
DEPARTMENT OF COMPUTER SCIENCE

BACHELOR THESIS

ADAPTATION, DEPLOYMENT AND EVALUATION

OF A RAILWAY SIMULATOR IN CLOUD

ENVIRONMENTS

Author: Silvina Cáıno Lores

Supervisor: Alberto Garćıa Fernández

BACHELOR DEGREE IN

COMPUTER SCIENCE

LEGANÉS, MADRID

JUNE 2014

CONTENTS

Index of Tables vii

Index of Figures xi

Acknowledgements xii

Abstract xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Document Structure . 3

1.4 Definitions, Acronyms and Abbreviations 4

2 State of the Art 8

2.1 Railway Simulators . 8

2.2 High-Performance Computing . 9

2.2.1 Current Supercomputers and Petascale Systems 10

2.2.2 Future Goals: Green HPC and Exascale Infrastructures . . . 11

2.3 Cloud Computing . 12

2.3.1 The Upcoming Anything-as-a-Service Model 12

2.3.2 Trends in Cloud Migration and Adaptation Techniques . . . 13

iii

2.4 MapReduce . 14

3 Analysis 22

3.1 Application Description . 22

3.2 Solution Selection . 25

3.3 Requirements . 26

3.3.1 User Requirements . 28

3.3.2 Functional Requirements . 31

3.3.3 Non-Functional Requirements 32

4 Design 39

4.1 Adaptation Overview . 39

4.2 Detailed Design . 40

4.2.1 MapReduce Jobs Internals . 40

5 Implementation and Deployment 44

5.1 Application Implementation Details 44

5.1.1 I/O Structures . 44

5.1.2 Map and Reduce Procedures 45

5.2 Platform Configuration and Deployment 49

5.2.1 Hadoop Configuration . 49

5.2.2 Deployment . 52

6 Verification, Validation and Evaluation 54

6.1 Test Plan Specification . 54

6.2 Execution Environments . 57

6.2.1 Original Application Evaluation Node 57

6.2.2 Physical Cluster . 57

6.2.3 Virtual Cluster . 58

6.3 Tests and Results . 59

6.3.1 Performance Tests . 61

6.3.2 End-to-End Tests . 65

6.4 Performance Evaluation . 70

6.4.1 Stage Analysis . 70

6.4.2 Final Evaluation . 72

7 Budget 74

7.1 Life Cycle . 74

7.2 Project Costs . 76

7.3 Project Offer Proposal . 78

8 Conclusions and Future Work 79

8.1 Met Objectives and Other Positive Aspects 79

8.2 Development Difficulties and Other Negative Aspects 81

8.3 Future Work . 82

Bibliography 85

INDEX OF TABLES

2.1 Top five positions in the Top500 ranking of November of 2013. . . . 10

2.2 Top five positions in the Graph500 ranking of November of 2013. . . 11

2.3 Top five positions in the Green500 ranking of November of 2013. . . 11

3.1 Experiments definition. 24

3.2 User requirement UR-C01 . 28

3.3 User requirement UR-C02 . 29

3.4 User requirement UR-R01 . 29

3.5 User requirement UR-R02 . 30

3.6 User requirement UR-R03 . 30

3.7 Functional requirement SR-F-F01 . 31

3.8 Functional requirement SR-F-F02 . 31

3.9 Functional requirement SR-F-F03 . 32

3.10 Non-Functional requirement SR-NF-PL01 32

3.11 Non-Functional requirement SR-NF-PL02 33

3.12 Non-Functional requirement SR-NF-PL03 33

3.13 Non-Functional requirement SR-NF-PL04 34

3.14 Non-Functional requirement SR-NF-PL05 34

3.15 Non-Functional requirement SR-NF-PL06 35

3.16 Non-Functional requirement SR-NF-O01 35

3.17 Non-Functional requirement SR-NF-O02 36

vii

3.18 Non-Functional requirement SR-NF-S01 36

3.19 Non-Functional requirement SR-NF-S02 37

3.20 Non-Functional requirement SR-NF-S03 37

3.21 Non-Functional requirement SR-NF-P01 38

3.22 Non-Functional requirement SR-NF-P02 38

5.1 YARN configuration parameters values related to the underlying hard-

ware. 50

5.2 MapReduce configuration parameters values related to the underlying

hardware, optimized for large test cases. 51

6.1 Tests types performed at each stage of the development process. . . 56

6.2 YARN configuration parameters values for the physical cluster exe-

cution environment. 58

6.3 MapReduce configuration parameters values for the physical cluster

execution environment. 58

6.4 YARN configuration parameters values for the physical cluster exe-

cution environment. 59

6.5 MapReduce configuration parameters values for the physical cluster

execution environment. 59

6.6 Performance test PT-01 . 61

6.7 Performance test PT-02 . 62

6.8 Performance test PT-03 . 63

6.9 Performance test PT-04 . 64

6.10 End-to-end test EET-01 . 65

6.11 End-to-end test EET-02 . 66

6.12 End-to-end test EET-03 . 67

6.13 End-to-end test EET-04 . 68

6.14 End-to-end test EET-05 . 69

7.1 Project information. 76

7.2 Direct personnel costs. 76

7.3 Personnel consent declaration. 77

7.4 Direct equipment costs. 77

7.5 Other direct costs. 78

7.6 Costs summary. 78

7.7 Offer proposal breakdown. 78

INDEX OF FIGURES

2.1 MapReduce dataflow. 15

2.2 HDFS architecture. 19

2.3 MapReduce 1.x architecture. 20

2.4 MapReduce 2.x architecture. 21

3.1 Infrastructure input file sample. 22

3.2 Train movement input file sample. 23

3.3 Original application structure. 24

3.4 Original application’s execution times. 25

3.5 Original application’s virtual memory consumption. 25

4.1 Top-level adaptation design. 40

4.2 MapReduce theoretical design for the adapted application. 41

4.3 Driver2 map procedure scheme. 43

5.1 Deployment UML diagram. 52

6.1 Time results for the adapted and original application, in logarithmic

scale. 70

6.2 Adapted application speed-up against the original simulator. 72

7.1 Application development life cycle. 75

xi

ACKNOWLEDGEMENTS

In a personal level, I would like to express my deep appreciation for the huge

moral support my mother, my family and Silvia had provided me with, for it helped

me to endure during the toughest periods of my studies. I also find necessary to

acknowledge the valuable opinion of some friends, with a special mention to Ángel

and his tireless willingness to discuss my project-related concerns with me.

I would like to offer my special thanks to all the ARCOS staff, whose deep

knowledge and passion continuously inspire me to pursue a career in research. Ad-

ditionally, wish to thank the help provided by the Tucán cluster administrators for

their technical support. I want to dedicate a warm thankful line to the lab fellows,

as they have always tried to cheer me up when things seemed to go plain wrong.

Finally, I am deeply grateful to my supervisor, Alberto Garćıa, for his priceless

advice and dedication to this project, and to the ARCOS director, Prof. Jesús

Carretero, for his knowledgeable key suggestions and for giving me the opportunity

to collaborate with his team.

xii

ABSTRACT

Many scientific areas make extensive use of computer simulations to study real-

world processes. As they become more complex and resource-intensive, traditional

programming paradigms running on supercomputers have shown to be limited by

their hardware resources.

The Cloud and its elastic nature has been increasingly seen as a valid alterna-

tive for simulation execution, as it aims to provide virtually infinite resources, thus

unlimited scalability. In order to benefit from this, simulators must be adapted to

this paradigm since cloud migration tends to add virtualization and communication

overhead.

This work has the main objective of migrating a power consumption railway

simulator to the Cloud, with minimal impact in the original code and preserving

performance. We propose a data-centric adaptation based in MapReduce to dis-

tribute the simulation load across several nodes while minimising data transmission.

We deployed our solution on an Amazon EC2 virtual cluster and measured its

performance. We did the same in in our local cluster to compare the solution’s per-

formance against the original application when the Cloud’s overhead is not present.

Our tests show that the resulting application is highly scalable and shows a better

overall performance regarding the original simulator in both environments.

This document summarises the author’s work during the whole adaptation de-

velopment process .

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Scientific simulations constitute a major set of applications that attempt to re-

produce real-world phenomena in a wide range of areas such as engineering, physics,

mathematics and biology. Their complexity usually yields a significant resource

usage regarding CPU, memory, I/O or a combination of them.

As simulations become more and more complex, the amount of input, intermedi-

ate, and output data has increased notably [1]. Furthermore, if it is desired to study

several variables involved in the experiment, or the simulation behaviours across

different domains (time domain and spatial domain, for instance), a single simula-

tion is not sufficient, hence time and resources needed to run a simulation must be

factored by the number of simulations that have to be executed. Therefore, the use

of simulators is limited by the availability, computing power and overall resources

of the underlying computing infrastructure, which can be constituted by datacen-

ters, supercomputers or clusters, for example. In this context, the usage of HPC

technologies –such as MPI, OpenMP, GPGPUs– over clusters and supercomputers

is the current major trend in simulations [2].

Another recent option is Cloud Computing, which has been increasingly studied

as an alternative to traditional grid and high-performance distributed environments

Introduction 2

for resource-demanding and data-intensive scientific simulations [3]. Cloud Compu-

ting emerged with the idea of virtual unlimited resources obtainable on-demand with

minimal management effort [4]. It would enable the execution of large simulations

with virtual hardware properly tailored to fit specific use cases like memory-bound

simulations, CPU-dependant computations or data-intensive analysis. It holds fur-

ther advantages, such as elasticity, automatic scalability and instance resource se-

lectivity which, along with its so-called pay-as-you-go model, allow to adjust the

required instances to the particular test case size while cutting-down the resulting

costs.

Cloud’s capabilities to achieve virtually unlimited scalability are very attractive,

especially if we also consider that recent advances in cloud interoperability and cloud

federations can contribute to separate application scalability from datacenter size

[5, 6]. From this point of view, application migration to the cloud would be beneficial

for simulator’s users as more complex cases could be tackled.

This project approaches a railway installation power consumption simulator as

a particular case and good example of an application that holds potential scalability

issues on large cases. The initial version of the simulator, based on multi-threading,

is memory bounded, strongly limited by the number of instants to be simulated

simultaneously and, therefore, by the number of threads. This limitation can be

overcome by breaking the simulation into a set of smaller simulations that could

run independently across several nodes, specially if we are able to scale the cluster

size to the necessary resources. Hence, it seems natural to adapt and migrate the

simulator to a scalable virtual cluster on the Cloud, given its elastic features.

The MapReduce framework was selected in order to successfully migrate the

algorithm because it is inherently data-centric [7]. Our selected MapReduce imple-

mentation is the popular Apache Hadoop [8], whose distributed file system allows

automatic load balance and data replication to help with robustness and data loca-

lity. Hadoop has been increasingly adopted into cloud environments along with other

MapReduce frameworks, resulting in reduced costs given its parallelism exploitation

capabilities [9].

Introduction 3

1.2 Objectives

The main objective of this project is to develop a functional adaptation of the

railway power consumption simulator to the Cloud, in order to allow end-users the

execution of large test cases that would overwhelm standalone and cluster hardware

resources.

We aim to achieve the same results that the original application outputs but

running several smaller simulations independently, following a data-centric approach

to minimize intercommunication between the nodes in the Cloud. The adaptation

must not penalize performance regarding the original multi-thread application, hence

virtual cluster configuration and optimization tasks must be executed as well to

optimise the result.

Finally, since the simulator is already production-ready, we must minimise the

influence of the adaptation in the original application so that we can reuse as much

code as possible. Moreover, we must provide end users with a ready-to-use solution

that contains the application and the necessary environment.

The following list gives a quick overview of the goals of this project:

1. Provide a data-centric adaptation of the simulator.

2. Minimise impact in the original code.

3. Deploy on a virtual cluster on the Cloud.

4. Deliver a bundled deployment solution.

5. Analyse the effects of the migration in the simulator’s overall performance.

1.3 Document Structure

This document describes the work performed during all the development process

of the final application, including problem analysis, solution design and implemen-

tation and evaluation. It also contains a summary of the current state of the affairs

in related research and development areas, and a sale offer proposal in case it is

desired to monetise the product.

The report contains the following chapters:

Introduction 4

• Chapter 1, Introduction, contains an overview of the project’s context, goals

and proposed approach. It additionally provides a list of acronyms and abbre-

viations used in the document for quick reference.

• Chapter 2, State of the Art, describes the cutting-edge technologies related

to the project, as well as other solutions that had been proposed in previous

research.

• Chapter 3, Analysis, characterises the given application to establish a formal

set of requirements that guide the rest of the development.

• Chapter 4, Design, specifies the top-level solution and the models that will be

implemented to comply with the requirements.

• Chapter 5, Implementation and Deployment, gives highlights on how the design

was implemented to create the final product and how to deploy it.

• Chapter 6, Verification, Validation and Evaluation, specifies the test plan,

the performed tests and their execution environments, and evaluates the final

application against the original one in terms of performance.

• Chapter 7, Budget, breaks down the project’s costs to build a suitable offer that

includes risks and benefits for a potential sale. It also describes the product

life-cycle to justify the utilised resources and planning.

• Chapter 8, Conclusions and Future Work, gathers key aspects that can be

extracted from the project, as well as future improvements and research lines.

The document is completed with a Bibliography that contains the referenced

resources through the whole report.

We recommend the reader to notice that all the internal references in the docu-

ment are linked for easier navigation.

1.4 Definitions, Acronyms and Abbreviations

AMI Amazon Machine Image, Amazon’s instance launch information bundle that

includes OS, block device mapping, applications, platforms and permission

specification.

Introduction 5

API Application Programming Interface, specification of a device or software com-

ponent functionality that can be accessed by a set of methods.

ARCOS ARquitectura de COmputadoreS, Universidad Carlos III de Madrid com-

puter architecture group.

CLI Command-Line Interface, interaction method in which the user communicates

with the computer by means of a sequence of text lines.

Cloud Distributed computing model based in virtualization.

EC2 Elastic Compute Cloud, Amazon’s cloud computing pay-per-use infrastruc-

ture,

EMR Elastic Map Reduce, Amazon’s Platform-as-a-Service offer that includes a

scalable and dynamically resizeable Hadoop MapReduce distribution for vir-

tualized clusters running on EC2.

