Y2 h=1 none 92.26 (0.056) 2.29 (0.004) 2.35 (0.001) 0.05
BC 93.05 (0.048) 2.31 (0.004) 2.35 (0.001) 0.04
RF 93.23 (0.047) 2.32 (0.004) 2.35 (0.001) 0.03

h=5 none 82.44 (0.105) 3.93 (0.008) 5.02 (0.002) 0.35
BC 87.93 (0.091) 4.45 (0.010) 5.02 (0.002) 0.19
RF 89.08 (0.089) 4.57 (0.010) 5.02 (0.002) 0.15

h=10 none 75.73 (0.129) 4.53 (0.012) 6.70 (0.003) 0.53
BC 84.74 (0.122) 5.67 (0.016) 6.70 (0.003) 0.26
RF 86.88 (0.119) 5.99 (0.017) 6.70 (0.003) 0.19

Y5 h=1 none 91.75 (0.042) 5.98 (0.010) 6.25 (0.003) 0.08
BC 92.23 (0.039) 6.05 (0.010) 6.25 (0.003) 0.06
RF 92.35 (0.038) 6.07 (0.010) 6.25 (0.003) 0.06

h=5 none 83.94 (0.093) 9.77 (0.020) 12.28 (0.005) 0.32
BC 88.36 (0.082) 11.04 (0.023) 12.28 (0.005) 0.17
RF 89.25 (0.081) 11.37 (0.024) 12.28 (0.005) 0.13

h=10 none 78.45 (0.116) 11.07 (0.029) 15.65 (0.007) 0.47
BC 85.89 (0.112) 13.82 (0.039) 15.65 (0.007) 0.21
RF 87.70 (0.109) 14.62 (0.042) 15.65 (0.007) 0.14

Y10 h=1 none 92.79 (0.051) 6.21 (0.011) 6.29 (0.004) 0.04
BC 93.04 (0.049) 6.26 (0.011) 6.29 (0.004) 0.02
RF 93.09 (0.048) 6.29 (0.011) 6.29 (0.004) 0.02

h=5 none 85.78 (0.089) 9.92 (0.021) 11.92 (0.005) 0.26
BC 88.89 (0.083) 11.20 (0.025) 11.92 (0.005) 0.12
RF 89.62 (0.080) 11.57 (0.027) 11.92 (0.005) 0.09

h=10 none 83.10 (0.102) 11.01 (0.028) 13.96 (0.006) 0.34
BC 88.00 (0.101) 13.67 (0.041) 13.96 (0.006) 0.09
RF 89.35 (0.095) 14.53 (0.045) 13.96 (0.006) 0.10

Y25 h=1 none 92.52 (0.053) 8.77 (0.015) 8.99 (0.005) 0.05
BC 92.76 (0.051) 8.84 (0.015) 8.99 (0.005) 0.04
RF 92.80 (0.050) 8.86 (0.015) 8.99 (0.005) 0.04

h=5 none 85.56 (0.089) 14.22 (0.029) 17.13 (0.008) 0.27
BC 88.77 (0.084) 16.06 (0.036) 17.13 (0.008) 0.13
RF 89.52 (0.081) 16.58 (0.038) 17.13 (0.008) 0.09

h=10 none 82.68 (0.105) 15.85 (0.040) 20.19 (0.009) 0.34
BC 87.80 (0.103) 19.68 (0.058) 20.19 (0.009) 0.10
RF 89.22 (0.097) 20.93 (0.064) 20.19 (0.009) 0.10
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Table B.7: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both fol-
lowing AR(1) models with centred �2(5) errors. Model with coe�cients

�
F1

=0.975, �
F2

=0.90. T = 100. Nominal coverage 95%.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 93.27 (0.029) 4.68 (0.006) 4.79 (0.003) 0.04
BC 93.36 (0.028) 4.70 (0.006) 4.79 (0.003) 0.04
RF 93.41 (0.028) 4.71 (0.006) 4.79 (0.003) 0.03

h=5 none 89.87 (0.055) 8.11 (0.011) 9.04 (0.004) 0.16
BC 91.67 (0.050) 8.69 (0.013) 9.04 (0.004) 0.07
RF 91.87 (0.051) 8.83 (0.013) 9.04 (0.004) 0.06

h=10 none 87.47 (0.073) 9.36 (0.017) 10.98 (0.005) 0.23
BC 90.73 (0.067) 10.65 (0.021) 10.98 (0.005) 0.07
RF 91.22 (0.067) 10.99 (0.023) 10.98 (0.005) 0.04

