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Incentive compatibility
and pricing under moral hazard✩

Belén Jerez

Department of Economics, Universidad Carlos III, Getafe, Madrid 28903, Spain

We showhow to recover equilibrium prices supporting incentive-efficient allocations in a clas-
sic insurance economy with moral hazard. Our key modeling choice is to impose the incentive-
compatibility constraints on insurance firms, and not on consumers as in Prescott and Townsend
[Pareto optima and competitiveequilibria with adverse selection and moral hazard, Econometrica
52 (1984) 21–45]. We show that equilibrium prices of insurance contracts are equal to the sum of
the shadow costs arising from the resource and incentive-compatibility constraints in the planner’s
problem. The equilibrium allocations are the same as when the incentive-compatibility constraints
are imposed on consumers. As in Prescott and Townsend, the two welfare theorems hold.

1. Introduction

In their pathbreaking contribution, Prescott and Townsend (1984a, 1984b) show how to
extend the Arrow–Debreu model to a large class of economies with asymmetric informa-
tion. In these economies, asymmetric information is realized ex post, that is after agents
have traded. This class includes economies with moral hazard, where agents choose their
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effort after they have traded.1 In particular, Prescott and Townsend define allocations in
the space of lotteries over bundles of state-contingent commodities. They then derive the
welfare theorems and show that a competitive equilibrium exists. The key modeling choice
of Prescott and Townsend is to impose the incentive-compatibility constraints arising from
asymmetric information on consumers, and not on firms. A typical example is an insur-
ance economy with moral hazard where consumers are subject to idiosyncratic risk. As
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the full-information benchmark, firms supply actuarially fair insurance plans and
ctuarially fair insurance plan is budget feasible. Consumers choose from the actua
ir insurance plans under the incentive-compatibility constraints. As a result the se
est is attained.

The motivation for our paper is a potential conceptual problem with imposing
centive-compatibility constraints on consumers: it is unclear how these incen

ompatibility constraints areenforced in the decentralizedeconomy. The natural inter-
retation is to view the incentive-compatibility constraints as restrictions on the se
ontracts that firms can offer to consumers, rather than as consumers self-imposing
onstraints.2 Our paper therefore takes a more naturalapproach and imposes the incentive
ompatibility constraints on firms. As in the standard general equilibrium model, all
elevant information is then conveyed throughprices. In particular, equilibrium prices re-
ect the shadow costs arising from the resource and incentive-compatibility constra
his result is in contrast with the full information benchmark, where prices reflect o

he shadow costs arising from the resource constraints. The equilibrium allocations a
ame as when the incentive-compatibility constraints are imposed on consumers.
rescott and Townsend (1984a, 1984b), the two welfare theorems hold.
We make our point in a classic moral hazard economy. There is a continuum o

nte identical consumers and a finite number of idiosyncratic endowment states.
onsumer can exert high or low effort at a direct utility cost. High effort reduces the pr
bility of ending up in a poor state. The commodities are insurance contracts, which a
igned between a consumer and a firm. An insurance contract specifies a vector of state
ontingent net trades and an effort level for the consumer. We assume that net trad
erfectly verifiable and fully enforceable. It therefore suffices to consider exclusive c
actual relations in which consumers can buy insurance from at most one firm. F
ave access to a constant-returns-to-scale insurance technology and they face both tec
ological and incentive-compatibility constraints. The incentive-compatibility constra
equire that insurance contracts give the consumers an incentive to conform to the
pecifications. As in Prescott and Townsend (1984a), we allow for lotteries to overc
he non-convexities generated by the incentive-compatibility constraints.

We show how to recover equilibrium prices supporting incentive-efficient allocations.
quilibrium prices are equal to the sum of the shadow costs arising from the resourc
centive-compatibility constraints in the planner’s problem. For example, actuarially

1 However, it does not include economies with adverse selection, where agents learn their types before the
ade (ex ante asymmetric information).
2 In the mechanism design literature, the principal offers a contract subject to the incentive-compatibility con
traint of the agents. See also the competitive models withasymmetric information in the partial equilibrium (e.g.
othschild and Stiglitz, 1976 and Wilson, 1977, and Bennardo and Chiappori, 2003).
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contracts which specify a high effort generate identical resource costs but different incen-
tive costs. Providing more insurance implies higher incentive costs because it raises the
consumers’ incentive to shirk. This raises the equilibrium price of an actuarially fair con-
tract. Consumers then do not purchase the full-insurance contract because it is not budget
feasible, and firms do not offer it because it is notincentive compatible(with full insurance
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onsumers always shirk). As a result, the competitive equilibrium allocation provides
artial insurance. The amount of insurance is the same as when the incentive-compatibili
onstraints are imposed on consumers, and so the second-best is attained.

There are also some formal differences between our approach and that of Prescott an
ownsend (1984a). With their approach, equilibrium prices are the same as in the full
formation benchmark, so they are linear on the agents’ net trade sets. With our appr
quilibrium prices are not the same as in the full-information benchmark. Instead,
re non-linear on the agents’ net trade sets. The reason is that equilibrium prices r
e shadow costs arising from the incentive-compatibility constraints, and these sh

osts are non-linear and may even be non-convex. This feature of our model is per
onsistent with standard general equilibrium analysis, because prices remain linear
eneral space of lotteries (the commodity space). A second formal difference with respec

Prescott and Townsend is that the infinitedimensional spaces in which allocations an
rices lie are not approximated by finite grids. This is as in Kehoe et al. (2002) for a rel
xchange economy with ex post private information about endowments. Kehoe, Le
nd Prescott (Kehoe et al., 2002) derive the welfare and existence theorems by introd
e notion of the stand-in consumer economy, which is a standard finite convex exch

conomy. In addition, they show that a lottery equilibrium allocationcan be implemented in
sunspot equilibrium. Our paper differs from their paper because we impose the incen
ompatibility constraints on firms, while they impose them on consumers. Moreover
erive our results using the techniques of linear programming.3

Our application of linear programming draws heavily on the work of Makowski a
stroy (1996), who develop the linear programming methodology for large economies
ll information. Specifically, they use a measure-theoretic description of the econom

how that efficient allocations solve a linear programming problem. Then they establis
quivalence between the competitive equilibrium allocations and prices, on the one h
nd the solutions to the primal and dual problems, on the other hand. Gretsky et al. (1
resent a similar analysis for large assignment economies.

