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~Jany economic time series exhibit important random changes in their mean behaviour. These 

series are sometimes said to be integrated, since it is possible to simulate the most important fea­

tures in their patterns with sums of an increasing number of weakly-dependent random variables. 

Integrated series can be expressed in terms of the unobserved components modEl, where one of the 

components is a stochastic trend. The fact that remote shocks have a persistent influence on the 

levels of these series is known as the long-memory or the extended-memory property, depending on 

whether this influence is linear or not (Grangel" 199.5 [10]). 

In some cases, the accumulated changes in mean behaviour may be correlated accross series. In the 

context of macroeconomics and finance, certain models suggest the presence of economic or social 

forces prewnting two or more series from drifting too far apart from each other. Pairs of series 

which exhibit a common long-memory component or stochastic trend are said to be cointegrated. 

The concept of cointfgration \\'as coined b~' Granger (1981 [7]). and later on dewloped b~' Engle 

and Granger. (1987 [-l]), Well-known examples of cointegrating relationships can be found between 

income and expenditure. prices of a particular good in different markets, interest rates in different 

parts of a countr~'. ete. 

rllder1~'ing the idea of cointegration is the existence of a long-run tquilibl'ium (i,e. a deterministic 

relationship that holds on the average for the levels) between two integrated variables, ,1'1. Yt. A 

strict (linear) eCJuilibrium exists \\'hen for some a f O. one has YI = a,l't, This unrealistic situation 

is replaced. in practice, by that of a (linear) cointegrating relationship, in which the equilibrium 

(,ITor ::t = Yt - (J,/"t is different from zero hut fluctuates around this value much more freCJuently 

than the individual series (i.e, Zt is mean-reverting), while the size of these fluctuations could be 

much smaller. 

It t urns out that man~' apparentl~' non-cointegrated series may ha\'e a nonli11Ulr equilibrium, Un­

fortunately, conventional cointegration tests tend to have low power when nonlinearity enters in the 

relationship between the variables. It is therefore important to investigate ne\\' methods capable 

of detecting equilibriums others than linear, and of rejecting the linear cointegration assumption 

when false. 

There haw been attempts to address this problem. For example, Hallman (1990) [13] proposed to 
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apply standard non-cointegration tests (unit-root tests) to the ranks rather than to the levels of the 

series in order to robustize these tests against mononotonic nonlinear transformations of cointe­

grated variables. However, this strategy could not cope with more complex types of nonlinearities 

in the relationship. Moreover, Hallman's approach relies on an assumption of invariance of the 

distributional properties of the conventional tests when applied to the ranks. 

GrangeI' and Hallman (1991) [11] proposed estimating the nonlinear transformations using a non­

parametric technique knO\vn as the Alternate Conditional Expectation (ACE) algorithm (Breiman 

and Friedman. 1985 [2]). This was followed by a standard cointegration test applied on the tral1S­

formed variables obtained using the ACE estimates. Further, these estimates also allowed the 

possibility of testing the hypothesis of linearity in cointegration. However, the estimation and the 

inference properties of AGE estimates rely on the stationarity and ergodicity of the series, prop­

erties which exclude integrated variables. 1Ioreover, as remarked by these authors, it is not yet 

clear how non parametric estimators of the transformations affect the distribution of the standard 

coint egra t ion test statistics. 

The previous difficulties call for a new characterization of cointegration which could be used to 

test this h~'pothesis in a general context (i.e. where nonlinearity is allowed), and without requiring 

prior estimation of the nonlinearities. 

III this pa per. \\'e review t he concepts of mEa /1- rE I'E rsion, short and long mE mory, and cOI17tcg1'(/t ion, 

alld introduce a ne\\' characterization of these properties using information-thEOretic ideas. This 

will lead us to proposing some new schemes for exploratory data analysis and for testing the hy­

pothesis of long-memor!' and of cointegration between two long-memory time series. Although the 

focus of this paper is on the uniyariate case, these ideas can be readily applied in a multiyariate 

context. 

The rest of the paper is structured as follows. Section 2 introduces a general frame\\'ork for ana­

l~'zing ll1C<1ll-rewrsion. short(long)-memory, and cointegration, in order to deal \\'ith nonlinearity. 

Section 3 presents the information-theoretic tools to be used later. In particular, we introduce the 

definitions of Entropy and mlltual information for random variables and for stochastic processes. In 

section .1, we propose an interpretation of dependence in and among time series using the previous 

tools. which lead us to a more general definition of long-memory and cointegration. In section .5 

we turn the previous characterization into exploratory tests of long-memory and of cointegration. 

Sections G and i present for our cointegration analysis, some simulations results, and a real-\vorld 
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experiment on financial data from a stock and a foreign exchange-rate market. Finally, section 8 

gives a concise summary of the paper. 

2 Towards a general characterization of nlenl0ry and cointegration 

There aTe important drawbacks with the standard definitions of long memory and of cointegration 

when dealing with non-Gaussian time series, and with pairs of series which are nonlinearly related. 

In the first case, the trouble is that the auto correlation function (ACF) fails to capture the higher­

order dependencies in the data. In the second, that series which do not appear to be "aligned" in 

their mean behaviour could be cointegrated after being nonlinearly transformed. In fact, what ,ve 

need is a different measure of serial dependence, and to reformulate the cointegration concept in 

terms of the latter. 

2.1 A general characterization of memory in time series 

The standard characterization of memory in a time series .1·t is gh'en III terms of its ACF, say 

(lJ,(T. f) = cO/'(.l't .. rt_T)/ral'(.rtl. which \\'e consider to be generall~' dependent on a time index. so 

as to allo\\' for SOllle heterogeneity. 

Definition 1 .-l pmcess .1't is said fo UE mean-reverting ifVt lill1 T _.x . P:1'(T, t) = O. 

lnt uit iyel~'. t he process .r t is mean- reYerting if .r t - E(.1' tl changes sign wit h non zero proba bilit~·. 

\\'hen the process is not mean-reverting, its memory span is necessarily larger since limT~oo p:r( T, t) > 

O. alld thus an~' t\\'O infinitely distant yariablcs from the process are still correlated (persistent be-

hayiour ). 

Ho\\'e\'(')'. eyen for a mean-reverting process, the memory span can be very large in the sense that its 

.\CT cl('ca~'s Yer~' slO\dy as T grows. This motivates the distinction between short and long mEmory. 

Definition 2 A process :t't is said to be short-memory ifVt :JUt < x. such that LT>O pA T, t) = bt • 

Definition 3 A prOCESS Xt is said to bE long-memory if Vt LT>O pAT, t) = 00. 
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Definition 4 A time series of .Tt is said to be integrated of order d, in short Xt '" I(d), if 

LT>O pAr, t) = 00, 'tit, and d is the smallest positive nal number such that L7">o pz( r, t) < 00, 'tit, 

with Zt = (1 - B)dXt • 

The parameter d \\'hich appears in this latter definition serves to quantify the memory in the series. 

