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Abstract
Regression quantiles have asymptotic variances that depend on the conditional densities of

the response variable given regressors. This paper develops a new estimate of the asymptotic
variance of regression quantiles that leads any resulting Wald-type test or confidence region
to behave as well in large samples as its infeasible counterpart in which the true conditional
response densities are embedded. We give explicit guidance on implementing the new
variance estimator to control adaptively the size of any resulting Wald-type test. Monte Carlo
evidence indicates the potential of our approach to deliver powerful tests of heterogeneity of
quantile treatment effects in covariates with good size performance over different quantile
levels, data-generating processes and sample sizes. We also include an empirical example.
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1 Introduction

Consider an independent and identically distributed (iid) sample (X1,Y1), . . . , (Xn,Yn), where each
Yi is scalar-valued, and where, for some fixed d, each Xi is a d-dimensional regressor. We assume

that the conditional distribution of the ith response variable Yi given Xi satisfies

Pr
[
Yi ≤ X⊤

i β(α)
�� Xi

]
= α (1)

almost surely (a.s.) for some fixed quantile α ∈ (0,1), where β(α) ∈ Rd is unknown and X⊤
i

denotes the transpose of Xi. The relation (1) specifies a linear α-quantile regression model.

Models of conditional quantiles, such as the model given above in (1), have taken on an important

role in the statistical sciences. They generally offer researchers the possibility of being able to

engage in a systematic analysis of the effects of a set of conditioning variables on all aspects of

the conditional distribution of a response variable. A notable characteristic of this approach is the

ability it gives researchers tomodel only the quantiles of interest to a given empirical studywithout

the need to construct an explicit model for the other regions of the response density. For example,

a researcher may by varying the quantile index α examine the specific effects of regressors on

any point of the conditional distribution of the response variable. Thus the differential effects of

some medical intervention (X) on survival time (Y ) can be analyzed separately for low-risk and

high-risk individuals by constructing estimates of the conditional quantile function of Y given X

for various quantiles. The monograph of Koenker (2005) and the volume edited by Koenker et al.

(2017) provide comprehensive reviews of quantile-regressionmethodology, alongwith illustrative

examples of its application in various disciplines.

There are several proposals available for quantile regression inference. Some of these propos-

als, such as certain methods involving resampling (He, 2017, contains a comprehensive review),

approaches based on the asymptotic behavior of regression rank scores (Gutenbrunner and Ju-

rečková, 1992), direct methods (Zhou and Portnoy, 1996; Fan and Liu, 2016) or more recent
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Bayesian approaches (Yang and He, 2012; Feng et al., 2015; Yang et al., 2016) differ from Wald-

type methods by avoiding the need to estimate conditional density functions for the purpose of

asymptotic variance estimation of conditional quantile estimators. Wald-type procedures, how-

ever, do generally retain the attractive feature of computational simplicity, and perhaps for this

reason remain popular in empirical practice.

In this paper we develop a new estimator of the asymptotic covariance matrix of a given

regression quantile. The new estimator is explicitly intended to induce the Wald-type tests or

confidence regions in which it is embedded to behave as well in large samples as their empirically

infeasible counterparts in which the true, as opposed to estimated, conditional densities appear.

The asymptotic variance estimator proposed here induces the empirical size distortions of Wald-

type tests to vanish at the same rate enjoyed by the corresponding tests incorporating the actual

conditional density functions, i.e., the disparity between the actual and nominal sizes of these

tests vanishes at the adaptive rate.

There is of course a long history on estimation of the asymptotic variance of quantile regression

parameters and the corresponding Wald-type tests. Among existing procedures, two implementa-

tions that are particularly popular are those of Powell (1991) and Hendricks and Koenker (1992).

We show that the proposals of Powell (1991) and Hendricks and Koenker (1992) both induce

Wald-type tests whose empirical size distortions cannot vanish at the adaptive rates that become

possible when these tests incorporate the asymptotic variance estimator that we develop below.

The proposed estimator for the conditional density evaluated at the conditional quantile has

applications beyond the formulation of Wald-type tests with adaptive control of size. This

estimator can be used for counterfactual wage decompositions in a quantile regression setting

(Machado and Mata, 2005). It has been used for developing improved specification tests for

linear quantile regression (Escanciano and Goh, 2014). Semiparametrically efficient inference

in linear quantile regression requires, either explicitly or implicitly, an estimator of the so-called
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efficient score, which involves the conditional density evaluated at the quantile (Newey and Powell,

1990; Komunjer and Vuong, 2010). Finally, estimates of conditional densities are also needed in

semiparametric extensions of the basic linear quantile regression model, e.g., Ma and He (2016)

and Feng and Zhu (2016). Further applications of our estimator such as these are of independent

interest.

Finally, we note that this paper is partly motivated by a recent contribution of Portnoy (2012)

to the effect that the first-order asymptotic normal approximation for regression quantiles is

associated with an error bound of order Op

(
n−1/2(log n)3/2

)
. This in turn implies, as we show

below, the benchmark Op

(
n−1/2(log n)3/2

)
-rate at which size distortions for Wald-type tests

regarding quantile-regression parameters converge when the conditional response densities are

assumed to be known. An important point to note is that the error bound of nearly n−1/2-order

elucidated by Portnoy (2012) is smaller than the error bound of nearly n−1/4-order associated

with the classic Bahadur representation for regression quantiles. In particular, the larger error of

nearly n−1/4-order is in fact larger in magnitude than the estimation error associated with any set

of reasonable estimates of the conditional response densities, including those proposed by Powell

(1991) and Hendricks and Koenker (1992). This would apparently suggest that the rate-adaptive

implementation of Wald-type tests proposed in this paper is at best of second-order importance.

The smaller error bound shown by Portnoy (2012) effectively allows one to consider the question

of optimally implementing Wald-type tests in this context as a methodological issue of first-order

importance.

The remainder of this paper proceeds as follows. The next section develops the asymptotic

properties of our proposed kernel estimator of the conditional response density evaluated at

the conditional quantile of interest. Section 3 analyzes the size distortions of tests of linear

restrictions of quantile coefficients based on the asymptotic distribution of regression α-quantiles.

This section also discusses conditions for our Wald-type tests to exhibit size distortions that decay
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at the adaptive rate in large samples. Section 4 presents the results of a series of simulation

experiments which illustrate the potential of our methods to deliver accurate and powerful tests,

and which are motivated from our empirical application, which in turn is discussed in Section 5.

An online supplement includes precise statements of the assumptions underlying our theoretical

results, proofs of those results, additional simulation evidence, details on implementation and

further discussion of the empirical example.

2 The New Estimator

Consider the α-quantile regression model given above in (1). For each quantile α ∈ (0,1), the
regression α-quantile (Koenker and Bassett, 1978) is defined as

β̂n(α) ≡ arg min
b∈Rd

n∑
i=1
ρα

(
Yi − X⊤

i b
)
,

where ρα(u) = u (α − 1 {u ≤ 0}).
For each i = 1, . . . ,n, let fi(y) and Fi(y) denote the conditional density and cumulative

distribution function (cdf), respectively, of Yi given Xi, evaluated at y. If one assumes that for

each i, Fi(y) is absolutely continuous, and that fi(y) is finite and bounded away from zero at

y = X⊤
i β(α), then under Assumption 1 as given in Appendix A of the supplementary material,

the regression α-quantile is asymptotically normal with

√
n
(
β̂n(α) − β̂(α)

)
d→ N (0,V (α)) , (2)

where V (α) = α(1 − α)G−1
0 (α)HG−1

0 (α) (e.g., Koenker, 2005, Theorem 4.1), and where

G0(α) = E
[
fi
(
X⊤
i β(α)

)
XiX

⊤
i

]
; (3)

H = E
[
XiX

⊤
i

]
. (4)
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Standard Wald-type inferential procedures based on (2) naturally require the estimation of the

matrix G0(α), which in turn requires, at least implicitly, the estimation of the conditional density

functions fi
(
X⊤
i β(α)

)
(i = 1, . . . ,n).

We propose an estimator of the conditional response densities fi
(
X⊤
i β(α)

)
, estimates of

which in turn are used to specify a new estimator of the matrix G0(α) appearing in the asymptotic

variance of the regression α-quantile. The new estimator of the conditional densities developed

here explicitly exploits the behavior of the fitted conditionalU j-quantiles X⊤
i β̂n

(
U j

)
over a range

of quantiles U1, . . . ,Um that are iid realizations from a uniform distribution on A = [a1,a2].
To motivate the new estimator, note the identity Fi(y) = a1 +

∫ a2
a1

1
{
y − F−1

i (α) ≥ 0
}
dα for

a1 ≤ Fi(y) ≤ a2. This suggests using a smooth approximation of the indicator function, which

after differentiation leads one to the quantity (a2 − a1) · h−1E
[
K

(
h−1

(
y − F−1

i (U)
) ) �� Xi

]
, where

K(·) is a smoothing kernel satisfying the conditions of Assumption 2 in the supplementary

material and where U | Xi ∼ Uni f [a1,a2], where a1 < α < a2. This quantity should be a good

approximation of fi(y) as h → 0,where h > 0 is a scalar smoothing parameter. In order to avoid

numerical integration, we approximate the integral by a finite sum with m terms. Note that we

certainly could take m = ∞, but this would require numerical integration. In what follows, we

let both m and the scalar smoothing parameter h depend on the sample size n, with m → ∞ and

h → 0 as n → ∞.

The discussion above leads to the estimator of fi
(
X⊤
i β(α)

)
given by

f̂ni
(
X⊤
i β̂n(α)

)
=

a2 − a1
mhm

m∑
j=1

K
(
1
hm

X⊤
i

(
β̂n

(
U j

)
− β̂n(α)

))
(5)

for each i = 1, . . . ,n. The estimators f̂ni
(
X⊤
i β̂n(α)

)
given in (5) are in turn embedded in the

following estimator of the matrix G0(α) as given above in (3):

Ĝn(α) ≡
1
n

n∑
i=1

f̂ni
(
X⊤
i β̂n(α)

)
XiX

⊤
i . (6)
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We are now in a position to state the main result of this section. Define for α ∈ A

Dnj(α) ≡
√
n
[(
β̂n

(
U j

)
− β

(
U j

) )
−

(
β̂n(α) − β(α)

)]
, (7)

σ2
K ≡

∫ 1/2
−1/2 w

2K(w)dw and ∥K ∥2 ≡
√∫ 1/2

−1/2 K
2(w)dw. In addition, we adopt henceforth the

notation g(k)(X) to denote the kth-order derivative of any real-valued measurable function g(X).

Theorem 1. Under Assumptions 1–4 as given in Appendix A of the supplementary material, and

for each α ∈ A,

Ĝn(α) = G0(α) +T1nm(α) +T2nm(α) +T3nm(α) + Rnm(α), (8)

where

T1nm(α) = σ2
K · h

2
m

2n

n∑
i=1

f (2)i

(
X⊤
i β(α)

)
XiX

⊤
i ,

T2nm(α) =

√
− log hm
mhm

· ∥K ∥2 ·
1
n

n∑
i=1

√
fi
(
X⊤
i β(α)

)
XiX

⊤
i ,

T3nm(α) =
a2 − a1
nmh2m

n∑
i=1

X⊤
i


m∑
j=1

1
√
n
Dnj(α)K (1)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) ) XiX
⊤
i .

In addition, T1nm(α) = Op
(
h2m

)
, T2nm(α) = Op

(√
log h−1m /(mhm)

)
, T3nm(α) = Op

(
n−1/2

)
and

Rnm(α) = Op

(
1
n
+

1
n3/2h4m

)
+ op

©­«h2m +
√

− log hm
mhm

ª®¬
= op (T1nm(α) +T2nm(α) +T3nm(α))

as n → ∞.
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The terms T1nm(α), T2nm(α) and T3nm(α) given in the statement of Theorem 1 are the leading

second-order terms in an asymptotic expansion in probability, for a given α ∈ A, of Ĝn(α) about
the estimand G0(α) . Consider

f̃i
(
X⊤
i β(α)

)
≡ a2 − a1

mhm

m∑
j=1

K
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )
, (9)

which defines a natural, but empirically infeasible, kernel estimator of fi
(
X⊤
i β(α)

)
that essentially

relies on β(α) and β
(
U j

)
, where j ∈ {1, . . . ,m}, being known. Then the term T1nm(α) appearing

in the statement of Theorem 1 reflects the conditional asymptotic biases given Xi of the estimators

f̃i
(
X⊤
i β(α)

)
, defined above in (9). The magnitude of the term T2nm(α), on the other hand, is

driven by the conditional variance given Xi of f̃i
(
X⊤
i β(α)

)
about

(a2 − a1) · E
[
h−1m K

(
h−1m X⊤

i (β(U) − β(α))
)��� Xi

]
.

Lastly, the term T3nm(α) corresponds to the error involved in estimating β(α) with β̂n(α).

3 Wald-Type Tests With Adaptive Control of Size

We consider the empirical sizes of Wald-type tests of hypotheses of the form

H0 : Rβ(α) − r = 0, (10)

where R is a fully specified (J × d) matrix with rank J, r ∈ RJ is fully specified and α is a fixed

quantile in A = [a1,a2] with 0 < a1 < a2 < 1. Define the following:

Ŵn ≡ Wn(Ĝn(α)), (11)

W0 ≡ W (G0(α)), (12)

8



where for a generic positive definite matrix G we define Wn(G) ≡ (RG−1HnG
−1R⊤)−1 and

W (G) ≡ (RG−1HG−1R⊤)−1 with Hn = n−1
∑n

i=1 XiX
⊤
i .

Wald-type tests in this context are based on the asymptotic normality of regression quantiles; as

such, attention is naturally directed to the sampling behavior of asymptotically-χ2J statistics of the

form {n/[α(1−α)]}(Rβ̂n(α)− r)⊤Wn(Gn(α))(Rβ̂n(α)− r), where Gn(α) is a consistent estimator

of the matrix G0(α). The focus in this section is on the effect estimation of the matrix G0(α)
exerts on the discrepancy between the empirical and nominal sizes of the associated Wald-type

test.

We address the question of whether a Wald-type test of H0 : Rβ(α) − r = 0 admits the

possibility of adaptive size control as n → ∞. In particular, is it possible to implement the

estimator Ĝn(α) given above in (6) in such a way as to make the discrepancy between the actual

size and nominal level of a Wald-type test of H0 vanish at the same rate as the infeasible test in

which the matrix G0(α) is actually known? That the answer to this question is positive can be

seen by considering the empirical size function of a nominal level-τ Wald test of H0. Let χ2J,τ
denote the (1− τ)-quantile of a χ2J -distribution, and let Z(α) ∼ N(0,V (α)), where the covariance
matrix V (α) is as given above in (2). Then one can combine the asymptotic normality result in

(2) with Theorem 1 to deduce the following representation of the size function:

Pr
[

n
α(1 − α)

(
β̂n(α)⊤R⊤ − r⊤

)
Ŵn

(
Rβ̂n(α) − r

)
> χ2J,τ

����H0

]
= Pr

[
1

α(1 − α)Z(α)
⊤R⊤W0RZ(α)

> χ2J,τ −
1

α(1 − α)
©­«h2mΛ1n(α,0) +

√
− log hm
mhm

Λ2nm(α,0) +
1
√
n
Λ3nm(α,0)

ª®¬
−Θn(0) − Ξnm(0)] , (13)

where Λ1nm(α,0), Λ2nm(α,0) and Λ3nm(α,0) are Op(1), Θn(0) converges to zero at the same rate
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as the error committed by the first-order asymptotic approximation in (2), and where Ξnm(0) =
op

(
h2m +

[
log h−1m /(mhm)

]1/2
+ n−1/2

)
. Precise expressions for Ξnm(0), Λknm(α,0) (k = 1,2,3)

and Θn(0) are given in (31)–(35) of the supplementary material.

Inspection of (13) indicates that should the matrix G0(α) be assumed or in fact be known by

the researcher, then the magnitude of the term Θn(0) indicates the rate of convergence of the size
distortion of the infeasible Wald-type test in which G0(α) is known, i.e., the adaptive rate of size
control as n → ∞. It follows that the adaptive rate of size control is determined by the accuracy

of the first-order asymptotic normal approximation for
√
n
(
β̂n(α) − β(α)

)
.

An important question in this connection is whether the adaptive rate of size control is so large

as to dominate the estimation error associated with any reasonable estimate of G0(α); in this case
one might wonder if there is much point in concerning oneself with a size-optimal implementation

of a given estimator of G0(α). This concern is particularly relevant if the first-order asymptotic

normal approximation to
√
n
(
β̂n(α) − β(α)

)
is of nearly n−1/4-order, as indicated by traditional

analyses of the Bahadur representation for regression quantiles (e.g., Jurečková and Sen, 1996,

Theorem 4.7.1). On the other hand, Portnoy (2012, Theorem 5) has recently established that in

fact the error associated with the first-order normal approximation is of nearly n−1/2-order, which

is sufficiently small so as not to dominate strictly the estimation error committed by a typical

estimate of G0(α) involving local smoothing. It follows that at least under the conditions imposed

by Portnoy (2012, Theorem 5), the problem of constructing a size-optimal estimator of G0(α) by
choice of a smoothing parameter should be of primary concern in empirical practice.

We consider an implementation of the estimator Ĝn(α) given above in (6) that causes the

corresponding Wald-type test of H0 : Rβ(α) − r = 0 to exhibit adaptive size control as n → ∞.

The precise conditions on the bandwidth hm and the grid size m are specified in Assumption 3 in

Appendix A of the supplementary material. These conditions suffice to make the size distortion

of the Wald-type test of H0 vanish at the adaptive rate as n → ∞:
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Theorem 2. Suppose the validity of Assumptions 1–4 as given in Appendix A of the supplementary

material. Then the corresponding Wald-type test of H0 based on Ĝn(α) exhibits adaptive size

control as n → ∞.

The same conditions also cause the Wald-type confidence interval for a given linear combination

of components of β(α) to have a level error that vanishes at the rate enjoyed by the corresponding
intervals in which G0(α) does not need to be estimated.

Practical recommendations on the implementation of bandwidth parameters and grid sizes

that satisfy the conditions of Theorem 2 are given in Section 4 below and also in Appendix D of

the supplementary material. In particular, Wald-type tests embedding our proposed estimator of

Ĝn(α) implemented with a fixed (i.e., non-random) bandwidth are exhibited in Section 4 below

and in Appendix E of the supplementary material. Appendix D of the supplementary material, on

the other hand, derives an empirically feasible data-driven bandwidth that induces corresponding

Wald-type tests to exhibit adaptive size control as n → ∞.

Simulation evidence on the finite-sample performance of Wald-type tests implemented with

the data-driven bandwidth are presented in Appendix E of the supplementary material.

The following corollary is immediate from Theorem 2 and Portnoy (2012, Theorem 5):

Corollary 1. Suppose the validity of Assumptions 1–4 as given in Appendix A of the supplementary

material. Then the following hold as n → ∞:

1. The size distortion of the Wald-type test of H0 : Rβ(α) − r = 0 involving Ĝn(α) is

Op

(
n−1/2(log n)3/2

)
; and

2. the level error of theWald-type confidence interval involving Ĝn(α) for a linear combination
of the elements of β(α) is Op

(
n−1(log n)3

)
.
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Theorem 2 and Corollary 1 jointly establish that in this context the adaptive rate of size control of

Wald-type tests is of nearly n−1/2-order, and that a Wald-type test constructed using the proposed

estimator Ĝn(α) given above in (6) can be implemented to exhibit this rate as n → ∞.

Finally, Appendix C of the Supplementary material shows that the estimators of G0(α) pro-
posed by Powell (1991) and Hendricks and Koenker (1992) cannot induce Wald-type tests that

control size adaptively in large samples.

4 Numerical Evidence

We present in this section the results of a series of Monte Carlo simulations that are motivated

by the empirical question examined in Section 5. These simulations evaluate the performance

of Wald-type tests for testing the heterogeneity of quantile treatment effects (QTEs; see e.g.,

Doksum, 1974) in covariates. We naturally focus attention on the relative performance of Wald-

type tests incorporating our proposed estimator of G0(α). We compare the empirical size and

size-corrected power performance of our tests to those of ten alternative testing procedures

available in version 5.35 of the quantreg package (Koenker, 2018) for the R statistical computing

environment (R Core Team, 2016). The simulations presented here are all implemented in R;

in particular, we make use of the quantreg package to generate simulations for each of the

competing testing procedures that we considered. R code to implement the simulations presented

here is included in the supplementary material.

We consider the data-generating process Y = 1 +
∑4

j=1 X j + D + δa(U)DX1 + F−1(U), where
{X j}4j=1 are iid standard normal and independent of a treatment indicator D, which follows

a Bernoulli distribution with probability 1/2, where U is an independent U[0,1] and where

a ∈ R denotes the parameter indexing the family of functions {δa(·) : a ∈ R}. In this model

the QTE for a given setting of a, expressed as a function of a quantile of interest α, is given by
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QTE(α) = 1 + δa(α)X1.

It follows that for a given quantile α, a test of the hypothesis H0 : δa(α) = 0 against

H1 : δa(α) , 0 corresponds to a test of the homogeneity of the α-QTE in X1 against the

alternative of heterogeneity.

We set F in the simulations presented here to a standard normal distribution; results in which

F denotes a Student-t distribution with three degrees of freedom are given in Appendix E.3 of

the supplement. We consider the following specifications of the heterogeneity parameter δa(α):

• Model 1: δa(U) = a (pure location).

• Model 2: δa(U) = a(1 + F−1(U)) (location-scale model).

• Model 3: δa(U) = (1 − 5a)G−1(U) − G−1(α), with G ∼ Beta(1,4).

• Model 4: δa(U) = 2aG−1(U), with G ∼ Beta(0.5,0.5).

• Model 5: δa(U) = 2aG−1(U),with G ∼ Beta(2,2).

• Model 6: δa(U) = (sin(2πU) − sin(2πα) − 2πa)/2π.

Each of these models satisfies the null hypothesis of treatment homogeneity when a = 0. Under

the null, all models but Models 3 and 6 are pure location models. The alternative hypothesis

corresponds to a , 0. Size-corrected power performance is considered against alternatives cor-

responding to the settings a = 0.50, 1.00 and 1.50. The corresponding heterogeneity parameters

for Models 1–6 under α = .50 are plotted in Figure 1 for the case where a = 1.50. It is clear that

our specifications of Models 1–6 imply QTEs with very different functional forms.

The simulations presented below consider the size and power performance over 1000 Monte

Carlo replications of nominal 5%-level tests for α-quantile regression parameters, where α ∈
{.25, .50, .75}. Average CPU times over 1000 replications required to implement each of the tests
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Figure 1: Heterogeneity parameters for Models 1–6 under α-QTE heterogeneity (a = 1.50),

where α = 0.5
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examined here are also reported. We considered simulated samples of size n ∈ {100,300}. The
techniques used to compute the tests considered are as follows:

• weg: Wald-type tests incorporating our proposed estimator Ĝn(α), where α is the quantile

of interest. The proposed estimator Ĝn(α)was implemented using the Epanechnikov kernel

with m quantiles uniformly distributed over the range [a1,a2] = [.01, ,99], with

m =

[

k

(log n) 115

] 5
4  (14)

and k = 5. The bandwidth considered is given by

hm = c
(
logm
m

)1/5
(15)

where c = 1.5. The choices ofm and hm are motivated from the theoretical results presented

earlier in Section 3. The choice of m in (14) in particular coincides with the lower bound

on the rate of divergence of m as a function of n in our asymptotic results. Appendix E.1

in the supplement contains extensive simulation results in which we vary the constants

k and c. It is shown there that the choice of k is not as important in terms of finite-

sample test performance as the choice of c. Our experience with several data-generating

processes, including the ones above, suggest that the choice c = 1.5 performs very well. We

nevertheless develop in Appendix D of the supplement a data-driven method for choosing

the bandwidth constant c for a given value of m, which is similarly shown in Appendix E.2

to induce good test performance.

