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We showhow to recover equilibrium prices suppoditincentive-efficieh allocations in a clas-
sic insurance economy with moral hazard. Our key modeling choice is to impose the incentive-
compatibility constraints on insurance firms, and not on consumers as in Prescott and Townsend
[Pareto optima and competitivequilibria with advers selection and moral hazard, Econometrica
52 (1984) 21-45]. We show thaquilibrium prices of insuranceoatracts are equal to the sum of
the shadow costs arising from the resource and incentive-compatibility constraints in the planner’s
problem. The equilibrium allocations are the same as when the incentive-compatibility constraints
are imposed on consumers. As in Prescott and Townsend, the two welfare theorems hold.

1. Introduction

In their pathbreaking contribution, Prescott and Townsend (1984a, 1984b) show how to
extend the Arrow—Debreu model to a large class of economies with asymmetric informa-
tion. In these economies, asymmetric information is realized ex post, that is after agents
have traded. This class includes economies with moral hazard, where agents choose their
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effort after they have tradeldin particular, Prescott and Townsend define allocations in
the space of lotteries over bundles of stabetngent commodities. They then derive the
welfare theorems and show that a competitive equilibrium exists. The key modeling choice
of Prescott and Townsend is to impose the incentive-compatibility constraints arising from
asymmetric information on consumers, and not on firms. A typical example is an insur-
ance economy with moral hazard where consumers are subject to idiosyncratic risk. As
in the full-information benchmark, firms supply actuarially fair insurance plans and any
actuarially fair insurance plan is budget feasible. Consumers choose from the actuarially
fair insurance plans under the incentive-compatibility constraints. As a result the second
best is attained.

The motivation for our paper is a potential conceptual problem with imposing the
incentive-compatibility constraints on consumers: it is unclear how these incentive-
compatibility constraints arenforced in the decentralizestonomy. The natural inter-
pretation is to view the incentive-compatibility constraints as restrictions on the set of
contracts that firms can offer to consumers, rather than as consumers self-imposing these
constraintg Our paper therefore takes a more natagproach and imposes the incentive-
compatibility constraints on firms. As in the standard general equilibrium model, all the
relevant information is then conveyed throygfiices. In particular, equilibrium prices re-
flect the shadow costs arising from the resource and incentive-compatibility constraints.
This result is in contrast with the full information benchmark, where prices reflect only
the shadow costs arising from the resource constraints. The equilibrium allocations are the
same as when the incentive-compatibility constraints are imposed on consumers. As in
Prescott and Townsend (1984a, 1984b), the two welfare theorems hold.

We make our point in a classic moral hazard economy. There is a continuum of ex
ante identical consumers and a finite humber of idiosyncratic endowment states. Each
consumer can exert high or low effort at a direct utility cost. High effort reduces the prob-
ability of ending up in a poor stat The commaodities are insurance contracts, which are
signed between a consumer and a firm. An iasge contract specifies a vector of state-
contingent net trades and an effort level for the consumer. We assume that net trades are
perfectly verifiable and fully enforceable. It therefore suffices to consider exclusive con-
tractual relations in which consumers can buy insurance from at most one firm. Firms
have access to a constant-returns-to-seaarance technology and they face both tech-
nological and incentive-compatibility constraints. The incentive-compatibility constraints
require that insurance contracts give the consumers an incentive to conform to the effort
specifications. As in Prescott and Townsend (1984a), we allow for lotteries to overcome
the non-convexities generated by theentive-compatibility constraints.

We show how to recover equilibrium pricespporting incentive-efficient allocations.
Equilibrium prices are equal to the sum of the shadow costs arising from the resource and
incentive-compatibility constraints in the planner’s problem. For example, actuarially fair

1 However, it does not include economies with adversecsiein, where agents learn their types before they
trade (ex ante asymmetric information).

2 In the mechanism design literature, the principal affercontract subject to the incentive-compatibility con-
straint of the agents. See also the competitive modelsagigimmetric information in the partial equilibrium (e.g.
Rothschild and Stiglitz, 1976 and Wilson, 1977, and Bennardo and Chiappori, 2003).



contracts which specify a high effort generaderitical resource costs but different incen-

tive costs. Providing more insance implies higher inceng costs because it raises the
consumers’ incentive to shirk. This raises the equilibrium price of an actuarially fair con-
tract. Consumers then do not purchase the full-insurance contract because it is not budget
feasible, and firms do not offer it because it is imatentive compatibléwith full insurance
consumers always shirk). As a result, the competitive equilibrium allocation provides only
partial insurance. The amount of insurarethie same as when the incentive-compatibility
constraints are imposed on consumers, and so the second-best is attained.

