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Abstract

Regression quantiles have asymptotic variances that depend on the conditional densities of
the response variable given regressors. This paper develops a new estimate of the asymptotic
variance of regression quantiles that leads any resulting Wald-type test or confidence region
to behave as well in large samples as its infeasible counterpart in which the true conditional
response densities are embedded. We give explicit guidance on implementing the new
variance estimator to control adaptively the size of any resulting Wald-type test. Monte Carlo
evidence indicates the potential of our approach to deliver powerful tests of heterogeneity of
quantile treatment effects in covariates with good size performance over different quantile
levels, data-generating processes and sample sizes. We also include an empirical example.
Supplementary material is available online.
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1 Introduction

Consider an independent and identically distributed (iid) sample (X, Y}),. . .,(X,, Y,), where each
Y; is scalar-valued, and where, for some fixed d, each X; is a d-dimensional regressor. We assume

that the conditional distribution of the ith response variable Y; given X; satisfies
Pr [Yi < XlTﬁ(a)|Xi] =a (D

almost surely (a.s.) for some fixed quantile @ € (0, 1), where B(a) € R? is unknown and X'
denotes the transpose of X;. The relation (1) specifies a linear @-quantile regression model.
Models of conditional quantiles, such as the model given above in (1), have taken on an important
role in the statistical sciences. They generally offer researchers the possibility of being able to
engage in a systematic analysis of the effects of a set of conditioning variables on all aspects of
the conditional distribution of a response variable. A notable characteristic of this approach is the
ability it gives researchers to model only the quantiles of interest to a given empirical study without
the need to construct an explicit model for the other regions of the response density. For example,
a researcher may by varying the quantile index @ examine the specific effects of regressors on
any point of the conditional distribution of the response variable. Thus the differential effects of
some medical intervention (X) on survival time (Y) can be analyzed separately for low-risk and
high-risk individuals by constructing estimates of the conditional quantile function of ¥ given X
for various quantiles. The monograph of Koenker (2005) and the volume edited by Koenker et al.
(2017) provide comprehensive reviews of quantile-regression methodology, along with illustrative
examples of its application in various disciplines.

There are several proposals available for quantile regression inference. Some of these propos-
als, such as certain methods involving resampling (He, 2017, contains a comprehensive review),
approaches based on the asymptotic behavior of regression rank scores (Gutenbrunner and Ju-

reckovd, 1992), direct methods (Zhou and Portnoy, 1996; Fan and Liu, 2016) or more recent
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Bayesian approaches (Yang and He, 2012; Feng et al., 2015; Yang et al., 2016) differ from Wald-
type methods by avoiding the need to estimate conditional density functions for the purpose of
asymptotic variance estimation of conditional quantile estimators. Wald-type procedures, how-
ever, do generally retain the attractive feature of computational simplicity, and perhaps for this
reason remain popular in empirical practice.

In this paper we develop a new estimator of the asymptotic covariance matrix of a given
regression quantile. The new estimator is explicitly intended to induce the Wald-type tests or
confidence regions in which it is embedded to behave as well in large samples as their empirically
infeasible counterparts in which the true, as opposed to estimated, conditional densities appear.
The asymptotic variance estimator proposed here induces the empirical size distortions of Wald-
type tests to vanish at the same rate enjoyed by the corresponding tests incorporating the actual
conditional density functions, i.e., the disparity between the actual and nominal sizes of these
tests vanishes at the adaptive rate.

There is of course a long history on estimation of the asymptotic variance of quantile regression
parameters and the corresponding Wald-type tests. Among existing procedures, two implementa-
tions that are particularly popular are those of Powell (1991) and Hendricks and Koenker (1992).
We show that the proposals of Powell (1991) and Hendricks and Koenker (1992) both induce
Wald-type tests whose empirical size distortions cannot vanish at the adaptive rates that become
possible when these tests incorporate the asymptotic variance estimator that we develop below.

The proposed estimator for the conditional density evaluated at the conditional quantile has
applications beyond the formulation of Wald-type tests with adaptive control of size. This
estimator can be used for counterfactual wage decompositions in a quantile regression setting
(Machado and Mata, 2005). It has been used for developing improved specification tests for
linear quantile regression (Escanciano and Goh, 2014). Semiparametrically efficient inference

in linear quantile regression requires, either explicitly or implicitly, an estimator of the so-called



efficient score, which involves the conditional density evaluated at the quantile (Newey and Powell,
1990; Komunjer and Vuong, 2010). Finally, estimates of conditional densities are also needed in
semiparametric extensions of the basic linear quantile regression model, e.g., Ma and He (2016)
and Feng and Zhu (2016). Further applications of our estimator such as these are of independent
interest.

Finally, we note that this paper is partly motivated by a recent contribution of Portnoy (2012)
to the effect that the first-order asymptotic normal approximation for regression quantiles is
associated with an error bound of order O, (n‘l/ 2(log n)*/ 2). This in turn implies, as we show
below, the benchmark O, (n‘l/ 2(logn)*/ 2)-rate at which size distortions for Wald-type tests
regarding quantile-regression parameters converge when the conditional response densities are
assumed to be known. An important point to note is that the error bound of nearly n~'/2-order
elucidated by Portnoy (2012) is smaller than the error bound of nearly n~!/*-order associated
with the classic Bahadur representation for regression quantiles. In particular, the larger error of

~1/4_order is in fact larger in magnitude than the estimation error associated with any set

nearly n
of reasonable estimates of the conditional response densities, including those proposed by Powell
(1991) and Hendricks and Koenker (1992). This would apparently suggest that the rate-adaptive
implementation of Wald-type tests proposed in this paper is at best of second-order importance.
The smaller error bound shown by Portnoy (2012) effectively allows one to consider the question
of optimally implementing Wald-type tests in this context as a methodological issue of first-order
importance.

The remainder of this paper proceeds as follows. The next section develops the asymptotic
properties of our proposed kernel estimator of the conditional response density evaluated at
the conditional quantile of interest. Section 3 analyzes the size distortions of tests of linear

restrictions of quantile coeflicients based on the asymptotic distribution of regression @-quantiles.

This section also discusses conditions for our Wald-type tests to exhibit size distortions that decay



at the adaptive rate in large samples. Section 4 presents the results of a series of simulation
experiments which illustrate the potential of our methods to deliver accurate and powerful tests,
and which are motivated from our empirical application, which in turn is discussed in Section 5.
An online supplement includes precise statements of the assumptions underlying our theoretical
results, proofs of those results, additional simulation evidence, details on implementation and

further discussion of the empirical example.

2 The New Estimator

Consider the a-quantile regression model given above in (1). For each quantile @ € (0, 1), the

regression a-quantile (Koenker and Bassett, 1978) is defined as
n
A _ ) YT
Bn(a) = arg Inin ;pa (Y- X;'b),

where p,(u) = u(a — 1{u < 0}).

For each i = 1,...,n, let fi(y) and F;(y) denote the conditional density and cumulative
distribution function (cdf), respectively, of ¥; given X;, evaluated at y. If one assumes that for
each i, Fi(y) is absolutely continuous, and that f;(y) is finite and bounded away from zero at
y = X' B(a), then under Assumption 1 as given in Appendix A of the supplementary material,

the regression a-quantile is asymptotically normal with
A A d
Vi (Bul@) - B@)) 5 N 0,V (@), @)
where V(@) = a(1 - a)G(;l(a)HG(;l(a/) (e.g., Koenker, 2005, Theorem 4.1), and where

Go(e) = E [fi (X B(@)) X: X[ | ; (3)
H=E[XX]. 4)



Standard Wald-type inferential procedures based on (2) naturally require the estimation of the
matrix Go(a), which in turn requires, at least implicitly, the estimation of the conditional density
functions f; (Xf,B(a)) i=1,...,n).

We propose an estimator of the conditional response densities f; (Xl.Tﬂ(a/)), estimates of
which in turn are used to specify a new estimator of the matrix G(«) appearing in the asymptotic
variance of the regression a-quantile. The new estimator of the conditional densities developed
here explicitly exploits the behavior of the fitted conditional U;-quantiles X." B (U;) over a range
of quantiles Uj,...,U, that are iid realizations from a uniform distribution on A = [aj,a2].
To motivate the new estimator, note the identity F;(y) = a; + /a 6:2 1 {y - Fl.‘l(a) > 0} da for
a; < Fi(y) < ap. This suggests using a smooth approximation of the indicator function, which
after differentiation leads one to the quantity (a> — ay) - i 'E [K (™! (y - F71(U)))| Xi], where
K(-) is a smoothing kernel satisfying the conditions of Assumption 2 in the supplementary
material and where U| X; ~ Unif|aj,a;], where a; < @ < a. This quantity should be a good
approximation of f;(y) as h — 0, where 2 > 0 is a scalar smoothing parameter. In order to avoid
numerical integration, we approximate the integral by a finite sum with m terms. Note that we
certainly could take m = co, but this would require numerical integration. In what follows, we
let both m and the scalar smoothing parameter 4 depend on the sample size n, with m — oo and
h— 0asn — oo.

The discussion above leads to the estimator of f; (Xl.T ﬁ(a)) given by

(X7 Bu(@) = 2= Sk (hiX? (B2 (U) - Bn(a>)) 5)
j=1 "

mh,,

for each i = 1,...,n. The estimators f;,- (Xl.T ﬁn(a)) given in (5) are in turn embedded in the

following estimator of the matrix Go(«) as given above in (3):
1 n
Gu(@) == 3" fu (X7 Bul@) X:X] (©)
nia
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We are now in a position to state the main result of this section. Define for a € A

D,s(e) = Vi | (B (U)) - B(U))) - (Bu(@) - B@))]. )
0'12< = _11/ /22 w?K(w)dw and ||K||, = \/ f_ 11/ /22 K%(w)dw. In addition, we adopt henceforth the

notation g®(X) to denote the kth-order derivative of any real-valued measurable function g(X).

Theorem 1. Under Assumptions 1-4 as given in Appendix A of the supplementary material, and

foreach a € A,

Gn(a) = GO(a') + Tlnm(a') + Tan(a') + T3nm(a') + an(a/), (8)

where

h2 <&
Tlnm(a) = 0-12( ' % Z fi(Z) (XzTﬂ(a,)) Xin'—r’
i=1

~log hy, 1 < .
Tan(@) = | = - K- = 3\ (X7 B@) XiX].
m i=1

a — d] — T | 1 T -
T3 () = nzmh%: ZIX ;%Dn,-(aﬂd“ (Exi (B (Uj)—ma))) XX,

In addition, T1,m(a) = O, (h,i), Toym(a) = O, (\llog h,;]/(mhm)), T3um(a) = O, (n_l/z) and

1 —logh
Run(@) = O, (— + —) + 0, (h; b2 ”’)

no n32pd mh,y,
=0p (Tlnm(a) + Tan(a') + T3nm(a'))

as n — oo,



The terms T, (@), Tonm(@) and T3y, (@) given in the statement of Theorem 1 are the leading
second-order terms in an asymptotic expansion in probability, for a given a € A, of G, () about

the estimand Go(a) . Consider

ay —

fi (X7 B(@) = h‘“ZK(hiX? (B(U;) - B(@)). ©)
m ]:1 m

m

which defines a natural, but empirically infeasible, kernel estimator of f; (X A B(a)) that essentially
relies on B(@) and B (U;), where j € {1,...,m}, being known. Then the term T',,,, (@) appearing
in the statement of Theorem 1 reflects the conditional asymptotic biases given X; of the estimators
fi (Xl.Tﬂ(a/)), defined above in (9). The magnitude of the term T5,,,(«), on the other hand, is

driven by the conditional variance given X; of f; (X" B(a)) about
(a - a) - E | 'K (1, XT (B(U) - B@))| Xi|

Lastly, the term T3,,,,(@) corresponds to the error involved in estimating B(«) with B(a).

3 Wald-Type Tests With Adaptive Control of Size
We consider the empirical sizes of Wald-type tests of hypotheses of the form
Hy: RB(a)—r =0, (10)

where R is a fully specified (J x d) matrix with rank J, r € R’ is fully specified and « is a fixed

quantile in A = [a,az] with 0 < a; < a; < 1. Define the following:

W, = W,(G,(2)), (11)
Wo = W(Go(a)), (12)



where for a generic positive definite matrix G we define W,(G) = (RG™'H,G'R™)~! and
W(G)=(RG'HG'R") ' withH, =n"' 3| X;X/.

Wald-type tests in this context are based on the asymptotic normality of regression quantiles; as
such, attention is naturally directed to the sampling behavior of asymptotically- X? statistics of the
form {n/[a(1 — @)} (RBu(@) — )T Wp(G,(a))(RB,() — 1), where G,(a) is a consistent estimator
of the matrix Go(a). The focus in this section is on the effect estimation of the matrix Gg(a)
exerts on the discrepancy between the empirical and nominal sizes of the associated Wald-type
test.

We address the question of whether a Wald-type test of Hy : RB(a) — r = 0 admits the
possibility of adaptive size control as n — oo. In particular, is it possible to implement the
estimator G,(a) given above in (6) in such a way as to make the discrepancy between the actual
size and nominal level of a Wald-type test of Hy vanish at the same rate as the infeasible test in
which the matrix Go(«) is actually known? That the answer to this question is positive can be
seen by considering the empirical size function of a nominal level-v Wald test of Hy. Let )(iT
denote the (1 — 7)-quantile of a X}—distribution, and let Z(a) ~ N(0,V(a)), where the covariance
matrix V() is as given above in (2). Then one can combine the asymptotic normality result in

(2) with Theorem 1 to deduce the following representation of the size function:

Pr [ﬁ (ﬁAn(cx)TRT - rT) W, (Rﬁn(a) - r) > )(iT

1 TpT
=Pr [mZ(a/) R W()RZ(Q’)

—log hy, 1
Anm aO _Anm aO
i Mn(@.0) % = Aann(@,0)

—0,(0) = Eum(0)], (13)

1

2 2

> -— | A n (l’,() +
XJ,T (1 ) m l( )

where A1m(a,0), Azum(,0) and Asz,p(a,0) are Op(1), ©,(0) converges to zero at the same rate



as the error committed by the first-order asymptotic approximation in (2), and where Z,,,(0) =
0p (h,%z + [log h’,_nl/(mhm)] 12 + n_l/z). Precise expressions for =,,,(0), Agum(a@,0) (k = 1,2,3)
and ©,(0) are given in (31)—(35) of the supplementary material.

Inspection of (13) indicates that should the matrix Go(a) be assumed or in fact be known by
the researcher, then the magnitude of the term ®,(0) indicates the rate of convergence of the size
distortion of the infeasible Wald-type test in which Go(«) is known, i.e., the adaptive rate of size
control as n — oo. It follows that the adaptive rate of size control is determined by the accuracy
of the first-order asymptotic normal approximation for v/n (ﬁn(a) - ﬁ(a)).

An important question in this connection is whether the adaptive rate of size control is so large
as to dominate the estimation error associated with any reasonable estimate of Gy(«); in this case
one might wonder if there is much point in concerning oneself with a size-optimal implementation
of a given estimator of Go(«). This concern is particularly relevant if the first-order asymptotic
normal approximation to \n (ﬁn(a) - ,B(a)) is of nearly n~'/*-order, as indicated by traditional
analyses of the Bahadur representation for regression quantiles (e.g., Jure¢kovd and Sen, 1996,
Theorem 4.7.1). On the other hand, Portnoy (2012, Theorem 5) has recently established that in
fact the error associated with the first-order normal approximation is of nearly n~'/2-order, which
is sufficiently small so as not to dominate strictly the estimation error committed by a typical
estimate of Go(«) involving local smoothing. It follows that at least under the conditions imposed
by Portnoy (2012, Theorem 5), the problem of constructing a size-optimal estimator of Go(a) by
choice of a smoothing parameter should be of primary concern in empirical practice.

We consider an implementation of the estimator Gn(a) given above in (6) that causes the
corresponding Wald-type test of Hy : RB(a) — r = 0 to exhibit adaptive size control as n — co.
The precise conditions on the bandwidth 4, and the grid size m are specified in Assumption 3 in
Appendix A of the supplementary material. These conditions suffice to make the size distortion

of the Wald-type test of Hy vanish at the adaptive rate as n — oo:
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Theorem 2. Suppose the validity of Assumptions 1-4 as given in Appendix A of the supplementary
material. Then the corresponding Wald-type test of Hy based on G, () exhibits adaptive size

control as n — oo.

The same conditions also cause the Wald-type confidence interval for a given linear combination
of components of B(«) to have a level error that vanishes at the rate enjoyed by the corresponding
intervals in which Gy(a) does not need to be estimated.

Practical recommendations on the implementation of bandwidth parameters and grid sizes
that satisfy the conditions of Theorem 2 are given in Section 4 below and also in Appendix D of
the supplementary material. In particular, Wald-type tests embedding our proposed estimator of
Gn(a) implemented with a fixed (i.e., non-random) bandwidth are exhibited in Section 4 below
and in Appendix E of the supplementary material. Appendix D of the supplementary material, on
the other hand, derives an empirically feasible data-driven bandwidth that induces corresponding
Wald-type tests to exhibit adaptive size control as n — oo.

Simulation evidence on the finite-sample performance of Wald-type tests implemented with
the data-driven bandwidth are presented in Appendix E of the supplementary material.

The following corollary is immediate from Theorem 2 and Portnoy (2012, Theorem 5):

Corollary 1. Suppose the validity of Assumptions 1-4 as given in Appendix A of the supplementary

material. Then the following hold as n — oo:

1. The size distortion of the Wald-type test of Hy : RB(a) — r = 0 involving én(a) is
0, (n‘l/z(log n)3/2); and

2. the level error of the Wald-type confidence interval involving Gn(a) for a linear combination

of the elements of B(a) is O, (n~!(log n)?).
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Theorem 2 and Corollary 1 jointly establish that in this context the adaptive rate of size control of
Wald-type tests is of nearly n~'/?-order, and that a Wald-type test constructed using the proposed
estimator G () given above in (6) can be implemented to exhibit this rate as n — oo.

Finally, Appendix C of the Supplementary material shows that the estimators of Go(«) pro-
posed by Powell (1991) and Hendricks and Koenker (1992) cannot induce Wald-type tests that

control size adaptively in large samples.

4 Numerical Evidence

We present in this section the results of a series of Monte Carlo simulations that are motivated
by the empirical question examined in Section 5. These simulations evaluate the performance
of Wald-type tests for testing the heterogeneity of quantile treatment effects (QTEs; see e.g.,
Doksum, 1974) in covariates. We naturally focus attention on the relative performance of Wald-
type tests incorporating our proposed estimator of Go(a). We compare the empirical size and
size-corrected power performance of our tests to those of ten alternative testing procedures
available in version 5.35 of the quantreg package (Koenker, 2018) for the R statistical computing
environment (R Core Team, 2016). The simulations presented here are all implemented in R;
in particular, we make use of the quantreg package to generate simulations for each of the
competing testing procedures that we considered. R code to implement the simulations presented
here is included in the supplementary material.

We consider the data-generating process ¥ = 1 + Zj:l X;+D+6,U)DX; + F ~1(U), where
{X; };‘zl are iid standard normal and independent of a treatment indicator D, which follows
a Bernoulli distribution with probability 1/2, where U is an independent U[0,1] and where
a € R denotes the parameter indexing the family of functions {d,(:) : a € R}. In this model

the QTE for a given setting of a, expressed as a function of a quantile of interest «, is given by
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OTE(a) =1+ ,(a)X;.

It follows that for a given quantile @, a test of the hypothesis Hy : d,(@) = O against
H; : 64(a@) # 0 corresponds to a test of the homogeneity of the @-QTE in X; against the
alternative of heterogeneity.

