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Abstract We characterize the class of finite extensive forms for which the sets of
Subgame Perfect and Sequential equilibrium strategy profiles coincide for any pos-
sible payoff function. In addition, we identify the class of finite extensive forms for
which the outcomes induced by these two solution concepts coincide.
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1 Introduction

Analysis of backward induction in finite extensive form games provides useful insights
for a wide range of economic problems. The basic idea of backward induction is that
each player uses a best reply to the other players’ strategies, not only at the initial node
of the tree, but also at any other information set.
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To capture this type of rationality Selten (1965) defined the subgame perfect equi-
librium concept. While subgame perfection has some important applications, it does
not always eliminate irrational behavior at every information set. In order to solve this
problem, Selten (1975) introduced the more restrictive notion of “trembling-hand”
perfection.

Sequential equilibrium, due to Kreps and Wilson (1982), requires that every player
maximizes her expected payoff at every information set, according to some consistent
beliefs. They showed that “trembling-hand” perfection implies sequentiality, which
in turn implies subgame perfection. They also proved that for generic payoffs, almost
all sequential equilibrium strategies are “trembling-hand” perfect, a result that was
strengthen by Blume and Zame (1994) who proved that for a fixed extensive form and
generic payoffs it is the case that the two concepts coincide.

Although it is a weaker concept than Selten’s perfection, Kohlberg and Mertens
(1986) note that “sequential equilibrium seems to be the direct generalization [of
backward induction] to games of imperfect information”. It fulfills all the proper-
ties that characterize subgame perfection (backward induction) in games of perfect
information. This is no longer true with different concepts like perfect or proper
equilibrium. !

In this paper we find the maximal set of finite extensive forms (extensive games
without any payoff assignment) for which sequential and subgame perfect equilib-
rium yield the same set of equilibrium strategies, for every possible payoff function
(Proposition 1). It can be characterized as the set of extensive forms, such that for any
behavior strategy profile every information set is reached with positive probability
conditional on the smallest subgame that contains it. Whenever the extensive form
does not have this structure, payoffs can be assigned such that the set of subgame
perfect equilibria does not coincide with the set of sequential equilibria.

However, it may still happen that the set of equilibrium outcomes of both concepts
coincides for any possible assignment of the payoff function. Thus, we also identify
the maximal set of finite extensive forms for which subgame perfect and sequential
equilibrium always yield the same equilibrium outcomes (Proposition 2).

Notice that, unlike related results on equivalence between refinements of Nash
equilibrium, where the object of analysis is the payoff space (e.g. Kreps and Wilson
1982; Blume and Zame 1994), we find conditions on the game form. Our results
characterize the information structures where applying sequential rationality does not
make a relevant difference with respect to subgame perfection. We consider them as
tools for economic modelling. They allow us to know if, for the extensive game under
study, subgame perfect and sequential equilibrium are always equivalent, either in
equilibrium strategies or in equilibrium outcomes.

The paper is organized as follows: in Sect. 2 we briefly introduce the main notation
and terminology of extensive form games. This closely follows van Damme (1991).
Section 3 contains definitions. Results are formally stated and proved in Sect. 4. In
Sect. 5 we give some examples where our results can be applied.

I See Kohlberg and Mertens (1986) for details.
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2 Notation and terminology

The analysis is restricted to finite extensive form games with perfect recall. Since our
characterization is based on the structural properties of extensive games, we cannot
dispose of a complete formal description of extensive form games. However, and in
consideration with those readers who are already familiar with extensive games, we
relegate such a long discussion to the appendix and only offer in Table 1 a brief list
with very terse explanations of the symbols that we require.

We need the following definitions before moving to the next section.

Ifx € X, let IE”f denote the probability distribution on Z if the game is started at x
and the players play according to the strategy profile b. Given a system of beliefs y, a
strategy profile b and an information set u, we define the probability distribution ]P’z’“
onZasP" =3 . u(x)PL.