There are also some formal differencesim®en our approach and that of Prescott and
Townsend (1984a). With their approach, #éidpnium prices are the same as in the full-
information benchmark, so they are linear on the agents’ net trade sets. With our approach,
equilibrium prices are not the same as in the full-information benchmark. Instead, they
are non-linear on the agents’ net trade sets. The reason is that equilibrium prices reflect
the shadow costs arising from the incentive-compatibility constraints, and these shadow
costs are non-linear and may even be non-convex. This feature of our model is perfectly
consistent with standard general equilibrium analysis, because prices remain linear in the
general space of lotteries (the commoditasp). A second formal difference with respect
to Prescott and Townsend is that the infirdienensional spaces in which allocations and
prices lie are not approximated by finite grids. This is as in Kehoe et al. (2002) for a related
exchange economy with ex post private information about endowments. Kehoe, Levine
and Prescott (Kehoe et al., 2002) derive the welfare and existence theorems by introducing
the notion of the stand-in consumer economy, which is a standard finite convex exchange
economy. In addition, they show that a lottequdibrium allocationcan be implemented in
a sunspot equilibrium. Our paper differs from their paper because we impose the incentive-
compatibility constraints on firms, while they impose them on consumers. Moreover, we
derive our results using the techniques of linear programring.

Our application of linear programming draws heavily on the work of Makowski and
Ostroy (1996), who develop the linear programming methodology for large economies with
full information. Specifically, they use a measure-theoretic description of the economy to
show that efficient allocations solve a linear programming problem. Then they establish an
equivalence between the competitive equilibrium allocations and prices, on the one hand,
and the solutions to the primal and dual problems, on the other hand. Gretsky et al. (1999)
present a similar analysis for large assignment economies.

The paper is organized as follows. In Section 2 we describe the economy. In Section 3
we present the general equilibrium model. In Section 4 we define a competitive equilib-
rium and characterize the competitive equilibrium prices and allocations. In addition, we
derive the two welfare theorems and establish the existence of a competitive equilibrium.
Section 5 concludes. The proofs are deferred to Appendix A.

3 This paper complements the work of a companion pépenez, 2003), where we show that incentive-efficient
allocations solve a linear program, and use lineagpmming techniques to characterize the optima.



2. The economy

There is a continuum of identical consumers with measure one and a single consumption
good. Consumers are subject to idiosyncratic endowment shocks. Shocks are independent
across consumers and render no aggregate uncefdiiaiyh consumer faceidiosyn-
cratic statess = 1, ..., S. The consumer’s endowment in statés denoted byw,;, and
satisfiesw; < wy if s < s’ (endowments are lower in lower states). The consumer is more-
over endowed with one unit of time that she allocates between leisure activities and effortin
preventing the realization of a low state. Effort can be either high or low, with the set of ef-
fortlevels denoted b = {er, en}, where 0< ey, < ey . We denote the probability of state
s with effort ¢; by 6;;. We assume that the likelihood ratféy, /6 s} increases with the
states. So high effort reduces the probability of ending up in a low state. Consumers have
von Neumann-Morgenstern prefeces as defined by the utility function £ x Ry — R.

The utility of consumptiort under efforte; is then given byU; (¢) = u(e;, ¢), whereU;

is assumed twice continuously differentiable, strictly increasing, and strictly concave with
limc_oU/(c) = o0 and lim._. U/(c) = 0. Effort is costly, saUr (c) — Ug (c) > d for all

¢ € N4+ and some positive constadht

There is a finite number of insurance firms which are large relative to the non-atomic
consumers. Each firm insures a positive mass of agents, thus facing no aggregate risk.
All firms have access to an identical constaeturns-to-scale insurance technolSgie
assume that insurance claims are perfectly verifiable and fully enforceable. It therefore
suffices to consider exclusive contractuahbti&ns in which consumers can buy insurance
from at most one firnf.

The timing of the model is as follows. At some initial date, the insurance market opens
and consumers buy insurance from the firms. After the trading period, consumers choose
their effort level. Then, endowment shock® aealized. Finally, insurance contracts are
enforced, and consumption takes place. Themoi ex post trade. The structure of uncer-
tainty is common knowledge and the realization of the endowment shocks is observable.
However, effort is private information.

3. Thegeneral equilibrium model

In this section, we describe the commodity space, the consumption and production sets,
and the consumerstility over consumptia bundles. We then define allocations. We begin
with some preliminary notation.

4 \We assume that the law of large numbers holds. See Sun (1998).