• riid: Rank tests assuming a location-shift model with iid errors (Koenker, 1994).

• rnid: Rank tests assuming a potentially heteroskedastic location-scale-shiftmodel (Koenker

and Machado, 1999).
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• wiid: Wald-type tests assuming a location-shift model with iid errors, with scalar sparsity

estimate computed as in Koenker and Bassett (1978).

• wnid: Wald-type tests assuming independent but not identically distributed errors incorpo-

rating the difference-quotient estimator denoted by ĜHK
n (α) in (38) of the supplement and

implemented using the Hall and Sheather (1988) rule-of-thumb bandwidth.

• wker: Wald-type tests assuming independent but not identically distributed errors in-

corporating the kernel estimator denoted by ĜP
n (α) in (36) of the supplement, where

ĜP
n (α) was implemented using a uniform kernel supported on [−1,1] and the bandwidth

δP,HS
n ≡ Φ−1 (

.50 + hHS
n

)
− Φ−1 (

.50 − hHS
n

)
, where hHS

n is the Hall and Sheather (1988)

rule-of-thumb bandwidth.

• bxy: Bootstrap tests based on the (x, y)-pair method.

• bpwy: Bootstrap tests based on the Parzen et al. (1994) method of resampling the sub-

gradient condition.

• bmcmb: Bootstrap tests based on the “MCMB-A” variant of the Markov chain marginal

bootstrap method of He and Hu (2002), described in Kocherginsky et al. (2005). This

variant of the method of He and Hu (2002), in common with the riid and wiid methods

described above, assumes an underlying location-shift model with iid errors.

• bwxy: Bootstrap tests based on the generalized bootstrap of Bose and Chatterjee (2003)

with unit exponential weights.

• bwild: Bootstrap tests based on the wild bootstrap method proposed by Feng et al. (2011).

TheWald-type tests computed using the wiid, wnid and wkermethods were all implemented

using the default bandwidth setting in the quantreg package (Koenker, 2018), namely the Hall
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and Sheather (1988) rule-of-thumb-bandwidth appropriate for inference regarding a population

quantile. In addition, the bootstrap tests were all implemented with the default setting of 200

bootstrap resamples.

Each of wiid, wnid, wker, bxy, bpwy, bmcmb, bwxy and bwild was implemented by direct

computation of the corresponding test statistic using the corresponding standard error returned

by the summary.rq feature of quantreg. On the other hand, the rank-based procedures riid

and rnid both involved direct inversion of the corresponding confidence interval obtained from

the summary.rq feature.

The corresponding simulation results are displayed in Tables 1–6. These results include

average CPU times in seconds over 1000 replications taken to compute each test statistic. These

average timings correspond to simulations under the null (i.e., the setting a = 0) when the quantile

of interest is given by α = 0.5. Average timings for simulations in which a , 0 or α , 0.5 are

virtually identical.

We also examined in unreported work implementations of wiid, wnid, wker and riid

available from the anova.rq feature of quantreg, but the resulting tests were found to exhibit

empirical rejection probabilities that were virtually identical to those of the corresponding imple-

mentations of these tests using summary.rq. We also noticed that anova.rq has a noticeable

tendency to run more slowly than summary.rq for wiid, wnid and wker, and more quickly than

summary.rq for riid.

We see that the empirical size of the proposed method is accurate even with samples of sizes

as small as n = 100, and is often more accurate than alternative methods, including resampling

methods. We also see that the proposed Wald test has good size-corrected power across all six

models, three quantiles and two sample sizes for relatively small deviations from the null, i.e.

when the constant a is small. It seems clear that an analytical comparison of the asymptotic

local relative efficiencies of the different tests considered here with that of the asymptotically
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uniformly most powerful test (Choi et al., 1996) would be interesting, although such an analysis

seems beyond the scope of this paper. We note in passing that the conditional density estimator

embedded in our method of inference can be instrumental in estimating the efficient score (Newey

and Powell, 1990) and thus in developing asymptotically optimal inference for quantile regression.
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Table 1: Empirical rejection percentages (size and size-corrected powers) and average execu-

tion time, Model 1. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75 CPU time (α = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 5.6 16 31.6 52 4.5 24.5 56 81.3 5.1 21.8 43.7 68 0.0118

wiid 9.1 10 22.2 39.5 7.3 15.5 45.7 75.9 8.2 12.5 31.1 56.3 0.0025

wnid 8.1 8.3 18.7 37.9 6.8 17.5 51 80 7.4 12.2 33.1 59.9 0.0021

wker 1.3 13.2 31.5 53.7 0.3 17 51.2 80.8 1.9 17.7 41.8 69.5 0.0015

riid 7.9 8.6 21.4 39.4 8.6 17.7 46.5 76.9 7.5 15.3 35.5 61.5 0.0049

rnid 5.9 7.4 19 37.7 6.5 17.5 46.7 76.5 5.1 15.2 34.7 61.3 0.0156

bxy 3.1 9.6 23.6 44.7 2.9 16.7 49.8 80 3.2 14.8 37 65.7 0.0212

bpwy 1.2 9.7 23.7 44.3 2.4 17.1 49.4 80.4 1.6 17.5 41.1 69.6 0.0229

bmcmb 3.3 8.8 23.2 43.3 3.7 16 48.9 79.2 3.4 16.6 39.7 66.7 0.0137

bwxy 4.1 9.3 22.9 44.5 3 16 48.4 79.9 4.4 13.7 36 64.6 0.0218

bwild 6.9 10.9 24 46.2 7.2 14.1 42.7 76.1 6.2 16.2 37 65.4 0.0235

n = 300

weg 5.4 32.1 79.8 97.7 3.2 40 84.5 98.1 4.1 36.7 85.4 98 0.0453

wiid 7.9 25.4 74.2 98.1 3.7 33.6 84.3 98.5 6 30.5 84.5 99.6 0.0026

wnid 8.2 26.2 76.1 98.6 3.9 34.9 86.4 98.6 5.9 32.5 84.7 99.3 0.0035

wker 3 28.4 79.5 99.3 1.3 34.5 85.9 98.7 2 34.3 87 99.7 0.0017

riid 7.7 27 75.8 97.6 5 31.4 80.5 98.1 5.6 31.7 81.6 98.8 0.0193

rnid 6.6 26.5 74.7 97.6 4.7 31.4 80.4 98 4.7 31 82.3 98.6 0.0311

bxy 4.4 29.4 79.2 98.3 2.5 34.1 84.4 98.4 3 32.7 85.5 99.4 0.0948

bpwy 3.4 28.9 78.8 98.7 2.2 34.4 84.9 98.4 2.3 34.5 85.9 99.3 0.0991

bmcmb 5.9 26.9 77.9 98.4 3.7 33.7 82.4 98.3 3.8 32.5 84.6 99.2 0.0369

bwxy 4.9 29.2 79.1 98.8 2.7 32 82.4 98.4 3.1 31.5 83.9 99.2 0.1002

bwild 7.1 29 79.1 98.7 4.8 32.3 82 98.3 4.9 31.9 85.7 99.6 0.1018
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Table 2: Empirical rejection percentages (size and size-corrected powers) and average execu-

tion time, Model 2. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75 CPU time (α = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 5.7 15.4 31.3 50.5 5.9 20.6 46.5 69.6 6.4 22.2 48.8 67.5 0.0108

wiid 8.4 10.2 20.5 38.9 8.9 12.7 34.5 62.7 9 15.7 39.9 63.1 0.0022

wnid 7.4 7.3 21.8 40.2 9.1 12.6 37.2 65.3 8.6 14.5 42.1 64.4 0.002

wker 1.5 8 21.9 39.9 1.1 12.5 36.5 63.2 1.7 11.3 37.7 61 0.0014

riid 7.7 7.9 20.2 36.7 8.7 11.1 31.7 55.1 8.2 14.7 37.6 60.1 0.0047

rnid 5.8 7.5 20.2 36 7.2 11.4 31.1 54.1 6 14 35.9 57.1 0.0142

bxy 3.4 7.9 20.3 37.6 3.4 12.6 36.2 60.3 4.1 14.6 39.3 62.1 0.021

bpwy 1.8 7.1 20.8 40.2 2.9 12.8 37.1 62.7 2.5 12.7 40 62.6 0.0225

bmcmb 3.4 8 20.5 36.7 4.1 12.7 36.2 60.1 4.6 15.3 39.2 61 0.0131

bwxy 4.5 8.3 20.6 37.9 4.2 13.2 37.1 60.2 5.2 13.5 38.7 61.5 0.0216

bwild 7.4 7.3 18.7 35.4 8.4 12.9 35.1 57 7.3 14.1 38.5 59.2 0.0229

n = 300

weg 4.1 24 64.5 88.1 3.2 41 83.9 97.7 4.9 42.5 85.4 97.3 0.0445

wiid 5.5 20.7 58.8 88.4 5 32.2 81.3 98.5 8 34 83.4 98.3 0.0025

wnid 5.9 19.6 60.1 88.6 4.8 35.6 84.6 98.5 8.4 36 86.5 98.9 0.0034

wker 2.3 18.4 57 86 1 35.9 82.2 97.9 2.3 36 85.7 98.7 0.0016

riid 6 17.9 55 83.9 5.4 31.8 77.7 96.5 7.5 35.6 82 97.3 0.0193

rnid 4.6 17.3 53.3 83.1 5.1 30.7 76.9 96.2 6.8 33.8 80.9 96.8 0.0311

bxy 2.6 20.7 58.8 84.2 3.7 32.7 79.9 96.9 3.7 38.4 84.6 98 0.0945

bpwy 2.4 18.1 55.3 83.7 3 32.7 79.1 97 3 38.5 84.7 98.4 0.0997

bmcmb 4.3 18.3 53.1 82.7 4.4 31.2 78.4 97 5 37.9 84.2 97.4 0.0369

bwxy 2.6 17.8 53.8 81.8 3.6 31.5 78.6 96.7 4 36.1 82.8 97.3 0.1003

bwild 5.1 19.1 55.8 84.1 5 30.7 78.9 96.4 6.1 36.1 84.6 98.5 0.1024

20



Table 3: Empirical rejection percentages (size and size-corrected powers) and average execu-

tion time, Model 3. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75 CPU time (α = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 5.9 12.5 24.3 43.7 4.8 21.3 43.2 63.8 5 28.3 57.6 79.4 0.0109

wiid 9.7 6.1 14.5 26.4 7.5 11 28.5 53.3 7.7 16.1 44.9 71.8 0.0023

wnid 7.9 8.4 19 36.8 6.7 11 31.9 56.8 7.2 18.2 47.4 72.1 0.002

wker 1.4 8.1 19.7 39.2 0.7 12.5 33.4 58 1.4 18.9 52.6 78.1 0.0014

riid 7.5 6.5 15.7 32.6 7.3 9.4 26.7 47.4 8 16.9 43.9 68.2 0.0048

rnid 5.3 6.7 16.6 32.2 6.5 9.3 27.8 45.6 5.5 17.3 45.4 68.3 0.0145

bxy 2.4 8.3 19.1 37.9 2.8 12.3 32.3 55.7 3 19.3 49.2 75.2 0.021

bpwy 1.2 8.1 20.3 38.2 2.4 11.6 31.8 54.2 1.5 18.7 50.2 75.7 0.0228

bmcmb 2.6 7.5 18.5 34.5 3.6 11.6 31.8 54.7 3.1 18.1 47.1 73 0.0133

bwxy 3.1 8.5 20.2 37.6 3.5 10.7 30.9 54.2 3.9 18.9 49.5 74.3 0.0215

bwild 6.3 7.7 18.5 35.7 7.6 10 27.7 50.2 7 17.1 47.2 73.6 0.0235

n = 300

weg 4.9 18.3 53 83.1 4.3 29.6 75.8 96.4 6.1 44 88.9 98.4 0.044

wiid 6.6 12.5 46.4 81.3 6.9 24.4 74 96.3 6.9 41.1 91.1 99.5 0.0025

wnid 6.8 14.7 52.7 84.1 5.8 28.7 78.2 97.3 7.7 41.4 92 99.7 0.0035

wker 3.3 15.4 52.7 84.5 1.6 28.2 76.7 96.2 3.2 40 90.4 99.7 0.0017

riid 5.8 15.6 49.7 82.2 6.4 26 72.1 95 7.3 38.3 87.3 98.9 0.0193

rnid 5 15 48.1 80.5 6 25.4 70.4 94.4 6.4 37.9 86.5 99 0.0308

bxy 3.7 16.1 50.3 83.3 3.5 27.3 74.7 95.6 3.8 41.1 89.9 99.6 0.0946

bpwy 3.1 15.6 52 83.7 3 28.2 75.4 95.9 2.8 38.5 89.8 99.2 0.0993

bmcmb 4.7 14.8 49.7 81 4.7 28.7 76.5 96 5.1 40.8 90.5 99.4 0.0367

bwxy 3.7 14.9 51 82.8 3.7 28.5 75.7 96 4.2 39.9 90 99.6 0.1001

bwild 6.3 13.9 48.7 81.9 5.9 25.3 73.3 95.7 6.8 37.8 88.9 99.5 0.1021
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Table 4: Empirical rejection percentages (size and size-corrected powers) and average execu-

tion time, Model 4. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75 CPU time (α = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 6.5 14.2 27 45.3 4.7 23.1 52.6 73.2 6.2 22.4 49.3 74.6 0.0115

wiid 9.8 6 16 30.4 7.5 14.2 41.1 68.6 9.8 13 36.8 66.9 0.0025

wnid 8.5 6.3 15.6 32.2 7.8 14 42.8 69 8.2 15.9 43.8 71.8 0.0021

wker 1.4 11.7 24.5 43.2 1.1 12.7 43 66.9 1.7 16.2 45.1 73.2 0.0015

riid 7.7 7.4 17.8 31.6 7.4 15.3 40.3 63.1 7.9 14.4 41 67.2 0.0049

rnid 5.4 8.2 18.8 34.5 6.3 13.8 39.5 62.1 5.5 15.9 41.7 68.4 0.0154

bxy 3.2 9.1 19.6 37.8 3.6 14.6 42.5 65.3 3.1 17.6 46.3 72.6 0.021

bpwy 1.5 8.5 20.7 38 2.7 13.8 40.6 64.2 1.1 17.1 47.3 74.9 0.0234

bmcmb 4.4 6.7 17.2 33.3 4.1 14 41.2 64.2 3.2 17.3 45.9 71.4 0.0136

bwxy 4.4 8.9 20.2 37.7 3.9 15 42.9 66.2 4.3 17.7 47 72.5 0.0216

bwild 7.4 9.2 20.7 37.3 6.7 13.6 40 64.3 7.8 15.3 41.5 68.7 0.0233

n = 300

weg 4.9 24.9 59 85 3.9 36.5 81.5 97.3 5 45.4 87 98.5 0.0438

wiid 6.5 14.5 48.1 81.5 6.9 28.7 79.6 97.7 5.9 40.1 88.3 99.2 0.0025

wnid 7.3 17.6 53.3 84.3 7.2 28.2 79.6 97.6 5.9 42.9 90.3 99.4 0.0034

wker 3.5 23.3 59.9 87.1 2.1 28.9 78.6 97.6 2.3 41.1 88.9 98.8 0.0016

riid 7.2 17.4 49.2 81.6 8 26.7 76.5 96 5.6 40.4 86.6 98.2 0.0191

rnid 6.1 17.5 50.8 81.9 6.8 25.6 76.1 95.5 4.8 41 86 98.1 0.0306

bxy 4.5 18.6 52.2 82.5 3.8 27.8 77.6 96.4 3.3 40.8 87.6 98.3 0.0937

bpwy 4 18 55 84.5 4.4 28.9 77.2 96.5 2.3 42.2 87.9 98.5 0.0992

bmcmb 5.6 17 50.8 81.5 5.7 28.8 78.2 96.5 4.6 41.1 87.4 98.1 0.0367

bwxy 4.5 18.2 52.5 82.5 4.8 28.1 76.7 96.2 3.3 43.5 88.6 98.4 0.0993

bwild 6.6 17.9 53.1 82.9 6.5 25.9 75.7 96 5 41.5 88.3 98.7 0.1017

22



Table 5: Empirical rejection percentages (size and size-corrected powers) and average execu-

tion time, Model 5. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75 CPU time (α = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 5.8 17.3 34.4 52.8 4.7 19.9 40 62.6 6.7 17.5 39.8 64.9 0.0109

wiid 8.5 10.9 22.7 42.1 7.2 11.5 27.7 55.6 9.6 11.3 28.9 54.6 0.0023

wnid 8.2 10.1 25.5 46.1 6.7 11 32.5 59.5 8.2 10.7 31 57.4 0.002

wker 1.1 13.1 30.4 54.3 0.7 12.3 34 60.5 1.5 12.8 35.9 65.2 0.0014

riid 7.3 11.1 25.7 45.9 8.1 9.4 27.2 51.8 8.4 11 29.5 58.8 0.0049

rnid 5.3 11.2 26.1 45.8 7 10.7 27.3 51.9 6.2 11.7 28.9 56.8 0.0145

bxy 2.7 11.4 27.1 49.4 2.5 11.9 32.7 58.7 3.3 12.4 33.3 62.7 0.021

bpwy 1.2 12.1 28.8 50.7 2.6 12.5 33.8 60.3 2 12.1 34 64 0.0231

bmcmb 2.9 10.8 27.6 47.5 3.7 11.3 31.8 59.5 3.5 11.7 32.8 59.4 0.0134

bwxy 4.2 11.3 27.7 48.8 3.6 11.3 32.4 58.6 4.4 11.8 32.7 61.8 0.0215

bwild 6.8 12.4 26.9 47.2 7 9.7 28.6 53.9 7.4 10.5 31.8 61.2 0.0231

n = 300

weg 5.4 26.6 71.2 94.9 4.1 34.6 78.2 96.3 4.8 40 84.1 97.6 0.0456

wiid 7.2 24 66.6 94.6 6.6 25.9 73.1 96.5 6.6 33.6 83.5 99.3 0.0027

wnid 6.9 24.5 68.4 95.6 6.3 29 76.7 97.5 7 37.4 86.6 99.3 0.0036

wker 2.7 26.5 72.1 96.6 1.7 30.4 77.3 97.8 2.6 38.3 87.9 99.4 0.0017

riid 6.4 20.3 63.8 91.7 5.9 25.9 72.7 95.5 6.9 33.3 82.5 98.5 0.0193

rnid 5.4 22.2 66.5 92.9 5.5 26.7 73.3 95.5 5.7 34.1 83.8 98.6 0.0318

bxy 3.6 24.7 70.3 95.5 3.8 29.4 75.4 97.4 4 34.3 84.9 99 0.0944

bpwy 3.5 23 68.2 95 3.6 28.6 75.9 97.1 2.7 37.7 85.8 99.2 0.0997

bmcmb 4.9 24 68.6 95.3 5 28.1 75.5 96.9 4.6 36.2 85.4 99.3 0.0373

bwxy 4 24.4 69.7 95.7 4.1 29.2 75.7 97.1 4.1 35 85.2 99.1 0.1

bwild 6.4 23.1 69.1 95.7 6 28.1 74.7 97.1 5.7 35.3 85.1 99.1 0.1026
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Table 6: Empirical rejection percentages (size and size-corrected powers) and average execu-

tion time, Model 6. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75 CPU time (α = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 5.2 24.5 49.4 74 3.6 21.5 59.2 88.4 5.6 12.8 30.2 54.9 0.0109

wiid 9.7 12.2 31.5 57.4 7.2 13.6 44.1 80.4 10 6.7 18.7 40 0.0023

wnid 7.3 16.3 39 66.6 5.9 16.3 52.4 86.7 8.1 7.8 21.8 43.7 0.002

wker 1.3 20.2 47.4 75.8 0.8 16.3 53.5 89.2 2.2 8.9 26.2 52.1 0.0014

riid 8.4 15 36.8 62.3 7.5 14.7 46.5 80.5 7.8 5.7 19.8 41.2 0.0049

rnid 6.7 13.1 35 60.1 5.5 15 46.8 82.8 5.6 6.2 20.8 43.7 0.0145

bxy 2.7 17.6 41.4 70.9 2.4 16.7 52.5 86.9 3.1 8.7 25.1 50.4 0.0209

bpwy 1.5 17.7 42.7 71.8 1.9 16.9 51.1 87.2 1.7 8 22.5 48.7 0.0228

bmcmb 3.1 15.8 40.3 69.1 3.4 15.8 51.8 85.7 3.6 8.6 23.7 50.7 0.0133

bwxy 3.9 17.7 41.7 71.5 2.9 17.5 52.7 87.3 4.2 8 23.2 49.4 0.0214

bwild 6.9 16.2 40.2 70 6.7 14 46 83.3 7.3 7.3 21.8 46.2 0.0231

n = 300

weg 5 46.8 86.4 98 5.2 32.2 79.9 98.4 4.2 21 61.8 93.2 0.044

wiid 6.4 39.7 87.4 99.2 8.3 25.9 76.7 97.9 6.5 13.9 54.3 91.3 0.0024

wnid 6.4 42.8 89.3 99.7 8.1 26.7 78.4 98.9 6.5 16.6 60.6 94.2 0.0034

wker 3.2 43.6 91 99.7 2.4 31.5 83.4 99 2.6 16 60.5 94.5 0.0016

riid 6.9 39.3 86.5 99 7.5 25.2 71.8 97 6.4 15.1 56.7 92 0.0194

rnid 6.1 39.7 86.1 99 6.9 27.8 76.3 97.6 5.3 15.2 55.7 92 0.031

bxy 3.2 43.8 89.3 99.4 4.4 30.3 80.1 98.4 3.1 16.1 59.3 93.5 0.0945

bpwy 3.2 42.5 88.1 99.4 4.2 29.4 80.9 98.5 3.1 16.3 58.1 93.2 0.0997

bmcmb 5.2 40.8 88.3 99.4 6.3 28.3 78.6 98.5 4.7 15.2 58.3 93.3 0.0368

bwxy 4.6 39.8 87.7 99.5 5 28.8 79.4 98.4 3.5 16.5 58.5 93.7 0.0999

bwild 5.7 39.7 87.7 99.5 6.7 29.2 80.4 98.7 6.1 14.2 56.8 93.1 0.1025
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The simulations presented here, along with further simulations reported in the supplementary

material, indicate the potential of Wald-type tests based on our proposed method to deliver good

size accuracy and reasonable power across a range of quantiles and data-generating processes.