We set F in the simulations presented here to a standard normal distribution; results in which
F denotes a Student-¢ distribution with three degrees of freedom are given in Appendix E.3 of

the supplement. We consider the following specifications of the heterogeneity parameter d,(«):

Model 1: 6,(U) = a (pure location).

Model 2: §,(U) = a(1 + F~1(U)) (location-scale model).

Model 3: §,(U) = (1 = 5a)G~1(U) - G~ (), with G ~ Beta(1,4).

Model 4: §,(U) = 2aG~'(U), with G ~ Beta(0.5,0.5).

Model 5: 6,(U) = 2aG~'(U), with G ~ Beta(2,2).

Model 6: 6,(U) = (sin(2QaU) — sin2ra) — 2na)/2n.

Each of these models satisfies the null hypothesis of treatment homogeneity when a = 0. Under
the null, all models but Models 3 and 6 are pure location models. The alternative hypothesis
corresponds to a # 0. Size-corrected power performance is considered against alternatives cor-
responding to the settings a = 0.50, 1.00 and 1.50. The corresponding heterogeneity parameters
for Models 1-6 under @ = .50 are plotted in Figure 1 for the case where a = 1.50. It is clear that
our specifications of Models 1-6 imply QTEs with very different functional forms.

The simulations presented below consider the size and power performance over 1000 Monte
Carlo replications of nominal 5%-level tests for a-quantile regression parameters, where a €

{.25,.50,.75}. Average CPU times over 1000 replications required to implement each of the tests
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Figure 1: Heterogeneity parameters for Models 1-6 under a-QTE heterogeneity (a = 1.50),

where @ = 0.5
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examined here are also reported. We considered simulated samples of size n € {100,300}. The

techniques used to compute the tests considered are as follows:

* weg: Wald-type tests incorporating our proposed estimator G (), where « is the quantile
of interest. The proposed estimator G,() was implemented using the Epanechnikov kernel

with m quantiles uniformly distributed over the range [a,a;] = [.01,,99], with

5

K 1
m=||—— (14)
(logn)s
and k = 5. The bandwidth considered is given by
] 1/5
hm:c( "g’") (15)
m

where ¢ = 1.5. The choices of m and £, are motivated from the theoretical results presented
earlier in Section 3. The choice of m in (14) in particular coincides with the lower bound
on the rate of divergence of m as a function of n in our asymptotic results. Appendix E.1
in the supplement contains extensive simulation results in which we vary the constants
k and c. It is shown there that the choice of k is not as important in terms of finite-
sample test performance as the choice of ¢. Our experience with several data-generating
processes, including the ones above, suggest that the choice ¢ = 1.5 performs very well. We
nevertheless develop in Appendix D of the supplement a data-driven method for choosing
the bandwidth constant ¢ for a given value of m, which is similarly shown in Appendix E.2

to induce good test performance.
* riid: Rank tests assuming a location-shift model with iid errors (Koenker, 1994).

* rnid: Rank tests assuming a potentially heteroskedastic location-scale-shift model (Koenker

and Machado, 1999).
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* wiid: Wald-type tests assuming a location-shift model with iid errors, with scalar sparsity

estimate computed as in Koenker and Bassett (1978).

* wnid: Wald-type tests assuming independent but not identically distributed errors incorpo-
rating the difference-quotient estimator denoted by G,If K(a@) in (38) of the supplement and

implemented using the Hall and Sheather (1988) rule-of-thumb bandwidth.

* wker: Wald-type tests assuming independent but not identically distributed errors in-
corporating the kernel estimator denoted by G,f (@) in (36) of the supplement, where
G,f (@) was implemented using a uniform kernel supported on [—1,1] and the bandwidth
6P = @71 (.50 + hl1S) — @1 (.50 — hf'S), where hf'S is the Hall and Sheather (1988)
rule-of-thumb bandwidth.

* bxy: Bootstrap tests based on the (x, y)-pair method.

* bpwy: Bootstrap tests based on the Parzen et al. (1994) method of resampling the sub-

gradient condition.

* bmcmb: Bootstrap tests based on the “MCMB-A” variant of the Markov chain marginal
bootstrap method of He and Hu (2002), described in Kocherginsky et al. (2005). This
variant of the method of He and Hu (2002), in common with the riid and wiid methods

described above, assumes an underlying location-shift model with iid errors.

* bwxy: Bootstrap tests based on the generalized bootstrap of Bose and Chatterjee (2003)

with unit exponential weights.
* bwild: Bootstrap tests based on the wild bootstrap method proposed by Feng et al. (2011).

The Wald-type tests computed using the wiid, wnid and wker methods were all implemented

using the default bandwidth setting in the quantreg package (Koenker, 2018), namely the Hall
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and Sheather (1988) rule-of-thumb-bandwidth appropriate for inference regarding a population
quantile. In addition, the bootstrap tests were all implemented with the default setting of 200
bootstrap resamples.

Each of wiid, wnid, wker, bxy, bpwy, bmcmb, bwxy and bwild was implemented by direct
computation of the corresponding test statistic using the corresponding standard error returned
by the summary.rq feature of quantreg. On the other hand, the rank-based procedures riid
and rnid both involved direct inversion of the corresponding confidence interval obtained from
the summary.rq feature.

The corresponding simulation results are displayed in Tables 1-6. These results include
average CPU times in seconds over 1000 replications taken to compute each test statistic. These
average timings correspond to simulations under the null (i.e., the setting @ = 0) when the quantile
of interest is given by @ = 0.5. Average timings for simulations in which a # 0 or @ # 0.5 are
virtually identical.

We also examined in unreported work implementations of wiid, wnid, wker and riid
available from the anova.rq feature of quantreg, but the resulting tests were found to exhibit
empirical rejection probabilities that were virtually identical to those of the corresponding imple-
mentations of these tests using summary.rq. We also noticed that anova.rq has a noticeable
tendency to run more slowly than summary.rq for wiid, wnid and wker, and more quickly than
summary.rq for riid.

We see that the empirical size of the proposed method is accurate even with samples of sizes
as small as n = 100, and is often more accurate than alternative methods, including resampling
methods. We also see that the proposed Wald test has good size-corrected power across all six
models, three quantiles and two sample sizes for relatively small deviations from the null, i.e.
when the constant a is small. It seems clear that an analytical comparison of the asymptotic

local relative efficiencies of the different tests considered here with that of the asymptotically
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uniformly most powerful test (Choi et al., 1996) would be interesting, although such an analysis
seems beyond the scope of this paper. We note in passing that the conditional density estimator
embedded in our method of inference can be instrumental in estimating the efficient score (Newey

and Powell, 1990) and thus in developing asymptotically optimal inference for quantile regression.
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Table 1: Empirical rejection percentages (size and size-corrected powers) and average execu-
tion time, Model 1. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a=0.25 a=0.5 a=0.75 CPU time (@ = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 5.6 16 31.6 52 45 245 56 813 5.1 218 43.7 68 0.0118
wiid 9.1 10 222 395 73 155 45.7 759 82 125 31.1 56.3 0.0025
wnid 8.1 8.3 18.7 379 68 175 51 80 74 122 33.1 59.9 0.0021
wker 1.3 132 315 537 03 17 51.2 80.8 19 177 41.8 69.5 0.0015
riid 79 86 214 394 86 177 46.5 769 75 153 355 61.5 0.0049
rnid 59 74 19 377 65 175 46.7 76.5 5.1 152 34.7 61.3 0.0156

bxy 3.1 9.6 23.6 447 29 167 49.8 80 32 148 37 65.7 0.0212
bpwy 1.2 97 23.7 443 24 171 494 804 1.6 175 41.1 69.6 0.0229

bmcmb 33 88 232 433 3.7 16 48.9 792 34 16.6 39.7 66.7 0.0137

bwxy 4.1 9.3 229 44.5 3 16 48.4 799 44 137 36 64.6 0.0218
bwild 69 109 24 462 72 141 427 76.1 62 162 37 65.4 0.0235
n =300

weg 54 321 79.8 917 32 40 84.5 98.1 4.1 36.7 85.4 98 0.0453
wiid 79 254 74.2 98.1 3.7 336 84.3 98.5 6 30.5 84.5 99.6 0.0026
wnid 82 262 76.1 98.6 39 349 86.4 986 59 325 84.7 99.3 0.0035
wker 3 28.4 79.5 99.3 13 345 85.9 98.7 2 343 87 99.7 0.0017
riid 7.7 27 75.8 97.6 5 31.4 80.5 98.1 56 317 81.6 98.8 0.0193
rnid 6.6 265 74.7 976 47 314 80.4 98 4.7 31 82.3 98.6 0.0311

bxy 44 294 79.2 983 25 341 84.4 98.4 3 32.7 85.5 99.4 0.0948
bpwy 34 289 78.8 98.7 22 344 84.9 984 23 345 85.9 99.3 0.0991

bmcmb 59 269 719 984 3.7 337 82.4 983 3.8 325 84.6 99.2 0.0369
bwxy 49 292 79.1 98.8 2.7 32 82.4 984 3.1 315 83.9 99.2 0.1002
bwild 7.1 29 79.1 98.7 48 323 82 983 49 319 85.7 99.6 0.1018
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Table 2: Empirical rejection percentages (size and size-corrected powers) and average execu-
tion time, Model 2. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a=0.25 a=0.5 a=0.75 CPU time (@ = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 57 154 31.3 505 59 206 46.5 69.6 64 222 48.8 67.5 0.0108
wiid 84 102 20.5 389 89 127 34.5 62.7 9 15.7 39.9 63.1 0.0022
wnid 74 13 21.8 402 9.1 126 37.2 653 8.6 145 42.1 64.4 0.002
wker L5 8 219 399 1.1 125 36.5 632 1.7 113 37.7 61 0.0014
riid 77 19 20.2 367 87 111 31.7 55.1 82 147 37.6 60.1 0.0047
rnid 58 15 20.2 36 72 114 31.1 54.1 6 14 359 57.1 0.0142
bxy 34 179 20.3 376 34 126 36.2 60.3 4.1 146 39.3 62.1 0.021
bpwy 1.8 7.1 20.8 402 29 128 37.1 62.7 25 127 40 62.6 0.0225
bmcmb 34 8 20.5 36,7 41 127 36.2 60.1 4.6 153 39.2 61 0.0131
bwxy 4.5 8.3 20.6 379 42 132 37.1 602 52 135 38.7 61.5 0.0216
bwild 74 13 18.7 354 84 129 35.1 57 73 141 38.5 59.2 0.0229
n =300
weg 4.1 24 64.5 88.1 32 41 83.9 97.7 49 425 85.4 97.3 0.0445
wiid 55 207 58.8 88.4 5 322 81.3 98.5 8 34 83.4 98.3 0.0025
wnid 59 19.6 60.1 88.6 48 356 84.6 985 84 36 86.5 98.9 0.0034
wker 23 184 57 86 1 359 82.2 979 23 36 85.7 98.7 0.0016
riid 6 17.9 55 839 54 318 71.7 96.5 7.5 356 82 97.3 0.0193
rnid 46 173 533 83.1 51 307 76.9 962 6.8 338 80.9 96.8 0.0311
bxy 26 207 58.8 842 37 327 79.9 969 3.7 384 84.6 98 0.0945
bpwy 24 181 553 83.7 3 32.7 79.1 97 3 38.5 84.7 98.4 0.0997
bmcmb 43 183 53.1 827 44 312 78.4 97 5 379 84.2 974 0.0369
bwxy 26 178 53.8 818 3.6 315 78.6 96.7 4 36.1 82.8 97.3 0.1003
bwild 5.1 19.1 55.8 84.1 5 30.7 78.9 964 6.1 36.1 84.6 98.5 0.1024
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Table 3: Empirical rejection percentages (size and size-corrected powers) and average execu-
tion time, Model 3. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a=0.25 a=0.5 a=0.75 CPU time (@ = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 59 125 24.3 437 48 213 432 63.8 5 28.3 57.6 79.4 0.0109
wiid 9.7 6.1 14.5 264 1.5 11 28.5 533 7.7 161 44.9 71.8 0.0023
wnid 79 84 19 36.8 6.7 11 31.9 56.8 72 182 474 72.1 0.002
wker 1.4 8.1 19.7 392 07 125 334 58 1.4 189 52.6 78.1 0.0014
riid 75 6.5 15.7 326 73 94 26.7 474 8 16.9 439 68.2 0.0048
rnid 53 67 16.6 322 65 93 27.8 456 55 173 45.4 68.3 0.0145

bxy 24 83 19.1 379 28 123 323 55.7 3 19.3 49.2 75.2 0.021
bpwy 1.2 8.1 20.3 382 24 116 31.8 542 1.5 187 50.2 75.7 0.0228

bmcmb 26 15 18.5 345 36 116 31.8 547 3.1 18.1 47.1 73 0.0133

bwxy 3.1 8.5 20.2 376 35 107 30.9 542 39 189 49.5 74.3 0.0215
bwild 63 7.7 18.5 357 7.6 10 27.7 50.2 7 17.1 47.2 73.6 0.0235
n =300

weg 49 183 53 83.1 43 296 75.8 964 6.1 44 88.9 98.4 0.044
wiid 6.6 125 46.4 813 69 244 74 963 69 41.1 91.1 99.5 0.0025
wnid 6.8 147 52.7 84.1 58 287 78.2 973 1.7 414 92 99.7 0.0035
wker 33 154 52.7 845 16 282 76.7 96.2 32 40 90.4 99.7 0.0017
riid 5.8 15.6 49.7 822 6.4 26 72.1 95 73 383 87.3 98.9 0.0193
rnid 5 15 48.1 80.5 6 25.4 70.4 944 64 379 86.5 99 0.0308

bxy 37 16.1 50.3 833 35 273 74.7 95.6 3.8 41.1 89.9 99.6 0.0946
bpwy 31 156 52 83.7 3 28.2 75.4 959 2.8 385 89.8 99.2 0.0993

bmcmb 47 148 49.7 81 4.7 287 76.5 96 5.1 408 90.5 99.4 0.0367
bwxy 37 149 51 828 37 285 75.7 96 42 399 90 99.6 0.1001
bwild 6.3 139 48.7 819 59 253 733 95.7 6.8 378 88.9 99.5 0.1021
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Table 4: Empirical rejection percentages (size and size-corrected powers) and average execu-
tion time, Model 4. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a=0.25 a=0.5 a=0.75 CPU time (@ = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 6.5 142 27 453 47 231 52.6 732 62 224 49.3 74.6 0.0115
wiid 9.8 6 16 304 75 142 41.1 68.6 9.8 13 36.8 66.9 0.0025
wnid 85 63 15.6 322 78 14 42.8 69 82 159 43.8 71.8 0.0021
wker 1.4 117 245 432 1.1 127 43 669 1.7 162 45.1 732 0.0015
riid 77 14 17.8 316 74 153 40.3 63.1 79 144 41 67.2 0.0049
rnid 54 82 18.8 345 63 138 39.5 62.1 55 159 41.7 68.4 0.0154
bxy 32 91 19.6 378 3.6 146 425 653 3.1 176 46.3 72.6 0.021
bpwy 1.5 85 20.7 38 27 138 40.6 642 1.1 171 473 74.9 0.0234
bmcmb 44 6.7 17.2 333 4.1 14 412 642 32 173 45.9 714 0.0136
bwxy 44 89 20.2 377 39 15 429 662 43 177 47 725 0.0216
bwild 74 92 20.7 373 6.7 13.6 40 643 7.8 153 41.5 68.7 0.0233
n =300
weg 49 249 59 85 39 365 81.5 97.3 5 45.4 87 98.5 0.0438
wiid 6.5 145 48.1 815 69 287 79.6 97.7 59 40.1 88.3 99.2 0.0025
wnid 73 17.6 533 843 72 282 79.6 976 59 429 90.3 99.4 0.0034
wker 35 233 59.9 87.1 21 289 78.6 976 23 41.1 88.9 98.8 0.0016
riid 72 174 49.2 81.6 8 26.7 76.5 96 56 404 86.6 98.2 0.0191
rnid 6.1 175 50.8 819 68 256 76.1 95.5 48 41 86 98.1 0.0306
bxy 45 18.6 522 825 38 278 71.6 964 33 408 87.6 98.3 0.0937
bpwy 4 18 55 845 44 289 712 96.5 23 422 87.9 98.5 0.0992
bmcmb 5.6 17 50.8 815 57 288 78.2 96.5 4.6 41.1 87.4 98.1 0.0367
bwxy 45 182 52.5 825 48 281 76.7 962 33 435 88.6 98.4 0.0993
bwild 6.6 179 53.1 829 65 259 75.7 96 5 41.5 88.3 98.7 0.1017
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Table 5: Empirical rejection percentages (size and size-corrected powers) and average execu-
tion time, Model 5. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a=0.25 a=0.5 a=0.75 CPU time (@ = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 58 173 34.4 528 47 199 40 626 6.7 175 39.8 64.9 0.0109
wiid 85 109 22.7 421 72 115 27.7 556 9.6 113 28.9 54.6 0.0023
wnid 82 10.1 255 46.1 6.7 11 325 595 82 107 31 574 0.002
wker 1.1 131 304 543 0.7 123 34 60.5 1.5 128 359 65.2 0.0014
riid 73 111 25.7 459 8.1 9.4 272 51.8 84 11 29.5 58.8 0.0049
rnid 53 112 26.1 45.8 7 10.7 27.3 519 62 117 28.9 56.8 0.0145

bxy 27 114 27.1 494 25 119 32.7 587 33 124 333 62.7 0.021
bpwy 1.2 121 28.8 507 26 125 33.8 60.3 2 12.1 34 64 0.0231

bmcmb 29 108 27.6 475 37 113 31.8 595 35 117 32.8 59.4 0.0134

bwxy 42 113 27.7 488 3.6 113 324 586 44 118 32.7 61.8 0.0215
bwild 68 124 26.9 47.2 7 9.7 28.6 539 74 105 31.8 61.2 0.0231
n =300

weg 54 266 71.2 949 4.1 346 78.2 96.3 4.8 40 84.1 97.6 0.0456
wiid 72 24 66.6 946 6.6 259 73.1 965 6.6 33.6 83.5 99.3 0.0027
wnid 69 245 68.4 956 63 29 76.7 97.5 7 37.4 86.6 99.3 0.0036
wker 27 265 72.1 96.6 1.7 304 713 97.8 2.6 383 87.9 99.4 0.0017
riid 6.4 203 63.8 91.7 59 259 72.7 955 69 333 82.5 98.5 0.0193
rnid 54 222 66.5 929 55 267 733 955 57 341 83.8 98.6 0.0318

bxy 3.6 247 70.3 955 3.8 294 75.4 97.4 4 34.3 84.9 99 0.0944
bpwy 35 23 68.2 95 36 286 75.9 97.1 2.7 377 85.8 99.2 0.0997

bmcmb 49 24 68.6 953 5 28.1 75.5 969 4.6 362 85.4 99.3 0.0373
bwxy 4 24.4 69.7 957 41 292 75.7 97.1 4.1 35 85.2 99.1 0.1
bwild 6.4 23.1 69.1 95.7 6 28.1 74.7 97.1 57 353 85.1 99.1 0.1026
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Table 6: Empirical rejection percentages (size and size-corrected powers) and average execu-
tion time, Model 6. 1000 Monte Carlo replications; procedure “weg” implemented with fixed

bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a=0.25 a=0.5 a=0.75 CPU time (@ = .50)

Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 52 245 49.4 74 36 215 59.2 884 56 128 30.2 54.9 0.0109
wiid 9.7 122 31.5 574 72 13.6 44.1 80.4 10 6.7 18.7 40 0.0023
wnid 73 163 39 666 59 163 524 86.7 8.1 7.8 21.8 43.7 0.002
wker 1.3 202 474 75.8 0.8 163 535 892 22 89 26.2 52.1 0.0014
riid 8.4 15 36.8 623 75 147 46.5 805 78 5.7 19.8 41.2 0.0049
rnid 6.7 13.1 35 60.1 5.5 15 46.8 828 56 62 20.8 43.7 0.0145
bxy 27 176 41.4 709 24 16.7 52.5 869 3.1 8.7 25.1 50.4 0.0209
bpwy 1.5 177 42.7 71.8 19 169 51.1 872 1.7 8 22.5 48.7 0.0228
bmcmb 31 158 40.3 69.1 34 158 51.8 8.7 36 86 23.7 50.7 0.0133
bwxy 39 177 41.7 715 29 175 52.7 873 42 8 232 494 0.0214
bwild 69 162 40.2 70 6.7 14 46 83 73 13 21.8 46.2 0.0231
n =300
weg 5 46.8 86.4 98 52 322 79.9 984 42 21 61.8 93.2 0.044
wiid 6.4 397 87.4 992 83 259 76.7 979 65 139 54.3 91.3 0.0024
wnid 64 428 89.3 99.7 8.1 267 78.4 989 6.5 16.6 60.6 94.2 0.0034
wker 32 436 91 99.7 24 315 83.4 99 2.6 16 60.5 94.5 0.0016
riid 69 393 86.5 99 75 252 71.8 97 6.4 15.1 56.7 92 0.0194
rnid 6.1 397 86.1 99 69 278 76.3 976 53 152 55.7 92 0.031
bxy 32 438 89.3 994 44 303 80.1 984 3.1 161 59.3 93.5 0.0945
bpwy 32 425 88.1 994 42 294 80.9 985 3.1 163 58.1 93.2 0.0997
bmcmb 52 408 88.3 994 63 283 78.6 985 47 152 58.3 933 0.0368
bwxy 46 3938 87.7 99.5 5 28.8 79.4 984 35 165 58.5 93.7 0.0999
bwild 57 397 87.7 995 6.7 292 80.4 98.7 6.1 142 56.8 93.1 0.1025
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The simulations presented here, along with further simulations reported in the supplementary
material, indicate the potential of Wald-type tests based on our proposed method to deliver good
size accuracy and reasonable power across a range of quantiles and data-generating processes.
These simulations also support the theoretical results presented earlier in Section 2 inasmuch as
the size accuracy of the test tends to outperform those of the other Wald-type tests considered

over the three different quantiles and six data-generating processes considered in our simulations.

