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Strong consistency of linear discriminant analysis is established under wide
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1. INTRODUCTION

Consider a discriminant problem where the goal is to assign an individual to one

of a …nite number of classes or groups g1; :::; gk on the basis of p observed features

x = (x1; :::; xp)
0. To do this, the space Rp is partitioned into subsets R1, ..., Rk such
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that, for i = 1, ..., k, the individual is classi…ed in group gi when x belongs to Ri.

This procedure generates a discriminant rule as a mapping r : Rp ! f1, ..., kg that
takes the value r(x) = i whenever the individual is assigned to the ith group, and

that can be therefore written as r(x) =
Pk

i=1 iIRi(x), where IRi(x) is the indicator

function of the subset Ri. Let g be the discrete random variable, often called class

index or group label, that represents the true membership of the individual under

study. In agreement with the previous notation, the group label takes values g = i

with class prior probabilities ¼i = P [g = i] > 0, i = 1, ..., k. Throughout this

paper it is assumed that the class conditional distributions x j g = i are absolutely
continuous with respect to Lebesgue measure in Rp, that is, there exist density

functions fi(x) such that P [x 2 Aj g = i] =
R
A
fi(x)dx, i = 1, ..., k. Given (x,g), rule

r(x) =
Pk

i=1 iIRi(x) is in error when r(x) 6= g and its probability of misclassi…cation
L[r(x)] = P [r(x) 6= g] = 1¡ P [r(x) = g] = 1¡Pk

i=1 P [x 2 Ri ; g = i] is

L[r(x)] = 1¡
kX
i=1

P [g = i]P [x 2 Ri j g = i] = 1¡
kX
i=1

¼i

Z
Ri

fi(x)dx . (1)

The rule r¤(x) =
Pk

i=1 iIR¤i (x) that minimizes the functional L[r(x)], or Bayes rule,

is given by the partition R¤i = fx : ¼ifi(x) = max1·j·k ¼jfj(x)g, i = 1, ..., k (see

e.g. Seber 1984, chap. 6) and, according to (1), its probability of misclassi…cation is

the corresponding optimal or Bayes error

L¤ = L[r¤(x)] = 1¡
kX
i=1

¼i

Z
R¤i

fi(x)dx . (2)

In general both ¼i and fi(x) are unknown, so rules used in practice are sample based

rules of the form brn(x) = Pk
i=1 iI bRi;n(x), where the subsets bRi;n depend on a data

set Dn = f(xj,gj) : j = 1, ..., ng formed by i.i.d. observations from the pair (x,g),

obtained sampling from individuals previously classi…ed. The appropriate measure

of error of a sample rule brn(x) is its conditional probability of misclassi…cation Ln =
P [brn(x) 6= g j Dn]. If the pair (x;g) is assumed to be independent of the data in
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Dn, using (1)

Ln = 1¡
kX
i=1

¼i

Z
bRi;n fi(x)dx (3)

is a random variable that satis…es 0 · L¤ · Ln · 1. Following Devroye, Györ… and
Lugosi (1996, chap. 6), the sequence of rules fbrn(x)g is weakly or strongly consistent
when, as n goes to in…nity, Ln converges in probability or almost everywhere (a:e:)

to the optimum L¤.

A very common technique for constructing sample rules is the so called linear

discriminant analysis (LDA) as described for example in chapter 4 of the recent

book by Hastie, Tibshirani and Friedman (2001). The aim of this paper is to explore

some of the asymptotic properties of the conditional probability of misclassi…cation

of LDA. Results obtained may help to explain the frequent correct behavior of LDA

in applications, either with real or simulated data. Section 2 establishes notation and

presents some of the issues involved in LDA classi…cation procedures. Sections 3 and

4 give results on strong consistency and section 5 studies robustness to heterosce-

dasticity. Section 6 gives some …nal comments and section 7 collects proofs of some

auxiliary results.

2. BACKGROUND AND MOTIVATION

Write the given database in the form Dn = fxij : i = 1, ..., k , j = 1, ..., nig,
where ni is the number of observations in class gi. Compute the class centroids

xi =
Pni

j=1 xij=ni, i = 1, ..., k, and obtain the overall sample mean vector x =Pk
i=1

Pni
j=1 xij=n =

Pk
i=1(ni=n)xi as a weighted average of the xi. Given a feature

vector x = (x1; :::; xp)
0, de…ne its standardized version as

y = b§¡1=2p (x¡ x) , (4)

where b§p = 1

n¡ k
kX
i=1

niX
j=1

(xij ¡ xi)(xij ¡ xi)0 , (5)

3



is a pooled estimator of the assumed common dispersion matrix in each group. Notice

that the standardized data yij = b§¡1=2p (xij¡x), i = 1, ..., k, j = 1, ..., ni, have class
centroids yi = b§¡1=2p (xi ¡ x), i = 1, ..., k, overall sample mean y = 0, and pooled
dispersion estimator b§p;y = Ip. LDA assigns x = (x1; :::; xp)0 to gi when
(x¡ xi)0 b§¡1p (x¡ xi) = min

1·j·k
(x¡ xj)0 b§¡1p (x¡ xj) = min

1·j·k
kb§¡1=2p (x¡ xj)k2

= min
1·j·k

ky ¡ yjk2 = ky ¡ yik2 , (6)

where k:k is the usual euclidean norm. In the …rst line of (6), the feature vector is
assigned to the class whose centroid is closest in the sense of the Mahalanobis distance

generated by the matrix of (5). In the second line, the metric is the euclidean distance

between the standardized feature vector of (4) and the corresponding standardized

class centroids yi. As a result of appendix 7.1, if all the class conditional distributions

x j g = i are absolutely continuous, the matrix b§p is positive de…nite (p.d.) with
probability one for all n ¸ p + k, so, for practical purposes, both its inverse b§¡1p
and the square root b§¡1=2p considered above are well de…ned. Criterion (6) does not

depend on the quadratic terms x0 b§¡1p x or y0y and produces then, either in the x or
y spaces, linear boundaries of separation between classes.

On the other hand, suppose that after projecting onto a direction a 2 Rp, kak = 1,
separation between the projected standardized class centroids a0yi = a

0 b§¡1=2p (xi¡x),
i = 1, ..., k, is calibrated by the weighted sum of squares

kX
i=1

ni
n
(a0yi)

2 = a0(
kX
i=1

ni
n
yiy

0
i)a = a

0 b§¡1=2p
bBb§¡1=2p a , (7)

where bB = kX
i=1

ni
n
(xi ¡ x)(xi ¡ x)0 , (8)

is the p£ p sample between groups dispersion matrix. As seen in appendix 7.1, if the
class conditional distributions x j g = i are absolutely continuous r(b§¡1=2p

bBb§¡1=2p ) =

r(bB) = q = min(k¡1,p), so the spectral representation of the matrix of the quadratic
form in (7) is b§¡1=2p

bBb§¡1=2p = bCbDbC0 , (9)
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where bC = (b°1, b°2, ..., b°p) is a p £ p orthogonal matrix of eigenvectors and bD =

diag(b̧1, ..., b̧p) is a p £ p matrix of nonnegative eigenvalues b̧1 ¸ b̧2 ¸ ... ¸ b̧q >
0 = b̧q+1 = ... = b̧p. The eigenvectors b°j can be obtained sequentially as orthogonal
directions that, as measured by criterion (7), maximize separation between projected

standardized centroids. The eigenvalue b̧j = b° 0j b§¡1=2p
bBb§¡1=2p b°j is the strength of

separation obtained in the jth direction. Notice that only q directions are needed

for reaching the total separation index
Pq

j=1
b̧
j. Put bgj = §¡1=2p b°j, j = 1, ..., q. IfcW =

Pk
i=1

Pni
j=1(xij¡xi)(xij¡xi)0=n = (n¡k)b§p=n is the p£p sample within groups

dispersion matrix, the pairs (nb̧j =(n¡k), bgj) are the eigenvalues and eigenvectors ofcW¡1bB, where the eigenvectors are normalized by conditions bg0j b§pbgk = ±jk = 1 for
j = k and ±jk = 0 for j 6= k. The bgj, usually known as discriminant directions, can
be also obtained as solutions of the Fisher-Rao discriminant criterion

max
g2Rp

g0bBg
g0cWg

, (10)

and, therefore, maximize the ratio of the between to the within variability. In par-

ticular, the …rst discriminant direction bg1 generates the so called Fisher’s linear
discriminant function (LDF ) bg01(x¡ x).
Select now an integer 1 · r · q = min (k ¡ 1,p), and partition the matrix bC of