FLOPS FLoating-point Operations Per Second, a standard performance measure

unit.

GFS Google File System, Google’s distributed file system for its proprietary MapRe-

duce implementation.

GPGPU General-Purpose Computing on Graphics Processing Units, programming

and computing paradigm that uses graphics processing devices’ instead of clas-

sic central processing units.

HDFS Hadoop Distributed File System, Apache Hadoop’s file system to support

Mapreduce and other components.

HPC High-Performance Computing, refers to the usage of high-end computing re-

sources to solve complex problems or analyse large amounts of data.

IaaS Infrastructure-as-a-Service, Cloud service model in which users pay for ins-

tance and hardware usage.

MPI Message Passing Interface, standardised implementation of the message-passing

paradigm for process intercommunication.

Introduction 6

MRv1 MapReduce First Generation, 1.x branch of the Hadoop MapReduce project.

MRv2 MapReduce Next Generation, 2.x branch of the Hadoop project, running on

top of YARN.

NIST National Institute of Standards and Technology, a measurement standards

laboratory from the USA.

OpenMP Open Multi-Processing, API that supports multi-platform shared me-

mory multiprocessing programming.

OS Operating System, software system component that manages computer hard-

ware resources and provides common services for other programs.

PaaS Platform-as-a-Service, Cloud service model in which users pay for ready-to-

use platform and framework usage.

RAM Random-Access Memory, volatile information storage type.

S3 Simple Storage Service, web-services interface that can be used to store and

retrieve data from Amazon’s highly scalable storage infrastructure.

SaaS Software-as-a-Service, Cloud service model in which users pay for production-

ready applications that can be automatically scaled to the number of requests.

SARTECO Sociedad de ARquitectura y TEcnoloǵıa de COmputadores, Spanish

non-profit association dedicated to promote research in the field of computer

architecture.

SSH Secure SHell, cryptographic network protocol for secure data communication,

remote command-line execution, and other security services.

TEPS Traversed Edges Per Second, performance measure unit that considers com-

putational power and network capabilities.

UML Universal Markup Language, modelling language designed to provide a stan-

dard way to visualize the design of a system.

XaaS Anything-as-a-Service, relative to the current trend of migrating most appli-

cations to the Cloud, including databases, security frameworks, simulations,

network and storage, among others.

Introduction 7

YARN Yet Another Resource Negotiator, Hadoop related project that performs

cluster resource management for versions that belong to the 2.x branch.

CHAPTER 2

STATE OF THE ART

2.1 Railway Simulators

Railway infrastructures designers can benefit from simulations as they can eva-

luate the viability and fitness of their prototypes and experimental designs without

the need for their implementation. Simulators in this field operate by translating

train and infrastructure features into a simplified mathematical model, which shall

be able to reflect the effect of user-defined configurations in the expected real world

behaviour [10].

The lines below describe the main railway simulator’s families and describe some

examples of production applications that belong to them [11]:

Railway dynamics This field studies the longitudinal train dynamics, which are

defined as the motions of vehicles in the direction of the track, including the

motion of the train as a whole and any relative motions between other vehicles

[12]. An example of this sort of simulators can be found in [13]. This simulator

is able to generate optimal solutions by means of artificial intelligence, while

considering passenger safety and comfort.

Overhead contact line design The contact lines are the interfaces between fixed

installations in the railway infrastructure and the moving vehicles [14]. Both

State of the Art 9

[15] and [14] describe simulators that help with designing these infrastructures,

yet they follow different approaches. While the former is able to iterate through

a predefined inventory in order to generate solutions, the latter focuses only

in single design; moreover, the first option is able to find optimal solutions for

limited parameters.

Power provisioning Simulators like [16] are meant to determine the location of

power supply stations along the railways and their capacity. The algorithm

used in this project belongs to this category.

Pantograph-catenary interaction Pantographs are the structures placed on top

of trains that remain in contact with the power wire, known as catenary, in

order to supply the vehicles with the necessary energy to operate [17]. Simu-

lation tools such as Sicat Dynamic [14] and Calpe [18] evaluate the behaviour

of the catenary while the pantograph is interacting with it. An interesting fea-

tures of Calpe is that it is designed for high-performance environments instead

of being a desktop utility like Sicat.

As shown by some of the exhibits above, nowadays simulators are not only re-

quired to provide a proper evaluation of a given solution described by the user,

but they are also expected to find those suitable solutions by themselves in reason-

able time. Therefore, desktop applications are starting evolve and migrate to other

computing paradigms that provide higher performance and computing power.

2.2 High-Performance Computing

The term High-Performance Computing refers to the application of aggregated

computing resources and parallel processing algorithms and techniques to solve com-

plex computational problems or analyse large amounts of data. Its applications are

specially focused in scientific modelling, simulations and analysis, which tend to

involve large amounts of data and sophisticated algorithms. Its main goal is to

solve such problems in the minimum possible time, hence supercomputers tend to

be composed of multiple interconnected nodes to increase concurrency.

State of the Art 10

2.2.1 Current Supercomputers and Petascale Systems

Complex resource-intensive applications have traditionally found in high perfor-

mance infrastructures the necessary hardware to to fit their high-end needs. Super-

computers constitute a canonical sample of systems that are designed to achieve the

highest number of floating-point operations per second (FLOPS)[19]. HPC clusters

and grids result from the association of a set of supercomputers under the same

local network or across several administratively distributed systems, respectively;

they can also be heterogeneous and gather both CPU and GPU nodes [20, 21].

Current leading systems in the Top500 rank [22] are GPU-based and capable

of reporting over one quadrillion flops (a petaflop) under the standardised Linpack

benchmark [23]. Some examples of the so-called petascale infrastructure are shown

in Table 2.1, which includes the top five positions in the Top500 ranking of November

2013 [24].

System Performance (Pflop/s) Power (MW) Location

Tianhe-2 33.86 17.81 China

Titan 17.59 8.21 USA

Sequoia 17.17 7.89 USA

K-Computer 10.51 12.66 Japan

Mira 8.59 3.95 USA

Table 2.1: Top five positions in the Top500 ranking of November of 2013.

Despite performance is a proper quantitative measure of an HPC system’s qua-

lity, researchers, developers and end-users are increasingly aware of other critical

characteristics that must be considered in order to show the actual capabilities of

the tested system for the efficient execution of 3D simulations and analytics work-

flows, while minimizing computing cost.

The Graph500 rank [25] includes shared-memory, distributed memory and cloud

benchmarks for large scale graph-oriented algorithms. Its goal is to evaluate HPC

system’s behaviour when approaching complex data-intensive applications, mea-

sured in traversed edges per second (TEPS). Current leading positions in the Novem-

ber of 2013 Graph500 ranking are shown in Table 2.2 [26].

State of the Art 11

System Performance (TTEPS) Location

Sequoia 15.36 USA

Mira 14.33 USA

JUQUEEN 5.85 Germany

K-Computer 5.52 Japan

Fermi 2.57 Italy

Table 2.2: Top five positions in the Graph500 ranking of November of 2013.

2.2.2 Future Goals: Green HPC and Exascale Infrastructures

Nowadays, sustainability and energy efficiency is key in the development and

evaluation of HPC infrastructures. Following the Top500 philosophy, the Green500

list [27] is dedicated to rank supercomputers, but in terms of their efficiency, which

is measured in performance-per-Watt.

Table 2.3 shows that current leading positions in the rank do not match any

of the Top500 systems [28], and their total power consumption is significantly less

that the shown by the latter. This indicates that there is still a lot of research to

be done in order to reduce the gap between performance and efficiency, especially

considering that supercomputers will keep increasing their target performance to

reach the exascale goal [29].

System Performance (Tflops/W) Power (kW) Location

TSUBAME-KFC 4.50 27.78 Japan

Wilkes 3.63 52.82 UK

HA-PACS TCA 3.52 78.77 Japan

Piz Daint 3.19 1,753.66 Switzerland

Romeo 3.13 81.41 France

Table 2.3: Top five positions in the Green500 ranking of November of 2013.

Exascale systems will become the next generation of supercomputers, capable

of performing with at least one exaflop. Scientific simulations will likely benefit

from the upcoming exascale infrastructures [30], however many challenges must be

overcome including, processing speed and data locality and power consumption, for

State of the Art 12

instance [31]; among them, energy efficiency seems to be the most limiting factor

[32].

Nowadays, cheaper and lower power alternatives are on research to overcome

such difficulties. For instance, low-end processors are being considered to build

large scale supercomputers, and Cloud Computing appeared as a cheaper, elastic

possibility to achieve the ideal situation of unlimited sustainable scalability.

2.3 Cloud Computing

Cloud Computing is a popular paradigm that relies of resource sharing and

virtualization to provide the end user with a transparent scalable system that can

be expanded or reduced on-the-fly.

Cloud providers operate at several levels of virtualization, which are known as

service models. The NIST definition of Cloud Computing provides a description of

the three basic service models [33]:

Infrastructure-as-a-Service In this model, providers offer physical or virtual re-

sources like instances of raw virtual machines, block storage, virtual networks

and disk imaging.

Platform-as-a-Service It provides a full computing platform that may include an

operating system, a specific programming language execution environment, a

database system or a particular web server. This allows developers to have

access to a wide range of licensed software ready to create or deploy their

applications, without managing the underlying hardware.

Software-as-a-Service It constitutes a higher level of abstraction in which users

are provided with direct access to applications and databases without getting

involved in the platform of infrastructure in which the software runs.

2.3.1 The Upcoming Anything-as-a-Service Model

The former models have been proved successful in current economies of scale and

have been extended to higher levels of abstraction like Database-as-a-Service [34, 35],

Network-as-a-Service [36] and Security-as-a-Service [37]. This is leading to a generic

Anything-as-a-Service (XaaS) vision. Simulations are not unaware of this trend,

State of the Art 13

and there are current efforts to deploy simulation services on the cloud, like [38] and

[39]. With the explosion of cloud services and the Anything-as-a-Service (XaaS)

model, cloud service providers have also started to offer several HPC paradigms

[40]. Examples of this are MapReduce [41], MPI implementations [42], and GPGPU

processing [43, 44].

The so-called Simulation-as-a-Service model and the native frameworks offered

by Cloud providers seem promising for scientific simulations that are required to be

scalable, but there is also a number of challenges that must be faced. The Magellan

Final Report [45] exposes that scientific applications executed on the cloud suffer the

overhead associated to the virtualization layer and the absence of high-bandwidth,

low-latency interconnections in current virtual machines. Considering that nodes

can be located in different datacenters, communication-sensitive paradigms such as

MPI would show decreased performance in such environments against traditional

infrastructures.

2.3.2 Trends in Cloud Migration and Adaptation Techniques

As already mentioned, scientific applications and their adaptability to new com-

puting paradigms like the Cloud have been dragging increasing attention from the

scientific community in the last few years.

The possibility to run simulations in the Cloud in terms of cost and performance

was studied in [46], concluding that performance in the Abe HPC cluster and Ama-

zon EC2 is similar –besides the virtualization overhead and high-speed connectivity

loss in the cloud– and that clouds are a viable alternative for scientific applications.

Hill [47] investigated the trade-off between the resulting performance and achieved

scalability on the cloud versus commodity clusters; despite at the time of this work

the Cloud could not properly compete against HPC clusters, its low maintenance

and cost made it a viable option for small scale clusters with a minimum performance

loss.

In this context, trends are naturally evolving to migrate applications to the

Cloud by means of several techniques, and this includes scientific simulations as

well. D’Angelo [48] describes a Simulation-as-a-Service schema in which parallel

and distributed simulations could be executed transparently, which requires dealing

with model partitioning, data distribution and synchronization. He concludes that

State of the Art 14

the potential challenges concerning hardware, performance, usability and cost that

could arise could be overcome and optimized with the proper simulation model

partitioning.

In [49], Srirama et al. study how some scientific algorithms could be adapted

to the Cloud by means of the Hadoop MapReduce framework. They establish a

classification of algorithms according to the structure of the MapReduce schema

these would be transformed to and suggest that not all of them would be optimally

adapted by their selected MapReduce implementation, yet they would suit other

similar platforms such as Twister or Spark. They focus on the transformation of

particular algorithms to MapReduce by redesigning the algorithms themselves.

Application adaptation middlewares have also been developed to allow legacy

code migration to the Cloud. For instance, in [50] a virtualization architecture is

implemented by means of a Web interface and a Software-as-a-Service market and

development platform. This generalist approach is suitable to provide multi-tenancy

in desktop applications, but might not suffice for the resource-intensive computations

required by large-scale simulations.

Finally, in [51] we find interesting efforts to move desktop simulation applications

to the Cloud via virtualized bundled images that run in a transparent multi-tenant

fashion from the end user’s point of view, while minimizing costs. However, the vir-

tualization middleware might affect performance since it does not take into account

any structural characteristics of the model, which could be exploited to minimize

migration effects or drastically affect execution times or resource consumption.

Despite Cloud Computing has proven itself useful for a wide range of scientific

applications, its utility for tightly-coupled HPC applications is still under research

and development, mostly because of the added communication overhead and the

heterogeneous underlying hardware [52].

2.4 MapReduce

As seen in the previous section, one of the promising models that has been

increasingly considered to adapt simulations to the Cloud is the MapReduce parallel

computing framework, specially in cases in which data locality is key to improve

performance by reducing data transmission overhead.

State of the Art 15

The applicability of the MapReduce scheme for scientific analysis has been no-

tably studied, specially for data-intensive applications, resulting in an overall in-

creased scalability for large data sets, even for tightly coupled applications [53].

The MapReduce paradigm [7] consists of two user-defined operations –map and

reduce– and three additional phases that handle the original data, the intermediate

results and the final output. Figure 2.1 shows the MapReduce dataflow and their

stages, which behaves as follows:

Figure 2.1: MapReduce dataflow.

Input reading The framework reads the input data from persistent storage and

generates data chunks and assigns each of them a key, k1, and a specific pro-

cessor in the system.