S Empirical Example

We consider the reemployment bonus experiments conducted in Pennsylvania by the United States
Department of Labor between July 1988 and October 1989 (Corson et al., 1992). This experiment
involved the randomized assignment of new claimants for unemployment insurance (UI) benefits
into one of several treatment groups or a control group. Claimants assigned to the control group
were handled according to the usual procedures of the unemployment insurance system, while
claimants assigned to treatment were awarded cash bonuses if they were able to demonstrate
full-time reemployment within a specified qualifying period.

The corresponding data were previously analyzed using quantile-regression methods by
Koenker and Bilias (2001) and Koenker and Xiao (2002); Koenker and Bilias (2001) also dis-
cuss older literature evaluating similar experiments. We follow Koenker and Xiao (2002) by
focusing solely on a single treatment group, which combined with the control group yields a
sample of size n = 6384. The corresponding dataset is publicly available and can be down-
loaded from http://www.econ.uiuc.edu/~roger/research/inference/Penn46.ascii.
Claimants for unemployment benefits that were assigned to this treatment were offered a bonus
equal to six times the usual weekly benefit if they secured full-time employment within 12 weeks.

Because approximately 20% of the subjects were reemployed within one week and another 20%
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were not reemployed within a 26-week follow-up window, Koenker and Xiao (2002) assume a
quantile-regression specification of the form FlgéTl y@) =X TB(a), where a € [.20,.80], where
T denotes the duration of unemployment in weeks and where the regressors contained in X in-
clude a constant term, an indicator for assignment to treatment and the fourteen demographic or
socioeconomic control variables listed in Koenker and Xiao (2002, p. 1603).

We depart from the specification of Koenker and Xiao (2002) by including interactions of
the treatment indicator with each of the control variables used by these authors. We also include
interactions of the indicator for gender with indicators for race, Hispanic ethnicity and number
of dependents. We consider, for a given quantile in the interval [.20,.80], the hypothesis that the
treatment interaction terms in X are jointly insignificant, i.e., that the effect of treatment at a given
quantile in [.20, .80] does not vary with any of the control variables included in X. Appendix F of
the supplementary material presents some additional evidence specific to the question of whether
the effect of treatment in this context varies by age or by participants’ stated expectation of being
recalled to a previously held job.

Figure 2 reports p-values for the hypothesis of covariate homogeneity in treatment over each
quantile in a grid of 300 points in [.20,.80]. Our test is implemented using our proposed method
with the data-driven bandwidth with k = 5 discussed in detail in Appendix D of the supplement.
We also compare the p-values from tests implemented using our method with the corresponding
p-values from the alternative testing methods considered in the simulations reported above. In
particular, the wiid, wnid, wker, bxy, bpwy, bmcmb, bwxy and bwild methods were implemented
by direct computation of the corresponding Wald-type statistic using the estimated asymptotic
covariance matrix generated by the summary . rq feature of version 5.35 of the quantreg package
(Koenker, 2018) for the R statistical computing environment (R Core Team, 2016). The riid
method, on the other hand, was implemented by direct invocation of the anova.rq feature of

quantreg.
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One can see from Figure 2 that our proposed procedure implies significant covariate-heterogeneity

in quantile treatment effects at the .10-level over nearly all quantiles between .43 and .74. Unre-
ported results indicate that the joint significance observed at these quantiles is driven largely by the
significance of two covariates, namely the interaction between treatment and an indicator variable
for being younger than 35 years of age, and the interaction between treatment and an indicator for
whether a given participant expected to be recalled to previous employment. Additional results
reported in Appendix F of the supplement reveal significant differences in quantile treatment
effects between participants younger than 35 and those aged 35 and older for nearly all quantiles
between .50 and .80. In particular, the corresponding participants aged 35 and older are shown to
exit unemployment significantly more slowly than those younger than 35.

Significant differences in quantile treatment effects between participants expecting recall to
a previous job and those not expecting recall are also shown in Appendix F to exist for nearly
all quantiles between .43 and .74. This last result is potentially important in evaluating the cost-
effectiveness of the program given the experiment’s exclusion of all claimants for unemployment
insurance for whom inclusion in the treatment group was deemed not to provide a sufficient
encouragement “to search for work more diligently and to accept suitable employment more
rapidly than would be the case otherwise” (Corson et al., 1992, p. 10). The experimenters
specifically excluded from the study all claimants who indicated a definite expectation of being
recalled to a previous employer on a specific date within 60 days of filing their applications
for UI benefits. These claimants were deemed to be so secure in their expectation of future
full-time employment that any bonus paid to them upon resuming full-time employment would
be interpreted as a windfall. Included in the experiment, however, were those claimants who
indicated some expectation of being recalled to a previous job, although with no definite date
of recall. The experimenters deemed claimants in this category to be similar to claimants with

no stated expectation of returning to a previous job in terms of their assumed response to a
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promised bonus payment upon resuming full-time employment within the qualifying period. The
results presented in Appendix F of the supplement indicate that UI claimants who indicated some
expectation of being recalled, although not to the extent of having a specific date of recall, in fact
differ in their responses to treatment than those claimants who indicated no expectation of recall
whatsoever.

Figure 2 also shows that the other testing methods considered varied in the extent to which
the hypothesis of covariate-homogeneity in the treatment effect was rejected over quantiles in the
interval [.20, .80]. In particular, none of the additional inference methods considered was seen to
imply the same range of quantiles corresponding to covariate heterogeneity in the corresponding
quantile treatment effects that was revealed by our method. Forexample, wiid yielded significance
at all quantiles greater than .53. We note in addition that some p-values for tests implemented
using wker in fact exceed .98 for most quantiles above .78, which suggests that the corresponding
regression-quantile covariance matrices were not well estimated by wker.

In view of the rejection, reported by Koenker and Xiao (2002), of the null of a linear location-
shift model for quantiles on the interval [.25,.75], we interpret the wiid method’s conclusion of
significance at all quantiles greater than .53 as misleading, and likely driven by misspecification of
the assumed location-shift model. As such, inferences resulting from other methods that assume
a linear location-shift model (i.e., riid and bmcmb) are similarly likely to be misleading.

In summary, we have used our proposed method of inference to show that the effect of treatment
on the duration of employment tends to vary with individual characteristics of the experimental
subjects only over a relatively narrow range of quantiles between .43 and .74. These ranges of
quantiles corresponding to covariate heterogeneity in the effect of treatment is not matched by
any of the other testing methods considered. It follows that our proposed method permits an
understanding of the effectiveness of a particular unemployment relief policy distinct from that

produced by other methods of inference.
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Figure 2: Pennsylvania reemployment bonus experiment: 6384 observations. p-values for point-
wise tests of covariate-homogeneity in treatment effect, @-quantile regressions, a € [.20,.80].

The dotted horizontal line denotes significance at the 10% level.

weg, k=5, data—driven bandwidth wiid

© |
o
<
o
o [ N Ll AT S| AL R
° T T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8
whnid wker
© | :
o :
< :
o N
o ] :
i T T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8

riid bxy

bmemb

0.8
1

0.4
1

0.0
L




SUPPLEMENTARY MATERIAL

Appendices: Appendix A contains precise statements of the assumptions used in Theorems 1
and 2; Appendix B contains proofs of Theorems 1 and 2; Appendix C shows that the
estimators of Go(a) proposed by Powell (1991) and Hendricks and Koenker (1992) cannot
induce Wald-type tests that control size adaptively in large samples; Appendix D describes
a data-driven, as opposed to a fixed, bandwidth to implement our proposed estimate of
Go(a); Appendix E reports further simulation evidence on the finite-sample performance
of our proposed method relative to its competitors, while Appendix F contains further

investigation of the empirical example presented in Section 5. (qdf60supp.pdf)

R programs: We also include R code that enables reproduction of the simulation results in Sec-
tion 4 and Appendix E and of the empirical analyses reported in Section 5 and Appendix F.
(qdf60code.zip)
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A Assumptions

Precise statements of the regularity conditions underlying the theorems presented in the main

body of our paper are collected here. Henceforth, (X|,Y;),...,(X,,Y,) is am iid sample of size n.
Let ||-|| denote the Euclidean norm, let X denote the common support of X1,. .., X}, and define
B={x"B@): xeX,acA}. (1)

Assumption 1. The following conditions hold: (1) Uniformly in @ € A, where A = [a,,a;] for
0<ar<a<1,Gy)=n" T f (X7 B(@) XiX] = Go(a) (1+0, (n712)) asn — oo; (2)

E [IXill*] < oo; 2)
and (3) Go(a) and H = E [Xin.T] are positive definite.
Assumption 2. The smoothing kernel K(-) satisfies the following conditions: (1) K(-) is nonneg-

ative, symmetric and bounded with support [-1/2,1/2], with ||K||; = \/f_ll//zz K2(w)dw € (0,00);

(2) /1/2 Kw)dw =1 and ‘/_11//22 ka(w)dw‘ < oo for k < 4; and (3) K(-) is three-times con-

-1/2
tinuously differentiable on R, where the derivatives K(w) satisfy /_ 11//22 |K(k)(w)| dw < o for

k=123.

Assumption 3. For m — oo as n — o at a rate no slower than [n/(logn)''>1/4 the bandwidth
sequence {hy} satisfies (1) hy, — 0; (2) mh}, nh}, — oo; and (3) mh,, | [(log m)>y/log h,‘nl] — oo,

Assumption 4. For each eachi = 1,...,n: (1) The conditional moment Pr [Y,- < XZ.T,B(oz)| X,-] =
a holds almost surely for « € [ay,az]. (2) The conditional distribution function F; is absolutely
continuous, with corresponding density f; such that f; (-) is uniformly continuous on the closure
of B. In addition, there exists an interval [—b, b] with b € (0, c0) such that B C [-b, b], where
B is as given above in (1). (3) The densities fi(y) are five-times differentiable for all y € B

Wwith maxi<i<p SUPyeg ‘fi(k)(y)‘ < ooa.s. for each k = 0,1,...,5. (4) There exist constants
O<li<h<oosuchthatO <l < fi(y) <lh <ooforallye 8.

Assumption 5. The first component of the design vector X; is an intercept, i.e., X; = [ 1 XZ.T 1"
for some (d — 1)-variate X;. Let BV (a) = (d/da) B(a), i.e., the gradient vector, and let ()
denote the conditional characteristic function given X; of the random variable

X (1 {Yi <X (ﬁ(oz) + n_l/zﬂ(l)(a/))} - a) .

For any € > 0, there exists 11 € (0,1) such that inf ;> [17, &i(t) < n" uniformly in a € [€,1 — €.

2



Remark 1. The requirement of part 1 of Assumption 1 that G,(«) converge uniformly in @ € A to
Go(a) is used only in the proof of Theorem 3 appearing below in Appendix C. Theorems 1 and 2,
whose proofs appear below in Appendix B only involve a requirement of pointwise convergence,
i.e., that G,(@) converge to Go(a) for any a € A.

Remark 2. Although we do not make this explicit in the conditions of Assumption 3, our results
do allow for stochastic bandwidths. This is certainly relevant to the discussion presented below
in Appendix D in which a data-driven bandwidth is derived.

Remark 3. Part 1 of Assumption 4 requires the correct specification of the quantile regression
model on [ay,a;]. This condition may restrict the choice of ay and a, in practice. Specification
tests developed in e.g., Escanciano and Goh (2014) and related papers can be used to check this
condition. On the other hand, unreported simulations do suggest that Wald tests incorporating
the proposed estimator of Go(a) have a certain degree of robustness in finite samples to incorrect
specification of the underlying quantile regression model on a given interval of quantiles [a;,a].
An extension of the analysis presented in this paper to the case where our estimator of Go(a)
is computed using a shrinking neighborhood [ai,,az,] of the quantile level a, on which the
quantile-regression specification holds, may be desirable.

Remark 4. Assumption 5 is taken from Portnoy (2012) and can be shown to hold if the distribution
of X; is appropriately smooth and bounded. In addition, the condition of part 2 of Assumption 4
, which implies that || X;|| is uniformly bounded on its support, is required in the derivation of
both the precise form of the quantity To,,,(a) appearing in the statement of Theorem 1 of our
paper and of the error rate appearing in the statement of Portnoy (2012, Theorem 5). Relaxation

of this condition will not affect the O, (\/ log !/ (mhm)) convergence rate of Ty, () stated in

Theorem 1 of our paper, but will likely increase the power of log n that appears in the conclusion
of Portnoy (2012, Theorem 5); see in this connection the discussion in Portnoy (2012, p. 1720).

B Proofs of Theorems 1 and 2

B.1 A useful lemma

We begin by introducing a useful lemma on uniform-in-bandwidth rates of convergence of kernel-
type estimators that is instrumental in proving our main results. Recall that {U j};t , denotes a

random sample of size m, distributed as U ~ Uni fa;,as] for [a;,az] € (0,1). Foragiven x € R4,



let Fy(-) and f;(-) denote the cdf and Lebesgue density of the random variable x " 8 (U). Define

m T U —
s = D [
j=1

where ¢(-) is either (a2 — a1) K(-), (a2 — a1) KV(-) or (a2 — a) KP(-). Let X c R? denote the
support of x, and let wp. 1 stand for with probability one.

Lemma 1. Under Assumptions 2—4, for ¢ > 0,and 0 < hg < 1,, the following holds wp. 1:

m|(8m w,X -E m w, X
lim sup sup sup sup \/_|g 4 () [g 2 )” = A(c) < oo, 3)

m—oo  clogm/m<h<hy x€X weR V| log h|
for ¢(-) equal to (ar — a1) K(+), (az — a1) KV () or (az — a1) KP(-).
Proof. We provide the proof for ¢(-) = (a» — a1) K(-); the proof for ¢(-) = (az — a;) KV(:) or

() = (a2 — a1) K@(.) is the same. In particular, Lemma 1 follows from an application of the
main result of Mason and Swanepoel (2011, p. 73) applied to the class of functions

x"Bu)—w
h

We proceed to verify their conditions. Since K is bounded, Mason and Swanepoel (2011,
Condition (G.i)) is trivially satisfied. To verify Mason and Swanepoel (2011, Condition (G.ii))

Q={(u,h)—>K( ):xeX,weR}.

note that
E[Kz xTB(U) - w ]: L [" e (EE o),
h ay — aj a h
1 xTB(a) qg-w
- [k (1) ada
ay —daip xTB(ar) h
h (xTBlaz)-w)/h
= / K2 (t) fe(w + ht)dt
az = ar J(x7Bla)-w)/h
h
< IK 1152,
a —a
where || K|, = /_ 11//22 K2%(w)dw < oo by Assumption 2 and where [ is as given in Assumption 4
above. Hence, Mason and Swanepoel (2011, Condition (G.ii)) holds. The class
T _
Go = {MHK(W) ' eX,weR,he(O,l]}

4



is a VC class, which is also pointwise measurable, see e.g. Nolan and Pollard (1987). It follows
that Mason and Swanepoel (2011, Conditions (F.i) and (F.ii)) hold. This completes the proof. 0O

B.2 Proof of Theorem 1
Begin by noting that

Gt = 13 fu (X7 Bute) XX
i=1

_@-a iK( L7 [V (B (1)) - B (U))) - Vi (Bu(@) ~ B(@)
1 j=1

nmhy, 4 N
i (B (U)) - B(@)]) Xix]

m—a O\ | 1 . .
- nzmhm1 . ZK (Exi (B (U;) = B(e)) + \/ﬁhmxi Dnj(a)) X X;,

where A R
D) = Vi | (B (U)) - B(U))) - (Bul@) - B@)) |
By a Taylor expansion we accordingly have

én<a)=a,jn;halzz[ (—XT )—ﬂ(a)))

i=1 j=1

XD @K (X (8 (1) - )|
o XTD (@) K (X7 (B (1) = Bl || xix,
where .
1B (U;) - B@)) - (B(U;) - B@))| < N
foreachj =1,...,m.
Then
Gale) = = > L (XT Bl) XiX]

i=1



h-d . T | N 1 1 T T
i, 2% ;%D”"(“)K(l) (E"i (8 (Uj)—ﬁ(a))) X:X;

i=1

@ Z x|y %Dnj(a/)Dnj(a)TK(z) (iXiT B (U)) - ,3_(&))) Xi - XX,

nmh3 —
j=1

“4)

where f; (Xl.T B(a@)) denotes the empirically infeasible estimator of f; (XZ.T,B(a/)) defined in 9 of
our paper.

In what follows, the three terms appearing in the representation of G,(a) given in (4) are
analyzed in sequence. For convenience, we suppress the dependence on n of the quantile grid
size m. We show that the following holds as n — oo for a fixed quantile @ € A:

1.

i=1

—log h,,
+op(h,§1+,/%), 5)

where T',,,(«@) and T,,,,(@) are as given above in the statement of Theorem 1, and where
Tium(@) = O, (h2,) and Taym(@) = O, (\/— log h,,/ (mhm)). It follows that the remainder
term in (5) is of strictly smaller order than T, (@) + Topm(@).