The previous characterization of memory in terms of the ACF is adequate for Gaussian series, 

since all the dependence structure is captured by its second order moments. 'With non-Gaussian 

time series. in particulq,r, nonlinear time series, the ACF cannot provide a full account of the serial 

dependence structure. A first attempt to establish a general characterization of memory in a non-

Gaussian context was due to Granger and Terasvirta (1993 [12]). They proposed a general definition 

of mean-reversion in terms of the conditional distribution function of the process, Let X t denote 

the r.t'. at time t from a time series of a stochastic process .1~t, and let Fh(.?:) = P(Xt+h :::; l'l!d 
represent the conditional distribution function of the 1'.1'. X/+h gi\'en its h-horizon past. 1/ = FJ-:'X·,t. 

where F,-:x,t denotes the a-field generated b~' the 1',1','s X t ,X/-1•··• .. 

Definition 5 A. proCESS .1'/ has no extended-memory iflimh-cv Fh(l:) does not depend on the 

('Ollrl it ion i nv P(Jst. It. 

As a conseCjuencE'. for any Dorel sets Cl. C2 and for any integer /,' such that P(Xt-k E C2 ) > 0, we 

would ha\'(' 

lim 1 P(.1't+h E C\I·l't-k E C2 ) - P(,rt+h E C\) 1= 0 
h-co 

( 1) 

This propert~' reminds the concept of Q-mixing, since it means that the dependence among tem­

poraril~' llono\'erlapping blocks of 1'.1'.'5 from the process vanishes in the limit, when the temporal 

distance bet\\'een the blocks becomes infinite. 

A major shortcoming of this definition is that it cannot be easily checked in practice. In the se-

que1. \W' propose a straightforward generalization of the memory concept for time series. based 

on conditions which can be easily tested. For this. we only need a measure of serial dependence 

which generalizes the ACF. Suppose ix(r, t) is this new serial dependence measure that captures 

the higher-order dependence structure in the series 1. A most general characterization of mean-

I\\'e will later on propose a useful candidate for this measure based on the mutual information concept. 
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reYersion and of short, long-memory and integration could then be proposed using this measure. 

A process Xt could be said to be: 

• mean-reverting in i(.), if Vi lim T _ oo ix(T, t) = 0 Vt. 

• short-memory in i(.), if Vt LT>O ix( T, t) < .'Xl. 

• long-memory in i(.), if Vi LT>O ix( T, i) = 00. 

• integrated of order d in i(.), say Xt "-' I l( d), if LT>O ix( T, t) = 00. Vt, and d is the smallest 

posith'e real number such that LT>Oiz(T,t) < 00, Vt, with Zt = (1- BlXt. 

Remarks: 

1. In principle, the function iAT, t) could be any serial dependence measure capable of capturing 

nonlinear dependencies between the variables in the series, Remark that L~~l i~.( To t) rather 

than on L'~l (lJ.(r). with (lx(r) representing the ACF of ;)·t. is used as a pfI'sistence measure 

for non-Gaussian time series. 

L. :'\ote that the rates of conH'rgence of i J .( To t) towards 0 as r ~ 00 will be different for long- and 

for short -memory processes. Also remark t ha t a short-memory process is also mean- reverting. 

accordillg to these definitions. 

2.2 A general characterization of cointegration 

The standard definition of cointegration goes as follows: 

Definition 6 (G7Ylnger, 1981 [7J) Tlro long-memory time series Xt, YI, 'With long-memory pamm­

rlcr d. a/,( said to be (lil/(a/'ly 2) cointegrated IJ:J a E a~ - 0 such that the series :':t = Yt - (/.1·t i8 

J ( d:) Ii' i t h d: < d. 

figure 1 illustrates a simulation example of linear cointegration with a pair of correlated random 

"'alks (d = 1) and for a = 0.,2. The scatter plot clearly sho\\'5 the linearity of the relationship 

between .1't and Yt. 

lln Granger (1983) [8], there is no explicit mention to the term linear, although it is implicit. 
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An important shortcoming in this definition of cointegration is that it requires the cointegrating 

relationship between the series to be linear. As as consequence, classical cointegration testing 

techniques relying on these definitions yield misleading results when nonlinearity enters the true 

equilibrium relationship. Evidence of this problem with definition 6 "'as first reported by Hallman 

(1990) [13]. who proposed applying standard cointegration tests to the ranks rather than the levels 

of the series. However, even though this trick succeeds in robustizing the test against mOllotonic 

nonlinearities. it fails when confronted to general forms of nonlinearity. 

In generaL it should be possible to find time series that are cointegrated only after applying certain 

nonlinear transformations on them. Indeed, an extension of the (linear) cointegration concept fol­

lows by noticing that the common low-frequency component may "live" in a higher-order moment 

than the mean, that is, in nonlinear transformations of the series. For example, Xt and Yt could 

be cointegrated when squared, while being more or less un correlated in their levels. To explain, 

suppose Yt = .1·tEt, with .1't an 1(1) series, and Et a zero mean i.i.d. sequence, and thus :l't '" 1(0), It 

follo\\'s t ha t (Yt)2 = a; .T~ + (E; - a?),1}, where the rightmost term must be short-memory since it is 

the product of an 1(0) process (E~-a;) and an 1(1) process (.rn. Thus (ytl 2 is linearly cointegrated 

with (.rIl 2
• although Yt is not cointegrated with .1't. 

Example 1: 

COllsider t he following nonlinear factor model 

(2) 

where (/ i= O. ll't = Il't-l + Et with lCO = 0, alld (1't. ~t, Et) are independent sequences of independent 

and identically Normally distributed r.v.'s with zero mean and joint covariance matrix equal to the 

id('ntit~· matrix. Let 131.1. = (a, 1). and let a:
1
,1. = (-b, 0). Thus the orthogonal complements of .al.l. 

and ;3;.1. are respectively ;3; = (1, -a) and ;3~ = (0, b). The nonlinear cointegrating relationship can 

he ohtaincd as 

(3) 

Thus the cointegration errors are given by Zt = 2bwt~t + ba + Vt - a~t, and it can be easily shown 

that they are short-memory according to our definition. 
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Figure 2 illustrates a simulation experiment of nonlinear cointegration with series having a com­

mon factor, and obtained with the model (2), with a = 2.0 and b = 0.0.5. Figure 3 shows a real 

example of an apparently nonlinearly cointegrating relationship. In both cases, the scatter plots 

below dearly show that the dependence between the variables is not linear. 

Some previous concepts of nonlinear cointegration are the following: 

Definition 7 (Granger and Hallman,i99i [iil) A pair of series Xt,Yt, are said to have a cointe­

grating nonlinear attractor if there are nonlinear measurable functions f(.), g(.) such that f( xt} 

and g(yt) are both J(d), d > 0, and Zt = g(Yd - f(xt) is'" J(dz ), with dz < d. 