Y2 h=1 none 93.88 (0.036) 2.33 (0.003) 2.34 (0.001) 0.02
BC 94.17 (0.034) 2.34 (0.003) 2.34 (0.001) 0.01
RF 94.29 (0.033) 2.35 (0.003) 2.34 (0.001) 0.01

h=5 none 89.13 (0.065) 4.46 (0.006) 5.01 (0.002) 0.17
BC 91.80 (0.054) 4.79 (0.007) 5.01 (0.002) 0.08
RF 92.37 (0.052) 4.88 (0.007) 5.01 (0.002) 0.05

h=10 none 85.04 (0.089) 5.44 (0.010) 6.69 (0.003) 0.29
BC 90.05 (0.077) 6.28 (0.012) 6.69 (0.003) 0.11
RF 91.10 (0.073) 6.49 (0.013) 6.69 (0.003) 0.07

Y5 h=1 none 93.24 (0.027) 6.11 (0.007) 6.25 (0.003) 0.04
BC 93.38 (0.026) 6.14 (0.007) 6.25 (0.003) 0.03
RF 93.43 (0.026) 6.15 (0.007) 6.25 (0.003) 0.03

h=5 none 89.56 (0.057) 10.93 (0.015) 12.27 (0.006) 0.17
BC 91.76 (0.049) 11.74 (0.017) 12.27 (0.006) 0.08
RF 92.12 (0.048) 11.94 (0.017) 12.27 (0.006) 0.06

h=10 none 86.32 (0.080) 12.99 (0.024) 15.63 (0.007) 0.26
BC 90.43 (0.070) 14.88 (0.029) 15.63 (0.007) 0.10
RF 91.19 (0.068) 15.37 (0.031) 15.63 (0.007) 0.06

Y10 h=1 none 94.15 (0.033) 6.30 (0.008) 6.29 (0.004) 0.01
BC 94.18 (0.033) 6.32 (0.008) 6.29 (0.004) 0.01
RF 94.15 (0.034) 6.33 (0.008) 6.29 (0.004) 0.02

h=5 none 90.17 (0.057) 10.81 (0.016) 11.91 (0.005) 0.14
BC 91.74 (0.054) 11.57 (0.017) 11.91 (0.005) 0.06
RF 91.81 (0.055) 11.75 (0.018) 11.91 (0.005) 0.05

h=10 none 88.42 (0.070) 12.24 (0.022) 13.95 (0.006) 0.19
BC 91.01 (0.068) 13.85 (0.028) 13.95 (0.006) 0.05
RF 91.29 (0.068) 14.26 (0.031) 13.95 (0.006) 0.06

Y25 h=1 none 93.90 (0.036) 8.89 (0.010) 8.99 (0.005) 0.02
BC 93.92 (0.036) 8.92 (0.011) 8.99 (0.005) 0.02
RF 93.87 (0.037) 8.93 (0.010) 8.99 (0.005) 0.02

h=5 none 89.97 (0.058) 15.48 (0.022) 17.11 (0.008) 0.15
BC 91.67 (0.054) 16.60 (0.025) 17.11 (0.008) 0.07
RF 91.76 (0.054) 16.85 (0.026) 17.11 (0.008) 0.05

h=10 none 88.19 (0.071) 17.62 (0.032) 20.18 (0.009) 0.20
BC 90.97 (0.068) 19.98 (0.041) 20.18 (0.009) 0.05
RF 91.28 (0.068) 20.59 (0.044) 20.18 (0.009) 0.06
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Table B.8: Results of Monte Carlo simulation, 10 000 replications. Five
representative time series created using two common factors, both fol-
lowing AR(1) models with centred �2(5) errors. Model with coe�cients

�
F1

=0.975, �
F2

=0.90. T = 200. Nominal coverage 95%.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 93.84 (0.022) 4.72 (0.004) 4.79 (0.003) 0.03
BC 93.88 (0.021) 4.72 (0.004) 4.79 (0.003) 0.03
RF 93.85 (0.022) 4.73 (0.004) 4.79 (0.003) 0.03

h=5 none 92.35 (0.034) 8.55 (0.008) 9.05 (0.004) 0.08
BC 93.21 (0.031) 8.88 (0.009) 9.05 (0.004) 0.04
RF 93.22 (0.032) 8.92 (0.009) 9.05 (0.004) 0.03

h=10 none 91.13 (0.046) 10.10 (0.013) 10.99 (0.005) 0.12
BC 92.73 (0.042) 10.84 (0.014) 10.99 (0.005) 0.04
RF 92.85 (0.042) 10.97 (0.015) 10.99 (0.005) 0.02