These probability distributions allow us to compute expected utilities at parts of
the extensive game other than the initial node, already considered in R;(b). Define
Rix(b) = > .o IP’? (z)ri(z) as player i’s expected payoff at node x. In a similar
fashion, Ry, (b) = > .., PP (zlu)ri(2) = D reu PP (x|u) R;x (b) is player i’s expected
payoff at every information set u such that P? (1) > 0. Furthermore, under the system
of beliefs u, Rffl b) = ZZE 7 ]P’Z’“ (z)ri(z) denotes player i’s expected payoff at the
information set u.

Table 1 Notation and terminology of finite extensive games with perfect recall

Notation Terminology Comments

) Extensive form Extensive game without
payoff assignment

T Set of nodes in & Typical elements x,y € T

< Precedence relation on T < partially orders T

U; Player i’s information sets Typical elements u, v, w € U;

Cy Choices available at u Typical elements ¢, d, e € Cy,

Z Set of final nodes (zeT:PxeTstz<ux}

X Set of decision nodes X=T\Z

ri Player i’s payoff function ritZ—>Rr=(01,...,m)

r n-player extensive game r=(,r

b; Player i’s behavioral strategy b;j € Bj,b = (by,...,by)

PP Probability measure on Z Induced by b

R; (D) Player i’s expected utility at b ez PP (2)ri(2)

Z(A) Final nodes coming after A ACT

PP(4) Probability of A € T PP (Z(A))

gy Subform starting at y Subgame without payoff
assignment

Ty Subgame starting at y Iy =(Ey.7)

w System of beliefs w(-)=0,> o ux)=1,VYu
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3 Definitions

We use the substitution notation »\b; to denote the strategy profile in which all players
play according to b, except player i who plays b;. The strategy b; is said to be a best
reply against b if it is the case that b; € arg maxy ep, R; (b\bl/.). If Pb(u) > 0, we
say that the strategy b; is a best reply against b at the information set u € U; if it
maximizes R, (b\b) over the domain where it is well defined.

The strategy b; is a best reply against (b, u) at the information set u € U; if
b; € arg maxy ¢ p, R;fl (b\b}). If b; prescribes a best reply against (b, 1) at every infor-
mation set u € U;, we say that b; is a sequential best reply against (b, ). The strategy
profile b is a sequential best reply against (b, ) if it prescribes a sequential best reply
against (b, u) for every player.

With this terminology at hand we define several equilibrium concepts.

Definition 1 (Nash equilibrium) A strategy profile b € B is a Nash equilibrium of I"
if every player is playing a best reply against b.

We denote by NE(I') the set of Nash equilibria of I'. Subgame perfection refines
the Nash equilibrium concept by requiring a Nash equilibrium in every subgame.
Formally,

Definition 2 (Subgame perfect equilibrium) A strategy profile b is a subgame perfect
equilibrium of I' if, for every subgame I'y, of T', the restriction b, constitutes a Nash
equilibrium of I'y.

We denote by SPE(I") the set of subgame perfect equilibria of I'. We write
SPEO(I") = {]P’b : b € SPE(I")} for the set of subgame perfect equilibrium outcomes,
and SPEP(I") = {R(b) : b € SPE(I')} for the set of subgame perfect equilibrium
payoffs, where R(b) = (R1(D), ..., R,(b)).

Sequential rationality is a refinement of subgame perfection. Every player must
maximize at every information set according to her beliefs about how the game has
evolved so far. If b is a completely mixed strategy profile, beliefs are perfectly defined
by Bayes’ rule. Otherwise, beliefs should meet a consistency requirement. A sequen-
tial equilibrium is an assessment that satisfies such a consistency requirement together
with an optimality requirement. This is formalized by the next two definitions.

Definition 3 (Consistent assessment) An assessment (b, 1) is consistent if there exists
a sequence {(by, u;)}s, where b; is a completely mixed strategy profile and p;(x) =
PP (x|u) for x € u, such that lim,_, oo (b;, t;) = (b, ).

Definition 4 (Sequential equilibrium) A sequential equilibrium of I" is a consistent
assessment (b, ©) such that b is a sequential best reply against (b, ).