Remark: 

Assuming that f and 9 can be expanded as Taylor series up to some order p ;::: 2 around the origin, 

we llla~' write Zt = Co + Cl lit + H OT( .rh yd, where 1It = Yt - a.1:t, and H OT(., .) denotes higher-order 

terms. It follo\\'s that the linear approximation, 111, to the true cointegration residuals differs from 

the latter by some higher-order terms, These terms express that the strEl1gh of attraction onto the 

rointegration line YI = a,l'1 may \'ar~' with the le\'els of the series. :/.'t. YI, when nonlinearities exist 

in their relationship. 

As stated in the introduction. a difficult~, \\'ith the application of this definition is the need to find 

proper estimates of the cointegrating functions f(.) and g(.) in order to test for cointegration. 

Iscribano and l\Iira (1996) [5] propose the following alternative definition of nonlinear cointegra­

tion based on the concepts of o-mi.ring (Rosenblatt. 197-1 [18]) and nUlr-ejJoch (lipcnr/o?c( (\,ED) 

(\\'ooldridge. 1986 [20]). 

Definition 8 (Escriurmo and JIim. 1.9% [5}) A pair of suiu; .1't, YI. arc nonlinear cointegrated 

with cointcgration fUllction g( .... ";) (lchuE ~I is a paramEtEr), if g(Yt, .1't. ~() is '-"',/ED (o.-mi:l.'ing) on 

80/))( o-mi.ring sO'ie8. but g(Yt .. 1't. ~/) is not SED (o.-mixing) for any')' =f. ,-. 

Fnfortunately. this definition relies on concepts of dependence that are generally difficult to check 

in pract ice. 
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difficulties encountered with the previous ones. 

Let ,Tt,Yt be time series from processes that are long-memory in i(.), and let ix,y(T,t) represent a 

general measure of serial cross-dependence between l't, Yt. 

Definition 9 A pair of time series l't, Yt, that are long-memory in i(.), are said to be cointegrated 

in i(.) (in short, C II) if 

1· ix,y( T, t) b \.I 
nTI. = , vi 

T~OO 7x (T,t) 
(4) 

u'htre b is a nonzero and finite rwl number. 

Remarks: 

1. Intuiti\'el:., the definition states that, under cointegration, the remote past of Yt should be as 

useful as the remote past of .Tt in long-term forecasting ,Tt. A particular feature of this char­

acterization is that it focusses on the relati\'e beha\'iour of measures of serial autodependence 

C1nd of cross-dependence at long lags. 

2. This more general characterization of cointegration relies on the different limit beha\'iour of 

iA7. t) and i.,..1/(r, t). under non-cointegration. If cointegration holds, \"e cannot haw different 

('oll\'ergence rates for i1·(T. 1) and for ix.y(r, 1). The possibl~' different rates of cOll\'ergence 

('ould be used to construct a measure of the degree of non-cointegration. Suppose that 

i,r( T. t) f'V T-e>, and that ix,y( T, t) f'V T- 13 for T large enough. In numerical applications we 

lllay find that neither i1',y(7, t) nor i1,(7, t) is either infinite or zero for any finite T. SO we lllay 

safely take the logarithm of the ratio iAT, t)/ix,y(T, t) and plot it as a function of [OgT. This 

fUllction "'ill tend towards an asymptote as 7 grows to infinit~·. The slope of this aS~'mptote 

is just n - 3. and it is always non-negatiw, since we expect that 0 :; ;3. Thus the larger 

its \'alue the farther the hypothesis of infonnation-cointegrateness between the series is from 

being realized. 

:3. If ,,'e replace 11.(7, t) by the ACF of :/'t, and ix,y(T, t) by the cross-correlation function between 

J.·t and Yt, say Px,y(T, t), then our definition becomes a re-statement of the standard defini­

tion of linear cointegration proposed by Granger (1981) [7], and amounts at comparing the 

beha\'iour at the origin of the spectral densities of the series. 
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Proposition 1 If the series Yt, Xt are cointegrated in i(.) then the sequence of partial sums s~X,y) 

divergEs as n ......,. 00. 

PROOF: 

Suppose the series are cointegrated in i(.). Then from our definition, it follows that there ex­

ists a nonzero real number b = sUPt(bt ) and a finite real number C such that limn _ oo sAX,y) = 

b limn_,x s~x.x) + C. And the divergence of s~X,y) follows from the divergence of s~x,x), since Xt 

has long memory in i(.). 

3 SOll1e inforll1ation-theoretic n1easures of data variability and de-

pendence 

III this section we present the information-theoretic concepts which will form the basis of the new 

cliaract<:>rization that we proposed for the relationship between integrated time series. 

3.1 Information-theoretic measures for partitions 

.\ Illost basic problem in information theory is that of assigning a measure of uncertainty to the 

ocurrence or nonocurrence of an~' event in a partition P of the set of outcomes of an underlying 

experiment. We call this measure of uncertainty the entropy of the partition, and denote it by 

H (P). The construction of this functional stems from some postulates which must be satisfied in 

order to provide such measure of uncertainty. Suppose now that we have a partition of a sample 

space S \\"ith J1 e\'ents A" i = 1. .. ·.J1, and that the ewnt Ai occurs \\'ith probability Pi. It can 

he shown t ha t the conwx functional 

M 

H(P) = - 2~))ilog(pi) (.5 ) 
;=1 

~'ields a proper measure of awrage uncertainty in the partition P. 

Similarly, \\,hen we know about the ocurrence of a subset ~,\,1 of ewnts from a different partition. Q 

of S. the remaining uncertainty in the partition P can be measured by the nonnegative functional 

M 

H(Pj.\,1) = - L P(AJ,\,1)logP(Ad.\I1), (6) 
i=l 
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which is called the conditional entropy of P given M. Notice that if the events in P are independent 

of those in .""1 then H(PIM) = H(P). In general, M may convey information about the events in 

P, and this mu.tual information can be quantified by the functional 

I(P,M) = H(P) - H(PIM). (7) 

That is, the observation of M reduces the uncertainty about P from H(P) to H(PIM), so the 

information that .,""1 conveys about P is just I(P, M). Notice that M can convey at most H(P) 

bits of information about the events in P, and since H(PIM) < H(P), I(P,M) must also be 

nonnegative. 

Now let us denote by H(P, Q) the joint entropy functional for the partition whose events are the 

intersections of the events in P and Q. The resulting partition is called a refinement of both P 

and Q. Notice that to observe the joint partition we must observe both P and Q. It follows that 

the uncertainty in the joint partition must be at least equal to that of the elementary partitions. 