The paper is organized as follows. In Section 2 we describe the economy. In Sect
e present the general equilibrium model. In Section 4 we define a competitive equ

ium and characterize the competitive equilibrium prices and allocations. In addition
erive the two welfare theorems and establish the existence of a competitive equilib
ection 5 concludes. The proofs are deferred to Appendix A.

3 This paper complements the work of a companion paper(Jerez, 2003), where we show that incentive-efficien
llocations solve a linear program, and use linear programming techniques to characterize the optima.
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2. The economy

There is a continuum of identical consumers with measure one and a single consumption
good. Consumers are subject to idiosyncratic endowment shocks. Shocks are independent
across consumers and render no aggregate uncertainty.4 Each consumer facesS idiosyn-
c
s re-
o ort in
p f ef-
f
s

s ave
v
T
is with
li
c

mic
c e risk.
A
a fore
s e
f

ens
a oose
th e
e r-
ta able.
H

3

In sets,
a in
w

h
n

4

ratic states,s = 1, . . . , S. The consumer’s endowment in states is denoted byωs, and
atisfiesωs � ωs ′ if s < s′ (endowments are lower in lower states). The consumer is mo
ver endowed with one unit of time that she allocates between leisure activities and eff
reventing the realization of a low state. Effort can be either high or low, with the set o

ort levels denoted byE = {eL, eH }, where 0� eL < eH . We denote the probability of state
with effort ei by θis . We assume that the likelihood ratio{θHs/θLs} increases with the
tates. So high effort reduces the probability of ending up in a low state. Consumers h
on Neumann–Morgenstern preferences as defined by the utility functionu :E×�+ → �.
he utility of consumptionc under effortei is then given byUi(c) = u(ei, c), whereUi

assumed twice continuously differentiable, strictly increasing, and strictly concave
mc→0 U ′

i (c) = ∞ and limc→∞ U ′
i (c) = 0. Effort is costly, soUL(c) − UH(c) > d for all

∈ �+ and some positive constantd .
There is a finite number of insurance firms which are large relative to the non-ato

onsumers. Each firm insures a positive mass of agents, thus facing no aggregat
ll firms have access to an identical constant-returns-to-scale insurance technology.5 We
ssume that insurance claims are perfectly verifiable and fully enforceable. It there
uffices to consider exclusive contractual relations in which consumers can buy insuranc
rom at most one firm.6

The timing of the model is as follows. At some initial date, the insurance market op
nd consumers buy insurance from the firms. After the trading period, consumers ch
eir effort level. Then, endowment shocks are realized. Finally, insurance contracts ar

nforced, and consumption takes place. There is no ex post trade. The structure of unce
inty is common knowledge and the realization of the endowment shocks is observ
owever, effort is private information.

. The general equilibrium model

this section, we describe the commodity space, the consumption and production
nd the consumers’ utility over consumption bundles. We then define allocations. We beg
ith some preliminary notation.

4 We assume that the law of large numbers holds. See Sun (1998).
5 This assumption implies that each firm is redundant in the economy and has no market power.
6 See Bisin and Gottardi (1999) and Bisin and Guatoli(1997) for the analysis of moral hazard economies wit
on-exclusive contracts.
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3.1. Notation

Let Z be the consumer’s net trade set, and denote its elements byz = (z1, . . . , zS):

Z = {
z ∈ RS : zs � −ωs, s = 1, . . . , S

}
.
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et C(Z) denote the space of continuous real-valued functions onZ, endowed with the
pology of uniform convergence on compact sets. The topological dual ofC(Z) is the

pace of signed Borel measures onZ which are finite on compactsets and have compac
upport.7 We denote the dual space byMc(Z), and let it be endowed with the weak-sta
pology. Then,C(Z) is also the dual ofMc(Z). The dual pair of spaces(C(Z),Mc(Z))

endowed with the standard bilinear form:

〈f,µ〉 ≡
∫
Z

f (z)dµ(z), f ∈ C(Z), µ ∈ Mc(Z),

here the bracket notation highlights the infinite dimensional nature of the spaces in th
airing. We denote the total variation of a measureµ ∈ Mc(Z) by ‖µ‖.

.2. Commodities

The commodities are insurance contracts, which are signed between a consumer
rm. An insurance contracts specifies an effort levele ∈ E and a vector of state-contingen
et tradesz ∈ Z. Both specifications are allowed to be random and are given as follow8

irst, the consumer is assigned a lottery which specifies an effort level. After the cons
hooses her effort and conditional on the effort specification received, a second lotter
pecifies a vector of state-contingent net trades.

We take as the commodity space the product space

L = Mc(Z) × Mc(Z),

ndowed with the product topology. We describe an insurance contract by a bundlex =
xL, xH ) ∈ L+ such that

‖xL‖ + ‖xH‖ =
∫
Z

dxL(z) +
∫
Z

dxH (z) = 1. (3.1)

ere,‖xi‖ represents the probability that the insurance contract specifies effortei , and the
quality in (3.1) is an adding-up condition.In addition, the probability measurexi/‖xi‖
epresents the random net trade assigned conditional on specificationei . Note that the
ncertainty involved in a contract resolves in two steps. In the first step, consumers m
ncertain about the effort that the contract will specify. This occurs when both‖xL‖ and
xH‖ are positive. In the second step, consumers find out their effort specifications

7 See Hewitt (1959).
8 It is well known since the seminal work of Prescott andTownsend (1984a) that lotteries may play a role in th
resence of incentive-compatibility constraints. InJerez (2003) we derive conditions under which random effo
pecifications and random net trades are optimal inthis model. See also Bennardo and Chiappori (2003).



B. Jerez / Review of Economic Dynamics 8 (2005) 28–47 33

in deciding whether to conform or not to such specifications, they may still be uncertain
about the net trade that the contract will specify (and thus about their state-contingent
consumption plan). This occurs whenxi/‖xi‖ is a non-degenerate probability measure.

