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1 Introduction

Many economic time series exhibit important random changes in their mean behaviour. These .
series are sometimes said to be integrated, since it is possible to simulate the most important fea-
tures in their patterns with sums of an increasing number of weakly-dependent random variables.
Integrated series can be expressed in terms of the unobserved components model, where one of the
components is a stochastic trend. The fact that remote shocks have a persistent influence on the
levels of these series is known as the long-memory or the extended-memory property, depending on
whether this influence is linear or not (Granger, 1995 [10]).

In some cases, the accumulated changes in mean behaviour may be correlated accross series. In the
context of macroeconomics and finance, certain models suggest the presence of economic or social
forces preventing two or more series from drifting too far apart from each other. Pairs of series
which exhibit a common long-memory component or stochastic trend are said to be cointegrated.
The concept of cointegration was coined by Granger (1981 [7]). and later on developed by Engle
and Granger. (1987 [4]). Well-known examples of cointegrating relationships can be found between
income and expenditure. prices of a particular good in different markets, interest rates in different

parts of a country. etc.

Underlying the idea of cointegration is the existence of a long-run equilibrium (i.e. a deterministic
relationship that holds on the average for the levels) between two integrated variables. 2.y A
strict (linear) equilibrium exists when for some a # 0. one has y, = ax;. This unrealistic situation
is replaced. in practice, by that of a (linear) cointegrating relationship, in which the equilibrium
error 5 = y; — axy is different from zero but fluctuates around this value much more frequently
than the individual series (i.e. z; is mean-reverting), while the size of these fluctuations could be

much smaller.

It turns out that many apparently non-cointegrated series may have a nonlinear equilibrium. Un-
fortunately, conventional cointegration tests tend to have low power when nonlinearity enters in the
relationship between the variables. It is therefore important to investigate new methods capable
of detecting equilibriums others than linear, and of rejecting the linear cointegration assumption
when false.

There have been attempts to address this problem. For example, Hallman (1990) [13] proposed to
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apply standard non-cointegration tests (unit-root tests) to the ranks rather than to the levels of the

series in order to robustize these tests against mononotonic nonlinear transformations of cointe-
grated variables. However, this strategy could not cope with more complex types of nonlinearities
in the relationship. Moreover, Hallman’s approach relies on an assumption of invariance of the
distributional properties of the conventional tests when applied to the ranks.

Granger and Hallman (1991) [11] proposed estimating the nonlinear transformations using a non-
parametric technique known as the Alternate Conditional Ezpectation (ACE) algorithm (Breiman
and Friedman, 1985 [2]). This was followed by a standard cointegration test applied on the trans-
formed variables obtained using the ACE estimates. Further, these estimates also allowed the
possibility of testing the hypothesis of linearity in cointegration. However, the estimation and the
inference properties of ACE estimates rely on the stationarity and ergodicity of the series, prop-
erties which exclude integrated variables. Moreover, as remarked by these authors, it is not yet
clear how nonparametric estimators of the transformations affect the distribution of the standard
cointegration test statistics.

The previous difficulties call for a new characterization of cointegration which could be used to
test this hypothesis in a general context (i.e. where nonlinearity is allowed), and without requiring

prior estimation of the nonlinearities.

In this paper. we review the concepts of mean-reversion. short and long memory, and cointegration,
and introduce a new characterization of these properties using information-theoretic ideas. This
will lead us to proposing some new schemes for exploratory data analysis and for testing the hy-
pothesis of long-memory and of cointegration between two long-memory time series. Although the
focus of this paper is on the univariate case, these ideas can be readily applied in a multivariate
context.

The rest of the paper is structured as follows. Section 2 introduces a general framework for ana-
Ivzing mean-reversion. short(long)-memory, and cointegration, in order to deal with nonlinearity.
Section 3 presents the information-theoretic tools to be used later. In particular, we introduce the
definitions of entropy and mutual information for random variables and for stochastic processes. In
section 4, we propose an interpretation of dependence in and among time series using the previous
tools. which lead us to a more general definition of long-memory and cointegration. In section 5
we turn the previous characterization into exploratory tests of long-memory and of cointegration.

Sections 6 and 7 present for our cointegration analysis, some simulations results, and a real-world
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experiment on financial data from a stock and a foreign exchange-rate market. Finally, section 8

gives a concise summary of the paper.

2 Towards a general characterization of memory and cointegration

There are important drawbacks with the standard definitions of long memory and of cointegration
when dealing with non-Gaussian time series, and with pairs of series which are nonlinearly related.
In the first case, the trouble is that the autocorrelation function (ACF) fails to capture the higher-
order dependencies in the data. In the second, that series which do not appear to be “aligned” in
their mean behaviour could be cointegrated after being nonlinearly transformed. In fact, what we
need is a different measure of serial dependence, and to reformulate the cointegration concept in

terms of the latter.

2.1 A general characterization of memory in time series

The standard characterization of memory in a time series z; is given in terms of its ACF, say
. k] 0
pr(T.1) = cor(ry.rq—;)/var(xy). which we consider to be generally dependent on a time index. so

as to allow for some heterogeneity.
Definition 1 4 process ay is said to be mean-reverting if Vt lim,_., p.(7,t) = 0.

Intuitively. the process r; is mean-reverting if x; — E(2,) changes sign with nonzero probability.

When the process is not mean-reverting, its memory span is necessarily larger since limr_., p(7,1) >
0. and thus any two infinitely distant variables from the process are still correlated (persistent he-

haviour).

However. even for a mean-reverting process, the memory span can be very large in the sense that its

ACT decays very slowly as 7 grows. This motivates the distinction between short and long memory.

Definition 2 A process a4 is said to be short-memory if Vt 3b; < x such that ),y p(7.1) = ;.

Definition 3 A process x is said to be long-memory if Vt ). qp-(7,1) = c0.
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Definition 4 A time series of x; is said to be integrated of order d, in short z, ~ I(d), if

2 rs0Px(Tyt) = 00, Vi, and d is the smallest positive real number such that 3 .yq p.(7,1) < 00, Vi,
with z; = (1 - B)d:zrt.

The parameter d which appears in this latter definition serves to quantify the memory in the series.