Y2 h=1 none 94.21 (0.029) 2.33 (0.002) 2.34 (0.001) 0.01
BC 94.33 (0.029) 2.34 (0.002) 2.34 (0.001) 0.01
RF 94.32 (0.029) 2.34 (0.002) 2.34 (0.001) 0.01

h=5 none 92.25 (0.039) 4.75 (0.005) 5.01 (0.002) 0.08
BC 93.45 (0.034) 4.96 (0.005) 5.01 (0.002) 0.03
RF 93.58 (0.033) 5.00 (0.005) 5.01 (0.002) 0.02

h=10 none 90.23 (0.056) 6.05 (0.008) 6.69 (0.003) 0.15
BC 92.57 (0.048) 6.59 (0.009) 6.69 (0.003) 0.04
RF 92.90 (0.046) 6.72 (0.009) 6.69 (0.003) 0.03

Y5 h=1 none 93.82 (0.020) 6.16 (0.005) 6.25 (0.003) 0.03
BC 93.87 (0.020) 6.17 (0.005) 6.25 (0.003) 0.03
RF 93.86 (0.020) 6.17 (0.005) 6.25 (0.003) 0.02

h=5 none 92.38 (0.033) 11.61 (0.011) 12.27 (0.006) 0.08
BC 93.37 (0.030) 12.09 (0.011) 12.27 (0.006) 0.03
RF 93.44 (0.030) 12.17 (0.012) 12.27 (0.006) 0.02

h=10 none 90.78 (0.048) 14.26 (0.018) 15.64 (0.007) 0.13
BC 92.74 (0.043) 15.44 (0.020) 15.64 (0.007) 0.04
RF 92.96 (0.042) 15.68 (0.021) 15.64 (0.007) 0.02

Y10 h=1 none 94.56 (0.026) 6.32 (0.006) 6.29 (0.004) 0.01
BC 94.58 (0.026) 6.32 (0.006) 6.29 (0.004) 0.01
RF 94.53 (0.027) 6.32 (0.006) 6.29 (0.004) 0.01

h=5 none 92.41 (0.038) 11.31 (0.012) 11.92 (0.005) 0.08
BC 93.19 (0.036) 11.72 (0.012) 11.92 (0.005) 0.04
RF 93.15 (0.038) 11.76 (0.013) 11.92 (0.005) 0.03

h=10 none 91.37 (0.047) 12.99 (0.017) 13.97 (0.006) 0.11
BC 92.70 (0.045) 13.82 (0.019) 13.97 (0.006) 0.03
RF 92.69 (0.047) 13.92 (0.020) 13.97 (0.006) 0.03

Y25 h=1 none 94.34 (0.028) 8.95 (0.008) 8.99 (0.005) 0.01
BC 94.36 (0.028) 8.95 (0.008) 8.99 (0.005) 0.01
RF 94.32 (0.029) 8.96 (0.008) 8.99 (0.005) 0.01

h=5 none 92.27 (0.038) 16.22 (0.016) 17.12 (0.008) 0.08
BC 93.09 (0.037) 16.79 (0.017) 17.12 (0.008) 0.04
RF 93.07 (0.038) 16.86 (0.018) 17.12 (0.008) 0.04

h=10 none 91.18 (0.048) 18.71 (0.024) 20.20 (0.009) 0.11
BC 92.59 (0.046) 19.94 (0.028) 20.20 (0.009) 0.04
RF 92.62 (0.048) 20.11 (0.028) 20.20 (0.009) 0.03
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B.3 Number of Factors and AR Orders Un-

known for T=50 and T=200

This section complements the results presented in Section 3.4.2, considering

the alternative sample sizes T = 50 (Tables B.9 and B.10) and T = 200

(Tables B.11 and B.12). It continues to be the case that the indicators C
m

,

L
m

, and CQ are equal or better for BC and RF than for none. Consistently

with the results obtained in previous sections, the results are enhanced as

the forecasting horizon h increases.

Additionally, for all the sample sizes (T ), the results of employing BIC in

the selection of p outperform those of employing AICc. The performance of

these criteria is recorded in Tables B.13 and B.14.