Rigoronsl~o speaking, by conwxity of the entropy functional it is easy to show that Il (P ~ Q) 2': H (P) 

and that H(P. Q) 2': H(Q) (i.e. Papoulis, 1991 [16]). In fact, we have 

H(P,Q) H(Q) + H(PIQ) 

H(P) + H( QIP) 

< H(P)+H(Q) 

(8) 

(9) 

(,learl~o. the maximum value of H(P. Q) is attained when P and Q are independent. Also, by 

manipulating equations (7) and (8)~ we obtain 

I(P . .Iv!) = H(P) + H( Q) - H(P. Q). (10) 

3.2 Information-theoretic measures for random variables 

So far \\Oe haw introduced the concept of entropy of a given partition of the sample space of an 

experiment. It is possible to define the entropy of a r.t'. by forming a suitable partition. This is 

straightfon\Oarcl for discrete-valued 1'.V.'S. For example, if a r.t'. X takes a countable set of values 

{o1'i}. i = 1.2.···. with probabilities Pi. we can form the partition in which each ewnt corresponds 

to a different value of X. Thus the definition of entropy as given in the previous paragraph also 

applies here, and we can define the entropy of the r.v. X as 

(11 ) 



12 
The definitions for the rest of the uncertainty measures discussed in the preceeding paragraph, such 

as conditional and joint entropies, and the mutual information, remain also valid in this case. 

When dealing with continuous-valued r.r.'s the extension of these concepts is not immediate. The , 

difficulty here is that the events {X = xd do no longer form a partition, since they are not 

countable. Therefore, to define the entropy we must first convert X into a discrete- valued r.v .. 

That is. we can define the entropy of a quantized version of X given by X 6 = mo if X E (rno - 0, mo]. 

If ,,'e assume that X has a probability density function (pdf), fxO is then easy to show that 

lim [H(X6) + logo] = -100 fx(X)logf;r(X)dX. 
0-0 -00 

(12) 

We remark that lim.s ..... o H(X.s) = 00. However, in practice, we can only observe X with finite 

accuracy because of noise and quantification errors from the measurement instrument. Since the 

term -logo only reflects this lack of observation accuracy (which is instrument-dependent), we may 

define an uncertainty measure intrinsic to the \'ariable, by leaving this term out: 

h(X) = -lx, J~,(X)logJAX). -00 (13 ) 

Howewr. contrary to the entropy of a partition, the latter measure can take negative values, and 

thus it does only haw sense when used to measure changes in uncertainty. This is \\'h~' it is often 

referred to as di.f.7E/,Elltial Entropy. In the same \\·ay. we may define joint and conditional differential 

cntropics for an~' t,,'o continuous 1'.1'.'5, X. Y: 

h(X.l') 

h(Xll') 

-E(logJ~ .. y(X, Y)), 

-E(logJ~'IY(X) ). 

(U) 

(1.) ) 

\\'here I,..y(' ) and fJ'liI() denote the joint and conditional JHZ('s of the \'ariables (respect.). and E(.) 

is the expectation operator. Clearly, when X is independent of Y we have h(X, Y) = h(X) + h(Y), 

and 11 (X I) ') = O. The pre\'ious expressions generalize st raight for\\'ardl~' to more than two \'aria hIes. 

III general. the different information-theoretic concepts discussed for partitions also apply to continuous­

\'aIued 1'.1'.'5 as long as they only refer to differences of entropies. Thus the mutual information for 

continuous 1'.1'.'5. defined as 

J(X.Y) h(X) + h(Y) - h(X. Y). (16 ) 

[ 
ix,y(X, Y) 1 

E log ix(.X)iy(Y) , ( 17) 

COll\'eys the same idea of dependence among the variables, as for partitions. 

For the purpose of illustration, we give the values of these information-theoretic quantities for 
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Gaussian 1'. V. 'so 

Let X, Y be two jointly Gaussian 1'.v.'s, such that X '" N(,L x , a;) and Y f'V /v(J!y, a~), and suppose 

that their joint pdf is given by 

where p is the correlation coefficient between the X and Y variables. Then it can be shown (i.e. 

Papoulis, 1991 [16]) the following: 

h(X) 

heY) 

h(X, Y) 

h(XIY) 

leX, Y) 

log(ax V27ie), 

log(ayV2iie), 

log(21ie) + log(VX), 

[og(ar V21ie) + ~[Og(1- p2), 

1 2 
- -109 ( 1 - P ) 

2 

(19) 

(20) 

(21) 

(22) 

(2:3) 

where ~ is the determinant of the variance-covariance matrix of the variables, that is ~ = (T;a~( 1-

(12). In general. gi"en 11 jointly Gaussian 1'.1'.'5. Xl,"', X n , with variance-covariance matrix ~. the 

joint differential entropy is giwn by 

(24) 

\\'here ~ is the determinant of ~. 

3.3 Information-theoretic measures for stochastic processes 

Stochastic processes are defined in terms of the joint distributions for all subsets of their 1'.1', 'so In 

part icular. the information gained ,,·hen the m 1'.I'.'S XII" . " XI", of a continuous-valued stochastic 

process .1'/ are ohserwd. is giwn by their mth-ordu joint differential entropy, defined as 

(2.5 ) 

Obviously. the uncertainty about the values of Xt on any finite interval of t, is infinite. However, 

if :I.'t can be expressed in terms of its samples on a countable set of sampling instants {ti} i (i.e. 

to the extent that Xt can be approximated by a narrowband process) it may be possible to define 

entropy measures. Henceforth we will assume that this is the case, Now, if there exists a conditional 
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stationary prij's for Xt, we can define a measure of the uncertainty about any variable of the process, 

when its most recent values are known. For example, the mth-order (differential) conditional 

Entropy of .Tt, h(XnIXn- b ···, X n- m) captures the remaining uncertainty about any r.v. from 

:l·t. when information about its moth history has been collected. This functional is, obviously, 

decreasing in rn, and its rate of decay contains important information about the type of serial 

dependence in the process. For rn -" 00 we obtain a measure of the unknown information about 

any variable X n once we know its entire past. Clearly, for a deterministic process, this measure, call 

it 111'(;1') = limm_-x. II(Xn IXn - I ,"', X n- m), equals zero. It is customary to call hr(.T) the entropy 

ratt of the process Xt. This name acknowledges the fact that when Xt is stationary we can ,vrite 

(26) 

Clearly, the limit on the right of the previous equality measures the speed at which the uncertainty 

grows as "'e try to guess at the values of an ever-increasing number of 1". v. 's from the process. 

_.\s a \\"a~- of illustration. for a \,-ide-sense stationary Gaussian process, .rt. we have 

~ 1. (~m+l) h,.(.r)=log(v2"E)+:- Inn_log ~ 
2 m-·x· .:..l.m 

(2,) 

where ~Ol is the determinant of the moth order variance-covariance matrix of the process. 