5 This assumption implies that each firm is redundant in the economy and has no market power.

6 See Bisin and Gottardi (1999) and Bisin and Guattli97) for the analysis of moral hazard economies with
non-exclusive contracts.



3.1. Notation

Let Z be the consumer’s net trade set, and denote its elements-hiys, . .., zs):
7z = {zeRS: Zs = —Wy, s:l,...,S}.

Let C(Z) denote the space of continuous real-valued functionZ pendowed with the
topology of uniform convergence on compact sets. The topological du@l 8§ is the
space of signed Borel measuresmwhich are finite on compasets and have compact
support’ We denote the dual space b¥.(Z), and let it be endowed with the weak-star
topology. Then((Z) is also the dual oM. (Z). The dual pair of space€ (Z), M .(Z))

is endowed with the standard bilinear form:

(o) = / @@, FeC2), peMd2),
Z

where the bracket notation highlights thdimite dimensional nature of the spaces in the
pairing. We denote the total variation of a measure M.(Z) by || ||

3.2. Commodities

The commodities are insurance contracts, which are signed between a consumer and a
firm. An insurance contracts specifies an effort levelE and a vector of state-contingent
net tradeg € Z. Both specifications are allowed to be random and are given as folows.
First, the consumer is assigned a lottery which specifies an effort level. After the consumer
chooses her effort and conditional on théoef specification received, a second lottery
specifies a vector of state-contingent net trades.

We take as the commaodity space the product space

L=M(Z) x Mc(2),

endowed with the product topology. We describe an insurance contract by a huadle
(xz,xp) € LT such that

lxcll + llxall :/de(Z)+/dxH(Z):1- B.1)
V4 V4

Here,||x; | represents the probability that the insurance contract specifies gffartd the
equality in (3.1) is an adding-up conditiom addition, the probability measurg/||x; ||
represents the random net tradssigned conditional on specificati@n. Note that the
uncertainty involved in a contract resolves in two steps. In the first step, consumers may be
uncertain about the effort that the contract will specify. This occurs when |hgth and

llxg | are positive. In the second step, consumers find out their effort specifications but,

7 See Hewitt (1959).

8 Itis well known since the seminal work of Prescott afmivnsend (1984a) that lotteries may play a role in the
presence of incentive-compatibility constraintsJarez (2003) we derive conditions under which random effort
specifications and random net trades are optim#iimmmodel. See also Bennardo and Chiappori (2003).



in deciding whether to conform or not to such specifications, they may still be uncertain
about the net trade that the contract will specify (and thus about their state-contingent
consumption plan). This occurs wheyy||x; || is a non-degenerate probability measure.

Remark. We could also take as the commodity space the space of compactly supported
measures over pairs of effort and net trad€,(E x Z). An insurance contract would

then be defined as a probability measureFor Z. The two definitions of the commaodity
space are equivalent. Our choice of the commodity space has the advantage that it directly
implies that incentive-efficient allocatiosslve a linear programming problem (see Jerez,
2003). Our choice of the commodity space is also equivalent to the one of Prescott and
Townsend (1984a), who define the commodity space to be the space of measures over
triples of effort, consumption and endowment. The difference with respect to Prescott and
Townsend (1984a) is that they assume that the underlying consumption set, and thus net
trade setz, is a finite set. With this assumption, the commodity space is finite dimensional
since it is isomorphic to the Euclidean spadéée consider the general case in which the

net trade set need not be a finite $et.

3.3. Consumption sets

The consumption set is the set of insurance contracts:
X ={Gp,xm) € LT fxpll + llxul = 1}. (3.2)

The exclusivity assumption implies that consumers can buy at most one contract. Con-
sumers can choose to be uninsured with 0 and exert any effort leved;. In this case,
x; =d8g andx; =0 for j # i (with 8o denoting the Dirac measureat= 0).

3.4. Preferences

The expected utility of a consumer with effeftand net trade is

N
EU;(2)= Y 0isUi(og + 25). (3.3)
s=1

The expected utility from an insurance contraet X is thert°
(EU,x)=(EUL,xL) +(EUn, xH)

_ / EULG) dxr(2) + / EUH() den(2). (3.4)
Z VA

Sincex is a lottery, the consumer’s expected utility is linear.

9 see also Kehoe et al. (2002) for a related exchange economy with private information over endowments.
10 Here,EU = (EUL, EUg) € C(Z) x C(Z).