Last, it must be acknowledged that there is a sharp deterioration of re-

sults when the time frame reduces to T = 50. In this regard, it should

be reminded that the common factors are estimates themselves and their

accuracy improves with the sample size.
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Table B.9: Results of Monte Carlo simulation, 10.000 replications. Five
representative time series created with both common factors following
AR(2) processes with normal errors and coe�cients �F1

1

=1.475, �F1

2

=
�0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 50. Nominal coverage 95%. IC
3

used in the estimation of R, BIC used in the selection of p̂.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 88.37 (0.071) 0.96 (0.001) 1.05 (0.000) 0.15
BC 89.00 (0.067) 0.97 (0.002) 1.05 (0.000) 0.14
RF 89.39 (0.065) 0.98 (0.002) 1.05 (0.000) 0.13

h=5 none 80.58 (0.132) 2.67 (0.006) 3.29 (0.001) 0.34
BC 84.91 (0.119) 2.97 (0.007) 3.29 (0.001) 0.20
RF 86.27 (0.106) 2.95 (0.007) 3.29 (0.001) 0.19

h=10 none 73.98 (0.158) 3.31 (0.010) 4.61 (0.002) 0.50
BC 81.20 (0.155) 4.08 (0.013) 4.61 (0.002) 0.26
RF 84.26 (0.128) 4.11 (0.013) 4.61 (0.002) 0.22

Y2 h=1 none 84.65 (0.078) 0.69 (0.001) 0.84 (0.000) 0.29
BC 85.30 (0.075) 0.69 (0.001) 0.84 (0.000) 0.28
RF 85.75 (0.071) 0.70 (0.001) 0.84 (0.000) 0.27

h=5 none 79.37 (0.139) 2.07 (0.005) 2.65 (0.001) 0.38
BC 83.66 (0.131) 2.29 (0.006) 2.65 (0.001) 0.25
RF 85.60 (0.113) 2.29 (0.006) 2.65 (0.001) 0.24

h=10 none 71.74 (0.170) 2.68 (0.009) 3.89 (0.002) 0.56
BC 79.31 (0.172) 3.31 (0.012) 3.89 (0.002) 0.31
RF 83.17 (0.144) 3.33 (0.011) 3.89 (0.002) 0.27

Y5 h=1 none 88.57 (0.068) 1.50 (0.002) 1.65 (0.001) 0.16
BC 89.17 (0.065) 1.52 (0.002) 1.65 (0.001) 0.14
RF 89.61 (0.062) 1.52 (0.002) 1.65 (0.001) 0.13

h=5 none 80.03 (0.134) 4.42 (0.011) 5.55 (0.002) 0.36
BC 84.34 (0.124) 4.90 (0.012) 5.55 (0.002) 0.23
RF 86.08 (0.108) 4.89 (0.012) 5.55 (0.002) 0.21

h=10 none 72.55 (0.165) 5.64 (0.018) 8.08 (0.003) 0.54
BC 80.08 (0.164) 6.97 (0.024) 8.08 (0.003) 0.29
RF 83.70 (0.136) 7.02 (0.023) 8.08 (0.003) 0.25

Y10 h=1 none 90.11 (0.074) 1.13 (0.002) 1.14 (0.000) 0.06
BC 90.67 (0.070) 1.14 (0.002) 1.14 (0.000) 0.05
RF 90.95 (0.067) 1.14 (0.002) 1.14 (0.000) 0.05

h=5 none 81.74 (0.136) 2.85 (0.007) 3.35 (0.001) 0.29
BC 85.80 (0.123) 3.17 (0.008) 3.35 (0.001) 0.15
RF 86.55 (0.112) 3.15 (0.008) 3.35 (0.001) 0.15

h=10 none 77.00 (0.151) 3.33 (0.010) 4.37 (0.002) 0.43
BC 82.93 (0.149) 4.10 (0.014) 4.37 (0.002) 0.19
RF 84.97 (0.125) 4.13 (0.014) 4.37 (0.002) 0.16

Y25 h=1 none 90.88 (0.070) 1.66 (0.003) 1.64 (0.001) 0.06
BC 91.42 (0.066) 1.68 (0.003) 1.64 (0.001) 0.06
RF 91.66 (0.064) 1.68 (0.003) 1.64 (0.001) 0.06

h=5 none 81.76 (0.134) 4.28 (0.011) 5.06 (0.002) 0.29
BC 85.85 (0.121) 4.77 (0.012) 5.06 (0.002) 0.15
RF 86.75 (0.109) 4.74 (0.012) 5.06 (0.002) 0.15

h=10 none 76.47 (0.154) 5.08 (0.015) 6.72 (0.003) 0.44
BC 82.62 (0.151) 6.26 (0.021) 6.72 (0.003) 0.20
RF 84.93 (0.126) 6.31 (0.021) 6.72 (0.003) 0.17
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Table B.10: Results of Monte Carlo simulation, 10.000 replications.
Five representative time series created with both common factors fol-
lowing AR(2) processes with normal errors and coe�cients �F1