4 An inforn1ation-theoretic characterization of 111en10ry 

III the previous section. \"e sa\,' that the mutual information in a pair of 7'.('."5 could he inter­

preted as a measure of general dependence bet\"een them, in contrast with their correlation, which 

only measures the adequacy of any variable for linearly predicting the other. Similarly, we can 

establish the serial dependence and cross-dependence properties of wide-sense stationary stochastic 

processes. in terms of a mutual information function (:\IIF), with generalizes the standard autocor­

relation function (ACF), However, in order to extent the new characterization to processes having 

stochastic t rends, we must again allow some scope for heterogeneity, and thus our measures will 

in general depend on time. Let the :\IIF of Xt as ix{ T, t) = J(Xt, X t - T ). Our information-theoretic 

characterization of mean ret'ersion, short and long memory follows from the definitions in section 

2.1. We will then say that a series is either mean-reverting, short-memory, long-memory or 

integrated in information. 
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Remarks: 

1. In the Gaussian case, ix(r, t) is related to the ACF, and thus for a Gaussian short-memory 

process i;r{ r, t) must converge exponentially fast to zero, while for a Gaussian long-memory 

process this convergence must be slower (typically, only hyperbolically fast). 

2. The information quantities can be re-written as (differential) entropy changes. That is, 

(28) 

This supports our intuition that entropy differences are most useful at characterizing the 

dependence properties of a process. 

:3. There are some connections between Granger's most general definition of mean-reversion, 

introduced in a previous paragraph, and the I\IIF. This can be seen by re-interpreting the 

latter as some sort of mi.1'ing coEfficiEnts. Given a stochastic process .1't. the standard n-mixing 

coefficients are given by (Rosenblatt, 197 -± [18]) 

otT, t) = sup sup IP(X*,X) - P(X*)P(X)I (29) 
t X E:F;:X ,I:X' E:F~+ T. ",. 

\\'here P(.) is a probability measure defined on the Borel a-field of .1:t. In contrast, the 

"information-mixing coefficients" i 1·( T. t) can be expressed as 

(:30) 

\\'here fa'.l·(' ) and fx{') denote the bivariate and uni\'ariate pelf for .1't. We remark that both 

t~'I)E.'S of mixing coefficients allow for heterogeneity in the process. However. in contrast to 

tll(' o-mixing coefficients O(T,t), the quantities ix(T.t) can be easily estimated in ll1an~' cases 

as st a tistical averages. 

-I. An alternative characterization could be made in terms of the conditional densities. Let 

F~~':',~~~~~ denote the a-field generated by the r.v.'s X t - 1,"', X t - T +1 ; X t - T - 1,· ... A gen­

erally nonstationary time series of Xt could be said to be conditionally short-memory 

in information. if the sequence of partial sums R~x) = L~>o I(Xt. Xt-TIF~-:.~~~~~) con­

verges as n grows to infinity. If, on the contrary, R~x) diverges, then Xt could be said to 
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be conditionally long-memory in information. These alternative definitions rephrase 

the former ones in terms of a partial serial dependence measure, which could be regarded 

as a generalization of the concept of partial autocorrelation function (PACF) in the linear 

context. However, when working with conditional densities may encounter severe difficulties 

in practice (i.e. need for very large data sets, curse of dimensionality, etc.), which make us 

prefer the former approach. 

A few examples may help to illustrate the behaviour of the new unconditional dependence measures. 

Consider the following cases: 

• Let Xt = (1:1.·t-1 + Et where Et is an i.i.rl. sequence of Gaussian r.v.'s with zero mean and 

variance (J2, in short Et f'V N(O, (J2), and lal < 1. This model generates a stationary Gaussian 

~Iarkoy process, for which COl'( XI, Xt-T) = a 2ar, \\'hich converges to zero exponentiall~' fast 

as T - oc. The information mixing coefficients. defined for T > 0, are given in this case by 

(:31 ) 

\\'bich clearly conyerges exponentially fast to zero as T gro\\'s to OC', thus implying that 

Lr>oi;:(r,t) <:>0, We may therefore conclude that .Tt is both 1(0) and 11(0). On the C011-

trar~'. if ([ = 1 \\'e have a non-mixing process with an unit root, for which corr( Xt, Xt-T) = 1 

and i,r(T,t) =X for an~', and an~' t, Therefore. we ma~' classif~' this 1(1} process as ll(l), 

• Lct .1'/ be a Gaussian stationary long-memory process \\'ith long-memory parameter d (0 < 

d < 0,5). that is (1- B)d'l ' t = (/ with (/ representing a stationary zero-mean short-memory 

Gaussian process. This mean-reverting process is characterized by an ACT which decays 

h~'perbolically fast. that is, cov(Xt,Xt_T) f'V T 2d- 1 for large T (e.g. Hosking, 1981 [14]) and 

thl1S \\'e write .1'/ '" led). On the other hand. we obtain the following approximation for large 

T, 

. ( ') . () I, ( 4d 2 
IJ.' T. t = Ix T '" -2' og 1- Cd T -), (32) 

where Cd is a constant depending only on d. Clearly, iJ.,(T} also converges to zero. but this 

time the convergence is only hyperbolically fast. :'\oting that 10g(1 - Cd T4d - 2 ) ~ Cd"ld-2 

for sufficiently large T, the divergence of LT>O ixer, t) follows inmediately. Therefore, Xt is 

long-memory in information. 
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~ow let us haye a look at these measures from the viewpoint of the conditional (differential) en-

tropies. Let hC,T(Xd = h(XtlXt-b···,Xt- T), or equivalently, h~,TU(d = h(XtIXt- T," "Xt - oo ). 

Proposition 2 If h~,T(Xt) < h(Xt ) 'VT and 'Vt, then the process is neither mean-reverting nor 

short-memory in information. 

PROOF: 

Let l(Xt; X t- T, X t- T- 1,"', X t- ox.) denote the information on X t conveyed by the variables X t- Tl X t- T- 1,' . '. 

"~e can write: 

h(Xt} - h(XtIXt- Tl X t- T - b ·· ., Xt - oo ) 

> O. 

(33) 

(34) 

Thus. we must haw lim T _ x l(X t • X t - T) > 0, implying that :l't is neither mean-rewrting nor short-

memory in information. D 

Remark: 

The condition JJl the proposition dearl~' expresses when the remote past of a process does still 

contribute in information about its present state. 

\\'e shall assum(' in the following examples that our processes are Gaussian. Therefore. recalling 

('quat ion (27). the Ttll ordEr conditional (diffErcntial) Entropy for a Gaussian process .1't is 

I ".) I (~) 1[ (~T+I,t) le,T("\.t = og v2lTe + '2 og ~ . 
T,t 

(3.5) 

where ~T.I is the determinant of the Tth-order \'ariance-covariance matrix of :l·t. 

In the following, we will determine the conditional entropies and some implications for the classes 

of ])),OC(,S5(,S ])]'('viously characterized in terms of the ~IIF . 