2. We also show that

a S 1
Toum(@) = hzl X' Z—nDn,(a)K(l) (h—X,T (B (U)) - ﬂ(a))) X X'

m =1 j=1 m

1

=0, (—n), (6)
3. and finally that

a=-ain e Ny k@ (L xT (5w - 8 XX
nmh;ﬂ i Xi ZnDn](a')Dn](a’) K (thl (ﬁ(Uj) ﬁ(a/)) X, Xle-

=1 J:l



Ly ) (7)

n 51,4
n2hy,,

Combining (4) with (5)—(7) yields the desired conclusion; namely, that

Gn(a/) = % Z ﬁ (Xl—rﬁ(a/)) Xin'T + Tlnm(a) + Tan(a) + Tan(a) + an(a/)
i=1
= GO(Q) + Tlnm(a) + Tan(a) + T3nm(a) + an((l),

where R,,,,(«@) denotes the sum of the remainder term in (5) and the expression in (7). In particular,

—log h,, 1 1
R,p(a) = Op (hi + £ ) + Op - 3 ) = 0p (T1um(@) + Topm(@) + Topm(@)) .

mhy, noopapt
Claim 1. The following holds:

%Z [ (X7 B(@) - £ (X] B(a))] XiX]
i=1

—log hyy,
= Tlnm(a') + T2nm(a') +0p (hgn + %) s

where
Tlnm(a/) = Op (h;i)

—logh
Topp(a@) = Op( mi m).
m

We begin by establishing the rates of convergence of T',,,(«) and T5,,,(@). In particular, we have

and

hZ 1/2
Tl < 2 [ w2Koodw - max |1 (X7 @)+ an 2

1/2

=0, (1) (8)



where use has been made of the conditions of Assumptions 1, 2 and 4 that E [||X,-||4] < 00,
1/2
-1/2
In addition, we have

w2K(w)dw < co and max<j<, SUPyeg fi(z) (y)‘ < oo a.s., where 8 is as given above in (1).

—logh 1<
ITam(@)] < " |IK1 - max sup | £ - = D IXll
mhyy, I<i<nyex; n =

_ 0,,( ~log ©)

mh,,

via a similar argument.
Next, define the quantities

a — aj
Iy,

Vi) = f (X7 B(a)) - E [ K (hiX"T B =B (“)))‘ Xi]

and
ay) —dap

B = £ |2k (X7 ) - pa| | x| - 5 (x7 i)

m

foreachi € {1,...,n}. We have

1 & . 1 & 1 & 1 &
- F(XB@) XX == f(XB@) XX += ) Vi(@)X; X += > Bz (a)X;X].
Z < ) Z A ) X, Z ; Z ;

(10)
Recall that X c R denotes the common support of X1, X», X3,.... In addition, let f,(-) denote
the density of the conditional distribution of ¥; given X; = x, and let

o™ B(@) = )™ Y K (13 xT (B (U)) - B(@)))
=1

Recall the condition of Assumption 4 that for some finite b > 0, 8 C [—b, b]. The following holds
almost surely:

1 n
H; le Vi(@)XiX," = Toum(@)




,/loghl Z,/ (XTB(e) XX

mhy i (X7 (@) - E [ f; (X B(@)| Xi]
log h,;l f (XiTﬂ(a))
mhy ()= E [AO)]
. —||IK
: i‘é;‘?yf[ui’b log I, NS 1l

1
\/k’g i f (X7 B(@) 11X (n

By Giné et al. (2004, p. 185) we have for any z € R that

— IK]l2

) Vmh,, f;()’) -E [f;()’)] _
lim Pr |(=log hy,) | —2— — K| <z| = —e™%).
Pt (=log hun) ( —log Ay, ilel)g yes[l_lg,b] fe(y) 1k ) = Z] P
It follows that
mhy, f;c(y) -E [f;c(y)]

" .sup sup = [IK]l2
log hp! xeX ye[-bp] VA©O)

Combining (12) with (11), the condltlon of Assumption 4 that f;(-) is uniformly bounded on 8
and the condition that n~! 2y X I? = = Op(1) (implied by (2) of Assumption 1) yields the result

= 0,(1). (12)

that
1 & —log Ay,
- D Vi @)XiX] - Tym(a)| = op( mlglm ) (13)
i=1
Next, consider that for each i € {1,...,n} and sufficiently small A, that
- 1
E [“2 Uk (—Xf BW) - ,B(a)))' X,-]
Ao ho
ar 1
- [k (—XT (Blu) - ﬁ(a») du
a hm \h
X Blaz) q 1
= / —K (— (6 — XiTﬂ(a’))) fi (4) dt;
X ) hm \ P

9



12

= K (w) f; (Xl.T,B’(a/) + hmwi) dw;
~1)2

. - 1/2 | . h’%l ) - 1/2 ) | .

- 5 (47 B@) [ LKl + 52 (X7 ) / ) d

oy G) (T V2 3
+ ?fl (X;' B(@)) ‘[1/2 w? K (w;) dw; + 0, (hm)
/2

12 wK(w)dw| <

1
asn — oo, where we have exploited the conditions of Assumptions 2 and 4 that ‘ /_

co and max <j<p SUPyeg ‘f,~(4) (y)‘ < oo a.s.
It follows that

1 &
; Zl Bﬁ(a)XiXiT - Tlnm(a')
l:

n

1
n Z fi(3) (X; Be)) XX

PR
= —m/ w3 K(w)dw -
6 Joip2 i=1

+0p (h?n)

[ Gy LS 2 3
< F[uzw K(w)dwgl%‘ﬁ (X; ﬂ(a))‘-Z;HXiH +op (1)

= 0, (1) 0,(1)
=0, (hi) (14)

where we have additionally exploited the conditions of Assumptions 2 and 4 that f_ 11/ /22 w3 K(w)dw <

oo and max|<i<p SUPyeg ‘fl@ (y)‘ < o0 a.s.
The desired conclusion follows from the combination of (8)—(10) and (13)—(14).

Claim 2. The following holds:

1
Tom(a@) =0, —
2 ( ) p (\/ﬁ)
By Lemma 1 applied with ¢(-) = (a2 — a;) KD(.),
mh3,
a—ap) -
(a2 ) logh;l1

10



o fear-so-of

h2

) K<”( Lx; QB(U)—ﬁ(a)))'

X,-]
j=1

< 00, (15)

a.s. as n — oo,

Let R, and R_ denote the regions {t € [X]B(ar), X B(az)] : KW ((t — X[ B(@)) /1) >
0} and {t € [X]B(a1), X B(a2)] : KV ((t — X B(@)) /hm) < O}, respectively. Then using
integration by parts and applying the assumption that K(-) has bounded support, we have for a
sufficiently small 4,, that

a —
h2

@ 1
= / 2 K“)( X?(ﬂ(u)—ﬂ(a)))
ap m
/XTﬁ(az) 1
CJIxTpany M

_ ;_:1 ( / & (i (1 - X,Tﬁ(a») £ (1) di; - /R K (i (1 - X7 ,B(a))) 7Y (n)dm)

E

e, ( 1

X0 - )| x4

du

fi (t) dt;

K(l) (hi (ti _ XlTﬂ(Cl)))

__ / K (wi) £ (X B(@) + hywi) dw; + / K (w) £ (X B(@) + hpwi) dw;
{kM>0}

{kM<0}
_ M yT _
= (X[ B(a)) (/{K<'><0} K(w)dw /{K<'>>0} K(w)dw)
2 (vT _ 2
+ hnf7 (X B(a)) (/{[(<1)<0} wK(w)dw ./{K(1>>0} wK(w)dw | + 0, (hm)

< fi(l) (XiTﬁ(a/))‘ |/

{kM<0}

/ wK(w)dw — / wK(w)dw
{kM<0} {kM>0}

fl.(3 ) (y)‘ < oo a.s. (Assumption 4) has also been used.

K(w)dw — '/{K(1)>0} K(w)dw

T Iy ‘ £ (x7 ﬂ(a))‘ - +0, (h}n) , (16)

where the assumption that max; sup,.g

11



Combine (15) and (16) to deduce that

@ —ar e (L gt )
max pave) 2 K (th,- (B(U)) ﬂ(a)))‘
< max | 22— 4 Y K(l) (inT (8 (U;) —,B(oz)))'—E 612—2 K(l)( ! bel (,B(U)—,B(cy)))“Xi]

+ max E
l I’I’l

K‘”( X7 (BU) - ,B(a)))H ]

- — 108 M (x )
=W\ T x| (X7 Bla) /{KM} K(w)dw /{K%O} K(w)dw| + 0, ()

= max sup ‘f(l) X, ﬂ(a/))‘

+0,
aeA

-1
og hy, nl.
mh3

m

/ K(w)dw —/ K(w)dw
{kM<0} {kM>0}
(17)

2
where the assumptions that max; sup,cg f; (v) < coa.s. (Assumption4), f 12 (K(l)(w)) dw < o

(Assumption 2) and max; sup,.g
Therefore

fi( ) (y)‘ < oo (Assumption 4) have been used.

max |23 Lp, @)k (hiX? (B(U)) —B(a)))

K(l)(ﬁXiT( B(U;) - ﬂ(a)))' [%maXHDW(Q)”}

< mlf‘lx ‘fi(l) (XiTﬁ(a/))’ . ‘/

—log hy,
(x0<0) K(w)dw — /{K<1>>0} K(w)dw|+ O, i + hm))
1
()
1
o)

12



where we have used (17), the condition of Assumption 4 that max; SUp e ‘ fim (y)‘ < oo and the
result (e.g., Angrist et al., 2006, Theorem 3) that

max IDnj(@)| < 2525 H\/E (ﬁ”(a) —ﬁ(a))“
—0,(1).

Applying (18) we have

a2_“1anL. (D(iT A )AT
n%mh%;;)g (\/ﬁDnj(a/))K X (B(U)) - B@) | XiX;
< max |~ “12 Dyj(e)K (,}X? (B (U] ﬂ(a)) ZHX I
=0y (%)Op(l)

1
()

where we have also applied condition (2) of Assumption 1. The desired conclusion follows.

Claim 3: The following holds:

m

—a; v 1 1 . 2
LoAN X7 2 =Duf(@Dyy(@) K (=X (B (U)) - B@)) || X; - XiX]

3
nmhy, = =1

1+1
\n n%hfn.

We first show that

_ 1
a;mh?IZXT Z D@Dy (@) K (=X (B (U)) = B(@) | | Xi - XiX]
m = "

13



-0, (l) _ (19)

n

In this connection, Lemma 1 applied with ¢(-) = (a2 — a1) K®)(-) yields

5
(ap —ay) - hm 1(:::;11
: ml? > K@ (hixj (B (U;) - ﬂ(a))) -E [h13 K? ( hl X" (BU) - ,B(a)))'X 0o
m j=1 m m
(20)

2
almost surely, where we have exploited the assumption that /_ 11/ /22 ( K (2)(w)) dw < co. In addition,
by a derivation similar to that leading to (16) above, we have for all @ € A that

dE==

wp. 1. Combine (20) and (21) to deduce (19), to wit:

21

Lk® ( X7 (BU) - ﬁ(a)))H

a — a ZZ “XTD,j(@)Dyj(@) XiK® (hl X7 (8(U) —,B(a))) XX

nmh, par
<= -maxnvnj(a)u

K‘”( (B (U)) - B(@)) )‘ Z 11

o ) o)
o[l

where we have applied the assumption that max; sup g

fi(z) (y)‘ < oo (Assumption 4) and the
condition (2) of Assumption 1.
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Next, we show that

n m
a) —d
224N Dy

m =1 j=1

1

|K®||, < oo, the result

K (X7 (B () - @) - K2 (X7 (B(0)) - Bl | nxar

In particular, (22) follows directly from the mean value theorem,

max | (6 (U)) - B@) - (B (U) - B@)] = 0, (%)

(e.g., Angrist et al., 2006, Theorem 3) and condition (2) of Assumption 1.
The desired conclusion follows from (19) and (22).

B.3 Proof of Theorem 2

Begin by considering the following expansion of W, about W, (Go(a)), which is a consequence
of Theorem 1 appearing in the main body of our paper:

Wn = Wn(GO(Q)) + Ulnm(a) + Uan(a') + U3nm(a), (23)
where W, is as given in (11) of our paper, and where we have
W,(Go(@) = Wo + 0 173 (24)

by Assumption 1, where W is as given above in (12) of our paper. In addition, we have by the
binomial inverse theorem,

Utan(@) = Wo - |R (G5 (@)T1m(@)G5' (@) H G5 (@)

+Ggl(a)Hcgl(a)Tlnm(a)G(;l(a)) RT] W,

+ smaller-order terms

= U},m(a) + smaller-order terms; (25)

Usan@) = Wo - |R (G5 (@)T2un(@)G5 (@ H G5 (@)

15



and

It follows that

and that

+G; (0)H G5 (@) Tum(@)G;! (a)) RT] A

+ smaller-order terms

= Uy,m(@) + smaller-order terms;

Usan(@) = Wo - |R (G5 (@)T2un(@)G5 (@ H G5 (@)

+G5 ' (@H GF (@T3m(@)Gy (@) RT| - Wo

+ smaller-order terms

= Uspm(@) + smaller-order terms.

Usin(@) = Op (Tun(@)) = 0, (1)

U2nm(a/) = Op (T2nm(a/)) = Op( _’l/;)lf hm)

Uspm(a) = 0p (Tonm(@)) = Op (%) .

Combining (23)—(27) we find that for each @ € A,

Wn = WO + Ulnm(a) + l_]2nm(a) + U3nm(a')
+ smaller-order terms.

(26)

27)

(28)

Next, consider thatif Hy : RB(a)—r = 0is true, then the first-order asymptotic approximation
for RB,(«) has the form

Vi (RBu(@) 1) = R(Z(@) + S1,),

(29)

where Z(a) ~ N(0,V(a)) where V() is as given above in (2) of our paper, and Sy, = 0,(1) as

n — o0,

We can now consider the empirical size of a nominal level- Wald test of Hy : RB(a)—r =0
incorporating the proposed estimator G, (@) of Go(«). In particular, the representation appearing

16



in (13) of our paper follows from the representations in (28) and (29). Let Sy,, denote the

op (h,a + +log hy,,' /(mh,,) + n_l/z) remainder term in (28). Then

o (hm)

= Pr _ a’(ln— a,) (ﬁ;(a)RT - rT) Wn (Rﬁn(a') - r) > X%,T Hy

= Pr | ——— [(Z(@) + $1)T RT (Wo + Diun(@) + Dau(@) + Typ(@))
| a(1 — )

"R (Z(Cl) + Sln) + (Z(a') + Sln)T RTSanR (Z(CZ) + Sln)] > Xir]

= Pr

(Z(a/) + Sln)T RT (WO + Ulnm(a/) + Uan(a') + U3nm(a))
la(1 - a)

- R(Z(@) +512) > X7 — Eam(0)]

=Pr| s (Z(@)TRTWoRZ () + Z() "R WoRS 1, + ST RTWoRZ () + S| RTWoRS),,
a -
—logh 1
2 2 —_
+hmA1nm(a" O) + mhm mAan(a’ O) + %Aﬁ’mm(a’ O)) > Xiz ™~ :'nm(o)
-1 2
= Pr a(l = a)Z(a)TRTWO RZ(e) > xj,
1 —log h 1 _
_oz(l _ (l) (hriAlnm(a’, 0) + mim mAan(a" O) + %Afmm(a” O)) - ®n(o) - :'nm(o) s
(30)
where
Em(0) = (Z(a) + Sln)TRTSanR(Z(a') +S1n) (3D

In addition, the quantities Ajy;,(a,0), Azpm(a,0) and A3, (@, 0) appearing in (30) are given by

1 -
Atpm(@,0) = h—Q(Z(CY) +812) R Upym(@)R(Z() + S1), (32)

m

Aann@0) = \| T (2(@) + $1) R Do) R(Z(@) + 51, 33)
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and

A3nm(a'v 0) = \/E(Z(a') + Sln)TRTUBnm(a)R(Z(a) + Sln), (34)
while !
0,(0) = ——— (2Z(a) " RTWoRS 1, + S] RTWoRS ,) . (35)
a(l —a) "

This establishes the representation of the size function given in (13) of our paper.

The remainder of Theorem 2 follows straightforwardly from the expression for the empirical
size function given by my (4,,) in (30) and the observation that if Go(a) does not need to be
estimated, the infeasible level-v Wald test of Hy : RB(a) — r = 0 has an empirical size function
given by

n

Pr [m (ﬁn(a)TRT - ”T) W,(Go) (RBn(a) - ") > X7+

g

=Pr [ﬁZ(a)TRTWORZ(a) > Xjr— @n(O)] .

C Analysis of Wald-type Tests Implemented Using the Esti-
mators of Powell (1991) and Hendricks and Koenker (1992)

We show in this appendix that the well-known estimators of Gy(«@) proposed by Powell (1991) and
Hendricks and Koenker (1992) for the express purpose of quantile-regression inference cannot
actually be used to generate Wald-type tests that control size adaptively in large samples. For
i=1,...,nand « a fixed quantile in A, let

n

= K

denote the kernel-based estimator of Go(a) proposed by Powell (1991), where in this case K(-)
is taken to denote a smoothing kernel satisfying the conditions of Assumption 2 above, while the
bandwidth 4, is assumed to satisfy the constraints /4, — 0 and nhfl — ocoasn — oo,

In addition, let

Y - X, .Bn(a)

X X' (36)

i

AR (@) = 2y (37)

XT (Bu @+ ) = By e = )

18



denote the difference-quotient estimator of f; (Xl.T,B(a/)) suggested by Hendricks and Koenker
(1992). Let

A IR
Gl (@)= = > fK(@)X,X] (38)
n i=1

denote the corresponding estimator of Go(a).

We establish that optimal implementations of (A}fl) (a) or @,’;’ K(a) from the point of view
of maximizing the rate of decay of the empirical size distortion of a Wald-type test of Hy :
RpB(a) —r = 0 are still sub-optimal in the sense that the resulting tests will exhibit size distortions

that decay at rates that are strictly slower than the O, (n_l/ 2(log n)*/ 2) adaptive rate. Similarly, a

Wald-type confidence interval for a given linear combination of S(«) constructed using (A}f (@) or
GK(a) will not exhibit a level error that decays at the O, (n~!(logn)*) adaptive rate.