Remark. We could also take as the commodity space the space of compactly supported
measures over pairs of effort and net trade,Mc(E × Z). An insurance contract would
t
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hen be defined as a probability measure onE × Z. The two definitions of the commodity
pace are equivalent. Our choice of the commodity space has the advantage that it d

plies that incentive-efficient allocationssolve a linear programming problem (see Jere
003). Our choice of the commodity space is also equivalent to the one of Prescot
ownsend (1984a), who define the commodity space to be the space of measure
riples of effort, consumption and endowment. The difference with respect to Prescot
ownsend (1984a) is that they assume that the underlying consumption set, and th
rade setZ, is a finite set. With this assumption, the commodity space is finite dimensio
ince it is isomorphic to the Euclidean space.We consider the general case in which th
et trade set need not be a finite set.9

.3. Consumption sets

The consumption setX is the set of insurance contracts:

X = {
(xL, xH ) ∈ L+: ‖xL‖ + ‖xH‖ = 1

}
. (3.2)

he exclusivity assumption implies that consumers can buy at most one contract.
umers can choose to be uninsured withz = 0 and exert any effort levelei . In this case,
i = δ0 andxj = 0 for j 
= i (with δ0 denoting the Dirac measure atz = 0).

.4. Preferences

The expected utility of a consumer with effortei and net tradez is

EUi(z) ≡
S∑

s=1

θisUi(ωs + zs). (3.3)

he expected utility from an insurance contractx ∈ X is then10

〈EU,x〉 = 〈EUL,xL〉 + 〈EUH ,xH 〉
=

∫
Z

EUL(z)dxL(z) +
∫
Z

EUH (z)dxH(z). (3.4)

incex is a lottery, the consumer’s expected utility is linear.

9 See also Kehoe et al. (2002) for a related exchange economy with private information over endowment
0 Here,EU = (EUL,EUH ) ∈ C(Z) × C(Z).
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3.5. Production sets

Each firm supplies a single insurance contract.11 A production plan is described by a
bundley = (yL, yH ) ∈ L+. Here, (i)y/‖y‖ is the contract supplied by the firm, and (ii)
‖y‖ is the total mass of contracts supplied. The law of large numbers implies that, when
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he firm insures a positive mass of consumers,it faces no uncertainty. We assume that th
rm assigns lotteries across consumers in orderto preserve this lack of uncertainty. The
yi‖ represents the ex post mass of consumers who are specified effortei , andyi/‖yi‖
epresents the distribution of the state-contingent net trade vectors of these consumer
he outcomes of their individual lotteries are realized.

The expected net trade of a consumer with effortei and net tradez is

ri (z) ≡
S∑

s=1

θiszs . (3.5)

he net transfer of resources that the firm makes to its customers under production py

then

〈rL, yL〉 + 〈rH , yH 〉 =
∫
Z

rL(z)dyL(z) +
∫
Z

rH (z)dyH(z). (3.6)

production plany is technologically feasible if the net transfer of resources that the fi
akes to its customers is non-positive:

〈rL, yL〉 + 〈rH , yH 〉 � 0. (3.7)

Since the firm cannot observe the effort choice of its customers, the contract it o
ust be incentive compatible. Under production plany, the utility of a consumer who is

pecified effortei and chooses effortej is〈
EUj ,

yi

‖yi‖
〉
= 1

‖yi‖
∫
Z

EUj (z)dyi(z). (3.8)

production plany is incentive compatible if it is not in the interest of the consumers
eviate from their effort specifications:

〈EUi, yi〉 � 〈EUj ,yi〉, j 
= i, i, j = L,H. (3.9)

The production setY is the set of production plans satisfying the technological a
centive-compatibility constraints:

Y = {
(yL, yH ) ∈ L+: 〈rL, yL〉 + 〈rH , yH 〉 � 0,

〈EUi − EUj ,yi〉 � 0, j 
= i, i, j = L,H
}
. (3.10)

ince all constraints are linear, the production setY is convex and displays constant return
o scale (i.e.,Y is a convex cone). Since 0∈ Y , the firm can choose to be inactive.

1 Since consumers are ex ante identical, we shall restrict our attention to symmetric allocations.
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4. Competitive equilibrium

In this section, we define a competitive equilibrium. We then use linear programming
techniques to characterize the competitive equilibrium prices and allocations. We begin by
describing the price space.
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.1. Prices

The price spaceP is set of continuous linear functionals on the commodity space (
ualspace):

P ≡ L∗ = C(Z) × C(Z),

ndowed with the product topology. A price system is then a pair of continuous function
n Z, denoted byp = (pL,pH ). For a givenp ∈ P , the value of a commodity bundle
∈ L+ is given by the inner product:

〈p,x〉 = 〈pL,xL〉 + 〈pH ,xH 〉 =
∫
Z

pL(z)dxL(z) +
∫
Z

pH (z)dxH(z). (4.11)

n particular, the price of a deterministic contract which specifies effortei and net tradez
pi(z).

12 That is, prices depend both on the effort and the net trade specified by
ontract. On the other hand, a lottery specifies different pairs of effort and net trade
ositive probability. Equation (4.11) says that the price of a lottery is calculated by ad

he values of each individual component using the corresponding probability weights (i.e
tegratingpi(z) overz with respect to the measurexi for eachei, and summing overei ).13

Unlike in the full-information benchmark, prices are not necessarily linear in the
erlying net trades. Take two deterministic contracts,x1 andx2, which prescribe the same
ffort levelei and assign net tradesz andtz (with t > 0 andt 
= 1). Their respective prices
repi(z) andpi(tz). Critically, however, these prices need not satisfypi(tz) = tpi(z).

hat is, even though the net trade assigned byx2 in each state ist times the net trade as-
igned byx1, the price ofx2 need not bet times the price ofx1. The reason is that the
ontinuous functionpi need not be a linear function.14 While the possibility of non-linear
ricing may seem inconsistent with standard general equilibrium theory, the inconsist
only apparent. Equation (4.11) shows that prices in the general space of lotteries ar

tructed as expected values given the prices in the underlying space of degenerate lo
herefore, prices arelinear in the general space of lotteries (the commodity space).15