1

=1.475,
�F1

2

= �0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 50. Nominal coverage 95%.
R estimated with IC

3

, AICc used in the selection of p̂.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 87.43 (0.078) 0.95 (0.001) 1.05 (0.000) 0.18
BC 88.07 (0.073) 0.96 (0.002) 1.05 (0.000) 0.16
RF 88.47 (0.070) 0.96 (0.002) 1.05 (0.000) 0.16

h=5 none 79.30 (0.140) 2.64 (0.006) 3.29 (0.001) 0.36
BC 83.75 (0.128) 2.93 (0.007) 3.29 (0.001) 0.23
RF 85.26 (0.111) 2.91 (0.007) 3.29 (0.001) 0.22

h=10 none 72.43 (0.166) 3.29 (0.010) 4.61 (0.002) 0.52
BC 79.80 (0.164) 4.06 (0.014) 4.61 (0.002) 0.28
RF 83.05 (0.135) 4.05 (0.013) 4.61 (0.002) 0.25

Y2 h=1 none 83.66 (0.082) 0.68 (0.001) 0.84 (0.000) 0.31
BC 84.39 (0.081) 0.69 (0.001) 0.84 (0.000) 0.30
RF 84.89 (0.076) 0.69 (0.001) 0.84 (0.000) 0.29

h=5 none 78.06 (0.141) 2.03 (0.005) 2.65 (0.001) 0.41
BC 82.65 (0.133) 2.26 (0.006) 2.65 (0.001) 0.28
RF 84.60 (0.116) 2.25 (0.005) 2.65 (0.001) 0.26

h=10 none 70.13 (0.174) 2.64 (0.009) 3.88 (0.002) 0.58
BC 78.04 (0.177) 3.27 (0.012) 3.88 (0.002) 0.34
RF 81.97 (0.148) 3.26 (0.011) 3.88 (0.002) 0.30

Y5 h=1 none 87.64 (0.075) 1.48 (0.002) 1.65 (0.001) 0.18
BC 88.29 (0.072) 1.50 (0.002) 1.65 (0.001) 0.16
RF 88.76 (0.067) 1.50 (0.002) 1.65 (0.001) 0.15

h=5 none 78.73 (0.140) 4.36 (0.011) 5.55 (0.002) 0.39
BC 83.23 (0.130) 4.84 (0.012) 5.55 (0.002) 0.25
RF 85.09 (0.113) 4.82 (0.012) 5.55 (0.002) 0.24

h=10 none 70.98 (0.171) 5.60 (0.018) 8.07 (0.003) 0.56
BC 78.76 (0.171) 6.92 (0.024) 8.07 (0.003) 0.31
RF 82.49 (0.142) 6.90 (0.023) 8.07 (0.003) 0.28

Y10 h=1 none 89.10 (0.081) 1.11 (0.002) 1.14 (0.000) 0.09
BC 89.64 (0.078) 1.12 (0.002) 1.14 (0.000) 0.07
RF 89.98 (0.074) 1.12 (0.002) 1.14 (0.000) 0.07

h=5 none 80.35 (0.145) 2.81 (0.007) 3.35 (0.001) 0.32
BC 84.45 (0.135) 3.13 (0.008) 3.35 (0.001) 0.18
RF 85.37 (0.120) 3.09 (0.008) 3.35 (0.001) 0.18

h=10 none 75.51 (0.160) 3.31 (0.010) 4.37 (0.002) 0.45
BC 81.48 (0.160) 4.06 (0.014) 4.37 (0.002) 0.21
RF 83.64 (0.133) 4.04 (0.014) 4.37 (0.002) 0.19