Theorem 3. Suppose the validity of Assumptions 1, 4 and 5 as given in Appendix A above. Let
{h,} denote a bandwidth sequence in which h, — 0 and nhf, — oo as n — oo, We have the
following as n — oo:

1. Suppose K(-) is a smoothing kernel satisfying the conditions of Assumption 2. Then the
magnitude of the empirical size distortion of a Wald-type test of Hy : RB(a) —r = 0 in
which the estimator (A},I; (@) is embedded can be no smaller than n~*/>-order. This rate
of convergence is attained when h, o< n='. In addition, the level error of a Wald-type
confidence interval for a linear combination of the elements of B(«) that incorporates G,f (@)
can be no smaller than n=*>-order, a magnitude attained when h,, o n=/°

2. The magnitude of the empirical size distortion of a test of Hy : RB(a) — r = 0 based on
(2) as given in the main body of the paper and in which the estimator (A}f K(@) is embedded
can be no smaller than n=*'"-order. This rate of convergence is attained when h, o< n=/".
In addition, the level error of a Wald-type confidence interval for a linear combination

of the elements of B(«) that incorporates (A}HHK (@) can be no smaller than n=*'"-order, a
magnitude attained when hy, o< n='/7.
Proof. The proof appears below in Appendix C.1. O

C.1 Proof of Theorem 3

We consider the two conclusions of Theorem 3 in sequence.
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First conclusion of Theorem 3:

By Taylor expansion, the following holds for each a € A:
G, (a)

= niz Z K (hL (Yi - X,Tﬁ(a))) Xin-T ZK(I) ( U(a)) XTB,,(a')X X

(39
where |Uj(@) - (Y; = X B())| < [n"1/2XT B, (a)| for eachi = 1,...,n and where
B.(@) = Vi (Bu(@) - B(a)
Consider the first term in (39). Standard calculations show that for each a € ‘A,
Z K|(— (¥ - X[ B(@)| XiX]” = Go(a) + 0, [ 12 + L. (40)
nh, ! Pyt vVnh,
Consider the second term in (39). In particular, for Uj(a) = ¥; — X, B(«) we have
KW ( Ui(e )) XB,(o)X: X
n2 h2 Z
ZK(')( Ui )) X B, ()X, X]
n2 h2
LS (ko (L m (1 T T
+ Z KD —Ta)| - KV [ —Ui(0) || X] B ()X, X]. 41)
l’l2hn i=1 hn hn
Standard calculations show that
ZK”(Uwﬁ [iKmGu@Hq:% L) 42)
nh2 — h2 hy, NS
while
1 1
6] . .
bt
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< i (7 B@)|

/ K(w)dw —/ K(w)dw‘
{KM <0} {KM>0}

+ hy, fl.(z) (XiTﬂ(a))‘ : ‘/ wK(w)dw — / wK(w)dw
(k<0 {K(M>0)

+0, (hz) 43)

as n — oo. Combining (42) with (43) we find that

nh? Z K(l)( U(a))
n

n =1

< miax ‘]j(l) (X,-Tﬁ(a’))‘ '

/ K(w)dw —/ K(w)dw'
{KM<0} {K>0}

+ hn) . (44)

+0p

1
\nh}
The asymptotic normality result given in (2) of our paper implies that B,(a) = O,(1) for every
a € A. Combine this result with (44) above to deduce that the following holds for each a € A:

Z k® ( U; (a/)) X B, ()X, X

n2h2
< —= max X1 - Bu(@)] - — Z KW (iUi(m)
v N a2 hy
—O(L)~O(1)'0 1+L+h
4 \/ﬁ p 14 \/7172 n
1
=0,|—]. 45
o =
Next, note that
31 (K“)( U(a/)) K<1>( ! U(a))) X"B.(0)X: X"
I’lih% i=1 hn
1
~ O n%hi)
1
)

21



aresult that follows from an application of the mean value theorem, the assumption that ||K @) ||Oo <
oo and || X;|| < oo, (2) of our paper, the assumption that nh> — oo and the result that

max |Ui(@) — Uy(a)| < max ‘n_%XiTBn(a))

1
< — max | X 0,(1)

1
n2
o[
=0, 7
Combining (39), (40), (41), (45) and (46) we find that

N 1 1
G,,ILJ(Q’) = GO(CY) + OP (h%l + W + ﬁ)
~ Go(a) + 0, (hg v ) “7)

1
vVnh,
The expansion of G,f () given in (47) can then be combined with the binomial inverse theorem
-1 .

about (R G, Ya)H G, (@)R T)

. -1 . -1
to deduce an expansion of [R (G,’f(a/)) H, (G,’;(a)) R

of the form

-1 -1

[R (67 <a>)'1 H, (Gl() RT]
= (RGal(a/)HGal(a)RT)_l + Uj(@) + Uy, (@) + Ry (@), (48)

where for each @ € A, we have U (@) = 0, (h2), U} (a) = O, ((nhn)'l/z) and R” (@) =

0p (h% + (nhn)_l/z) asn — oo.
The remainder of the proof of the first part of Theorem 3 follows arguments similar to those
used in the proof of Theorem 2.

Second conclusion of Theorem 3:

Leta € A = [aj,az] C (0,1) be a fixed quantile. Define
Dy(@) = N2k | (B (e + 1) = B + b)) = (Bu e = ) = B (@ = )|
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In particular, D,,(«) denotes an instance of an appropriately normalized regression-quantile spac-
ing local to (ﬁn(a/) - ,B(a)) whose asymptotic behavior is analyzed in Portnoy (2012). We make

use of the following result derived from Portnoy (2012, Theorem 1, Ingredients 1-7 of the proof
of Theorem 2):

Proposition 1 ((Portnoy, 2012)). Suppose Assumptions 1, 4 and 5 hold. Then there exists a
constant W such that for ||D,(@)|| < W+/logn, the density of D, (@) at t satisfies

loo )3
D)) = dp)() |1+ 0O (gf;l? ))

where ¢p(q)(-) denotes the density of a mean-zero Gaussian random vector D(«) with covariance
structure given in Portnoy (2012, eq. (7.3)).

In particular, Proposition 1 implies the existence of a mean-zero Gaussian random variable
D(a) such that

(logn)3

ID(@) = D@ = 01|

(49)

Now consider the conditional density estimator ji 1;1 K(a) given in (37) above. For each & € A
we have

A (@) = 2
U X7 | BeDa@ + Bla+ )= Bl )
1
] X7 L% =) + o (Bt ) = e - hn»]
1
) T XTDu@) + ity + 0 ()
= fi (X B@) +0p | b + (l(;ghg)% i \/:_h3 )
= /i (X B(@)) + O, | by + \/:?)
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where (49) and Taylor expansions of X;' 8 (a + h,) and X" B (« — h,) about X" B(a) have been
applied. Arguments similar to those used in the proof of Theorem 1 can then be used to show that
for each @ € A,

GI¥(@) = Go(a) + T (@) + TS% (@) + REK (a), (50)

where T'*(a) = 0O, TH X (« nh’) and R"%(a) = o + (nh?) 7). The
here 711X (a) = 0, (1), T(@) = 0, ((w)"?) and REX(a) = o, (B2 + (nh3)™'%). Th

expansion of éf K(a) given in (50) can then be combined with the binomial inverse theorem to

. -1 . -1
deduce an expansion of [R (G,?K (a)) H, (G,’fK (a/)) RT] about W, of the form

-1

[R (6% @) B, (6 @) &

= (RGal(cx)HGal(cx)RT)_l + UK (@) + UK (@) + R (a), (51)

where for each @ € A, we have UfX(a) = 0, (h7), UK (a) = ((nhf’l)_l/z) and R7K(a) =

0p (h,zl + (nh,%)_]/z) as n — oo,
The remainder of the proof of the second conclusion of Theorem 3 follows arguments similar
to those used in the proof of Theorem 2.

D A Data-Driven and Rate-Optimal Bandwidth

We present details regarding the derivation and estimation of a particular rate-optimal bandwidth
usable in the implementation of our proposed estimate of Go(«). This bandwidth differs from the
fixed bandwidth used in the simulations presented in Section 4 of the paper in that it is data-driven,
i.e., it involves a leading constant that must be estimated. This bandwidth is nevertheless rate-
optimal in that it decays at a rate such that any Wald-type test in which the corresponding estimate
of Go(«) is embedded exhibits adaptive size control as n — co. We present simulation evidence
on the finite-sample performance of the resulting data-driven bandwidth in Appendix E.2 below.
We also make use of our proposed data-driven bandwidth in the empirical analysis presented in
Section 5 of our paper.

Assuming that the vector B(a) of a-quantile regression coefficients is d-dimensional, let R
denote a fully specified (J X d)-matrix of rank J. In addition, let r € R’ be fully specified.
Suppose that one wishes to test the hypothesis Hy : RB(a) = r. Consider the size function
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given in (13) of our paper. Differentiating the size function with respect to %, we find that the
magnitude of the empirical size distortion is minimized by the solution to

1 3 -4 Azm(@,0)\?
W= — (1 h—l) —(1 h—l) p2? | 22mi ) 52
m = Tom 08P )~ Noeh | R o) 2

where Ajy,,(a@,0) and Ay,,(a,0) are as given above in (32) and (33), respectively.
Note that

1 ) - Avum(@,0)\> 1
— 1l h—l) —(1 h‘l) R (2220 L g !

when m is large. It follows that for large m an approximate solution to (52) is given implicitly by
the relation

Asum(@,0) \?
(4AII’LM(C¥’ 0) )

h% _ ( Aan(a'9 O) )2 1
loghy!  \4A1um(@,0)] m’
which implies that for large m, the optimal value of #,, has the form

h' =«

m

(53)

1
(A2nm(a,0))2 ] logm ’
Alnm(a’, 0) m ,

where k > 0 is a proportionality constant. Experimentation with simulations involving various
settings of « suggest that the choice x = 1 works well in practice.

We present in this connection a plug-in estimate of the optimal bandwidth 4, given in (53)
with k = 1. In particular, we show how one might estimate the unknown quantities in the leading
constant appearing in the expression for £;,. Let B,() denote the regression a-quantile based on
a random sample of observations given by (X, Y;),...,(X,,Y,). Let X denote the (n x d) matrix
of regressors whose ith row is given by Xl.T (@i =1,...,n). We propose to estimate the optimal
bandwidth given in (53) under the setting x = 1 by

>

%k
m

(54)

1
(Aznm(a, 0) )2 logm ’
Alnm(a’a 0) m

where

[\lnm(a" 0) = (Rﬁn(a') - r)T(jlnm(a’)(RBn(a') —r);
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Aan(a'a 0) = (Rﬁn(a') - r)TU2nm(a)(RBn(a) -r),
and where the quantities U 1nm(@) and 02nm(a) are given by
A e AyvTy e “1pTy-1 5 —1s 5 AyvTy e -1
O1n(@) = (RG(@) X XGo(@) ' RD)™ - (RGo(@) Trun(@)Gu(@) ' XX Gofa)

+Gn(a)_1XTXGn(a/)_lTlnm(a/)én(a)_lRT) (RG,(a) ' XTXGy()'RT)!

(55)
and
Oan(@) = (RGo(@) X XGy(@) ' RT)™ (RGo(@) Ponn(@)Gu(@) ™ XX Gy)™!
+G(@) XX G(@) Ponn(@)Gr(@) 'R (RG(@)' X X)Go(a) ' RT),
(56)

respectively, where G, («) denotes our proposed estimate of the matrix Go(«) given by G,() in
(6) of the main body of our paper, but implemented with the preliminary bandwidth

ot = m5. (57)
The quantities T',,,,(a) and T5,,,,(’) appearing in (55) and (56), respectively, are given by

A 1 i

Tlnm(a,) = ;XTfnm(a)X
and

N 1 ~
Tan(a') = ZXTSnm(a/)X’ (58)

where f (@) denotes the diagonal (1 x n)-matrix whose ith diagonal element is a kernel estimate
of the second derivative of the conditional response density at the point Xl.T B(a) given by

2o _ 1% (2)(L A (11 P
fm<a>-m@2;1< X (Bu(U)) = Bul)

where Uy,...,U, denote a random sample of Uni f|a;,a,]|-variates generated by Monte Carlo,
and where K(-) denotes the standard Gaussian kernel, K?)(-) denotes its second derivative and
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hpo = m~'°. Similarly, the quantity S,,,(e) appearing in (58) is the diagonal (n X n)-matrix
whose ith diagonal element is the square root of a kernel estimate of the conditional response

density at the point X' B(a) given by

— 1 N L T(R N_ A
Snila) = mizml JZ}K (ilml X,- (ﬁn(U]) Pn(@))|,

where again Uy,...,U, is a simulated random sample of Uni f[a;,a;]-variates and K(-) is the
standard Gaussian kernel. The bandwidth 4,,; is as given above in (57).

E Further Numerical Evidence

This appendix contains additional simulation evidence in the context of the same family of data-
generating processes described in Section 4 of the main text. These additional simulations also
consider the size and power performance of tests of the same hypothesis of no treatment-effect
heterogeneity described in the paper. Samples of sizes n = 100 and n = 300, generated by 1000
Monte Carlo replications, continue to be examined. The simulations reported in Appendices E.1,
E.2 and E .4, like those reported in Section 4 of the paper, involve N(0, 1)-errors. Appendix E.3
presents results for the same family of data-generating processes, but with #3-errors. Appendix E.4
presents results for “F-tests” of the joint hypothesis of QTE-homogeneity in two different covari-
ates , while Appendices E.1, E.2 and E.3 contain results for the same “#”-test of QTE-homogeneity
in a single covariate considered in Section 4 of the main text.

E.1 Sensitivity analysis: Results induced by our method with a fixed band-
width and varying choices of £ and ¢, N(0, 1)-errors

This appendix analyzes the sensitivity of Wald-type tests implemented according to our procedure
to variation in the the pseudo-sample size m or to the smoothing parameter #,,, which are assumed
to take the forms given in (14) and (15) in the main text, respectively. Wald-type tests implemented
according to our procedure are seen to have size or power performance that is not much affected
across quantiles or models by variation in the pseudo-sample size provided that the pseudo-sample
is sufficiently large. In particular, variation in the tuning parameter k when k£ > 5 is seen not to
exert strong effects on the size or power performance of Wald-type tests implemented with our
method. The size performance of these same tests, on the other hand, is seen to be somewhat
more sensitive to variation in the bandwidth leading constant, in particular, to variation in the
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parameter c. We also note the relative insensitivity of the size-corrected power of these tests to
variation in c.

In what follows, Tables 1-6 display empirical sizes and size-corrected powers for Wald-type
tests implemented according to our procedure with the bandwidth constant ¢ appearing in (15) of
the main text fixed at ¢ = 1.5. Tables 7—12 display the same quantities, but for tests implemented
according to the proposed procedure in which the pseudo-sample size constant k appearing in
(14) is fixed at k = 5.

Table 1: Empirical rejection percentages (size and size-corrected powers), Model 1. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, ¢ = 1.5

n =100 a =0.25 a=0.5 a =0.75
kia 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 72 157 31.3 465 47 189 38.3 576 59 189 40.2 57.0
3 56 194 36.6 586 3.7 234 424 657 39 196 379 59.7
5 6.0 17.0 37.8 619 42 235 42.8 66.7 46 194 38.4 61.7
7
9

6.1 187 38.7 609 4.7 19.0 46.7 754 54 199 45.8 71.9
6.5 194 47.8 717 55 204 43.8 700 6.0 195 44.0 69.9
11 6.5 204 45.6 67.6 39 240 54.2 81.0 72 165 38.2 66.6
13 6.0 208 40.8 692 6.1 198 479 759 55 206 45.7 73.2
15 64  20.1 40.5 662 5.1 21.7 43.0 679 62 229 47.7 754

1 48 31.6 69.5 86.4 3.8 324 70.1 88.7 49 29.1 65.7 82.1
3 6.0 26.6 66.0 90.6 5.1 33.0 74.6 95.1 47 295 724 94.2
5 50 302 74.7 956 52 373 85.1 99.3 52 282 73.4 95.2
7 38 385 81.8 984 43 397 87.6 99.3 5.0 389 83.3 98.6
9 5.1 324 80.8 983 3.7 418 89.6 999 63 307 76.9 97.1
11 58 321 78.7 983 55 349 82.2 98.8 6.6 32.1 81.1 98.7
13 46 354 81.0 98.7 48 374 86.1 994 6.0 320 80.2 98.6
15 6.7 288 71.6 979 52 402 88.2 99.8 7.0 272 73.5 97.9
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Table 2: Empirical rejection percentages (size and size-corrected powers), Model 2. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, ¢ = 1.5

n =100 a=025 a=05 a=075
kia 0 050 100 150 0 050 100 150 0 050 100 150
1 64 158 236 334 39 222 394 535 55 202 369 489
3 52 179 282 427 42 205 436 627 62 215 471 683
5 50 160 312 507 55 168 334 570 52 261 548 750
7 66 148 291 481 36 244 490 692 56 227 534 725
9 79 102 263 461 54 224 499 719 57 268 525 755
1 69 151 297 477 58 245 508 750 61 273 577 80.1
13 63 192 318 488 46 251 501 720 64 256 520 736
15 65 159 330 525 57 202 485 709 50 283 572 802
n =300
1 58 181 463 713 39 330 706 8.1 52 385 752 848
3 54 219 494 767 35 360 781 962 50 383 777 941
5 41 222 579 871 34 391 82 985 52 409 830 96l
7 54 217 542 834 38 341 781 955 62 432 865 978
9 56 210 568 8.6 38 409 880 987 42 418 864 98I
1 55 202 521 833 40 454 878 977 57 426 871 982
13 48 228 587 869 47 371 82 979 77 440 895 985
15 69 194 602 884 48 363 843 973 57 397 872 984
Table 3: Empirical rejection percentages (size and size-corrected powers), Model 3. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, ¢ = 1.5
n =100 a=025 a=05 a=075
kla 0 050 100 150 0 050 100 150 0 050 100 150
1 58 157 255 362 42 178 304 439 57 208 388 538
3 56 140 249 435 38 189 386 606 65 226 471 698
5 62 126 288 508 49 188 439 677 49 264 533 744
7 66 141 290 495 42 229 492 736 65 224 479 706
9 59 138 237 397 55 158 390 600 72 246 529 731
1 69 129 260 429 45 190 449 672 68 246 522 758
13 69 158 278 453 50 190 420 640 60 264 555 764
15 68 136 289 491 44 224 442 669 69 227 532 735
n =300
1 52 169 393 636 3.6 315 674 87 72 375 712 860
3 53 168 542 844 35 351 781 957 53 396  80.6 950
5 59 171 498 817 49 314 84 973 58 489 901 988
7 49 187 562 874 51 330 814 966 51 444 868 989
9 77 130 461 783 40 339 775 962 49 440 881 98I
1 65 152 455 816 29 410 8.4 990 56 438 884 988
13 64 145  SL1 85 49 3001 786 9701 53 512 932 994
15 61 152 494 826 51 334 837 984 59 513 916 996
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Table 4: Empirical rejection percentages (size and size-corrected powers), Model 4. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, ¢ = 1.5

n =100 a=025 a=05 a=075
kia 0 050 100 150 0 050 100 150 0 050 100 150
1 59 171 277 406 50 185 382 522 49 208 404 547
3 46 177 339 496 42 237 505 712 48 213 454 676
5 74 158 339 528 44 221 495 717 64 194 462 721
7 65 145 2701 481 39 224 498 749 53 279 577 804
9 70 158 275 477 39 199 440 684 72 202 500 753
1 74 155 293 467 50 231 508 744 68 224 501 743
13 65 148 343 561 39 232 518 736 61 196 460 700
15 76 164 339 541 57 198 419 682 64 216 449 709
n =300
1 54 237 512 718 33 408 792 914 69 359 716 857
3 53 223 601 862 35 400 828 970 44 439 870 972
5 67 183 502 796 46 374 869 985 42 427 869 985
7 59 242 650 907 39 422 873 994 62 423 873 989
9 49 291 672 922 50 373 836 982 64 488 933 994
1 55 205 604 886 52 368 809 976 65 474 929 997
13 54 249 674 909 40 441 907 990 56 395 870 989
15 48 299 670 920 50 417 893 991 61 442 928 993
Table 5: Empirical rejection percentages (size and size-corrected powers), Model 5. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, ¢ = 1.5
n =100 a=025 a=05 a=075
kla 0 050 100 150 0 050 100 150 0 050 100 150
1 57 143 285 456 5.1 182 347 496 59 185 357 506
3 51 184 346 589 39 196 442 698 55 207 444 667
5 51 172 351 569 56 189 414 638 61 212 507 759
7 58 170 390 630 44 228 510 786 47 249 527 762
9 58 181 337 547 56 198 459 703 46 257 542 765
1 61 179 416 648 50 206 489 759 63 211 471 734
13 59 201 382 624 57 216 478 727 53 231 521 800
15 70 138 315 552 56 174 429 724 60 236 497 763
n =300
1 43 241 574 813 37 354 747 896 57 304 642  8l4
3 48 293 713 934 45 344 811 976 60 365 788  96.5
5 55 247 616 82 53 312 798 976 56 350 818 984
7 43 325 738 949 52 373 835 991 50 373 841 989
9 50 272 670 925 41 405 847 992 61 380 837 983
1 59 267 702 944 46 375 876 996 55 351 825 985
13 53 258 710 948 33 421 906 992 59 455 909 997
15 57 2901 731 950 40 413 857 987 57 425 902 995
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Table 6: Empirical rejection percentages (size and size-corrected powers), Model 6. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, ¢ = 1.5

n =100 a=0.25 a=0.5 a =0.75
kia 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1 7.7 210 423 619 3.7 230 433 615 63 137 28.6 45.1
3 49 259 54.5 789 4.1 222 46.2 713 63 139 28.0 49.5
5 63 203 433 68.1 56 182 38.4 673 62 153 345 62.8
7
9