(9) in the form bC = (bC1(r) j bC2(r)), where bC1(r) = (b°1, b°2, ..., b°r) is of p£ r andbC2(r) = (b°r+1, ..., b°p) of p£ (p¡ r). Since bC is orthogonal, the distances considered
in (6) can be decomposed additively in the form

(x¡ xi)0 b§¡1p (x¡ xi) = kb§¡1=2p (x¡ xi)k2 = ky ¡ yik2 = kbC0(y ¡ yi)k2
= kbC01(r)(y¡ yi)k2 + kbC02(r)(y ¡ yi)k2 . (11)

Generalizing (7), separation of standardized centroids after projecting onto the subs-

pace generated by the columns of bC1(r) can be quanti…ed by the weighted sum
kX
i=1

ni
n
kbC01(r)yik2 = kX

i=1

ni
n
tr[bC01(r)yiy0i bC1(r)]

5



= tr[bC01(r)b§¡1=2p
bBb§¡1=2p

bC1(r)] = rX
j=1

b̧
j . (12)

The sum in (12) is an aggregate additive measure of the degree of separation obtai-

ned after projecting onto each one of the directions in bC1(r). Similarly, separation
after projecting onto the column space of bC2(r) can be measured by the number
tr[bC02(r)b§¡1=2p

bBb§¡1=2p
bC2(r)] =Pq

j=r+1
b̧
j. Let bpj = b̧j=Pq

j=1
b̧
j be the relative pro-

portion of separation provided by direction b°j, j = 1, ...., q. When the cumulative
relative proportion bqr = Pr

j=1 bpj = Pr
j=1
b̧
j=
Pq

j=1
b̧
j is “close” to one, the second

summand in (11) could be ignored for classi…cation purposes. This leads to a reduced

rank linear discriminant analysis (RLDA) criterion that assigns x to gi when

kbC01(r)b§¡1=2p (x¡ xi)k2 = kbC01(r)(y ¡ yi)k2
= min

1·j·k
kbC01(r)(y ¡ yj)k2 = min

1·j·k
kbC01(r)b§¡1=2p (x¡ xj)k2 . (13)

Criterion above can be expressed in terms of the canonical or discriminant coordi-

nates byr = bC01(r)b§¡1=2p (x ¡ x) = bC01(r)y, that allow writing (13) as kbyr ¡ bmik2 =
min1·j·k kbyr ¡ bmik2, where bmi = bC01(r)b§¡1=2p (xi ¡ x) = bC01(r)yi are the canonical
coordinates of centroid xi, i = 1, ..., k.

LDA and RLDA were developed by Fisher (1936) and Rao (1948) under no par-

ticular assumption for the class conditional densities fi(x), i = 1, ..., k. The goal

was to construct a classi…cation procedure after a search for the subspace spanned by

the directions that, as measured by a criterion of the form (10), maximize separation

between class centroids. A traditional justi…cation for LDA is that (6) is a sample

plug-in version of the optimal procedure obtained when the class prior probabilities

are identical and the class conditional densities are multivariate normal with the

same dispersion matrix. Notice that if ¼i = 1=k and fi(x) » Np(¹i;§) for i = 1, ...,
k, where the ¹i are p£ 1 vectors and § is a p£ p p.d. matrix, the subset R¤i of the
associated Bayes rule r¤(x) =

Pk
i=1 iIR¤i (x) is formed by all points x 2 Rp such that

(x¡ ¹i)0§¡1(x¡ ¹i) = min
1·j·k

(x¡¹j)0§¡1(x¡ ¹j) . (14)
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Criterion (6) is obtained after replacing in (14) § and ¹i by, respectively, b§p and
xi. However, and as remarked recently by Hastie et al. (2001, sec. 4.3), it is

well-known that LDA is fairly robust against deviations from the standard gaussian

assumptions and, as indicated by the estimated behavior of its conditional probability

of error, performs well in a diverse set of classi…cation tasks even as compared with

more sophisticated procedures. This is well illustrated, for example, by Michie,

Spiegelhalter and Taylor (1994) in the statlog project. McLachlan (1992, sec.

5.6.1) reports conclusions from simulation studies. Broadly speaking, for sample

sizes n large enough rule (6) seems to work well when the class conditional densities

fi(x) are symmetric but not necessarily gaussian. LDA tolerates also some mild

degree of class dispersion heterogeneity. On the other hand, as suggested by Johnson

and Wichern (1998, p. 697), not much is known about the behavior of RLDA in

practice. According to Hastie, Tibshirani and Buja (1994), when q = min(k ¡
1,p) is relatively large as compared to p and for some r ¿ q = min (k ¡ 1,p) the
cumulative relative proportion of separation among centroids bqr =Pr

j=1
b̧
j=
Pq

j=1
b̧
j

is close to one, RLDA eliminates spurious directions with no relevant information for

separation-classi…cation purposes and can be then preferable to LDA. Nevertheless,

and following Flury (1997, sec. 7.3), the choice in rule (13) of the number of canonical

coordinates r to be used in practice remains as a relatively undetermined question.

As seen next, describing the asymptotic behavior of the conditional probability of

misclassi…cation of both LDA and RLDA can provide some analytical answers for

the issues presented in this paragraph.

3. STRONG CONSISTENCY

Suppose that, for i = 1, ..., k, the ith class conditional distribution can be repre-

sented as

x j g = i D= ¹i +§1=2u , (15)
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where ¹i is a constant p £ 1 vector, §1=2 is the square root of a p £ p p.d. matrix
§, and u is a p £ 1 random vector independent of the class index g. According to

Cook and Yin (2001, p. 158), when (15) holds the feature vector satis…es an inverse

location regression model. In what follows, it is assumed that u has an spherical

density g(u0u), where g(:) is a function from [0,1) to [0,1). Under this assumption,
the ith class conditional distribution x j g = i has an elliptically symmetric density

fi(x) = j§j¡1=2 g[(x¡¹i)0§¡1(x¡¹i)] . (16)

If also g(:) is such that
R +1
0

tp=2g(t)dt < +1, thenE(x j g = i) = ¹i and V ar(x j g =
i) = a§, where a > 0 is a positive constant independent of the speci…c value g = i

(Muirhead, 1982 p. 34). Therefore, the marginal mean vector and dispersion matrix

of the feature vector x are ¹ = E(x) =
Pk

i=1 ¼iE(x j g = i) =
Pk

i=1 ¼i¹i and

¡ = V ar(x) = V ar[E(x j g)] + E[V ar(x j g)] = B+W ,

where B = V ar[E(x j g)] = Pk
i=1 ¼i(¹i¡¹)(¹i¡¹)0 andW =

Pk
i=1 ¼iV ar(x j g =

i) = a§ are, respectively, the populational between and within dispersion matri-

ces. This section presents limit results under the setup (15)-(16) for the conditional

probability of misclassi…cation of both LDA and RLDA rules.