Y25 h=1 none 89.76 (0.077) 1.62 (0.003) 1.64 (0.001) 0.06
BC 90.36 (0.074) 1.64 (0.003) 1.64 (0.001) 0.05
RF 90.62 (0.070) 1.64 (0.003) 1.64 (0.001) 0.05

h=5 none 80.14 (0.143) 4.20 (0.010) 5.05 (0.002) 0.32
BC 84.41 (0.131) 4.68 (0.012) 5.05 (0.002) 0.19
RF 85.41 (0.118) 4.63 (0.012) 5.05 (0.002) 0.19

h=10 none 74.61 (0.160) 5.01 (0.015) 6.72 (0.003) 0.47
BC 81.12 (0.159) 6.16 (0.021) 6.72 (0.003) 0.23
RF 83.49 (0.132) 6.13 (0.020) 6.72 (0.003) 0.21
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Table B.11: Results of Monte Carlo simulation, 10 000 replications.
Five representative time series created with both common factors fol-
lowing AR(2) processes with normal errors and coe�cients �F1

1

=1.475,
�F1

2

=-0.4875, �F2

1

=1.4,�F2

2

=-0.45. T = 200. Nominal coverage 95%. R
estimated with IC

3

, BIC used in the selection of p̂.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 92.44 (0.030) 1.01 (0.001) 1.05 (0.000) 0.07
BC 92.44 (0.030) 1.01 (0.001) 1.05 (0.000) 0.07
RF 92.47 (0.030) 1.01 (0.001) 1.05 (0.000) 0.07

h=5 none 92.25 (0.040) 3.15 (0.004) 3.29 (0.001) 0.07
BC 93.02 (0.036) 3.24 (0.004) 3.29 (0.001) 0.04
RF 92.89 (0.036) 3.23 (0.004) 3.29 (0.001) 0.04

h=10 none 90.51 (0.055) 4.25 (0.006) 4.61 (0.002) 0.13
BC 92.32 (0.048) 4.55 (0.007) 4.61 (0.002) 0.04
RF 92.29 (0.047) 4.56 (0.007) 4.61 (0.002) 0.04

Y2 h=1 none 90.45 (0.031) 0.75 (0.001) 0.84 (0.000) 0.16
BC 90.50 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16
RF 90.52 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16

h=5 none 92.05 (0.039) 2.51 (0.003) 2.65 (0.001) 0.08
BC 92.79 (0.036) 2.58 (0.003) 2.65 (0.001) 0.05
RF 92.74 (0.035) 2.58 (0.003) 2.65 (0.001) 0.05

h=10 none 90.24 (0.057) 3.55 (0.005) 3.89 (0.002) 0.14
BC 92.08 (0.051) 3.82 (0.006) 3.89 (0.002) 0.05
RF 92.20 (0.048) 3.83 (0.006) 3.89 (0.002) 0.04

Y5 h=1 none 93.32 (0.027) 1.62 (0.001) 1.65 (0.001) 0.04
BC 93.34 (0.026) 1.62 (0.001) 1.65 (0.001) 0.03
RF 93.37 (0.026) 1.62 (0.001) 1.65 (0.001) 0.03

h=5 none 92.31 (0.039) 5.31 (0.006) 5.55 (0.002) 0.07
BC 93.05 (0.036) 5.48 (0.006) 5.55 (0.002) 0.03
RF 92.97 (0.035) 5.46 (0.006) 5.55 (0.002) 0.04

h=10 none 90.38 (0.057) 7.42 (0.011) 8.08 (0.003) 0.13
BC 92.24 (0.050) 7.97 (0.012) 8.08 (0.003) 0.04
RF 92.32 (0.047) 8.00 (0.012) 8.08 (0.003) 0.04

Y10 h=1 none 93.15 (0.030) 1.13 (0.001) 1.13 (0.000) 0.02
BC 93.18 (0.030) 1.13 (0.001) 1.13 (0.000) 0.02
RF 93.15 (0.030) 1.13 (0.001) 1.13 (0.000) 0.02

h=5 none 92.50 (0.038) 3.24 (0.004) 3.35 (0.001) 0.06
BC 93.24 (0.035) 3.34 (0.004) 3.35 (0.001) 0.02
RF 93.05 (0.036) 3.32 (0.004) 3.35 (0.001) 0.03

h=10 none 91.00 (0.051) 4.07 (0.006) 4.37 (0.002) 0.11
BC 92.54 (0.047) 4.34 (0.006) 4.37 (0.002) 0.03
RF 92.37 (0.048) 4.33 (0.006) 4.37 (0.002) 0.04