73 254 51.3 73.7 43 217 455 72.1 5.6 16.0 39.7 65.5
57 259 53.7 715 53 200 473 732 83 11.0 274 53.7
11 6.0 24.0 47.5 714 49 220 48.0 77.1 62 140 30.2 533
13 7.7 268 55.7 824 54 221 423 653 7.8 15.6 34.1 61.2
15 58 263 51.0 710 46 223 50.6 75.7 8.0 129 33.0 64.3

1 53 413 75.7 88.6 37 353 74.0 904 53 220 53.7 79.0
3 44 421 80.5 959 44 36.1 82.3 977 55 194 55.6 85.6
5 42 432 82.0 97.7 35 388 85.4 98.8 59 19.0 66.8 94.4
7 53 478 88.8 989 32 430 88.7 99.6 6.7 222 69.9 96.2
9 7.1 434 89.0 99.6 45 397 88.0 99.7 55 182 64.6 93.4
11 6.4  40.1 83.4 98.6 43 348 87.9 993 63 197 65.6 95.6
13 55 505 93.4 999 52 368 88.0 99.1 58 23.0 68.9 96.4
15 43 485 87.8 99.1 45 368 86.8 99.7 6.1 238 717.1 98.3

Table 7: Empirical rejection percentages (size and size-corrected powers), Model 1. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n =100 a=0.25 a=0.5 a =0.75

cla 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 7.80  20.60 33.60 5020 7.30 17.80 45.50 71.50  8.50 17.50 40.20 64.40
1.25 720 17.80 40.10 63.80 6.00 20.80 43.90 70.70  6.30 18.70 38.10 62.00
1.50 6.30  20.70 44.40 7220 4.10  20.80 49.90 78.70  5.10  19.60 46.60 73.90
1.75 6.00 18.30 46.80 75.80 430 21.30 51.70 81.60 520 19.30 39.90 64.60
2.00 3.10 23.10 47.30 73.00 2.00 30.60 63.10 8790 390 1840 38.10 65.30
n =300
1.00 6.20  33.00 72.00 9320 6.00 33.20 76.20 9690 820 30.40 77.20 94.70
1.25 5.00 37.80 81.30 98.00 6.00 30.30 75.20 96.60 6.50 33.00 78.50 96.40
1.50 5.00 29.30 70.80 94.10 470 38.20 84.90 9890 570 27.20 68.30 93.60
1.75 430 36.70 83.90 98.70  3.40 40.60 88.70 99.40 4.60 34.30 80.90 98.00
2.00 350 36.10 83.30 99.20 2.70  39.30 84.90 98.80 430 35.50 85.50 99.50
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Table 8: Empirical rejection percentages (size and size-corrected powers), Model 2. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n =100 a=0.25 a=0.5 a =0.75

cla 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 9.50 16.30 29.50 4470  8.00 21.90 49.20 72.00 7.50 23.40 44.40 64.10
1.25 790 14.80 27.70 4450 420 20.90 45.70 6740 7.30 21.20 43.10 64.60
1.50 720 13.40 25.50 4420 490 20.90 44.20 66.20 6.10 23.80 48.10 66.70
1.75 490 1440 30.00 49.00 3.00 21.30 47.00 69.60 440 22.00 42.20 60.00
2.00 390 1490 28.90 4440 290 2340 48.50 70.00 430 22.20 46.90 68.80
n =300
1.00 6.00 24.80 56.40 8220 6.00 36.20 79.20 9520 690 40.40 78.10 93.60
1.25 5.60 23.10 56.90 83.00 520 33.70 78.90 9540 550 43.20 85.60 96.30
1.50 5.80 18.30 52.70 80.50 4.10 44.10 85.70 98.00 6.50 47.20 89.60 98.50
1.75 3.40 2270 59.00 86.30 3.40 37.20 84.80 97.50 4.80 50.40 91.90 98.60
2.00 440 24.80 63.10 90.10 290 44.90 87.60 98.70  3.60 52.80 93.80 99.10

Table 9: Empirical rejection percentages (size and size-corrected powers), Model 3. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n =100 a =0.25 a=0.5 a =0.75

cla 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 8.60 12.20 22.50 39.70  6.80 18.70 36.10 56.70 8.60 22.70 43.80 62.70
1.25 6.50 13.60 24.50 41.70  5.60 19.20 45.30 69.00 640 27.10 54.40 76.10
1.50 4.60 14.70 29.60 49.50 4.10 20.50 45.40 67.20 5.00 27.90 58.00 78.10
1.75 540 1540 27.50 47.10 340 20.40 49.20 7530 430 32.10 66.30 82.70
2.00 390 1520 32.40 5220 2.80 18.20 46.70 71.10 440 27.00 58.30 80.80
n =300
1.00 890 14.20 42.00 76.60 490 35.60 79.90 9580 7.40 45.90 86.60 97.10
1.25 6.50 13.70 41.10 7390 5.80 25.40 68.90 9260 590 4240 84.90 96.60
1.50 5770  16.60 49.90 8290 350 38.50 83.50 97.70 520 48.80 91.50 98.40
1.75 3770 19.70 52.40 8580 3.40 3490 80.00 98.10 490 44.60 86.80 98.60
2.00 470 17.30 50.40 8290 370 36.40 81.80 9720 3.60 50.90 93.20 99.30
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Table 10: Empirical rejection percentages (size and size-corrected powers), Model 4. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n =100 a=0.25 a=0.5 a =0.75

cla 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 8.00 15.90 27.00 41.70  7.60 18.20 40.60 61.20 820 25.20 57.40 78.80
1.25 6.20  20.00 33.30 51.80 590 21.20 42.40 63.80 7.80 21.90 46.50 66.50
1.50 6.10  14.00 28.10 46.70 520 21.40 47.30 71.10 5,50  23.10 48.50 70.30
1.75 4.80 14.50 30.00 51.10 3.60 20.40 42.30 66.30 490 22.10 47.50 67.30
2.00 340 2140 42.30 64.70 2.70  25.80 53.40 75.70 390 20.10 39.90 65.70
n =300
1.00 740 2290 54.30 7940 6.50 36.40 80.50 9630 7.20 41.10 87.20 97.80
1.25 6.40  23.10 58.90 84.80 430 39.80 82.50 96.80 5.80 40.10 85.70 97.30
1.50 470 2290 57.00 85.10 5.00 37.40 84.50 98.70 470  46.20 89.00 98.80
1.75 420 26.20 60.50 87.60 3.60 34.50 81.20 97.50 5.30 53.00 92.80 99.70
2.00 3.40 2330 63.10 90.50 3.20 43.30 87.20 99.10 4.80 39.50 87.20 98.80

Table 11: Empirical rejection percentages (size and size-corrected powers), Model 5. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n =100 a =0.25 a=0.5 a =0.75

cla 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 930 1630 31.70 49.70  7.60  21.30 47.90 73.60 7.70 19.80 40.90 63.10
1.25 6.10 18.30 37.50 59.60 530 21.80 43.80 7150 7.70  19.70 37.00 57.50
1.50 5770  18.00 35.30 56.80 4.00 25.40 50.30 7430 6.00 19.80 39.70 64.10
1.75 440 19.10 37.50 60.60 3.70 25.50 55.20 80.70 5.80 21.00 52.00 76.90
2.00 4.00 16.50 37.00 57.80 230 2230 46.10 73.10  3.50 2240 45.90 69.50
n =300
1.00 6.80  28.00 65.80 90.60 490 39.20 83.70 98.60 620 39.70 81.70 97.50
1.25 6.70  23.70 58.70 84.40 630 31.60 78.90 97.00 5.60 35.80 78.80 96.50
1.50 550 2420 62.90 90.60 4.50 34.60 80.70 98.00 420 43.80 88.20 98.90
1.75 570  27.10 70.80 9370 290 38.50 88.50 99.40 5.10 41.10 88.40 98.90
2.00 450 27.00 69.90 9420 3.10 35.80 86.10 99.30 4.00 36.10 80.80 98.30
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Table 12: Empirical rejection percentages (size and size-corrected powers), Model 6. 1000 Monte
Carlo replications; procedure “weg” implemented with fixed bandwidth, k = 5

n =100 a=0.25 a=0.5 a =0.75

cla 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
1.00 8.70  20.80 41.60 6420 690 20.40 46.40 73.60 9.50 14.90 29.50 50.60
1.25 590 2320 41.50 5820 6.00 21.40 42.90 68.30 7.50 12.00 32.80 55.60
1.50 5.60 23.70 53.80 7730 540 19.00 47.00 73.80 6.10 14.70 31.80 58.10
1.75 520 23.60 43.50 66.70 3.10 20.50 45.70 72,70 440 15.40 34.80 57.90
2.00 4.00 25.80 50.50 75.30  2.60 24.20 52.40 80.20 390 16.60 38.30 66.20
n =300
1.00 7.10  45.50 86.90 9790 520 34.70 77.60 96.60 6.30 19.50 61.10 87.60
1.25 5.40 47.80 88.40 98.30 440 41.40 88.90 99.20 5.80 23.20 71.50 95.80
1.50 4.60 47.90 88.60 98.70  4.10 40.10 87.60 9890 6.30 18.90 58.20 89.50
1.75 530 43.90 88.40 99.10  2.50 45.70 88.70 99.60 440 21.00 68.50 94.50
2.00 4.00 47.50 88.40 98.70 2.80 45.70 93.00 99.70  4.10  20.60 65.40 94.90

E.2 Data-driven bandwidth: Results induced by our method with £ = 5
and the data-driven bandwidth derived in Appendix D

This appendix presents the performance of Wald-type tests implemented according to our pro-
cedure but in which the bandwidth takes the form given by £, above in (54). The rate-optimal
data-driven bandwidth given above in (54) is seen to induce Wald-type tests with good size and
power performance across quantiles and data-generating processes. These results are for the same
“t-test” of QTE-homogeneity in a single covariate considered in Section 4 of the main text, and
involve the same series of six data-generating processes with N(0, 1)-errors considered in the
main text. Tables 13—18 below repeat the relevant entries in Tables 1-6 in the main text for ease
of reference.
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Table 13: Empirical rejection probabilities (size and size-corrected powers), Model 1.

1000

Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, £k = 5;
other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 72 142 36.8 59.6 47 213 459 722 48 19.8 453 71.1
wiid 9.1 10 222 395 73 155 45.7 759 82 125 31.1 56.3
wnid 8.1 8.3 18.7 379 68 175 51 80 74 122 33.1 59.9
wker 1.3 132 31.5 537 03 17 51.2 80.8 1.9 17.7 41.8 69.5
riid 7.9 8.6 21.4 394 86 177 46.5 769 7.5 153 35.5 61.5
rnid 5.9 74 19 377 65 175 46.7 765 51 152 34.7 61.3
bxy 3.1 9.6 23.6 47 29 167 49.8 80 32 1438 37 65.7
bpwy 1.2 9.7 23.7 443 24 171 494 804 1.6 175 41.1 69.6
bmcmb 33 8.8 23.2 433 3.7 16 48.9 792 34 166 39.7 66.7
bwxy 4.1 9.3 229 44.5 3 16 48.4 799 44 137 36 64.6
bwild 6.9 109 24 462 72 141 42.7 76.1 62 16.2 37 65.4
n =300
weg 6.1 269 71.4 939 46 364 85.1 98.8 59 273 68.8 93.3
wiid 79 254 74.2 98.1 3.7 336 84.3 98.5 6 30.5 84.5 99.6
wnid 82 262 76.1 98.6 3.9 349 86.4 98.6 59 325 84.7 99.3
wker 3 28.4 79.5 993 1.3 345 85.9 98.7 2 34.3 87 99.7
riid 7.7 27 75.8 97.6 5 314 80.5 98.1 56 317 81.6 98.8
rnid 6.6 26.5 74.7 97.6 47 314 80.4 98 4.7 31 82.3 98.6
bxy 44 294 79.2 983 2.5 341 84.4 98.4 3 32.7 85.5 99.4
bpwy 34 289 78.8 98.7 22 344 84.9 984 23 345 85.9 99.3
bmcmb 59 269 77.9 984 3.7 337 82.4 98.3 3.8 325 84.6 99.2
bwxy 49 292 79.1 98.8 2.7 32 82.4 98.4 3.1 315 83.9 99.2
bwild 7.1 29 79.1 98.7 48 323 82 983 49 319 85.7 99.6
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Table 14: Empirical rejection probabilities (size and size-corrected powers), Model 2.

1000

Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, £k = 5;
other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7 12.4 21.3 392 62 174 38 58.7 6.1 205 44.1 65.4
wiid 84 102 20.5 389 89 127 34.5 62.7 9 15.7 39.9 63.1
wnid 7.4 7.3 21.8 402 9.1 126 37.2 653 8.6 145 42.1 64.4
wker 1.5 8 21.9 399 1.1 125 36.5 632 1.7 113 37.7 61
riid 7.7 7.9 20.2 36.7 87 11.1 31.7 55.1 82 147 37.6 60.1
rnid 5.8 7.5 20.2 36 72 114 31.1 54.1 6 14 35.9 57.1
bxy 34 7.9 20.3 376 34 126 36.2 60.3 4.1 14.6 39.3 62.1
bpwy 1.8 7.1 20.8 402 29 128 37.1 62.7 25 127 40 62.6
bmcmb 34 8 20.5 36.7 4.1 127 36.2 60.1 46 153 39.2 61
bwxy 4.5 8.3 20.6 379 42 132 37.1 60.2 52 135 38.7 61.5
bwild 7.4 7.3 18.7 354 84 129 35.1 57 73 141 38.5 59.2
n =300
weg 5.7 15 459 77.2 5 32.6 77.1 96.1 5.6 354 81.2 95.7
wiid 55 207 58.8 88.4 5 32.2 81.3 98.5 8 34 83.4 98.3
wnid 59 19.6 60.1 88.6 48 356 84.6 98.5 84 36 86.5 98.9
wker 23 184 57 86 1 35.9 82.2 979 23 36 85.7 98.7
riid 6 17.9 55 839 54 31.8 77.7 96.5 7.5 356 82 97.3
rnid 46 173 53.3 83.1 5.1 307 76.9 96.2 6.8 338 80.9 96.8
bxy 2.6 207 58.8 842 37 327 79.9 96.9 3.7 384 84.6 98
bpwy 24 18.1 55.3 83.7 3 32.7 79.1 97 3 38.5 84.7 98.4
bmcmb 43 183 53.1 827 44 312 78.4 97 5 37.9 84.2 97.4
bwxy 26 17.8 53.8 81.8 36 315 78.6 96.7 4 36.1 82.8 97.3
bwild 5.1 19.1 55.8 84.1 5 30.7 78.9 964 6.1 36.1 84.6 98.5
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Table 15: Empirical rejection probabilities (size and size-corrected powers), Model 3.

1000

Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, £k = 5;
other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 74 109 21.5 39.8 6.2 17 36.9 575 63 233 53.1 76.8
wiid 9.7 6.1 14.5 264 7.5 11 28.5 533 7.7 16.1 449 71.8
wnid 7.9 8.4 19 36.8 6.7 11 31.9 56.8 7.2 182 474 72.1
wker 14 8.1 19.7 392 07 125 33.4 58 14 189 52.6 78.1
riid 7.5 6.5 15.7 326 73 94 26.7 474 8 16.9 439 68.2
rnid 5.3 6.7 16.6 322 65 9.3 27.8 456 55 173 454 68.3
bxy 24 8.3 19.1 379 28 123 32.3 55.7 3 19.3 49.2 75.2
bpwy 1.2 8.1 20.3 382 24 116 31.8 542 1.5 187 50.2 75.7
bmcmb 2.6 7.5 18.5 345 36 116 31.8 547 3.1 18.1 47.1 73
bwxy 3.1 8.5 20.2 37.6 35 107 30.9 542 39 189 49.5 74.3
bwild 6.3 7.7 18.5 357 7.6 10 27.7 50.2 7 17.1 47.2 73.6
n =300
weg 52 174 52.4 823 48 303 79.4 97.1 49 495 90.5 98.4
wiid 6.6 125 46.4 813 69 244 74 96.3 69 4l1.1 91.1 99.5
wnid 6.8 147 52.7 84.1 58 287 78.2 973 717 414 92 99.7
wker 33 154 52.7 845 1.6 282 76.7 96.2 32 40 90.4 99.7
riid 5.8 156 49.7 822 64 26 72.1 95 7.3 383 87.3 98.9
rnid 5 15 48.1 80.5 6 25.4 70.4 944 64 379 86.5 99
bxy 37 16.1 50.3 833 35 273 74.7 95.6 3.8 4l1.1 89.9 99.6
bpwy 3.1 156 52 83.7 3 28.2 75.4 959 2.8 385 89.8 99.2
bmcmb 47 148 49.7 81 47 287 76.5 96 5.1 408 90.5 99.4
bwxy 37 149 51 82.8 3.7 285 75.7 96 42 399 90 99.6
bwild 6.3 139 48.7 819 59 253 73.3 95.7 6.8 378 88.9 99.5
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Table 16: Empirical rejection probabilities (size and size-corrected powers), Model 4.

1000

Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, £k = 5;
other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 49 133 24.4 41.8 48 158 38.6 60.2 5 22.5 46.2 66.9
wiid 9.8 6 16 304 7.5 142 41.1 68.6 9.8 13 36.8 66.9
wnid 8.5 6.3 15.6 322 7.8 14 42.8 69 82 159 43.8 71.8
wker 14 117 24.5 432 1.1 127 43 669 1.7 162 45.1 73.2
riid 7.7 74 17.8 31,6 74 153 40.3 63.1 79 144 41 67.2
rnid 54 8.2 18.8 345 63 138 39.5 62.1 55 159 41.7 68.4
bxy 32 9.1 19.6 378 36 146 42.5 65.3 3.1 17.6 46.3 72.6
bpwy 1.5 8.5 20.7 38 2.7 13.8 40.6 642 1.1 17.1 47.3 74.9
bmcmb 4.4 6.7 17.2 333 4.1 14 41.2 642 32 173 459 71.4
bwxy 44 8.9 20.2 37.7 39 15 429 66.2 43 177 47 72.5
bwild 7.4 9.2 20.7 373 6.7 136 40 643 7.8 153 41.5 68.7
n =300
weg 4.6 26.6 64.8 90.2 5.4 30 73.5 942 57 423 89.6 98.4
wiid 6.5 145 48.1 81.5 69 287 79.6 97.7 59 40.1 88.3 99.2
wnid 73 17.6 53.3 843 72 282 79.6 97.6 59 429 90.3 99.4
wker 35 233 59.9 87.1 2.1 289 78.6 97.6 23 4l1.1 88.9 98.8
riid 72 174 49.2 81.6 8 26.7 76.5 96 56 404 86.6 98.2
rnid 6.1 17.5 50.8 819 6.8 256 76.1 95.5 48 41 86 98.1
bxy 45 18.6 52.2 825 38 278 77.6 964 33 4038 87.6 98.3
bpwy 4 18 55 845 44 289 77.2 96.5 23 422 87.9 98.5
bmcmb 5.6 17 50.8 81.5 57 2838 78.2 96.5 4.6 4l1.1 87.4 98.1
bwxy 45 182 52.5 825 48 28.1 76.7 96.2 33 435 88.6 98.4
bwild 6.6 179 53.1 829 65 259 75.7 96 5 41.5 88.3 98.7
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Table 17: Empirical rejection probabilities (size and size-corrected powers), Model 5.