Map Each input chunk is processed by a single independent map, thus spawning as

many maps as k1 values the previous phase had generated. The map’s output

is constituted by a set of intermediate pairs organized by a new key, k2.

Shuffle The intermediate output is organized in lists of values for each k2, which

are assigned to a specific reducer.

Reduce As in the map function, each k2 value list is manipulated by an autonomous

reducer. The output is indexed by a new key, k3, to allow the framework to

produce the final output.

Output generation The reducer’s output is collected and sorted by the frame-

work, according to k3, in order to write the final results to disk.

State of the Art 16

As a data-centric paradigm in which large amounts of information can be po-

tentially processed, the map and reduce operations run independently and only rely

upon the input data they are fed with. Thus, several instances can run simulta-

neously with no further interdependence. Moreover, data can be spread across as

many nodes as needed to deal with scalability issues.

Given its popularity, there are several MapReduce implementations for dis-

tributed environments, with different capabilities and specifications. Some of the

most popular are listed below:

Twister We mentioned that MapReduce performs poorly with iterative algorithms

given the need of spilling intermediate data to disk between iterations. This

system supports an efficient implementation of MapReduce for such applica-

tions by means of static data reusage among the tasks involved [54].

Peregrine This system eliminates the need of intermediate output writes. This fea-

ture, along with its implementation of MapReduceMerge [55], result in an over-

all improvement of MapReduce’s capabilities. Moreover, it allows broadcasts

of global-like variables and supports automatic task execution plan optimiza-

tions, so that the developer does not have to be tied to the classic MapReduce

structure.

Hadoop MapReduce The most popular MapReduce implementation derived from

the original Google’s MapReduce and Google File System (GFS), providing an

open-source alternative for both of them, is designed to be run on commodity

hardware. Nowadays, Hadoop MapReduce is executed on top of the Hadoop

Distributed File System (HDFS), the Hadoop Common platform and the Yet

Another Resource Negotiator (YARN) resource manager, while sharing this en-

vironment with other related projects such as HBase (database system), Hive

(data warehouse infrastructure) and Mahout (machine learning algorithms).

It was designed to deal automatically with failures in one or several nodes of

the cluster, thus resulting in a high-availability solution for data-processing

infrastructures.

Spark This Hadoop-related project is focused on improving MapReduce’s deficient

performance regarding iterative jobs and interactive analytics [56]. Examples

State of the Art 17

of these uses cases include parameter optimization on a static dataset, in which

each iteration constitutes a job, and queries on large partitioned datasets,

requiring a job per query. Spark’s approach is based on a read-only Resilient

Distributed Dataset that can be loaded into memory across many machines

allowing multiple parallel operations on the same input data with no need

for intermediate writes. Furthermore, Spark is not tied to the MapReduce

framework and supports other programming models.

Elastic MapReduce Amazon’s Elastic MapReduce (EMR) is a web service de-

dicated to process data on Hadoop MapReduce. It provides further advan-

tages regarding multiple cluster manipulation, virtual cluster on-the-fly re-

sizing, Simple Storage Service (S3) integration and HDFS support on local

ephemeral storage.

Cloud MapReduce Similarly to EMR, this is another MapReduce implementa-

tion for the Cloud built on top of Cloud OS, a resource manager for the set of

machines integrated to build the underlying cloud. Besides allowing incremen-

tal scalability and resizing, its most interesting feature is its decentralized and

symmetric architecture in which all the nodes have the same responsibilities,

even on heterogeneous environments [57].

Hadoop MapReduce

We selected Apache Hadoop [8] as our cloud migration platform given its increas-

ing popularity and community support. Its distributed file system is a great addition

to the framework, since it allows automatic load balance and includes a distributed

cache that supports auxiliary read-only file storage for tasks among all nodes. Be-

sides the former technical features, Hadoop has been increasingly adopted into cloud

environments along with other MapReduce frameworks, resulting in reduced costs

given its parallelism exploitation capabilities [9].

In addition, studies regarding the relationship between the Cloud and Hadoop

MapReduce for scientific applications have established that performance and scal-

ability tests results are similar between traditional clusters and virtualized infras-

tructures running this platform [58].

Since the original code was written in C++ and we wanted to maximize code re-

State of the Art 18

usage, we took advantage of the Hadoop Pipes API for C++. Despite Pipes does not

allow to take full advantage of Hadoop’s potential given its limited functionality, it

provided all the necessary tools to execute our framework, including map and reduce

interfaces, basic data type support and Distributed Cache access on job submission.

As a constantly changing technology, Hadoop evolves fast into more sophisticated

and flexible versions, moving from the MapReduce-only infrastructure (versions 1.x)

to the all-purpose YARN manager (versions 2.x). The following paragraphs give an

overview of both platforms architectures and features, and describe their common

underlying distributed file system, HDFS.

HDFS

HDFS was designed to suit Hadoop’s requirements and needs. It supports the

large data sets (from GB to TB of data) that Hadoop is meant to operate with, and

is was built for batch read and write operations according to the MapReduce model.

In order to comply with Hadoop’s fault tolerance goals, HDFS was designed for

reliability and automatic recovery in case of error in one of the components of the

cluster, thus providing block-level data replication and coherency mechanisms across

the involved nodes.

Figure 2.2 gives an architectural overview of this file system. In it there is a

NameNode that contains all the metadata of the system such as file-block mapping,

block location among the nodes, paths and replication information. This information

is requested by the client in order to perform read and write operations directly on

the nodes themselves, once it has been provided with block locations. Since the

NameNode constitutes a single point of failure in this system, it is replicated into a

Secondary NameNode as backup; the latter would serve clients’ metadata requests

in case of failure.

A very interesting feature of the NameNode is its rack-awareness, for we can

configure the network’s hierarchy to let it know which nodes are topologically closer

to each other. This is crucial as data exchange between closer nodes is faster and

replication is more effective if performed between two different racks, since the failure

of a section of the network would not affect the system’s availability.

In order to remain updated, the NameNode is in contact with the DataNodes,

which constitute the actual storage nodes since blocks are stored in their local disks.

State of the Art 19

Read/Write

Metadata requests

Block operations

Secondary Namenode
(backup)

Namenode

Metadata
Client

Datanode

Blocks

Local
storage

Datanode

Blocks

Local
storage

Datanode

Blocks

Local
storage

Rack 1 Rack 2

Replication

Figure 2.2: HDFS architecture.

This communication is performed by means of block operations that provide meta-

data to the NameNode and request operations such as replication to the Datanode.

In case of replication, data copy is performed between DataNodes once it was au-

thorized by the NameNode.

First Generation MapReduce Runtime (MRv1)

Hadoop 1.1.2 MapReduce’s architecture –shown in shown in Fig. 2.3– is based on

a fixed number of slots that can be assigned to mappers and reducers equally. These

are fully managed across the nodes by a unique JobTracker, which also coordinates

mappers and reducers, provides progress information to the client which also assigns

a TaskTracker per node to handle local operations and slot usage.

The JobTracker constitutes a single point of failure and may become a bottle-

neck in very large clusters [59]. It also lacks resource allocation flexibility, so it is

starting to become obsolete and it is being increasingly replaced by Next Generation

MapReduce.

State of the Art 20

Master

MapReduce
Framework

HDFS

JobTracker NameNode

Slave

TaskTracker

DataNode

Slave

TaskTracker

DataNode

Slave

TaskTracker

DataNode

Client

Figure 2.3: MapReduce 1.x architecture.

Next Generation MapReduce (MRv2) and YARN

Next Generation MapReduce (MRv2) encapsulates cluster resource management

capabilities into Yet Another Resource Negotiator (YARN), leaving MapReduce-

specific functionalities and configuration in an independent module. This allows to

avoid some scalability issues originated in the JobTracker by dividing its function-

ality, and results in a general-purpose platform for other programming paradigms

and applications [60].

Figure 2.4 shows MRv2’s architecture and Hadoop’s component communication

with solid lines for resource managing, and dashed lines for MapReduce application

control. The MapReduce functionalities handled by the previous JobTracker were

moved to the new ApplicationMaster, while a ResourceManager is in charge of the

cluster’s resource management and a HistoryServer provides clients with informa-

tion of completed jobs. TaskTrackers were replaced with NodeManagers that are

responsible for the resources and container management on each node. Each con-

tainer can hold a map or reduce task and can be configured regarding the available

computational power, memory and input/output capabilities of the node, which

yields an increased flexibility for task scheduling.

State of the Art 21

Master

YARN HDFS

Client
NameNode

Resource
Manager

Scheduler

Applications
Manager

Resource
Tracker

Slave

Node Manager

DataNode

Containers

Slave

Node Manager

DataNode

Containers

Application
Master

Job
History
Server

Figure 2.4: MapReduce 2.x architecture.

CHAPTER 3

ANALYSIS

3.1 Application Description

The railway power consumption simulator transformed during this project is

built to calculate the instantaneous power demand taking into account all railway

elements. Its goal is to indicate whether the power provisioned by power stations is

enough or not, given train position and power consumption and the infrastructure

elements involved, such as tracks, overhead lines and power stations.

The simulator handles two classes of input files:

• An infrastructure specification file (Fig. 3.1) containing the initial and final

time of the simulation, besides a wide range of domain-specific simulation

parameters such as station and railway specifications and power supply defi-

nition.

Figure 3.1: Infrastructure input file sample.

Analysis 23

• A set of train movement parameters files (Fig. 3.2), structured in a time-based

manner, in which each line contains the calculation of speed and distance

profiles for a particular train at a specific instant regarding the infrastructure

constraints, with a one second interval.

Figure 3.2: Train movement input file sample.

Given the former input, simulator internals generate the electric circuit on each

instant, and solves them using modified nodal analysis. Figure 3.3 [61] shows a

detailed scheme of these procedures; in it we find a preparation phase in which all

the required input data is read and fragmented to be executed in a predefined number

of threads. Each of the resulting threads then performs the actual simulation by

means of circuit solver and an electric iterative algorithm, storing in shared memory

the results that will be merged in the main thread to constitute the final output

files. These output files constitute a set of fourteen distinct items that contain

diverse electric parameters for a wide range of infrastructure elements; each of them

contains the results corresponding to the whole simulation interval, sorted by instant.

We assessed the application as experiments become larger to get a more accurate

idea of its performance and analyse properly how adaptation options might behave.

We designed four experiments with variations on the simulation’s initial and final

time and, consequently, input data volume and memory consumption. A description

of these simulations is provided in Table 3.1. Cases I and II should not yield any

significant load, yet simulations III and IV, are expected to reveal the application’s

actual performance and limitations when dealing with large simulations, if any.

Figure 3.4 shows the execution times for the proposed experiments under the

same number of threads, and Fig. 3.5 [61] reflects virtual memory consumption for

them as the number of threads increases. Both graphs indicate that the simulator

Analysis 24

READ	DATA
READ

SCENARIO

SCENARIOS
DB

READ
CONSUMERS

READ
SIM.	PARAM.

KERNEL	(Ti simulation)

Ti >	Tend	thread
ALLOCATE
CONSUMERS

SOLVE
CIRCUIT

ITERATIVE	
PROCESS

WRITE
RESULTS	(Ti)

SIMULATION
RESULTS

Ti =	T0	thread
YES

NO

Ti ++

TRAIN
MOVIMENTS

THREAD
SCHEDULER

SIMULATION
PARAM.

MERGE
FILES

THREADS

Figure 3.3: Original application structure.

Experiment Simulated time (hours) Input size (MB)

I 1 1.7

II 33 170

III 177 1228.8

IV 224 5324.8

Table 3.1: Experiments definition.

is not able to scale properly.

In a first place, execution times behave as expected, showing that larger cases

take significantly more time to be executed; however, as the application is run in a

standalone environment, there is a clear limitation in the number of threads we can

use to improve performance, hence the application does not scale.

Secondly, even assuming we could use a larger number of threads, Fig. 3.5

reflects that the application’s multi-thread nature might not scale properly in terms

of memory consumption, as the more threads we request to increase concurrency,

the more memory will be needed. This forces the host system to involve virtual

memory, and this would lead to thrashing and huge performance loss.

Analysis 25

0
10000
20000
30000
40000
50000
60000
70000
80000

I II III IV

E
x
ec

u
ti

on
ti

m
e

(s
)

Experiment

Original application execution times

Figure 3.4: Original application’s execution times.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 2 4 8 16 32 48

V
ir

tu
a
l

m
em

or
y

(M
B

)

Number of threads

Original application memory consumption

Case II
Case III
Case IV

Figure 3.5: Original application’s virtual memory consumption.

3.2 Solution Selection

This project is aimed to migrate this simulator to the Cloud in order to allow

it to tackle larger experiments, following the lines of researchers that have shown

these practices to be viable, beneficial and cost-effective, as seen in Sec. 2.3.2.

We could consider several options to perform the requested adaptation: bundling

and virtualization of the application itself, code adaptation to build a distributed

algorithm or wrapping into a parallel programming model. Since the simulator

already presents a task-like structure with independent computations that can be

executed in parallel, based on the input time interval and the number of requested

threads, we consider a data-centric approach the most suitable solution. This is

justified by the fact that we only need to divide the input data and wrap the current

simulation library with an autonomous entity to partition the problem into smaller

Analysis 26

simulations that can run autonomously in different nodes.

However, migrating from a shared memory application to a data-centric model

is not trivial, specially if code reusage maximisation is desired. The key idea to

achieve this is to find a way to gather all the input data that a simulation parti-

tion needs, so that no further communication is needed with other subsimulations,

besides post-processing tasks. From this point of view, the simulator would only

see the exact information it needs for processing a limited time span, without in-

teracting with other parallel executions that would be working on disjoint intervals.

Finally, if the simulator only needs a subset of the input data, we can schedule

the different executions in the actual node in which the required information is lo-

cated, which constitutes the data-centric paradigm. With this proposal, we would

minimise node interaction and communication overhead; furthermore, this approach

does not include the virtualization overhead between the application and the execu-

tion framework that other methods add.

MapReduce, introduced in Sec. 2.4, fits naturally our data-centric and loosely-

coupled adaptation proposal, hence we consider it to be the most suitable parallel

programming model to use in this project. Hadoop’s implementation is our selec-

tion given its popularity, community support and, mostly, its robust distributed file

system that allows automatic load balance.