Y25 h=1 none 93.84 (0.029) 1.67 (0.001) 1.64 (0.001) 0.03
BC 93.89 (0.028) 1.67 (0.001) 1.64 (0.001) 0.03
RF 93.87 (0.028) 1.67 (0.001) 1.64 (0.001) 0.03

h=5 none 92.52 (0.038) 4.89 (0.006) 5.05 (0.002) 0.06
BC 93.21 (0.035) 5.03 (0.006) 5.05 (0.002) 0.02
RF 93.08 (0.036) 5.02 (0.006) 5.05 (0.002) 0.03

h=10 none 90.92 (0.052) 6.24 (0.009) 6.72 (0.003) 0.11
BC 92.51 (0.047) 6.67 (0.010) 6.72 (0.003) 0.03
RF 92.40 (0.047) 6.67 (0.010) 6.72 (0.003) 0.03
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Table B.12: Results of Monte Carlo simulation, 10 000 replications.
Five representative time series created with both common factors fol-
lowing AR(2) processes with normal errors and coe�cients �F1

1

=1.475,
�F1

2

=-0.4875, �F2

1

=1.4, �F2

2

=-0.45. T = 200. Nominal coverage 95%.
R estimated with IC

3

, AICc used in the selection of p̂.

Series Horizon Correction C
m

(se) L
m

(se) L
t

(se) CQ
m

Y1 h=1 none 92.03 (0.032) 1.00 (0.001) 1.05 (0.000) 0.08
BC 92.08 (0.031) 1.00 (0.001) 1.05 (0.000) 0.08
RF 92.06 (0.032) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 91.98 (0.042) 3.14 (0.004) 3.29 (0.001) 0.08
BC 92.76 (0.038) 3.23 (0.004) 3.29 (0.001) 0.04
RF 92.66 (0.037) 3.22 (0.004) 3.29 (0.001) 0.05

h=10 none 90.36 (0.058) 4.26 (0.006) 4.61 (0.002) 0.12
BC 92.11 (0.051) 4.55 (0.007) 4.61 (0.002) 0.04
RF 92.05 (0.049) 4.54 (0.007) 4.61 (0.002) 0.05

Y2 h=1 none 89.99 (0.033) 0.74 (0.001) 0.84 (0.000) 0.17
BC 90.06 (0.032) 0.74 (0.001) 0.84 (0.000) 0.17
RF 90.13 (0.032) 0.74 (0.001) 0.84 (0.000) 0.17

h=5 none 91.73 (0.041) 2.49 (0.003) 2.65 (0.001) 0.09
BC 92.53 (0.038) 2.57 (0.003) 2.65 (0.001) 0.06
RF 92.46 (0.036) 2.56 (0.003) 2.65 (0.001) 0.06

h=10 none 90.04 (0.060) 3.55 (0.005) 3.88 (0.002) 0.14
BC 91.86 (0.054) 3.81 (0.006) 3.88 (0.002) 0.05
RF 91.92 (0.049) 3.80 (0.006) 3.88 (0.002) 0.05

Y5 h=1 none 92.90 (0.028) 1.60 (0.001) 1.65 (0.001) 0.05
BC 92.97 (0.028) 1.61 (0.001) 1.65 (0.001) 0.05
RF 92.98 (0.028) 1.61 (0.001) 1.65 (0.001) 0.05

h=5 none 92.01 (0.041) 5.29 (0.006) 5.55 (0.002) 0.08
BC 92.78 (0.037) 5.45 (0.006) 5.55 (0.002) 0.04
RF 92.69 (0.037) 5.43 (0.006) 5.55 (0.002) 0.05

h=10 none 90.21 (0.060) 7.44 (0.011) 8.07 (0.003) 0.13
BC 92.03 (0.053) 7.96 (0.012) 8.07 (0.003) 0.05
RF 92.05 (0.049) 7.94 (0.012) 8.07 (0.003) 0.05

Y10 h=1 none 92.85 (0.032) 1.12 (0.001) 1.14 (0.000) 0.03
BC 92.89 (0.032) 1.12 (0.001) 1.14 (0.000) 0.03
RF 92.86 (0.032) 1.12 (0.001) 1.14 (0.000) 0.03

h=5 none 92.32 (0.040) 3.25 (0.004) 3.35 (0.001) 0.06
BC 93.03 (0.038) 3.34 (0.004) 3.35 (0.001) 0.03
RF 92.86 (0.039) 3.32 (0.004) 3.35 (0.001) 0.03

h=10 none 90.86 (0.054) 4.09 (0.006) 4.37 (0.002) 0.11
BC 92.36 (0.050) 4.35 (0.007) 4.37 (0.002) 0.03
RF 92.17 (0.050) 4.33 (0.007) 4.37 (0.002) 0.04