3.5. Production sets

Each firm supplies a single insurance contfaoh production plan is described by a
bundley = (y., yn) € L™. Here, (i) y/||y| is the contract supplied by the firm, and (ii)
llv|l is the total mass of contracts supplied. The law of large numbers implies that, when
the firm insures a positive mass of consumér&ces no uncertainty. We assume that the
firm assigns lotteries across consumers in otdgreserve this lack of uncertainty. Then
llvi |l represents the ex post mass of consumers who are specifiedegffartd y; /|| y; ||
represents the distribution of the state-contingent net trade vectors of these consumers once
the outcomes of their individual lotteries are realized.

The expected net trade of a consumer with efépdnd net trade is

S
ri(Z) = ZeisZs- (35)
s=1

The net transfer of resources that the firm makes to its customers under productign plan
is then

(rL L)+ (ris v = f rL(2) dyL () + f () dyp (2). (3.6)
V4 V4

A production plany is technologically feasible if the net transfer of resources that the firm
makes to its customers is non-positive:

(re,yL)+ (ra, ya) <O. (3.7)

Since the firm cannot observe the effort choice of its customers, the contract it offers
must be incentive compatible. Under production pjarthe utility of a consumer who is
specified effore; and chooses effodt; is

Vi 1 /
EUj. o= )= EU;(2) dyi(2). 3.8
< J ||yi||> L. i@ i) (3.8)

A production plany is incentive compatible if it is not in the interest of the consumers to
deviate from their dbrt specifications:

(EUi,yi) 2(EUj,y;), j#i,i,j=L,H. (3.9)

The production set is the set of production plans satisfying the technological and
incentive-compatibility constraints:

Y ={(r.yn) €LY (re,yr) + (ru. yu) <0,
(EU; —EUj,y) 20, j#i,i,j=L,H}. (3.10)

Since all constraints are linear, the productionisét convex and displays constant returns
to scale (i.e.Y is a convex cone). SincedY, the firm can choose to be inactive.

11 since consumers are ex ante identical, we shall restrict our attention to symmetric allocations.



4. Competitive equilibrium

In this section, we define a competitive equilibrium. We then use linear programming
techniques to characterize the competitive equilibrium prices and allocations. We begin by
describing the price space.

4.1. Prices

The price space is set of continuous linear functionals on the commodity space (the
dualspace):

P=L*=C(Z) x C(2),

endowed with the product topology. A price syt is then a pair of continuous functions
on Z, denoted byp = (pr, pu). For a givenp € P, the value of a commodity bundle
x € LT is given by the inner product:

(P,X)=(PL,XL)-l-(pH,XH)=fPL(Z)de(Z)+/PH(Z)dxH(Z). (4.11)
7 z

In particular, the price of a deterministic contract which specifies effaahd net trade
is pi(z).12 That is, prices depend both on the effort and the net trade specified by the
contract. On the other hand, a lottery specifies different pairs of effort and net trade with
positive probability. Equation (4.11) says that the price of a lottery is calculated by adding
the values of each individual component ysthe corresponding probability weights (i.e.
integratingp; (z) overz with respect to the measurgfor eache;, and summing over;).13

Unlike in the full-information benchmark, prices are not necessarily linear in the un-
derlying net trades. Take two deterministic contractsandxz, which prescribe the same
effort levele; and assign net tradesandzz (with r > 0 andr # 1). Their respective prices
are p;(z) and p;(¢z). Critically, however, these prices need not satigfytz) = tp;(z).
That is, even though the net trade assignedbin each state is times the net trade as-
signed byxj, the price ofxy need not be times the price oft1. The reason is that the
continuous functiorp; need not be a linear functidd.While the possibility of non-linear
pricing may seem inconsistent with standard general equilibrium theory, the inconsistency
is only apparent. Equation (4.11) shows that prices in the general space of lotteries are con-
structed as expected values given the prices in the underlying space of degenerate lotteries.
Therefore, prices afénear in the general space of loties (the commodity spacéy.

12 The deterministic contract is given hy = §; andx; = 0 (with §; denoting the Dirac measure g, so its
price is:(p, x) = (p;, x;} = {pi, 8z) = pi (2).

13 see also Prescott and Townsend (1984a).

14 The set of price systemg = (pr, pg) Wherep; and pg are linear functions is only a subset of the price
spaceP.

15 prices are (i) additivetp, x1 + x2) = (p., x1) + (p. x2) for all x1, x» € L*; and (ii) homogeneousp, 1x) =
t(p,x)forallx e Lt and allr € 9.



4.2. Competitive equilibrium

Since the production set displays constant returns to scale, we may assume that there is
a single firm in the economy. A competitive equilibrium is defined in the standard way.