• Let .1't = a.1'1_1 +£t where £t "-' .\'(0. a 2
). If lal < 1 then we can write he,T(Xtl = h(Xt IXt- 1 ) = 

log (aJ2ii£) for any T > O. It follows that l(Xt ; X t- b · .. , X t- T) = l(Xt, X t- 1 ) = h(Xd -

he.T(Xt ) = -~/og(I-laI2) < oo,foranYT > O. On the contrary, if a = 1 thenI(Xt ;Xt - 1 ," ·,Xt - T) 

is infinity for any T > O. 
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• Let .Tt be a stationary autoregressive process of order p, in short Xt rv AR(p). If Xt is Gaussian 

then we have the following result from Kay (1988 [19], pp. 169-178): 

~T+l,t = ~T+l = a2 IT (1 - Irkl2) ~ 
~T,t ~T k=1 

(36) 

\\'here 1'k is the partial auto correlation at lag k. Thus, at long lags, 

(37) 

since l'k = 0 for k > p. Now, since Irk! < 1, Vk, it follows from equation (27) that hr(x) is 

bounded, and that I(Xt;Xt-l,"',Xt-oo) < 00 . 

• Suppose Xt is a Gaussian stationary long-memory process with long-memory parameter d 

(0 < d < 0.,5). Then since the partial autocorrelations of this process 7'k satisfy 0 < rk < 1 

for an~' finite I, (see Hosking,1981 [14]) then 

1. ~T+l 
1111 -­

T-X ~T 

T 

(T2 )i!?~, IT (1 - l1'kI 2
) 

k=1 

o (38) 

The latter implies that hr(.1') = -00, which in turns leads to an infinite \'alue for the mutual 

illformation bet\\'een X t and its infinite histor~', that is I(Xt ; Xl-I,···. XI-o::,) =X. 

These examples seem to support our intuition that the persistence of the shocks in a process results 

ill that its entire past contains an infinite amount of information about its present. On the contrary, 

this alllount of information is bounded for mixing processes. 

The connection of the latter discussion with our characterization of dependence in terms of the 

information mixing numbers i,,( T) comes by realizing that each \'ariable from the past contributes 

a slllall portion of information about the present \·ariable. Xt. In other words, we must have 

00 

I(Xt:Xt- 1 , .. ·.Xt-S>J::; Li,.(T.t). (39) 
T=1 

:KO\\'. the fact that I(Xt : X t - 1•• .. , X t- x ) = 'X for persistent Gaussian processes implies that 

i.,. ( I. t) cannot decrease with T faster than O( T- 2+6) for some (, > O. Alternatively, for stationary 

Gaussian processes we obtained I(XtiXt-l,' ",XI- OO ) <00, which is consistent with an exponen­

t ially fast decay of i "( T, t) for grO\dng T. 
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4.1 Some implementation issues 

We briefly explain how the mutual information quantities were estimated in the experiments that 

follow. The rdIF, ix{r), was evaluated using the following estimator, where JY is the sample size, 

\\"i t h 

N 

l~V)(r) = N-1 LiAr,t) 
t=1 

7IT-l"" (')1 (iX'X(Xl~ XI-7" )) 
:::::; 1',,( ~Ct')og " 2' 

tES fAXt -7") 

{

I + I, for t odd 
Ctb) = 

1 - I, for t even 

( 40) 

where,) 2: 0, N"( = JY for N even, and N.., = N + I, for N odd. Here X t represents a generic 

\"ector yariable~ i~·,x(" .) and iA.) are estimators of the bivariate and univariate pdj's (which may 

be time-yarying), and the set S is introduced to make explicit the exclusion of certain inocuous 

stlmmands. \\"hich can occur. for example. when ix.A.,.) ~ 0 or .ix(') ~ 0, or \\"hen logarithms 

cannot be taken. The densities can be estimated using k€rnelsmooth€l's (Breiman et aL 1977 [3]). 

In general. giyen a set of S - 11 l1-dimensional \"ectors .It, t = 1, lY - n, a kernel density estimator 

with kernel ]\" and bandwidth o. of their unconditional P(~r. say f(.), has the form 

N-n 

.i(X) = (X - 11)-1 0 - 1 L ];'[o-I(X - XdJ (·H) 
1=1 

where 1 he kernel ]\' is a function \'erif~'ing J}~11 ];'(Y)dY = 1. Robinson (1991) [17J proYed the 

consistellc~" of a similar estimator under the assumption of stationarity in the series and for 11 = 1. 

r or the experiments. \\"e choose Ga ussian kernels: 

];'(X) = (27r)-n/2 e:rp( -X'X/2) ( 42) 

E \"('1I though t he form of t he kernel is not critical to t he results, the band \\"idt h is. We can deal wit h 

this problem by means of adapth'e bandwidths. This technique consists in allovv'ing the kernels to 

shrink in rather densil~' populated regions of the l1-dimensional embedding space, and to widen in 

regions \\"ith few data points. The likelihood of introducing important biases is greatly reduced 

in this way, since the smoothing becomes only important at those regions of the embedding space 

cont aining a large number of points. Initially, we took a fixed bandwidth for the kernels, 0, and the 

initial density estimates were subsequently used to obtain locally adapted bandwidths, say {3(X), 

according to 

{3(X) ex 1/ io(X) ( 43) 
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where io(X) denotes a rough estimate of the pdf at X using a kernel estimator with the fixed 

bandwidth, a. 

4.2 Information-theoretic characterization of cointegration 

Let Xt, Yt be long-memory in information. The concept of cointegration in information arises 

when letting ix,y( T, t) = J(Xt, Yt-r) in the characterization of cointegration proposed in section 2.2 

(see definition 9). 

Remarks: 

1. The information-cointegrateness concept states that for any long-run predictor of X t based 

on X t - r , we can find a predictor based on Yt-r which conveys exactly the same information 

about XI. 

2. Our characterization applies to both integer and fractionally integrated processes. Besides, 

t he processes itl\'olved are not required to have the same integration order. For instance, 

consider the case in which Xt ,...., II(dx ), Yt ,...., II(dy ), with dx f. dy , and <jJ(.) is a nonlinear 

one-to-one transformation such that Zt = <jJ(Yd ,...., II(dz ) with dz = dx . This situation can 

be understood noting that both the entropy and the mutual information of the variables in a 

process are im'ariant to one-to-one transformations of the latter (see, for instance, Papoulis, 

1991 [16], p. 565). 

3. The information-cointegration definition can equally handle multivariate processes, which 

enter naturally as arguments of the information measures. 