If T is an extensive game, we denote by SQE(I") the set of strategies b such that
(b, w) is a sequential equilibrium of I" for some . Moreover, SQEO(I") = (PP :be
SQE(T")} denotes the set of sequential equilibrium outcomes and SQEP(I") = {R (D) :
b € SQE(I")} the set of sequential equilibrium payoffs. Recall that SQE(I") € SPE(T")
for any game I'.

We now introduce some new definitions that are needed for the results.
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Definition 5 (Minimal subform of an information set) Given an information set u, the
minimal subform that contains u, to be denoted E (u), is the subform E, that contains
u and does not properly include any other subform that contains u.

We say that I'y = (E,,7) is the minimal subgame that contains u if Ey is the
minimal subform that contains u.

In a given extensive form there are information sets that are always reached with
positive probability. When this does not happen we say that the information set is
avoidable, formally:

Definition 6 (Avoidable information set) An information set u is avoidable in the
extensive form Z if P? (u) = 0, for some b € B. Likewise, we say that the information
set u is avoidable in the subform &y if ]P”; (u) =0, for some b € B.

For reasons that will become clear in the next section, we are interested in identi-
fying extensive games where no information set is avoidable in its minimal subform.
To get an idea about the set of extensive forms that we have in mind consider Figs. 1
and 2. In the former, no information set is avoidable in the extensive form. While in
the latter, no information set is avoidable in its minimal subform.

Conversely, consider Fig. 3. Player 2’s information set is avoidable in the extensive
form (also in its minimal subform since the entire game is the only proper subgame)
because player 1 can decide not to let her move.

Fig. 1 Extensive form where no information set is avoidable

Fig. 2 Extensive form where no information set is avoidable in its minimal subform
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Fig. 3 Example of the use of the
algorithm contained in the proof
of Proposition 1 to generate a

game where SPE(I") # SQE(I")

4 Results

The three “best reply” concepts introduced in Sect. 3 relate to each other, as it is shown
in the first two statements of the next lemma. The third assertion of the same lemma
shows that maximizing behavior at an information set is independent of the subgame
of reference.

Lemma 1 Fix a game I = (E, r). The following assertions hold.:

1. Given a strategy profile b, if u € Uj is such that P?(u) > 0 and b; is a best reply
against b, then b; is a best reply against b at the information set u.

2. Given a consistent assessment (b, ), ifu € Uj is such that Pb (u) > 0andb; isa
best reply against b at the information set u, then b; is a best reply against (b, |v)
at the information set u.

3. If Ty is the minimal subgame that contains u and (by, |1y) is the restriction of
some assessment (b, ) to Iy, then b; is a best reply against (b, j1) at the infor-
mation set u in the game I" if and only if by ; is a best reply against (by, j1y) at
the information set u in the game I'y.

Proof Part 1 is known.? Proofs for 2 and 3 are trivial. O

In the next proposition we identify the set of extensive forms where sequential
equilibrium has no additional bite over subgame perfection. The latter concept allows
for the play of non-credible threats at information sets that might never be reached
conditional on its minimal subgame. However, if we restrict attention to extensive
form games where no information set is avoidable in its minimal subform, we can use
the previous lemma to show that sequential and subgame perfect equilibrium coincide.

It turns out that not only is this particular restriction sufficient but also necessary
for the equivalence, in the following sense: we can always find a payoff assignment so
that the sets of subgame perfect and sequential equilibrium differ when the restriction
fails to hold. The construction of such payoff assignment is based on, first, taking
one information set that is avoidable in its minimal subform out of one subgame
perfect equilibrium path and, second, making one of the available actions at this
avoidable information set a strictly dominated action. Take for instance the game con-
tained in Fig. 3. If player 1 moves Out she gives player 2 the possibility of taking the
strictly dominated move H, which forms a subgame perfect equilibrium which is not
sequential.

2 For instance, see van Damme (1991), Theorem 6.2.1.
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Proposition 1 Let E be an extensive form such that no information set u is avoidable
in B(u). Then for any possible payoff vector r, the game I' = (E, r) is such that
SPE(T") = SQE(T"). Conversely, if & is an extensive form with an information set u
that is avoidable in E(u), then we can find a payoff vector r such that for the game
I' = (8,r), SPE(I") # SQE(I).