3.1 Strong consistency of LDA

For identical class prior probabilities ¼i = 1=k, the ith subset of the Bayes rule

r¤(x) =
Pk

i=1 iIR¤i (x) is determined by condition fi(x) = max1·j·k fj(x) so, if fi(x)

is as in (16), R¤i is formed by all the points x such that

j§j¡1=2 g[(x¡ ¹i)0§¡1(x¡ ¹i)] = max
1·j·k

j§j¡1=2 g[(x¡¹j)0§¡1(x¡ ¹j)] . (17)

Moreover, if the function g(:) is positive and strictly decreasing, using W = a§,

a > 0, (17) is equivalent to (x¡¹i)0W¡1(x¡¹i) = min1·j·k (x¡¹j)0W¡1(x¡¹j).
Replacing ¹i andW by respectively estimators xi and b§p, the corresponding sample
version of criterion (17) is then (x¡xi)0 b§¡1p (x¡xi) = min1·j·k (x¡xj)0 b§¡1p (x¡xj),
exactly as in the …rst line of (6) in section 2.
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Theorem 1 If the class prior probabilities ¼i = P [g = i] are identical and the fea-

ture vector x follows an inverse location regression model (15) with class conditional

densities (16), where g(:) is a continuous and strictly decreasing function such thatR +1
0

tp=2g(t)dt < +1 and g(t) > 0 for all t ¸ 0, then the LDA rule is strongly

consistent.

Proof. Put bln(x) = Pk
i=1 iIbLi;n(x) for the LDA rule, where bLi;n is the sub-

set of Rp formed by the points x that satisfy condition (x ¡ xi)0 b§¡1p (x ¡ xi) =
min1·j·k (x ¡ xj)0 b§¡1p (x ¡ xj). According to section 1, the goal is to proof that
the conditional probability of error Ln = P [bln(x) 6= g j Dn] converges a:e: as

n ! 1 to L¤ = P [r¤(x) 6= g], the optimum probability of error of the Bayes

rule r¤(x) =
Pk

i=1 iIR¤i (x). To do this, notice that
bLi;n can be reexpressed as

bLi;n = fx : bfi;n(x) = max
1·j·k

bfj;n(x)g , (18)

where, for i = 1, ..., k,

bfi;n(x) = j b§ j¡1=2 g[(x¡ xi)0 b§¡1(x¡ xi)] , (19)

and b§ = b§p=a. Since xi is an estimator of ¹i and b§ = b§p=a ofW=a = §, bfi;n(x)
in (19) is an estimator of fi(x) = j§j¡1=2 g[(x¡¹i)0§¡1(x¡¹i)] in (16) so, by (18),
the LDA rule can be seen as a plug-in version of the Bayes rule r¤(x) =

Pk
i=1 iIR¤i (x)

given by subsets R¤i = fx : fi(x) = max1·j·k fj(x)g. By theorem 1 in Devroye and

Györ… (1985, p. 254), the di¤erence Ln ¡ L¤ can be bounded in the form

0 · Ln ¡ L¤ · 1

k

kX
i=1

Z
Rp
j fi(x)¡ bfi;n(x) j dx . (20)

For each …xed 1 · i · k, the sequence of random functions f bfi;n(x)g is, with
probability one, a sequence of densities such that

0 ·
Z
Rp
j fi(x)¡ bfi;n(x) j dx = 2Z

Rp
[fi(x)¡ bfi;n(x)]+ dx , (21)

where [fi(x)¡ bfi;n(x)]+ is the positive part of the di¤erence fi(x)¡ bfi;n(x). By the
results of appendix 7.2, as n!1, xi ! E(x j g = i) = ¹i and b§ = b§p=a!W=a =
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§, a:e., and thus, since the function g(:) in (19) is continuous, [fi(x) ¡ bfi;n(x)]+
converges a:e: to zero for all x 2 Rp. On the other hand, 0 · [fi(x)¡ bfi;n(x)]+ · fi(x)
so by lemma 3.1.3 in Glick (1974) (see also Prakasa Rao 1983, p. 191)

R
Rp [fi(x) ¡bfi;n(x)]+dx converges to zero a:e: for all i = 1, ..., k, and by (20) and (21) this leads

to Ln ! L¤ a:e:

Under the assumptions of theorem 1, the conditional probability of error Ln =

P [bln(x) 6= g j Dn] is asymptotically close to the optimum L¤. Phrased di¤erently,

LDA should have a good behavior as long as the sample size n is large enough,

the prior class probabilities ¼i are identical and the class conditional distributions

x j g = i are described by an inverse location regression as (15), where the “error”
u has an adequate spherically symmetric density g(u0u). This is a ‡exible model

that includes a variety of distributions, among others: i) the multivariate normal,

taking g(t) = (2¼)¡p=2 exp(¡t=2) ; ii) mixtures of normals with the same disper-
sion shape, taking g(t) = (2¼)¡p=2[(1 ¡ ") exp(¡t=2) + "¾¡p exp(¡t=2¾2)], where
0 < " < 1 and ¾ > 0; and iii) the multivariate Student’s tk distribution with

k > 2 degrees of freedom, taking g(t) = c(k; p)[1 + (t=k)]¡(k+p)=2, where c(k; p) is

a constant depending only on k and p. Theorem 1 establishes then a robustness

property of the LDA rule indicating that its good performance does not depend

on speci…c gaussian assumptions for the class conditional densities fi(x), but on

the existence instead of a wider homoscedastic inverse location regression model as

(15)-(16) for the class conditional distributions x j g = i. Finally, when the class

prior probabilities are not all identical, theorem 1 might not be true in general.

For arbitrary class priors ¼i, a weaker result can be however obtained. Speci…cally,

if fi(x) » Np(¹i,§), the modi…ed LDA type criterion that assigns x to gi when

(x¡ xi)0 b§¡1p (x¡ xi)¡ 2 log(ni=n) = min1·j·k [(x¡ xj)0 b§¡1p (x¡ xj)¡ 2 log(nj=n)],
is strongly consistent. This can be veri…ed combining the arguments in the proof

above with the convergences ni=n! ¼i a:e: as n!1 for i = 1, ..., k.

10



3.2 Asymptotic properties of RLDA

Using the notation of section 2, write blr;n(x) = Pk
i=1 iIbLri;n(x) for the sample

RLDA rule based on r coordinates where, for i = 1, ..., k, bLri;n is the subset of
Rp formed by the x that satisfy condition (13), namely kbC01(r)b§¡1=2p (x ¡ xi)k2 =
min1·j·k kbC01(r)b§¡1=2p (x ¡ xj)k2, where bC1(r) = (b°1, b°2, ..., b°r) is the p £ r su-
borthogonal matrix formed by the …rst r eigenvectors of b§¡1=2p

bBb§¡1=2p . This section

analyzes, under the same assumptions than in theorem 1, the asymptotic behavior

of the conditional probability of misclassi…cation Ln(r) = P [blr;n(x) 6= g j Dn] as a

function of the number of coordinates 1 · r · q = min (k ¡ 1,p) used in (13).
As a …rst step, let r0 = r(B) be the rank of the populational between variation

matrix B =
Pk

i=1(¹i ¡ ¹)(¹i ¡ ¹)0=k, where ¹ =
Pk

i=1¹i=k, and consider the

spectral representation §¡1=2B§¡1=2 = CDC0, where C = (°1, ..., °p) is a p £ p
orthogonal matrix of normalized eigenvectors °j and D = diag(¸1, ..., ¸r0 , ¸r0+1, ...,

¸p) is a p £ p diagonal matrix of eigenvalues ¸1 ¸ ¸2 ¸ .... ¸ ¸r0 > 0 = ¸r0+1 =

... = ¸p. For an adequate value of r, partition C = (°1, ..., °r
¯̄
°r+1, ..., °p ) =

(C1(r) jC2(r)) into matrices C1(r) = (°1; :::;°r) of p£ r and C2(r) = (°r+1, ..., °p)
of p £ (p ¡ r). For 1 · r · r0, the intention is to proof convergence of Ln(r) =

P [blr;n(x) 6= g j Dn] to Lr = L[lr(x)] = P [lr(x) 6= g], the probability of error of

the populational RLDA rule based on r coordinates lr(x) =
Pk

i=1 iILr;i(x), given by

subsets Lr;i = fx : kC0
1(r)

0§¡1=2(x¡¹i)k2 = min1·j·k kC0
1(r)

0§¡1=2(x¡¹j)k2g. To
do this, de…ne for i = 1, ..., k the random functions

bfi;n(r;x) = jbV(r)j1=2g[ bQi(r;x)] , (22)

where bV(r) = b§¡1=2bC1(r)bC01(r)b§¡1=2 + §¡1=2C2(r)C0
2(r)§

¡1=2 is a p £ p matrix,bQi(r;x) = (x¡xi)0 b§¡1=2bC1(r)bC01(r)b§¡1=2(x¡xi)+(x¡¹)0§¡1=2C2(r)C0
2(r)§

¡1=2(x¡
¹), and b§ = b§p=a is as in the proof of theorem 1. Since the second summand

in bQi(r;x) does not depend on i and the function g(:) is strictly decreasing, rule

11



blr;n(x) =Pk
i=1 iIbLri;n(x) is equivalent to the pseudo plug-in classi…cation criterion

bfi;n(r;x) = max
1·j·k

bfj;n(r;x) . (23)

The asymptotic behavior of Ln(r) = P [blr;n(x) 6= g j Dn] depends then on the limit

properties of the functions bfi;n(r;x). These are summarized next in the following
auxiliary result.