In figure 4 we compare the behaviour of a normalized version of the generalized sample correlations, 

~(.\.') ( )/~(.Y) (1) d ~U·i) ( )/~U\') (1) f t' f b f 1\/r l' l' H Z,r,y T 1), an Zx T lx as unc IOns 0 T, Y means 0 montecar 0 snnu atlOns. ere 

ii:~) (T) is giyen by: 

N 

~~~)(T) = N-1L~x,y(T,t) 
t=l 

N -1 ~ ()l (ix,y(Xt , Yt-r)) 
:::::: 'Y ~ Ct 'Y og A 2' 

tES !x(Yt-r) 
(44) 

where the coefficients Ct(,) and'Y are as in the previous section. The curves shown in the figure 

represent statistical averages computed from 20 simulated pairs of series. Plots (a), (b) and (c) 
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correspond to linearly cointegrated, nonlinearly co integrated, and non-cointegrated series, respec-

tively. The horizontal scale shows T + 1. The linear cointegrated series were generated as those in 

figures 1, while the nonlinearly cointegrated ones were obtained by applying third-order polynomial 

transformations to a common random-walk component. 

Example 2: 

Consider the following linear common factor model: 

(45) 

where a =1= 0, Wt = Wt-l + €t with Wo = 0, and (Vb ~t, €t) are independent sequences of independent 

and identically Normally distributed r.v.'s with zero mean and joint covariance matrix equal to the 

identity matrix. If we now define Zt = Yt - aXt, and 

\\'e obtain after some algebra 

PX(T,t) 

cov(XtXt-T) 
PX(T,t) = 

aXtaXt_T 

Px,y( T, t) 
cov(YtXt-T) 

/(ta; + al)/((t - T)a; + al)' 

a(t - T)a; 
Px,y(T, t) = 

/(a2 (ta; + a~) + a;)/((t - T)a; + aD· 

It follows that for sufficiently large t, Px,y(T, t) ~ Px,y(T, t). 

(46) 

( 47) 

(48) 

( 49) 

Now since i.T.y(T, t) = -~log(1 - P~,y(T, t)), and ix(T, t) = -~log(1 - p~(T, t)), it follows that 

ix,y(T, t)/ix(T, t) ~ 1 for any T. 

An alternative condition for the information-cointegrateness of (Xi, Yt) can be given using condi-

tional entropies: 

. h(yt IF-oo,t-T) 
# 0, 'It (50) hm x 

7-->OC h(1~IFyOO,t-7) 

h(X IF-oo,t-T) r t y # 0, 'It. (51 ) lm 
T--tOO h(Xt IF;00,t-7) 

At this point, it is also interesting to analyze the links between the concepts of cointegration in 

information and causality. To do so, we first propose a definition of non-causality in information, 

which merely express the non-causality idea of Granger (1969) [9] in terms of information statistics. 
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Definition 10 A series Xt non-causes in information a series Yt if h(Yt IF;0:"t-1; F;oo,t-1) = 

h(YtlF;,x,.t-l ). 

Accordingly, there is no causality among the variables if the remaining uncertainty in either variable 

after conditioning on its own past is not reduced by knowledge of the other's past. 

5 Testing for long-lllenl0ry and cointegration in inforlllation 

Testing a cointegrating relationship involves two major steps: (1) a test for long-memory in the 

series; and (2) a test of cointegration. 

5.1 Long-memory testing 

It may be possible to test for long-memory in information for any of the \'ariables, say .Tt, by \\'orking 

out the consequences of our characterization of short and long memory in information. Recall that 

for .rt to be short-memory in information \\'e must ha\'e L1'>O i J.( T, t) < 00. \\"hich implies that for 

an~' (! ). 0 and an~' t, ir( T. t) = o( T- 2+8). That is, there exists positiw real numbers TO. b such that 

i".(T. t) < bT- 2 'liT > TO and 'Vt. On the contrary. if :l't is long-memory in information then there 

exists posilin.' real numbers Tl. Ct and 2 > l' > 0 such that i J.( T. t) ~ CtT-r 'VT > Tl. Or taking logs, 

logir ( T, t) ::::: loget - I'logT + ~1'.h 'VT:?> Tl, (52) 

\\'here C.t is an error sequence. Therefore \\'e could check the propert~' of short memory in infor­

mation b~' testing the null h~'pothesis Ho: l' ~ 2, 

For most empirical series, a finite sample size prevents the possibility of adjusting the previous 

regression line at large lags, Ho\\"e\'er. a frequency-domain wrsion of this testing de\'ice allo\\"s us 

to do the analysis at lo\\" frequencies (A - 0) instead of at wry long lags (T - ex::). In this way. 

\\'e can take ad\'antage of the full information contained in the sample. For this, let us first define 

a gCllu(fli:.:ul puiodogmm as 

N 

G1N )(A, t) = L W1'i x (T, t)exp( -j27rAT), (53) 
1'=1 

where j2 = -1. W1' is a spectral window, and N is the sample size. Now, if Xt is long-memory in 

information we should ha\'e 

G(N)(A t) '" U (A t)A -2d x ,~x, , (54) 
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for small A ·s. Here d > 0, and uA T~ t) is a slowly-varying function of T, that is lim>. ..... a Ur(CA, t)j ux( A, t) = 

1 Vc and for a = 0 and Cl = 00. 

Again, taking logs we obtain 

logGi!")(\ t) = logux(A, t) - 2dlogA + v>.,t, (.55 ) 

for small A ·s. and with t',\,t representing an error sequence. Now we can test the null-hypothesis 

of short-memory in information Ho : d = 0 once we have an estimate of the slope of the previous 

regression line. 

Remark: 

Notice that when ir(T,t) = Px(T~t) and Xt is supposed to be stationary we obtain the device pro­

posed b~' Geweke and Porter-Hudak (1983) [6J. 

5.2 Cointegration testing 

Das('d 011 definition 9. a candidate test statistic that provides a measure of cointegration in a pair 

of series .1'1' YI' could be 
X m+q 

Tm,q('?:'Y) = S-1 L L (1- i~"y(T.t)ji~'(T,t)) (.56) 
t=1 T=m 

\\'h('r(' III must he sufficientl~' large (i.e. larger than the short-memory span of the series) in order 

to rapt\1l'e onl~' the long-\\'aw discrepancies. q should be such that 111 + q < S. \\'here _Y is the 

sample size. 

As we said in the preceeding section, under cointegration ix,y( T, t) will be of the same order of 

magnitude as i:r( T, t) for sufficiently large T and Vt. On the contrary, under non-cointegration, 

i,r.u( T. 1) ~ i1,( T, 1) > 0 for sufficiently large T and Vi. This implies a tendency for the values of 

T">"I('I'. Y) to cluster around 1 under non-cointegration. 

The limiting distribution of our statistic may be difficult to find using standard asymptotic theory. 

since \\'e are dealing with non-mixing processes. Yet we can test the null hypothesis of cointe­

gration by constructing an empirical confidence interval for the test statistic. That is, for fixed 

values of m. q. we estimate the empirical critical value bo such that P (Tm,q(.T. y) > be.) = 0 under 

the assumption of infonnation-cointegrateness. for the given significance level, o. Therefore this 

h~'pothesis will be rejected at this level when Tm,q(X, y) > ba . 
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To assess the potentialities of a cointegration test based on the statistic I m,q( x, y) ill equation (56), 

we generated 100 pairs of linearly, nonlinearly and non-cointegrated series. The linearly cointegrated 

series were obtained as in figures 1. The nonlinearly cointegrated ones were computed applying 

third-order polynomial transformations to a common random walk component. The coefficients of 