Proof Let us prove the first part of the proposition. We only have to show that
SPE(I") € SQE(T"). Consider b € SPE(I') and construct a consistent assessment
(b, /1,).3 We have to prove that the set

U, w=J [u € U; : b; ¢ arg max R;;(b\éi)} (1)
biEBi

i=1

is empty. Assume to the contrary that Ub, 1) # ), and consider u € U(b, p). Let
I'y be the minimal subgame that contains u and let j be the player moving at u. By
lemma 1.3, by ; is not a best reply against (by, (ty) at u in the game I'y. Part 2 implies
either that lP’g’, (u) = 0 or that by ; is not a best reply against by at u. If the latter was
true, part 1 would anyway imply that ]P’é’, (1) = 0. However, u is not avoidable in E,.
This provides the contradiction.

Let us now prove the second part of the proposition. Suppose # € U; is an infor-
mation set that is avoidable in E(«) and let ¢ € C,, be an arbitrary choice available at
u. Assign the following payoffs:

ri(z)=0 Vi ifz e Z(c) @)
ri(z) =1 Vi elsewhere.

Clearly any strategy b; = b;\c cannot be part of a sequential equilibrium since playing
a different choice at u gives player i strictly higher expected payoff at that information
set.

We now have to show that there exists a subgame perfect equilibrium b such that
b; = b;\c. By assumption there exists »" such that IF’I;, (u) = 0 in the minimal subgame

I'y that contains u. The equality ]P’ly’ (u) = 0 also holds for b = b'\c. The strategy pro-
file by is a Nash equilibrium of I'y since nobody can obtain a payoff larger than one.
By the same argument, b induces a Nash equilibrium in every subgame, hence it is a
subgame perfect equilibrium. This completes the proof. O

We use the extensive form of Selten’s horse game (Figs. 4, 5) to show that the algo-
rithm (used in the proof of the second part of Proposition 1) does not depend either
on the particular avoidable information set, or on the particular choice that is taken
to construct the payoffs. Information set u in the algorithm corresponds to player 2’s

3A general method to define consistent assessments (b, ) for any given b € B, in an extensive form, is
the following: take a sequence of completely mixed strategy profile {b;}; — b and for each ¢, construct
ul(x) = i (x|u) € [0, 1], Vx € u, for all information sets u. Call k = | X \ Py|. The set [0, 115 is compact
and since u’ € [0, l]k, Vi, there exists a subsequence of {r}, call it {r;}, such that {utj }[j converges in

[0, 11%. Define beliefs as p = lim;_, o i
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Fig. 4 Selten’s horse. An
example of the use of the
algorithm contained in the proof
of Proposition 1 to generate a
game where SPE(I") # SQE(I")

1,1,1 1,1,1 0,0,0 0,0,0

Fig. 5 Selten’s horse. A
different use of the algorithm
contained in Proposition 1

1,1,1 0,0,0 1,1,1 0,0,0

(player 3’s) information set in Fig. 4 (Fig. 5), and choice ¢ € C, in the algorithm
corresponds to choice B (choice R) in Fig. 4 (Fig. 5).

Notice that the payoff assignment in the previous proof yields a difference in equi-
librium strategies but not in equilibrium payoffs. The reason is that we cannot always
achieve difference in equilibrium outcomes (therefore, neither in equilibrium payoffs).
Figure 6 contains an extensive form where the second information set of player 1 is
avoidable in its minimal subform, and nevertheless, the sets of sequential and sub-
game perfect equilibrium outcomes always coincide, regardless of what the payoffs
assigned to final nodes are. Proposition 2 provides a sufficient and necessary condition
for the sets of equilibrium outcomes (also, of equilibrium payoffs) to be equal for any
conceivable payoff function.

Before that, we need to be able to identify which players can avoid a given informa-
tion set. Let u be an information set and let E, = E(u). Construct the set of strategies

B(u) = {b €B:Phu) > o}.