These simulations also support the theoretical results presented earlier in Section 2 inasmuch as

the size accuracy of the test tends to outperform those of the other Wald-type tests considered

over the three different quantiles and six data-generating processes considered in our simulations.

5 Empirical Example

We consider the reemployment bonus experiments conducted in Pennsylvania by the United States

Department of Labor between July 1988 and October 1989 (Corson et al., 1992). This experiment

involved the randomized assignment of new claimants for unemployment insurance (UI) benefits

into one of several treatment groups or a control group. Claimants assigned to the control group

were handled according to the usual procedures of the unemployment insurance system, while

claimants assigned to treatment were awarded cash bonuses if they were able to demonstrate

full-time reemployment within a specified qualifying period.

The corresponding data were previously analyzed using quantile-regression methods by

Koenker and Bilias (2001) and Koenker and Xiao (2002); Koenker and Bilias (2001) also dis-

cuss older literature evaluating similar experiments. We follow Koenker and Xiao (2002) by

focusing solely on a single treatment group, which combined with the control group yields a

sample of size n = 6384. The corresponding dataset is publicly available and can be down-

loaded from http://www.econ.uiuc.edu/~roger/research/inference/Penn46.ascii.

Claimants for unemployment benefits that were assigned to this treatment were offered a bonus

equal to six times the usual weekly benefit if they secured full-time employment within 12 weeks.

Because approximately 20% of the subjects were reemployed within one week and another 20%
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were not reemployed within a 26-week follow-up window, Koenker and Xiao (2002) assume a

quantile-regression specification of the form F−1
logT |X (α) = X⊤β(α), where α ∈ [.20, .80], where

T denotes the duration of unemployment in weeks and where the regressors contained in X in-

clude a constant term, an indicator for assignment to treatment and the fourteen demographic or

socioeconomic control variables listed in Koenker and Xiao (2002, p. 1603).

We depart from the specification of Koenker and Xiao (2002) by including interactions of

the treatment indicator with each of the control variables used by these authors. We also include

interactions of the indicator for gender with indicators for race, Hispanic ethnicity and number

of dependents. We consider, for a given quantile in the interval [.20, .80], the hypothesis that the
treatment interaction terms in X are jointly insignificant, i.e., that the effect of treatment at a given

quantile in [.20, .80] does not vary with any of the control variables included in X . Appendix F of

the supplementary material presents some additional evidence specific to the question of whether

the effect of treatment in this context varies by age or by participants’ stated expectation of being

recalled to a previously held job.

Figure 2 reports p-values for the hypothesis of covariate homogeneity in treatment over each

quantile in a grid of 300 points in [.20, .80]. Our test is implemented using our proposed method

with the data-driven bandwidth with k = 5 discussed in detail in Appendix D of the supplement.

We also compare the p-values from tests implemented using our method with the corresponding

p-values from the alternative testing methods considered in the simulations reported above. In

particular, the wiid, wnid, wker, bxy, bpwy, bmcmb, bwxy and bwildmethods were implemented

by direct computation of the corresponding Wald-type statistic using the estimated asymptotic

covariance matrix generated by the summary.rq feature of version 5.35 of the quantreg package

(Koenker, 2018) for the R statistical computing environment (R Core Team, 2016). The riid

method, on the other hand, was implemented by direct invocation of the anova.rq feature of

quantreg.
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One can see fromFigure 2 that our proposed procedure implies significant covariate-heterogeneity

in quantile treatment effects at the .10-level over nearly all quantiles between .43 and .74. Unre-

ported results indicate that the joint significance observed at these quantiles is driven largely by the

significance of two covariates, namely the interaction between treatment and an indicator variable

for being younger than 35 years of age, and the interaction between treatment and an indicator for

whether a given participant expected to be recalled to previous employment. Additional results

reported in Appendix F of the supplement reveal significant differences in quantile treatment

effects between participants younger than 35 and those aged 35 and older for nearly all quantiles

between .50 and .80. In particular, the corresponding participants aged 35 and older are shown to

exit unemployment significantly more slowly than those younger than 35.

Significant differences in quantile treatment effects between participants expecting recall to

a previous job and those not expecting recall are also shown in Appendix F to exist for nearly

all quantiles between .43 and .74. This last result is potentially important in evaluating the cost-

effectiveness of the program given the experiment’s exclusion of all claimants for unemployment

insurance for whom inclusion in the treatment group was deemed not to provide a sufficient

encouragement “to search for work more diligently and to accept suitable employment more

rapidly than would be the case otherwise” (Corson et al., 1992, p. 10). The experimenters

specifically excluded from the study all claimants who indicated a definite expectation of being

recalled to a previous employer on a specific date within 60 days of filing their applications

for UI benefits. These claimants were deemed to be so secure in their expectation of future

full-time employment that any bonus paid to them upon resuming full-time employment would

be interpreted as a windfall. Included in the experiment, however, were those claimants who

indicated some expectation of being recalled to a previous job, although with no definite date

of recall. The experimenters deemed claimants in this category to be similar to claimants with

no stated expectation of returning to a previous job in terms of their assumed response to a
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promised bonus payment upon resuming full-time employment within the qualifying period. The

results presented in Appendix F of the supplement indicate that UI claimants who indicated some

expectation of being recalled, although not to the extent of having a specific date of recall, in fact

differ in their responses to treatment than those claimants who indicated no expectation of recall

whatsoever.

Figure 2 also shows that the other testing methods considered varied in the extent to which

the hypothesis of covariate-homogeneity in the treatment effect was rejected over quantiles in the

interval [.20, .80]. In particular, none of the additional inference methods considered was seen to

imply the same range of quantiles corresponding to covariate heterogeneity in the corresponding

quantile treatment effects thatwas revealed by ourmethod. For example, wiid yielded significance

at all quantiles greater than .53. We note in addition that some p-values for tests implemented

using wker in fact exceed .98 for most quantiles above .78, which suggests that the corresponding

regression-quantile covariance matrices were not well estimated by wker.

In view of the rejection, reported by Koenker and Xiao (2002), of the null of a linear location-

shift model for quantiles on the interval [.25, .75], we interpret the wiid method’s conclusion of

significance at all quantiles greater than .53 as misleading, and likely driven bymisspecification of

the assumed location-shift model. As such, inferences resulting from other methods that assume

a linear location-shift model (i.e., riid and bmcmb) are similarly likely to be misleading.

In summary, we have used our proposedmethod of inference to show that the effect of treatment

on the duration of employment tends to vary with individual characteristics of the experimental

subjects only over a relatively narrow range of quantiles between .43 and .74. These ranges of

quantiles corresponding to covariate heterogeneity in the effect of treatment is not matched by

any of the other testing methods considered. It follows that our proposed method permits an

understanding of the effectiveness of a particular unemployment relief policy distinct from that

produced by other methods of inference.
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Figure 2: Pennsylvania reemployment bonus experiment: 6384 observations. p-values for point-

wise tests of covariate-homogeneity in treatment effect, α-quantile regressions, α ∈ [.20, .80].
The dotted horizontal line denotes significance at the 10% level.
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SUPPLEMENTARYMATERIAL

Appendices: Appendix A contains precise statements of the assumptions used in Theorems 1

and 2; Appendix B contains proofs of Theorems 1 and 2; Appendix C shows that the

estimators of G0(α) proposed by Powell (1991) and Hendricks and Koenker (1992) cannot
induce Wald-type tests that control size adaptively in large samples; Appendix D describes

a data-driven, as opposed to a fixed, bandwidth to implement our proposed estimate of

G0(α); Appendix E reports further simulation evidence on the finite-sample performance

of our proposed method relative to its competitors, while Appendix F contains further

investigation of the empirical example presented in Section 5. (qdf60supp.pdf)

R programs: We also include R code that enables reproduction of the simulation results in Sec-

tion 4 and Appendix E and of the empirical analyses reported in Section 5 and Appendix F.

(qdf60code.zip)
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A Assumptions
Precise statements of the regularity conditions underlying the theorems presented in the main
body of our paper are collected here. Henceforth, (X⊤

1 ,Y1), . . . , (X⊤
n ,Yn) is am iid sample of size n.

Let ∥·∥ denote the Euclidean norm, let X denote the common support of X1, . . . ,Xn, and define

B ≡
{
x⊤β(α) : x ∈ X, α ∈ A

}
. (1)

Assumption 1. The following conditions hold: (1) Uniformly in α ∈ A, where A = [a1,a2] for
0 < a1 < a2 < 1, Gn(α) ≡ n−1

∑n
i=1 fi

(
X⊤
i β(α)

)
XiX

⊤
i = G0(α)

(
1 +Op

(
n−1/2

))
as n → ∞; (2)

E
[
∥Xi∥4

]
< ∞; (2)

and (3) G0(α) and H = E
[
XiX

⊤
i

]
are positive definite.

Assumption 2. The smoothing kernel K(·) satisfies the following conditions: (1) K(·) is nonneg-
ative, symmetric and bounded with support [−1/2,1/2], with ∥K ∥2 ≡

√∫ 1/2
−1/2 K

2(w)dw ∈ (0,∞);
(2)

∫ 1/2
−1/2 K(w)dw = 1 and

���∫ 1/2
−1/2 w

kK(w)dw
��� < ∞ for k ≤ 4; and (3) K(·) is three-times con-

tinuously differentiable on R, where the derivatives K (k)(w) satisfy
∫ 1/2
−1/2

��K (k)(w)
�� dw < ∞ for

k = 1,2,3.
Assumption 3. For m → ∞ as n → ∞ at a rate no slower than [n/(log n)11/5]5/4, the bandwidth
sequence {hm} satisfies (1) hm → 0; (2)mh5m, nh4m → ∞; and (3)mhm/

[
(logm)2

√
log h−1m

]
→ ∞.

Assumption 4. For each each i = 1, . . . ,n: (1) The conditional moment Pr
[
Yi ≤ X⊤

i β(α)
�� Xi

]
=

α holds almost surely for α ∈ [a1,a2]. (2) The conditional distribution function Fi is absolutely
continuous, with corresponding density fi such that fi (·) is uniformly continuous on the closure
of B. In addition, there exists an interval [−b, b] with b ∈ (0,∞) such that B ⊂ [−b, b], where
B is as given above in (1). (3) The densities fi(y) are five-times differentiable for all y ∈ B
with max1≤i≤n supy∈B

��� f (k)i (y)
��� < ∞ a.s. for each k = 0,1, . . . ,5. (4) There exist constants

0 < l1 ≤ l2 < ∞ such that 0 < l1 ≤ fi (y) ≤ l2 < ∞ for all y ∈ B.

Assumption 5. The first component of the design vector Xi is an intercept, i.e., Xi = [ 1 X̃⊤
i ]⊤

for some (d − 1)-variate X̃i. Let β(1)(α) ≡ (d/dα) β(α), i.e., the gradient vector, and let ϕ̃i(t)
denote the conditional characteristic function given X̃i of the random variable

X̃i ·
(
1
{
Yi ≤ X⊤

i

(
β(α) + n−1/2β(1)(α)

)}
− α

)
.

For any ϵ > 0, there exists η ∈ (0,1) such that inf∥t∥>ϵ
∏n

i=1 ϕ̃i(t) ≤ ηn uniformly in α ∈ [ϵ,1− ϵ].
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Remark 1. The requirement of part 1 of Assumption 1 that Gn(α) converge uniformly in α ∈ A to
G0(α) is used only in the proof of Theorem 3 appearing below in Appendix C. Theorems 1 and 2,
whose proofs appear below in Appendix B only involve a requirement of pointwise convergence,
i.e., that Gn(α) converge to G0(α) for any α ∈ A.

Remark 2. Although we do not make this explicit in the conditions of Assumption 3, our results
do allow for stochastic bandwidths. This is certainly relevant to the discussion presented below
in Appendix D in which a data-driven bandwidth is derived.

Remark 3. Part 1 of Assumption 4 requires the correct specification of the quantile regression
model on [a1,a2]. This condition may restrict the choice of a1 and a2 in practice. Specification
tests developed in e.g., Escanciano and Goh (2014) and related papers can be used to check this
condition. On the other hand, unreported simulations do suggest that Wald tests incorporating
the proposed estimator of G0(α) have a certain degree of robustness in finite samples to incorrect
specification of the underlying quantile regression model on a given interval of quantiles [a1,a2].
An extension of the analysis presented in this paper to the case where our estimator of G0(α)
is computed using a shrinking neighborhood [a1n,a2n] of the quantile level α, on which the
quantile-regression specification holds, may be desirable.

Remark 4. Assumption 5 is taken from Portnoy (2012) and can be shown to hold if the distribution
of X̃i is appropriately smooth and bounded. In addition, the condition of part 2 of Assumption 4
, which implies that ∥Xi∥ is uniformly bounded on its support, is required in the derivation of
both the precise form of the quantity T2nm(α) appearing in the statement of Theorem 1 of our
paper and of the error rate appearing in the statement of Portnoy (2012, Theorem 5). Relaxation
of this condition will not affect the Op

(√
log h−1m /(mhm)

)
convergence rate of T2nm(α) stated in

Theorem 1 of our paper, but will likely increase the power of log n that appears in the conclusion
of Portnoy (2012, Theorem 5); see in this connection the discussion in Portnoy (2012, p. 1720).

B Proofs of Theorems 1 and 2

B.1 A useful lemma
We begin by introducing a useful lemma on uniform-in-bandwidth rates of convergence of kernel-
type estimators that is instrumental in proving our main results. Recall that

{
U j

}m
j=1 denotes a

random sample of sizem, distributed asU ∼ Uni f [a1,a2] for [a1,a2] ⊂ (0,1). For a given x ∈ Rd ,
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let Fx(·) and fx(·) denote the cdf and Lebesgue density of the random variable x⊤β (U). Define

gm,h (w, x) ≡
1
m

m∑
j=1
φ

(
x⊤β

(
U j

)
− w

h

)
,

where φ(·) is either (a2 − a1)K(·), (a2 − a1)K (1)(·) or (a2 − a1)K (2)(·). Let X ⊂ Rd denote the
support of x, and let wp. 1 stand for with probability one.

Lemma 1. Under Assumptions 2–4, for c > 0, and 0 < h0 < 1,, the following holds wp. 1:

lim sup
m→∞

sup
c logm/m≤h≤h0

sup
x∈X

sup
w∈R

√
m

��gm,h (w, x) − E
[
gm,h (w, x)

] ��√
h| log h|

≡ A(c) < ∞, (3)

for φ(·) equal to (a2 − a1)K(·), (a2 − a1)K (1)(·) or (a2 − a1)K (2)(·).

Proof. We provide the proof for φ(·) = (a2 − a1)K(·); the proof for φ(·) = (a2 − a1)K (1)(·) or
φ(·) = (a2 − a1)K (2)(·) is the same. In particular, Lemma 1 follows from an application of the
main result of Mason and Swanepoel (2011, p. 73) applied to the class of functions

G =
{
(u, h) → K

(
x⊤β (u) − w

h

)
: x ∈ X,w ∈ R

}
.

We proceed to verify their conditions. Since K is bounded, Mason and Swanepoel (2011,
Condition (G.i)) is trivially satisfied. To verify Mason and Swanepoel (2011, Condition (G.ii))
note that

E
[
K2

(
x⊤β (U) − w

h

)]
=

1
a2 − a1

∫ a2

a1
K2

(
x⊤β (u) − w

h

)
du

=
1

a2 − a1

∫ x⊤β(a2)

x⊤β(a1)
K2

(q − w

h

)
fx(q)dq

=
h

a2 − a1

∫ (x⊤β(a2)−w)/h

(x⊤β(a1)−w)/h
K2 (t) fx(w + ht)dt

≤ h
a2 − a1

∥K ∥22 l2,

where ∥K ∥2 =
√∫ 1/2

−1/2 K
2(w)dw < ∞ by Assumption 2 and where l2 is as given in Assumption 4

above. Hence, Mason and Swanepoel (2011, Condition (G.ii)) holds. The class

G0 =

{
u → K

(
x⊤β (u) − w

h

)
: x ∈ X,w ∈ R, h ∈ (0,1]

}
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is a VC class, which is also pointwise measurable, see e.g. Nolan and Pollard (1987). It follows
that Mason and Swanepoel (2011, Conditions (F.i) and (F.ii)) hold. This completes the proof. �

B.2 Proof of Theorem 1
Begin by noting that

Ĝn(α) =
1
n

n∑
i=1

f̂ni
(
X⊤
i β̂n(α)

)
XiX

⊤
i

=
a2 − a1
nmhm

n∑
i=1

m∑
j=1

K
(

1
√
nhm

X⊤
i

[√
n
(
β̂n

(
U j

)
− β

(
U j

) )
−
√
n
(
β̂n(α) − β(α)

)
+
√
n
(
β

(
U j

)
− β(α)

) ] )
XiX

⊤
i

=
a2 − a1
nmhm

n∑
i=1

m∑
j=1

K
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

)
+

1
√
nhm

X⊤
i Dnj(α)

)
XiX

⊤
i ,

where
Dnj(α) =

√
n
[(
β̂n

(
U j

)
− β

(
U j

) )
−

(
β̂n(α) − β(α)

)]
.

By a Taylor expansion we accordingly have

Ĝn(α) =
a2 − a1
nmhm

n∑
i=1

m∑
j=1

[
K

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )
+

1
√
nhm

X⊤
i Dnj(α)K (1)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )
+

1
2nh2m

(
X⊤
i Dnj(α)

)2 K (2)
(
1
hm

X⊤
i

(
β̄

(
U j

)
− β̄(α)

) )]
XiX

⊤
i ,

where 

(β̄ (
U j

)
− β̄(α)

)
−

(
β

(
U j

)
− β(α)

)

 < 



 1
√
n
Dnj(α)






for each j = 1, . . . ,m.

Then

Ĝn(α) =
1
n

n∑
i=1

f̃i
(
X⊤
i β(α)

)
XiX

⊤
i

5



+
a2 − a1
nmh2m

n∑
i=1

X⊤
i


m∑
j=1

1
√
n
Dnj(α)K (1)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) ) XiX
⊤
i

+
a2 − a1
nmh3m

n∑
i=1

X⊤
i


m∑
j=1

1
n
Dnj(α)Dnj(α)⊤K (2)

(
1
hm

X⊤
i

(
β̄

(
U j

)
− β̄(α)

) ) Xi · XiX
⊤
i ,

(4)

where f̃i
(
X⊤
i β(α)

)
denotes the empirically infeasible estimator of fi

(
X⊤
i β(α)

)
defined in 9 of

our paper.
In what follows, the three terms appearing in the representation of Ĝn(α) given in (4) are

analyzed in sequence. For convenience, we suppress the dependence on n of the quantile grid
size m. We show that the following holds as n → ∞ for a fixed quantile α ∈ A:

1.

1
n

n∑
i=1

f̃i
(
X⊤
i β(α)

)
XiX

⊤
i =

1
n

n∑
i=1

fi
(
X⊤
i β(α)

)
XiX

⊤
i + T1nm(α) +T2nm(α)

+ op
©­«h2m +

√
− log hm
mhm

ª®¬ , (5)

where T1nm(α) and T2nm(α) are as given above in the statement of Theorem 1, and where
T1nm(α) = Op

(
h2m

)
and T2nm(α) = Op

(√
− log hm/(mhm)

)
. It follows that the remainder

term in (5) is of strictly smaller order than T1nm(α) +T2nm(α).

2. We also show that

T2nm(α) ≡
a2 − a1
nmh2m

n∑
i=1

X⊤
i


m∑
j=1

1
√
n
Dnj(α)K (1)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) ) XiX
⊤
i

= Op

(
1
√
n

)
; (6)

3. and finally that

a2 − a1
nmh3m

n∑
i=1

X⊤
i


m∑
j=1

1
n
Dnj(α)Dnj(α)⊤K (2)

(
1
hm

X⊤
i

(
β̄

(
U j

)
− β̄(α)

) ) Xi · XiX
⊤
i

6



= Op

(
1
n
+

1
n

3
2 h4m

)
. (7)

Combining (4) with (5)–(7) yields the desired conclusion; namely, that

Ĝn(α) =
1
n

n∑
i=1

f̃i
(
X⊤
i β(α)

)
XiX

⊤
i + T1nm(α) +T2nm(α) +T2nm(α) + Rnm(α)

= G0(α) +T1nm(α) +T2nm(α) + T3nm(α) + Rnm(α),

where Rnm(α) denotes the sum of the remainder term in (5) and the expression in (7). In particular,

Rnm(α) = op
©­«h2m +

√
− log hm
mhm

ª®¬ +Op

(
1
n
+

1
n

3
2 h4m

)
= op (T1nm(α) +T2nm(α) +T2nm(α)) .

Claim 1. The following holds:

1
n

n∑
i=1

[
f̃i
(
X⊤
i β(α)

)
− fi

(
X⊤
i β(α)

) ]
XiX

⊤
i

= T1nm(α) +T2nm(α) + op
©­«h2m +

√
− log hm
mhm

ª®¬ ,
where

T1nm(α) = Op

(
h2m

)
and

T2nm(α) = Op
©­«
√

− log hm
mhm

ª®¬ .
We begin by establishing the rates of convergence of T1nm(α) and T2nm(α). In particular, we have

∥T1nm(α)∥ ≤ h2m
2

∫ 1/2

−1/2
w2K(w)dw · max

1≤i≤n

��� f (2)i

(
X⊤
i β(α)

) ��� · 1
n

n∑
i=1

∥Xi∥2

= Op

(
h2m

)
, (8)

7



where use has been made of the conditions of Assumptions 1, 2 and 4 that E
[
∥Xi∥4

]
< ∞,∫ 1/2

−1/2 w
2K(w)dw < ∞ and max1≤i≤n supy∈B

��� f (2)i (y)
��� < ∞ a.s., where B is as given above in (1).

In addition, we have

∥T2nm(α)∥ ≤
√
− log hm
mhm

· ∥K ∥22 · max
1≤i≤n

sup
y∈Xi

| fi(y)| ·
1
n

n∑
i=1

∥Xi∥2

= Op
©­«
√

− log hm
mhm

ª®¬ (9)

via a similar argument.
Next, define the quantities

V f̃i (α) ≡ f̃i
(
X⊤
i β(α)

)
− E

[
a2 − a1
hm

K
(
1
hm

X⊤
i (β(U) − β(α))

)���� Xi

]
and

B f̃i (α) ≡ E
[
a2 − a1
hm

K
(
1
hm

X⊤
i (β(U) − β(α))

)���� Xi

]
− fi

(
X⊤
i β(α)

)
for each i ∈ {1, . . . ,n}. We have

1
n

n∑
i=1

f̃i
(
X⊤
i β(α)

)
XiX

⊤
i =

1
n

n∑
i=1

fi
(
X⊤
i β(α)

)
XiX

⊤
i +

1
n

n∑
i=1

V f̃i (α)XiX
⊤
i +

1
n

n∑
i=1

B f̃i (α)XiX
⊤
i .

(10)
Recall that X ⊂ Rd denotes the common support of X1,X2,X3, . . .. In addition, let fx(·) denote
the density of the conditional distribution of Yi given Xi = x, and let

f̃x(x⊤β(α)) ≡ (mhm)−1
m∑
j=1

K
(
h−1m x⊤

(
β

(
U j

)
− β(α)

) )
.