Proposition 1 If ¸r > ¸r+1,

bfi;n(r;x)! fi(r;x) = j§j¡1=2 g[Qi(r;x)] , a:e: , (24)

as n ! 1 for all x, where Qi(r;x) = (x ¡ ¹i)0§¡1=2C1(r)C0
1(r)

0§¡1=2(x ¡ ¹i) +
(x ¡ ¹)0§¡1=2C2(r)C0

2(r)§
¡1=2(x ¡ ¹). Moreover, with probability one, bfi;n(r;x) is

a density function for n large enough.

Proof. From appendix 7.2, b§p ! W = a§ and bB ! B so b§¡1=2p
bBb§¡1=2p !

W¡1=2BW¡1=2. By lemma 2.1 in Tyler (1981, p.726), the orthogonal projection

operator bC1(r)bC01(r) converges then a:e: to the orthogonal projection operator de…-
ned by the …rst r eigenvectors of W¡1=2BW¡1=2. From identity W¡1=2BW¡1=2 =

§¡1=2B§¡1=2=a this operator is C1(r)C
0
1(r), where C1(r) = (°1, ..., °r) is as de-

…ned above. As a consequence, bV(r) ! §¡1=2[C1(r)C01(r) + C2(r)C
0
2(r)]§

¡1=2 =

§¡1=2CC0§¡1=2 = §¡1 and bQi(r;x) ! Qi(r;x). On the other hand, consider the

change of variable

u =

0@ ur

u(r)

1A =

0@ bC01(r)b§¡1=2(x¡ x)
C02(r)§

¡1=2(x¡¹)

1A = Ax+ b , (25)

where A = (b§¡1=2bC1(r) ¯̄§¡1=2C2(r))0 and b = ¡(x0 b§¡1=2bC1(r) ¯̄¹0§¡1=2C2(r))0.
Since bV(r) ! §¡1 and §¡1 is p.d., with probability one bV(r) is also p.d. for n
large enough so, since A0A = bV(r), one has r(A) = r(A0A) = r(bV(r)) = p and

j@x=@uj = j@u=@xj¡1 = jAj¡1 = jbV(r)j¡1=2. By change of variableZ
Rp
bfi;n(r;x)dx = Z

Rp
g((kur ¡cMi;rk2 + ku(r)k2)du =

Z
Rp
g(u0u)du = 1 , (26)

12



where cMi;r = bC01(r)b§¡1=2(xi ¡ x), i = 1, ..., k.
The properties of the limit fi(r;x) = j§j¡1=2 g[Qi(r;x)] in (24) are also of interest.

The proof of the result below is given in appendix 7.3

Proposition 2 fi(r;x) is a density function for each r. Moreover, for r · s, the

probability of error Lr = P [lr(x) 6= g] can be obtained in terms of the family ffi(s;x) :
1 · i · kg by means of the formula

Lr = L[lr(x)] = 1¡ 1

k

kX
i=1

Z
Lr;i

fi(s;x)dx . (27)

Expression (27) leads to Lr = 1¡
Pk

i=1

R
Lr;i
fi(r;x)dx=k so, by expression (2) in sec-

tion 1 and observing that Lr;i = fx : kC0
1(r)§

¡1=2(x¡¹i)k2 = min1·j·k kC0
1(r)§

¡1=2

(x¡¹j)k2g = fx : fi(r,x) = max1·j·k fj(r,x)g, lr(x) =
Pk

i=1 iILr;i(x) is the optimal

rule in the discriminant problem de…ned by priors ¼i = 1=k and class conditional

densities fi(r;x). (27) also implies Lr¡1 = 1 ¡Pk
i=1

R
Lr¡1;i

fi(r;x)dx=k. Using the

partition C1(r) = (C1(r ¡ 1) j°r ) and the identity
kX
i=1

[° 0r§
¡1=2(¹i ¡¹)]2=k =

=
kX
i=1

° 0r§
¡1=2(¹i ¡¹)(¹i ¡¹)0§¡1=2°r=k = ° 0r§¡1=2B§¡1=2°r = ¸r , (28)

it turns out that, if ¸r > 0, the subsets Lr¡1;i = fx : kC0
1(r ¡ 1)§¡1=2(x ¡ ¹i)k2 =

min1·j·k kC0
1(r¡1)§¡1=2(x¡¹j)k2g = fx : fi(r¡1,x) = max1·j·k fj(r¡1,x)g de…ne

a di¤erent partition than the one used by rule lr(x) =
Pk

i=1 iILr;i(x) so, again by (2),

Lr¡1 = 1 ¡
Pk

i=1

R
Lr¡1;i

fi(r;x)dx=k > 1¡
Pk

i=1

R
Lr;i
fi(r;x)dx=k = Lr. Finally, the

family ffi(r0;x) : 1 · i · kg coincides with the family of class conditional densities
ffi(x) : 1 · i · kg. To see this, recall …rst that

(x¡ ¹i)0§¡1(x¡ ¹i) = (x¡¹i)0§¡1=2CC0§¡1=2(x¡ ¹i)

13



= (x¡¹i)0§¡1=2C1(r0)C
0
1(r0)§

¡1=2(x¡¹i)+(x¡¹i)0§¡1=2C2(r0)C
0
2(r0)§

¡1=2(x¡¹i) .
(29)

Using repeatedly identity (28) for r = r0+1, ..., p, it turns out that for all i = 1, ..., k

C
0
2(r0)§

¡1=2¹ = C
0
2(r0)§

¡1=2¹i so, by (29), Qi(r0;x) = (x¡ ¹i)0§¡1=2C1(r0)C0
1(r0)

§¡1=2(x¡¹i)+(x¡¹)0§¡1=2C2(r0)C0
2(r0)§

¡1=2(x¡¹) = (x¡¹i)0§¡1(x¡¹i) and
then fi(r0,x) = j§j¡1=2 g[Qi(r0;x)] = j§j¡1=2 g[(x ¡ ¹i)0§¡1(x ¡ ¹i)] = fi(x). This
leads to Lr0;i = fx : fi(r0,x) = max1·j·k fj(r0,x)g = fx : fi(x) = max1·j·k fj(x)g =
R¤i , that is, the RLDA rule lr0(x) =

Pk
i=1 iILr0;i(x) is identical to the Bayes rule

r¤(x) =
Pk

i=1 iIR¤i (x) and thus Lr0 = L[lr0(x)] = L[r¤(x)] = L¤. The asymptotic

behavior of Ln(r) = P [blr;n(x) 6= g j Dn] is characterized next for 1 · r · r0.

Theorem 2 Under the assumptions of theorem 1, let r0 = r(B). If 1 · r · r0 and
¸r > ¸r+1, Ln(r) converges a:e: as n!1 to the probability of error Lr = L[lr(x)] ,

where L1 > L2 > ... > Lr0 = L
¤. In particular, Ln(r0) converges a:e: to the Bayes

error Lr0 = L
¤.