3.3 Requirements

In this section provide a detailed description of the application’s requirements,

which are limitimited to the replication of the original simulator functionality and

the desired cloud deployment-related features.

Starting from the user requirements, which constitute an informal reference of

the client’s expected behaviour of the product, we derive the software requirements

that guide the design process with specific information on the system’s functionality

and other characteristics. The retrieved requirements will be structured under the

following schema:

1. User requirements:

(a) Capacity: They describe the expected system functionality as in use

cases.

Analysis 27

(b) Restriction: They specify constraints or conditions the system must

fulfil.

2. Software requirements:

(a) Functional:

i. Functional: They describe the basic system functionality and pur-

pose while minimizing ambiguity.

ii. Inverse: These are the requirements that limit the functionality of

the application to clarify its scope.

(b) Non-Functional:

i. Performance: Relative to the minimum required performance of

the resulting system.

ii. Interface: Relative to the applications user interface.

iii. Scalability: Relative to the ability of the system to adapt to in-

creasing work loads.

iv. Platform: They specify the underlying software and hardware plat-

forms in which the system will operate.

v. Operation: They specify the way in which the system will perform

its functionality.

Each requirement table will contain the following information:

• Name: Requirement name.

• Code: Unique code for each requirement, following these format conventions:

– For user requirements, the format will be UR-XYY, where X indicates the

requirement subtype –C, for capacity requirements, and R, for restrictions–

and YY corresponds to the requirement number under its subcategory.

– For software requirements, the format SR-X-YZZ will be used, where X

indicates if it is a functional (F) or non-functional (NF) requirement, Y

represents its subcategory –functional (F), inverse (I), performance (P),

interface (UI), scalability (S), platform (PL) or operation (O)– and ZZ

constitutes its number.

Analysis 28

• Type: Indicates the category in which the requirement would be placed ac-

cording to the previously described schema.

• Origin: Constitutes the requirement source. It might be the user, another

requirement or other stakeholders involved in the project.

• Priority: Requirement’s priority regarding implementation. The higher, the

sooner it should be implemented.

• Necessity: It is a measure of the importance of the requirement, as its im-

plementation can be optional or mandatory.

• Stability: Indicates the requirement variability through the development pro-

cess.

• Description: Detailed explanation of the requirement.

3.3.1 User Requirements

Name Adapted application’s functionality

Code UR-C01

Type Capacity

Origin User

Priority High

Necessity Mandatory

Stability High

Description
The adapted application’s functionality shall be the

same as the presented by the original application.

Table 3.2: User requirement UR-C01

Analysis 29

Name Optimization for cloud environments

Code UR-C02

Type Capacity

Origin User

Priority High

Necessity Mandatory

Stability High

Description
The adapted application shall be optimized for its

execution on a virtualized cluster in the Cloud.

Table 3.3: User requirement UR-C02

Name Hadoop MapReduce as application platform

Code UR-R01

Type Restriction

Origin User

Priority High

Necessity Mandatory

Stability High

Description
The adapted application shall run on top of Hadoop

MapReduce the presented in multiple nodes.

Table 3.4: User requirement UR-R01

Analysis 30

Name Linux as underlying OS

Code UR-R02

Type Restriction

Origin User

Priority High

Necessity Mandatory

Stability High

Description
The adapted application shall be designed for Linux

systems.

Table 3.5: User requirement UR-R02

Name Minimal code manipulation

Code UR-R03

Type Restriction

Origin User

Priority High

Necessity Mandatory

Stability High

Description

The adapted application shall be reuse as much code as

possible, minimizing the transformation impact in the

original code.

Table 3.6: User requirement UR-R03

Analysis 31

3.3.2 Functional Requirements

Name Identical mathematical model

Code SR-F-F01

Type Functional

Origin UR-C01

Priority High

Necessity Mandatory

Stability High

Description

The adapted application will perform the same mathematical

operations that the original simulator. Hence, it shall

output the same results given identical input data.

Table 3.7: Functional requirement SR-F-F01

Name Identical input

Code SR-F-F02

Type Functional

Origin UR-C01

Priority High

Necessity Mandatory

Stability High

Description
The adapted application will be provided with the same

input format that the original simulator uses.

Table 3.8: Functional requirement SR-F-F02

Analysis 32

Name Identical output

Code SR-F-F03

Type Functional

Origin UR-C01

Priority High

Necessity Mandatory

Stability High

Description
The adapted application shall provide its output with

the same format that the original simulator uses.

Table 3.9: Functional requirement SR-F-F03

3.3.3 Non-Functional Requirements

Name MapReduce programming model

Code SR-NF-PL01

Type Platform

Origin UR-R01

Priority High

Necessity Mandatory

Stability High

Description
The application will be designed following the MapReduce

paradigm for a multi-node environment.

Table 3.10: Non-Functional requirement SR-NF-PL01

Analysis 33

Name Hadoop 2.2.0 version

Code SR-NF-PL02

Type Platform

Origin UR-R01

Priority High

Necessity Mandatory

Stability High

Description
The final version of the application will run on Hadoop

2.2.0.

Table 3.11: Non-Functional requirement SR-NF-PL02

Name Linux distribution Ubuntu 12.04

Code SR-NF-PL03

Type Platform

Origin UR-R02

Priority High

Necessity Mandatory

Stability High

Description
The final version of the application will be deployed on

the Ubuntu Linux distribution, version 12.04.

Table 3.12: Non-Functional requirement SR-NF-PL03

Analysis 34

Name Virtual cluster infrastructure

Code SR-NF-PL04

Type Platform

Origin UR-C02

Priority High

Necessity Mandatory

Stability High

Description
The final version of the application will be deployed on

a virtual cluster on top of Amazon EC2.

Table 3.13: Non-Functional requirement SR-NF-PL04

Name Installation packaging

Code SR-NF-PL05

Type Platform

Origin UR-R02

Priority Medium

Necessity Mandatory

Stability High

Description

The final version of the application will be packed along

with a pre-configured Hadoop and all the required libraries

needed for a successful deployment.

Table 3.14: Non-Functional requirement SR-NF-PL05

Analysis 35

Name Platform robustness

Code SR-NF-PL06

Type Platform

Origin Developer

Priority Medium

Necessity Mandatory

Stability High

Description
The application shall be executed in an infrastructure

with a mean time between failures greater than one week.

Table 3.15: Non-Functional requirement SR-NF-PL06

Name Code manipulation limitations

Code SR-NF-O01

Type Operation

Origin UR-R03

Priority High

Necessity Mandatory

Stability High

Description

Developers shall not delete, insert and modify more than

a 20% of the total number of code lines that belong to

the original application.

Table 3.16: Non-Functional requirement SR-NF-O01

Analysis 36

Name Dedicated cluster

Code SR-NF-O02

Type Operation

Origin Developer

Priority High

Necessity Mandatory

Stability High

Description

The application will run in dedicated nodes that only

execute the additional required software along with the

simulator. This is necessary to maintain the performance

measurements accurate.

Table 3.17: Non-Functional requirement SR-NF-O02

Name Verification in a standalone environment

Code SR-NF-S01

Type Scalability

Origin UR-R01

Priority High

Necessity Mandatory

Stability High

Description
The application will be tested on a single standalone

machine.

Table 3.18: Non-Functional requirement SR-NF-S01

Analysis 37

Name Validation and evaluation in a physical cluster

Code SR-NF-S02

Type Scalability

Origin UR-R01

Priority High

Necessity Mandatory

Stability Medium

Description
The application will be tested on a multi-node cluster

of 10 nodes, at most.

Table 3.19: Non-Functional requirement SR-NF-S02

Name Validation and evaluation in a virtual cluster

Code SR-NF-S03

Type Scalability

Origin UR-R01

Priority High

Necessity Mandatory

Stability Medium

Description
The application will be tested on a multi-node virtual

cluster of 10 nodes, at most.

Table 3.20: Non-Functional requirement SR-NF-S03

Analysis 38

Name Worst-case expected performance

Code SR-NF-P01

Type Performance

Origin UR-R01

Priority High

Necessity Mandatory

Stability Medium

Description

The adaptation shall not exceed a 110% of the original

application’s execution time in the worst case, for

identical input.

Table 3.21: Non-Functional requirement SR-NF-P01

Name Best-case expected performance

Code SR-NF-P02

Type Performance

Origin UR-R01

Priority High

Necessity Mandatory

Stability Medium

Description

The adaptation should improve, at least, a 10% of the

original application’s execution time in the best case,

for identical input.

Table 3.22: Non-Functional requirement SR-NF-P02

CHAPTER 4

DESIGN

4.1 Adaptation Overview

Our purpose is to divide a simulation into smaller parts that can run with the

same original but on a fragment of the full data set, so that we can parallelise the ex-

ecutions and lower the hardware requirements for each. As seen in Sec. 3.1, the given

application already divides the whole simulation time interval into smaller portions,

which are processed independently by each thread. Inspired by this fact and con-

sidering the key idea of collecting only the information that a subsimulation needs,

in which we insisted in 3.2, we translate the application’s data flow into a sequence

of MapReduce jobs. This procedure is described in the following paragraphs.

Figure 4.1 is a high-level description of the adaptation model. The original train

movement files, which we know that are indexed by simulation instant, are processed

by a first MapReduce job with the purpose of gathering all the trains’ parameters

that are involved in each specific instant. This job eliminates the need of reading

the whole data set as the original simulator does before scheduling the computing

threads.

The resulting intermediate output is fed to a second job that executes the actual

simulation autonomously, with the help of the infrastructure file. It finally merges

and writes the results to the distributed file system also in an independent way, i.e.

Design 40

several nodes can perform merging tasks concurrently.

MR Job 1

Input adaptation

Instant | Parameters
...

Train File 1

Instant | Parameters
...

Train File 2

Instant | Parameters
...

Train File I

Input

MR Job 2

Simulation execution

File 1

File 2

File K

Output

Instant | Parameter List
...

Input File 1

Instant | Parameter List
...

Input File 2

Instant | Parameter List
...

Input File J

Adapted Input

Infrastructure File

Figure 4.1: Top-level adaptation design.

4.2 Detailed Design

4.2.1 MapReduce Jobs Internals

Figure 4.2 shows the internal theoretical design of the MapReduce jobs. The

following paragraphs explain this figure in detail, since it is key to understand why

this adaptation meets our goals.

Input data adaptation

As previously stated in Sec. 3.1, the original input files are indexed by an

temporal independent variable, ti. This specific feature is critical for our adaptation,

for we can execute the simulation for each instant independently as long as we

manage to gather all the parameters involved in that instant and feed them to the

simulator.

As we mentioned before, the first step to distribute the simulation is to transform

the input files in a set of records that contain the instant, ti, and all the parameters

needed by the simulator at that specific time. This constitutes the first MapReduce

Design 41

Final resultsPrepared input

Original
input

Driver
2

Driver
1

I
1

I
n

Map
1 Map

n

(t
1
, I

1
) (t

f
, I

1
) (t

1
, I

n
) (t

f
, I

n
)

Shuffle

(t
1
, {I

l
, ... , I

m
}) (t

f
, {I

l’
, ... , I

m’
})

Reduce
p

(t
1
, I

1
|| ... || I

n
) (t

f
, I

1
|| ... || I

n
)

OutputFormat

t
1

I
n
 || ... || I

m
···

t
i

I
n’

 || ... || I
m’

t
j

I
n’’

 || ... || I
m’’

···
t

f
I

n’’’
 || ... || I

m’’’

Map
1

Map
p

(F
1
, R

1, 1
) (F

m
, R

1, m
) (F

1
, R

p, 1
) (F

m
, R

p, m
)

Shuffle

(F
1
, {R

1,1
, ... , R

p, 1
}) (F

m
, {R

1,m
, ... , R

p, m
})

Reduce
q

(F
1
, R

1,1
 || ... || R

p,1
)(F

m
, R

1,m
 || ... || R

p,m
)

R
1,1
···

R
p,1

R
1,m
···

R
p,m

OutputFormat

D1

S1

S2

S3

S4

S5

S6

S7

S8

D2 D3

Figure 4.2: MapReduce theoretical design for the adapted application.

job, displayed as Driver1 in the figure. We will now explain the tasks involved in

this job:

D1 – Data inputs The MapReduce framework is in charge of dividing the original

train movement files into n input splits, I1, . . . , In, which are the input for

Driver1. Split records are constituted by the temporal independent variable

ti, with i ∈ [1, p], and the parameters for the specific train at each instant.

The variable ti will act as key for the following procedures.

S1 – Adaptation maps Mappers read their assigned input split, parse each record

and emit (key, value) pairs containing the simulation index ti and the corres-

ponding parameters’ values, resulting in a set of records

{(ti, Ij); i ∈ [1, p], j ∈ [1, n]}, as shown in the image.

S2 – Adaptation shuffle In this step all the values that correspond to the same

key are gathered, thus resulting in p value sets, one per index to be simulated.

Design 42

The intention is to provide reducers with a list of parameters per time sample

that can be gathered afterwards.

S3 – Adaptation reduce Reducers concatenate the value list –this operation is

expressed with the symbol || in the figure– and output (key, values) pairs

where values is the resulting string of the concatenation process.

S4 – Adaptation output formatting Finally, the pairs produced by the reduc-

ers in the previous stage are written to disc as string records that contain both

the instant and all the train parameters that affect the simulation at that

instant.

D2 – Adapted data The resulting adapted data is stored in a set of files that

contain all the required information for the execution of a simulation per record

in the next stage.

Independent simulations execution

Once all the data has been transformed, we are ready to execute the simulation

kernel on each of the resulting records. It is important to remember that at this

point this data is already distributed across the data nodes, since these files are

stored on top of a block-based distributed file system that guarantees balance and

forces replication. The steps involved are described below.

S5 – Simulation maps The string records generated by Driver1 are parsed to

obtain the value of the independent variable and the corresponding concate-

nated parameters; this information is fed to the original simulation algorithm,

which is fully executed in this stage, so that we get the results for a specific key

value, Ri,k. Since the simulator outputs several files, we include a file identifier

Fk as key to output the file’s content as value, which also has ti injected as

secondary key for further ordering tasks. Figure 4.3 shows a scheme of this

procedure.