1000

Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, £k = 5;
other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 56 137 324 59.2 54 153 37.7 633 63 174 41 64.4
wiid 8.5 109 22.7 421 72 115 27.7 556 9.6 11.3 28.9 54.6
wnid 82 10.1 25.5 46.1 6.7 11 32.5 59.5 82 107 31 574
wker 1.1 13.1 304 543 07 123 34 60.5 1.5 128 35.9 65.2
riid 73  11.1 25.7 459 8.1 94 27.2 51.8 84 11 29.5 58.8
rnid 53 112 26.1 45.8 7 10.7 27.3 519 62 11.7 28.9 56.8
bxy 27 114 27.1 494 25 119 32.7 58.7 33 124 333 62.7
bpwy 1.2 121 28.8 50.7 26 125 33.8 60.3 2 12.1 34 64
bmcmb 29 108 27.6 475 37 113 31.8 59.5 35 117 32.8 59.4
bwxy 42 113 27.7 488 3.6 11.3 324 58.6 44 11.8 32.7 61.8
bwild 6.8 124 26.9 47.2 7 9.7 28.6 539 74 105 31.8 61.2
n =300
weg 6.3 22 62.8 899 5.6 29 78.1 97 52  36.6 84.7 98.1
wiid 7.2 24 66.6 946 6.6 259 73.1 96.5 6.6 33.6 83.5 99.3
wnid 69 245 68.4 95.6 6.3 29 76.7 97.5 7 37.4 86.6 99.3
wker 2.7 265 72.1 96.6 1.7 304 77.3 978 2.6 383 87.9 99.4
riid 64 203 63.8 91.7 59 259 72.7 95,5 69 333 82.5 98.5
rnid 54 222 66.5 929 55 267 73.3 95,5 57 341 83.8 98.6
bxy 3.6 247 70.3 955 3.8 294 75.4 97.4 4 34.3 84.9 99
bpwy 3.5 23 68.2 95 3.6 28.6 75.9 97.1 27 377 85.8 99.2
bmcmb 49 24 68.6 95.3 5 28.1 75.5 969 46 362 85.4 99.3
bwxy 4 24.4 69.7 957 41 292 75.7 97.1 4.1 35 85.2 99.1
bwild 64 23.1 69.1 95.7 6 28.1 74.7 97.1 57 353 85.1 99.1
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Table 18: Empirical rejection probabilities (size and size-corrected powers), Model 6.

1000

Monte Carlo replications; procedure “weg” implemented with data-driven bandwidth, £k = 5;
other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 54  20.1 42.6 64.1 53 19 41 679 57 141 323 56.9
wiid 9.7 122 31.5 574 72 136 44.1 80.4 10 6.7 18.7 40
wnid 73 163 39 66.6 59 163 524 86.7 8.1 7.8 21.8 43.7
wker 1.3 202 474 75.8 0.8 163 53.5 89.2 22 8.9 26.2 52.1
riid 8.4 15 36.8 623 75 147 46.5 80.5 7.8 5.7 19.8 41.2
rnid 6.7 13.1 35 60.1 5.5 15 46.8 828 5.6 6.2 20.8 43.7
bxy 27 17.6 41.4 709 24 167 52.5 86.9 3.1 8.7 25.1 50.4
bpwy 1.5 177 42.7 71.8 19 169 51.1 872 1.7 8 22.5 48.7
bmcmb 3.1 158 40.3 69.1 34 158 51.8 85.7 3.6 8.6 23.7 50.7
bwxy 39 177 41.7 715 29 175 52.7 873 42 8 23.2 494
bwild 6.9 16.2 40.2 70 6.7 14 46 833 73 7.3 21.8 46.2
n =300
weg 5 434 86.1 98 6.2 285 76 97.4 6 18 60.2 91.5
wiid 64 397 87.4 99.2 83 259 76.7 979 65 139 54.3 91.3
wnid 64 428 89.3 99.7 8.1 26.7 78.4 989 65 16.6 60.6 94.2
wker 32 436 91 99.7 24 315 83.4 99 2.6 16 60.5 94.5
riid 69 393 86.5 99 75 252 71.8 97 64 15.1 56.7 92
rnid 6.1 39.7 86.1 99 6.9 27.8 76.3 97.6 53 152 55.7 92
bxy 32 438 89.3 994 44 303 80.1 984 3.1 16.1 59.3 93.5
bpwy 32 425 88.1 994 42 294 80.9 98.5 3.1 163 58.1 93.2
bmcmb 52 408 88.3 994 63 283 78.6 98.5 47 152 58.3 93.3
bwxy 46 398 87.7 99.5 5 28.8 79.4 98.4 35 165 58.5 93.7
bwild 57 397 87.7 995 6.7 292 80.4 98.7 6.1 142 56.8 93.1

E.3 Results for models with Student-7 errors

This appendix repeats the simulations presented in Section 4 of the main text, but in which the
N(0, 1)-errors specified are replaced with #3-errors. The corresponding simulation results are

displayed in Tables 19-24.

We see that the empirical size accuracy and size-adjusted power of Wald-type tests induced

by the proposed estimate of Go(a@) are quite competitive with the other methods considered.
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Table 19: Empirical rejection percentages (size and size-corrected powers), Model 1 with #3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a=0.25 a=0.5 a=0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 6.1 17.7 37.4 62.1 4.6 209 44.4 70.9 8.5 14.9 28.9 52.6
wiid 8.6 129 27.6 51.5 79 107 322 586 104 9.1 21.7 41.4
wnid 53 142 35 609 6.6 12.1 38.3 67.4 7.1 10.1 27.1 51.8
wker 1.2 12 30.8 578 0.5 15.8 43 73.3 24 13.6 34 59
riid 6.9 134 33.7 58.1 59 144 374 65.5 8.3 10.1 26.5 49.2
rnid 4.3 13 33.1 576 4.6 139 38 65.9 6 8.7 24.4 47.7
bxy 1.9 145 36.8 62 2.3 15 41.3 70.9 2.8 11.1 29 55.4
bpwy 0.9 13.1 34.7 59.7 14 156 41.4 72.2 1.9 14.5 34.3 60.5
bmcmb 2.9 15 34 595 29 16.1 41.9 72.4 3.6 10.4 27.7 54.1
bwxy 2.8 144 37.5 629 24 164 40.7 71.9 3.9 12.5 31.3 57.9
bwild 6.3 13.1 32 577 47 141 38.2 67.3 7.5 9.9 25.7 51.2
n =300

weg 69 218 61.9 89.1 45 338 80.9 983 6.6 299 69.2 93.9
wiid 85 163 57.1 90.3 7 21.9 74.5 975 718 227 70.4 95.1

wnid 7.3 207 67.3 94 6.1 28 79.3 982 73 242 72.6 95.9
wker 27 204 66.7 932 12 335 82.9 98.8 36 269 73.7 96.6
riid 69 183 62.3 91 6.1 278 78.5 98 59 283 74.7 95.6
rnid 56 197 63.7 912 57 279 78 979 51 26.6 74.3 94.9
bxy 32 222 68.4 932 32 296 80.1 983 32 306 76.7 97
bpwy 29 227 68.1 939 32 293 80.7 983 24 285 75.1 97

bmcmb 55 214 65.6 92.9 5 28.6 79.7 982 48 295 75.9 96.3
bwxy 39 228 69.2 939 3.6 294 81.1 983 37 301 76.6 97.3
bwild 7.3 189 63.7 922 5.8 264 717.1 98 6.4 263 73.2 96.1
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Table 20: Empirical rejection percentages (size and size-corrected powers), Model 2 with #3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50

weg 7.1 12 243 40.7 4 19.5 39.5 572 15  20.6 427 60.2
wiid 98 79 15.9 31.3 6 10.6 25 454 88 146 347 56.6
wnid 63 9.1 20.8 36 65 103 28.3 479 65 155 37.8 57.9
wker 19 74 16.5 32 0.7 11.1 31 49.6 2 17.3 40.3 61.1
riid 74 88 17.2 301 64 87 23.7 398 7.1 154 342 54.3
rnid 52 85 17.1 29.1 51 9.4 23.7 402 49 151 342 53.8

bxy 22 82 18 322 2 10.5 28.7 458 24 167 39.7 59.6
bpwy 09 93 19.3 336 16 11.1 30.3 479 15 191 433 62.5
bmcmb 22 82 18.2 31,7 28 113 29.2 4577 2.6 16 36.2 55.6
bwxy 33 82 18.8 316 22 104 29.6 476 29 183 40.3 59.2
bwild 73 138 16 305 52 103 25.2 422 69 148 35.4 56.2

n =300

weg 6.2 149 40.5 714 4.1 36 76.4 95.8 64 394 81.5 95.8
wiid 69 125 38.4 70.1 59 271 72.8 952 6.8 34.6 80.4 96.1
wnid 6 15.1 442 74 5 30.8 77.1 963 54 407 86.3 97.3
wker 33 122 37.1 676 09 358 78.1 96.2 34 387 82.5 96.3
riid 87 108 31 599 58 271 68 915 75 314 74 92.1
rnid 7.7 109 30.7 586 51 275 67.2 91.1 6.1 333 75 93
bxy 38 139 36.7 649 2.7 30 72.5 939 38 367 80.3 95
bpwy 35 124 37.2 66.7 2.8 30 73 933 39 357 78.9 95.4

bmcmb 57 13.1 35.8 62.8 39 302 72.3 93.1 47 39.1 80.5 95
bwxy 4.1 137 36.6 63.8 3.1 30.1 72.5 936 43 356 79 94.7

bwild 6.8 132 34.1 639 438 29 71.5 933 62 343 78.4 94.6
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Table 21: Empirical rejection percentages (size and size-corrected powers), Model 3 with #3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.1 10.9 18.8 334 56 187 39.3 61.5 7.8 19.4 41.4 62.8
wiid 10.5 4.8 10.2 20.7 6.6 13.8 34.2 575 105 10.7 28 48.2
wnid 6.2 6.3 13.5 29.1 6 13.9 35.1 59.7 5.6 19.1 41.3 66.2
wker 1.5 7.4 18 353 05 147 35.9 60.6 1.3 17.9 40.9 65.6
riid 6.3 7.3 16.2 30.6 7 13.6 32 54.6 6.7 15.6 35 58.1
rnid 44 6.5 15.5 302 4.8 147 34 564 4.6 17.7 36.7 60.1
bxy 2.6 6.2 16.5 322 24 147 34.1 60 2.3 20.3 429 66.9
bpwy 1.2 6.7 15.6 31.8 1.6 142 33.7 59 0.8 20.7 43.8 68.5
bmcmb 34 5.3 13.5 27.1 32 121 30.6 54.6 2.6 17.5 38.1 63.2
bwxy 3.1 6.9 17.2 33,7 33 144 34.5 59.8 2.5 20.6 435 67.5
bwild 5.9 6.3 15.2 30.7 58 127 31 55.6 6.9 16.6 37.1 60.2
n =300
weg 5.3 15.5 41 714 33 278 75.3 95.3 6.9 33.7 79.7 96.1
wiid 8.5 9.5 31.5 647 6.1 203 66.8 94.9 8.1 28.1 78.3 97.6
wnid 7 9.9 35.8 71 52 233 73.8 96.7 8.1 31.3 82.2 98.1
wker 32 11.4 36.5 715 12 273 77.4 97.1 3.7 32.5 83.5 98.1

riid 6.1 12.3 355 676 63 204 66.4 942 67 2716 75.4 96.6
rnid 53 13.3 353 67.6 58 21.1 68.1 933 59 298 77.4 96.5

bxy 29 13 37.5 71.8 3.7 219 70.2 %6 39 311 81.2 97.6
bpwy 3.1 11.8 37.2 722 2.7 23 70.3 947 32 329 82.8 98.1
bmcmb 5.4 11.4 34.8 68.7 44 234 71 95.1 58 321 82 97.8
bwxy 3.8 12.5 36.3 717 34 236 70.7 948 43 32 81.6 91.7
bwild 7 11.1 347 70.2 5 22.8 70.8 954 68 279 79.4 97.7
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Table 22: Empirical rejection percentages (size and size-corrected powers), Model 4 with #3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 69 134 21.3 375 65 172 38.2 60.5 6.3 21 45.2 66.4
wiid 10 7.3 14.5 26 8 8.9 27.7 525 94 121 31.6 57.9
wnid 6.8 8.4 16.3 319 72 128 36.3 60.3 56 14.8 40.8 65.9
wker 1.7 9.1 18 335 0.8 128 37.1 60.6 1.7 134 40.4 66.7
riid 7.4 7.5 17.2 312 85 11.1 30.8 534 58 14 36.3 60.5
rnid 4.3 7.7 17.3 302 7.1 107 30.4 513 47 144 349 60
bxy 1.6 9.1 19.4 348 37 114 35.3 57.6 25 15 41.1 67.1
bpwy 0.8 9 18.8 354 28 122 36.6 589 14 172 43.7 68.3
bmcmb 2.3 7.5 15.6 299 42 109 33.3 557 2.8 134 36.7 62.6
bwxy 2.8 9.2 19.4 347 41 114 35.3 56.8 3 16.5 429 66.8
bwild 7.6 8.9 17.8 314 6.7 11.1 32.5 553 65 129 37.2 62.5
n =300
weg 7.1 148 474 784 44 364 83 975 7.1 322 77.7 95.8
wiid 73 113 42 78 6.7 29.6 80.7 97.6 7.7 269 77.3 96.8

wnid 7.7 12,6 44.6 80.6 6.3 32 81.4 985 73 316 83.4 98.5
wker 3.1 129 443 719 09 345 84 985 4.1 30.1 82.3 98.4
riid 6.8 13.6 45.6 715 173 273 75.8 95.7 7 30.1 79.2 97.3
rnid 56 144 46.4 715 67 265 74 944 55 32 80.4 97.3

bxy 37 133 459 716 33 322 80 972 43 33 83.9 98.2
bpwy 32 145 473 79.4 3 324 79.8 972 34 332 83.4 98.3
bmcmb 51 135 46.7 783 47 322 79.4 979 58 296 81.1 97.8
bwxy 4 145 46.4 78.1 34 322 79.5 969 46 314 82 98.2
bwild 7.4 11 40.9 744 62 296 78 962 72 28.6 80.2 97.6
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Table 23: Empirical rejection percentages (size and size-corrected powers), Model 5 with #3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 8.7 11.4 24.6 425 4 22.9 45.1 673 6.8 19.1 449 72.4
wiid 10.1 7.7 15.3 30.7 6.3 109 29.6 552 86 11.7 33.2 58.7
wnid 7 7.8 19.2 38.9 6 13.3 33.3 60 6.1 14.1 41.2 69.7
wker 2.1 9.2 22 437 05 178 42.7 703 0.8 147 43 74.4
riid 7.5 8 17.6 351 57 155 353 59.6 6.5 144 37.8 65.7
rnid 5 8.9 19.5 379 42 146 35 60.2 44 152 38.2 66.3
bxy 2.7 9.8 22.5 433 2 16.6 38.6 652 14 16 44 75
bpwy 14 9.3 21.8 426 1.5 17 39.6 66.8 0.7 18.6 46 75.9
bmcmb 32 8.8 20.6 38,5 25 16 38.2 65 2.1 165 43.8 72.2
bwxy 3.6 94 21.7 417 24 165 40 657 22 179 45 74.7
bwild 7.2 9.2 19.5 37.4 5 14.9 35 60.8 59 156 40.3 70.1
n =300
weg 6.6 23.7 59.2 88.7 37 329 81.7 975 52 335 78.6 95.7

wiid 6.8  20.6 57.4 89.4 58 286 80 985 6.6 27.1 75.3 96.7
wnid 59 241 63.5 934 55 309 81.1 987 64 293 79.9 97.8

wker 33 201 59.7 916 1.1 313 81.9 983 29 295 81.1 97.8
riid 7.1 20.7 58.6 888 72 264 76.8 966 6.6 262 73.8 96.4
rnid 56 209 57 883 6.6 252 75.7 965 56 269 74.6 96.7
bxy 34 225 60.4 914 37 292 79.7 97.8 3.8 296 78.3 97.3
bpwy 26 222 59.2 91.1 33 297 79.5 979 3.1 293 79 97.5

bmcmb 49 217 60.7 914 49 305 80.2 98 52  26.1 71.7 96.8
bwxy 3.6 227 61.7 91.8 3.7 288 80 977 43 274 77.1 96.8
bwild 7.1 20.2 57 90.2 6.1 268 772 97.6 6 28.2 79 97.3
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Table 24: Empirical rejection percentages (size and size-corrected powers), Model 6 with #3-
errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed bandwidth,
¢ = 1.5 and k = 5; other procedures implemented using summary.rq.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 6 19.9 41.4 645 4.1 231 47.2 733 75 131 29.5 54.8
wiid 9.7 9.9 24.6 463 63 152 36.6 66.4 10 6.9 19 39.3
wnid 6.5 15.6 35.6 613 54 156 41.9 732 55 9.6 27.1 54.5
wker 1.9 123 32.6 59 0.1 20 47 76.6 1.6 9.3 27.1 56.4
riid 64 162 352 589 6.1 16.7 40.7 69.6 64 9.5 25.2 49.5
rnid 4.1 17 36.7 60.8 5 17.3 39.8 689 4.6 9.6 25 49.8
bxy 1.7 18.1 40 645 12 19.6 46.6 774 2.1 10.6 31.1 58.7
bpwy 0.8 17.1 40.1 643 08 18.6 44.4 755 1.1 10.5 29 57
bmcmb 24 149 349 613 1.5 192 45.1 753 25 9 27 55
bwxy 2.5 17 38.7 645 14 20 45.8 763 29 109 30 58.6
bwild 6.5 134 33.8 59 5 16.4 40.7 708 5.4 8.8 25.1 53.2
n =300
weg 64 354 74.8 949 3.8 42.1 86.4 983 53 19.8 57.7 87.9
wiid 75 302 72.4 96.7 6 31 80.2 98.7 58 146 55.2 88.7
wnid 63 378 81.1 98.7 72 299 81.8 98.8 49 184 58.8 92
wker 35 331 77.8 98.5 09 382 87.2 99.1 2 18 60.2 91.7
riid 6.6 31.8 74.9 96.8 6.1 32.6 81.2 98.5 56 167 55.7 88.5
rnid 52 339 76.3 974 52 332 81.4 98.5 46 17.1 57 89.3
bxy 34 359 78.8 98.3 2.8 349 84.8 989 24 19 61.5 91.6
bpwy 2.8 357 79.1 982 24 344 84 98.6 2 18.9 60.2 90.9
bmcmb 48 347 78 98 49 34.1 83.5 99 3.7 16.1 57.3 90.3
bwxy 39 373 80 98.1 29 36.1 85.1 99 23  18.1 59.8 90.9
bwild 6.8 342 77.1 98 54 325 83 989 5.1 163 57.5 90.9

E.4 Results for tests of a joint hypothesis

This appendix considers a joint hypothesis of significance for a bivariate subvector of the vector of
coeflicients in a linear quantile regression. Specifically, we consider the family of data-generating
processes givenby ¥ =1 + Z?:l X;+ D+ 0,(U)DX; +y(U)Xs + F~Y(U), where {Xj}?zp D,U
and {d,(-) : a € R} are as described in Section 4 of the main text, and where P [y(U) =0] = 1,
X5 ~ N(0,1) and X5 is independent of [ X; X, X3 X4 D U ]'. Thatis, X5 is an irrelevant
regressor. In what follows we consider, for quantiles @ € {.25,.50,.75}, tests of the null hypothesis
Hy : 64(a@) = y(a) = 0. We examine the empirical power of these tests against alternatives in
which 6,(a) # 0 with a € {.50,1.00,1.50} and y(a) = 0.