2 The deterministic contract is given byxi = δz andxj = 0 (with δz denoting the Dirac measure atz), so its
rice is:〈p,x〉 = 〈pi, xi 〉 = 〈pi , δz〉 = pi(z).
3 See also Prescott and Townsend (1984a).
4 The set of price systemsp = (pL,pH ) wherepL andpH are linear functions is only a subset of the price
paceP .
5 Prices are (i) additive:〈p,x1 + x2〉 = 〈p,x1〉 + 〈p,x2〉 for all x1, x2 ∈ L+; and (ii) homogeneous:〈p, tx〉 =
〈p,x〉 for all x ∈ L+ and allt ∈ �+.
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4.2. Competitive equilibrium

Since the production set displays constant returns to scale, we may assume that there is
a single firm in the economy. A competitive equilibrium is defined in the standard way.

Definition 4.1. A competitive equilibrium is an allocation(x∗, y∗) ∈ L2 and a price system
p
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∗ ∈ L∗ for which

(i) x∗ maximizes〈EU,x〉 over the set{x ∈ X: p∗ · x � 0};
ii) y∗ maximizes〈p∗, y〉 over the setY ; and
iii) markets clear, orx∗ = y∗.

Condition (i) requires that contractx∗ yields consumers the highest utility among a
udget feasible contracts lying in their consumption set. Condition (ii) requires thaty∗
ields the firm the maximal level of profits within the setY . The market clearing condi-
on (iii) requires that the contract demanded by consumers coincides with the con
upplied by the firm, and that the total mass of contracts supplied by the firm is equ
e total mass of consumers.
In order to characterize the competitive equilibrium prices and allocations, we ana

e optimal decisions of the firm and the consumers. Then we relate these optimal dec
rough the market clearing condition.

.3. Optimal consumption plans

The consumer choosesx = (xL, xH ) ∈ L to solve the following linear programming
roblem:

Dc) sup〈EUL,xL〉 + 〈EUH,xH 〉

.t.

〈I, xL〉 + 〈I, xH 〉 = 1, (4.12)

〈pL,xL〉 + 〈pH ,xL〉 � 0, (4.13)

xL, xH � 0. (4.14)

ondition (4.12) is the adding-up condition on the lotteryx expressed in bilinear form,
ith I :Z → {0,1} denoting the characteristic function onZ. The budget constraint (4.13)
ays that the value the lottery must be non-positive.16

Problem(Dc) is dualto another linear programming problem. The primal problem(Pc),
hich is derived in detail in Appendix A, consists of finding a pair(αc, λ) ∈ R2 to solve

Pc) inf αc

6 Since a lottery specifies a random pair of effort and net trade, this constraint is analogous to the
formation budget constraint, according to which the value of the consumer’s net trade must be non-positive.
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s.t.

αc � EUL(z) − λpL(z) ∀z ∈ Z, (4.15)

αc � EUH (z) − λpH (z) ∀z ∈ Z, (4.16)

λ � 0, (4.17)
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hereαc andλ are the shadow prices of the adding-up constraint (4.12) and the bu
onstraint (4.13).

Throughout the section we assume that optimal solutions for problems(Dc) and(Pc)

xist and that the optimal values of these problems are identical. An analogous argu
the one used in Jerez (2003) implies that problems(Dc) and(Pc) have these properties

rovided (4.15) and (4.16) do not bind whenz is above a certain threshold̄z ∈ Z. Intu-
ively, when consumption is sufficiently high, further increases in consumption must r
he price paid by the consumer than more than they raise the consumer’s expected
for a given effort level). The competitive equilibrium price system derived at the end
his section has this property. The key assumption driving this result is that the mar
tility of consumption decreases asymptotically to zero.

By the complementary slackness theorem (see Krabs, 1979), a feasible so
xL, xH ) for problem(Dc) is optimal if and only if there exists(αc, λ) ∈ R × R+ such
hat

λ
(〈pL,xL〉 + 〈pH ,xH 〉) = 0, (4.18)

αc � EUL(z) − λpL(z) ∀z ∈ Z, with equality ifxL(z) > 0, (4.19)

αc � EUH (z) − λpH (z) ∀z ∈ Z, with equality ifxH (z) > 0. (4.20)

Condition (4.18) states that the optimal shadow priceλ is a complementary multiplier
or the budget constraint (4.13). The monotonicity of preferences implies thatλ is positive,
o the budget constraint holds with strict equality.17 Conditions (4.19) and (4.20) state
hat the optimal measuresxL andxH are complementary multiplier vectors for the prima
onstraint systems (4.15) and (4.16). Here,

EUi(z) − λpi(z), i = L,H,

epresents the expected consumer surplus from a deterministic contract which specifie
ffort ei and net tradez. Conditions (4.19) and (4.20) then imply thatthe optimal con-
umption plan(xL, xH ) puts all the probability weight onpairs of effort and net trade
hat maximize the expected consumer surplus.Moreover, the maximal expected consume
urplus is equal toαc (the consumer’s indirect utility).18

7 Supposeλ = 0. If Ui is unbounded for somei = L,H , the corresponding primal constraint system is violated
Ui is bounded, the corresponding primal constraintsystem cannot hold with strict equality for anyz ∈ Z (since

i is strictly increasing). In either case, the support ofxi is empty, so problem(Dc) cannot have an optimal
olution.
8 Problems(Dc) and(Pc) have the same optimal value.
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4.4. Optimal production plans

The firm choosesy = (yL, yH ) ∈ L to solve the following linear programming problem:

(Df ) sup〈pL,yL〉 + 〈pH ,yH 〉

s.t.

y
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−〈EUL,yL〉 + 〈EUH,yL〉 � 0, (4.21)

〈EUL,yH 〉 − 〈EUH,yH 〉 � 0, (4.22)

〈rL, yL〉 + 〈rH , yH 〉 � 0, (4.23)

yL, yH � 0. (4.24)

The fact thatY is a cone and 0∈ Y directly implies that an optimal production plan
ields zero profits.

emma 4.1. Let y be an optimal solution for problem(Df ) then

〈p,y〉 = 〈pL,yL〉 + 〈pH ,yH 〉 = 0.