S6 – Simulation shuffle Simulation results are organized so that all the content

that belongs to a specific Fk is listed together, with the purpose of concate-

nating it. This builds a set of records {(Fk, ti||Ri,k); i ∈ [1, p], k ∈ [1,m]}.

Design 43

Driver
2 Mapper

t
i

I
1
 || ... || I

n
...
t

j
I

1
 || ... || I

n

Infrastructure specifications

Parser

t
1
 I

1
 || ... || I

n

[I
1
, ... , I

n
]

Emit
[R

1
, ... , R

m
]

(F
1
, R

1, 1
)

(F
m

, R
1, m

)

Split

Electric algorithm

Figure 4.3: Driver2 map procedure scheme.

S7 – Simulation reduce Reducers first obtain the embedded ti for every value in

the list and order the content according to it; they merge the resulting ordered

content list for every Fk by concatenating it, outputting the file identifier as

key and the final content as value.

S8 – Simulation output formatting In this stage, the reducers output is writ-

ten by a custom output format in order to arrange the simulation’s results files

as the original application. Since Hadoop tends to write several (key, value)

pairs in the same file, the output format is also in charge of forcing the frame-

work to write a file per Fk with the proper contents.

D3 – Final data The final data is composed of a set of files that contain the file

identifier and the ordered content like the original simulation, in which each

output file contains the results for the whole interval of the simulation.

CHAPTER 5

IMPLEMENTATION AND

DEPLOYMENT

5.1 Application Implementation Details

The provided design we discussed in the previous chapter gives concrete guide-

lines on how abstract elements of the application will interact with each other. This

chapter describes the next stage of the development process in which we materialize

the design in a working implementation.

5.1.1 I/O Structures

We have insisted extensively in the importance of input and output files for

the whole adaptation design and the actual MapReduce platform, hence we found

mandatory to mention the interfaces the resulting simulator uses to read and write

data.

The mappers basic input unit in the Hadoop Mapreduce framework is the In-

putSplit, which represents a set of InputRecords and embodies an input file block.

Hadoop will launch a map task per input split and each map will process the cor-

responding records that are contained in it. We decided to use TextInputFormat (a

text-based object) input records in this implementation, since the original applica-

Implementation and Deployment 45

tion’s input files were already in text format.

All the intermediate and final output belongs to that data type as well; however,

the final results deserve special consideration as they needed special manipulation

to emulate the original simulator’s output. The OutputFormat Hadoop class is the

responsible for writing data to disks in the proper format. We were able to redirect

each output file’s contents to a specific directory by manipulating the way in which

output files’ path is written by creating a user defined subclass of MultipleTextOut-

putFormat. This class would check the key value and decide under which path to

write the value for every reducer output fragment; this way we have all the output

information that belongs to the same file in the same location.

5.1.2 Map and Reduce Procedures

The design in 4.2 was implemented using the Hadoop Pipes API for C++ in order

to reuse the original application code, written in that programming language. We

provide the pseudo-code for the the resulting map and reduce procedures considering

the following:

• The framework is in charge of feeding the methods with MapContext and

ReduceContext as parameters. These contain diverse platform metrics, user-

defined counters and all the necessary input: the input split as a record list

and the result of the shuffle phase, respectively.

• The API contains all the necessary methods to access context data, represented

as get input for the maps and get next value for the reduce input value list.

• The emit function passes the platform the output pairs that were generated

during the procedure.

Implementation and Deployment 46

Algorithm 1 Adaptation map algorithm

Require: All input data is stored in HDFS

1: procedure Adaptation map(context)

2: line← get input(context)

3: if is record(line) then . Avoids processing input file headers

4: key ← get key(line)

5: value← get value(line)

6: emit(key, value)

7: end if

8: return

9: end procedure

Algorithm 2 Adaptation reduce algorithm

1: procedure Adaptation reduce(context)

2: initialize(line)

3: while has next value(context) do

4: if is empty(line) then

5: line← next value(context)

6: else

7: line← concatenate(line, separator, next value(context))

8: end if

9: end while

10: emit(get key(context), line)

11: return

12: end procedure

Implementation and Deployment 47

Algorithm 3 Simulation map algorithm

Require: The adaptation job was executed and the adapted data is stored in HDFS

1: procedure Simulation map(context)

2: // Retrieve key and parameter list, which contains an item per train

3: line← get input(context)

4: instant← get key(line)

5: parameter list← get value list(line)

6: // Read infrastructure

7: infrastructure← read infrastructure()

8: // Execute simulation and output results

9: result list← simulate(instant, parameter list, infrastructure)

10: while has next(result list) do

11: result← next(result list)

12: value← concatenate(instant, get file content(result))

13: emit(get file identifier(result), value)

14: end while

15: return

16: end procedure

Implementation and Deployment 48

Algorithm 4 Simulation reduce algorithm

1: procedure Simulation reduce(context)

2: // Order the result list by instant

3: initialize(map)

4: while has next value(context) do

5: value← next value(context)

6: instant← get instant(value)

7: content← get content(value)

8: insert(map, (instant, content))

9: end while

10: sort(map)

// Concatenate results

11: initialize(file)

12: while has next(map) do

13: concatenate(file, get content(next(map))

14: end while

15: emit(get key(context), file)

16: return

17: end procedure

Implementation and Deployment 49

5.2 Platform Configuration and Deployment

As part of the iterative methodology followed, we first deployed a prototype of

the application in a standalone Hadoop pseudo-cluster. This virtualized environ-

ment was the first step to verify the application’s functionality against the original

simulator. This first version was written and configured for Hadoop 1.1.2, which

runs MRv1.

Once the code was shown correct, we migrated the application to a single-node

cluster running Hadoop 2.2.0 for further testing. The final version of the applica-

tion’s code was deployed in a physical cluster at ARCOS dependencies and a virtual

cluster running on Amazon EC2. In the following sections we provide configuration

guidelines as well as deployment details for this version.

5.2.1 Hadoop Configuration

HDFS

Despite this the file system can be configured to assist in robustness, security and

high availability tasks, we decided not to enable these options in this version as the

application will always run under a private and controlled environment. However, we

maintained the replication feature to the default value, 3, to ensure scheduled tasks

would always find the data they need locally, which helps to improve performance

and error recovery.

YARN

YARN’s resource configuration shall be defined in Hadoop’s yarn-site.xml con-

figuration file. In this section we describe the necessary computations to obtain each

configuration value for the purposes of this application.

First of all, we must asses our nodes to acquire the basic parameters that we

need for this task, this includes the following, in a per-node basis1:

• Amount of RAM, Rt.

• Number of cores, C.

1We can configure each node independently to allow heterogeneity since the configuration file is
read in each node on node manager startup.

Implementation and Deployment 50

As Hadoop shares resources with the OS, we must reserve a proper amount of

memory for it. Let ROS be the needed memory to run the OS, hence the memory

left for the Hadoop framework in each node would be

RH = Rt −ROS (5.1)

A common heuristic for container scheduling indicates that the number of con-

tainers should not exceed two containers per core. Our tests showed that this can

be be increased up to four containers, at least for the first job, hence the maximum

number of containers, cmax, can be expressed as

cmax = 4 · C (5.2)

Therefore, the minimum amount of memory we can assign to each container

would be

Rmin =
RH

cmax
(5.3)

Additionally, we must assign a virtual memory ratio related to the amount of

physical memory, V .

Finally, we can assign these values in the configuration file. Table 5.1 matches

the involved YARN configuration parameters with their proper value.

Parameter Value

yarn.nodemanager.resource.memory-mb RH

yarn.schedule.minimum.allocation.mb Rmin

yarn.nodemanager.vmem-pmem-ratio V

yarn.nodemanager.resource.cpu-vcores C

Table 5.1: YARN configuration parameters values related to the underlying hardware.

MapReduce Framework

Mappers and reducers can be configured to request a specific amount of resources

independently, allowing to tailor de container size to the task that will be executed

and the Java heap size limit. We overwrite these configurations in the application

Implementation and Deployment 51

execution script at run time so that we can manipulate these values without the

need to relaunch the MapReduce framework.

Table 5.2 reflects an heuristic configuration planning for both jobs as result of

our experiments with large test cases. The first job does not perform any resource-

intensive task, so we can maximise the number of containers by requesting the

minimum container size, Rmin, for both map and reduce. However, the second job

executes the memory-bound algorithm in the map stage and makes use of a very

large buffer to store the file contents in the reduce phase. This indicates that both

tasks will require a larger container in terms of memory.

Parameter Job 1 Job 2

mapreduce.map.memory.mb Rmin min{3 ·Rmin, RH}

mapreduce.map.java.opts 0.8 ·Rmin 0.8 ·min{3 ·Rmin, RH}

mapreduce.reduce.memory.mb Rmin min{6 ·Rmin, RH}

mapreduce.reduce.java.opts 0.8 ·Rmin 0.8min{6 ·Rmin, RH}

mapreduce.job.reduces cmax blog2 cmaxc

Table 5.2: MapReduce configuration parameters values related to the underlying

hardware, optimized for large test cases.

Regarding the number of reducers, the more we have in the first job the more

input splits will be generated, increasing the concurrency for the following job. How-

ever, a large number of reducers can significantly affect performance if the amount

of data to be processed and the gained performance in the following step do not

counterbalance the framework overhead. In the second job, a low number of reduc-

ers might result in excessive disk spilling, thrashing and container crashing in case

resource usage exceeds the limits.

Other Parameters

We forced reducers to wait for at least the 85% of the mappers to finish before

start processing their output in order to minimize the shuffle overload and maximize

the available resources at the map phase, which is especially relevant in the second

job. We also made use of Hadoop’s Distributed Cache to allow read-only access to

the common infrastructure file for every node.

Implementation and Deployment 52

5.2.2 Deployment

Figure 5.1 shows the final deployment scheme. The client machine is expected

to have the application’s input data in its own database; that input is copied HDFS

on application execution. The simulation is launched by the client through a CLI

SSH session with the master node; the execution script is the only component of the

system that interacts with both the client and the Hadoop platform. Finally, Hadoop

components handle job execution and data transmission during the simulation, as

usual.

Virtual cluster

Client

Input DB

SSH terminal

Master

YARN ResourceManager

HDFS NameNode

Execution scripts

Slave

DataNode

YARN containers

Simulation core

Figure 5.1: Deployment UML diagram.

One of the application’s requirements is to provide a straightforward deployment

method for end-users. We decided to include Hadoop MapReduce, the transformed

simulator, the configuration files and a set of scripts to interact with the system into

a snapshot of a working preconfigured installation of the final version running on

the Cloud. This snapshot was exported to an AMI that can be loaded directly into

any raw instance. This AMI is available on Amazon EC2 and includes de following

bash scripts:

• A startup script to automatically configure the platform in every node accord-

ing to the user-defined configuration. It also launches all HDFS, YARN and

Mapreduce necessary services.

• An application workflow script that handles the MapReduce job pipeline and

interaction with Hadoop components. It includes experiment definition, input

Implementation and Deployment 53

upload to HDFS from the client, job configuration, the transformation and

simulation execution and output retrieval to the client’s local storage.

• A shutdown script to clean the system of temporal files, intermediate data old

logs and HDFS folders. After cleaning, the script finalises Hadoop services.

CHAPTER 6

VERIFICATION, VALIDATION AND

EVALUATION

This chapter describes the verification and validation tests that were executed to

corroborate the system’s proper functioning and its compliance against the require-

ments defined in Sec. 3.3, respectively. It shows the test cases specifications and

their corresponding results and, as part of the objectives of this thesis, contains an

extensive discussion on the performance evaluation of the transformed application

–running in both a physical and virtual cluster– versus the original simulator.

6.1 Test Plan Specification

As introduced in Sec. 5.2, we followed an iterative and incremental deployment

approach to isolate the errors resulting from the implementation of the actual ap-

plication code from deployment and configuration issues. The tests and evaluation

experiments performed to the system will be specified according to these implemen-

tation stages to provide a clear idea of how the application was developed over time;

these are summarized in Tab. 6.1 and detailed as follows:

I – Pseudo-cluster stage The objective of this step if to verify the initial pro-

totype that resulted from a basic implementation of the MapReduce design

Verification, Validation and Evaluation 55

provided in Sec. 4.2 on a simplified working context; therefore, we deployed

the application on Hadoop MRv1 1.1.2 in pseudo-cluster mode on a standalone

desktop PC. This stage was critical to ensure that we were getting the proper

output results from the adapted simulator before moving to more complex

environments and dealing with large experiments that would be very hard

to verify against the original application. Further optimizations in the map

and reduce processes of both jobs were also tested in this environment before

replicating them in the final application.

II – Single-node physical cluster stage Once we proved the simulator adapta-

tion was working effectively, we migrated to Hadoop MRv2 2.2.0 to benefit

from YARN’s resource management capabilities and flexibility. This system

was deployed in a single-node real cluster to simplify the execution of the same

black-box tests that were performed in the pseudo-cluster and set a milestone

for the application’s subsequent distribution, since from this point we can as-

sume the simulator is verified and its internal behaviour will not be affected

by parallelisation across different nodes. Furthermore, we performed the first

experiments with large data sets to ensure the application’s robustness.

III – Multi-node physical cluster stage In this stage the simulator was pro-

perly verified and validated against its expected functionality. This step con-

stitutes the link between running the application in a local cluster and moving

it to the Cloud, since virtualization should not affect a properly configured

platform nor the actual application. In this stage we also verified the applica-

tion’s ability to communicate between several nodes and achieve the expected

result, and we evaluated its scalability under the configuration plan described

in Sec. 5.2.1 for the same experiments that we used to analyse the original

application.

IV – Multi-node virtual cluster stage Finally, the final application was de-

ployed and configured for a virtual cluster running in the Cloud. Here we

performed the same tests and evaluations that we executed in the physical

cluster to validate the pending requirements and compare their performance.

Additionally, we built a ready-to-use AMI for easy deployment as requested,

and verified the cluster’s functionality when launching the application from it.