Recall the condition of Assumption 4 that for some finite b > 0, B ⊂ [−b, b]. The following holds
almost surely: 




1n n∑

i=1
V f̃i (α)XiX

⊤
i −T2nm(α)







8



=








√
log h−1m
mhm

· 1
n

n∑
i=1

√
fi
(
X⊤
i β(α)

)
XiX

⊤
i

·
©­­«
√

mhm
log h−1m

·
f̃i
(
X⊤
i β(α)

)
− E

[
f̃i
(
X⊤
i β(α)

) �� Xi
]√

fi
(
X⊤
i β(α)

) − ∥K ∥2
ª®®¬









≤ sup
x∈X

sup
y∈[−b,b]

�����
√

mhm
log h−1m

·
f̃x(y) − E

[
f̃x(y)

]√
fx(y)

− ∥K ∥2

�����
·

√
log h−1m
mhm

· 1
n

n∑
i=1

√
fi
(
X⊤
i β(α)

)
∥Xi∥2 . (11)

By Giné et al. (2004, p. 185) we have for any z ∈ R that

lim
n→∞

Pr

[
(− log hm)

( √
mhm√

− log hm
sup
x∈X

sup
y∈[−b,b]

����� f̃x(y) − E
[
f̃x(y)

]√
fx(y)

����� − ∥K ∥2

)
≤ z

]
= exp (−e−z) .

It follows that �����
√

mhm
log h−1m

· sup
x∈X

sup
y∈[−b,b]

f̃x(y) − E
[
f̃x(y)

]√
fx(y)

− ∥K ∥2

����� = op(1). (12)

Combining (12) with (11), the condition of Assumption 4 that fi(·) is uniformly bounded on B
and the condition that n−1

∑n
i=1 ∥Xi∥2 = Op(1) (implied by (2) of Assumption 1) yields the result

that 




1n n∑
i=1

V f̃i (α)XiX
⊤
i −T2nm(α)






 = op
©­«
√

− log hm
mhm

ª®¬ . (13)

Next, consider that for each i ∈ {1, . . . ,n} and sufficiently small hm that

E
[
a2 − a1
hm

K
(
1
hm

X⊤
i (β(U) − β(α))

)���� Xi

]
=

∫ a2

a1

1
hm

K
(
1
hm

X⊤
i (β(u) − β(α))

)
du

=

∫ X⊤
i β(a2)

X⊤
i β(a1)

1
hm

K
(
1
hm

(
ti − X⊤

i β(α)
) )

fi (ti) dti

9



=

∫ 1/2

−1/2
K (wi) fi

(
X⊤
i β(α) + hmwi

)
dwi

= fi
(
X⊤
i β(α)

) ∫ 1/2

−1/2
K (wi) dwi +

h2m
2

f (2)i

(
X⊤
i β(α)

) ∫ 1/2

−1/2
w2
i K (wi) dwi

+
h3m
6

f (3)i

(
X⊤
i β(α)

) ∫ 1/2

−1/2
w3
i K (wi) dwi + op

(
h3m

)
as n → ∞, wherewehave exploited the conditions ofAssumptions 2 and 4 that

���∫ 1/2
−1/2 w

4K(w)dw
��� <

∞ and max1≤i≤n supy∈B
��� f (4)i (y)

��� < ∞ a.s.
It follows that




1n n∑

i=1
B f̃i (α)XiX

⊤
i −T1nm(α)







=

h3m
6

∫ 1/2

−1/2
w3K(w)dw ·






1n n∑
i=1

f (3)i

(
X⊤
i β(α)

)
XiX

⊤
i






 + op (
h3m

)
≤ h3m

6

∫ 1/2

−1/2
w3K(w)dw · max

1≤i≤n

��� f (3)i

(
X⊤
i β(α)

) ��� · 1
n

n∑
i=1

∥Xi∥2 + op
(
h3m

)
= Op

(
h3m

)
Op(1)

= op
(
h2m

)
, (14)

wherewehave additionally exploited the conditions ofAssumptions 2 and 4 that
∫ 1/2
−1/2 w

3K(w)dw <
∞ and max1≤i≤n supy∈B

��� f (3)i (y)
��� < ∞ a.s.

The desired conclusion follows from the combination of (8)–(10) and (13)–(14).

Claim 2. The following holds:

T2nm(α) = Op

(
1
√
n

)
By Lemma 1 applied with φ(·) = (a2 − a1)K (1)(·),

(a2 − a1) ·

√
mh3m

log h−1m

10



·

������ 1
mh2m

m∑
j=1

����K (1)
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )���� − E
[
1
h2m

����K (1)
(
1
hm

X⊤
i (β(U) − β(α))

)�������� Xi

] ������
< ∞, (15)

a.s. as n → ∞.
Let R+ and R− denote the regions {t ∈ [X⊤

i β(a1),X⊤
i β(a2)] : K (1) ( (t − X⊤

i β(α)
)
/hm

)
>

0} and {t ∈ [X⊤
i β(a1),X⊤

i β(a2)] : K (1) ( (t − X⊤
i β(α)

)
/hm

)
< 0}, respectively. Then using

integration by parts and applying the assumption that K(·) has bounded support, we have for a
sufficiently small hm that

E
[
a2 − a1
h2m

����K (1)
(
1
hm

X⊤
i (β(U) − β(α))

)�������� Xi

]
=

∫ a2

a1

1
h2m

����K (1)
(
1
hm

X⊤
i (β(u) − β(α))

)���� du
=

∫ X⊤
i β(a2)

X⊤
i β(a1)

1
h2m

����K (1)
(
1
hm

(
ti − X⊤

i β(α)
) )���� fi (ti) dti

=
−1
hm

(∫
R+

K
(
1
hm

(
ti − X⊤

i β(α)
) )

f (1)i (ti) dti −
∫
R−

K
(
1
hm

(
ti − X⊤

i β(α)
) )

f (1)i (ti) dti
)

= −
∫
{K (1)>0}

K (wi) f (1)i

(
X⊤
i β(α) + hmwi

)
dwi +

∫
{K (1)<0}

K (wi) f (1)i

(
X⊤
i β(α) + hmwi

)
dwi

= f (1)i

(
X⊤
i β(α)

) (∫
{K (1)<0}

K(w)dw −
∫
{K (1)>0}

K(w)dw
)

+ hm f (2)i

(
X⊤
i β(α)

) (∫
{K (1)<0}

wK(w)dw −
∫
{K (1)>0}

wK(w)dw
)
+Op

(
h2m

)
≤

��� f (1)i

(
X⊤
i β(α)

) ��� �����∫{K (1)<0}
K(w)dw −

∫
{K (1)>0}

K(w)dw
�����

+ hm
��� f (2)i

(
X⊤
i β(α)

) ��� · �����∫{K (1)<0}
wK(w)dw −

∫
{K (1)>0}

wK(w)dw
����� +Op

(
h2m

)
, (16)

where the assumption that maxi supy∈B
��� f (3)i (y)

��� < ∞ a.s. (Assumption 4) has also been used.

11



Combine (15) and (16) to deduce that

max
i

a2 − a1
mh2m

m∑
j=1

����K (1)
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )����
≤ max

i

������a2 − a1
mh2m

m∑
j=1

����K (1)
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )���� − E
[
a2 − a1
h2m

����K (1)
(
1
hm

X⊤
i (β(U) − β(α))

)�������� Xi

] ������
+max

i
E

[
a2 − a1
h2m

����K (1)
(
1
hm

X⊤
i (β(U) − β(α))

)�������� Xi

]
= Op

(√
− log hm
mh3m

)
+max

i

��� f (1)i

(
X⊤
i β(α)

) ��� �����∫{K (1)<0}
K(w)dw −

∫
{K (1)>0}

K(w)dw
����� +Op (hm)

= max
i

sup
α∈A

��� f (1)i

(
X⊤
i β(α)

) ��� �����∫{K (1)<0}
K(w)dw −

∫
{K (1)>0}

K(w)dw
����� +Op

(√
− log hm
mh3m

+ hm

)
,

(17)

where the assumptions thatmaxi supy∈B fi (y) < ∞ a.s. (Assumption 4),
∫ 1/2
−1/2

(
K (1)(w)

)2
dw < ∞

(Assumption 2) and maxi supy∈B
��� f (3)i (y)

��� < ∞ (Assumption 4) have been used.
Therefore

max
i

������a2 − a1
mh2m

m∑
j=1

1
√
n
Dnj(α)K (1)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )������
≤ max

i

a2 − a1
mh2m

m∑
j=1

����K (1)
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )���� · [ 1
√
n
max

j



Dnj(α)


]

≤
(
max

i

��� f (1)i

(
X⊤
i β(α)

) ��� · �����∫{K (1)<0}
K(w)dw −

∫
{K (1)>0}

K(w)dw
����� +Op

(√
− log hm
mh3m

+ hm

))
· Op

(
1
√
n

)
= Op

(
1
√
n

)
, (18)
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where we have used (17), the condition of Assumption 4 that maxi supy∈B
��� f (1)i (y)

��� < ∞ and the
result (e.g., Angrist et al., 2006, Theorem 3) that

max
j



Dnj(α)


 ≤ 2 sup

α∈A




√n (
β̂n(α) − β(α)

)



= Op (1) .

Applying (18) we have





a2 − a1
n

3
2mh2m

n∑
i=1

m∑
j=1

X⊤
i

(
1
√
n
Dnj(α)

)
K (1)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )
XiX

⊤
i








≤ max

i

������a2 − a1
mh2m

m∑
j=1

1
√
n
Dnj(α)K (1)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )������ · 1n n∑
i=1

∥Xi∥3

= Op

(
1
√
n

)
Op(1)

= Op

(
1
√
n

)
,

where we have also applied condition (2) of Assumption 1. The desired conclusion follows.

Claim 3: The following holds:

a2 − a1
nmh3m

n∑
i=1

X⊤
i


m∑
j=1

1
n
Dnj(α)Dnj(α)⊤K (2)

(
1
hm

X⊤
i

(
β̄

(
U j

)
− β̄(α)

) ) Xi · XiX
⊤
i

= Op

(
1
n
+

1
n

3
2 h4m

)
.

We first show that

a2 − a1
nmh3m

n∑
i=1

X⊤
i


m∑
j=1

1
n
Dnj(α)Dnj(α)⊤K (2)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) ) Xi · XiX
⊤
i

13



= Op

(
1
n

)
. (19)

In this connection, Lemma 1 applied with φ(·) = (a2 − a1)K (2)(·) yields

(a2 − a1) · lim
m→∞

√
mh5m

log h−1m

·

������ 1
mh3m

m∑
j=1

K (2)
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )
− E

[
1
h3m

K (2)
(
1
hm

X⊤
i (β(U) − β(α))

)���� Xi

] ������ < ∞

(20)

almost surely, where we have exploited the assumption that
∫ 1/2
−1/2

(
K (2)(w)

)2
dw < ∞. In addition,

by a derivation similar to that leading to (16) above, we have for all α ∈ A that

E
[
a2 − a1
h3m

����K (2)
(
1
hm

X⊤
i (β(U) − β(α))

)�������� Xi

]
< ∞ (21)

wp. 1. Combine (20) and (21) to deduce (19), to wit:





a2 − a1
nmh3m

n∑
i=1

m∑
j=1

1
n
X⊤
i Dnj(α)Dnj(α)⊤XiK (2)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )
XiX

⊤
i








≤ a2 − a1

n
·max

j



Dnj(α)


2

·max
i

1
mh3m

m∑
j=1

����K (2)
(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )���� · 1n n∑
i=1

∥Xi∥4

= Op

(
1
n

)
Op(1)

= Op

(
1
n

)
,

where we have applied the assumption that maxi supy∈B
��� f (2)i (y)

��� < ∞ (Assumption 4) and the
condition (2) of Assumption 1.
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Next, we show that

a2 − a1
n2mh3m

n∑
i=1

m∑
j=1



Dnj(α)


2 ����K (2)

(
1
hm

X⊤
i

(
β

(
U j

)
− β(α)

) )
− K (2)

(
1
hm

X⊤
i

(
β̄

(
U j

)
− β̄(α)

) )���� ∥Xi∥4

= Op

(
1

n
3
2 h4m

)
. (22)

In particular, (22) follows directly from the mean value theorem,


K (3)



∞ < ∞, the result

max
j



(β̄ (
U j

)
− β̄(α)

)
−

(
β

(
U j

)
− β(α)

)

 = Op

(
1
√
n

)
(e.g., Angrist et al., 2006, Theorem 3) and condition (2) of Assumption 1.

The desired conclusion follows from (19) and (22).

B.3 Proof of Theorem 2
Begin by considering the following expansion of Ŵn about Wn(G0(α)), which is a consequence
of Theorem 1 appearing in the main body of our paper:

Ŵn = Wn(G0(α)) + U1nm(α) + U2nm(α) + U3nm(α), (23)

where Ŵn is as given in (11) of our paper, and where we have

Wn(G0(α)) = W0 +Op

(
n−

1
2

)
(24)

by Assumption 1, where W0 is as given above in (12) of our paper. In addition, we have by the
binomial inverse theorem,

U1nm(α) = W0 ·
[
R

(
G−1
0 (α)T1nm(α)G−1

0 (α)HG−1
0 (α)

+G−1
0 (α)HG−1

0 (α)T1nm(α)G−1
0 (α)

)
R⊤

]
·W0

+ smaller-order terms
≡ Ū1nm(α) + smaller-order terms; (25)

U2nm(α) = W0 ·
[
R

(
G−1
0 (α)T2nm(α)G−1

0 (α)HG−1
0 (α)

15



+G−1
0 (α)HG−1

0 (α)T2nm(α)G−1
0 (α)

)
R⊤

]
·W0

+ smaller-order terms
≡ Ū2nm(α) + smaller-order terms; (26)

and

U3nm(α) = W0 ·
[
R

(
G−1
0 (α)T2nm(α)G−1

0 (α)HG−1
0 (α)

+G−1
0 (α)HG−1

0 (α)T3nm(α)G−1
0 (α)

)
R⊤

]
·W0

+ smaller-order terms
≡ Ū3nm(α) + smaller-order terms. (27)

It follows that

U1nm(α) = Op (T1nm(α)) = Op

(
h2m

)
,

U2nm(α) = Op (T2nm(α)) = Op
©­«
√

− log hm
mhm

ª®¬
and that

U3nm(α) = Op (T2nm(α)) = Op

(
1
√
n

)
.

Combining (23)–(27) we find that for each α ∈ A,

Ŵn = W0 + Ū1nm(α) + Ū2nm(α) + Ū3nm(α)
+ smaller-order terms. (28)

Next, consider that ifH0 : Rβ(α)−r = 0 is true, then the first-order asymptotic approximation
for Rβ̂n(α) has the form √

n
(
Rβ̂n(α) − r

)
= R(Z(α) + S1n), (29)

where Z(α) ∼ N(0,V (α)) where V (α) is as given above in (2) of our paper, and S1n = op(1) as
n → ∞.

We can now consider the empirical size of a nominal level-τWald test of H0 : Rβ(α) − r = 0
incorporating the proposed estimator Ĝn(α) of G0(α). In particular, the representation appearing

16



in (13) of our paper follows from the representations in (28) and (29). Let S2nm denote the
op

(
h2m +

√
log h−1m /(mhm) + n−1/2

)
remainder term in (28). Then

π0 (hm)

≡ Pr
[

n
α(1 − α)

(
β̂⊤
n (α)R⊤ − r⊤

)
Ŵn

(
Rβ̂n(α) − r

)
> χ2J,τ

����H0

]
= Pr

[
1

α(1 − α)
[
(Z(α) + S1n)⊤ R⊤ (

W0 + Ū1nm(α) + Ū2nm(α) + Ū3nm(α)
)

· R (Z(α) + S1n) + (Z(α) + S1n)⊤ R⊤S2nmR (Z(α) + S1n)
]
> χ2J,τ

]
= Pr

[
1

α(1 − α) (Z(α) + S1n)
⊤ R⊤ (

W0 + Ū1nm(α) + Ū2nm(α) + Ū3nm(α)
)

· R (Z(α) + S1n) > χ2J,τ − Ξnm(0)
]

= Pr
[

1
α(1 − α)

(
Z(α)⊤R⊤W0RZ(α) + Z(α)⊤R⊤W0RS1n + S

⊤
1nR

⊤W0RZ(α) + S⊤
1nR

⊤W0RS1n

+h2mΛ1nm(α,0) +

√
− log hm
mhm

Λ2nm(α,0) +
1
√
n
Λ3nm(α,0)

ª®¬ > χ2J,τ − Ξnm(0)


= Pr
[

1
α(1 − α)Z(α)

⊤R⊤W−1
0 RZ(α) > χ2J,τ

− 1
α(1 − α)

©­«h2mΛ1nm(α,0) +

√
− log hm
mhm

Λ2nm(α,0) +
1
√
n
Λ3nm(α,0)

ª®¬ − Θn(0) − Ξnm(0)
 ,

(30)

where
Ξnm(0) = (Z(α) + S1n)⊤R⊤S2nmR(Z(α) + S1n). (31)

In addition, the quantities Λ1nm(α,0), Λ2nm(α,0) and Λ3nm(α,0) appearing in (30) are given by

Λ1nm(α,0) =
1
h2m

(Z(α) + S1n)⊤R⊤Ū1nm(α)R(Z(α) + S1n), (32)

Λ2nm(α,0) =
√

mhm
− log hm

(Z(α) + S1n)⊤R⊤Ū2nm(α)R(Z(α) + S1n) (33)

17



and
Λ3nm(α,0) =

√
n(Z(α) + S1n)⊤R⊤Ū3nm(α)R(Z(α) + S1n), (34)

while
Θn(0) =

1
α(1 − α)

(
2Z(α)⊤R⊤W0RS1n + S

⊤
1nR

⊤W0RS1n
)
. (35)

This establishes the representation of the size function given in (13) of our paper.
The remainder of Theorem 2 follows straightforwardly from the expression for the empirical

size function given by π0 (hm) in (30) and the observation that if G0(α) does not need to be
estimated, the infeasible level-τ Wald test of H0 : Rβ(α) − r = 0 has an empirical size function
given by

Pr
[

n
α(1 − α)

(
β̂n(α)⊤R⊤ − r⊤

)
Wn(G0)

(
Rβ̂n(α) − r

)
> χ2J,τ

����H0

]
= Pr

[
1

α(1 − α)Z(α)
⊤R⊤W0RZ(α) > χ2J,τ − Θn(0)

]
.

C Analysis of Wald-type Tests Implemented Using the Esti-
mators of Powell (1991) and Hendricks and Koenker (1992)

We show in this appendix that the well-known estimators of G0(α) proposed by Powell (1991) and
Hendricks and Koenker (1992) for the express purpose of quantile-regression inference cannot
actually be used to generate Wald-type tests that control size adaptively in large samples. For
i = 1, . . . ,n and α a fixed quantile in A, let

ĜP
n (α) ≡

1
nhn

n∑
i=1

K

(
Yi − X⊤

i β̂n(α)
hn

)
XiX⊤

i (36)

denote the kernel-based estimator of G0(α) proposed by Powell (1991), where in this case K(·)
is taken to denote a smoothing kernel satisfying the conditions of Assumption 2 above, while the
bandwidth hn is assumed to satisfy the constraints hn → 0 and nh3n → ∞ as n → ∞.

In addition, let
f̂ HK
ni (α) ≡ 2hn

X⊤
i

(
β̂n (α + hn) − β̂n (α − hn)

) (37)
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denote the difference-quotient estimator of fi
(
X⊤
i β(α)

)
suggested by Hendricks and Koenker

(1992). Let

ĜHK
n (α) ≡ 1

n

n∑
i=1

f̂ HK
ni (α)XiX

⊤
i (38)

denote the corresponding estimator of G0(α).
We establish that optimal implementations of ĜP

n (α) or ĜHK
n (α) from the point of view

of maximizing the rate of decay of the empirical size distortion of a Wald-type test of H0 :
Rβ(α) − r = 0 are still sub-optimal in the sense that the resulting tests will exhibit size distortions
that decay at rates that are strictly slower than the Op

(
n−1/2(log n)3/2

)
adaptive rate. Similarly, a

Wald-type confidence interval for a given linear combination of β(α) constructed using ĜP
n (α) or

ĜHK
n (α) will not exhibit a level error that decays at the Op

(
n−1(log n)3

)
adaptive rate.

Theorem 3. Suppose the validity of Assumptions 1, 4 and 5 as given in Appendix A above. Let
{hn} denote a bandwidth sequence in which hn → 0 and nh3n → ∞ as n → ∞. We have the
following as n → ∞:

1. Suppose K(·) is a smoothing kernel satisfying the conditions of Assumption 2. Then the
magnitude of the empirical size distortion of a Wald-type test of H0 : Rβ(α) − r = 0 in
which the estimator ĜP

n (α) is embedded can be no smaller than n−2/5-order. This rate
of convergence is attained when hn ∝ n−1/5. In addition, the level error of a Wald-type
confidence interval for a linear combination of the elements of β(α) that incorporates ĜP

n (α)
can be no smaller than n−4/5-order, a magnitude attained when hn ∝ n−1/5.

2. The magnitude of the empirical size distortion of a test of H0 : Rβ(α) − r = 0 based on
(2) as given in the main body of the paper and in which the estimator ĜHK

n (α) is embedded
can be no smaller than n−2/7-order. This rate of convergence is attained when hn ∝ n−1/7.
In addition, the level error of a Wald-type confidence interval for a linear combination
of the elements of β(α) that incorporates ĜHK

n (α) can be no smaller than n−4/7-order, a
magnitude attained when hn ∝ n−1/7.

Proof. The proof appears below in Appendix C.1. �

C.1 Proof of Theorem 3
We consider the two conclusions of Theorem 3 in sequence.
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First conclusion of Theorem 3:

By Taylor expansion, the following holds for each α ∈ A:

ĜP
n (α)

=
1
nhn

n∑
i=1

K
(
1
hn

(
Yi − X⊤

i β(α)
) )

XiX
⊤
i − 1

n
3
2 h2n

n∑
i=1

K (1)
(
1
hn
Ūi(α)

)
X⊤
i Bn(α)XiX

⊤
i ,

(39)

where
��Ūi(α) −

(
Yi − X⊤

i β(α)
) �� < ��n−1/2X⊤

i Bn(α)
�� for each i = 1, . . . ,n and where

Bn(α) =
√
n
(
β̂n(α) − β(α)

)
.