Letqf and(β
f

L ,β
f

H ) denote the shadow prices of the technological constraint (4.23)
he incentive-compatibility constraints (4.21)–(4.22), respectively. By the complemen
lackness theorem, a feasible solution(yL, yH ) for problem(Df ) is optimal if and only if

here exists(qf ,β
f

L ,β
f

H ) ∈ �3+ such that

qf
(〈rL, yL〉 + 〈rH , yH 〉) = 0, (4.25)

β
f
L

(〈EUH ,yL〉 − 〈EUL,yL〉) = 0, (4.26)

β
f
H

(〈EUL,yH 〉 − 〈EUH ,yH 〉) = 0, (4.27)

0 � pL(z) − qf rL(z) − β
f

L

(
EUH(z) − EUL(z)

) ∀z ∈ Z,

with equality ifyL(z) > 0, (4.28)

0 � pH(z) − qf rH (z) − β
f
H

(
EUL(z) − EUH(z)

) ∀z ∈ Z,

with equality ifyH (z) > 0. (4.29)

Conditions (4.25)–(4.27) state that the optimal shadow pricesqf and (β
f

L ,β
f

H ) are
omplementary multipliers for the technological constraint (4.13) and the incentive
ompatibility constraints (4.21)–(4.22). Conditions (4.28) and (4.29) state thatthe optimal
roduction plan(yL, yH) puts all the weight on pairs of effort and net trade that max
ize the producer surplus.Moreover, the maximal producersurplus is zero. The producer

urplus from a deterministic contract which specifies effortei and net tradez is

pi(z) − qf ri(z) − β
f
i

(
EUj(z) − EUi(z)

)
j 
= i, i, j = L,H.

ake a high-effort contract. The price of the contract ispH(z), while its shadow cost is

qf rH (z) + β
f
H

(
EUL(z) − EUH(z)

)
. (4.30)
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The first term in (4.30) is a resource cost. That is,rH (z) is the average amount of the
consumption good that the firm transfers to its customers under the contract, andqrH (z)

is the shadow value of the transfer. The second term in (4.30) is an incentive cost (benefit).
If the net tradez is such that the customers prefer toshirk, the term reflects an incentive
cost which is proportional to the utility gainfrom shirking. Conversely, ifz is such that the
customers prefer not to shirk, the term reflects an incentive benefit which is proportional
to to
th ).
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the utility loss from shirking. If the customers are indifferent between conforming
e specification and shirking, the term is zero (so there is no incentive cost or benefit
similar interpretation applies for low-effort contracts.19

.5. Competitive equilibrium prices and allocations

The complementary slackness conditions for the firm’s problem, (4.25)–(4.29), im
at the price of the contract offered by the firm is equal to the shadow cost of the
act. This result is analogous to the standardconstant-returns condition that the price of
ood is equal to its marginal cost of production. Letx∗ be the contract traded in a compet
ive equilibrium. Conditions (4.28) and (4.29)together with the market clearing condition
ply that

p∗
i (z) = qf ∗ri(z) + β

f ∗
i

(
EUj(z) − EUi(z)

)
if x∗

i (z) > 0, i = L,H, (4.31)

hereqf ∗, β
f ∗
L andβ

f ∗
L are the optimal shadow prices of the firm’s problem in a comp

ive equilibrium. Therefore, price of contractx∗ is

〈p∗, x∗〉 = 〈
p∗

L,x∗
L

〉 + 〈
p∗

H ,x∗
H

〉
, (4.32)

here〈
p∗

i , x∗
i

〉 = 〈
qf ∗ri − β

f ∗
i (EUj − EUi), x

∗
i

〉
. (4.33)

hat is, the price of the contract traded in a competitive equilibrium is equal to its sha
ost. Lemma 4.1 and the market clearing condition moreover imply that

〈p∗, x∗〉 = 0. (4.34)

hat is, the price of the contract traded in a competitive equilibrium is equal to zero (
e value of the expected net trade implied by the contract is zero).
Unlike the standard Arrow–Debreu model, the competitive equilibrium price system

ot fully determined under moral hazard. Thisis a typical feature of models with a continu
m of commodities, where the prices of commodities that are not traded in equilibr
re indeterminate.20 As a result there are many price systems that support a compet
quilibrium allocation. To see this, note that conditions (4.28) and (4.29) imply

p∗
i (z) � qf ∗ri(z) + β

f ∗
i

(
EUj(z) − EUi(z)

) ∀z ∈ Z, i = L,H. (4.35)

9 Since the incentive-compatibility constraint with low effort does not bind at an incentive-efficient allocat
e first welfare theorem (see Theorem 4.1) implies that the shadow cost of a low-effort contract in a comp
quilibrium is a standard resource cost:qf rL(z).
0 See Mas-Colell and Zame (1991).
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Therefore, the price of a contractx that is not traded in a competitive equilibrium satisfies

〈p∗, x〉 = 〈
p∗

L,xL

〉 + 〈
p∗

H ,xH

〉
, (4.36)

where〈
p∗, xi

〉
�

〈
qf ∗ri − β

f ∗
(EUj − EUi), xi

〉
. (4.37)
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he price of a contract that is not traded in a competitive equilibrium is thenlower that the
hadow cost of the contract. If this was not the case, the firm could make infinite profit
upplying an infinite mass of one of these contracts.