Definition 7 We say that the information set « can be avoided in E(u) by player i if

there exists a strategy profile » € B(u), and a choice ¢ € Cy, with v € Uj;, such that
b\c

Py (u) = 0.

Remember that for an information set u that is avoidable in E(u) = &, there must
be a strategy profile b such that IP’; = 0 (Definition 6). If a player, say player i, is able
to unilaterally modify a strategy profile 4’ for which ]P’l)’,/ > 0, by changing only one
of her choices, and hereby construct one b for which IF’I; = 0, then we say that the
information set u can be avoided in E(«) by player i. Therefore, associated with any
information set, there is a (possibly empty) list of players who can avoid it in its mini-
mal subform. Figure 6 is an example of an extensive form where for every information
set such a list is either empty or contains only the owner of the information set. When
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Fig. 6 The second information 1
set of player 1 can only be
avoided by player 1. Therefore,
SPEP(I") = SQEP(I")

this happens, sequential equilibrium has no additional bite over subgame perfection
regarding equilibrium outcomes. The reason is that subgame perfection allows a player
to choose actions suboptimally, but given the particular structure of the game form, it
can only happen at information sets already avoided by her own previous behavior,
and choices at such information sets do not affect the outcome of the game.

This condition is also necessary for equivalence in equilibrium outcomes in the
following sense: if player i can avoid the information set « in its minimal subform,
and if j is the owner of the information set u, there exists a payoff assignment so that
player j can “non-credibly” threaten player i (something ruled out by sequential equi-
librium but not by subgame perfection) bringing about the difference in equilibrium
outcomes.

The following lemma is useful for the proof of Proposition 2.

Lemma 2 Let E be an extensive form such that, whenever an information set u is
avoidable in 2 (u), it can only be avoided in 2 (u) by its owner. Let (b, 1) and (b', i)
be two consistent assessments. If b and b’ are such that IP’ly’ = IP’?,/ for every subform
Ey, then u = 1.

Proof Let (b, u) and (o', 1) be two consistent assessments such that IP"; = Pg/ for
every subform E,. Note that " can be obtained from b by changing behavior at
information sets that are reached with zero probability within their minimal subform.
Hence, without loss of generality, let b and b’ differ only at one such information set,
say u € U;, and let E, = E(u). The shift from b to b’ may cause a change in beliefs
only at information sets that come after # and are in the same minimal subform E,.
Let v € U; be one of those information sets.

If j = i, perfect recall and consistency imply that there is no change in beliefs at the
information set v. If j # i there are two possible cases, either ]P’i’, (v) > Oor ]P’i’, (v) =0.
In the first case the beliefs at v are uniquely defined, therefore, u(x) = u'(x), Vx € v
and moreover, u(x) = u/(x) = 0, Vx € v such that u < x. In the second case, since
the information set v can only be avoided by player j in E(u) there exists a choice
¢ € Cy of player j such that PI;\C(U) > (0, otherwise player i would also be able
to avoid the information set u in E(u). Let b” = b\c and b"”" = b'\c, then by the
discussion of the first case, 1" (x) = u”(x), Vx € v, furthermore, perfect recall and
consistency imply u”(x) = u(x) and "’ (x) = w'(x), Vx € v, which in turn implies
w(x) = ' (x),¥x € v. O

We are now ready to state and prove our second equivalence result.
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Proposition 2 Let E be an extensive form such that, whenever an information set u is
avoidable in E(u), it can only be avoided in E(u) by its owner. Then for any possible
payoffvectorr, the game I = (&, r) is such that SPEO(I") = SQEO(I"). Conversely,
if B is an extensive form with an information set u that can be avoided in E(u) by
a different player than its owner, then we can find a payoff vector r such that for the
game I = (8, r), SPEP(I") # SQEP(I').

Proof Letus prove the first part of the proposition. We need to prove that Vb € SPE(I"),
Pt € SQEO(T"). Take an arbitrary b € SPE(I") and construct some consistent beliefs
uw.