Consider the first term in (39). Standard calculations show that for each α ∈ A,

1
nhn

n∑
i=1

K
(
1
hn

(
Yi − X⊤

i β(α)
) )

XiX
⊤
i = G0(α) +Op

(
h2n +

1
√
nhn

)
. (40)

Consider the second term in (39). In particular, for Ui(α) ≡ Yi − X⊤
i β(α) we have

1
n

3
2 h2n

n∑
i=1

K (1)
(
1
hn
Ūi(α)

)
X⊤
i Bn(α)XiX

⊤
i

=
1

n
3
2 h2n

n∑
i=1

K (1)
(
1
hn
Ui(α)

)
X⊤
i Bn(α)XiX

⊤
i

+
1

n
3
2 h2n

n∑
i=1

(
K (1)

(
1
hn
Ūi(α)

)
− K (1)

(
1
hn
Ui(α)

))
X⊤
i Bn(α)XiX

⊤
i . (41)

Standard calculations show that

1
nh2n

n∑
i=1

����K (1)
(
1
hn
Ui(α)

)���� − E
[
1
h2n

����K (1)
(
1
hn
Ui(α)

)�������� Xi

]
= Op

(
1√
nh3n

)
, (42)

while

E
[
1
h2n

����K (1)
(
1
hn
Ui(α)

)�������� Xi

]
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≤
��� f (1)i

(
X⊤
i β(α)

) ��� · ����∫
{K (1)<0}

K(w)dw −
∫
{K (1)>0}

K(w)dw
����

+ hn
��� f (2)i

(
X⊤
i β(α)

) ��� · ����∫
{K (1)<0}

wK(w)dw −
∫
{K (1)>0}

wK(w)dw
���� +Op

(
h2n

)
(43)

as n → ∞. Combining (42) with (43) we find that

1
nh2n

n∑
i=1

����K (1)
(
1
hn
Ui(α)

)����
≤ max

i

��� f (1)i

(
X⊤
i β(α)

) ��� · ����∫
{K (1)<0}

K(w)dw −
∫
{K (1)>0}

K(w)dw
����

+Op

(
1√
nh3n
+ hn

)
. (44)

The asymptotic normality result given in (2) of our paper implies that Bn(α) = Op(1) for every
α ∈ A. Combine this result with (44) above to deduce that the following holds for each α ∈ A:




 1

n
3
2 h2n

n∑
i=1

K (1)
(
1
hn
Ui(α)

)
X⊤
i Bn(α)XiX

⊤
i







≤ 1

√
n
max

i
∥Xi∥3 · ∥Bn(α)∥ ·

1
nh2n

n∑
i=1

����K (1)
(
1
hn
Ui(α)

)����
= Op

(
1
√
n

)
· Op(1) · Op

(
1 +

1√
nh3n
+ hn

)
= Op

(
1
√
n

)
. (45)

Next, note that

1
n

3
2 h2n

n∑
i=1

(
K (1)

(
1
hn
Ūi(α)

)
− K (1)

(
1
hn
Ui(α)

))
X⊤
i Bn(α)XiX

⊤
i .

= Op

(
1

n
3
2 h3n

)
= op

(
1
√
n

)
, (46)
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a result that follows from an application of the mean value theorem, the assumption that


K (2)



∞ <

∞ and ∥Xi∥ < ∞, (2) of our paper, the assumption that nh3n → ∞ and the result that

max
i

��Ūi(α) −Ui(α)
�� < max

i

���n− 1
2 X⊤

i Bn(α)
���

≤ 1
n

1
2
max

i
∥Xi∥ · Op(1)

= Op

(
1
√
n

)
.

Combining (39), (40), (41), (45) and (46) we find that

ĜP
n (α) = G0(α) +Op

(
h2n +

1
√
nhn
+

1
√
n

)
= G0(α) +Op

(
h2n +

1
√
nhn

)
(47)

The expansion of ĜP
n (α) given in (47) can then be combined with the binomial inverse theorem

to deduce an expansion of
[
R

(
ĜP

n (α)
)−1

Hn

(
ĜP

n (α)
)−1

R⊤
]−1

about
(
RG−1

0 (α)HG−1
0 (α)R⊤

)−1
of the form [

R
(
ĜP

n (α)
)−1

Hn

(
ĜP

n (α)
)−1

R⊤
]−1

=
(
RG−1

0 (α)HG−1
0 (α)R⊤

)−1
+ UP

1n(α) + UP
2n(α) + RP

n2(α), (48)

where for each α ∈ A, we have UP
1n(α) = Op

(
h2n

)
, UP

2n(α) = Op

(
(nhn)−1/2

)
and RP

n2(α) =

op
(
h2n + (nhn)−1/2

)
as n → ∞.

The remainder of the proof of the first part of Theorem 3 follows arguments similar to those
used in the proof of Theorem 2.

Second conclusion of Theorem 3:

Let α ∈ A ≡ [a1,a2] ⊂ (0,1) be a fixed quantile. Define

Dn(α) ≡
√
2nhn

[(
β̂n (α + hn) − β (α + hn)

)
−

(
β̂n (α − hn) − β (α − hn)

)]
.

22



In particular, Dn(α) denotes an instance of an appropriately normalized regression-quantile spac-
ing local to

(
β̂n(α) − β(α)

)
whose asymptotic behavior is analyzed in Portnoy (2012). We make

use of the following result derived from Portnoy (2012, Theorem 1, Ingredients 1–7 of the proof
of Theorem 2):

Proposition 1 ((Portnoy, 2012)). Suppose Assumptions 1, 4 and 5 hold. Then there exists a
constantW such that for ∥Dn(α)∥ ≤ W

√
log n, the density of Dn(α) at t satisfies

fDn(α)(t) = ϕD(α)(t)
©­«1 +O ©­«

√
(log n)3
2nhn

ª®¬ª®¬ ,
where ϕD(α)(·) denotes the density of a mean-zero Gaussian random vector D(α) with covariance
structure given in Portnoy (2012, eq. (7.3)).

In particular, Proposition 1 implies the existence of a mean-zero Gaussian random variable
D(α) such that

∥Dn(α) − D(α)∥ = Op
©­«
√
(log n)3
nhn

ª®¬ . (49)

Now consider the conditional density estimator f̂ HK
ni (α) given in (37) above. For each α ∈ A

we have

f̂ HK
ni (α) = 2hn

X⊤
i

[
1√
2nhn

Dn(α) + (β (α + hn) − β (α − hn))
]

=
1

X⊤
i

[
1

2
3
2
√
nh3n

Dn(α) + 1
2hn (β (α + hn) − β (α − hn))

]
=

1
1

2
3
2
√
nh3n

· X⊤
i Dn(α) + 1

fi(X⊤
i β(α))

+Op
(
h2n

)
= fi

(
X⊤
i β(α)

)
+Op

(
h2n +

(log n) 32
nh2n

+
1√
nh3n

)
= fi

(
X⊤
i β(α)

)
+Op

(
h2n +

1√
nh3n

)
,
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where (49) and Taylor expansions of X⊤
i β (α + hn) and X⊤

i β (α − hn) about X⊤
i β(α) have been

applied. Arguments similar to those used in the proof of Theorem 1 can then be used to show that
for each α ∈ A,

ĜHK
n (α) = G0(α) +THK

1n (α) +THK
2n (α) + RHK

n1 (α), (50)

where THK
1n (α) = Op

(
h2n

)
, THK

2n (α) = Op

( (
nh3n

)−1/2) and RHK
n1 (α) = op

(
h2n +

(
nh3n

)−1/2) . The
expansion of ĜHK

n (α) given in (50) can then be combined with the binomial inverse theorem to

deduce an expansion of
[
R

(
ĜHK

n (α)
)−1

Hn

(
ĜHK

n (α)
)−1

R⊤
]−1

about W0 of the form[
R

(
ĜHK

n (α)
)−1

Hn

(
ĜHK

n (α)
)−1

R⊤
]−1

=
(
RG−1

0 (α)HG−1
0 (α)R⊤

)−1
+ UHK

1n (α) + UHK
2n (α) + RHK

n2 (α), (51)

where for each α ∈ A, we have UHK
1n (α) = Op

(
h2n

)
, UHK

2n (α) = Op

( (
nh3n

)−1/2) and RHK
n2 (α) =

op
(
h2n +

(
nh3n

)−1/2) as n → ∞.
The remainder of the proof of the second conclusion of Theorem 3 follows arguments similar

to those used in the proof of Theorem 2.

D A Data-Driven and Rate-Optimal Bandwidth
We present details regarding the derivation and estimation of a particular rate-optimal bandwidth
usable in the implementation of our proposed estimate of G0(α). This bandwidth differs from the
fixed bandwidth used in the simulations presented in Section 4 of the paper in that it is data-driven,
i.e., it involves a leading constant that must be estimated. This bandwidth is nevertheless rate-
optimal in that it decays at a rate such that anyWald-type test in which the corresponding estimate
of G0(α) is embedded exhibits adaptive size control as n → ∞. We present simulation evidence
on the finite-sample performance of the resulting data-driven bandwidth in Appendix E.2 below.
We also make use of our proposed data-driven bandwidth in the empirical analysis presented in
Section 5 of our paper.

Assuming that the vector β(α) of α-quantile regression coefficients is d-dimensional, let R
denote a fully specified (J × d)-matrix of rank J. In addition, let r ∈ RJ be fully specified.
Suppose that one wishes to test the hypothesis H0 : Rβ(α) = r . Consider the size function
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given in (13) of our paper. Differentiating the size function with respect to hm we find that the
magnitude of the empirical size distortion is minimized by the solution to

h5m =
1

16m
[
(
log h−1m

) 1
2 −

(
log h−1m

)− 1
2
h2m]2

(
Λ2nm(α,0)
Λ1nm(α,0)

)2
, (52)

where Λ1nm(α,0) and Λ2nm(α,0) are as given above in (32) and (33), respectively.
Note that

1
16m

[
(
log h−1m

) 1
2 −

(
log h−1m

)− 1
2
h2m]2

(
Λ2nm(α,0)
Λ1nm(α,0)

)2
≈ 1

m
log h−1m

(
Λ2nm(α,0)
4Λ1nm(α,0)

)2
when m is large. It follows that for large m an approximate solution to (52) is given implicitly by
the relation

h5m
log h−1m

=

(
Λ2nm(α,0)
4Λ1nm(α,0)

)2 1
m
,

which implies that for large m, the optimal value of hm has the form

h∗m = κ

[(
Λ2nm(α,0)
Λ1nm(α,0)

)2
· logm

m

] 1
5

, (53)

where κ > 0 is a proportionality constant. Experimentation with simulations involving various
settings of κ suggest that the choice κ = 1 works well in practice.

We present in this connection a plug-in estimate of the optimal bandwidth h∗m given in (53)
with κ = 1. In particular, we show how one might estimate the unknown quantities in the leading
constant appearing in the expression for h∗m. Let β̂n(α) denote the regression α-quantile based on
a random sample of observations given by (X⊤

1 ,Y1), . . . , (X⊤
n ,Yn). Let X denote the (n× d)matrix

of regressors whose ith row is given by X⊤
i (i = 1, . . . ,n). We propose to estimate the optimal

bandwidth given in (53) under the setting κ = 1 by

ĥ∗m ≡
[(
Λ̂2nm(α,0)
Λ̂1nm(α,0)

)2
· logm

m

] 1
5

, (54)

where

Λ̂1nm(α,0) = (Rβ̂n(α) − r)⊤Û1nm(α)(Rβ̂n(α) − r);
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Λ̂2nm(α,0) = (Rβ̂n(α) − r)⊤Û2nm(α)(Rβ̂n(α) − r),

and where the quantities Û1nm(α) and Û2nm(α) are given by

Û1nm(α) = (RG̃n(α)−1X⊤XG̃n(α)−1R⊤)−1 ·
(
RG̃n(α)−1T̂1nm(α)G̃n(α)−1X⊤XG̃n(α)−1

+G̃n(α)−1X⊤XG̃n(α)−1T̂1nm(α)G̃n(α)−1R⊤
)
(RG̃n(α)−1X⊤XG̃n(α)−1R⊤)−1

(55)

and

Û2nm(α) = (RG̃n(α)−1X⊤XG̃n(α)−1R⊤)−1
(
RG̃n(α)−1T̂2nm(α)G̃n(α)−1X⊤XG̃n(α)−1

+G̃n(α)−1X⊤XG̃n(α)−1T̂2nm(α)G̃n(α)−1R⊤
)
(RG̃n(α)−1X⊤X)G̃n(α)−1R⊤)−1,

(56)

respectively, where G̃n(α) denotes our proposed estimate of the matrix G0(α) given by Ĝn(α) in
(6) of the main body of our paper, but implemented with the preliminary bandwidth

h̃m1 ≡ m− 1
5 . (57)

The quantities T̂1nm(α) and T̂2nm(α) appearing in (55) and (56), respectively, are given by

T̂1nm(α) =
1
n
X⊤ f̃ ′′nm(α)X

and

T̂2nm(α) =
1
n
X⊤S̃nm(α)X, (58)

where f̃ ′′nm(α) denotes the diagonal (n× n)-matrix whose ith diagonal element is a kernel estimate
of the second derivative of the conditional response density at the point X⊤

i β(α) given by

f̃ 2ni(α) ≡
1

mh̃3m2

m∑
j=1

K (2)
(
1
h̃m2

X⊤
i (β̂n(U j) − β̂n(α))

)
,

where U1, . . . ,Um denote a random sample of Uni f [a1,a2]-variates generated by Monte Carlo,
and where K(·) denotes the standard Gaussian kernel, K (2)(·) denotes its second derivative and
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h̃m2 = m−1/9. Similarly, the quantity S̃nm(α) appearing in (58) is the diagonal (n × n)-matrix
whose ith diagonal element is the square root of a kernel estimate of the conditional response
density at the point X⊤

i β(α) given by

Sni(α) ≡

√√√
1

mh̃m1

m∑
j=1

K
(
1
h̃m1

X⊤
i (β̂n(U j) − β̂n(α))

)
,

where again U1, . . . ,Um is a simulated random sample of Uni f [a1,a2]-variates and K(·) is the
standard Gaussian kernel. The bandwidth h̃m1 is as given above in (57).

E Further Numerical Evidence
This appendix contains additional simulation evidence in the context of the same family of data-
generating processes described in Section 4 of the main text. These additional simulations also
consider the size and power performance of tests of the same hypothesis of no treatment-effect
heterogeneity described in the paper. Samples of sizes n = 100 and n = 300, generated by 1000
Monte Carlo replications, continue to be examined. The simulations reported in Appendices E.1,
E.2 and E.4, like those reported in Section 4 of the paper, involve N(0,1)-errors. Appendix E.3
presents results for the same family of data-generating processes, but with t3-errors. Appendix E.4
presents results for “F-tests” of the joint hypothesis of QTE-homogeneity in two different covari-
ates , while Appendices E.1, E.2 and E.3 contain results for the same “t”-test of QTE-homogeneity
in a single covariate considered in Section 4 of the main text.

E.1 Sensitivity analysis: Results induced by our method with a fixed band-
width and varying choices of k and c, N(0,1)-errors

This appendix analyzes the sensitivity ofWald-type tests implemented according to our procedure
to variation in the the pseudo-sample sizem or to the smoothing parameter hm, which are assumed
to take the forms given in (14) and (15) in themain text, respectively. Wald-type tests implemented
according to our procedure are seen to have size or power performance that is not much affected
across quantiles or models by variation in the pseudo-sample size provided that the pseudo-sample
is sufficiently large. In particular, variation in the tuning parameter k when k ≥ 5 is seen not to
exert strong effects on the size or power performance of Wald-type tests implemented with our
method. The size performance of these same tests, on the other hand, is seen to be somewhat
more sensitive to variation in the bandwidth leading constant, in particular, to variation in the
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parameter c. We also note the relative insensitivity of the size-corrected power of these tests to
variation in c.

In what follows, Tables 1–6 display empirical sizes and size-corrected powers for Wald-type
tests implemented according to our procedure with the bandwidth constant c appearing in (15) of
the main text fixed at c = 1.5. Tables 7–12 display the same quantities, but for tests implemented
according to the proposed procedure in which the pseudo-sample size constant k appearing in
(14) is fixed at k = 5.

Table 1: Empirical rejection percentages (size and size-corrected powers), Model 1. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, c = 1.5

n = 100 α = 0.25 α = 0.5 α = 0.75
k/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 7.2 15.7 31.3 46.5 4.7 18.9 38.3 57.6 5.9 18.9 40.2 57.0
3 5.6 19.4 36.6 58.6 3.7 23.4 42.4 65.7 3.9 19.6 37.9 59.7
5 6.0 17.0 37.8 61.9 4.2 23.5 42.8 66.7 4.6 19.4 38.4 61.7
7 6.1 18.7 38.7 60.9 4.7 19.0 46.7 75.4 5.4 19.9 45.8 71.9
9 6.5 19.4 47.8 77.7 5.5 20.4 43.8 70.0 6.0 19.5 44.0 69.9
11 6.5 20.4 45.6 67.6 3.9 24.0 54.2 81.0 7.2 16.5 38.2 66.6
13 6.0 20.8 40.8 69.2 6.1 19.8 47.9 75.9 5.5 20.6 45.7 73.2
15 6.4 20.1 40.5 66.2 5.1 21.7 43.0 67.9 6.2 22.9 47.7 75.4

n = 300
1 4.8 31.6 69.5 86.4 3.8 32.4 70.1 88.7 4.9 29.1 65.7 82.1
3 6.0 26.6 66.0 90.6 5.1 33.0 74.6 95.1 4.7 29.5 72.4 94.2
5 5.0 30.2 74.7 95.6 5.2 37.3 85.1 99.3 5.2 28.2 73.4 95.2
7 3.8 38.5 81.8 98.4 4.3 39.7 87.6 99.3 5.0 38.9 83.3 98.6
9 5.1 32.4 80.8 98.3 3.7 41.8 89.6 99.9 6.3 30.7 76.9 97.1
11 5.8 32.1 78.7 98.3 5.5 34.9 82.2 98.8 6.6 32.1 81.1 98.7
13 4.6 35.4 81.0 98.7 4.8 37.4 86.1 99.4 6.0 32.0 80.2 98.6
15 6.7 28.8 77.6 97.9 5.2 40.2 88.2 99.8 7.0 27.2 73.5 97.9
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Table 2: Empirical rejection percentages (size and size-corrected powers), Model 2. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, c = 1.5

n = 100 α = 0.25 α = 0.5 α = 0.75
k/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 6.4 15.8 23.6 33.4 3.9 22.2 39.4 53.5 5.5 20.2 36.9 48.9
3 5.2 17.9 28.2 42.7 4.2 20.5 43.6 62.7 6.2 21.5 47.1 68.3
5 5.0 16.0 31.2 50.7 5.5 16.8 33.4 57.0 5.2 26.1 54.8 75.0
7 6.6 14.8 29.1 48.1 3.6 24.4 49.0 69.2 5.6 22.7 53.4 72.5
9 7.9 10.2 26.3 46.1 5.4 22.4 49.9 71.9 5.7 26.8 52.5 75.5
11 6.9 15.1 29.7 47.7 5.8 24.5 50.8 75.0 6.1 27.3 57.7 80.1
13 6.3 19.2 31.8 48.8 4.6 25.1 50.1 72.0 6.4 25.6 52.0 73.6
15 6.5 15.9 33.0 52.5 5.7 20.2 48.5 70.9 5.0 28.3 57.2 80.2

n = 300
1 5.8 18.1 46.3 71.3 3.9 33.0 70.6 85.1 5.2 38.5 75.2 84.8
3 5.4 21.9 49.4 76.7 3.5 36.0 78.1 96.2 5.0 38.3 77.7 94.1
5 4.1 22.2 57.9 87.1 3.4 39.1 86.2 98.5 5.2 40.9 83.0 96.1
7 5.4 21.7 54.2 83.4 3.8 34.1 78.1 95.5 6.2 43.2 86.5 97.8
9 5.6 21.0 56.8 86.6 3.8 40.9 88.0 98.7 4.2 41.8 86.4 98.1
11 5.5 20.2 52.1 83.3 4.0 45.4 87.8 97.7 5.7 42.6 87.1 98.2
13 4.8 22.8 58.7 86.9 4.7 37.1 82.2 97.9 7.7 44.0 89.5 98.5
15 6.9 19.4 60.2 88.4 4.8 36.3 84.3 97.3 5.7 39.7 87.2 98.4

Table 3: Empirical rejection percentages (size and size-corrected powers), Model 3. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, c = 1.5

n = 100 α = 0.25 α = 0.5 α = 0.75
k/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 5.8 15.7 25.5 36.2 4.2 17.8 30.4 43.9 5.7 20.8 38.8 53.8
3 5.6 14.0 24.9 43.5 3.8 18.9 38.6 60.6 6.5 22.6 47.1 69.8
5 6.2 12.6 28.8 50.8 4.9 18.8 43.9 67.7 4.9 26.4 53.3 74.4
7 6.6 14.1 29.0 49.5 4.2 22.9 49.2 73.6 6.5 22.4 47.9 70.6
9 5.9 13.8 23.7 39.7 5.5 15.8 39.0 60.0 7.2 24.6 52.9 73.1
11 6.9 12.9 26.0 42.9 4.5 19.0 44.9 67.2 6.8 24.6 52.2 75.8
13 6.9 15.8 27.8 45.3 5.0 19.0 42.0 64.0 6.0 26.4 55.5 76.4
15 6.8 13.6 28.9 49.1 4.4 22.4 44.2 66.9 6.9 22.7 53.2 73.5

n = 300
1 5.2 16.9 39.3 63.6 3.6 31.5 67.4 82.7 7.2 37.5 71.2 86.0
3 5.3 16.8 54.2 84.4 3.5 35.1 78.1 95.7 5.3 39.6 80.6 95.0
5 5.9 17.1 49.8 81.7 4.9 31.4 83.4 97.3 5.8 48.9 90.1 98.8
7 4.9 18.7 56.2 87.4 5.1 33.0 81.4 96.6 5.1 44.4 86.8 98.9
9 7.7 13.0 46.1 78.3 4.0 33.9 77.5 96.2 4.9 44.0 88.1 98.1
11 6.5 15.2 45.5 81.6 2.9 41.0 86.4 99.0 5.6 43.8 88.4 98.8
13 6.4 14.5 51.1 82.5 4.9 30.1 78.6 97.1 5.3 51.2 93.2 99.4
15 6.1 15.2 49.4 82.6 5.1 33.4 83.7 98.4 5.9 51.3 91.6 99.6

29



Table 4: Empirical rejection percentages (size and size-corrected powers), Model 4. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, c = 1.5

n = 100 α = 0.25 α = 0.5 α = 0.75
k/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 5.9 17.1 27.7 40.6 5.0 18.5 38.2 52.2 4.9 20.8 40.4 54.7
3 4.6 17.7 33.9 49.6 4.2 23.7 50.5 71.2 4.8 21.3 45.4 67.6
5 7.4 15.8 33.9 52.8 4.4 22.1 49.5 71.7 6.4 19.4 46.2 72.1
7 6.5 14.5 27.1 48.1 3.9 22.4 49.8 74.9 5.3 27.9 57.7 80.4
9 7.0 15.8 27.5 47.7 3.9 19.9 44.0 68.4 7.2 20.2 50.0 75.3
11 7.4 15.5 29.3 46.7 5.0 23.1 50.8 74.4 6.8 22.4 50.1 74.3
13 6.5 14.8 34.3 56.1 3.9 23.2 51.8 73.6 6.1 19.6 46.0 70.0
15 7.6 16.4 33.9 54.1 5.7 19.8 41.9 68.2 6.4 21.6 44.9 70.9

n = 300
1 5.4 23.7 51.2 71.8 3.3 40.8 79.2 91.4 6.9 35.9 71.6 85.7
3 5.3 22.3 60.1 86.2 3.5 40.0 82.8 97.0 4.4 43.9 87.0 97.2
5 6.7 18.3 50.2 79.6 4.6 37.4 86.9 98.5 4.2 42.7 86.9 98.5
7 5.9 24.2 65.0 90.7 3.9 42.2 87.3 99.4 6.2 42.3 87.3 98.9
9 4.9 29.1 67.2 92.2 5.0 37.3 83.6 98.2 6.4 48.8 93.3 99.4
11 5.5 20.5 60.4 88.6 5.2 36.8 80.9 97.6 6.5 47.4 92.9 99.7
13 5.4 24.9 67.4 90.9 4.0 44.1 90.7 99.0 5.6 39.5 87.0 98.9
15 4.8 29.9 67.0 92.0 5.0 41.7 89.3 99.1 6.1 44.2 92.8 99.3