A competitive equilibrium price system may be selected by taking the supremum
e set of pricesp ∈ P that satisfy conditions (4.31) and (4.35). The selected price sys

p∗
i (z) = qf ∗ri(z) + β

f ∗
i

(
EUj(z) − EUi(z)

) ∀z ∈ Z, i = L,H. (4.38)

nder this price selection criterion, the price of a contract (whether traded or not) is e
its shadow cost. This ensures that no small perturbation of an optimal production

ields negative profits to the firm.21

In addition to the competitive equilibrium prices, we may characterize the compet
quilibrium allocations. The characterization is obtained by combining the complemen
lackness conditions for the consumer’s problem, (4.18)–(4.20), the complementary s
ess conditions for the firm’s problem, (4.25)–(4.29), and the market clearing condi
roposition 4.1 summarizes the characterization of a competitive equilibrium.

roposition 4.1. The allocation(x∗, y∗) is a competitive equilibrium allocation if and only
(x∗, y∗) is feasible, and there exist(qf ∗, βf ∗

L ,β
f ∗
H ,αc∗) ∈ �3+ × � andλ∗ > 0 such that

qf ∗(〈rL, x∗
L

〉 + 〈
rH , x∗

H

〉) = 0, (4.39)

β
f ∗
L

(〈
EUH,x∗

L

〉 − 〈
EUL,x∗

L

〉) = 0, (4.40)

β
f ∗
H

(〈
EUL,x∗

H

〉 − 〈
EUH,x∗

H

〉) = 0, (4.41)

αc∗ � EUL(z) − λ∗qf ∗rL(z) − λ∗βf ∗
L

(
EUH(z) − EUL(z)

) ∀z ∈ Z,

with equality ifx∗
L(z) > 0, (4.42)

αc∗ � EUH (z) − λ∗qf ∗rH (z) − λ∗βf ∗
H

(
EUL(z) − EUH(z)

) ∀z ∈ Z,

with equality ifx∗
H(z) > 0. (4.43)

1 Alternatively, we could allow the firm to both sell and buy contracts. In this case, the complementary slack
onditions for the firm’s problem directly pin down the price system in (4.38). Intuitively, (4.37) must hold with
trict equality, for otherwise the firm could make infinite profitsbuyingan infinite mass of contractx.

Under our price selection criterion, the equilibrium prices lie in a subset of the price spaceP which is iso-
orphic to�3. That is, an equilibrium price system is fully characterized by a triple(β

f ∗
L

,β
f ∗
H

,qf ∗) ∈ �3+. The
rst welfare theorem (see Theorem 4.1) implies thatβ

f ∗
L

= 0 and β
f ∗
H

> 0 since only the incentive-compatibility
onstraint with high effort binds at an incentive-efficient allocation. Therefore,p∗

L
is linear andp∗

H
is non-linear.
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The competitive equilibrium price systemp∗ = (p∗
L,p∗

H) (selected as the supremum over
the set of equilibrium prices) is

p∗
i (z) = qf ∗ri(z) + β

f ∗
i

(
EUj(z) − EUi(z)

) ∀z ∈ Z, i = L,H. (4.44)

Substituting the market clearing condition into the firm’s complementary slackness con-
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itions (4.25)–(4.27) gives (4.39)–(4.41). Substituting the market clearing condition
e firm’s complementary slackness conditions (4.28)–(4.29) into the consumer’s com
entary slackness conditions (4.19)–(4.20) gives (4.42)–(4.43). The proposition states tha

onditions (4.39)–(4.43) are not only necessary but also sufficient forx∗ to be the contract
aded in a competitive equilibrium. The complementary slackness condition (4.18) asso
iated to the consumer’s budget constraint is not included in the characterization. S
onditions (4.39)–(4.41) and (4.44) imply (4.18), this condition is redundant. The proof of
e “if” statement is in Appendix A.

.6. Welfare theorems and existence

The characterization of a competitive equilibrium allocation in Proposition 4.1 is equiv-
lent to the characterization of an incentive-efficient allocation derived in Jerez (20
herefore, the two welfare theorems hold.22 Furthermore, the existence of optimal solu
ons to the planner’s problem and its dual (established in Jerez, 2003) implies existen
competitive equilibrium.

heorem 4.1 (First Welfare Theorem). A competitive equilibrium allocation is incentive
fficient.

heorem 4.2 (Second Welfare Theorem). For any incentive-efficient allocation(x, y) there
a price systemp ∈ P such that(x, y,p) is a competitive equilibrium.

heorem 4.3. A competitive equilibrium exists.

. Conclusion

We have shown how to recover equilibrium prices supporting incentive-efficient allo-
ations in a classic moral hazard economy. Our key modeling choice is to impose
centive-compatibility constraints on firms, and not on consumers as in Prescott
ownsend (1984a). We have shown that equilibrium prices of insurance contracts ar
qual to the sum of the shadow costs arising from the resource and incentive-compat
onstraints in the planner’s problem. The equilibrium allocations are the same as w
e incentive-compatibility constraints are imposed on consumers. As in Prescott

ownsend (1984a), the two welfare theorems hold.

2 The First Welfare Theorem can also be derived using standard arguments. In Appendix A, we provid
roof for completeness.
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The results in this paper extend directly to the general class of economies with ex post
asymmetric information analyzed by Prescott and Townsend (1984a, 1984b). This class
includes economies with moral hazard and with expost private information. To clarify the
presentation, we have chosen one of their example economies to present our results. A key
feature of the Prescott–Townsend class of economies is that the number of goods is finite.
In particular, the economies are either static or have a finite time horizon. The number of
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nobservable actions (types) is also finite. This implies that, even though the dimen
f the general space of lotteries where allocations lie is infinite, the number of reso
nd incentive-compatibility constraints is finite. In this paper, we exploit this semi-infin
tructure and use the techniques of Linear Semi-Infinite Programming to derive our re

We could have also considered a dynamic moral hazard economy with finitely m
eriods in the spirit of Rogerson (1985).23 There consumers experience an idiosyncra
ndowment shock each period. Insurance contracts specify a sequence of time-indexed ef-

ort and net trade pairs, and must give consumers an incentive to conform to the e
pecified each period. In periodt net trades are assigned contingent on the current stat
e world, which is given by the sequence of realized idiosyncratic states from peri

p to periodt . Allowing for lotteries again renders the model linear. Dynamic incentiv
ompatibility constraints reflect the fact that the effort exerted in periodt affects the net
ades assigned in all subsequent periodst + 1, . . . , T , because it affects the distribution
f the shock at timet . Therefore, the effort exerted in periodt affects the consumers in-
entives to conform to the effort specifications in all subsequent periodst + 1, . . . , T . In
competitive equilibrium of the dynamic economy, prices reflect the fact that effort and

et trade assigned in periodt imply a resource and an incentive cost in periodt , as well as
dditional incentive costs in all subsequent periodst + 1, . . . , T .