If the set U (b, ) = Ui, {u eU;:b; ¢arg max; . p Rf‘u (b\l;,-)} is empty, then

b € SQE(I") and P? € SQEO(I"). Otherwise, we need to find a sequential equilibrium
(b*, *) such that P?* = PP,

Step 1: Take an information set u € U(b, 1). Let i be the player that moves at this
information set, and let I'y = (E(u), 7). As in the proof of Proposition 1, notice
that by Lemma 1, u should be such that IP’? (u) = 0, hence it is avoidable in its
minimal subform. By assumption, u can only be avoided by player i.

Step 2: Let b’ be the strategy profile b modified so that player i plays a best reply
against (b, u) at the information set u. Construct a consistent assessment (b, i’).
Notice that P = P? and, in particular, ]P’i’,l = IF’?V. By Lemma 2, o and ' assign
the same probability distribution on every information set.

Step 3: We now prove that &’ € SPE(T"). For this we need b’y € NE(I'y). Given the
strategy profile b; in the subgame I'y, player i cannot profitably deviate because
this would mean that she was also able to profitably deviate when b, was played in
the subgame I'y, which contradicts b, € NE(T'y).

Suppose now that there exists a player j # i who has a profitable deviation b;f‘j

—

from b/y j in the subgame I'y. The hypothesis on the extensive form E implies

b b/{ ) bA\b .
]P’y\ =P, Py , which further implies that »” . should have also been a profit-

able deviation from by. However, this is impossible since by, € NE(I'y).

Step 4: By step 2, U, /)| = |U(b, w)| — 1. I |U@D', u')| # 0, apply the same
type of transformation to »". Suppose that the cardinality of U(b, ) is q, then in
the gth transformation we will obtain a consistent assessment (b9, 1(9) such that
b@ € SPE(I"), Pb = PP and U (h @, @) = ¢1. Observe that, b@ e SPE(I")
and U (LD, n@) = ¢ imply b9 € SQE(T"). Therefore (b4, 11(9)) is the sequen-
tial equilibrium (b*, u*) we were looking for.

Let us now prove the second part of the proposition. For notational convenience, it is
proved for games without proper subgames, however, the argument extends immedi-
ately to the general case.

Given a node x € T, the set Path(x) = {c elU,Cu:c< x} of choices is called
path to x.

Suppose that u is an information set that can be avoided in E by a player, say
player j, different from the player moving at it, say player i. Note that there must
exist an x € u and a choice ¢ € Cy, where v € U}, such that if b = b\Path(x), then
PP\ (i) = 0 is true.
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Let f € C, be an arbitrary choice available to player i at u. Assign the following
payoffs:

ri(z) =0 ifz € Z(c)
ri(z)=rj2) =0 ifz € Z(f) 3)
ri(z)=rjx) =1 ifze Zw) \ Z(f).

Letd € Path(x) withd ¢ C,, assign payoffs to the terminal nodes, whenever allowed
by 3, in the following fashion:

ri(z) > r(z)) wherez € Z(d) and 7 € Z(Cy \ {d}). 4)

Player k above is the player who has choice d available at the information set w. Give
zero to every player everywhere else.

In words, player j moves with positive probability in the game. She has two choices,
either moving towards the information set u and letting player i decide, or moving
away from the information set u. If she moves away she gets zero for sure. If she lets
player i decide, player i can either make both get zero by choosing f, or make both
get one by choosing something else. Due to 4, no player will disturb this description
of the playing of the game.

This game has a Nash equilibrium in which player i moves f and player j obtains
a payoft equal to zero by moving c. However, in every sequential equilibrium of this
game, player i does not choose f and, as a consequence, player j takes the action
contained in Path(x) N C,. Therefore, in every sequential equilibrium, players i and
j obtain a payoff strictly larger than zero.* This completes the proof. O

For a very simple application of the previous algorithm, consider the extensive game
of Fig. 3 and substitute the payoff vector following move Out of player 1, with the
payoff vector (0, 0). Again, the first player moving Out and the second player taking
the strictly dominated move H, is a subgame perfect equilibrium that yields an equi-
librium payoff vector equal to (0, 0). However, in any sequential equilibrium, player
2 moves G and player 1 does not move Out, which makes (1, 1) the only sequential
equilibrium payoff vector.