Table 5: Empirical rejection percentages (size and size-corrected powers), Model 5. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, c = 1.5

n = 100 α = 0.25 α = 0.5 α = 0.75
k/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 5.7 14.3 28.5 45.6 5.1 18.2 34.7 49.6 5.9 18.5 35.7 50.6
3 5.1 18.4 34.6 58.9 3.9 19.6 44.2 69.8 5.5 20.7 44.4 66.7
5 5.1 17.2 35.1 56.9 5.6 18.9 41.4 63.8 6.1 21.2 50.7 75.9
7 5.8 17.0 39.0 63.0 4.4 22.8 51.0 78.6 4.7 24.9 52.7 76.2
9 5.8 18.1 33.7 54.7 5.6 19.8 45.9 70.3 4.6 25.7 54.2 76.5
11 6.1 17.9 41.6 64.8 5.0 20.6 48.9 75.9 6.3 21.1 47.1 73.4
13 5.9 20.1 38.2 62.4 5.7 21.6 47.8 72.7 5.3 23.1 52.1 80.0
15 7.0 13.8 31.5 55.2 5.6 17.4 42.9 72.4 6.0 23.6 49.7 76.3

n = 300
1 4.3 24.1 57.4 81.3 3.7 35.4 74.7 89.6 5.7 30.4 64.2 81.4
3 4.8 29.3 71.3 93.4 4.5 34.4 81.1 97.6 6.0 36.5 78.8 96.5
5 5.5 24.7 61.6 88.2 5.3 31.2 79.8 97.6 5.6 35.0 81.8 98.4
7 4.3 32.5 73.8 94.9 5.2 37.3 83.5 99.1 5.0 37.3 84.1 98.9
9 5.0 27.2 67.0 92.5 4.1 40.5 84.7 99.2 6.1 38.0 83.7 98.3
11 5.9 26.7 70.2 94.4 4.6 37.5 87.6 99.6 5.5 35.1 82.5 98.5
13 5.3 25.8 71.0 94.8 3.3 42.1 90.6 99.2 5.9 45.5 90.9 99.7
15 5.7 29.1 73.1 95.0 4.0 41.3 85.7 98.7 5.7 42.5 90.2 99.5
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Table 6: Empirical rejection percentages (size and size-corrected powers), Model 6. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, c = 1.5

n = 100 α = 0.25 α = 0.5 α = 0.75
k/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 7.7 21.0 42.3 61.9 3.7 23.0 43.3 61.5 6.3 13.7 28.6 45.1
3 4.9 25.9 54.5 78.9 4.1 22.2 46.2 71.3 6.3 13.9 28.0 49.5
5 6.3 20.3 43.3 68.1 5.6 18.2 38.4 67.3 6.2 15.3 34.5 62.8
7 7.3 25.4 51.3 73.7 4.3 21.7 45.5 72.1 5.6 16.0 39.7 65.5
9 5.7 25.9 53.7 77.5 5.3 20.0 47.3 73.2 8.3 11.0 27.4 53.7
11 6.0 24.0 47.5 71.4 4.9 22.0 48.0 77.1 6.2 14.0 30.2 53.3
13 7.7 26.8 55.7 82.4 5.4 22.1 42.3 65.3 7.8 15.6 34.1 61.2
15 5.8 26.3 51.0 77.0 4.6 22.3 50.6 75.7 8.0 12.9 33.0 64.3

n = 300
1 5.3 41.3 75.7 88.6 3.7 35.3 74.0 90.4 5.3 22.0 53.7 79.0
3 4.4 42.1 80.5 95.9 4.4 36.1 82.3 97.7 5.5 19.4 55.6 85.6
5 4.2 43.2 82.0 97.7 3.5 38.8 85.4 98.8 5.9 19.0 66.8 94.4
7 5.3 47.8 88.8 98.9 3.2 43.0 88.7 99.6 6.7 22.2 69.9 96.2
9 7.1 43.4 89.0 99.6 4.5 39.7 88.0 99.7 5.5 18.2 64.6 93.4
11 6.4 40.1 83.4 98.6 4.3 34.8 87.9 99.3 6.3 19.7 65.6 95.6
13 5.5 50.5 93.4 99.9 5.2 36.8 88.0 99.1 5.8 23.0 68.9 96.4
15 4.3 48.5 87.8 99.1 4.5 36.8 86.8 99.7 6.1 23.8 77.1 98.3

Table 7: Empirical rejection percentages (size and size-corrected powers), Model 1. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n = 100 α = 0.25 α = 0.5 α = 0.75
c/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 7.80 20.60 33.60 50.20 7.30 17.80 45.50 71.50 8.50 17.50 40.20 64.40
1.25 7.20 17.80 40.10 63.80 6.00 20.80 43.90 70.70 6.30 18.70 38.10 62.00
1.50 6.30 20.70 44.40 72.20 4.10 20.80 49.90 78.70 5.10 19.60 46.60 73.90
1.75 6.00 18.30 46.80 75.80 4.30 21.30 51.70 81.60 5.20 19.30 39.90 64.60
2.00 3.10 23.10 47.30 73.00 2.00 30.60 63.10 87.90 3.90 18.40 38.10 65.30

n = 300
1.00 6.20 33.00 72.00 93.20 6.00 33.20 76.20 96.90 8.20 30.40 77.20 94.70
1.25 5.00 37.80 81.30 98.00 6.00 30.30 75.20 96.60 6.50 33.00 78.50 96.40
1.50 5.00 29.30 70.80 94.10 4.70 38.20 84.90 98.90 5.70 27.20 68.30 93.60
1.75 4.30 36.70 83.90 98.70 3.40 40.60 88.70 99.40 4.60 34.30 80.90 98.00
2.00 3.50 36.10 83.30 99.20 2.70 39.30 84.90 98.80 4.30 35.50 85.50 99.50
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Table 8: Empirical rejection percentages (size and size-corrected powers), Model 2. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n = 100 α = 0.25 α = 0.5 α = 0.75
c/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 9.50 16.30 29.50 44.70 8.00 21.90 49.20 72.00 7.50 23.40 44.40 64.10
1.25 7.90 14.80 27.70 44.50 4.20 20.90 45.70 67.40 7.30 21.20 43.10 64.60
1.50 7.20 13.40 25.50 44.20 4.90 20.90 44.20 66.20 6.10 23.80 48.10 66.70
1.75 4.90 14.40 30.00 49.00 3.00 21.30 47.00 69.60 4.40 22.00 42.20 60.00
2.00 3.90 14.90 28.90 44.40 2.90 23.40 48.50 70.00 4.30 22.20 46.90 68.80

n = 300
1.00 6.00 24.80 56.40 82.20 6.00 36.20 79.20 95.20 6.90 40.40 78.10 93.60
1.25 5.60 23.10 56.90 83.00 5.20 33.70 78.90 95.40 5.50 43.20 85.60 96.30
1.50 5.80 18.30 52.70 80.50 4.10 44.10 85.70 98.00 6.50 47.20 89.60 98.50
1.75 3.40 22.70 59.00 86.30 3.40 37.20 84.80 97.50 4.80 50.40 91.90 98.60
2.00 4.40 24.80 63.10 90.10 2.90 44.90 87.60 98.70 3.60 52.80 93.80 99.10

Table 9: Empirical rejection percentages (size and size-corrected powers), Model 3. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n = 100 α = 0.25 α = 0.5 α = 0.75
c/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 8.60 12.20 22.50 39.70 6.80 18.70 36.10 56.70 8.60 22.70 43.80 62.70
1.25 6.50 13.60 24.50 41.70 5.60 19.20 45.30 69.00 6.40 27.10 54.40 76.10
1.50 4.60 14.70 29.60 49.50 4.10 20.50 45.40 67.20 5.00 27.90 58.00 78.10
1.75 5.40 15.40 27.50 47.10 3.40 20.40 49.20 75.30 4.30 32.10 66.30 82.70
2.00 3.90 15.20 32.40 52.20 2.80 18.20 46.70 71.10 4.40 27.00 58.30 80.80

n = 300
1.00 8.90 14.20 42.00 76.60 4.90 35.60 79.90 95.80 7.40 45.90 86.60 97.10
1.25 6.50 13.70 41.10 73.90 5.80 25.40 68.90 92.60 5.90 42.40 84.90 96.60
1.50 5.70 16.60 49.90 82.90 3.50 38.50 83.50 97.70 5.20 48.80 91.50 98.40
1.75 3.70 19.70 52.40 85.80 3.40 34.90 80.00 98.10 4.90 44.60 86.80 98.60
2.00 4.70 17.30 50.40 82.90 3.70 36.40 81.80 97.20 3.60 50.90 93.20 99.30
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Table 10: Empirical rejection percentages (size and size-corrected powers), Model 4. 1000Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n = 100 α = 0.25 α = 0.5 α = 0.75
c/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 8.00 15.90 27.00 41.70 7.60 18.20 40.60 61.20 8.20 25.20 57.40 78.80
1.25 6.20 20.00 33.30 51.80 5.90 21.20 42.40 63.80 7.80 21.90 46.50 66.50
1.50 6.10 14.00 28.10 46.70 5.20 21.40 47.30 71.10 5.50 23.10 48.50 70.30
1.75 4.80 14.50 30.00 51.10 3.60 20.40 42.30 66.30 4.90 22.10 47.50 67.30
2.00 3.40 21.40 42.30 64.70 2.70 25.80 53.40 75.70 3.90 20.10 39.90 65.70

n = 300
1.00 7.40 22.90 54.30 79.40 6.50 36.40 80.50 96.30 7.20 41.10 87.20 97.80
1.25 6.40 23.10 58.90 84.80 4.30 39.80 82.50 96.80 5.80 40.10 85.70 97.30
1.50 4.70 22.90 57.00 85.10 5.00 37.40 84.50 98.70 4.70 46.20 89.00 98.80
1.75 4.20 26.20 60.50 87.60 3.60 34.50 81.20 97.50 5.30 53.00 92.80 99.70
2.00 3.40 23.30 63.10 90.50 3.20 43.30 87.20 99.10 4.80 39.50 87.20 98.80

Table 11: Empirical rejection percentages (size and size-corrected powers), Model 5. 1000Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n = 100 α = 0.25 α = 0.5 α = 0.75
c/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 9.30 16.30 31.70 49.70 7.60 21.30 47.90 73.60 7.70 19.80 40.90 63.10
1.25 6.10 18.30 37.50 59.60 5.30 21.80 43.80 71.50 7.70 19.70 37.00 57.50
1.50 5.70 18.00 35.30 56.80 4.00 25.40 50.30 74.30 6.00 19.80 39.70 64.10
1.75 4.40 19.10 37.50 60.60 3.70 25.50 55.20 80.70 5.80 21.00 52.00 76.90
2.00 4.00 16.50 37.00 57.80 2.30 22.30 46.10 73.10 3.50 22.40 45.90 69.50

n = 300
1.00 6.80 28.00 65.80 90.60 4.90 39.20 83.70 98.60 6.20 39.70 81.70 97.50
1.25 6.70 23.70 58.70 84.40 6.30 31.60 78.90 97.00 5.60 35.80 78.80 96.50
1.50 5.50 24.20 62.90 90.60 4.50 34.60 80.70 98.00 4.20 43.80 88.20 98.90
1.75 5.70 27.10 70.80 93.70 2.90 38.50 88.50 99.40 5.10 41.10 88.40 98.90
2.00 4.50 27.00 69.90 94.20 3.10 35.80 86.10 99.30 4.00 36.10 80.80 98.30
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Table 12: Empirical rejection percentages (size and size-corrected powers), Model 6. 1000Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n = 100 α = 0.25 α = 0.5 α = 0.75
c/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 8.70 20.80 41.60 64.20 6.90 20.40 46.40 73.60 9.50 14.90 29.50 50.60
1.25 5.90 23.20 41.50 58.20 6.00 21.40 42.90 68.30 7.50 12.00 32.80 55.60
1.50 5.60 23.70 53.80 77.30 5.40 19.00 47.00 73.80 6.10 14.70 31.80 58.10
1.75 5.20 23.60 43.50 66.70 3.10 20.50 45.70 72.70 4.40 15.40 34.80 57.90
2.00 4.00 25.80 50.50 75.30 2.60 24.20 52.40 80.20 3.90 16.60 38.30 66.20

n = 300
1.00 7.10 45.50 86.90 97.90 5.20 34.70 77.60 96.60 6.30 19.50 61.10 87.60
1.25 5.40 47.80 88.40 98.30 4.40 41.40 88.90 99.20 5.80 23.20 71.50 95.80
1.50 4.60 47.90 88.60 98.70 4.10 40.10 87.60 98.90 6.30 18.90 58.20 89.50
1.75 5.30 43.90 88.40 99.10 2.50 45.70 88.70 99.60 4.40 21.00 68.50 94.50
2.00 4.00 47.50 88.40 98.70 2.80 45.70 93.00 99.70 4.10 20.60 65.40 94.90

E.2 Data-driven bandwidth: Results induced by our method with k = 5
and the data-driven bandwidth derived in Appendix D

This appendix presents the performance of Wald-type tests implemented according to our pro-
cedure but in which the bandwidth takes the form given by h∗m above in (54). The rate-optimal
data-driven bandwidth given above in (54) is seen to induce Wald-type tests with good size and
power performance across quantiles and data-generating processes. These results are for the same
“t-test” of QTE-homogeneity in a single covariate considered in Section 4 of the main text, and
involve the same series of six data-generating processes with N(0,1)-errors considered in the
main text. Tables 13–18 below repeat the relevant entries in Tables 1–6 in the main text for ease
of reference.

34



Table 13: Empirical rejection probabilities (size and size-corrected powers), Model 1. 1000
Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, k = 5;
other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.2 14.2 36.8 59.6 4.7 21.3 45.9 72.2 4.8 19.8 45.3 71.1
wiid 9.1 10 22.2 39.5 7.3 15.5 45.7 75.9 8.2 12.5 31.1 56.3
wnid 8.1 8.3 18.7 37.9 6.8 17.5 51 80 7.4 12.2 33.1 59.9
wker 1.3 13.2 31.5 53.7 0.3 17 51.2 80.8 1.9 17.7 41.8 69.5
riid 7.9 8.6 21.4 39.4 8.6 17.7 46.5 76.9 7.5 15.3 35.5 61.5
rnid 5.9 7.4 19 37.7 6.5 17.5 46.7 76.5 5.1 15.2 34.7 61.3
bxy 3.1 9.6 23.6 44.7 2.9 16.7 49.8 80 3.2 14.8 37 65.7
bpwy 1.2 9.7 23.7 44.3 2.4 17.1 49.4 80.4 1.6 17.5 41.1 69.6
bmcmb 3.3 8.8 23.2 43.3 3.7 16 48.9 79.2 3.4 16.6 39.7 66.7
bwxy 4.1 9.3 22.9 44.5 3 16 48.4 79.9 4.4 13.7 36 64.6
bwild 6.9 10.9 24 46.2 7.2 14.1 42.7 76.1 6.2 16.2 37 65.4
n = 300
weg 6.1 26.9 71.4 93.9 4.6 36.4 85.1 98.8 5.9 27.3 68.8 93.3
wiid 7.9 25.4 74.2 98.1 3.7 33.6 84.3 98.5 6 30.5 84.5 99.6
wnid 8.2 26.2 76.1 98.6 3.9 34.9 86.4 98.6 5.9 32.5 84.7 99.3
wker 3 28.4 79.5 99.3 1.3 34.5 85.9 98.7 2 34.3 87 99.7
riid 7.7 27 75.8 97.6 5 31.4 80.5 98.1 5.6 31.7 81.6 98.8
rnid 6.6 26.5 74.7 97.6 4.7 31.4 80.4 98 4.7 31 82.3 98.6
bxy 4.4 29.4 79.2 98.3 2.5 34.1 84.4 98.4 3 32.7 85.5 99.4
bpwy 3.4 28.9 78.8 98.7 2.2 34.4 84.9 98.4 2.3 34.5 85.9 99.3
bmcmb 5.9 26.9 77.9 98.4 3.7 33.7 82.4 98.3 3.8 32.5 84.6 99.2
bwxy 4.9 29.2 79.1 98.8 2.7 32 82.4 98.4 3.1 31.5 83.9 99.2
bwild 7.1 29 79.1 98.7 4.8 32.3 82 98.3 4.9 31.9 85.7 99.6
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Table 14: Empirical rejection probabilities (size and size-corrected powers), Model 2. 1000
Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, k = 5;
other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7 12.4 21.3 39.2 6.2 17.4 38 58.7 6.1 20.5 44.1 65.4
wiid 8.4 10.2 20.5 38.9 8.9 12.7 34.5 62.7 9 15.7 39.9 63.1
wnid 7.4 7.3 21.8 40.2 9.1 12.6 37.2 65.3 8.6 14.5 42.1 64.4
wker 1.5 8 21.9 39.9 1.1 12.5 36.5 63.2 1.7 11.3 37.7 61
riid 7.7 7.9 20.2 36.7 8.7 11.1 31.7 55.1 8.2 14.7 37.6 60.1
rnid 5.8 7.5 20.2 36 7.2 11.4 31.1 54.1 6 14 35.9 57.1
bxy 3.4 7.9 20.3 37.6 3.4 12.6 36.2 60.3 4.1 14.6 39.3 62.1
bpwy 1.8 7.1 20.8 40.2 2.9 12.8 37.1 62.7 2.5 12.7 40 62.6
bmcmb 3.4 8 20.5 36.7 4.1 12.7 36.2 60.1 4.6 15.3 39.2 61
bwxy 4.5 8.3 20.6 37.9 4.2 13.2 37.1 60.2 5.2 13.5 38.7 61.5
bwild 7.4 7.3 18.7 35.4 8.4 12.9 35.1 57 7.3 14.1 38.5 59.2
n = 300
weg 5.7 15 45.9 77.2 5 32.6 77.1 96.1 5.6 35.4 81.2 95.7
wiid 5.5 20.7 58.8 88.4 5 32.2 81.3 98.5 8 34 83.4 98.3
wnid 5.9 19.6 60.1 88.6 4.8 35.6 84.6 98.5 8.4 36 86.5 98.9
wker 2.3 18.4 57 86 1 35.9 82.2 97.9 2.3 36 85.7 98.7
riid 6 17.9 55 83.9 5.4 31.8 77.7 96.5 7.5 35.6 82 97.3
rnid 4.6 17.3 53.3 83.1 5.1 30.7 76.9 96.2 6.8 33.8 80.9 96.8
bxy 2.6 20.7 58.8 84.2 3.7 32.7 79.9 96.9 3.7 38.4 84.6 98
bpwy 2.4 18.1 55.3 83.7 3 32.7 79.1 97 3 38.5 84.7 98.4
bmcmb 4.3 18.3 53.1 82.7 4.4 31.2 78.4 97 5 37.9 84.2 97.4
bwxy 2.6 17.8 53.8 81.8 3.6 31.5 78.6 96.7 4 36.1 82.8 97.3
bwild 5.1 19.1 55.8 84.1 5 30.7 78.9 96.4 6.1 36.1 84.6 98.5
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Table 15: Empirical rejection probabilities (size and size-corrected powers), Model 3. 1000
Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, k = 5;
other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.4 10.9 21.5 39.8 6.2 17 36.9 57.5 6.3 23.3 53.1 76.8
wiid 9.7 6.1 14.5 26.4 7.5 11 28.5 53.3 7.7 16.1 44.9 71.8
wnid 7.9 8.4 19 36.8 6.7 11 31.9 56.8 7.2 18.2 47.4 72.1
wker 1.4 8.1 19.7 39.2 0.7 12.5 33.4 58 1.4 18.9 52.6 78.1
riid 7.5 6.5 15.7 32.6 7.3 9.4 26.7 47.4 8 16.9 43.9 68.2
rnid 5.3 6.7 16.6 32.2 6.5 9.3 27.8 45.6 5.5 17.3 45.4 68.3
bxy 2.4 8.3 19.1 37.9 2.8 12.3 32.3 55.7 3 19.3 49.2 75.2
bpwy 1.2 8.1 20.3 38.2 2.4 11.6 31.8 54.2 1.5 18.7 50.2 75.7
bmcmb 2.6 7.5 18.5 34.5 3.6 11.6 31.8 54.7 3.1 18.1 47.1 73
bwxy 3.1 8.5 20.2 37.6 3.5 10.7 30.9 54.2 3.9 18.9 49.5 74.3
bwild 6.3 7.7 18.5 35.7 7.6 10 27.7 50.2 7 17.1 47.2 73.6
n = 300
weg 5.2 17.4 52.4 82.3 4.8 30.3 79.4 97.1 4.9 49.5 90.5 98.4
wiid 6.6 12.5 46.4 81.3 6.9 24.4 74 96.3 6.9 41.1 91.1 99.5
wnid 6.8 14.7 52.7 84.1 5.8 28.7 78.2 97.3 7.7 41.4 92 99.7
wker 3.3 15.4 52.7 84.5 1.6 28.2 76.7 96.2 3.2 40 90.4 99.7
riid 5.8 15.6 49.7 82.2 6.4 26 72.1 95 7.3 38.3 87.3 98.9
rnid 5 15 48.1 80.5 6 25.4 70.4 94.4 6.4 37.9 86.5 99
bxy 3.7 16.1 50.3 83.3 3.5 27.3 74.7 95.6 3.8 41.1 89.9 99.6
bpwy 3.1 15.6 52 83.7 3 28.2 75.4 95.9 2.8 38.5 89.8 99.2
bmcmb 4.7 14.8 49.7 81 4.7 28.7 76.5 96 5.1 40.8 90.5 99.4
bwxy 3.7 14.9 51 82.8 3.7 28.5 75.7 96 4.2 39.9 90 99.6
bwild 6.3 13.9 48.7 81.9 5.9 25.3 73.3 95.7 6.8 37.8 88.9 99.5
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Table 16: Empirical rejection probabilities (size and size-corrected powers), Model 4. 1000
Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, k = 5;
other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 4.9 13.3 24.4 41.8 4.8 15.8 38.6 60.2 5 22.5 46.2 66.9
wiid 9.8 6 16 30.4 7.5 14.2 41.1 68.6 9.8 13 36.8 66.9
wnid 8.5 6.3 15.6 32.2 7.8 14 42.8 69 8.2 15.9 43.8 71.8
wker 1.4 11.7 24.5 43.2 1.1 12.7 43 66.9 1.7 16.2 45.1 73.2
riid 7.7 7.4 17.8 31.6 7.4 15.3 40.3 63.1 7.9 14.4 41 67.2
rnid 5.4 8.2 18.8 34.5 6.3 13.8 39.5 62.1 5.5 15.9 41.7 68.4
bxy 3.2 9.1 19.6 37.8 3.6 14.6 42.5 65.3 3.1 17.6 46.3 72.6
bpwy 1.5 8.5 20.7 38 2.7 13.8 40.6 64.2 1.1 17.1 47.3 74.9
bmcmb 4.4 6.7 17.2 33.3 4.1 14 41.2 64.2 3.2 17.3 45.9 71.4
bwxy 4.4 8.9 20.2 37.7 3.9 15 42.9 66.2 4.3 17.7 47 72.5
bwild 7.4 9.2 20.7 37.3 6.7 13.6 40 64.3 7.8 15.3 41.5 68.7
n = 300
weg 4.6 26.6 64.8 90.2 5.4 30 73.5 94.2 5.7 42.3 89.6 98.4
wiid 6.5 14.5 48.1 81.5 6.9 28.7 79.6 97.7 5.9 40.1 88.3 99.2
wnid 7.3 17.6 53.3 84.3 7.2 28.2 79.6 97.6 5.9 42.9 90.3 99.4
wker 3.5 23.3 59.9 87.1 2.1 28.9 78.6 97.6 2.3 41.1 88.9 98.8
riid 7.2 17.4 49.2 81.6 8 26.7 76.5 96 5.6 40.4 86.6 98.2
rnid 6.1 17.5 50.8 81.9 6.8 25.6 76.1 95.5 4.8 41 86 98.1
bxy 4.5 18.6 52.2 82.5 3.8 27.8 77.6 96.4 3.3 40.8 87.6 98.3
bpwy 4 18 55 84.5 4.4 28.9 77.2 96.5 2.3 42.2 87.9 98.5
bmcmb 5.6 17 50.8 81.5 5.7 28.8 78.2 96.5 4.6 41.1 87.4 98.1
bwxy 4.5 18.2 52.5 82.5 4.8 28.1 76.7 96.2 3.3 43.5 88.6 98.4
bwild 6.6 17.9 53.1 82.9 6.5 25.9 75.7 96 5 41.5 88.3 98.7
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Table 17: Empirical rejection probabilities (size and size-corrected powers), Model 5. 1000
Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, k = 5;
other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 5.6 13.7 32.4 59.2 5.4 15.3 37.7 63.3 6.3 17.4 41 64.4
wiid 8.5 10.9 22.7 42.1 7.2 11.5 27.7 55.6 9.6 11.3 28.9 54.6
wnid 8.2 10.1 25.5 46.1 6.7 11 32.5 59.5 8.2 10.7 31 57.4
wker 1.1 13.1 30.4 54.3 0.7 12.3 34 60.5 1.5 12.8 35.9 65.2
riid 7.3 11.1 25.7 45.9 8.1 9.4 27.2 51.8 8.4 11 29.5 58.8
rnid 5.3 11.2 26.1 45.8 7 10.7 27.3 51.9 6.2 11.7 28.9 56.8
bxy 2.7 11.4 27.1 49.4 2.5 11.9 32.7 58.7 3.3 12.4 33.3 62.7
bpwy 1.2 12.1 28.8 50.7 2.6 12.5 33.8 60.3 2 12.1 34 64
bmcmb 2.9 10.8 27.6 47.5 3.7 11.3 31.8 59.5 3.5 11.7 32.8 59.4
bwxy 4.2 11.3 27.7 48.8 3.6 11.3 32.4 58.6 4.4 11.8 32.7 61.8
bwild 6.8 12.4 26.9 47.2 7 9.7 28.6 53.9 7.4 10.5 31.8 61.2
n = 300
weg 6.3 22 62.8 89.9 5.6 29 78.1 97 5.2 36.6 84.7 98.1
wiid 7.2 24 66.6 94.6 6.6 25.9 73.1 96.5 6.6 33.6 83.5 99.3
wnid 6.9 24.5 68.4 95.6 6.3 29 76.7 97.5 7 37.4 86.6 99.3
wker 2.7 26.5 72.1 96.6 1.7 30.4 77.3 97.8 2.6 38.3 87.9 99.4
riid 6.4 20.3 63.8 91.7 5.9 25.9 72.7 95.5 6.9 33.3 82.5 98.5
rnid 5.4 22.2 66.5 92.9 5.5 26.7 73.3 95.5 5.7 34.1 83.8 98.6
bxy 3.6 24.7 70.3 95.5 3.8 29.4 75.4 97.4 4 34.3 84.9 99
bpwy 3.5 23 68.2 95 3.6 28.6 75.9 97.1 2.7 37.7 85.8 99.2
bmcmb 4.9 24 68.6 95.3 5 28.1 75.5 96.9 4.6 36.2 85.4 99.3
bwxy 4 24.4 69.7 95.7 4.1 29.2 75.7 97.1 4.1 35 85.2 99.1
bwild 6.4 23.1 69.1 95.7 6 28.1 74.7 97.1 5.7 35.3 85.1 99.1
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Table 18: Empirical rejection probabilities (size and size-corrected powers), Model 6. 1000
Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, k = 5;
other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 5.4 20.1 42.6 64.1 5.3 19 41 67.9 5.7 14.1 32.3 56.9
wiid 9.7 12.2 31.5 57.4 7.2 13.6 44.1 80.4 10 6.7 18.7 40
wnid 7.3 16.3 39 66.6 5.9 16.3 52.4 86.7 8.1 7.8 21.8 43.7
wker 1.3 20.2 47.4 75.8 0.8 16.3 53.5 89.2 2.2 8.9 26.2 52.1
riid 8.4 15 36.8 62.3 7.5 14.7 46.5 80.5 7.8 5.7 19.8 41.2
rnid 6.7 13.1 35 60.1 5.5 15 46.8 82.8 5.6 6.2 20.8 43.7
bxy 2.7 17.6 41.4 70.9 2.4 16.7 52.5 86.9 3.1 8.7 25.1 50.4
bpwy 1.5 17.7 42.7 71.8 1.9 16.9 51.1 87.2 1.7 8 22.5 48.7
bmcmb 3.1 15.8 40.3 69.1 3.4 15.8 51.8 85.7 3.6 8.6 23.7 50.7
bwxy 3.9 17.7 41.7 71.5 2.9 17.5 52.7 87.3 4.2 8 23.2 49.4
bwild 6.9 16.2 40.2 70 6.7 14 46 83.3 7.3 7.3 21.8 46.2
n = 300
weg 5 43.4 86.1 98 6.2 28.5 76 97.4 6 18 60.2 91.5
wiid 6.4 39.7 87.4 99.2 8.3 25.9 76.7 97.9 6.5 13.9 54.3 91.3
wnid 6.4 42.8 89.3 99.7 8.1 26.7 78.4 98.9 6.5 16.6 60.6 94.2
wker 3.2 43.6 91 99.7 2.4 31.5 83.4 99 2.6 16 60.5 94.5
riid 6.9 39.3 86.5 99 7.5 25.2 71.8 97 6.4 15.1 56.7 92
rnid 6.1 39.7 86.1 99 6.9 27.8 76.3 97.6 5.3 15.2 55.7 92
bxy 3.2 43.8 89.3 99.4 4.4 30.3 80.1 98.4 3.1 16.1 59.3 93.5
bpwy 3.2 42.5 88.1 99.4 4.2 29.4 80.9 98.5 3.1 16.3 58.1 93.2
bmcmb 5.2 40.8 88.3 99.4 6.3 28.3 78.6 98.5 4.7 15.2 58.3 93.3
bwxy 4.6 39.8 87.7 99.5 5 28.8 79.4 98.4 3.5 16.5 58.5 93.7
bwild 5.7 39.7 87.7 99.5 6.7 29.2 80.4 98.7 6.1 14.2 56.8 93.1