Our results can also be extended to more general settings, including (infinite) dyn
conomies. With an infinite timehorizon, incentive-efficient allocations still solve a lin
ar program (e.g. expected utilities and incentive-compatibility constraints are linear in
ommodity bundles). The difference is that both the dimension of the space where al
ons lie and the number of constraints in the planner’s problem are now infinite. Exten
ur results thus requires (slightly more involved) Linear Infinite Programming techniq

As noted by Prescott and Townsend (1984a), the extension of the Arrow–Debreu m
economies with adverse selection is not straightforward (see also Bisin and Got

000, and Rustichini and Siconolfi, 2002). In a companion paper (Jerez, 2000), we su
at the linear programming methodology can be helpful in understanding the prob
hich arise in decentralizing incentive-efficient allocations under adverse selection.
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ppendix A

.1. The linear programming problems

The linear programs in Section 4 are known as Linear Semi-Infinite Programming
LSIP) problems. An LSIP problem is a linear program in which either number of va
bles or the number of constraints is finite (see Goberna and López, 1998). In this se
e set up the primal LSIP problem and derive its dual. The LSIP problems in Sectio
nd Appendix A.2 obtain as particular cases of the problems in this section by applyin
efinitions in Table A.1.

.1.1. The primal problem
Let 1� m � n and�n be equipped with the Euclidean norm and partially ordered

eans of the cone

Kn
m = {y ∈ �n: yj � 0, j = 1, . . . ,m}.

et ω ∈ �s+ and defineZ = {z ∈ �s : z � −ω}. Let C(Z) denote the vector space of con
inuous real-valued functions onZ, endowed with the topology of uniform convergence o
ompact sets and partially ordered by means of the cone

C+(Z) = {
f ∈ C(Z): f (z) � 0 ∀z ∈ Z

}
.

heprimal problem is to findy ∈ �n to solve

able A.1
he primal and dual problems in Sections 4 and Appendix A.2

The planner The firm The consumer

n,m) (4,3) (3,3) (2,1)

(βL,βH ,q,α) (β
f
L ,β

f
H ,qf ) (λ,αc)

(0,0,0,1) (0,0,0) (0,1)

= (bL,bH ) (EUL,EUH ) (pL,pH ) (EUL,EUH )

1 = (f1L,f1H ) (−EUL + EUH ,0) (−EUL + EUH ,0) (pL,pH )

2 = (f2L,f2H ) (0,EUL − EUH ) (0,EUL − EUH ) (I,I)

3 = (f3L,f3H ) (rL, rH ) (rL, rH ) –

4 = (f4L,f4H ) (I,I) – –
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(P ) inf c · y
s.t. Ay � b, y ∈ Kn

m,

wherec ∈ �n, b = (bL, bH ) ∈ C(Z) × C(Z), andA :�n → C(Z) × C(Z) is a continuous
linear mapping. Problem(P ) is linear and hasn unknowns and infinitely many constraints.

A

a

is (to
h et
n

W
T

W

T

P

17
.1.2. The dual problem
LetMc(Z) denote the space of signed Borel measures onZ which have compact support

nd are finite on compact sets. This space is the topological dual space ofC(Z).
Let C(Z) × C(Z) be paired in duality withMc(Z) × Mc(Z). The reflexive space�n

paired with itself. The two pairings are endowed with their natural bilinear forms
ighlight the dimensionality of the spaces inthe pairing we use the dot product and brack
otation for finite and infinite dimensions, respectively):

〈f,x〉 =
∫
Z

fL dxL +
∫
Z

fH dxH , f = (fL,fH ) ∈ C(Z) × C(Z),

x = (xL, xH ) ∈ Mc(Z) × Mc(Z);

y · z =
n∑

j=1

yj zj , y ∈ �n, z ∈ �n.

The adjoint ofA, A∗ :Mc(Z) × Mc(Z) → �n, is defined by the relation

y · (A∗x) = 〈Ay,x〉, for all y ∈ Kn
m, x ∈ Mc+(Z) × Mc+(Z). (A.1)

e may writeAy = ∑n
j=1 yjfj , wherefj = (fjL,fjH ) ∈ C(Z)×C(Z) for j = 1, . . . , n.

hen (A.1) can be expressed as

y · (A∗x) =
n∑

j=1

yj 〈fj , x〉, for all y ∈ Kn
m, x ∈ Mc+(Z) × Mc+(Z). (A.2)

rite A∗x � c as

n∑
j=1

yj

(〈fj , x〉 − cj

)
� 0, ∀y ∈ Kn

m.

hedualproblem is to findx ∈ Mc(Z) × Mc(Z) to solve

(D) sup 〈b, x〉
s.t. 〈fj , x〉 � cj , j = 1, . . . ,m,

〈fj , x〉 = cj , j = m + 1, . . . , n,

x � 0.

roblem(D) is linear and has infinitely many unknowns andn constraints.
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A.2. Proof of Proposition A.1

(a) The “only if” statement. Suppose(x∗, y∗) is a competitive equilibrium allocation.
Then x∗ ∈ X, y∗ ∈ Y and x∗ = y∗; i.e., (x∗, y∗) is feasible. Let(αc∗, λ∗) and
(qf ∗, βf ∗

L ,β
f ∗
H ) denote the optimal shadow prices in the consumer’s problem and the

firm’s problem, respectively. Thenqf ∗, βf ∗
L ,β

f ∗
H � 0 and λ∗ > 0. Substituting the
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market clearing condition into the firm’s complementary slackness conditions (4.25)
(4.27) gives (4.39)–(4.41). Substituting the market clearing condition and the fir
complementary slackness conditions (4.28)–(4.29) into the consumer’s complemen
tary slackness conditions (4.19)–(4.20) gives (4.42)–(4.43).