The previous characterization of memory in terms of the ACF is adequate for Gaussian series,
since all the dependence structure is captured by its second order moments. With non-Gaussian
time series, in particular, nonlinear time series, the ACF cannot provide a full account of the serial
dependence structure. A first attempt to establish a general characterization of memory in a non-
Gaussian context was due to Granger and Terasvirta (1993 [12]). They proposed a general definition
of mean-reversion in terms of the conditional distribution function of the process. Let X; denote
the r.v. at time ¢ from a time series of a stochastic process x;, and let Fy(z) = P(X¢yn < 2|fy)
represent the conditional distribution function of the r.v. X4, given its h-horizon past. I; = F°L

where F 7! denotes the o-field generated by the r.v.’s Xy, Xy_q.---..

Definition 5 A process x; has no extended-memory if lim; o, Fi(2) does not depend on the

conditioning past. I.

As a consequence. for any Borel sets ('y.('; and for any integer & such that P(X;_; € (';) > 0, we

would have

lim | P24 € Cilai—x € C2) — P4 € C1) =0 (1)

h—oco

This property reminds the concept of ¢-mizing, since it means that the dependence among tem-
porarily nonoverlapping blocks of r.1.’s from the process vanishes in the limit, when the temporal
distance between the blocks becomes infinite.

A major shortcoming of this definition is that it cannot be easily checked in practice. In the se-
quel. we propose a straightforward generalization of the memory concept for time series. based
on conditions which can be easilv tested. For this. we only need a measure of serial dependence
which generalizes the ACF. Suppose 7,(7,1) is this new serial dependence measure that captures

the higher-order dependence structure in the series . A most general characterization of mean-

"\We will later on propose a useful candidate for this measure based on the mutual information concept.
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reversion and of short, long-memory and integration could then be proposed using this measure.

A process 2; could be said to be:
¢ mean-reverting in i(.), if V¢ lim, o i.(7,1) = 0 Vt. v N
¢ short-memory in ¢(.), if V& )", 5o (7,1) < 2.
¢ long-memory in i(.),if Vt 3 5o1z(7,1) = 0.

o integrated of order d in i(.), say z; ~ II(d),if 3,50 %(7,1) = 0. Vi, and d is the smallest

positive real number such that )", q4.(7,1) < 00, Vi, with z; = (1 - B)dmt.

Remarks:

1. In principle, the function 7,(7,t) could be any serial dependence measure capable of capturing
nonlinear dependencies between the variables in the series. Remark that 3°72, ¢,(7.t) rather
than on Y 2%, p(7). with p,(7) representing the ACF of z,. is used as a persistence measure

for non-Gaussian time series.

2. Note that the rates of convergence of i,(7.1) towards 0 as 7 — oo will be different for long- and
for short-memory processes. Also remark that a short-memory process is also mean-reverting.

according to these definitions.

2.2 A general characterization of cointegration

The standard definition of cointegration goes as follows:

Definition 6 (Granger, 1981 [7]) Two long-memory time series &y, y;, with long-memory param-
cter d. are said to be (lincarly ) cointegrated if 3a € R — 0 such that the scries z; = y; — axy is

T(d.) with d- < d.

Figure 1 illustrates a simulation example of linear cointegration with a pair of correlated random
walks (d = 1) and for @« = 0.72. The scatter plot clearly shows the linearity of the relationship

between 2; and y;.

2In Granger (1983) 8], there is no explicit mention to the term linear, although it is implicit.
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An important shortcoming in this definition of cointegration is that it requires the cointegrating

relationship between the series to be linear. As as consequence, classical cointegration testing
techniques relying on these definitions vield misleading results when nonlinearity enters the true
equilibrium relationship. Evidence of this problem with definition 6 was first reported by Hallman
(1990) [13]. who proposed applying standard cointegration tests to the ranks rather than the levels
of the series. However, even though this trick succeeds in robustizing the test against monotonic
nonlinearities, it fails when confronted to general forms of nonlinearity.

In general, it should be possible to find time series that are cointegrated only after applying certain
nonlinear transformations on them. Indeed, an extension of the (linear) cointegration concept fol-
lows by noticing that the common low-frequency component may “live” in a higher-order moment
than the mean, that is, in nonlinear transformations of the series. For example, z; and y; could
be cointegrated when squared, while being more or less uncorrelated in their levels. To explain,
suppose y; = 246, with 24 an I(1) series, and ¢ a zero mean 7.i.d. sequence, and thus 2, ~ I(0). It

2

)2 = 0222 + (2 — 02)2?, where the rightmost term must be short-memory since it is

follows that (y;
the product of an I(0) process (¢ —c?2) and an I(1) process (22). Thus (y; ) is linearly cointegrated

with (.1'1)2. although y; is not cointegrated with a.

Example 1:

('onsider the following nonlinear factor model

I N N (2)
Ty 1 0 &
where a # 0. wy = wy_y + ¢ with wg = 0, and (v. &, ¢;) are independent sequences of independent
and identically Normally distributed r.v.’s with zero mean and joint covariance matrix equal to the
identity matrix. Let 3], = (a.1).and let 3], | = (=b.0). Thus the orthogonal complements of 3 ;
and 3] | arerespectively §; = (1,—a) and §;, = (0,b). The nonlinear cointegrating relationship can

be obtained as

Y Y
wo= 3 T | +8)| (3)
Ty ’ltz

= y —azr; + b.l‘?.

Thus the cointegration errors are given by z; = 2bw, &, + b2 + vy — a&y, and it can be easily shown

that they are short-memory according to our definition.



Figure 2 illustrates a simulation experiment of nonlinear cointegration with series having a com-
mon factor, and obtained with the model (2), with @ = 2.0 and b = 0.05. Figure 3 shows a real
example of an apparently nonlinearly cointegrating relationship. In both cases, the scatter plots

below clearly show that the dependence between the variables is not linear.

Some previous concepts of nonlinear cointegration are the following:

Definition 7 (Granger and Hallman,1991 [11]) A pair of series z;,y;, are said to have a cointe-
grating nonlinear attractor if there are nonlinear measurable functions f(.),g(.) such that f(z:)

and g(y;) are both I(d),d > 0, and = = g(y:) — f(zy) is ~ I(d;), with d, < d.