E.3 Results for models with Student-t errors
This appendix repeats the simulations presented in Section 4 of the main text, but in which the
N(0,1)-errors specified are replaced with t3-errors. The corresponding simulation results are
displayed in Tables 19–24.

We see that the empirical size accuracy and size-adjusted power of Wald-type tests induced
by the proposed estimate of G0(α) are quite competitive with the other methods considered.
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Table 19: Empirical rejection percentages (size and size-corrected powers), Model 1 with t3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 6.1 17.7 37.4 62.1 4.6 20.9 44.4 70.9 8.5 14.9 28.9 52.6
wiid 8.6 12.9 27.6 51.5 7.9 10.7 32.2 58.6 10.4 9.1 21.7 41.4
wnid 5.3 14.2 35 60.9 6.6 12.1 38.3 67.4 7.1 10.1 27.1 51.8
wker 1.2 12 30.8 57.8 0.5 15.8 43 73.3 2.4 13.6 34 59
riid 6.9 13.4 33.7 58.1 5.9 14.4 37.4 65.5 8.3 10.1 26.5 49.2
rnid 4.3 13 33.1 57.6 4.6 13.9 38 65.9 6 8.7 24.4 47.7
bxy 1.9 14.5 36.8 62 2.3 15 41.3 70.9 2.8 11.1 29 55.4
bpwy 0.9 13.1 34.7 59.7 1.4 15.6 41.4 72.2 1.9 14.5 34.3 60.5
bmcmb 2.9 15 34 59.5 2.9 16.1 41.9 72.4 3.6 10.4 27.7 54.1
bwxy 2.8 14.4 37.5 62.9 2.4 16.4 40.7 71.9 3.9 12.5 31.3 57.9
bwild 6.3 13.1 32 57.7 4.7 14.1 38.2 67.3 7.5 9.9 25.7 51.2
n = 300
weg 6.9 21.8 61.9 89.1 4.5 33.8 80.9 98.3 6.6 29.9 69.2 93.9
wiid 8.5 16.3 57.1 90.3 7 21.9 74.5 97.5 7.8 22.7 70.4 95.1
wnid 7.3 20.7 67.3 94 6.1 28 79.3 98.2 7.3 24.2 72.6 95.9
wker 2.7 20.4 66.7 93.2 1.2 33.5 82.9 98.8 3.6 26.9 73.7 96.6
riid 6.9 18.3 62.3 91 6.1 27.8 78.5 98 5.9 28.3 74.7 95.6
rnid 5.6 19.7 63.7 91.2 5.7 27.9 78 97.9 5.1 26.6 74.3 94.9
bxy 3.2 22.2 68.4 93.2 3.2 29.6 80.1 98.3 3.2 30.6 76.7 97
bpwy 2.9 22.7 68.1 93.9 3.2 29.3 80.7 98.3 2.4 28.5 75.1 97
bmcmb 5.5 21.4 65.6 92.9 5 28.6 79.7 98.2 4.8 29.5 75.9 96.3
bwxy 3.9 22.8 69.2 93.9 3.6 29.4 81.1 98.3 3.7 30.1 76.6 97.3
bwild 7.3 18.9 63.7 92.2 5.8 26.4 77.1 98 6.4 26.3 73.2 96.1
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Table 20: Empirical rejection percentages (size and size-corrected powers), Model 2 with t3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.1 12 24.3 40.7 4 19.5 39.5 57.2 7.5 20.6 42.7 60.2
wiid 9.8 7.9 15.9 31.3 6 10.6 25 45.4 8.8 14.6 34.7 56.6
wnid 6.3 9.1 20.8 36 6.5 10.3 28.3 47.9 6.5 15.5 37.8 57.9
wker 1.9 7.4 16.5 32 0.7 11.1 31 49.6 2 17.3 40.3 61.1
riid 7.4 8.8 17.2 30.1 6.4 8.7 23.7 39.8 7.1 15.4 34.2 54.3
rnid 5.2 8.5 17.1 29.1 5.1 9.4 23.7 40.2 4.9 15.1 34.2 53.8
bxy 2.2 8.2 18 32.2 2 10.5 28.7 45.8 2.4 16.7 39.7 59.6
bpwy 0.9 9.3 19.3 33.6 1.6 11.1 30.3 47.9 1.5 19.1 43.3 62.5
bmcmb 2.2 8.2 18.2 31.7 2.8 11.3 29.2 45.7 2.6 16 36.2 55.6
bwxy 3.3 8.2 18.8 31.6 2.2 10.4 29.6 47.6 2.9 18.3 40.3 59.2
bwild 7.3 7.8 16 30.5 5.2 10.3 25.2 42.2 6.9 14.8 35.4 56.2
n = 300
weg 6.2 14.9 40.5 71.4 4.1 36 76.4 95.8 6.4 39.4 81.5 95.8
wiid 6.9 12.5 38.4 70.1 5.9 27.1 72.8 95.2 6.8 34.6 80.4 96.1
wnid 6 15.1 44.2 74 5 30.8 77.1 96.3 5.4 40.7 86.3 97.3
wker 3.3 12.2 37.1 67.6 0.9 35.8 78.1 96.2 3.4 38.7 82.5 96.3
riid 8.7 10.8 31 59.9 5.8 27.1 68 91.5 7.5 31.4 74 92.1
rnid 7.7 10.9 30.7 58.6 5.1 27.5 67.2 91.1 6.1 33.3 75 93
bxy 3.8 13.9 36.7 64.9 2.7 30 72.5 93.9 3.8 36.7 80.3 95
bpwy 3.5 12.4 37.2 66.7 2.8 30 73 93.3 3.9 35.7 78.9 95.4
bmcmb 5.7 13.1 35.8 62.8 3.9 30.2 72.3 93.1 4.7 39.1 80.5 95
bwxy 4.1 13.7 36.6 63.8 3.1 30.1 72.5 93.6 4.3 35.6 79 94.7
bwild 6.8 13.2 34.1 63.9 4.8 29 71.5 93.3 6.2 34.3 78.4 94.6
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Table 21: Empirical rejection percentages (size and size-corrected powers), Model 3 with t3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.1 10.9 18.8 33.4 5.6 18.7 39.3 61.5 7.8 19.4 41.4 62.8
wiid 10.5 4.8 10.2 20.7 6.6 13.8 34.2 57.5 10.5 10.7 28 48.2
wnid 6.2 6.3 13.5 29.1 6 13.9 35.1 59.7 5.6 19.1 41.3 66.2
wker 1.5 7.4 18 35.3 0.5 14.7 35.9 60.6 1.3 17.9 40.9 65.6
riid 6.3 7.3 16.2 30.6 7 13.6 32 54.6 6.7 15.6 35 58.1
rnid 4.4 6.5 15.5 30.2 4.8 14.7 34 56.4 4.6 17.7 36.7 60.1
bxy 2.6 6.2 16.5 32.2 2.4 14.7 34.1 60 2.3 20.3 42.9 66.9
bpwy 1.2 6.7 15.6 31.8 1.6 14.2 33.7 59 0.8 20.7 43.8 68.5
bmcmb 3.4 5.3 13.5 27.1 3.2 12.1 30.6 54.6 2.6 17.5 38.1 63.2
bwxy 3.1 6.9 17.2 33.7 3.3 14.4 34.5 59.8 2.5 20.6 43.5 67.5
bwild 5.9 6.3 15.2 30.7 5.8 12.7 31 55.6 6.9 16.6 37.1 60.2
n = 300
weg 5.3 15.5 41 71.4 3.3 27.8 75.3 95.3 6.9 33.7 79.7 96.1
wiid 8.5 9.5 31.5 64.7 6.1 20.3 66.8 94.9 8.1 28.1 78.3 97.6
wnid 7 9.9 35.8 71 5.2 23.3 73.8 96.7 8.1 31.3 82.2 98.1
wker 3.2 11.4 36.5 71.5 1.2 27.3 77.4 97.1 3.7 32.5 83.5 98.1
riid 6.1 12.3 35.5 67.6 6.3 20.4 66.4 94.2 6.7 27.6 75.4 96.6
rnid 5.3 13.3 35.3 67.6 5.8 21.1 68.1 93.3 5.9 29.8 77.4 96.5
bxy 2.9 13 37.5 71.8 3.7 21.9 70.2 94.6 3.9 31.1 81.2 97.6
bpwy 3.1 11.8 37.2 72.2 2.7 23 70.3 94.7 3.2 32.9 82.8 98.1
bmcmb 5.4 11.4 34.8 68.7 4.4 23.4 71 95.1 5.8 32.1 82 97.8
bwxy 3.8 12.5 36.3 71.7 3.4 23.6 70.7 94.8 4.3 32 81.6 97.7
bwild 7 11.1 34.7 70.2 5 22.8 70.8 95.4 6.8 27.9 79.4 97.7
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Table 22: Empirical rejection percentages (size and size-corrected powers), Model 4 with t3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 6.9 13.4 21.3 37.5 6.5 17.2 38.2 60.5 6.3 21 45.2 66.4
wiid 10 7.3 14.5 26 8 8.9 27.7 52.5 9.4 12.1 31.6 57.9
wnid 6.8 8.4 16.3 31.9 7.2 12.8 36.3 60.3 5.6 14.8 40.8 65.9
wker 1.7 9.1 18 33.5 0.8 12.8 37.1 60.6 1.7 13.4 40.4 66.7
riid 7.4 7.5 17.2 31.2 8.5 11.1 30.8 53.4 5.8 14 36.3 60.5
rnid 4.3 7.7 17.3 30.2 7.1 10.7 30.4 51.3 4.7 14.4 34.9 60
bxy 1.6 9.1 19.4 34.8 3.7 11.4 35.3 57.6 2.5 15 41.1 67.1
bpwy 0.8 9 18.8 35.4 2.8 12.2 36.6 58.9 1.4 17.2 43.7 68.3
bmcmb 2.3 7.5 15.6 29.9 4.2 10.9 33.3 55.7 2.8 13.4 36.7 62.6
bwxy 2.8 9.2 19.4 34.7 4.1 11.4 35.3 56.8 3 16.5 42.9 66.8
bwild 7.6 8.9 17.8 31.4 6.7 11.1 32.5 55.3 6.5 12.9 37.2 62.5
n = 300
weg 7.1 14.8 47.4 78.4 4.4 36.4 83 97.5 7.1 32.2 77.7 95.8
wiid 7.3 11.3 42 78 6.7 29.6 80.7 97.6 7.7 26.9 77.3 96.8
wnid 7.7 12.6 44.6 80.6 6.3 32 81.4 98.5 7.3 31.6 83.4 98.5
wker 3.1 12.9 44.3 77.9 0.9 34.5 84 98.5 4.1 30.1 82.3 98.4
riid 6.8 13.6 45.6 77.5 7.3 27.3 75.8 95.7 7 30.1 79.2 97.3
rnid 5.6 14.4 46.4 77.5 6.7 26.5 74 94.4 5.5 32 80.4 97.3
bxy 3.7 13.3 45.9 77.6 3.3 32.2 80 97.2 4.3 33 83.9 98.2
bpwy 3.2 14.5 47.3 79.4 3 32.4 79.8 97.2 3.4 33.2 83.4 98.3
bmcmb 5.1 13.5 46.7 78.3 4.7 32.2 79.4 97.9 5.8 29.6 81.1 97.8
bwxy 4 14.5 46.4 78.1 3.4 32.2 79.5 96.9 4.6 31.4 82 98.2
bwild 7.4 11 40.9 74.4 6.2 29.6 78 96.2 7.2 28.6 80.2 97.6
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Table 23: Empirical rejection percentages (size and size-corrected powers), Model 5 with t3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 8.7 11.4 24.6 42.5 4 22.9 45.1 67.3 6.8 19.1 44.9 72.4
wiid 10.1 7.7 15.3 30.7 6.3 10.9 29.6 55.2 8.6 11.7 33.2 58.7
wnid 7 7.8 19.2 38.9 6 13.3 33.3 60 6.1 14.1 41.2 69.7
wker 2.1 9.2 22 43.7 0.5 17.8 42.7 70.3 0.8 14.7 43 74.4
riid 7.5 8 17.6 35.1 5.7 15.5 35.3 59.6 6.5 14.4 37.8 65.7
rnid 5 8.9 19.5 37.9 4.2 14.6 35 60.2 4.4 15.2 38.2 66.3
bxy 2.7 9.8 22.5 43.3 2 16.6 38.6 65.2 1.4 16 44 75
bpwy 1.4 9.3 21.8 42.6 1.5 17 39.6 66.8 0.7 18.6 46 75.9
bmcmb 3.2 8.8 20.6 38.5 2.5 16 38.2 65 2.1 16.5 43.8 72.2
bwxy 3.6 9.4 21.7 41.7 2.4 16.5 40 65.7 2.2 17.9 45 74.7
bwild 7.2 9.2 19.5 37.4 5 14.9 35 60.8 5.9 15.6 40.3 70.1
n = 300
weg 6.6 23.7 59.2 88.7 3.7 32.9 81.7 97.5 5.2 33.5 78.6 95.7
wiid 6.8 20.6 57.4 89.4 5.8 28.6 80 98.5 6.6 27.1 75.3 96.7
wnid 5.9 24.1 63.5 93.4 5.5 30.9 81.1 98.7 6.4 29.3 79.9 97.8
wker 3.3 20.1 59.7 91.6 1.1 31.3 81.9 98.3 2.9 29.5 81.1 97.8
riid 7.1 20.7 58.6 88.8 7.2 26.4 76.8 96.6 6.6 26.2 73.8 96.4
rnid 5.6 20.9 57 88.3 6.6 25.2 75.7 96.5 5.6 26.9 74.6 96.7
bxy 3.4 22.5 60.4 91.4 3.7 29.2 79.7 97.8 3.8 29.6 78.3 97.3
bpwy 2.6 22.2 59.2 91.1 3.3 29.7 79.5 97.9 3.1 29.3 79 97.5
bmcmb 4.9 21.7 60.7 91.4 4.9 30.5 80.2 98 5.2 26.1 77.7 96.8
bwxy 3.6 22.7 61.7 91.8 3.7 28.8 80 97.7 4.3 27.4 77.1 96.8
bwild 7.1 20.2 57 90.2 6.1 26.8 77.2 97.6 6 28.2 79 97.3
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Table 24: Empirical rejection percentages (size and size-corrected powers), Model 6 with t3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
c = 1.5 and k = 5; other procedures implemented using summary.rq.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 6 19.9 41.4 64.5 4.1 23.1 47.2 73.3 7.5 13.1 29.5 54.8
wiid 9.7 9.9 24.6 46.3 6.3 15.2 36.6 66.4 10 6.9 19 39.3
wnid 6.5 15.6 35.6 61.3 5.4 15.6 41.9 73.2 5.5 9.6 27.1 54.5
wker 1.9 12.3 32.6 59 0.1 20 47 76.6 1.6 9.3 27.1 56.4
riid 6.4 16.2 35.2 58.9 6.1 16.7 40.7 69.6 6.4 9.5 25.2 49.5
rnid 4.1 17 36.7 60.8 5 17.3 39.8 68.9 4.6 9.6 25 49.8
bxy 1.7 18.1 40 64.5 1.2 19.6 46.6 77.4 2.1 10.6 31.1 58.7
bpwy 0.8 17.1 40.1 64.3 0.8 18.6 44.4 75.5 1.1 10.5 29 57
bmcmb 2.4 14.9 34.9 61.3 1.5 19.2 45.1 75.3 2.5 9 27 55
bwxy 2.5 17 38.7 64.5 1.4 20 45.8 76.3 2.9 10.9 30 58.6
bwild 6.5 13.4 33.8 59 5 16.4 40.7 70.8 5.4 8.8 25.1 53.2
n = 300
weg 6.4 35.4 74.8 94.9 3.8 42.1 86.4 98.3 5.3 19.8 57.7 87.9
wiid 7.5 30.2 72.4 96.7 6 31 80.2 98.7 5.8 14.6 55.2 88.7
wnid 6.3 37.8 81.1 98.7 7.2 29.9 81.8 98.8 4.9 18.4 58.8 92
wker 3.5 33.1 77.8 98.5 0.9 38.2 87.2 99.1 2 18 60.2 91.7
riid 6.6 31.8 74.9 96.8 6.1 32.6 81.2 98.5 5.6 16.7 55.7 88.5
rnid 5.2 33.9 76.3 97.4 5.2 33.2 81.4 98.5 4.6 17.1 57 89.3
bxy 3.4 35.9 78.8 98.3 2.8 34.9 84.8 98.9 2.4 19 61.5 91.6
bpwy 2.8 35.7 79.1 98.2 2.4 34.4 84 98.6 2 18.9 60.2 90.9
bmcmb 4.8 34.7 78 98 4.9 34.1 83.5 99 3.7 16.1 57.3 90.3
bwxy 3.9 37.3 80 98.1 2.9 36.1 85.1 99 2.3 18.1 59.8 90.9
bwild 6.8 34.2 77.1 98 5.4 32.5 83 98.9 5.1 16.3 57.5 90.9

E.4 Results for tests of a joint hypothesis
This appendix considers a joint hypothesis of significance for a bivariate subvector of the vector of
coefficients in a linear quantile regression. Specifically, we consider the family of data-generating
processes given by Y = 1 +

∑4
j=1 X j + D + δa(U)DX1 + γ(U)X5 + F−1(U), where {X j}4j=1, D, U

and {δa(·) : a ∈ R} are as described in Section 4 of the main text, and where P [γ(U) ≡ 0] = 1,
X5 ∼ N(0,1) and X5 is independent of [ X1 X2 X3 X4 D U ]⊤. That is, X5 is an irrelevant
regressor. In what followswe consider, for quantiles α ∈ {.25, .50, .75}, tests of the null hypothesis
H0 : δa(α) = γ(α) = 0. We examine the empirical power of these tests against alternatives in
which δa(α) , 0 with a ∈ {.50,1.00,1.50} and γ(α) = 0.