Remark 1 Notice that, in the set of extensive forms under study in the last proposition,
beliefs are always uniquely defined for any given strategy profile (consider 5’ = b in
Lemma 2). One may incorrectly think that it is the uniqueness of the beliefs that is
behind the equivalence. Consider a modification of the game form in Fig. 6 so that
the second information set of player 1 is controlled by a new player 3. This modified
extensive form has a unique system of consistent beliefs for any given strategy profile
but, as seen in Proposition 2, the set of equilibrium outcomes is not the same for both
concepts for every possible payoff vector.

4 Equilibrium payoffs are not necessarily equal to one due to eventual moves of Nature.
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5 Examples

These results can be applied to many games considered in the economic literature.
It allows us to identify in a straightforward way the finite extensive form games of
imperfect information for which subgame perfect equilibria are still conforming with
backward induction expressed in a sequential equilibrium.

Besley and Coate (1997) proposed an economic model of representative democ-
racy. The political process is a three-stage game. In stage 1, each citizen decides
whether or not to become a candidate for public office. At the second stage, voting
takes place over the list of candidates. At stage 3 the candidate with the most votes
chooses the policy. Besley and Coate solved this model using subgame perfection
and found multiple subgame perfect equilibria with very different outcomes in terms
of number of candidates. This may suggest that some refinement might give sharper
predictions. However, given the structure of the game that they considered, it follows
immediately from the results of the previous section that all subgame perfect equilibria
in their model are also sequential. Thus, no additional insights would be obtained by
requiring this particular refinement.

The information structure of Besley and Coate’s model is a particular case of the
more general framework offered by Fudenberg and Levine (1983). They characterized
the information structure of finite-horizon multistage games as “almost” perfect, since
in each period players simultaneously choose actions, Nature never moves and there
is no uncertainty at the end of each stage. As they noticed, sequential equilibrium does
not refine subgame perfection in this class of games. This can also be obtained as an
implication of Proposition 1 in the present paper.

In their version of the Diamond and Dybvig (1983) model, Addo and Temzelides
(1998) discussed both the issue of potential banking instability as well as that of the
decentralization of the optimal deposit contract. They addressed the first question in a
model with a “social planner” bank. The bank offers the efficient contract as a deposit
contract in the initial period. In the first stage agents sequentially choose whether to
deposit in the bank or to remain in autarky. In the second stage, those agents who were
selected by Nature to be patient, simultaneously choose whether to misrepresent their
preferences and withdraw, or report truthfully and wait. The reduced normal form of
the game has two symmetric Nash equilibria in pure strategies. The first one has all
agents choosing depositing in the bank and reporting faithfully, the second one has
all agents choosing autarky. The fact that both equilibria are sequential is presented
in their Proposition 2. Because of the game form they used, our Proposition 1 also
implies their result.

In the implementation theory framework, Moore and Repullo (1988) present the
strength of subgame perfect implementation. If a choice function is implementable
in subgame perfect equilibria by a given mechanism, the strategy space is finite, and
no information set is avoidable in its minimal subform in the extensive form of the
mechanism, then our work establishes the implementability in sequential equilibrium.
(See, for instance, the example they study in Sect. 5, pp. 1213-1215.)

More examples can be found in Game Theory textbooks, like those of Fudenberg
and Tirole (1996), Myerson (1997) and Osborne and Rubinstein (1994). Notice that
whenever subgame perfect and sequential equilibrium differ for an extensive game,
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there are information sets that are avoidable in its minimal subform. As examples
consider Figs. 8.4 and 8.5 in Fudenberg and Tirole (1996), Figs. from 4.8 to 4.11 in
Myerson (1997) and Figs. 225.1 and 230.1 in Osborne and Rubinstein (1994).