Definition 4.1. A competitive equilibrium is an allocatioix*, y*) € L? and a price system
p* € L* for which

() x* maximizes(EU, x) over the sefx € X: p*-x <0};
(i) y* maximizes(p*, y) over the set’; and
(iif) markets clear, o™ = y*.

Condition (i) requires that contragt* yields consumers the highest utility among all
budget feasible contracts lying in theiortsumption set. Condition (ii) requires thgit
yields the firm the maximal level of profits within the S8t The market clearing condi-
tion (iii) requires that the contract demanded by consumers coincides with the contract
supplied by the firm, and that the total mass of contracts supplied by the firm is equal to
the total mass of consumers.

In order to characterize the competitive equilibrium prices and allocations, we analyze
the optimal decisions of the firm and the consumers. Then we relate these optimal decisions
through the market clearing condition.

4.3. Optimal consumption plans

The consumer chooses= (x1,xy) € L to solve the following linear programming
problem:

(D.) SUp{EUL,x1)+{(EUg,xpy)

s.t.
(Z,x1)+(Z,xu) =1, (4.12)
(pL,xL) + (pH.xL) <0, (4.13)
xr,xg 2 0. (4.14)

Condition (4.12) is the adding-up condition on the lottergxpressed in bilinear form,
with 7: Z — {0, 1} denoting the characteristic function @n The budget constraint (4.13)
says that the value the lottery must be non-posttfve.

Problem(D,) is dualto another linear programming problem. The primal probi{éy),
which is derived in detail in Appendix A, consists of finding a paif, 1) € R? to solve

(P.) inf a®

16 Since a lottery specifies a random pair of effort and net trade, this constraint is analogous to the full-
information budget constraint, according to which tladure of the consumer’s net trade must be non-positive.



S.t.

a > EUL(z) —ApL(z) VzeZ, (4.15)
a2 EUg(2) —Apu(z) VzeZ, (4.16)
A>0, (4.17)

wherea“ and are the shadow prices of the adding-up constraint (4.12) and the budget
constraint (4.13).

Throughout the section we assume that optimal solutions for probl&ysand (P.)
exist and that the optimal values of these problems are identical. An analogous argument
to the one used in Jerez (2003) implies that problems and(P,) have these properties
provided (4.15) and (4.16) do not bind wheris above a certain threshofde Z. Intu-
itively, when consumption is sufficiently high, further increases in consumption must raise
the price paid by the consumer than more than they raise the consumer’s expected utility
(for a given effort level). The competitive equilibrium price system derived at the end of
this section has this property. The key assumption driving this result is that the marginal
utility of consumption decreases asymptotically to zero.

By the complementary slackness theorem (see Krabs, 1979), a feasible solution
(xr,xp) for problem(D,) is optimal if and only if there existé&x“, 1) € R x R4 such
that

AM((pL.xL) + (pu.xH)) =0, (4.18)
a > EUL(z) — AprL(z) Vze Z, withequality ifxy(z) >0, (4.19)
af 2 EUg(2) — Apg(z) Vze Z, with equality ifxz(z) > 0. (4.20)

Condition (4.18) states that the optimal shadow pkide a complementary multiplier
for the budget constraint (4.13). The monotonicity of preferences implies fegtositive,
so the budget constraint holds with strict equalftyConditions (4.19) and (4.20) state
that the optimal measurag andxy are complementary multiplier vectors for the primal
constraint systems (4.15) and (4.16). Here,

EUi(z) —Api(z), i=L,H,

represents the expected consumer surplus faodeterministic contract which specifies
effort ¢; and net trade;. Conditions (4.19) and (4.20) then imply thée optimal con-
sumption plan(xz, xg) puts all the probability weight opairs of effort and net trade
that maximize the expected consumer surpiireover, the maximal expected consumer
surplus is equal te¢ (the consumer’s indirect utility}®

17 sSuppose. = 0. If U; is unbounded for somie= L, H, the corresponding primal constraint system is violated.
If U; is bounded, the corresponding primal constrajgtem cannot hold with strict equality for any Z (since

U; is strictly increasing). In either case, the supportxpfis empty, so problen{D.) cannot have an optimal
solution.

18 problems(D.) and(P,) have the same optimal value.

10



4.4. Optimal production plans

The firm chooses = (y., yu) € L to solve the following linear programming problem:

(Dy) sup(pr,yL)+ (pH,yH)

S.t.
(EUL,yn) — (EUpn, yn) <0, (4.22)
(rL,yL) + (ru, yu) <0, (4.23)
v,y = 0. (4.24)

The fact thatY is a cone and @ Y directly implies that an optimal production plan
yields zero profits.