Remark:

Assuming that f and ¢ can be expanded as Taylor series up to some order p > 2 around the origin,
we may write z; = co+cyug + HOT (24, y1), where u; = y; — axy, and HOTY(.,.) denotes higher-order
terms. It follows that the linear approximation, u;. to the true cointegration residuals differs from
the latter by some higher-order terms. These terms express that the strengh of attraction onto the
cointegration line y; = ax; may vary with the levels of the series. ;. y;, when nonlinearities exist

in their relationship.

As stated in the introduction. a difficulty with the application of this definition is the need to find

proper estimates of the cointegrating functions f(.) and g(.) in order to test for cointegration.

Escribano and Mira (1996) [5] propose the following alternative definition of nonlinear cointegra-
tion based on the concepts of a-miring (Rosenblatt. 1974 [18]) and near-epoch dependence (NED)

(Wooldridge. 1986 [20]).

Definition 8 (Escribano and Mira, 1996 [5]) A pair of series x4, y;. are nonlinear cointegrated
with cointcgration function g(....%) (where 4 is a parameter). if g(y;, x1.77) 1s NED (a-miring) on

some a-mirving series, bul g(y;. 4.7 ) is not NED (a-mizing) for any v # 4~.

Unfortunately. this definition relies on concepts of dependence that are generally difficult to check

in practice.
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We propose now a most general characterization of cointegration which circumvents some of the

difficulties encountered with the previous ones.
Let 24, y; be time series from processes that are long-memory in #(.), and let i, ,(7,t) represent a

general measure of serial cross-dependence between 2, ;.

Definition 9 A pair of time series vy, y, that are long-memory in i(.), are said to be cointegrated
in i(.) (in short, CII) if
iz (71
lim —L(’j—) =b, Vt (4)

where b is a nonzero and finite real number.

Remarks:

1. Intuitively, the definition states that, under cointegration, the remote past of y; should be as
useful as the remote past of ¢ in long-term forecasting x¢. A particular feature of this char-
acterization is that it focusses on the relative behaviour of measures of serial autodependence

and of cross-dependence at long lags.

2. This more general characterization of cointegration relies on the different limit behaviour of
ix(7.1) and ¢, ,(7.1). under non-cointegration. If cointegration holds, we cannot have different
convergence rates for i,(7.1) and for i, ,(7.1). The possibly different rates of convergence
could be used to construct a measure of the degree of non-cointegration. Suppose that
io(T.1) ~ 7%, and that i, ,(7,1) ~ 777 for 7 large enough. In numerical applications we
may find that neither i, (7.1) nor i(7,1) is either infinite or zero for any finite 7. So we may
safely take the logarithm of the ratio i,(7,1)/iz4(7,1) and plot it as a function of logr. This
function will tend towards an asymptote as 7 grows to infinity. The slope of this asymptote
is just a — 3. and it is always non-negative, since we expect that a < 3. Thus the larger
its value the farther the hypothesis of information-cointegrateness between the series is {rom

being realized.

3. If we replace i (7,1) by the ACF of 24, and 7, (7. 1) by the cross-correlation function between
@y and yy, say pzy(7,1), then our definition becomes a re-statement of the standard defini-
tion of linear cointegration proposed by Granger (1981) [7], and amounts at comparing the

behaviour at the origin of the spectral densities of the series.
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An alternative condition for cointegration is the following one. Let S - S 7= tey(Te ).

Proposition 1 If the series y;, zy are cointegrated in i(.) then the sequence of partial sums §i=v)

diverges as n — oc.

PROOF:
Suppose the series are cointegrated in #(.). Then from our definition, it follows that there ex-

ists a nonzero real number b = sup,(b;) and a finite real number C such that lim,; . Sr(f'y) =

r(lr..z:)

b limy—o 5',(11‘1) + C. And the divergence of S,(f'y) follows from the divergence of S, ™', since a;

has long memory in (.).

3 Some information-theoretic measures of data variability and de-

pendence

In this section we present the information-theoretic concepts which will form the basis of the new

characterization that we proposed for the relationship between integrated time series.

3.1 Information-theoretic measures for partitions

A most basic problem in information theory is that of assigning a measure of uncertainty to the
ocurrence or nonocurrence of any event in a partition P of the set of outcomes of an underlying
experiment. We call this measure of uncertainty the entropy of the partition, and denote it by
H(P). The construction of this functional stems from some postulates which must be satisfied in
order to provide such measure of uncertainty. Suppose now that we have a partition of a sample
space § with M events A;. i = 1.---. M, and that the event A; occurs with probability p;. It can

be shown that the convex functional

Wi
~—

1.V 4
H(P)=—=>_ pilog(p;) (
=1

vields a proper measure of average uncertainty in the partition P.
Similarly, when we know about the ocurrence of a subset M of events from a different partition. Q

of §. the remaining uncertainty in the partition P can be measured by the nonnegative functional

M
H(P|M) = =" P(A]M)log P(A| M), (6)

=1
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which is called the conditional entropy of P given M. Notice that if the events in 7 are independent

of those in M then H(P|M) = H(P). In general, M may convey information about the events in

P, and this mutual information can be quantified by the functional
I(P, M) = H(P) - H(P|M). (7)

That is, the observation of M reduces the uncertainty about P from H(P) to H(P|M), so the
information that M conveys about P is just I(P, M). Notice that M can convey at most H(P)
bits of information about the events in P, and since H(P|M) < H(P), I(P, M) must also be
nonnegative.

Now let us denote by H(P, Q) the joint entropy functional for the partition whose events are the
intersections of the events in P and Q. The resulting partition is called a refinement of both P
and Q. Notice that to observe the joint partition we must observe both P and Q. It follows that
the uncertainty in the joint partition must be at least equal to that of the elementary partitions.
Rigorously speaking, by convexity of the entropy functional it is easy to show that H(P.Q)> H(P)

and that H(P.Q)> H(Q) (i.e. Papoulis, 1991 [16]). In fact, we have

H(P.Q) = H(Q)+ H(P|Q)
= H(P)+ H(Q|P) (8)
< H(P)+ H(Q) (9)

Clearly. the maximum value of H(P.Q) is attained when P and Q are independent. Also. by

manipulating equations (7) and (8). we obtain

I(P.M)= H(P)+ H(Q) - H(P.Q). (10)

3.2 Information-theoretic measures for random variables

So far we have introduced the concept of entropy of a given partition of the sample space of an
experiment. It is possible to define the entropy of a r.v. by forming a suitable partition. This is
straightforward for discrete-valued r.v.’s. For example, if a r.v. X takes a countable set of values
{2;}. i =1.2.---. with probabilities p;. we can form the partition in which each event corresponds
to a different value of X. Thus the definition of entropy as given in the previous paragraph also

applies here, and we can define the entropy of the r.v. X as

H(X)= =3 pilog(pi)- (11)
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The definitions for the rest of the uncertainty measures discussed in the preceeding paragraph, such

as conditional and joint entropies, and the mutual information, remain also valid in this case.