Proof. Let 1 · r · r0 and consider the function bhi;n(r;x) = jbV(r)j1=2g[ bHi(r;x)],
where bHi(r;x) = (x¡xi)0 b§¡1=2bC1(r)bC01(r)b§¡1=2(x¡xi)+(x¡¹i)0§¡1=2C2(r)C0

2(r)

§¡1=2(x¡¹i). bhi;n(r;x) has a similar structure than bfi;n(r;x) in (22) so, by the same
type arguments used in proposition 2, bhi;n(r;x) is a density function for n large
enough such that, if ¸r > ¸r+1, bhi;n(r;x)! fi(x) a:e: for all x. Using expression (3)

in section 1, the conditional probability of error Ln(r) = P [blr;n(x) 6= g j Dn] can be

written as

Ln(r) = 1¡ 1
k

kX
i=1

Z
bLr;i fi(x)dx

= 1¡ 1
k

kX
i=1

Z
bLr;i[fi(x)¡

bhi;n(r;x)]dx¡1
k

kX
i=1

Z
bLr;i
bhi;n(r;x)dx . (30)

Considering now the change of variable (25), bhi;n(r;x) transforms into g(kur ¡cMi;rk2+ku(r)¡Mi2;rk2), wherecMi;r = bC01(r)b§¡1=2(xi¡x) andMi2;r = C
0
2(r)§

¡1=2(¹i¡
¹). Also, bfi;n(r;x) transforms into g(kur ¡cMi;rk2 + ku(r)k2) and the subset bLr;i =

14



fx : bfi;n(r;x) = max1·j·k bfj;n(r;x)g into bLr;i(ur) £ Rp¡r, where bLr;i(ur) = fur :
kur¡cMi;rk2 = min1·j·k kur¡cMj;rk2g. By Fubini’s theorem, the third term in (30)
is

1

k

kX
i=1

Z
bLr;i
bhi;n(r;x)dx = 1

k

kX
i=1

Z
bLr;i(ur)£Rp¡r g(kur ¡

cMi;rk2 + ku(r) ¡Mi2;rk2)du =

=
1

k

kX
i=1

Z
bLr;i(ur)[

Z
Rp¡r

g(kur ¡cMi;rk2 + ku(r) ¡Mi2;rk2)du(r)]dur =

=
1

k

kX
i=1

Z
bLr;i(ur)£Rp¡r g(kur ¡

cMi;rk2 + ku(r)k2)du = 1

k

kX
i=1

Z
bLr;i

bfi;n(r;x)dx , (31)

so combining identity Lr = 1¡
Pk

i=1

R
Lr;i
fi(r;x)dx=k with (30) and (31) it turns out

that

Ln(r)¡ Lr = 1

k

kX
i=1

[

Z
Lr;i

fi(r;x)dx¡
Z
bLr;i

bfi;n(r;x)dx]
¡1
k

kX
i=1

Z
bLr;i [fi(x)¡

bhi;n(r;x)]dx : (32)

To proceed in (32), notice that since Lr;i = fx : fi(r,x) = max1·j·k fj(r,x)g andbLri;n = fx : bfi;n(r;x) = max1·j·k bfj;n(r;x)g, the following inequalities hold. On one
hand,

kX
i=1

Z
Lr;i

fi(r;x)dx =
kX
i=1

kX
j=1

Z
Lr;i\bLr;j fi(r;x)dx =

kX
j=1

kX
i=1

Z
Lr;i\bLr;j fi(r;x)dx

¸
kX
j=1

kX
i=1

Z
Lr;i\bLr;j fj(r;x)dx =

kX
j=1

Z
bLr;j fj(r;x)dx (33)

and, similarly,
Pk

i=1

RbLr;i bfi(r;x)dx ¸Pk
i=1

R
Lr;i

bfi(r;x)dx. Therefore,
¡

kX
i=1

Z
Rp

¯̄̄
fi(r;x)¡ bfi;n(r;x)¯̄̄ dx · kX

i=1

Z
bLr;i [fi(r;x)¡

bfi;n(r;x)]dx
·

kX
i=1

Z
Lr;i

fi(r;x)dx¡
kX
i=1

Z
bLr;i

bfi;n(r;x)dx
15



·
kX
i=1

Z
Lr;i

[fi(r;x)¡ bfi;n(r;x)]dx · kX
i=1

Z
Rp

¯̄̄
fi(r;x)¡ bfi;n(r;x)¯̄̄ dx ,

so, by (32), the di¤erence Ln(r)¡ Lr is such that

jLn(r)¡ Lrj · 1

k

kX
i=1

Z
Rp

¯̄̄
fi(r;x)¡ bfi;n(r;x)¯̄̄ dx+ 1

k

kX
i=1

Z
Rp

¯̄̄
fi(x)¡ bhi;n(r;x)¯̄̄ dx:

=
2

k

kX
i=1

Z
Rp
[fi(r;x)¡ bfi;n(r;x)]+dx+ 2

k

kX
i=1

Z
Rp
[fi(x)¡ bhi;n(r;x)]+dx . (34)

If ¸r > ¸r+1, bfi;n(r;x) ! fi(r;x) and bhi;n(r;x) ! fi(x), a:e:, for all x, so using in

(34) lemma 3.1.3 in Glick (1974) as in the proof of theorem 1, jLn(r)¡ Lrj is bounded
above by a quantity that converges to zero and then Ln(r)! Lr, a:e:. In particular,

¸r0 > 0 = ¸r0+1 so Ln(r0) ! L¤, a:e:: The ordering L1 > L2 > ... > Lr0 = L
¤ is a

direct consequence of the eigenvalue structure ¸1 ¸ ¸2 ¸ ... ¸ ¸r0 > 0 = ¸r0+1 = ...
= ¸p of §¡1=2B§¡1=2 and the inequality Lr¡1 > Lr, valid for ¸r > 0.

The rank r0 = r(B) is easily seen to be less or equal than q = min (k ¡ 1,p). If
r0 < q = min (k¡ 1,p), two possibilities exist when the number of directions used in
the RLDA rule blr;n(x) =Pk

i=1 iIbLri;n(x) is r > r0:
i) If r0 < r < q = min (k ¡ 1,p), blr;n(x) = Pk

i=1 iIbLri;n(x) is equivalent to the
pseudo plug-in criterion (23). However, in this case, ¸r=a = 0 is a multiple eigen-

value ofW¡1=2BW¡1=2 = §¡1=2B§¡1=2=a so, by lemma 2.1 in Tyler (1981, p.726),bC1(r)bC01(r) cannot be guaranteed to converge to C1(r)C01(r). Therefore bfi;n(r;x)
does not necessarily converge to fi(r;x) and the argument of theorem 2 does not

apply. The asymptotic behavior of Ln(r) > L¤ remains then undetermined;

ii) If r = q = min(k ¡ 1,p), blr;n(x) = Pk
i=1 iIbLri;n(x) is equivalent to the LDA

rule of (6). To verify this, recall that with probability one r(b§¡1=2p
bBb§¡1=2p ) = q

so, proceeding similarly as (12) in section 2,
Pk

i=1 nikbC02(q)b§¡1=2p (xi ¡ x)k2=n =
tr[bC02(q)b§¡1=2p

bBb§¡1=2p
bC2(q)] =Pp

j=q+1
b̧
j = 0, and therefore bC02(q)b§¡1=2p xi = bC02(q)b§¡1=2p x, a:e:, for i = 1, ..., k. Minimizing the quantities kbC01(q)b§¡1=2p (x ¡ xi)k2

16



considered in (13) is then equivalent to minimizing

kbC01(q)b§¡1=2p (x¡ xi)k2 + kbC02(q)b§¡1=2p (x¡ xi)k2 = kbC0 b§¡1=2p (x¡ xi)k2

= kb§¡1=2p (x¡ xi)k2 = (x¡ xi)0 b§¡1p (x¡ xi) ,
exactly as in criterion (6). By theorem 1, Ln(q) converges a:e: to the Bayes error L¤.