The corresponding simulation results are displayed in Tables 25-30 for samples of sizes
n = 100 and n = 300. These tables present the results of “F-test” implementations of our
proposed procedure with pseudo-sample size m given by expression (14) in the main text with
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k = 5. The corresponding bandwidth 4, is as given by (15) in the main text with constant
¢ = 1.5. We also present the results of “F-tests” implemented using most of the other testing
methods considered in Section 4 of the main text. Each of these other testing methods, with the
exception of riid, were implemented by direct computation of the corresponding test statistic
using the corresponding estimated asymptotic covariance generated by the summary.rq feature
of the quantreg package. We also examined implementations of wiid, wnid and wker using
anova.rq, but found that these implementations generated tests having empirical performances
that were virtually identical to those of their counterparts implemented using summary .rq.

We note that riid can only be applied to tests of joint hypotheses using anova.rq. We
also note that at present there exists no possibility of applying the rnid method to tests of joint
hypotheses within quantreg.

We see that the empirical sizes and size-corrected powers of Wald-type tests induced by the
proposed estimate of Go(«@) are competitive with the alternative methods available. These results,
along with those reported above in this appendix, supply further evidence of the potential of our
method to generate tests with good size and power performance.

47



Table 25: Empirical rejection percentages (size and size-corrected powers), “F-test’. Model 1
with N(0, 1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 6.7 19.7 37.9 61.8 45 223 43.3 65.8 6.7 19.2 37.1 59.4
wiid 11.9 9.5 22.6 43 8.1 103 24.8 519 13 7.4 16.8 35.9
wnid 11.9 9.2 24.1 474 81 121 31.2 59.1 13 6.5 18.6 38.2
wker 1.3 9.1 28.8 563 0.5 128 34.9 648 1.2 102 28.2 54.3
riid (anova.rq) 3.7 12 31.5 57.7 3 11.9 34 63.5 4.8 8 22.7 49.2
bxy 33 10 26 541 2.1 132 329 62.2 3 10.8 26.2 51.3
bpwy 1.5 9.1 26.3 534 1.5 129 33.1 623 13 9.7 25.8 51.4
bmcmb 3.8 7.5 23.7 484 2.8 125 30.8 59.9 32 10.1 26 50.2
bwxy 4.7 9.3 26.3 532 2.8 137 33.1 62 4.3 9.3 25.7 51.2
bwild 8.7 6.9 24.3 47.7 8 11.5 27.9 555 9.6 9.7 24.8 48.7

n =300

weg 5.7 26.5 68.4 94.1 47 29 72.7 955 54 306 68 92
wiid 8.7 17 57.7 927 69 172 63.2 954 8.8 19.6 59.2 91.2
wnid 8.7 19 64.4 954 69 203 68.7 96.8 8.8 21.6 65.2 94.7
wker 3.7 19.4 67.6 963 1.5 202 70.9 977 3.1 245 68.1 95.5
riid (anova.rq) 4.7 21.3 69.8 96.5 44 25 73.3 97.8 54 225 67.4 95.6
bxy 4 20.9 67.3 96.7 44 19.1 66.1 96.1 43 242 66.7 94.3
bpwy 3.7 20.3 67.5 96 43 18.8 64.4 95.8 3.5 233 66.5 94.2
bmcmb 5.8 20.8 67.7 96 6.5 20 65.3 96 59 234 63.4 94.4
bwxy 4.8 19.5 66.2 96.1 44 19.8 65.8 958 44 245 65.8 94.6
bwild 8.1 21.4 68.1 96.2 7.2 195 65.6 952 7.6 22 63.4 93.4
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Table 26: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 2
with N(0, 1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 8.1 18.3 27.4 42.7 5 20.7 41.2 63 7.5 21.8 425 63.2
wiid 11.1 8 14.2 262 79 9.4 26 46.7 11.7 104 26.4 50.6
wnid 11.1 7.6 12.9 264 79 108 29 50.1 11.7 115 30 51.6
wker 1.3 11.1 20.5 356 0.6 8.7 25.8 48.3 1.5 13 35.6 62.4
riid (anova.rq) 4.1 7.9 15.9 29.6 42 117 27.1 48.7 5.2 10.7 30.9 54.4
bxy 3.6 7.6 15.6 29.7 2 9 23.8 452 3.1 12.7 33 59.6
bpwy 1.5 8.1 15.8 312 1.6 8.7 23.9 447 1.5 11.8 32 58
bmcmb 3.7 9.5 14.9 29.5 35 10.1 25.6 45 3.5 13.1 32.1 56
bwxy 5.1 8.4 15.3 302 33 9.3 26.1 46.9 4.9 12.1 32.6 57.8
bwild 8.8 8.4 14.2 30 79 9.5 22.1 42.6 8.3 12.1 30.8 55.1
n =300
weg 6.2 21 55.4 81.5 34 349 75.7 94 54 33.8 71.6 92.1
wiid 8.4 14.8 46.5 814 73 219 67.4 93.2 8.1 24.3 62.2 91.4
wnid 8.4 18.7 56 843 73 242 73.3 95 8.1 25 69.6 94.3
wker 2.7 12.8 46.3 793 1.1 26.6 71.7 94.1 2.8 30.7 72.9 94.6
riid (anova.rq) 6.3 14.1 442 759 45 258 70.8 94.3 53 23.5 69.5 93.3
bxy 44 14.3 45.3 73.1 3.6 244 67.8 91.6 4 28.1 70 92.2
bpwy 3.7 14.2 46.8 759 29 257 67.1 91.6 3.8 27.3 68.8 92.3
bmcmb 6.3 12.9 43.8 73.8 5.1 237 66.3 90.6 5.7 26.5 65 90.9
bwxy 5.8 12.2 41.5 71.1 3.5 233 66.1 91.8 4.6 26.7 67.8 91.1
bwild 8.2 13.2 443 746 59 246 66.1 91.5 6.8 27.9 69 92.3
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Table 27: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 3
with N(0, 1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7 16.9 25.8 375 43 255 38.7 57.8 7.2 24.8 47.1 65
wiid 10.2 6.3 11.8 22.7 8 7.7 17.5 329 113 109 24.1 473
wnid 10.2 6.3 12 23.5 8 9 20 36.6 11.3 109 27.6 47
wker 1.3 6.6 15 29.1 04 117 24.8 42.6 1.7 11.9 37.4 61.7
riid (anova.rq) 4 6.7 15.1 29.7 43 8.6 19.8 38.5 4.8 13.5 31.4 55.1
bxy 2.9 6.8 16.3 282 27 11.1 21.7 37.8 33 12.8 34.9 57.6
bpwy 1.3 74 14.5 28.5 22 9.5 19.6 36 1.9 12.9 36.5 59.9
bmcmb 3.8 5.6 14.6 23.6 32 11 20.1 36.1 3.8 114 31.2 52
bwxy 4.8 6.2 13.8 267 34 112 21.8 40 5.5 11.5 329 55.5
bwild 7.7 6.9 15.3 274 85 10 18.4 33.6 8.3 12.9 35.2 56
n =300
weg 6.3 17 41.3 713 43 297 72.8 95.3 5.7 42.6 85.3 98
wiid 8.4 12.1 354 69.2 69 223 66.4 95.7 6.4 37.5 84 98.7
wnid 8.4 14.4 42 74 6.9 244 70.8 96.6 6.4 42 88.7 99.5
wker 2.7 8.4 32.5 68.6 1.3 245 71.2 96.9 2.7 454 91 99.6
riid (anova.rq) 4.7 10.3 36.8 723 52 229 71.4 96.6 4.4 38.2 87.1 98.7
bxy 4.6 9.5 31.9 647 37 236 67.6 94.3 4 38.4 86.4 98.6
bpwy 3.7 10 34.1 674 37 239 69.5 94.6 2.5 41.9 87.9 98.7
bmcmb 6 10.3 31.2 649 58 227 67.2 93.7 53 39.8 86.6 98.4
bwxy 4.9 10.2 34.1 663 39 248 69.6 94.8 4.2 38.7 85.6 98.7
bwild 8.1 9.6 31.2 66.9 7 20.9 64 91.8 7.3 38.7 86.5 98.7
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Table 28: Empirical rejection percentages (size and size-corrected powers), “F-test’. Model 4
with N(0, 1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.7 19.8 28.9 40.5 43 224 433 66.4 7.8 22.9 40.8 60
wiid 12.9 6 10.7 185 7.2 137 30.6 56.3  12.1 8.1 18.5 36.5
wnid 12.9 5.8 10.4 227 72 147 334 57.5 121 8.8 21 41.2
wker 1.7 9.2 18.2 342 04 9.6 28 51 1.7 9.3 27.4 50.9
riid (anova.rq) 4.9 5.9 14.9 26.7 39 12 28.5 53.1 6.1 7.7 22.1 43.7
bxy 3.8 7.7 14.6 257 22 11.7 27.4 494 47 8.4 24.3 459
bpwy 1.6 7.2 14.6 274 2.1 11.1 26.5 50.5 2 10.4 27.9 50.8
bmcmb 4.2 74 13.9 26.7 34 108 27.5 496 43 10.9 26.6 44.7
bwxy 4.9 8.8 16.3 30.2 3 11.6 29.6 52.5 5.3 11 27.6 48.9
bwild 8.6 8.5 15.2 269 65 117 28.2 477 104 74 21.2 40

n =300

weg 6.8 19.3 49.3 764 49 321 73.7 93.5 5.5 38.6 81.2 97.8
wiid 8.4 12.7 394 734 63 23.6 67.4 93.4 8.7 24.9 76.4 97.9
wnid 8.4 16.5 474 799 63 262 71.5 95.9 8.7 31.8 82.8 99
wker 33 13.4 42.6 76.1 12 248 69.6 95.5 2.2 30.2 85.2 99.1
riid (anova.rq) 5.7 12.1 45.2 79.8 4 26.4 71.4 95 5 30.6 834 98.9
bxy 44 14.3 42.1 73 38 239 65 91.8 4.8 26.4 79 98
bpwy 4 14.6 43 743 3.6 235 64.7 91.7 3.8 28.3 80.5 98.4
bmcmb 7.2 13.8 40 70 5.7 24 66.7 92.5 6.5 26.5 71.7 97.8
bwxy 5.3 14.1 43 73 43 241 65.6 91.6 5.3 26.1 79 98.4
bwild 9.3 14 40.5 715 79 225 63 91.2 7.3 24.5 76.3 97.9
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Table 29: Empirical rejection percentages (size and size-corrected powers), “F-test”. Model 5
with N(0, 1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n =100 a =0.25 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 7.2 17.9 29.7 459 47 217 41 64.6 8.2 19.5 41.6 64.6
wiid 12.3 6.1 11.8 239 8.7 8.2 21.3 462 11.1 9.2 22.6 48
wnid 12.3 5.7 15.2 279 8.7 8.9 25.6 512 11.1 9.1 26.9 54.2
wker 1.1 7 17 363 03 9.7 29.2 56.3 1.6 10.6 32.6 63.2
riid (anova.rq) 5.1 6.5 16.9 347 438 8.9 28.6 54.8 3.9 12.1 33.9 62.3
bxy 3.7 5.6 15.3 31.8 32 8.9 27.1 51.4 3.6 10.8 30.8 58.6
bpwy 1.5 6.7 154 355 23 8.9 27 52.9 1.8 12.4 334 61.7
bmcmb 39 6.4 14.9 309 3.8 8 22.7 48.5 3.5 10.3 31.6 58.3
bwxy 5.3 6.2 16.1 34 43 7.7 26.1 52.8 4.7 11.9 32.6 60.2
bwild 10.1 7 15.6 32 8.6 10 254 49.9 10 9.2 26.6 52.5
n =300
weg 5 26.2 64 89.9 42 347 78.4 97 5.5 35.9 79.4 97.4
wiid 8.2 14.7 494 85.6 7.7 221 72.1 97.8 9.4 25.7 74.1 97.6
wnid 8.2 18.6 58.2 894 7.7 231 75.5 98.7 9.4 28.7 79 98.4
wker 2.9 18.2 61.4 914 09 236 75.7 98.2 2.9 33.1 83 99.1
riid (anova.rq) 4.1 21.6 60.3 928 43 276 77 97.7 5.2 29.2 81.1 98.6
bxy 39 16.7 55.6 879 43 233 71.6 96.6 4.3 29 79.2 98.4
bpwy 3 16.7 57.4 88.2 42 227 70.8 97 33 29.9 79.4 98.3
bmcmb 5.5 17.1 56.5 87.8 6.5 237 71.2 96.7 6.2 29.2 78.1 97.8
bwxy 4.7 16.8 57.5 875 48 242 72.6 97.3 5 29.6 79.2 98
bwild 7.3 17 56.5 88 7.8 20.8 68.2 96.2 8.3 29.9 78.5 97.9
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Table 30: Empirical rejection percentages (size and size-corrected powers), “F-test’. Model 6
with N(0, 1)-errors. 1000 Monte Carlo replications; procedure “weg” implemented with fixed
bandwidth, ¢ = 1.5 and k = 5; other procedures implemented using summary.rq unless otherwise
indicated.

n =100 a =025 a=0.5 a =0.75
Method/a 0 0.50 1.00 1.50 0 0.50 1.00 1.50 0 0.50 1.00 1.50
weg 9.1 18.5 38.5 61.5 4.5 21.4 44.9 72.2 7.8 14.9 29.6 50
wiid 14 7.8 20.8 424 105 9 24.1 514 122 6.8 15.1 35
wnid 14 94 22.6 4.6 105 10 27.4 577 122 5.8 13.8 29.5
wker 1.3 11.4 30.3 58.8 0.2 12.6 36.9 68.6 1.6 7.3 20.1 44.6
riid (anova.rq) 5.5 10.7 29.7 55.3 4.3 11.8 35.7 67.9 4.1 7.2 21 439
bxy 3.8 11 30.5 56.7 24 11.9 34.5 66 34 6.1 19.2 41.8
bpwy 2 11.2 28 53.7 1.8 12.9 38.8 68.3 1.5 6.6 17.3 38.7
bmcmb 4.2 10.1 26.7 51.4 3 12.7 35.1 66.5 3.6 6.9 17.2 37.6
bwxy 6 10 26.2 53.1 29 11.5 36.5 66.5 4.8 6.4 18.3 41.1
bwild 10.5 112 29.4 55.9 8.4 10.6 31.3 60.8 8.9 5.6 15.7 38
n =300
weg 6.3 35.6 75.2 95.7 32 36.6 80.7 98.6 5.5 18.3 49.3 83.1
wiid 9.2 24.1 67.3 94.7 6.3 24.8 73.9 97.2 7.8 11.1 40.9 80.7
wnid 9.2 29.1 73.3 97.4 6.3 29.8 78.8 98.5 7.8 12.8 453 86.2
wker 2.9 36.6 81.8 98.9 0.8 30.8 80.4 98.9 3 13.4 48.9 89.3
riid (anova.rq) 5.7 28.4 71.5 97.8 4.6 27.6 77.1 99 4.7 11.2 474 88.4
bxy 4.1 314 76.3 97.2 3.6 28.7 76.8 98 39 11.1 44 .4 85.2
bpwy 3.5 31.8 76.4 97.4 33 27.9 76.3 97.6 3 12.7 48 86.3
bmcmb 5.8 30.8 75.5 97.4 4.8 30.5 71.7 98.5 5 12.2 46.9 87.1
bwxy 4.5 31.1 75.4 97.3 33 29 71.5 98.1 4.7 11.9 449 85.5
bwild 7.6 29.4 74.2 97.3 6.6 25.9 73.1 97.3 7.8 11.3 435 84.3

F Additional Material on the Empirical Example

We present in this appendix further details regarding the empirical application considered in
Section 5 of our paper. Recall that we are concerned with estimating the distinct effects of
treatment for experimental subjects at each quantile in a grid of 300 evenly spaced points in
[.20,.80]. This is done in the context of the quantile-regression model

oarix(@) = XTB(a), (59)

where a € [.20,.80], where T denotes the duration of unemployment in weeks and where the
regressors contained in X include a constant term, an indicator for assignment to treatment and
various demographic or socioeconomic control variables listed in Koenker and Xiao (2002, p.
1603).

53



We depart in this appendix from the general question of treatment-effect heterogeneity consid-
ered in Section 5 of the main text by focusing on the questions of whether the effects of treatment
by quantile differ significantly according to the age of the participants and also according to
whether participants have some expectation to be recalled to a previously held job, although not
to the extent of having a definite date of recall within 60 days of filing their applications for
unemployment insurance (UI) benefits (Corson et al., 1992, p. 9). We note in this connection
that of the 6384 participants in this experiment, 3460 (54%) were under the age of 35, while 753
(12%) indicated to the experimenters some expectation of being recalled to previous employment.
Participants in the latter category were assumed by the experimenters to be similar to claimants
with no stated expectation of returning to a previous job in terms of their assumed response to a
promised bonus payment upon securing new employment within the qualifying period. On the
other hand, UI claimants who indicated both an expectation of recall and a definite recall date
were disqualified from participation in the experiment as their stated confidence in returning to
work was assumed to make their hypothetical behavioral response to treatment systematically
different from UI claimants expressing less confidence in returning to full-time employment.

Figure 1 displays, in the context of the model given above in (59), estimated differences in
treatment effects between workers younger than 35 and those aged 35 and older at the time of the
experiment. These estimated differences in treatment effects are plotted for each quantile in a grid
of 300 points in [.20,.80]. The shaded area in Figure 1 indicates the union of 90% confidence
intervals for the estimated difference in treatment effects at each quantile. These confidence
intervals are computed using our proposed method with data-driven bandwidth given above in
(54) and where the pseudo-sample size m is given by (14) in the main text with k = 5. These
confidence intervals imply that workers younger than 35 tend to exit unemployment as a result of
the treatment significantly more quickly than workers 35 and older for nearly all quantiles in the
interval [.50,.80].

Estimated differences in treatment effects between workers with some expectation of being
recalled to previous employment and those with no such expectation are displayed in Figure 2 for
each quantile in a grid of 300 points in [.20,.80]. The shaded area in Figure 2, like that in Figure 1,
denotes the union of 90% confidence intervals for the estimated difference in treatment effects,
pointwise by quantile. These confidence intervals are computed in the same way as was done when
generating the shaded area appearing in Figure 1. The confidence intervals in Figure 2 imply that
the treatment has the effect of actually increasing unemployment durations for workers expecting
a recall to a previous job for nearly all quantiles in the interval [.43,.74]. All this suggests that
the cash bonus may not be as relevant as originally hoped for those claimants who indicated some
degree of confidence in the temporary nature of their current spell of unemployment. In other
words, this result suggests that the inclusion of these claimants in the experiment is as potentially
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problematic as the hypothetical inclusion of those excluded claimants who indicated both an
expectation of recall and a definite recall date.

In summary, we have used our proposed method of inference to show that the treatment
tends to cause participants having some expectation of being recalled to a previous job to exit
unemployment more slowly than those not expecting to be recalled. This result further illustrates
the utility, in terms of understanding behavioral responses to changes in unemployment insurance
rules, of accounting for heterogeneity in treatment effects via the introduction of simple interaction
terms in quantile-regression models.

55



Figure 1: Pennsylvania reemployment bonus experiment: 6384 observations. Differences in
estimated treatment effects by quantile for workers younger than 35 and workers aged 35 and
older, a-quantile regressions, « € [.20,.80]. The shaded area denotes the union of pointwise 90%
confidence intervals, computed according to our proposal with data-driven bandwidth and k = 5,
for each of 300 quantiles in [.20,.80]. Dotted vertical lines denote the .25-, .35-, .50-, .65- and
.75-quantiles.
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Figure 2: Pennsylvania reemployment bonus experiment: 6384 observations. Differences in
estimated treatment effects by quantile for workers expecting and not expecting to be recalled
to a previous job, a-quantile regressions, @ € [.20,.80]. The shaded area denotes the union
of pointwise 90% confidence intervals, computed according to our proposal with data-driven
bandwidth and k = 5, for each of 300 quantiles in [.20, .80]. Dotted vertical lines denote the .25-,
.35-,.50-, .65- and .75-quantiles.
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