Y25 h=1 none 93.54 (0.031) 1.66 (0.001) 1.64 (0.001) 0.03
BC 93.59 (0.030) 1.66 (0.001) 1.64 (0.001) 0.03
RF 93.59 (0.030) 1.67 (0.001) 1.64 (0.001) 0.03

h=5 none 92.34 (0.040) 4.89 (0.006) 5.05 (0.002) 0.06
BC 93.05 (0.037) 5.03 (0.006) 5.05 (0.002) 0.03
RF 92.87 (0.038) 5.00 (0.006) 5.05 (0.002) 0.03

h=10 none 90.77 (0.054) 6.27 (0.009) 6.72 (0.003) 0.11
BC 92.38 (0.048) 6.68 (0.010) 6.72 (0.003) 0.03
RF 92.15 (0.049) 6.65 (0.010) 6.72 (0.003) 0.04
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Table B.13: Comparison of relative frequencies in the estimation of p̂ by
BIC and AICc. The values correspond to a Monte Carlo simulation with
10 000 replications. Two common factors, both following AR(2) models
with normal errors. Model with coe�cients �F1

1

=1.475, �F1

2

=-0.4875,
�F2

1

=1.4, �F2

2

=-0.45. T = 50. Nominal coverage 95%.

Factor p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ = 5 p̂ = 6
BIC
F1 4.84 64.87 11.91 7.32 5.64 5.42
F2 10.09 59.03 13.18 7.46 5.04 5.20
AICc
F1 1.24 37.05 15.65 13.51 13.58 18.97
F2 2.70 34.17 16.71 13.86 13.81 18.75

Table B.14: Comparison of relative frequencies in the estimation of p̂ by
BIC and AICc. The values correspond to a Monte Carlo simulation with
10 000 replications. Two common factors, both following AR(2) models
with normal errors. Model with coe�cients �F1

1

=1.475, �F1

2

=-0.4875,
�F2

1

=1.4, �F2

2

=-0.45. T = 200. Nominal coverage 95%.

Factor p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ = 5 p̂ = 6
BIC
F1 0.00 89.33 7.56 2.07 0.77 0.27
F2 0.03 85.96 10.44 2.39 0.77 0.41
AICc
F1 0.00 36.91 16.35 14.14 13.68 18.92
F2 0.00 32.78 18.89 14.00 13.98 20.35
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dynamic factor analysis and bootstrap inference: Application to electricity

market forecasting. Technometrics, 53:137–151, 2011.
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day electricity prices by time series models. IEEE Transactions on Power

Systems, 17:342–348, 2002.

A. Onatski. A formal statistical test for the number of factors in the ap-

proximate factor models. Economics Department, Columbia University,

unpublished, pages 1–32, 2006.

C. Otrok and C.H. Whiteman. Bayesian leading indicators: Measuring and

predicting economic conditions in Iowa. International Economic Review,

39:997–1014, 1998.

A. Panagiotelis and M. Smith. Bayesian density forecasting of intraday elec-

tricity prices using multivariate skewed t distributions. International Jour-

nal of Forecasting, 24:710–727, 2008.

L. Pascual, J. Romo, and E. Ruiz. E↵ects of parameter estimation on predic-

tion densities: a bootstrap approach. International Journal of Forecasting,

17:83–103, 2001.



Bibliography 148

L. Pascual, J. Romo, and E. Ruiz. Bootstrap predictive inference for arima

processes. Journal of Time Series Analysis, 25:449–465, 2004.

D. Peña. Dimension reduction in time series and the dynamic factor model.

Biometrika, 96:494–496, 2009.

D. Peña and G.E.P. Box. Identifying a simplifying structure in time series.

Journal of the American Statistical Association, 82:836–843, 1987.

D. Peña and P. Poncela. Forecasting with nonstationary dynamic factor

models. Journal of Econometrics, 119:291–321, 2004.

D. Peña and P. Poncela. Nonstationary dynamic factor analysis. Journal of

Statistical Planning and Inference, 136:1237–1257, 2006.

D. Peña and F.J. Prieto. Combining random and specific directions for out-

lier detection and robust estimation inhigh-dimensional multivariate data.

Journal of Computational and Graphical Statistics, 16:228–254, 2007.

D. Peña and T. Safadi. Bayesian analysis of dynamic factor models: an appli-

cation to air pollution and mortality in São Paulo, Brazil. Environmetrics,

19:582–601, 2008.

S. Pineda, J.M. Morales, A.J. Conejo, and M. Carrión. Scenario reduction

for futures market trading in electricity markets. IEEE Transactions on

Power Systems, 24:878–888, 2009.
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