When dealing with continuous-valued r.v.’s the extension of these concepts is not immediate. The
difficulty here is that the events {X = z;} do no longer form a partition, since they are not
countable. Therefore, to define the entropy we must first convert X into a discrete- valued r.v..
That is. we can define the entropy of a quantized version of X given by X5 = mé if X € (mé—6, mé).

If we assume that X has a probability density function (pdf), fz() is then easy to show that
lim [H(Xs) +10g6) = = [ fo(X)log ol X)dX. (12)
- -0

We remark that lims_o H(Xs) = oo. However, in practice, we can only observe X with finite
accuracy because of noise and quantification errors from the measurement instrument. Since the
term —logé only reflects this lack of observation accuracy (which is instrument-dependent), we may

define an uncertainty measure intrinsic to the variable, by leaving this term out:

hX) = - /_ (X )log fu X). (13)

However. contrary to the entropy of a partition, the latter measure can take negative values, and
thus it does only have sense when used to measure changes in uncertainty. This is why it is often
referred to as differential entropy. In the same way. we may define joint and conditional differential

entropies for any two continuous r.v.'s, X.Y:

hX.Y) —LE(log fry(X.Y)). (14)

HXPY) = —Ellogf,(X)). (15)

where f, ,(.) and fj.ly() denote the joint and conditional pdf’s of the variables (respect.). and E(.)
is the expectation operator. Clearly, when X is independent of Y we have h(X,Y) = h(X) + h(Y),
and I{(X|Y7) = 0. The previous expressions generalize straightforwardly to more than two variables.
In general. the different information-theoretic concepts discussed for partitions also apply to continuous-
valued r.v.’s as long as theyv only refer to differences of entropies. Thus the mutual information for

continuous r.v.’s. defined as

IX.Y) = MX)+hY)-hX.Y) (16)
fy(XY)

= E|log2zxlo) | 17

{ngz(z\')fy(Y)} (17)

conveyvs the same jdea of dependence among the variables, as for partitions.

For the purpose of illustration, we give the values of these information-theoretic quantities for
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Gaussian 7.v.’s.
Let X,Y be two jointly Gaussian r.v.’s, such that X ~ N (uz,02) and Y ~ N (g, 02), and suppose

that their joint pdf is given by

1 o~ ((X—ux? /o2 =y /o200 X ) (V=) (003)) (1)

fr,y(X-,Y) = /.27‘_(1 — P2)010y

where p is the correlation coefficient between the X and Y variables. Then it can be shown (i.e.

Papoulis, 1991 {16]) the following:

hX) = log(ozV2re), (19)
h(Y) = log(o,V2we), (20)
h(X,Y) = log(2re)+ log(VA), (21)
MXIY) = loglon/Tre) + glog(1- 7). (22)
IX.Y) = ~3log(1-p) @

2
P

where A is the determinant of the variance-covariance matrix of the variables. thatis A = o 03( 1—
p?). In general. given n jointly Gaussian r.v.'s. X1, -+, Xy, with variance-covariance matrix . the
joint differential entropy is given by

WX1. . Xp) = %105/(2776)—}- log(V) (24)

where \ is the determinant of ¥.

3.3 Information-theoretic measures for stochastic processes

Stochastic processes are defined in terms of the joint distributions for all subsets of their r..’s. In
particular. the information gained when the m r.v.’s Xy,.---, X, of a continuous-valued stochastic

process r; are observed. is given by their mth-order joint differential entropy, defined as
h( Xty 03 X)) = —E(l0g fty ot ( Xty 15 X)) (25)

Obviously. the uncertainty about the values of 2; on any finite interval of ¢, is infinite. However,
if 2, can be expressed in terms of its samples on a countable set of sampling instants {t;}; (i.e.
to the extent that z; can be approximated by a narrowband process) it may be possible to define

entropy measures. Henceforth we will assume that this is the case. Now, if there exists a conditional
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stationary pdf’s for 24, we can define a measure of the uncertainty about any variable of the process,

when its most recent values are known. For example, the mth-order (differential) conditional
entropy of x4, h(Xy|Xn-1,++, Xn-m) captures the remaining uncertainty about any r.v. from
a. when information about its m-th history has been collected. This functional is, obviously,
decreasing in m, and its rate of decay contains important information about the type of serial
dependence in the process. For m — oo we obtain a measure of the unknown information about
any variable X, once we know its entire past. Clearly, for a deterministic process, this measure, call
it he(2) = limpm—ns R(Xn]Xn-1," -+, Xn-m), equals zero. It is customary to call h,(z) the entropy

rate of the process z;. This name acknowledges the fact that when z, is stationary we can write

ho(z) = lim —h(X1, -, Xn)- (26)

Clearly, the limit on the right of the previous equality measures the speed at which the uncertainty
grows as we try to guess at the values of an ever-increasing number of r.v.’s from the process.

o

As a way of illustration. for a wide-sense stationary Gaussian process. r;. we have

h(x)=log(V27e) + -;— li_l}}:.:IIog (Ajmﬂ) . (27)

m m

where \,, is the determinant of the m-th order variance-covariance matrix of the process.