Lemma4.1. Lety be an optimal solution for probleD ) then

(p,y)={pL,yL)+ ({pu,yu)=0.

Letg/ and(ﬁ[, /3{,) denote the shadow prices of the technological constraint (4.23) and
the incentive-compatibility constraints (4.21)—(4.22), respectively. By the complementary
slackness theorem, a feasible solutiop, y) for problem(D ) is optimal if and only if

there existsq”, B/, ;) € 13 such that

g’ (re.yL) + (r. yu)) =0, (4.25)
Bl ((EUn, y1) — (EUL,y1)) =0, (4.26)
B ({EUL. yi) — (EUp. yn)) =0, (4.27)
0> pr(2) —q'ri(x) — B (EUn(x) — EUL(2)) VzeZ,

with equality if yz (z) > 0, (4.28)
0> pu(@ —q'ru@ — B (EUL(R) — EUn(2)) VzeZ,

with equality if yy (z) > 0. (4.29)

Conditions (4.25)—(4.27) state that the optimal shadow prigesand (8 , 8J,) are
complementary multipliers for the technologl constraint (4.13) and the incentive-
compatibility constraints (4.21)—(4.22). Conditions (4.28) and (4.29) statéhhatptimal
production plan(y., yg) puts all the weight on pairs of effort and net trade that maxi-
mize the producer surpludloreover, the maximal producsurplus is zero. The producer
surplus from a deterministic contract which specifies effpend net trade is

Pi@ —aq'ri2) = B/ (EU;(x) — EU;(2)) j#i,i.j=L.H.
Take a high-effort contract. The price of the contragtis(z), while its shadow cost is

q’ri (@) + B (EULR) — EUR(2)). (4.30)

11



The first term in (4.30) is a resource cost. Thatrig(z) is the average amount of the
consumption good that the firm transfers to its customers under the contragt; atd

is the shadow value of the transfer. The second term in (4.30) is an incentive cost (benefit).

If the net trade; is such that the customers prefersioirk, the term reflects an incentive
cost which is proportioriao the utility gainfrom shirking. Conversely, if is such that the
customers prefer not to shirk, the term reflects an incentive benefit which is proportional
to the utility loss from shirking. If the customers are indifferent between conforming to
the specification and shirking, the term is@éso there is no incentive cost or benefit).

A similar interpretation applies for low-effort contradfs.

4.5. Competitive equilibrium prices and allocations

The complementary slackness conditions for the firm’s problem, (4.25)—(4.29), imply
that the price of the contract offered by the firm is equal to the shadow cost of the con-
tract. This result is analogous to the standawdstant-returns condition that the price of a
good is equal to its marginal cost of production. ké&the the contract traded in a compet-
itive equilibrium. Conditions (4.28) and (4.2&)gether with the méet clearing condition
imply that

pi @) =q" i)+ B (EU;(2) — EUi(2)) if x}(z) >0, i =L, H, (4.31)

whereg/*, /3[* andﬁ{’k are the optimal shadow prices of the firm’s problem in a compet-
itive equilibrium. Therefore, price of contraet is

(P x*) =(pL. x1) + (Pir- x71), (4.32)
where
(pr,x¥)=(a"*ri — B/ (EU; — EUy, x}). (4.33)

That is, the price of the contract traded in a competitive equilibrium is equal to its shadow
cost. Lemma 4.1 and the market clearing condition moreover imply that

(p*, ") =0. (4.34)

That is, the price of the contract traded in a competitive equilibrium is equal to zero (i.e.,
the value of the expected net trade implied by the contract is zero).

Unlike the standard Arrow—Debreu model, the competitive equilibrium price system is
not fully determined under moral hazard. Thas typical feature of models with a continu-
um of commodities, where the prices of commaodities that are not traded in equilibrium
are indeterminaté® As a result there are many price systems that support a competitive
equilibrium allocation. To see this, reothat conditions (4.28) and (4.29) imply

pi (@) <q’*ri@) + B (EU;(2) — EUi(2)) VzeZ, i=L,H. (4.35)

19 since the incentive-compatibility constraint with low effort does not bind at an incentive-efficient allocation,
the first welfare theorem (see Theorem 4.1) implies that the shadow cost of a low-effort contract in a competitive
equilibrium is a standard resource casfry (z).

20 see Mas-Colell and Zame (1991).
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Therefore, the price of a contracthat is not traded in a competitive equilibrium satisfies

(p*.x)=(p}.xL)+ (P} xu), (4.36)
where
(pt,xi) <lg”*ri — B/*(EU; — EU), x1). (4.37)

The price of a contract that is not traded in a competitive equilibrium isltheer that the
shadow cost of the contract. If this was not the case, the firm could make infinite profits by
supplying an infinite mass of one of these contracts.