Verification, Validation and Evaluation 56

Test type Stage Goal

White box I
Verify that the possible paths in the code function

as expected.

Functional I
Validate that the application covers the functionality

described in the requirements.

Black box I, II
Verify that the methods provide the expected output

for a given input.

Integration (code) I, II
Verify that all code modules are visible and function

properly after integration.

Integration (deployment) II, III, IV

Verify that all the elements in the system are visible,

communicate properly with each other and function

properly after integration.

Performance II, III, IV Validate system’s performance requirements.

End-to-end IV
Validate that the full system covers the requirements

in its real environment.

Table 6.1: Tests types performed at each stage of the development process.

Verification, Validation and Evaluation 57

6.2 Execution Environments

As we explained in the previous section, the final application is meant to be

executed in the Cloud on top of a virtual cluster running Hadoop. Additionally, we

have to measure its performance in a physical cluster to have a reference of the exe-

cution times without the virtualization and communication overhead introduced by

cloud migration. These two environments have significant differences regarding the

resources they possess. In this section we will describe the execution environments

that we considered for the evaluation phase, and build a platform configuration plan

for each following the guidelines in 5.2.1.

Additionally, for the sake of completeness, we include the hardware settings of

the node in which the original application was analysed in terms of performance

and memory consumption. This information is relevant for further evaluation of the

resulting application.

6.2.1 Original Application Evaluation Node

We tested the original multi-thread application’s memory consumption and per-

formance on one of the nodes of the ARCOS Tucán. It consisted of 24 Xeon E7

cores, one local disk and 110GB of RAM.

6.2.2 Physical Cluster

We recurred to the ARCOS Tucán cluster to test the application in a physical

distributed setting. Our typical test environment is composed of one node identical

to the used to assess the original application. The intention of using only one node

is to avoid variations that may arise from heterogeneous configuration, resource dif-

ferences or network latency [46]. This isolation favours the multi-thread application,

which is especially designed to perform in standalone environments, yet it allows to

focus the evaluation phase on the actual limiting factors that may affect scalability

in large test cases like I/O, memory consumption and CPU usage.

Nevertheless, it is important to remark that this decision does not limit the scal-

ability of the application and that other tests –besides performance measurements–

were executed on a higher number of nodes to validate scalability requirements.

The configuration for this environment resulted from applying the recommended

Verification, Validation and Evaluation 58

guidelines for Rt = 110, ROS = 5, V = 2.1 and C = 24. The results for the YARN

framework are detailed in Tab. 6.2, while the MapReduce job configurations are

shown in Tab. 6.3.

Parameter Value

yarn.nodemanager.resource.memory-mb 107520 (105 GB)

yarn.schedule.minimum.allocation.mb 1126 (1.1 GB)

yarn.nodemanager.vmem-pmem-ratio 2.1

yarn.nodemanager.resource.cpu-vcores 24

Table 6.2: YARN configuration parameters values for the physical cluster execution

environment.

Parameter Job 1 Job 2

mapreduce.map.memory.mb 1126 (1.1 GB) 3379 (3.3 GB)

mapreduce.map.java.opts 922 (0.9 GB) 2662 (2.6 GB)

mapreduce.reduce.memory.mb 1126 (1.1 GB) 6758 (6.6 GB)

mapreduce.reduce.java.opts 922 (0.9 GB) 5407 (5.3 GB)

mapreduce.job.reduces 96 6

Table 6.3: MapReduce configuration parameters values for the physical cluster execution

environment.

6.2.3 Virtual Cluster

The selected Amazon EC2 instances were one general purpose m1.medium node

as dedicated master and five memory optimized m2.xlarge machines as slaves, re-

sulting in a total of ten CPUs, five local disks and 85.5GB of RAM available for

job execution. Tables 6.4 and 6.5 contain the analogous computations that were

calculated for the physical cluster, but considering Rt = 17.1, ROS = 2.1, V = 2.1

and C = 2.

Verification, Validation and Evaluation 59

Parameter Value

yarn.nodemanager.resource.memory-mb 15360 (15 GB)

yarn.schedule.minimum.allocation.mb 1843 (1.8 GB)

yarn.nodemanager.vmem-pmem-ratio 2.1

yarn.nodemanager.resource.cpu-vcores 2

Table 6.4: YARN configuration parameters values for the physical cluster execution

environment.

Parameter Job 1 Job 2

mapreduce.map.memory.mb 1843 (1.8 GB) 5530 (5.4 GB)

mapreduce.map.java.opts 1434 (1.4 GB) 4403 (4.3 GB)

mapreduce.reduce.memory.mb 1843 (1.8 GB) 1160 (10.8 GB)

mapreduce.reduce.java.opts 1434 (1.4 GB) 8806 (8.6)

mapreduce.job.reduces 8 3

Table 6.5: MapReduce configuration parameters values for the physical cluster execution

environment.

6.3 Tests and Results

In this section we provide detailed formalisations of the performance and end-

to-end tests. We focus on end-to-end tests for they summarise the verification tests

conducted in previous development stages of this application, as they validate the

whole functionality of the final version of the system. We also describe the perfor-

mance tests in order to asses the system’s performance on the different execution

environments for further evaluation.

The tables below are composed of the following fields:

• Name: Test name.

• Code: Unique code for each test in the format XXX-YY, where XXX indicates

the test type –EET for end-to end tests and PT for performance tests– and

YY indicates the test number in that category.

• Type: Test type.

Verification, Validation and Evaluation 60

• Requirement: Constitutes the requirement that the test validates or relates

to.

• Environment: Execution environment, among the ones described in the pre-

vious section, in which the test was performed.

• Objective: Motivation to perform the test, whether it is to force a particular

behaviour in the system or corroborate its expected response.

• Precondition: System status and conditions that must be fulfilled before

executing the test.

• Procedure: Steps that need to be executed to conduct the test.

• Postcondition: System status after the test was executed.

• Acceptance: Criteria to follow to consider the test as passed.

• Evaluation: Whether the application passes the test or not according to the

acceptance criteria.

Verification, Validation and Evaluation 61

6.3.1 Performance Tests

Name Performance with large experiment.

Code PT-01

Type Performance

Requirement SR-NF-P03

Environment Single-node cluster

Objective Verify that the application resists heavy workloads.

Precondition

1. The user is logged in the master/slave node by

SSH.

2. The user has the input data in the node.

3. The Hadoop framework is running.

Procedure 1. Modify the script to indicate experiment name

and input data location in the node.

2. Run the simulation.

Postcondition 1. The application was executed and the output

data remains in the node.

Acceptance The simulation performs with no errors.

Evaluation Passed.

Table 6.6: Performance test PT-01

Verification, Validation and Evaluation 62

Name Performance with large experiment.

Code PT-02

Type Performance

Requirement SR-NF-P03

Environment Multi-node cluster

Objective
Verify that the application resists heavy workloads

in a distributed setting.

Precondition

1. The user is logged in the master node by SSH.

2. The user has the input data in the node.

3. The Hadoop framework is running.

Procedure

1. Modify the script to indicate experiment name

and input data location in the node.

2. Run the simulation.

Postcondition
1. The application was executed and the output

data remains in the node.

Acceptance The simulation performs with no errors.

Evaluation Passed.

Table 6.7: Performance test PT-02

Verification, Validation and Evaluation 63

Name Performance with best case (large) experiment.

Code PT-03

Type Performance

Requirement SR-NF-P03

Environment Cloud

Objective

Verify that the application resists heavy workloads

in a virtualized setting and validate performance

constraints.

Precondition

1. The user is logged in the master node by SSH.

2. The user has the input data in the node.

3. The Hadoop framework is running.

Procedure

1. Modify the script to indicate experiment name

and input data location in the node.

2. Run the simulation and measure execution time.

Postcondition
1. The application was executed and the output

data remains in the node.

Acceptance
The simulation performs with no errors and the

execution time is less than 65900s.

Evaluation Passed with an execution time of 55064s.

Table 6.8: Performance test PT-03

Verification, Validation and Evaluation 64

Name Performance with worst case (very small) experiment.

Code PT-04

Type Performance

Requirement SR-NF-P02

Environment Cloud

Objective Validate performance constraints.

Precondition

1. The user is logged in the master node by SSH.

2. The user has the input data in the node.

3. The Hadoop framework is running.

Procedure

1. Modify the script to indicate experiment name

and input data location in the node.

2. Run the simulation and measure execution time.

Postcondition
1. The application was executed and the output

data remains in the node.

Acceptance
The simulation performs with no errors and the

execution time is less than 10s.

Evaluation

Failed with an execution time of 97s due to framework

overhead. The next experiment in size passes the test,

See Sec. 6.4 for a discussion on this

result.

Table 6.9: Performance test PT-04

Verification, Validation and Evaluation 65

6.3.2 End-to-End Tests

Name Deployment via AMI.

Code EET-01

Type End-to-end

Environment Cloud

Requirement SR-NF-PL05

Objective
Validate that the end user is able to successfully

deploy the packaged application and platform.

Precondition

1. The user is logged in a client machine able to

connect to EC2 by SSH.

2. The user has been provided with the AMI.

Procedure

1. Launch the desired number of EC2 instances.

2. Select the AMI as base image.

3. Login via SSH to the master node.

4. Execute the startup script

Postcondition 1. The Hadoop platform is properly launched in all

the user’s instances

Acceptance
Hadoop related processes are properly launched in

the master and slaves with no errors.

Evaluation Passed.

Table 6.10: End-to-end test EET-01

Verification, Validation and Evaluation 66

Name Simulation execution via AMI.

Code EET-02

Type End-to-end

Requirement SR-NF-PL05

Environment Cloud

Objective Validate that the end user is able to successfully

run the packaged application.

Precondition

1. The user is logged in a client machine able to

connect to EC2 by SSH.

2. The user has the input data in the client.

3. The startup script has been executed.

Procedure 1. Modify the script to indicate experiment name

and input data location in the client.

2. Run the execution script.

Postcondition 1. The application was executed and the output

data was transferred to the client.

Acceptance
The data is properly transmitted and the simulation

was executed with no errors.

Evaluation Passed.

Table 6.11: End-to-end test EET-02

Verification, Validation and Evaluation 67

Name Simulation functionality validation.

Code EET-03

Type End-to-end

Requirement SR-F-F01, SR-F-F02, SR-F-F03

Environment Cloud

Objective
Validate that the adapted application functionality

is the same than the original application.

Precondition

1. The user is logged in a client machine able to

connect to EC2 by SSH.

2. The user has the original simulator data in the

client.

3. The startup script has been executed.

Procedure 1. Modify the script to indicate experiment name

and input data location in the client.

2. Run the execution script.

Postcondition 1. The application was executed and the output

data was transferred to the client.

Acceptance
The output data corresponds to the output of the

original simulation, holding the same results.

Evaluation Passed.

Table 6.12: End-to-end test EET-03

Verification, Validation and Evaluation 68

Name Physical cluster scalability.

Code EET-04

Type End-to-end

Requirement SR-NF-S02

Environment Multi-node cluster

Objective
Validate that the adapted application is able to

scale to the required number of cluster nodes.

Precondition

1. The user is logged in a client machine able to

connect to EC2 by SSH.

2. The user has the original simulator data in the

client.

3. The startup script has been executed.

Procedure 1. Modify the script to indicate experiment name

and input data location in the client.

2. Run the execution script.

Postcondition 1. The application was executed and the output

data was transferred to the client.

Acceptance
The simulation runs with no errors and all the

reserved nodes were involved in the computations.

Evaluation Passed.

Table 6.13: End-to-end test EET-04

Verification, Validation and Evaluation 69

Name Virtual cluster scalability.

Code EET-05

Type End-to-end

Requirement SR-NF-S03

Environment Cloud

Objective
Validate that the adapted application is able to

scale to the required number of virtual cluster nodes.

Precondition

1. The user is logged in a client machine able to

connect to EC2 by SSH.

2. The user has the original simulator data in the

client.

3. The startup script has been executed.

Procedure 1. Modify the script to indicate experiment name

and input data location in the client.

2. Run the execution script.

Postcondition 1. The application was executed and the output

data was transferred to the client.

Acceptance
The simulation runs with no errors and all the

reserved nodes were involved in the computations.

Evaluation Passed.

Table 6.14: End-to-end test EET-05

Verification, Validation and Evaluation 70

6.4 Performance Evaluation

As we already discussed in Section 3.1, the original multi-thread application’s

memory usage suggests a lack of scalability in a standalone environment. We will

now analyse whether the adapted simulator behaves as expected in relation to per-

formance and scalability by examining the results we obtained in the performance

tests, for the same experiments used to analyse the original application. We will

also discuss the effects of each of its execution phases in the overall execution time.

These results are summarised in Fig. 6.1.

100

101

102

103

I II III IV

T
im

e
(s

)

Experiment

(a) HDFS upload time

101

102

103

104

I II III IV

T
im

e
(s

)

Experiment

(b) Adaptation phase

101

102

103

104

105

I II III IV

T
im

e
(s

)

Experiment

(c) Simulation execution

100
101
102
103
104
105

I II III IV

T
im

e
(s

)

Experiment

(d) Aggregated time

Cluster Cloud Multi-thread

Figure 6.1: Time results for the adapted and original application, in logarithmic scale.

6.4.1 Stage Analysis

There are three critical phases in the execution of the adapted simulator: the

input upload to HDFS from the client, the adaptation job execution and the parallel

Verification, Validation and Evaluation 71

simulation execution. We refer to each phase according to its numeration in Fig.6.1;

these are the observations we extract from the results:

(a) HDFS upload time

Train movement files compose the input for the first MapReduce job, thus must

be previously uploaded to HDFS. This process is time-consuming since repli-

cation, block splitting and balance among the nodes must be accomplished,

which may yield a considerable impact in the overall performance. In (a) we

can see that this previous task does not add up a significant overhead; more-

over, we can see that EC2’s high-end network capabilities seem to compensate

the added network latency between the nodes, so data distribution time is not

significantly affected by adding more nodes.