4 An information-theoretic characterization of memory

In the previous section. we saw that the mutual information in a pair of r.v.’s could be inter-
preted as a measure of general dependence between them, in contrast with their correlation, which
only measures the adequacy of any variable for linearly predicting the other. Similarly, we can
establish the serial dependence and cross-dependence properties of wide-sense stationary stochastic
processes. in terms of a mutual information function (MIF'), with generalizes the standard autocor-
relation function (ACF). However, in order to extent the new characterization to processes having
stochastic trends, we must again allow some scope for heterogeneity, and thus our measures will
in general depend on time. Let the MIF of 2; as iz(7,t) = I(X¢, X¢~;). Our information-theoretic
characterization of mean reversion, short and long memory follows from the definitions in section
2.1. We will then say that a series is either mean-reverting, short-memory, long-memory or

integrated in information.
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Remarks:

1. In the Gaussian case, i,(7,1) is related to the ACF, and thus for a Gaussian short-memory
process i.(7,t) must converge exponentially fast to zero, while for a Gaussian long-memory

process this convergence must be slower (typically, only hyperbolically fast).

2. The information quantities can be re-written as (differential) entropy changes. That is,
iz(1,1) = h(Xy) = h(X¢| Xi=r). (28)

This supports our intuition that entropy differences are most useful at characterizing the

dependence properties of a process.

3. There are some connections between Granger’s most general definition of mean-reversion,
introduced in a previous paragraph, and the MIF. This can be seen by re-interpreting the
latter as some sort of mixing cocfficicnts. Given a stochastic process 2. the standard a-mixing
coefficients are given by (Rosenblatt, 1974 {18])

a(r,1) = sup sup [P(X™,X)—- P(X")P(X)] (29)
U XeFr™tXceF T
where P(.) is a probability measure defined on the Borel o-field of ;. In contrast, the

“information-mixing coefficients™ i,(7.1) can be expressed as
ir(T' {) = E (]ngl‘.f('x.f' —\.1—-7) - iogfx(.;\'t )fr(-yt-—r)) s (30)

where f..(,)and fz(.) denote the bivariate and univariate pdf for x;. We remark that both
tvpes of mixing coefficients allow for heterogeneity in the process. However. in contrast to
the a-mixing coefficients a(7.,t), the quantities i,(7.1) can be easily estimated in many cases

as statistical averages.

4. An alternative characterization could be made in terms of the conditional densities. Let
f_t__\r;l:;i denote the o-field generated by the r.v.’s Xy_y, -+, Xtorg1; Ximro1,- - A gen-
erally nonstationary time series of x; could be said to be conditionally short-memory
in information. if the sequence of partial sums R = ool (X, 2 ’t—‘rl]:t_::;i:;i) con-

verges as n grows to infinity. If, on the contrary, R diverges, then z; could be said to
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be conditionally long-memory in information. These alternative definitions rephrase

the former ones in terms of a partial serial dependence measure, which could be regarded
as a generalization of the concept of partial autocorrelation function (PACF) in the linear
context. However, when working with conditional densities may encounter severe difficulties
in practice (i.e. need for very large data sets, curse of dimensionality, etc.), which make us

prefer the former approach.

A few examples may help to illustrate the behaviour of the new unconditional dependence measures.

Consider the following cases:

o Let 2; = av4—; + € where ¢ is an i.i.d. sequence of Gaussian r.v.’s with zero mean and
variance o2, in short ¢ ~ A’(0,0?), and |a| < 1. This model generates a stationary Gaussian
Markov process, for which cov(zy, z¢—7) = o2a™, which converges to zero exponentially fast

as T — oc. The information mixing coefficients, defined for 7 > 0, are given in this case by
; ; 1 27 E
irt)=1x(7)= —51’09(1—(1 ), (31)

which clearly converges exponentially fast to zero as 7 grows to oc, thus implyving that
Y +s0ix(7.1) < 2. We may therefore conclude that z¢ is both I(0) and I7(0). On the con-
trary. if « = 1 we have a non-mixing process with an unit root, for which corr(2y, &4—r) =1

and i,(7.1) = x for any 7 and any {. Therefore. we may classify this J(1) process as IT(1).

e Let 2, be a Gaussian stationary long-memory process with long-memory parameter d (0 <
d < 0.5). that is (1 — B)d:ct = ¢ with ¢ representing a stationary zero-mean short-memory
Gaussian process. This mean-reverting process is characterized by an ACF which decays
hyperbolically fast, that is, cov(zs, z—,) ~ 72471 for large 7 (e.g. Hosking, 1981 [14]) and
thus we write 24 ~ I(d). On the other hand. we obtain the following approximation for large
T,

ie(.1) = i2(7) ~ —3log(1 = er72), (32)

where ¢4 is a constant depending only on d. Clearly, i,(7) also converges to zero. but this
time the convergence is only hyperbolically fast. Noting that log(1l — cgm%17?) = cgm4?
for sufficiently large 7, the divergence of 3 .4%:(7,t) follows inmediately. Therefore, z¢ is

long-memory in information.
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Now let us have a look at these measures from the viewpoint of the conditional (differential) en-

tropies. Let her(X¢) = h(X¢|Xt-1,- -+, Xi—;), or equivalently, h% (X;) = h(X¢|Xeor, -+, Ximoo)

Proposition 2 If A7 (X¢) < h(X{) V7 and V¢, then the process is neither mean-reverting nor

short-memory in information.

PROOF:

Let I(X¢: X¢—ry Xi—r-1, -+, Xi—0o ) denote the information on X; conveyed by the variables Xy_;, X;—;_1,- -

We can write:

I(-Xt; ‘Xt—n -Yt—‘r—l’ T /\'t—oo) = h(‘Xt) - h(—X't!—Xt—‘n ‘Yt—‘r—ls Ty /Yt—oo) (33)

> 0. (34)

Thus. we must have lim, . I(X;. Xy—;) > 0, implving that z; is neither mean-reverting nor short-

memory in information. O

Remark:
The condition in the proposition clearly expresses when the remote past of a process does still

contribute in information about its present state.

We shall assume in the following examples that our processes are Gaussian. Therefore. recalling
equation (27). the 7th order conditional (differential) entropy for a Gaussian process vy is

e (X0) = log(v/37e) + 5log (AA“‘“) (35)
7,1

where N4 1s the determinant of the Tth-order variance-covariance matrix of zy.
In the following, we will determine the conditional entropies and some implications for the classes

of processes previously characterized in terms of the MIF.

o Let 2y = ari_1+¢ where ¢ ~ \(0.02). If |a| < 1 then we can write he-(X;) = h(X;|X¢1)
log (m/‘Z:rc) for any 7 > 0. It follows that I( Xy Xioq, -+, Xi—r) = I(X1, Xio1) = (X)) -
her(Xy) = —%Iog(1—|al2) < 00, forany 7 > 0. On the contrary,ifa = 1 then I(X¢; X1, -+, X¢—r)

is infinity for any 7 > 0.