these polynomials were chosen at random. Finally, the non-cointegrated series were either pairs of 

independent random walks (H2,l) or mutually dependent short-memory series (H2,2)' In the latter 

case, the series were generated according to the model Yt = Xt+ft, Zt = QO+QIXt+a2x;+a3Xr+f~, 
where Xt = (l4et-2et-l + et, ft,f;,et are mutually independent i.i.d. sequences, and the Qj were 

chosen at random. For the experiment, we selected q = 0, m = 10, and a sample size of .[\T = 1000. 

In all the replications the value of 'lO,O(X, y) was comparatively large and positive under non­

cointegration, but small and with varying sign under cointegration, both in the linear and the 

nonlin('ar cases. Table 1 shows the mean. standard deviation and mean absolute value of 'lO.o(;r. y) 

obt ained in t he experiment. 

The hist ogram plots of 71O.0(.r, y) for the different cases are given in figure 5. Using the .5% em~ 

pirical critical values of this statistic under H 2•1• estimated from 1000 l'donte Carlo replicas, the 

percent age rejection approached 8.5% of the simulated cointegrated pairs. 

7 Experilnent on financial data 

The statistic Tm.q(.r, y) proposed in the pre\'ious section for testing cointegration and linearity in 

cointegration. respectively, is here evaluated on two pairs of exchange rate series (figure 7), and on 

a pair of stock return series (STRl.STR2) from a Japanese food company (figure 6), The former 

group of series \\'ere the rates of exchange of the es Dollar (EXRPD), the Deutsch :t\Iark (EXRPI\I) 

and the Japanese Yen (EXRPY) against the Spanish Peseta. We took the first N = 1000 daily 

obser\'ations from series starting at January the first 198;. For the exchange-rate data. EXRPD 

was taken as reference. 

The h~'pothesis of a unit root could not be rejected by a s'tandard Dickey-Fuller test for any of the 

series. for the given sample size. To test for cointegration, we first run an AugmentEd Dickey-Fu11er 

(ADF) test (the comentional DF test was augmented \\.'ith one lag in the first differences of the 
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series) on the regression residuals of the three pairs considered above. The values taken by the test 

statistic TdJ are reported in table 2. 

l'sing the critical values computed by Mackinnon (1990) [15] (-2 .. 57, -1.94 and -1.62 at the 

1 <;C, .57t and 10% levels, respectively), the hypothesis of cointegration (i.e. that T takes values 

smaller than the tabulated critical values) was only accepted for the pair of stock return series 

(STR1,STR2). In contrast, the values of the test statistic TlO,O(X,y) of equation (56), shown in 

table 3. suggests evidence of cointegration in both (EXRPD,EXRPY) and (STR1,STR2), when 

using a one-standard-deviation empirical confidence interval. 

8 Conclusion 

Long-memory and cointegration are two important features of many economic time series. Stan­

dard Illethods to characterize these features do not take into account possible nonlinearities in the 

d a t a genera t ing processes or in their reI a tionship. This calls for a more general characterization 

of Illemor~' in time series, and of cointegration between pairs of time series. where nonlinearity is 

allO\\'ed in t he long-run relationship between the variables. In this paper, we proposed one such 

alt erna t iw charact erizat ion based on t he mutual information in pairs of varia bles, but which could 

he used in connection with any measure of serial dependence. Our methodology does not con-

1 rain1 1 he in1 egra t ion orders of the indh'id ual series to be equal. and could be generalized to the 

anal~'sis of \'ector cointegrating relationships. Finally, we suggest new devices for exploratory data 

anal~'sis and for testing the hypotheses of short-memory and cointegration. The performances of 

our cointegration testing device was shown on both simulated and some real-world financial series. 

Our results point to a gain in robustness of the proposed schemes over standard ones when the 

integrated variables are nonlinearly related. 
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figme 1: T\\"O simulated linearly cointegrated random walks (a) and their scatter plot (b). The 

series . . I"t • . 7'; "'ere generated \\'ith the model: ,1't = aU't + tt. ,1'; = ICt + t;. 1I't = 1I't-1 + ~t. with 

Wo = 0 and where tt, t~. ~t are independent sequences of i.i.d. Gaussian T.V. 'so 
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Figure 2: Two simulated nonlinearly cointegrated series (a) and their scatter plot (b). The upper 

series was obtained as .1't = Wt+~t, where Wt = U't-l +Et with Wo = 0, and the lower one corresponds 

to YI = 211'1 - 0.05{cr + ft. The errors Et,Et.~t are independent sequences of i.i.d. Gaussian 1·.1.'.'S. 

5r----r---.----.----.----.----r----r---.---~--~ 

food company Ajinomoto (a). Clearly, the strength of attraction varies accross time, as shown in 

the scatter plot (b). 
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Figure 4: Plots of the generalized correlations l~~)(T)/l~\")(1) and l~\")(T)/li:\")(l) versus T + 1 

for lin('arl~· (a). 110nlinearl:; (b). and non-cointegrated (c) series. The plots show the average 

run'('s obtained from 20 :-lonte Carlo simulated pairs of series. The nonlinearly cointegrated series 

were generated by applying third-order polynomial transformations to a common random walk 

component. The non-cointegrated series were independent random walks. 
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Figure 5: Histogram plots of TI0.0(.r. y)~ where (.r. y) represents linearl~' (a), nonlinearly (b), and 

llon-cointegrated (c)-(d) pairs of series. Plots (c)-(d) corresponds to non-coilltegrated series from 

the alternative hypotheses H2 ,1 and H2,21 respecth·ely. The nonlillearly cointegrated series \vere 

obtained as in figure 2. 
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figure 'I: Daily foreign exchange-rate series from January 198'1: EXRPD (Peseta/US Dollar), 

EXRPY (Peseta/lOO Yens), EXRPM (Peseta/Deutsch Mark). 
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Test statistic linear cointeg. nonlin. cointeg. non-cointeg. (H2,l) non-cointeg. (H2,2) 

E( 710.0(.1:, y)) 0.0619 0.0189 0.2953 0.8307 

Std(71O.0(X, y)) 0.117 0.061 0.12 0.07 

E( I 71O,0(X, y)l) 0.0718 0.0434 0,2953 0.8307 

Table 1: Mean, standard deviation and absolute mean values of 71O,0(X, y) for linearly, nonlinearly 

and non-cointegrated series. 

EXRPY/EXRPD EXRPJI/EXRPD STRJ/STR2 

11 7(.1', Y) 1-0.328 1-0.686 I -21.28 

Table 2: Values taken by the Dickey-Fuller test statistic 7dj(.1:, y) = S(n - 1) on the two pairs of 

foreign exchange rate series and the pair of stock return series. Here it is the OLS estimator of the 

parameter in the regression of YI on J'I' 

11 Series I EXRPY/EXRPD I EXRPM/EXRPD I STRJ/STR2\ 

11 710.0(J·, y) 1-0.0113 I 0.257 I 0.1169 \ 

Table :3: Values taken by the cointegration test statistic 710.0(.1', y) on two pairs of foreign exchange 

rate and a pair of stock return series. 