A competitive equilibrium price system may be selected by taking the supremum over
the set of pricep € P that satisfy conditions (4.31) and (4.35). The selected price system
is

Pr@ =q*ri(2) + B/*(EU;(z) — EUi(z)) VzeZ, i=L,H. (4.38)

Under this price selection criterion, the price of a contract (whether traded or not) is equal
to its shadow cost. This ensures that no small perturbation of an optimal production plan
yields negative profits to the firdt.

In addition to the competitive equilibrium prices, we may characterize the competitive
equilibrium allocations. The characterization is obtained by combining the complementary
slackness conditions for the consumer’s problem, (4.18)—(4.20), the complementary slack-
ness conditions for the firm’'s problem, (4.25)—(4.29), and the market clearing condition.
Proposition 4.1 summarizes the charaaation of a competitie equilibrium.

Proposition 4.1. The allocation(x*, y*) is a competitive equilibrium allocation if and only
if (x*, y*) is feasible, and there exigy/*, B} *, ﬂ,{{*, a*) e 2 x % andr* > 0 such that

" ((re.x}) + (ru. <)) =0, (4.39)
ﬁ[*((EUHs x;)—(EUL,x})) =0, (4.40)
B ((EUL. xfy) — (EUR. x7)) =0, (4.41)
@ > EUL(R) — Mg *rp(2) — VB (EUn(2) — EUL(R)) VzeZ,

with equality ifx} (z) > 0O, (4.42)

%> EUp(2) — V¢ ru(2) — VBl (EUL() — EUn(2)) VzeZ,

with equality ifxy; (z) > 0. (4.43)

21 Alternatively, we could allow the firm to both sell and buy contracts. In this case, the complementary slackness
conditions for the firm’s problem directly pin down thaqe system in (4.38). Intuitively, (4.37) must hold with
strict equality, for otherwise the firm could make infinite profits/ingan infinite mass of contraat.

Under our price selection criterion, the equilibrium prices lie in a subset of the prlce gpmtmh is iso-
morphic tom3. Thatis, an equilibrium price system is fully characterized by att(ﬁ{e ,B qf*) € ‘h .The
first welfare theorem (see Theorem 4.1) implies W%ﬁ 0 and % > 0 since only the |ncent|ve compatlblllty
constraint with high effort binds at an incentive-efficient allocation. Therefmzes linear andp* is non-linear.
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The competitive equilibrium price systeri = (pj , pj};) (selected as the supremum over
the set of equilibrium pricgss

pr @) =q”*ri(2) + B/ (EU;(x) — EUi(z)) VzeZ, i=L,H. (4.44)

Substituting the market clearing conditiondrihe firm’s complementary slackness con-
ditions (4.25)—(4.27) gives (4.39)—(4.41). Substituting the market clearing condition and
the firm’s complementary slackness conditions (4.28)—(4.29) into the consumer’s comple-
mentary slackness conditions19)—(4.20) gives (4.42)—(43). The proposition states that
conditions (4.39)—(4.43) are not only necessary but also sufficientftor be the contract
traded in a competitive equilibrium. The colamentary slackness condition (4.18) asso-
ciated to the consumer’s budget constraint is not included in the characterization. Since
conditions (4.39)—(4.41) and (4.44) impK.18), this condition isedundant. The proof of
the “if” statement is in Appendix A.

4.6. Welfare theorems and existence

The characterization of a competitive édarium allocation in Proposition 4.1 is equiv-
alent to the characterization of an incentive-efficient allocation derived in Jerez (2003).
Therefore, the two welfare theorems héfdFurthermore, the existence of optimal solu-
tions to the planner’s problem and its dual (established in Jerez, 2003) implies existence of
a competitive equilibrium.

Theorem 4.1 (First Welfare Theorem)A competitive equilibrium allocation is incentive
efficient.

Theorem 4.2 (Second Welfare TheorenBor any incentive-efficient allocatiaw, y) there
is a price systenp € P such that(x, y, p) is a competitive equilibrium.

Theorem 4.3. A competitive equilibrium exists.

5. Conclusion

We have shown how to recover equilibriumqgas supporting incentive-efficient allo-
cations in a classic moral hazard economy. Our key modeling choice is to impose the
incentive-compatibility constraints on firms, and not on consumers as in Prescott and
Townsend (1984a). We have shown that equilliim prices of insurance contracts are
equal to the sum of the shadow costs arising from the resource and incentive-compatibility
constraints in the planner’s problem. The equilibrium allocations are the same as when
the incentive-compatibility constraints are imposed on consumers. As in Prescott and
Townsend (1984a), the two welfare theorems hold.