18
e Let 2, be a stationary autoregressive process of order p, in short 2; ~ AR(p). If z; is Gaussian

then we have the following result from Kay (1988 [19], pp. 169-178):

Ary1p Arpy 2 T P
St BrH G2 TT (1 - ) 36
st = 5t = Tl0- ) ()

where 7y is the partial autocorrelation at lag k. Thus, at long lags,

AT-H z 2
T=02H(1“|7‘k| ) (37)
T k=1

since 7, = 0 for k > p. Now, since |ri| < 1, Vk, it follows from equation (27) that h,(z) is

bounded, and that I(Xy; Xi—1,- -, Xt—0o) < 00.

o Suppose z; is a Gaussian stationary long-memory process with long-memory parameter d
(0 < d < 0.5). Then since the partial autocorrelations of this process rj satisfy 0 < rx < 1

for any finite & (see Hosking,1981 [14]) then

. Ar+1 2 - - ’ 2,
Jim == = o lim JT(1-Inf")
k=1
=0 (38)
The latter implies that h.(2) = —oc, which in turns leads to an infinite value for the mutual
information between X; and its infinite history, that is J(Xy; Xi—1. 0. Xi—oo) = .

These examples seem to support our intuition that the persistence of the shocks in a process results
in that its entire past contains an infinite amount of information about its present. On the contrary,
this amount of information is bounded for mixing processes.

The connection of the latter discussion with our characterization of dependence in terms of the
information mixing numbers 7,(7) comes by realizing that each variable from the past confributes

a small portion of information about the present variable. X;. In other words, we must have

o0
I(X Xecte o Xeew) € 3 d(r.0), (39)
=1
Now. the fact that I(X¢Xi21.---.Xi—x) = x for persistent Gaussian processes implies that

i.(7.1) cannot decrease with r faster than O(7=%%¢) for some 6 > 0. Alternatively, for stationary
Gaussian processes we obtained I(X¢; X¢—1,- -, X{—c0) < 00, wWhich is consistent with an exponen-

tially fast decayv of i,(7,t) for growing 7.
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4.1 Some implementation issues

We briefly explain how the mutual information quantities were estimated in the experiments that

follow. The MIF, i,(7), was evaluated using the following estimator, where N is the sample size,

‘.7\7
WN(r) = NS iu(n)
t=1

oo (Xt Xeor
R J"J‘th(v)log(———-—f al — )), (40)
tes f:r(‘xt-‘r)

with
14+, fortodd
a(y) =
1 -+, forteven
where ¥ > 0, N, = N for N even, and N, = N + v, for N odd. Here X, represents a generic
vector variable, fl.,r(.., .) and f;(.) are estimators of the bivariate and univariate pdf’s (which may
be time-varying), and the set § is introduced to make explicit the exclusion of certain inocuous
summands. which can occur, for example. when frfr(.,.) < 0or f,(.) < 0, or when logarithms
cannot he taken. The densities can be estimated using kernel smoothers (Breiman et al., 1977 [3]).
In general. given a set of X' — n n-dimensional vectors Xy, { = 1, N — n, a kernel density estimator
with kernel ' and bandwidth a. of their unconditional pdf. say f(.), has the form
N-n
fIX)= (N~ n) " ta~l Z Kla (X - X})) (41)
=1
where the kernel A" is a function verifving [y, I(})dY = 1. Robinson (1991) [17] proved the
consistency of a similar estimator under the assumption of stationarity in the series and for n = 1.

For the experiments. we choose Gaussian kernels:
E(X)=(27)""? cap(-X'X/2) (42)

Iven though the form of the kernel is not critical to the results, the bandwidth is. We can deal with
this problem by means of adaptive bandwidths. This technique consists in allowing the kernels to
shrink in rather densily populated regions of the n-dimensional embedding space, and to widen in
regions with few data points. The likelihood of introducing important biases is greatly reduced
in this way, since the smoothing becomes only important at those regions of the embedding space
containing a large number of points. Initially, we took a fixed bandwidth for the kernels, a, and the
initial density estimates were subsequently used to obtain locally adapted bandwidths, say B(X),

according to

B(X) x 1/ fa(X) (43)
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where f,(X) denotes a rough estimate of the pdf at X using a kernel estimator with the fixed

bandwidth, a.

4.2 Information-theoretic characterization of cointegration

Let z;,7: be long-memory in information. The concept of cointegration in information arises
when letting i, (7,t) = I(X}, Y;—-) in the characterization of cointegration proposed in section 2.2

(see definition 9).

Remarks :

1. The information-cointegrateness concept states that for any long-run predictor of X; based
on X;_,, we can find a predictor based on Y;_, which conveys exactly the same information

about Xj.

2. Our characterization applies to both integer and fractionally integrated processes. Besides,
the processes involved are not required to have the same integration order. For instance,
consider the case in which z; ~ II(d), yi ~ II(dy), with d; # dy, and ¢(.) is a nonlinear
one-to-one transformation such that z; = ¢(y;) ~ II(d,) with d, = d;. This situation can
be understood noting that both the entropy and the mutual information of the variables in a
process are invariant to one-to-one transformations of the latter (see, for instance, Papoulis,

1991 [16], p. 565).

3. The information-cointegration definition can equally handle multivariate processes, which

enter naturally as arguments of the information measures.

In figure 4 we compare the behaviour of a normalized version of the generalized sample correlations,
%F,:},;)(T) /%5:‘)(1) and ’Z(IN)(T) /E(J;N)(l) as functions of 7, by means of Montecarlo simulations. Here

lg\y)(’T) is given by:

AV
2g}y>(f) = N7'Y izy(r,1)
t=1

Q

N..1 c('y)l <fx,g(XtaYt—'r)), 44
P (44

where the coeflicients c;(y) and 7 are as in the previous section. The curves shown in the figure

represent statistical averages computed from 20 simulated pairs of series. Plots (a), (b) and (c)
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correspond to linearly cointegrated, nonlinearly cointegrated, and non-cointegrated series, respec-

tively. The horizontal scale shows 7 + 1. The linear cointegrated series were generated as those in
figures 1, while the nonlinearly cointegrated ones were obtained by applying third-order polynomial

transformations to a common random-walk component.