Summarizing the results of this section, Ln(r) is consistent only for r = r0 and

r = q = min(k ¡ 1,p). The impact of the “non consistency” is worse for 1 · r < r0
than for r0 < r < q. In the former case, RLDA ignores directions that are relevant

for classi…cation, while in the latter RLDA considers directions with no e¤ective

separative power. In particular, when r0 = r(B) > 1 classifying using the LDF

function bg01(x ¡ x), which is just RLDA for r = 1, might have a poor behavior in
applications. In conclusion, for r = 1, 2, ..., q, a plot of the conditional probability

of error Ln(r) versus r can be conjectured to have a marked decreasing pattern for

1 · r < r0. After reaching its “minimum” at r = r0 the plot should have, as a result
of the inclusion of spurious directions, an increasing erratic pattern for r0 < r · q
with a trend to stability as r approaches towards q, due to the consistency of LDA.

This is in agreement with the empirical behavior of the plot of the estimated error

rates bLn(r) versus r in some well studied classi…cation problems with a large number
of groups, as for example the vowel data set, studied thoroughly in Hastie et al.

(2001, sec. 4.3), in which k = 11, p = 10 and q = 10. Of particular interest is …gure

4.10 in page 96 of this book.

4. CHOOSING THE NUMBER OF DIRECTIONS IN RLDA

As mentioned in section 2, an important issue in RLDA is the choice of the number

r of canonical coordinates to use in practice. The analysis after theorem 2 suggests

that, in general, choosing r = r0 = r(B) can be recommended. As an illustration, in

a two group problem with equal class priors ¼i = 1=2, one has k = 2 and

B =
1

2

2X
i=1

(¹i ¡ ¹)(¹i ¡ ¹)0 =
1

4
(¹1 ¡¹2)(¹1 ¡ ¹2)0 ,
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so, if ¹1 6= ¹2, r0 = r(B) = 1 = q = min(k ¡ 1,p) = r(bB), independently of the
dimension p of the feature vector x = (x1; :::; xp)

0. According to the previous section,

LDA, RLDA and classifying using the values of the LDF function bg01(x ¡ x) »
(x1 ¡ x2)0 b§¡1p (x ¡ x) are equivalent for a two group problem, and by theorems 1
and/or 2 consistent under an inverse location regression model with elliptical class

densities (16). For problems with a moderate to large number of groups k > 2,

r0 = r(B) · q = min(k ¡ 1,p) = r(bB) is in general an unknown constant, and its
true value should be assessed by some formal testing method. McLachlan (1992, p.

187) reviews inference techniques for r0 = r(B).

A classical alternative is to proceed by trial and error since, as mentioned by Hastie

et al. (1994, p. 1256), in practice it is often enough to consider a low number r · 3
of canonical coordinates even in problems with a large number of groups k. This

section explores the properties of a classi…cation procedure based in selecting the

number of directions as a function of the data Dn by means of the criterion

br = br(Dn) = …rst integer 1 · r · q such that bqr ¸ C , (35)

where, as introduced in section 2, bqr =Pr
j=1
b̧
j=
Pq

j=1
b̧
j is the cumulative relative

proportion of separation among centroids, and C is a …xed positive constant close to

one. This is in the original spirit of RLDA as motivated in expressions (11), (12) and

(13) of section 1. In fact, for an adequate choice of C the consistency of a feasible

RLDA rule of the form blbr;n(x) = kX
i=1

iIbLbri;n(x) (36)

can be established under the assumptions of theorem 1. To do this, recall the eigen-

value structure of §¡1=2B§¡1=2 ¸1 ¸ ¸2 ¸ .... ¸ ¸r0 > 0 = ¸r0+1 = ... = ¸p, de…ne
the populational cumulative separation proportions qr =

Pr
j=1 ¸j=

Pr0
j=1 ¸j, r = 1,

..., r0, and put q0 = 0.

Theorem 3 Under the assumptions of theorem 1, the feasible RLDA rule of (35)-

(36) is strongly consistent for all values of C such that qr0¡1 < C < qr0 = 1.
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Proof. Consider a sequence D1 = f(xk,gk) : k ¸ 1g of independent observations
with the same distribution than the pair (x,g). If (x,g) andD1 are independent and

If0g(:) is the indicator function of the singleton f0g ½ R, using standard properties
of conditional expectation, the conditional probability of error Ln = 1¡ P [blbr;n(x) =
g j Dn] can be represented as

Ln = 1¡E[If0g(blbr;n(x)¡ g) j Dn] = 1¡ E[If0g(blbr;n(x)¡ g) j Dn,f(xk;gk) : k > ng]

= 1¡ E[If0g(blbr;n(x)¡ g) j D1] . (37)

Similarly as in (37), the conditional probability of error of the RLDA rule based on

r0 coordinates is Ln(r0) = P [blr0(x) 6= g j Dn] = 1 ¡ E[If0g(blr0(x) ¡ g) j D1]. By

theorem 2 Ln(r0)! L¤, so to get convergence of Ln to L¤ is then enough to establish

Ln¡ Ln(r0) ! 0, a:e:, as n ! 1. If IAn(:) is the indicator function of the subset
An = fDn : br = br(Dn) = r0 = r(B)g, the feasible rule blbr;n(x) can be decomposed
additively in the form

blbr;n(x) = blbr;n(x)IAn(Dn) + blbr;n(x)IAcn(Dn)

= blr0(x)IAn(Dn) + blbr;n(x)IAcn(Dn) = blr0(x) + Zn , (38)

where Zn = Zn(x,Dn) = [blbr;n(x) ¡ blr0(x)]IAcn(Dn). Putting things together, the

di¤erence Ln ¡ Ln(r0) can be written as

Ln ¡ Ln(r0) = E(Wn j D1) , (39)

where, from (37) and (38), Wn = If0g(blbr;n(x)¡ g)¡ If0g(blr0(x)¡ g) = If0g([blr0(x)¡
g] + Zn) ¡ If0g(blr0(x) ¡ g). Observe that jWnj · 1 so, by (39) and the dominated

convergence theorem for conditional expectations (see e.g. Shiryayev 1984, p. 216),

to get Ln ¡ Ln(r0)! 0 a:e: is enough to verify that, as n!1, Wn ! 0, a:e:.

Fix " > 0. From the de…nition of Zn = [blbr;n(x) ¡ blr0(x)]IAcn(Dn) given after (38),

and using the structure of Wn,

P [sup
m¸n

jWmj ¸ "] · P [
1S
m=n

fZm 6= 0g] · P [
1S
m=n

Acm] , (40)
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so the task is then to check that the upper bound of (40) converges to zero as n!1.
Since b§¡1=2p

bBb§¡1=2p !W¡1=2BW¡1=2 = §¡1=2B§¡1=2=a, from lemma 2.1 in Tyler

(1981, p.726), b̧j ! ¸j=a > 0 for j = 1, ..., r0 and b̧j ! 0 for j = r0 + 1, ...,

p, so bqr = Pr
j=1
b̧
j=
Pq

j=1
b̧
j !

Pr
j=1 ¸j=

Pr0
j=1 ¸j = qr for r = 1, ..., r0, where all

the convergences are in an a:e: sense. In what follows, the notational conventionbq0 = q0 = 0 is used. Since An = fDn : br = br(Dn) = r0 = r(B)g =
Tr0¡1
r=0 fDn : bqr <

Cg\fDn : bqr0 ¸ Cg, the inequality below holds for any 0 < a < min fC¡qr0¡1,qr0¡
Cg = min fC ¡ qr0¡1,1¡ Cg,

P [sup
m¸n

max
0·r·r0

jbqr ¡ qrj · a] · P [ 1T
m=n

Am] . (41)

Since max0·r·r0 jbqr ¡ qrj ! 0, a:e:, the left hand side of inequality (41) converges

to 1. By (40) P [supm¸n jWmj ¸ "] · P [
S1
m=nA

c
m] = 1 ¡ P [

T1
m=nAm] ! 0 for all

" > 0, and then Wn ! 0, a:e: .