6 Appendix: Notation and terminology
6.1 Extensive form

An n-player extensive form is a sextuple & = (T, <, P, U, C, p), where T is the
finite set of nodes and < is a partial order on 7', representing precedence. We use
the notation x < y to say that node y comes after node x. The immediate predeces-
sor of x is A(x) = max{y : y < x}, and the set of immediate successors of x is
S(x) ={y:x € A(y)}. The pair (T, <) is a tree with a unique root «: for any x € T,
X # «a, there exists a unique sequence & = Xxg, X1, ..., X, = x with x; € S(x;j_1),
1 <i < n.Thesetofendpointsis Z = {x : S(x) = @} and X = T\ Z is the set of deci-
sion points. We write Z(x) = {y € Z : x < y} to denote the set of terminal successors
of x, and if E is an arbitrary set of nodes we write Z(E) = {z € Z(x) : x € E}.

6.2 Player partition

The player partition, P, is a partition of X into sets Py, P, ..., P,, where P; is the
set of decision points of player i and Py stands for the set of nodes where chance
moves. The probability assignment p specifies for every x € Py a completely mixed
probability distribution p, on S(x).

6.3 Information partition

The information partition U is an n-tuple (Uy, ..., U,), where U; is a partition of
P; into information sets of player i, such that (i) if u € U;, x,y € u and x < z for
z € X, then we cannot have z < y, and (ii) if u € U;, x, y € u, then |S(x)| = [S(¥)].
Therefore, if u is an information set and x € X, it makes sense to write u < x. Also,
if u € U;, we often refer to player i as the owner of the information set u.

6.4 Choice partition

If u € U;, the set C,, is the set of choices available for i at u. A choice ¢ € C, is a
collection of |u| nodes with one, and only one, element of S(x) for each x € u. If
player i chooses ¢ € C, at the information set u € U; when she is actually at x € u,
then the next node reached by the game is the element of S(x) contained in c. The
entire collection C = {C, : u € |Ji_, U;} is called the choice partition. We assume
throughout that |C,,| > 1 for every information set u.
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6.5 Extensive form game

We define a finite n-person extensive form game as a pair I' = (&, r), where E is an
n-player extensive form and r, the payoff function, is an n-tuple (rq, ..., r,), where
r; is a real valued function with domain Z. We assume throughout that the extensive
form E satisfies perfect recall, i.e. for alli € {1,...,n}, u,v € U;, ¢ € C, and
X,y € v, we have ¢ < x if and only if ¢ < y. Therefore, we can say that choice ¢
comes before the information set v (to be denoted ¢ < v) and that the information set

u comes before the information set v (to be denoted u < v).

6.6 Behavior strategies, beliefs and assessments

A behavior strategy b; of player i is a sequence of functions (b}'),cy; such that b}’ :
Cy,— Ryand >, Cy bl‘.‘ (c) = 1, Vu. The set B; represents the set of behavior strat-
egies available to player i. A behavior strategy profile is an element of B = [[/_, B;.
As common in extensive form games, we restrict attention to behavior strategies.
Throughout, we simply refer to them as strategies. If b; € B; and ¢ € C,, withu € U;,
then b; \c denotes the strategy b; changed so that c is taken with probability one at u.
If b € Band b; € B; then b\b is the strategy profile (by, ..., b;j_1, b, bi11,...,by).
If ¢ is a choice of player i then b\c = b\b;, where b, = b; \c.

A system of beliefs p is a function p : X \ Py — [0, 1] with > ., n(x) =1, Vu.
An assessment (b, ) is a strategy combination together with a system of beliefs.

6.7 Subforms and subgames

Let T C T be a subset of nodes such that (i) Iy € T with y<ux,Vxe T, x #y, (ii)
if x € T then S(x) C T, and (i) if x € Tandx € uthenu C T. Then we say that
By = (T <, P, U,C, p) is a subform of E starting at y, where (<, P,U,C, p) are
defined from E in T by restriction. A subgame is a pair I'y = (Ey, r), where 7 is the
restriction of r to the endpoints of E,. We denote by by the restriction of b € B to
the subform Ey (to the subgame I'y). The restriction of a system of beliefs u to the
subform E, (to the subgame I'y) is denoted by fiy.
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