Example 2:

Consider the following linear common factor model:

Yt a Ut
= wy + (45)

Ty 1 &
where a # 0, w; = w;—1 + € with wy = 0, and (v, &, €;) are independent sequences of independent
and identically Normally distributed r.v.’s with zero mean and joint covariance matrix equal to the

identity matrix. If we now define z; = y; — az¢, and

cov(z¢Ti—r)

pr(T,t) = —M—=, (46)
Oz 0z,

cov(y, 1)
T,t —_— 47
Pry( ) 2,02, (47)

we obtain after some algebra
(t = 7)ol

1) = , 48
px(T,1) V(to? + o) /((t — 7)o? + 77) (48)

¢t — 1)o2
pry(7,1) alt _)ce (49)

V{e3(to? + o) + 02)/((t = T)o? + 07)
It follows that for sufficiently large t, pz,y(7,t) = pzy(7,1).
Now since i, (7,t) = —%log(l — pgzy(r,t)), and i;(7,t) = —%log(l — p2(r,t)), it follows that

ir,y(T’t)/ir(T, t) =~ 1 for any 7.

An alternative condition for the information-cointegrateness of (zy,y;) can be given using condi-

tional entropies:

. h(Ytl]:—oc,t—'r)
lim =tz ) 2 g vt 50
B 7 0
h(X | Froot=T
(Xel 7y =) # 0, Vt. (51)

im ————

7500 h(Xth:;OOJ—T)
At this point, it is also interesting to analyze the links between the concepts of cointegration in
information and causality. To do so, we first propose a definition of non-causality in information,

which merely express the non-causality idea of Granger (1969) [9] in terms of information statistics.
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Definition 10 A series z; non-causes in information a series y; if h(Y;|F7 0071 Froot=1) =

h(Y | FytT).

Accordingly. there is no causality among the variables if the remaining uncertainty in either variable

after conditioning on its own past is not reduced by knowledge of the other’s past.

5 Testing for long-memory and cointegration in information

Testing a cointegrating relationship involves two major steps: (1) a test for long-memory in the

series; and (2) a test of cointegration.

5.1 Long-memory testing

It may be possible to test for long-memory in information for any of the variables. say ;. by working
out the consequences of our characterization of short and long memory in information. Recall that
for x4 to be short-memory in information we must have }~ Sqi-(7,1) < oc. which implies that for
any ¢ > 0 and anyv 1, ix(r.1) = o(7~2%%). That is, there exists positive real numbers 7y.b such that
io(T.1) < br~2 ¥7 > 19 and Vi. On the contrary. if a4 is long-memory in information then there

exists positive real numbers 71.¢; and 2 > r > 0 such that 7(7.1) & ¢;77" V7 > 1. Or taking logs,
logi(T.1) = logey — rlogT + &4y YT > 11, (52)

where £, is an error sequence. Therefore we could check the property of short memory in infor-
mation by testing the null hypothesis Ho: r > 2.

For most empirical series, a finite sample size prevents the possibility of adjusting the previous
regression line at large lags. However. a frequency-domain version of this testing device allows us
to do the analyvsis at low frequencies (A — 0) instead of at very long lags (7 — o¢). In this way.
we can take advantage of the full information contained in the sample. For this, let us first define

a generalized periodogram as

AY
G t) = Y weiz(r,t)exp(—j2m A7), (53)
=1
where j2 = —1. w, is a spectral window, and N is the sample size. Now, if z; is long-memory in

information we should have

GV 1) ~ ug(A, )N, (54)
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for small A's. Hered > 0, and u(7,1)is a slowly-varying function of 7, that is imy—, uz (€A, t)/uz(A, t) =

1Veand for a = 0 and a = o©.

Again, taking logs we obtain
logGN (A1) = loguz(A, 1) — 2dlogh + v, (55)

for small A's. and with v\, representing an error sequence. Now we can test the null-hypothesis
of short-memory in information Hp : d = 0 once we have an estimate of the slope of the previous

regression line.

Remark:
Notice that when i,(7,1) = pz(7.t) and z, is supposed to be stationary we obtain the device pro-

posed by Geweke and Porter-Hudak (1983) [6)].

5.2 Cointegration testing

Based on definition 9. a candidate test statistic that provides a measure of cointegration in a pair

of series a4. y;. could be
N m+gq

Tm,q(m- 3/) = -\v_l Z Z (1 - ;I.y(T-t)/;'l‘(Tvt)) (56)

t=17=m

where m must be sufficiently large (i.e. larger than the short-memory span of the series) in order
to capture only the long-wave discrepancies. ¢ should be such that m 4+ ¢ < N. where N is the
sample size.

As we said in the preceeding section, under cointegration 7, ,(7,t) will be of the same order of
magnitude as i,(7,t) for sufficiently large 7 and V¢. On the contrary, under non-cointegration,
lry(T.1) € ip(7.1) > 0 for sufficiently large 7 and V¢. This implies a tendency for the values of
Tm{. y) to cluster around 1 under non-cointegration.

The limiting distribution of our statistic may be difficult to find using standard asymptotic theory,
since we are dealing with non-mixing processes. Yet we can test the null hypothesis of cointe-
gration by constructing an empirical confidence interval for the test statistic. That is, for fixed
values of m.q. we estimate the empirical critical value b, such that P (7, 4(z.y) > b,) = a under
the assumption of information-cointegrateness. for the given significance level, a. Therefore this

hypothesis will be rejected at this level when 7, o(z,y) > b,.
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6 Experiments on simulated series

To assess the potentialities of a cointegration test based on the statistic 7, (2, ¥) in equation (56),
we generated 100 pairs of linearly, nonlinearly and non-cointegrated series. The linearly cointegrated
series were obtained as in figures 1. The nonlinearly cointegrated ones were computed applying
third-order polynomial transformations to a common random walk component. The coefficients of
these polynomials were chosen at random. Finally, the non-cointegrated series were either pairs of
independent random walks (H2 1) or mutually dependent short-memory series (H,2). In the latter
case, the series were generated according to the model y; = 2;+ €, 2; = ap+ a3+ (1.2.’1It2 +azad+e,
where z; = aq€i_2€4—1 + €1, €, €;, € are mutually independent ¢.i.d. sequences, and the a; were
chosen at random. For the experiment, we selected ¢ = 0, m = 10, and a sample size of N = 1000.
In all the replications the value of mggo(z,y) was comparatively large and positive under non-
cointegration, but small and with varying sign under cointegration, both in the linear and the
nonlinear cases. Table 1 shows the mean. standard deviation and mean absolute value of Tg0(2.7y)
obtained in the experiment.