As a consequence of the proof above, one has

P [sup
m¸n

jbr(Dm)¡ r0j ¸ "] · P [
1S
m=n

Acm] = 1¡ P [
1T
m=n

Am]! 0 ,

so br ! r0 = r(B), a:e: That is, the construction of the feasible rule (35)-(36)

replaces in the theoretical RLDA rule blr0(x) the unknown quantity r0 by the strongly
consistent estimator br of (35). In a way, theorem 3 justi…es then asymptotically the
usual exploratory practice in RLDA of considering a number of directions r such

that bqr ¸ C, where C is a constant close enough to one and such that condition

qr0¡1 < C < 1 holds. For example, in the vowel data example mentioned at the end

of subsection 3.2, an analysis of the quantities bqj leads to bq1 = :5617 and bq2 = :9135
so for C = :90 a choice of br = 2 seems appropriate for this data set. Notice thatbLn(2) = :4913 is the minimum value in the plot of estimated error rates bLn(r) based
on test data, as displayed in …gure 4.10 in Hastie et al. (2001, p. 96).
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5. ROBUSTNESS TO HETEROSCEDASTICITY

Consider the following generalization of the setup (15), namely the model

x j g = i D= ¹i +§1=2i u , (42)

where, for i = 1, ...., k, ¹i is a p£ 1 vector, §i is a p£ p p.d. matrix and u is a p£ 1
random vector independent of the class label g. When (42) holds, x is said to follow

an inverse location-scale regression model (Cook and Yin 2001, p. 160). Under the

assumption that u has the radial density g(u0u), the class conditional densities are

now

pi(x) = j§ij¡1=2 g[(x¡ ¹i)0§¡1i (x¡ ¹i)] . (43)

If moments of order two exist and the class priors are identical, the populational

within variation p £ p matrix is W = E[V ar(x j g)] = Pk
i=1 V ar(x j g = i)=k =

a
Pk

i=1§i=k, where a > 0 is the same constant than in section 3.

Assuming a mild degree of heterogeneity among the §i, LDA can be seen to pos-

sess some approximately optimal properties under the setup (42)-(43). Let Ln =

P [bln(x) = g j Dn] be the conditional probability of error of the LDA rule bln(x) =Pk
i=1 iIbLi;n(x) where, recalling the notation of section 3, bLi;n = fx : bfi;n(x) =

max1·j·k bfj;n(x)g, bfi;n(x) = j b§ j¡1=2 g[(x¡xi)0 b§¡1(x¡xi)], and b§ = b§p=a. De…ne
also for i = 1, ..., k the density hi(x) = jW=aj¡1=2 g[(x ¡ ¹i)0(W=a)¡1(x ¡ ¹i)],
whereW=a =

Pk
i=1§i=k is as above. Let L

¤ = P [r¤(x) 6= g] be the probability of
error of the Bayes rule r¤(x) =

Pk
i=1 iIR¤i (x) given by subsets R

¤
i = fx : pi(x) =

max1·j·k pj(x)g. By the same argument than in the proof of theorem 1, the inequa-
lity below holds

0 · Ln ¡ L¤ · 1

k

kP
i=1

R
Rp

¯̄̄ bfi;n(x)¡ pi(x)¯̄̄ dx
· 1

k

kP
i=1

R
Rp

¯̄̄ bfi;n(x)¡ hi(x)¯̄̄ dx+ 1
k

kP
i=1

R
Rp
jpi(x)¡ hi(x)j dx . (44)

By the convergences of appendix 7.2, b§ = b§p=a!W=a and xi ! ¹i so bfi;n(x)!
hi(x) for all x 2 Rp. Proceeding as in theorem 1, the random …rst summand in
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the upper bound (44) converges to zero a:e: as n ! 1 . On the other hand, if

the location vectors ¹i are kept …xed while all the §i tend to a common p£ p p.d.
matrix §, then W=a =

Pk
i=1§i=k ! § and therefore, for all x 2 Rp, pi(x) and

hi(x) converge to ui(x) = j§j¡1=2 g[(x ¡ ¹i)0§¡1(x ¡ ¹i)]. Since pi(x), hi(x) and
ui(x) are densities, it turns out that

1

k

kP
i=1

R
Rp
jpi(x)¡ hi(x)j dx · 1

k

kP
i=1

R
Rp
jpi(x)¡ ui(x)j dx+ 1

k

kP
i=1

R
Rp
jui(x)¡ hi(x)j dx

=
2

k

kP
i=1

R
Rp
[ui(x)¡ pi(x)]+dx+ 2

k

kP
i=1

R
Rp
[ui(x)¡ hi(x)]+dx , (45)

so, since 0 · [ui(x)¡pi(x)]+ · ui(x) and [ui(x)¡hi(x)]+ · ui(x), by the dominated
convergence theorem the right hand side of (45) and thus the second summand of

(44), converge to zero when §i ! §, i = 1, ..., k. In conclusion, when all the

§i »= §, the di¤erence Ln ¡ L¤ is bounded above by the sum of two terms close

to zero, and Ln should be then close to the optimum L¤ for a sample size n large

enough. This argument might serve as an analytical explanation for the robustness

of LDA to some small degree of class dispersion heterogeneity (see e.g. Seber 1984,

p. 299).

Suppose …nally that the §i are markedly di¤erent to each other but such that in

the log scale their determinants are similar, that is, such that log j§ij »= c, i = 1,

..., k, where c is some …xed constant. For equal class priors ¼i = 1=k and class

conditional densities (43), the ith subset of the Bayes rule r¤(x) =
Pk

i=1 iIR¤i (x) is

determined by condition pi(x) = max1·j·k pj(x), that is,

j§ij¡1=2 g[(x¡ ¹i)0§¡1i (x¡ ¹i)] = max
1·j·k

j§jj¡1=2 g[(x¡¹j)0§¡1j (x¡ ¹j)] (46)

or, taking logs, by¡1=2 log j§ij+log g[(x¡¹i)0§¡1i (x¡¹i)] = max1·j·k¡1=2 log j§jj
+ log g[(x ¡ ¹j)0§¡1j (x ¡ ¹j)]. But, since g(:) is strictly decreasing and all the

log j§ij »= c, (46) is approximately equivalent to condition

log j§ij+ (x¡ ¹i)0§¡1i (x¡ ¹i) = min
1·j·k

log j§jj+ (x¡ ¹j)0§¡1j (x¡¹j) . (47)
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Replacing §i by b§i = Pni
j=1(xij ¡ xi)(xij ¡ xi)0=ni and ¹i by xi, the sample ver-

sion of (47) is the familiar quadratic discriminant analysis (QDA) rule bqn(x) =Pk
i=1 iI bQi;n(x), where bQi;n is formed by all the x such that
log

¯̄̄ b§i ¯̄̄+ (x¡ xi)0 b§¡1i (x¡ xi) = min
1·j·k

log
¯̄̄ b§j ¯̄̄+ (x¡ xj)0 b§¡1j (x¡ xj) . (48)

Assuming log
¯̄̄ b§i ¯̄̄ »= c for i = 1, ..., k, and using again the strict monotonicity of g(:),

(48) is approximately equivalent to the plug-in criterion bpi;n(x) = max1·j·k bpj;n(x),
where bpi;n(x) = ¯̄̄ b§i ¯̄̄¡1=2 g[(x¡ xi)0 b§¡1i (x ¡ xi)]. Let brn(x) =Pk

i=1 iI bRi;n(x) be the
sample rule determined by the partition bRi;n = fx : bpi;n(x) = max1·j·k bpj;n(x)g,
i = 1, ..., k. Since bpi;n(x) is an estimator of pi(x) = j§ij¡1=2 g[(x ¡ ¹i)0§¡1i (x ¡
¹i)], arguing as in the proof of theorem 1, it turns out that under the setup (42)-

(43) the conditional probability of error P [brn(x) = g j Dn] ! L¤, a:e:. That is,

since bqn(x) »= brn(x), the conditional probability of misclassi…cation of the QDA rule
P [bqn(x) = g j Dn] »= P [brn(x) = g j Dn] »= L¤ should be close to the Bayes error for
sample sizes n large enough.