b) The “if” statement. Suppose(x∗, y∗) is feasible and there exist(qf ∗, βf ∗
L ,β

f ∗
H ,αc∗) ∈

�3+ × � andλ∗ > 0 such that (4.39)–(4.43) hold. Feasibility impliesy∗ = x∗. It re-
mains to show thatx∗ solves both problem(Dc) and problem(Df ) for some choice of
the price system. Let the price system be given by (4.44). Sincey∗ = x∗ andy∗ ∈ Y ,
x∗ is a feasible solution for problem(Df ). Conditions (4.39)–(4.41) and (4.44) more

over imply thatx∗ and(qf ∗, βf ∗
L ,β

f ∗
H ) satisfy (4.25)–(4.29). Hence,x∗ is an optimal

solution for problem(Df ). Sincex∗ ∈ X and conditions (4.39)–(4.41) and (4.44) im
ply 〈p∗, x∗〉 = 0, it follows thatx∗ is a feasible solution for problem(Dc). Conditions
(4.42) and (4.43) moreover imply thatx∗ and (αc∗, λ∗) satisfy (4.19)–(4.20). Since
〈p∗, x∗〉 = 0, (4.18) is also satisfied. Hence,x∗ is an optimal solution for problem
(Dc). �

.3. Proof of Theorems 4.1, 4.2 and 4.3

Incentive-efficient allocations are the Pareto-optimal allocations in the set of techno
ally feasible and incentive-compatible allocations. The problem of the planner is to
n insurance contract(xL, xH ) ∈ Mc(Z) × Mc(Z) to solve

D) sup〈EUL,xL〉 + 〈EUH ,xH 〉
.t.

〈I, xL〉 + 〈I, xH 〉 = 1, (A.3)

−〈EUL,xL〉 + 〈EUH,xL〉 � 0, (A.4)

〈EUL,xH 〉 − 〈EUH,xH 〉 � 0, (A.5)

〈rL, xL〉 + 〈rH , xH 〉 � 0, (A.6)

xL, xH � 0. (A.7)

he primal problem is to find a quadruple(α,βL,βH ,q) ∈ R4 to solve

P) inf α

.t.

α � EUL(z) − qrL(z) − βL

[
EUH(z) − EUL(z)

] ∀z ∈ Z, (A.8)
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α � EUH(z) − qrH (z) − βH

[
EUL(z) − EUH(z)

] ∀z ∈ Z, (A.9)

βL,βH ,q � 0, (A.10)

whereα is the shadow price of the adding-up constraint (A.3),βL andβH are the shadow
prices of the incentive-compatibility constraints (A.4) and (A.5), andq is the shadow price
of the technological constraint (A.6).
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Theorem A.1 below establishes the equivalence between the competitive equilib
rices and allocations, on the one hand, and the solutions to problems(D) and(P ), on the
ther hand.

heorem A.1.

(i) Suppose(x∗, y∗,p∗) is a competitive equilibrium. Let(qf ∗, βf ∗
L ,β

f ∗
H ) and (αc∗, λ∗)

be the optimal shadow prices in the problem of the firm and the consumer, respect
Sinceλ∗ represents the marginalutility of money, the optimal shadow prices in the
firm’s problem can be measured in utils:

(
q∗, β∗

L,β∗
H

) = λ∗(qf ∗, βf ∗
L ,β

f ∗
H

)
.

Thenx∗ and (αc∗, q∗, β∗
L,β∗

H , ) are optimal solutions for problems (D) and (P), re
spectively.

ii) Supposex and(α, q,βL,βH ) are optimal solutions for problems (D) and (P), respec
tively. Lety = x and definep = (pL,pH ) as

pi(z) = qri(z) + βi

(
EUj(z) − EUi(z)

) ∀z ∈ Z, i = L,H.

Then(x, y,p) is a competitive equilibrium. Also,α represents the consumers’ indirec
utility in a competitive equilibrium.

roof of Theorem A.1. An allocation(x, y) is feasible if and only ify = x and x is
easible for problem(P ). Sinceλ∗ > 0, the conditions (4.39)–(4.43) that characterize
ompetitive equilibrium allocation in Proposition 4.1 can be restated as

q∗(〈rL, x∗
L

〉 + 〈
rH , x∗

H

〉) = 0, (A.11)

β∗
L

(〈
EUH,x∗

L

〉 − 〈
EUL,x∗

L

〉) = 0, (A.12)

β∗
H

(〈
EUL,x∗

H

〉 − 〈
EUH,x∗

H

〉) = 0, (A.13)

αc∗ � EUL(z) − q∗rL(z) − β∗
L

(
EUH(z) − EUL(z)

) ∀z ∈ Z,

with equality ifx∗
L(z) > 0, (A.14)

αc∗ � EUH (z) − q∗rH (z) − β∗
H

(
EUL(z) − EUH(z)

) ∀z ∈ Z,

with equality ifx∗
H(z) > 0, (A.15)

here(q∗, β∗
L,β∗

H) = λ∗(qf ∗, βf ∗
L ,β

f ∗
H ) ∈ �3+. Conditions (A.11)–(A.15) are the com-

lementary slackness conditions for problems(D) and (P ). This directly implies (i)
nd (ii). �
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Parts (i) and (ii) in Theorem A.1 imply Theorems 4.1 and 4.2, respectively. Theorem 4.1
can also be derived using standard arguments.

P ′ ′ 2 ′
y

in
〈

(

R

B l

B he-

B n.

B

G
G ournal

H 89.
B .
J
K ic

K
M
M on-

P moral

P Inter-

R
R of

R
S

W 16,
roof of Theorem 4.1. Suppose the contrary. That is, there is(x , y ) ∈ L , with x ∈ X,
′ ∈ Y, x ′ = y ′, and 〈EU,x ′〉 > 〈EU,x∗〉. The consumer’s optimization condition (i)

Definition 4.1 then implies〈p∗, x ′〉 > 〈p∗, x∗〉. By feasibility, this is equivalent to
p∗, y ′〉 > 〈p∗, y∗〉 = 0, which contradicts the firm’s optimization condition (ii).�

In Jerez (2003), we establish the existence of optimal solutions to problems(P ) and
D). This result and Theorem A.1 imply Theorem 4.3.
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