(b) Adaptation phase

The data adaptation phase –graph (b)– takes longer on the cloud as a result of

the selected instances characteristics, because the ratio between their memory

and number of cores favours the memory-bound simulation execution phase

instead of this one, and the configuration between jobs remains the same. This

is also supported by the single-node cluster results, in which we notice a higher

performance given the larger number of cores that can execute more mappers

simultaneously at this stage.

(c) Simulation execution

The algorithm execution stage, (c), is the most determinant phase in the whole

process for all of the execution environments, since it is most time-consuming

step in the whole workflow. As we see in the figure, the application migration

from the single-node environment to the virtual cluster supposed a perfor-

mance hit for the latter; this is reasonable since the total resources in the

cloud were considerably less than the held by the real cluster. Neverthe-

less, we notice that the execution times evolve in the same way for large test

cases –i.e. the graphs show the same tendency in both cases–; this indicates

that the virtualization and node intercommunication overheads did not affect

performance significantly (recall that the physical cluster measurements were

obtained from a single-node cluster to permit this comparison).

Verification, Validation and Evaluation 72

We consider the output retrieval to be optional so we do not take it into account

for evaluation purposes; moreover, the input upload stage already illustrates the

data transmission overhead resulting from virtualization to a remote cluster.

6.4.2 Final Evaluation

We will now evaluate the overall performance of the application by aggregating

the execution times obtained in the previous stages and comparing them with the

original application. This results in the graph labelled as (d) in 6.1. Additionally,

we provide a speed-up graph in Fig. 6.2.

In the figure we observe that the obtained performance with MRv2 in both the

single-node cluster and the elastic cloud shows remarkably better results than the

original multi-thread application. We must note that the time representation is

shown in logarithmic scale in Fig. 6.1, hence the difference is more significant that

what it may seem at a glance. Moreover, we could further improve performance by

increasing the number of available job containers, which can be achieved by either

getting larger instances or adding more machines to the virtual cluster.

The shared memory simulator’s results might be caused by the bottleneck con-

stituted by the physical memory and the disk; the latter is particularly critical, as all

threads write their results to disk while they perform their computations in the orig-

inal simulator. The smallest experiment is an interesting exception, since it reflects

how the MapReduce framework’s overhead significantly affects the time taken to

complete such a small simulation compared to the original application benchmark.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

I II III IV

S
p

ee
d
-u

p

Experiment

Adapted simulator speedup

Cluster
Cloud

Figure 6.2: Adapted application speed-up against the original simulator.

Verification, Validation and Evaluation 73

In conclusion, the results obtained in these experiments prove that our proposed

data-centric design is suitable for cloud migration of the original simulator. In

addition, a side effect of this adaptation is that we overcome the large memory

requirements and heavy I/O usage of the multi-thread application; this results in an

attractive and stable performance gain for large test cases.

CHAPTER 7

BUDGET

This chapter provides some highlights in the project’s development planification

and life-cycle. Additionally, it details the costs generated by this project –including

staff, equipment and materials– and shows an illustrative offer proposal that one

could effectively sell to an interested client, which reflects potential risks and benefits.

7.1 Life Cycle

As this project is the result of a research initiative of the Computer Science

Department, many unexpected difficulties emerged during the implementation, de-

ployment and testing stages of its development.

To alleviate these issues, we followed a spiral development model that allowed

us to refine our system for each target platform incrementally, starting from a

standalone prototype and reaching the virtualized cluster deployment goal with a

production-ready application, after evaluating the application in both a single-node

and a fully distributed physical cluster. Figure 7.1 summarizes the former stages.

Budget 75

I. Analysis II. Design

III. ImplementationIV. Evaluation

Standalone

Single-node
cluster

Multi-node
cluster

Virtualized
cluster
(cloud)

Figure 7.1: Application development life cycle.

Budget 76

7.2 Project Costs

In this section we breakdown the project’s costs. Table 7.1 summarises key

characteristics of the project that will be considered during the cost computation

process.

Project information

Title
Adaptation, deployment and evaluation of a railway

simulator in cloud environments

Author Silvina Cáıno Lores

Department Computer Science

Start date 1st of June of 2013

Duration 12 months

Indirect costs ratio 20%

Total budget 43,107.34¤

Table 7.1: Project information.

Table 7.2 reflects the costs originated from staff hiring; it is built considering

that:

• 1 man-month = 131.25 hours

• Maximum annual dedication: 12 man-month (1575 hours)

• Maximum annual dedication for Universidad Carlos III research personnel: 8.8

man-month (1155 hours)

Personnel

Name and surname Category
Dedication

(man-month)
Man-month cost(¤) Cost (¤)

Silvina Cáıno Lores Engineer 9 2,152.25 19,370.25

Alberto Garćıa Fernández
Research

engineer
3 4,379.21 13,137.63

Total 32,507.88

Table 7.2: Direct personnel costs.

Budget 77

Table 7.3 shows that the personnel is aware and conform with the previous cost

specifications1.

Personnel consent

Name and surname Identification number Signature

Silvina Cáıno Lores - -

Alberto Garćıa Fernández - -

Table 7.3: Personnel consent declaration.

Table 7.4 describes the direct costs that emerged from equipment acquisition and

usage. The chargeable cost, C, is obtained by computing C = d
D ·c ·u, where d is the

number of months during which the equipment was utilised, D it the deprecation

period in months, c is the equipment cost, and u is the project dedication ratio.

Equipment

Description Cost (¤)
Project

dedication (%)

Dedication

(months)

Deprecation

period (months)

Chargeable

cost (¤)

Desktop PC 850.00 100 12 60 170.00

Laptop PC 700.00 50 6 60 35.00

ARCOS Tucán

cluster
35,000.00 20 8 40 1,400.00

Amazon EC2 75.00 100 4 40 7.50

Printer 80.00 15 12 60 2.40

Total 1,614.90

Table 7.4: Direct equipment costs.

Finally, Tab. 7.5 represents other direct costs that do not belong to any of the

previous categories, including daily personnel expenses, commuting costs and office

supplies.

As Tab. 7.6 indicates, the total cost of the project amounts to 43,107.34¤.

1Identification numbers and signatures are omitted to protect staff’s privacy.

Budget 78

Other direct costs

Description Company Chargeable cost (¤)

Expenses Universidad Carlos III 1,200.00

Commuting Universidad Carlos III 540.00

Office supplies Universidad Carlos III 60.00

Total 1,800.00

Table 7.5: Other direct costs.

Costs summary

Personnel 32,507.88¤

Amortization 1,614.90¤

Operating expenses 1,800.00¤

Indirect costs 7,184.56¤

Total 43,107.34¤

Table 7.6: Costs summary.

7.3 Project Offer Proposal

A sample offer proposal is detailed below in Tab. 7.7. It includes estimated

risks, expected benefits and taxes along with the computed total cost of the project.

According to the previous criteria, the final amount for this project in case of sale

to a third-party client is seventy-one thousand nine hundred and eighty-one Euro

(71,981¤).

Offer proposal

Concept Increment (%) Partial value (¤) Aggregated cost (¤)

Project - 43,107.34 43,107.34

Risk 20 8,621.47 51,728.81

Benefits 15 7,759.32 59.488.13

Taxes 21 12,492.51 71,980.64

Total 71,980.64

Table 7.7: Offer proposal breakdown.

CHAPTER 8

CONCLUSIONS AND FUTURE

WORK

In this chapter we will specify the conclusions extracted from the whole develop-

ment process and the resulting application evaluation. We cover positive aspects,

such as the objectives met and contributions that are derived from this project,

and negative aspects, like issues in the current version of the application and the

difficulties we had to overcome in the different phases of the project.

To conclude, we detail several interesting research lines and improvements for

future work.

8.1 Met Objectives and Other Positive Aspects

Scientific simulations, like the one we were provided with, have been traditionally

related with HPC infrastructures such as supercomputers, clusters and grids. How-

ever, their resource-intensive nature limits the execution possibilities and achieved

performance for large test cases and complex simulations on such environments, for

the available hardware is also constrained.

Cloud Computing is becoming a popular alternative given its flexibility for on-

demand resource provisioning. However, the common programming paradigms used

Conclusions and Future Work 80

for scientific computations, such as MPI, suffer from significant overhead because of

the added virtualization and the lack of fast node interconnections.

In this project we proposed a paradigm shift from a multi-thread scheme to a

data-centric model in order to overcome these limitations (Objective 1) mainly by

minimising node interaction. By applying our MapReduce-based design the original

simulator we were able to transform the program into a highly scalable MapReduce

application that re-uses the same simulation library, while distributing the simula-

tion load across as many nodes are desired (Objective 2).

We tested the resulting application on Hadoop MapReduce in both a physical

and virtual cluster. The latter ran on top of Amazon EC2 (Objective 3) after

being deployed using an AMI built for this specific application, with the purpose

of gathering all the necessary software in a single deployment unit (Objective 4).

The results we obtained were contrasted with the original application’s performance

(Objective 5); we found that we can even reduce the original application’s simulation

time with our adaptation. To sum up, we can state that we have met all the goals

described in Sec. 1.2.

Additionally, we consider as very positive the successful usage of open source

software, for it reduces the project’s costs. Moreover, a side effect of our adaptation

is that we need less resources to achieve better performance, which reduces equip-

ment costs and also increases application’s efficiency and sustainability. Finally, by

breaking the dependence on local infrastructure, we can spread simulation scenarios

of different sizes in a more flexible way, allowing the user to choose where to run the

application –in the Cloud, in the local cluster or in standalone mode– to optimise

cost and performance.

At a personal level, this project constituted an exceptional opportunity to par-

ticipate in a real research initiative. Two papers resulted from it: ”Breaking data

dependences in numerical simulations using Map-Reduce”, accepted to participate

in the SARTECO XXV Parallelism Congress, and ”A Cloudification Methodology

for Numerical Simulations”, currently under review.

Conclusions and Future Work 81

8.2 Development Difficulties and Other Negative As-

pects

The core of this project resides in the MapReduce application design. This task

is critical since it affects most of the objectives of the project, therefore we had to

conduct extensive research in order to ensure the model would be valid.

Besides the theoretical difficulty, this project had another deeply problematic

characteristic: code reusage. The simulator was fully built in C++ when this adap-

tation was proposed, thus we were forced to use Hadoop Pipes API; integration

between the API and the existing code was a difficult task since we aimed to min-

imise the modifications in the original code. Moreover, the simulator was found to

present performance issues that had to be fixed before migrating to the transformed

model; the same occurred with Pipes itself, so we had to include workarounds in the

map and reduce code in order to avoid these issues.

Integration with the cluster environment was another obstacle, for the Tucán

cluster had to be configured to support the specific software and versions required

by Hadoop. Hadoop itself had to be recompiled in order to match the architecture of

the original application, which implied further compatibility issues with the installed

libraries of the host machines. These issues were also found during cloud initial

deployment, since the instances provided by Amazon EC2 only contain a minimal

OS installation.

Regarding job execution, platform configuration was the challenge after the si-

mulator’s functionality was verified. We found an heuristic to configure YARN and

MapReduce frameworks by trial and error, after noticing that failures were mostly

related to the lack of physical or virtual memory in the containers. We are looking

into find a way to benchmark the original application to make this process automatic

or, at least, reduce the number of tests needed to find a suitable configuration.

Regarding the application’s behaviour, the current version might fail if the de-

dicated memory per container is sufficient for the platform –so no YARN errors are

seen by the user– but it leads to thrashing in the node for specific input records.

This issue is under study and will be tacked in future work.

Finally, we did not provide any multi-tenancy or security features in this system,

as in this version it is expected to be run by a trusted user on a controlled environ-

Conclusions and Future Work 82

ment, such as our private cluster or a virtual cluster with a security group properly

configured to accept traffic from our client machine exclusively.

8.3 Future Work

The promising results we got with this application in terms of performance and

scalability support that cloud migration is a viable solution to improve simulator’s

ability to execute larger experiments. As we previously stated, the MapReduce

model introduced in 4.2 is one of the key aspects to consider for future improvement.

We believe we can extend the model to a wider range of simulations, which can

greatly benefit from the paradigm shift as the power consumption railway simulator

did. Research lines regarding this aspect include:

• Multi-key mechanisms to deal with more complex simulations, which may hold

several independent variables and input files types.

• Usage of optional MapReduce stages, such as partition, combine and merge,

to manipulate simulations with a different structure or improve our model’s

performance.

• Direct job chaining as pipeline to avoid extensive usage of intermediate output

files and disk spills, in order to improve performance.

Concerning the actual implementation of the model, the following improvements

would also help to achieve better execution times and scalability:

• Platform and simulation library analysis to determine optimal configuration

automatically.

• Support for on-the-fly YARN reconfiguration in a per-job basis.

• Performance optimization by means of a more suitable cloud instance mix.

• Automatic instance selection based on the platform’s configuration parameters.

• Automatic cost analysis to select the most suitable environment –local cluster,

cloud or standalone– for a specific use case.

Other features that could improve the system consist of:

Conclusions and Future Work 83

• Multi-tenant execution of the Hadoop framework, i.e. allow different users to

run jobs on the same Hadoop instance.

• Secure platform usage by means of native Hadoop security features such as

authentication, data encryption and HDFS permission enforcement.

To finish, we would like to mention our current efforts to fix the known issues and

deploy this system into an federated virtual cluster consisting of instances that be-

long to different cloud providers (currently, an OpenStack private cloud and Amazon

EC2). With this approach, we can make the resulting simulation even more elastic

and cost-efficient, since we could request nodes to a different provider only if our

local cloud is not able to handle the simulation load.

Conclusions and Future Work 84

BIBLIOGRAPHY

[1] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,

“I/o performance challenges at leadership scale,” in Proceedings of

the Conference on High Performance Computing Networking, Storage

and Analysis, ser. SC ’09, 2009, pp. 40:1–40:12. [Online]. Available:

http://doi.acm.org/10.1145/1654059.1654100

[2] The ASCAC Subcommittee on Exascale Computing, “The opportunities and

challenges of exascale computing,” U.S. Department of Energy, Tech. Rep.,

2010.

[3] K. Yelick, S. Coghlan, B. Draney, R. S. Canon et al., “The magellan report

on cloud computing for science,” US Department of Energy, Washington DC,

USA, Tech. Rep, 2011.