The histogram plots of 719 0(x,y) for the different cases are given in figure 5. Using the 5% em-
pirical critical values of this statistic under H, ;. estimated from 1000 Monte Carlo replicas, the

percentage rejection approached 85% of the simulated cointegrated pairs.

7 Experiment on financial data

The statistic 7, 4(2.y) proposed in the previous section for testing cointegration and linearity in
cointegration. respectively, is here evaluated on two pairs of exchange rate series (figure 7), and on
a pair of stock return series (STR1.STR2) from a Japanese food company (figure 6). The former
group of series were the rates of exchange of the US Dollar (EXRPD), the Deutsch Mark (EXRPM)
and the Japanese Yen (EXRPY) against the Spanish Peseta. We took the first N = 1000 daily
observations from series starting at January the first 1987. For the exchange-rate data, EXRPD

was taken as reference.

The hypothesis of a unit root could not be rejected by a standard Dickey-Fuller test for any of the
series. for the given sample size. To test for cointegration, we first run an Augmented Dickey-Fuller

(ADF) test (the conventional DF test was augmented with one lag in the first differences of the
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series) on the regression residuals of the three pairs considered above. The values taken by the test

statistic 74 are reported in table 2.

Using the critical values computed by Mackinnon (1990) [15] (-2.57, —1.94 and —1.62 at the
1%, 5% and 10% levels, respectively), the hypothesis of cointegration (i.e. that 7 takes values
smaller than the tabulated critical values) was only accepted for the pair of stock return series
(STR1,STR2). In contrast, the values of the test statistic Ti00(z,y) of equation (56), shown in
table 3. suggests evidence of cointegration in both (EXRPD,EXRPY) and (STR1,STR2), when

using a one-standard-deviation empirical confidence interval.

8 Conclusion

Long-memory and cointegration are two important features of many economic time series. Stan-
dard methods to characterize these features do not take into account possible nonlinearities in the
data generating processes or in their relationship. This calls for a more general characterization
of memory in time series. and of cointegration between pairs of time series. where nonlinearity is
allowed in the long-run relationship between the variables. In this paper, we proposed one such
alternative characterization based on the mutual information in pairs of variables, but which could
be used in connection with any measure of serial dependence. Our methodology does not con-
traint the integration orders of the individual series to be equal. and could be generalized to the
analyvsis of vector cointegrating relationships. Finally, we suggest new devices for exploratory data
analvsis and for testing the hypotheses of short-memory and cointegration. The performances of
our cointegration testing device was shown on both simulated and some real-world financial series.
Our results point to a gain in robustness of the proposed schemes over standard ones when the

integrated variables are nonlinearly related.
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Figure 1: Two simulated linearly cointegrated random walks (a) and their scatter plot (b). The

series. @, 1) were generated with the model: vy = awy + €. 27 = wi + €. uy = w1 + &. with
(T4 g t ¢ t e U 1
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Figure 2: Two simulated nonlinearly cointegrated series (a) and their scatter plot (b). The upper

series was obtained as x; = wy+§;, where wy

wy_1+¢¢ with wo = 0, and the lower one corresponds

to y; = 2wy — 0.05w? + ¢;. The errors ¢, . & are independent sequences of i.i.d. Gaussian r.v.’s.
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Figure 3: Two apparently nonlinearly cointegrated time series of stock returns from a Japanese

food company Ajinomoto (a). Clearly, the strength of attraction varies accross time, as shown in

the scatter plot (b).
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Figure 4: Plots of the generalized correlations %g_\z;)(r)/;‘g\.)(l) and %ﬁf\"(r)/iﬁf\’)u) versus T + 1

for lincarly (a). nonlinearly (b). and non-cointegrated (c) series. The plots show the average
curves obtained from 20 Monte Carlo simulated pairs of series. The nonlinearly cointegrated series
were generated by applying third-order polynomial transformations to a common random walk

component. The non-cointegrated series were independent random walks.
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Figure 5: Histogram plots of Tj90(2.y), where (. y) represents linearly (a), nonlinearly (b), and
non-cointegrated (c)-(d) pairs of series. Plots (c)-(d) corresponds to non-cointegrated series from
the alternative hypotheses Hy; and Hj g, respectively. The nonlinearly cointegrated series were

obtained as in figure 2.
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Figure 6: Two stock return series from the Japanese food company Ajinomoto.
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Figure 7: Daily foreign exchange-rate series from Janué,ry 1987: EXRPD (Peseta/US Dollar),

EXRPY (Peseta/100 Yens), EXRPM (Peseta/Deutsch Mark).



Test statistic

linear cointeg.

nonlin. cointeg.

non-cointeg. (Hy 1)

non-cointeg. (Hs )

E(m00(z.y)) | 0.0619 0.0189 0.2953 0.8307
std(mo0(2,y)) | 0.117 0.061 0.12 0.07
E(|m00(z,y)|) | 0.0718 0.0434 0.2953 0.8307

Table 1: Mean, standard deviation and absolute mean values of 710 0(z,y) for linearly, nonlinearly

and non-cointegrated series.

Series | EXRPY/EXRPD | EXRPM/EXRPD | STR1/STR?

-21.28

r(a.y) | -0.328 -0.686

Table 2: Values taken by the Dickey-Fuller test statistic 747(2,y) = N(a - 1) on the two pairs of
foreign exchange rate series and the pair of stock return series. Here ¢ is the OLS estimator of the

parameter in the regression of y; on ;.

Series EXRPY/EXRPD | EXRPM/EXRPD | STR1/STR?

-0.0113 0.257 0.1169

T10.0(7. Y)

Table 3: Values taken by the cointegration test statistic 710,0(.y) on two pairs of foreign exchange

rate and a pair of stock return series.