As a summary of the results of this section, suppose equal class prior probabilities

¼i = 1=k and class conditional densities (43). When all the §i »= §, the LDA rulebln(x) = Pk
i=1 iIbLi;n(x) should have a good behavior for n large enough. If, on the

contrary, the §i are di¤erent but log j§ij »= c, the conditional probability of error

of the QDA rule bqn(x) =Pk
i=1 iI bQi;n(x) should be expected to be close to the Bayes

error. Notice that the condition log j§ij »= c, i = 1, ..., k, is quite ‡exible, since even
in the case when the determinants j§ij are large and di¤erent, they will tend to be
more similar in the log scale.

6. FINAL COMMENTS

Hastie et al. (2001, p. 89), taking as a reference the results reported in the

statlog project by Michie et al. (1994), comment on the good track record of LDA

and QDA in a diverse set of applications. According to these authors, the reason

for this property does not seem to lie in the approximate gaussianity of the class
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conditional densities but on the fact that the data can only support simple linear or

quadratic separation boundaries. Robustness of LDA and QDA has received recent

attention in Cook and Yin (2001) who study the connection of LDA and QDA with,

respectively, the dimension reduction methods Sliced Inverse Regression (SIR) of

Li (1991) and Sliced Average Variance Estimation (SAV E) of Cook and Weisberg

(1991). Hastie and Zhu (2001) provide additional insights on the relationships LDA¡
SIR and QDA¡ SAV E.
This paper o¤ers an alternative analytical explanation for the good performance in

applications of LDA and QDA. The explanation is based on the description of the

asymptotic behavior of the corresponding probabilities of misclassi…cation under a

wide set of assumptions, among others, the existence of second order inverse location

regression models for the class conditional densities with an error modelled by a

radially symmetric density. Resorting to asymptotics can be justi…ed by the typical

use in practice of moderate to large data sets. Section 3.1 gives results relative to the

behavior of LDA in the homoscedastic case while section 5 o¤ers some arguments of

approximate consistency of LDA and QDA in the heteroscedastic case. Combining

all these results together, it turns out that LDA and QDA are bound to behave

properly in a large collection of situations. In addition, the results obtained in section

3.2 can o¤er, as developed in section 4, some guidelines for choosing in practice the

number of directions in RLDA.

7. APPENDIX

7.1 Results on ranks

Lemma 1 Let X1, ..., Xk be independent data matrices such that Xi is a matrix of

ni £ p whose rows are i:i:d: random vectors with density fi(:). With probability one:

i) b§p is p.d. if n =Pk
i=1 ni ¸ p+ k and ii) the rank of bB is min(k ¡ 1,p).

Proof. For reasons of conciseness, the proof of this result is only sketched. To see
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i), write (n¡k)b§p =Pk
i=1

Pni
j=1(xij¡xi)(xij¡xi)0 =

Pk
i=1X

0
iPiXi = X

0PX, where

the Pi = Ini ¡ 1ni10ni=ni are orthogonal projection matrices of ni£ ni, 1ni = (1, (ni)::: ,
1)0 is the vector of ones of order ni, X0 = (X0

1 j ... j X0
k) is the combined data matrix

of p£n and P = diag(P1, ..., Pk) is a block diagonal matrix of n£n. It is easy to see
that the rank of P is n¡ k so if n¡ k ¸ p the matrix X0PX is p.d. with probability

one by theorem 2.3 in Eaton and Perlman (1973, p. 711). For part ii), notice that

nbB = Pk
i=1 ni(xi ¡ x)(xi ¡ x)0 = Y0AY, where Y0 = (x1, ..., xk), A = C0diag(n1,

..., nk)C and C = Ik ¡ n¡11k(n1, ..., nk). Also, r(A) = r(C) = k ¡ 1. Under
the assumptions of the lemma, the sample means xi, i = 1, ..., k, are independent

and absolutely continuous random vectors with a joint density in Rpk. Therefore,

if k ¡ 1 ¸ p, by theorem 2.3 in Eaton and Perlman (1973) with probability one

r(bB) = r(nbB) = r(Y0AY) = p = min(k ¡ 1,p). If k ¡ 1 < p, the rank of bB is as the
rank of the matrix of (k ¡ 1) £ p Y(k), where Y0

(k) = (x1 ¡ x j ... j xk¡1 ¡ x). By
relating Y(k) to the rows of Y, it can be seen that the rows of Y(k) have a density

and then r(bB) = r(Y(k)) = k ¡ 1 = min(k ¡ 1,p).
In problems in which the class conditional densities exist, lemma 1 shows that

P [r(bB) = min(k ¡ 1,p) j G = G] = 1 as long as the class labels G = (g1, ..., gn)

take a value G = G 2 f1, ..., kgn such that the sample sizes ni =
Pn

j=1 Ii(gj) ¸
1, i = 1, ..., k, where Ii(:) is the indicator function of the singleton fig. Since
P (ni = 0) = (1 ¡ ¼i)n ! 0, the samples Dn in which some ni = 0 form a set with

probability tending to zero as n ! 1. Notice that this result for the rank of bB
holds independently of the value of the rank r0 = r(B) · min(k ¡ 1,p) = r(bB) of
the populational matrix B. In fact, in applications in which k is relatively large as

compared to p it may well occur that r0 = r(B)¿ r(bB).
7.2 Auxiliary convergences

All the auxiliary convergences used in the paper are a consequence of the law of

the large numbers for i:i:d: random variables with …nite …rst order moments. For
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example, ni=n =
Pn

j=1 Ii(gj)=n ! E[Ii(g)] = P (g = i) = ¼i a:e: as n ! 1.
Also, xi =

Pni
j=1 xij=ni = (

Pn
j=1 xjIi(gj)=n)=(

Pn
j=1 Ii(gj)=n) ! E[xIi(g)]=¼i =Pk

j=1 P (g = j)E[xIi(g) j g = j]=¼i = P (g = i)E[x j g = i]=¼i = ¹i. Convergences
as n ! 1 of bB to B and of b§p to W =

Pk
i=1 ¼iV ar(x j g = i), can be treated

similarly.

7.3 Proof of proposition 2

Consider the change of variable transformation below,

y =

0@ yr

y(r)

1A = C0§¡1=2(x¡ ¹) =
0@ C01(r)§

¡1=2(x¡ ¹)
C02(r)§

¡1=2(x¡ ¹)

1A . (49)

Under (49) the class conditional mean vector ¹i transforms intoMi = C
0§¡1=2(¹i¡

¹) = (M0
i1;r,M

0
i2;r)

0, whereMi1;r = C
0
1(r)§

¡1=2(¹i¡¹) andMi2;r = C
0
2(r)§

¡1=2(¹i¡
¹). Also, the ith class conditional density fi(x) = j§j¡1=2 g[(x ¡ ¹i)0§¡1(x ¡ ¹i)]
transforms into g(ky ¡Mik2), and fi(s;x) into g(kys ¡Mi1;sk2 + ky(s)k2). Finally,
the subset Lr;i transforms into Lr;i(yr)£Rp¡r, where Lr;i(yr) = fyr : kyr¡Mi1;rk2 =
min1·j·k kyr¡Mj1;rk2g. If s ¸ r, using Fubini’s theorem and equation (1) in section
1, the probability of misclassi…cation of lr(x) =

Pk
i=1 iILr;i(x) is

Lr = L[lr(x)] = 1¡ 1

k

kX
i=1

Z
Lr;i

fi(x)dx = 1¡ 1
k

kX
i=1

Z
Lr;i(yr)£Rp¡r

g(ky ¡Mik2)dy

= 1¡ 1
k

kX
i=1

Z
Lr;i(yr)£Rs¡r

[

Z
Rp¡s

g(kys ¡Mi1;sk2 + ky(s) ¡Mi2;sk2)dy(s)]dys

= 1¡ 1
k

kX
i=1

Z
Lr;i(yr)£Rs¡r

[

Z
Rp¡s

g(kys ¡Mi1;sk2 + ky(s)k2)dy(s)]dys

= 1¡ 1
k

kX
i=1

Z
Lr;i

fi(s;x)dx ,

which is just (27).
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