[4] P. Mell and T. Grance, “The nist definition of cloud computing,” National

Institute of Standards and Technology, vol. 53, no. 6, p. 50, 2009.

[5] N. Grozev and R. Buyya, “Inter-cloud architectures and application brokering:

taxonomy and survey,” Software: Practice and Experience, 2012.

[6] D. Petcu, G. Macariu, S. Panica, and C. Crăciun, “Portable cloud applica-

tions—from theory to practice,” Future Generation Computer Systems, vol. 29,

no. 6, pp. 1417–1430, 2013.

http://doi.acm.org/10.1145/1654059.1654100

BIBLIOGRAPHY 86

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large

clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[8] T. White, Hadoop: The Definitive Guide: The Definitive Guide. O’Reilly

Media, 2009.

[9] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing hadoop provi-

sioning in the cloud,” in Proc. of the First Workshop on Hot Topics in Cloud

Computing, 2009, p. 118.

[10] A. Nash and D. Huerlimann, “Railroad simulation using opentrack,” Computers

in railways IX, pp. 45–54, 2004.

[11] A. Garcia, C. Gomez, F. Garcia-Carballeira, and J. Carretero, “Enhancing the

structure of railway infrastructure simulators,” in International Conference on

Engineering and Applied Sciences Optimization, 2014.

[12] S. Iwnicki, Handbook of railway vehicle dynamics. CRC press, 2006.

[13] M. Nejlaoui, Z. Affi, A. Houidi, and L. Romdhane, “Analytical modeling of

rail vehicle safety and comfort in short radius curved tracks,” Comptes Rendus

Mecanique, vol. 337, no. 5, pp. 303–311, 2009.

[14] F. Kiessling, R. Puschmann, A. Schmieder, and E. Schneider, Contact Lines

for Electric Railways. Planning, Design, Implementation, Maintenance, 2009.

[15] R. Saa, A. Garcia, C. Gomez, J. Carretero, and F. Garcia-Carballeira,

“An ontology-driven decision support system for high-performance and cost-

optimized design of complex railway portal frames,” Expert Systems with Ap-

plications, vol. 39, no. 10, pp. 8784–8792, 2012.

[16] C. H. Bae, “A simulation study of installation locations and capacity of

regenerative absorption inverters in {DC} 1500v electric railways system,”

Simulation Modelling Practice and Theory, vol. 17, no. 5, pp. 829 – 838,

2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1569190X09000161

http://www.sciencedirect.com/science/article/pii/S1569190X09000161
http://www.sciencedirect.com/science/article/pii/S1569190X09000161

BIBLIOGRAPHY 87

[17] G. Poetsch, J. EVANS, R. Meisinger, W. Kortüm, W. Baldauf, A. Veitl, and

J. Wallaschek, “Pantograph/catenary dynamics and control,” Vehicle System

Dynamics, vol. 28, no. 2-3, pp. 159–195, 1997.

[18] N. Cuartero, E. Arias, T. Rojo, F. Cuartero, and P. Tendero, “Calpe and

indica: Two success stories,” in ASME 2012 International Mechanical Engi-

neering Congress and Exposition. American Society of Mechanical Engineers,

2012, pp. 271–281.

[19] V. Kindratenko and P. Trancoso, “Trends in high-performance computing,”

Computing in Science Engineering, vol. 13, no. 3, pp. 92–95, May 2011.

[20] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E.

Stone, J. C. Phillips, and W.-m. Hwu, “Gpu clusters for high-performance

computing,” in Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE

International Conference on. IEEE, 2009, pp. 1–8.

[21] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for high

performance computing,” in Proceedings of the 2004 ACM/IEEE Conference on

Supercomputing, ser. SC ’04. Washington, DC, USA: IEEE Computer Society,

2004, pp. 47–. [Online]. Available: http://dx.doi.org/10.1109/SC.2004.26

[22] J. J. Dongarra, H. W. Meuer, E. Strohmaier et al., “Top500 supercomputer

sites,” Supercomputer, vol. 13, pp. 89–111, 1997.

[23] J. Dongarra and P. Luszczek, “Linpack benchmark,” Encyclopedia of Parallel

Computing, pp. 1033–1036, 2011.

[24] Top500 Supercomputer Sites, “Top500 list,” Nov. 2013. [Online]. Available:

http://www.top500.org/list/2013/11/#.U6AGKJWn1QI

[25] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the

graph 500,” Cray User’s Group (CUG), 2010.

[26] Top500 Organization, “Graph500 list,” Nov. 2013. [Online]. Available:

http://www.graph500.org/results nov 2013

[27] W.-c. Feng and K. W. Cameron, “The green500 list: Encouraging sustainable

supercomputing,” Computer, vol. 40, no. 12, pp. 50–55, 2007.

http://dx.doi.org/10.1109/SC.2004.26
http://www.top500.org/list/2013/11/#.U6AGKJWn1QI
http://www.graph500.org/results_nov_2013

BIBLIOGRAPHY 88

[28] Green500 Organization, “Green500 list,” Nov. 2013. [Online]. Available:

http://www.green500.org/lists/green201311

[29] B. Subramaniam, W. Saunders, T. Scogland, and W.-c. Feng, “Trends in

energy-efficient computing: A perspective from the green500,” in Green Com-

puting Conference (IGCC), 2013 International. IEEE, 2013, pp. 1–8.

[30] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra,

D. Kothe, R. Lusk, P. Messina et al., “The opportunities and challenges of

exascale computing,” Summary Report of the Advanced Scientific Computing

Advisory Committee (ASCAC) Subcommittee (November 2010), 2010.

[31] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,

P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale computing study:

Technology challenges in achieving exascale systems,” Defense Advanced Re-

search Projects Agency Information Processing Techniques Office (DARPA

IPTO), Tech. Rep, vol. 15, 2008.

[32] S. Hemmert, “Green hpc: From nice to necessity,” Computing in Science En-

gineering, vol. 12, no. 6, pp. 8–10, Nov 2010.

[33] T. G. Peter Mell, “The nist definition of cloud computing,” National Institute

of Standards and Technology, Tech. Rep., 2011.

[34] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database as a service,” in

Data Engineering, 2002. Proceedings. 18th International Conference on, 2002,

pp. 29–38.

[35] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. R. Madden,

H. Balakrishnan, and N. Zeldovich, “Relational cloud: A database-as-a-service

for the cloud,” in Conference on Innovative Data Systems Research, CIDR

2011, January 9-12, 2011 Asilomar, California, 2011.

[36] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, “Naas: network-

as-a-service in the cloud,” in Proceedings of the 2nd USENIX conference on

Hot Topics in Management of Internet, Cloud, and Enterprise Networks and

Services, ser. Hot-ICE’12. Berkeley, CA, USA: USENIX Association, 2012, pp.

1–1. [Online]. Available: http://dl.acm.org/citation.cfm?id=2228283.2228285

http://www.green500.org/lists/green201311
http://dl.acm.org/citation.cfm?id=2228283.2228285

BIBLIOGRAPHY 89

[37] D. H. Sharma, C. Dhote, and M. M. Potey, “Security-as-a-service from clouds:

A comprehensive analysis,” International Journal of Computer Applications,

vol. 67, no. 3, pp. 15–18, 2013.

[38] I. Ari and N. Muhtaroglu, “Design and implementation of a cloud compu-

ting service for finite element analysis,” Advances in Engineering Software, vol.

60–61, no. 0, pp. 122 – 135, 2013, cIVIL-COMP: Parallel, Distributed, Grid

and Cloud Computing.

[39] B. Xiaoyong, “High performance computing for finite element in cloud,” in Fu-

ture Computer Sciences and Application (ICFCSA), 2011 International Con-

ference on, 2011, pp. 51–53.

[40] M. AbdelBaky, M. Parashar, H. Kim, K. Jordan, V. Sachdeva, J. Sexton,

H. Jamjoom, Z.-Y. Shae, G. Pencheva, R. Tavakoli, and M. Wheeler, “En-

abling high-performance computing as a service,” Computer, vol. 45, no. 10,

pp. 72–80, 2012.

[41] “Amazon elastic mapreduce (amazon emr).” [Online]. Available: http:

//aws.amazon.com/es/elasticmapreduce/

[42] A. Raveendran, T. Bicer, and G. Agrawal, “A framework for elastic execution

of existing mpi programs,” in Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, 2011, pp.

940–947.

[43] J. Earl, S. Conway, and J. Wu, “A new approach to hpc public clouds:

The sgi cyclone hpc cloud,” IDC, Tech. Rep., 2010. [Online]. Available:

http://www.sgi.com/pdfs/4215.pdf

[44] L. Shi, H. Chen, J. Sun, and K. Li, “vcuda: Gpu-accelerated high-performance

computing in virtual machines,” Computers, IEEE Transactions on, vol. 61,

no. 6, pp. 804–816, June 2012.

[45] Office of Advanced Scientific Computing Research, “The magellan report on

cloud computing for science,” U.S. Department of Energy, Tech. Rep., 2011.

http://aws.amazon.com/es/elasticmapreduce/
http://aws.amazon.com/es/elasticmapreduce/
http://www.sgi.com/pdfs/4215.pdf

BIBLIOGRAPHY 90

[46] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, and

P. Maechling, “Scientific workflow applications on amazon ec2,” in E-Science

Workshops, 2009 5th IEEE International Conference on, Dec 2009, pp. 59–66.

[47] Z. Hill and M. Humphrey, “A quantitative analysis of high performance compu-

ting with amazon’s ec2 infrastructure: The death of the local cluster?” in Grid

Computing, 2009 10th IEEE/ACM International Conference on, Oct 2009, pp.

26–33.

[48] G. D’Angelo, “Parallel and distributed simulation from many cores to the public

cloud,” in High Performance Computing and Simulation (HPCS), 2011 Inter-

national Conference on, July 2011, pp. 14–23.

[49] S. N. Srirama, P. Jakovits, and E. Vainikko, “Adapting scientific

computing problems to clouds using mapreduce,” Future Generation Computer

Systems, vol. 28, no. 1, pp. 184 – 192, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X11001075

[50] D. Yu, J. Wang, B. Hu, J. Liu, X. Zhang, K. He, and L.-J. Zhang, “A practical

architecture of cloudification of legacy applications,” in Services (SERVICES),

2011 IEEE World Congress on, July 2011, pp. 17–24.

[51] S. Srirama, V. Ivanistsev, P. Jakovits, and C. Willmore, “Direct migration of

scientific computing experiments to the cloud,” in High Performance Computing

and Simulation (HPCS), 2013 International Conference on, July 2013, pp. 27–

34.

[52] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J.

Wasserman, and N. J. Wright, “Performance analysis of high performance com-

puting applications on the amazon web services cloud,” in Cloud Computing

Technology and Science (CloudCom), 2010 IEEE Second International Confer-

ence on. IEEE, 2010, pp. 159–168.

[53] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data intensive sci-

entific analyses,” in eScience, 2008. eScience ’08. IEEE Fourth International

Conference on, Dec 2008, pp. 277–284.

http://www.sciencedirect.com/science/article/pii/S0167739X11001075

BIBLIOGRAPHY 91

[54] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and

G. Fox, “Twister: A runtime for iterative mapreduce,” in Proceedings of

the 19th ACM International Symposium on High Performance Distributed

Computing, ser. HPDC ’10, 2010, pp. 810–818. [Online]. Available:

http://doi.acm.org/10.1145/1851476.1851593

[55] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-merge:

simplified relational data processing on large clusters,” in Proceedings of the

2007 ACM SIGMOD international conference on Management of data. ACM,

2007, pp. 1029–1040.

[56] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

cluster computing with working sets,” in Proceedings of the 2nd USENIX con-

ference on Hot topics in cloud computing, 2010, pp. 10–10.

[57] H. Liu and D. Orban, “Cloud mapreduce: A mapreduce implementation on top

of a cloud operating system,” in Proceedings of the 2011 11th IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing. IEEE Computer

Society, 2011, pp. 464–474.

[58] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “Mapreduce in the clouds for

science,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE

Second International Conference on, Nov 2010, pp. 565–572.

[59] K. Yamazaki, R. Kawashima, S. Saito, and H. Matsuo, “Implementation and

evaluation of the jobtracker initiative task scheduling on hadoop,” in Compu-

ting and Networking (CANDAR), 2013 First International Symposium on, Dec

2013, pp. 622–626.

[60] The Apache Software Foundation, “Apache hadoop 2.2.0,” Oct. 2013. [Online].

Available: http://hadoop.apache.org/docs/stable/

[61] S. Caino, A. Garcia, F. Garcia-Carballeira, and J. Carretero, “Breaking data

dependencias in numerical simulations using mapreduce,” in XXV Jornadas de

Paralelismo, 2014.

http://doi.acm.org/10.1145/1851476.1851593
http://hadoop.apache.org/docs/stable/

	Index of Tables
	Index of Figures
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Objectives
	Document Structure
	Definitions, Acronyms and Abbreviations

	State of the Art
	Railway Simulators
	High-Performance Computing
	Current Supercomputers and Petascale Systems
	Future Goals: Green HPC and Exascale Infrastructures

	Cloud Computing
	The Upcoming Anything-as-a-Service Model
	Trends in Cloud Migration and Adaptation Techniques

	MapReduce

	Analysis
	Application Description
	Solution Selection
	Requirements
	User Requirements
	Functional Requirements
	Non-Functional Requirements

	Design
	Adaptation Overview
	Detailed Design
	MapReduce Jobs Internals

	Implementation and Deployment
	Application Implementation Details
	I/O Structures
	Map and Reduce Procedures

	Platform Configuration and Deployment
	Hadoop Configuration
	Deployment

	Verification, Validation and Evaluation
	Test Plan Specification
	Execution Environments
	Original Application Evaluation Node
	Physical Cluster
	Virtual Cluster

	Tests and Results
	Performance Tests
	End-to-End Tests

	Performance Evaluation
	Stage Analysis
	Final Evaluation

	Budget
	Life Cycle
	Project Costs
	Project Offer Proposal

	Conclusions and Future Work
	Met Objectives and Other Positive Aspects
	Development Difficulties and Other Negative Aspects
	Future Work

	Bibliography