The corresponding simulation results are displayed in Tables 25–30 for samples of sizes
n = 100 and n = 300. These tables present the results of “F-test” implementations of our
proposed procedure with pseudo-sample size m given by expression (14) in the main text with
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k = 5. The corresponding bandwidth hm is as given by (15) in the main text with constant
c = 1.5. We also present the results of “F-tests” implemented using most of the other testing
methods considered in Section 4 of the main text. Each of these other testing methods, with the
exception of riid, were implemented by direct computation of the corresponding test statistic
using the corresponding estimated asymptotic covariance generated by the summary.rq feature
of the quantreg package. We also examined implementations of wiid, wnid and wker using
anova.rq, but found that these implementations generated tests having empirical performances
that were virtually identical to those of their counterparts implemented using summary.rq.

We note that riid can only be applied to tests of joint hypotheses using anova.rq. We
also note that at present there exists no possibility of applying the rnid method to tests of joint
hypotheses within quantreg.

We see that the empirical sizes and size-corrected powers of Wald-type tests induced by the
proposed estimate of G0(α) are competitive with the alternative methods available. These results,
along with those reported above in this appendix, supply further evidence of the potential of our
method to generate tests with good size and power performance.
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Table 25: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 1
with N(0,1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 6.7 19.7 37.9 61.8 4.5 22.3 43.3 65.8 6.7 19.2 37.1 59.4
wiid 11.9 9.5 22.6 43 8.1 10.3 24.8 51.9 13 7.4 16.8 35.9
wnid 11.9 9.2 24.1 47.4 8.1 12.1 31.2 59.1 13 6.5 18.6 38.2
wker 1.3 9.1 28.8 56.3 0.5 12.8 34.9 64.8 1.2 10.2 28.2 54.3

riid (anova.rq) 3.7 12 31.5 57.7 3 11.9 34 63.5 4.8 8 22.7 49.2
bxy 3.3 10 26 54.1 2.1 13.2 32.9 62.2 3 10.8 26.2 51.3
bpwy 1.5 9.1 26.3 53.4 1.5 12.9 33.1 62.3 1.3 9.7 25.8 51.4
bmcmb 3.8 7.5 23.7 48.4 2.8 12.5 30.8 59.9 3.2 10.1 26 50.2
bwxy 4.7 9.3 26.3 53.2 2.8 13.7 33.1 62 4.3 9.3 25.7 51.2
bwild 8.7 6.9 24.3 47.7 8 11.5 27.9 55.5 9.6 9.7 24.8 48.7
n = 300
weg 5.7 26.5 68.4 94.1 4.7 29 72.7 95.5 5.4 30.6 68 92
wiid 8.7 17 57.7 92.7 6.9 17.2 63.2 95.4 8.8 19.6 59.2 91.2
wnid 8.7 19 64.4 95.4 6.9 20.3 68.7 96.8 8.8 21.6 65.2 94.7
wker 3.7 19.4 67.6 96.3 1.5 20.2 70.9 97.7 3.1 24.5 68.1 95.5

riid (anova.rq) 4.7 21.3 69.8 96.5 4.4 25 73.3 97.8 5.4 22.5 67.4 95.6
bxy 4 20.9 67.3 96.7 4.4 19.1 66.1 96.1 4.3 24.2 66.7 94.3
bpwy 3.7 20.3 67.5 96 4.3 18.8 64.4 95.8 3.5 23.3 66.5 94.2
bmcmb 5.8 20.8 67.7 96 6.5 20 65.3 96 5.9 23.4 63.4 94.4
bwxy 4.8 19.5 66.2 96.1 4.4 19.8 65.8 95.8 4.4 24.5 65.8 94.6
bwild 8.1 21.4 68.1 96.2 7.2 19.5 65.6 95.2 7.6 22 63.4 93.4
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Table 26: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 2
with N(0,1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 8.1 18.3 27.4 42.7 5 20.7 41.2 63 7.5 21.8 42.5 63.2
wiid 11.1 8 14.2 26.2 7.9 9.4 26 46.7 11.7 10.4 26.4 50.6
wnid 11.1 7.6 12.9 26.4 7.9 10.8 29 50.1 11.7 11.5 30 51.6
wker 1.3 11.1 20.5 35.6 0.6 8.7 25.8 48.3 1.5 13 35.6 62.4

riid (anova.rq) 4.1 7.9 15.9 29.6 4.2 11.7 27.1 48.7 5.2 10.7 30.9 54.4
bxy 3.6 7.6 15.6 29.7 2 9 23.8 45.2 3.1 12.7 33 59.6
bpwy 1.5 8.1 15.8 31.2 1.6 8.7 23.9 44.7 1.5 11.8 32 58
bmcmb 3.7 9.5 14.9 29.5 3.5 10.1 25.6 45 3.5 13.1 32.1 56
bwxy 5.1 8.4 15.3 30.2 3.3 9.3 26.1 46.9 4.9 12.1 32.6 57.8
bwild 8.8 8.4 14.2 30 7.9 9.5 22.1 42.6 8.3 12.1 30.8 55.1
n = 300
weg 6.2 21 55.4 81.5 3.4 34.9 75.7 94 5.4 33.8 71.6 92.1
wiid 8.4 14.8 46.5 81.4 7.3 21.9 67.4 93.2 8.1 24.3 62.2 91.4
wnid 8.4 18.7 56 84.3 7.3 24.2 73.3 95 8.1 25 69.6 94.3
wker 2.7 12.8 46.3 79.3 1.1 26.6 71.7 94.1 2.8 30.7 72.9 94.6

riid (anova.rq) 6.3 14.1 44.2 75.9 4.5 25.8 70.8 94.3 5.3 23.5 69.5 93.3
bxy 4.4 14.3 45.3 73.1 3.6 24.4 67.8 91.6 4 28.1 70 92.2
bpwy 3.7 14.2 46.8 75.9 2.9 25.7 67.1 91.6 3.8 27.3 68.8 92.3
bmcmb 6.3 12.9 43.8 73.8 5.1 23.7 66.3 90.6 5.7 26.5 65 90.9
bwxy 5.8 12.2 41.5 71.1 3.5 23.3 66.1 91.8 4.6 26.7 67.8 91.1
bwild 8.2 13.2 44.3 74.6 5.9 24.6 66.1 91.5 6.8 27.9 69 92.3
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Table 27: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 3
with N(0,1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7 16.9 25.8 37.5 4.3 25.5 38.7 57.8 7.2 24.8 47.1 65
wiid 10.2 6.3 11.8 22.7 8 7.7 17.5 32.9 11.3 10.9 24.1 47.3
wnid 10.2 6.3 12 23.5 8 9 20 36.6 11.3 10.9 27.6 47
wker 1.3 6.6 15 29.1 0.4 11.7 24.8 42.6 1.7 11.9 37.4 61.7

riid (anova.rq) 4 6.7 15.1 29.7 4.3 8.6 19.8 38.5 4.8 13.5 31.4 55.1
bxy 2.9 6.8 16.3 28.2 2.7 11.1 21.7 37.8 3.3 12.8 34.9 57.6
bpwy 1.3 7.4 14.5 28.5 2.2 9.5 19.6 36 1.9 12.9 36.5 59.9
bmcmb 3.8 5.6 14.6 23.6 3.2 11 20.1 36.1 3.8 11.4 31.2 52
bwxy 4.8 6.2 13.8 26.7 3.4 11.2 21.8 40 5.5 11.5 32.9 55.5
bwild 7.7 6.9 15.3 27.4 8.5 10 18.4 33.6 8.3 12.9 35.2 56
n = 300
weg 6.3 17 41.3 71.3 4.3 29.7 72.8 95.3 5.7 42.6 85.3 98
wiid 8.4 12.1 35.4 69.2 6.9 22.3 66.4 95.7 6.4 37.5 84 98.7
wnid 8.4 14.4 42 74 6.9 24.4 70.8 96.6 6.4 42 88.7 99.5
wker 2.7 8.4 32.5 68.6 1.3 24.5 71.2 96.9 2.7 45.4 91 99.6

riid (anova.rq) 4.7 10.3 36.8 72.3 5.2 22.9 71.4 96.6 4.4 38.2 87.1 98.7
bxy 4.6 9.5 31.9 64.7 3.7 23.6 67.6 94.3 4 38.4 86.4 98.6
bpwy 3.7 10 34.1 67.4 3.7 23.9 69.5 94.6 2.5 41.9 87.9 98.7
bmcmb 6 10.3 31.2 64.9 5.8 22.7 67.2 93.7 5.3 39.8 86.6 98.4
bwxy 4.9 10.2 34.1 66.3 3.9 24.8 69.6 94.8 4.2 38.7 85.6 98.7
bwild 8.1 9.6 31.2 66.9 7 20.9 64 91.8 7.3 38.7 86.5 98.7
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Table 28: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 4
with N(0,1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.7 19.8 28.9 40.5 4.3 22.4 43.3 66.4 7.8 22.9 40.8 60
wiid 12.9 6 10.7 18.5 7.2 13.7 30.6 56.3 12.1 8.1 18.5 36.5
wnid 12.9 5.8 10.4 22.7 7.2 14.7 33.4 57.5 12.1 8.8 21 41.2
wker 1.7 9.2 18.2 34.2 0.4 9.6 28 51 1.7 9.3 27.4 50.9

riid (anova.rq) 4.9 5.9 14.9 26.7 3.9 12 28.5 53.1 6.1 7.7 22.1 43.7
bxy 3.8 7.7 14.6 25.7 2.2 11.7 27.4 49.4 4.7 8.4 24.3 45.9
bpwy 1.6 7.2 14.6 27.4 2.1 11.1 26.5 50.5 2 10.4 27.9 50.8
bmcmb 4.2 7.4 13.9 26.7 3.4 10.8 27.5 49.6 4.3 10.9 26.6 44.7
bwxy 4.9 8.8 16.3 30.2 3 11.6 29.6 52.5 5.3 11 27.6 48.9
bwild 8.6 8.5 15.2 26.9 6.5 11.7 28.2 47.7 10.4 7.4 21.2 40
n = 300
weg 6.8 19.3 49.3 76.4 4.9 32.1 73.7 93.5 5.5 38.6 81.2 97.8
wiid 8.4 12.7 39.4 73.4 6.3 23.6 67.4 93.4 8.7 24.9 76.4 97.9
wnid 8.4 16.5 47.4 79.9 6.3 26.2 71.5 95.9 8.7 31.8 82.8 99
wker 3.3 13.4 42.6 76.1 1.2 24.8 69.6 95.5 2.2 30.2 85.2 99.1

riid (anova.rq) 5.7 12.1 45.2 79.8 4 26.4 71.4 95 5 30.6 83.4 98.9
bxy 4.4 14.3 42.1 73 3.8 23.9 65 91.8 4.8 26.4 79 98
bpwy 4 14.6 43 74.3 3.6 23.5 64.7 91.7 3.8 28.3 80.5 98.4
bmcmb 7.2 13.8 40 70 5.7 24 66.7 92.5 6.5 26.5 77.7 97.8
bwxy 5.3 14.1 43 73 4.3 24.1 65.6 91.6 5.3 26.1 79 98.4
bwild 9.3 14 40.5 71.5 7.9 22.5 63 91.2 7.3 24.5 76.3 97.9
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Table 29: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 5
with N(0,1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.2 17.9 29.7 45.9 4.7 21.7 41 64.6 8.2 19.5 41.6 64.6
wiid 12.3 6.1 11.8 23.9 8.7 8.2 21.3 46.2 11.1 9.2 22.6 48
wnid 12.3 5.7 15.2 27.9 8.7 8.9 25.6 51.2 11.1 9.1 26.9 54.2
wker 1.1 7 17 36.3 0.3 9.7 29.2 56.3 1.6 10.6 32.6 63.2

riid (anova.rq) 5.1 6.5 16.9 34.7 4.8 8.9 28.6 54.8 3.9 12.1 33.9 62.3
bxy 3.7 5.6 15.3 31.8 3.2 8.9 27.1 51.4 3.6 10.8 30.8 58.6
bpwy 1.5 6.7 15.4 35.5 2.3 8.9 27 52.9 1.8 12.4 33.4 61.7
bmcmb 3.9 6.4 14.9 30.9 3.8 8 22.7 48.5 3.5 10.3 31.6 58.3
bwxy 5.3 6.2 16.1 34 4.3 7.7 26.1 52.8 4.7 11.9 32.6 60.2
bwild 10.1 7 15.6 32 8.6 10 25.4 49.9 10 9.2 26.6 52.5
n = 300
weg 5 26.2 64 89.9 4.2 34.7 78.4 97 5.5 35.9 79.4 97.4
wiid 8.2 14.7 49.4 85.6 7.7 22.1 72.1 97.8 9.4 25.7 74.1 97.6
wnid 8.2 18.6 58.2 89.4 7.7 23.1 75.5 98.7 9.4 28.7 79 98.4
wker 2.9 18.2 61.4 91.4 0.9 23.6 75.7 98.2 2.9 33.1 83 99.1

riid (anova.rq) 4.1 21.6 60.3 92.8 4.3 27.6 77 97.7 5.2 29.2 81.1 98.6
bxy 3.9 16.7 55.6 87.9 4.3 23.3 71.6 96.6 4.3 29 79.2 98.4
bpwy 3 16.7 57.4 88.2 4.2 22.7 70.8 97 3.3 29.9 79.4 98.3
bmcmb 5.5 17.1 56.5 87.8 6.5 23.7 71.2 96.7 6.2 29.2 78.1 97.8
bwxy 4.7 16.8 57.5 87.5 4.8 24.2 72.6 97.3 5 29.6 79.2 98
bwild 7.3 17 56.5 88 7.8 20.8 68.2 96.2 8.3 29.9 78.5 97.9
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Table 30: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 6
with N(0,1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, c = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n = 100 α = 0.25 α = 0.5 α = 0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 9.1 18.5 38.5 61.5 4.5 21.4 44.9 72.2 7.8 14.9 29.6 50
wiid 14 7.8 20.8 42.4 10.5 9 24.1 51.4 12.2 6.8 15.1 35
wnid 14 9.4 22.6 44.6 10.5 10 27.4 57.7 12.2 5.8 13.8 29.5
wker 1.3 11.4 30.3 58.8 0.2 12.6 36.9 68.6 1.6 7.3 20.1 44.6

riid (anova.rq) 5.5 10.7 29.7 55.3 4.3 11.8 35.7 67.9 4.1 7.2 21 43.9
bxy 3.8 11 30.5 56.7 2.4 11.9 34.5 66 3.4 6.1 19.2 41.8
bpwy 2 11.2 28 53.7 1.8 12.9 38.8 68.3 1.5 6.6 17.3 38.7
bmcmb 4.2 10.1 26.7 51.4 3 12.7 35.1 66.5 3.6 6.9 17.2 37.6
bwxy 6 10 26.2 53.1 2.9 11.5 36.5 66.5 4.8 6.4 18.3 41.1
bwild 10.5 11.2 29.4 55.9 8.4 10.6 31.3 60.8 8.9 5.6 15.7 38
n = 300
weg 6.3 35.6 75.2 95.7 3.2 36.6 80.7 98.6 5.5 18.3 49.3 83.1
wiid 9.2 24.1 67.3 94.7 6.3 24.8 73.9 97.2 7.8 11.1 40.9 80.7
wnid 9.2 29.1 73.3 97.4 6.3 29.8 78.8 98.5 7.8 12.8 45.3 86.2
wker 2.9 36.6 81.8 98.9 0.8 30.8 80.4 98.9 3 13.4 48.9 89.3

riid (anova.rq) 5.7 28.4 77.5 97.8 4.6 27.6 77.1 99 4.7 11.2 47.4 88.4
bxy 4.1 31.4 76.3 97.2 3.6 28.7 76.8 98 3.9 11.1 44.4 85.2
bpwy 3.5 31.8 76.4 97.4 3.3 27.9 76.3 97.6 3 12.7 48 86.3
bmcmb 5.8 30.8 75.5 97.4 4.8 30.5 77.7 98.5 5 12.2 46.9 87.1
bwxy 4.5 31.1 75.4 97.3 3.3 29 77.5 98.1 4.7 11.9 44.9 85.5
bwild 7.6 29.4 74.2 97.3 6.6 25.9 73.1 97.3 7.8 11.3 43.5 84.3

F Additional Material on the Empirical Example
We present in this appendix further details regarding the empirical application considered in
Section 5 of our paper. Recall that we are concerned with estimating the distinct effects of
treatment for experimental subjects at each quantile in a grid of 300 evenly spaced points in
[.20, .80]. This is done in the context of the quantile-regression model

F−1
logT |X (α) = X⊤β(α), (59)

where α ∈ [.20, .80], where T denotes the duration of unemployment in weeks and where the
regressors contained in X include a constant term, an indicator for assignment to treatment and
various demographic or socioeconomic control variables listed in Koenker and Xiao (2002, p.
1603).
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We depart in this appendix from the general question of treatment-effect heterogeneity consid-
ered in Section 5 of the main text by focusing on the questions of whether the effects of treatment
by quantile differ significantly according to the age of the participants and also according to
whether participants have some expectation to be recalled to a previously held job, although not
to the extent of having a definite date of recall within 60 days of filing their applications for
unemployment insurance (UI) benefits (Corson et al., 1992, p. 9). We note in this connection
that of the 6384 participants in this experiment, 3460 (54%) were under the age of 35, while 753
(12%) indicated to the experimenters some expectation of being recalled to previous employment.
Participants in the latter category were assumed by the experimenters to be similar to claimants
with no stated expectation of returning to a previous job in terms of their assumed response to a
promised bonus payment upon securing new employment within the qualifying period. On the
other hand, UI claimants who indicated both an expectation of recall and a definite recall date
were disqualified from participation in the experiment as their stated confidence in returning to
work was assumed to make their hypothetical behavioral response to treatment systematically
different from UI claimants expressing less confidence in returning to full-time employment.

Figure 1 displays, in the context of the model given above in (59), estimated differences in
treatment effects between workers younger than 35 and those aged 35 and older at the time of the
experiment. These estimated differences in treatment effects are plotted for each quantile in a grid
of 300 points in [.20, .80]. The shaded area in Figure 1 indicates the union of 90% confidence
intervals for the estimated difference in treatment effects at each quantile. These confidence
intervals are computed using our proposed method with data-driven bandwidth given above in
(54) and where the pseudo-sample size m is given by (14) in the main text with k = 5. These
confidence intervals imply that workers younger than 35 tend to exit unemployment as a result of
the treatment significantly more quickly than workers 35 and older for nearly all quantiles in the
interval [.50, .80].

Estimated differences in treatment effects between workers with some expectation of being
recalled to previous employment and those with no such expectation are displayed in Figure 2 for
each quantile in a grid of 300 points in [.20, .80]. The shaded area in Figure 2, like that in Figure 1,
denotes the union of 90% confidence intervals for the estimated difference in treatment effects,
pointwise by quantile. These confidence intervals are computed in the sameway aswas donewhen
generating the shaded area appearing in Figure 1. The confidence intervals in Figure 2 imply that
the treatment has the effect of actually increasing unemployment durations for workers expecting
a recall to a previous job for nearly all quantiles in the interval [.43, .74]. All this suggests that
the cash bonus may not be as relevant as originally hoped for those claimants who indicated some
degree of confidence in the temporary nature of their current spell of unemployment. In other
words, this result suggests that the inclusion of these claimants in the experiment is as potentially
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problematic as the hypothetical inclusion of those excluded claimants who indicated both an
expectation of recall and a definite recall date.

In summary, we have used our proposed method of inference to show that the treatment
tends to cause participants having some expectation of being recalled to a previous job to exit
unemployment more slowly than those not expecting to be recalled. This result further illustrates
the utility, in terms of understanding behavioral responses to changes in unemployment insurance
rules, of accounting for heterogeneity in treatment effects via the introduction of simple interaction
terms in quantile-regression models.
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Figure 1: Pennsylvania reemployment bonus experiment: 6384 observations. Differences in
estimated treatment effects by quantile for workers younger than 35 and workers aged 35 and
older, α-quantile regressions, α ∈ [.20, .80]. The shaded area denotes the union of pointwise 90%
confidence intervals, computed according to our proposal with data-driven bandwidth and k = 5,
for each of 300 quantiles in [.20, .80]. Dotted vertical lines denote the .25-, .35-, .50-, .65- and
.75-quantiles.
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Figure 2: Pennsylvania reemployment bonus experiment: 6384 observations. Differences in
estimated treatment effects by quantile for workers expecting and not expecting to be recalled
to a previous job, α-quantile regressions, α ∈ [.20, .80]. The shaded area denotes the union
of pointwise 90% confidence intervals, computed according to our proposal with data-driven
bandwidth and k = 5, for each of 300 quantiles in [.20, .80]. Dotted vertical lines denote the .25-,
.35-, .50-, .65- and .75-quantiles.
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