22 The First Welfare Theorem can also be derived using standard arguments. In Appendix A, we provide the
proof for completeness.
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The results in this paper extend directly to the general class of economies with ex post
asymmetric information analyzed by Prescott and Townsend (1984a, 1984b). This class
includes economies with moral hazard and withpest private information. To clarify the
presentation, we have chosen one of their example economies to present our results. A key
feature of the Prescott—Townsend class of economies is that the number of goods is finite.
In particular, the economies are either static or have a finite time horizon. The number of
unobservable actions (types) is also finite. This implies that, even though the dimension
of the general space of lotteries where allocations lie is infinite, the number of resource
and incentive-compatibility constraints is finite. In this paper, we exploit this semi-infinite
structure and use the techniques of Linear Semi-Infinite Programming to derive our results.

We could have also considered a dynamic moral hazard economy with finitely many
periods in the spirit of Rogerson (198%) There consumers experience an idiosyncratic
endowment shock each periodstrance contracts specify eqgience of time-indexed ef-
fort and net trade pairs, and must give consumers an incentive to conform to the effort
specified each period. In periodhet trades are assigned contingent on the current state of
the world, which is given by the sequence of realized idiosyncratic states from period 1
up to period:. Allowing for lotteries again renders the model linear. Dynamic incentive-
compatibility constraints reflect the fact that the effort exerted in periaffects the net
trades assigned in all subsequent periodsl, ..., T, because it affects the distribution
of the shock at time. Therefore, the effort exerted in periodhffects the consumers in-
centives to conform to the effort specifications in all subsequent perieds ..., T. In
a competitive equilibrium of the dynamic econgrprices reflect the fact that effort and
net trade assigned in periedmply a resource and an incentive cost in peripds well as
additional incentive costs in all subsequent periodsl, ..., T.

Our results can also be extended to more general settings, including (infinite) dynamic
economies. With an infinite timborizon, incentive-efficient allocations still solve a lin-
ear program (e.g. expected utilities and incentive-compatibility constraints are linear in the
commodity bundles). The difference is that both the dimension of the space where alloca-
tions lie and the number of constraints in the planner’s problem are now infinite. Extending
our results thus requires (slightly more involved) Linear Infinite Programming techniques.

As noted by Prescott and Townsend (1984a), the extension of the Arrow—Debreu model
to economies with adverse selection is not straightforward (see also Bisin and Gottardi,
2000, and Rustichini and Siconolfi, 2002). In a companion paper (Jerez, 2000), we suggest
that the linear programming methodology can be helpful in understanding the problems
which arise in decentralizqnincentive-efficient allocations under adverse selection.
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Appendix A
A.1. The linear programming problems

The linear programs in Section 4 are ko as Linear Semi-Infinite Programming
(LSIP) problems. An LSIP problem is a linear program in which either number of vari-
ables or the number of constraints is finite (see Goberna and Lépez, 1998). In this section,
we set up the primal LSIP problem and derive its dual. The LSIP problems in Section 4
and Appendix A.2 obtain as particular cases of the problems in this section by applying the
definitions in Table A.1.

A.1.1. The primal problem
Let 1< m < n andf” be equipped with the Euclidean norm and partially ordered by
means of the cone

K,={yei':y; >0 j=1...,m}.

Letw € N, and defineZ = {z € R*: z > —w}. Let C(Z) denote the vector space of con-
tinuous real-valued functions dfy endowed with the topology of uniform convergence on
compact sets and partially ordered by means of the cone

Ci(Z)={feC(2): f(x)20Vze Z}.

Theprimal problem is to findy € )" to solve

Table A.1
The primal and dual problems in Sections 4 and Appendix A.2

The planner The firm The consumer
(n,m) 4,3) 3,3 2,1)
y (BL.Br.4.) 8. B1.a") (ha©)
c (0,0,0,1) (0,0,0) 0,1
b=(br,by) (EUL,EUg) (pL,PH) (EUL,EUp)
fi=U, i) (—EUL + EUg.0) (—EUL +EUg,0) (pL,PH)
f2="(far, f21) (0, EUL — EUR) (0,EUL — EUp) Z,7)
f3=(f3L, f3n) (rL.ry) (re.ry) -
Ja=(faL, fan) Z,7) - -
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(P) inf c-y
st. Ay >b, yeEK,,
wherec e R", b= (by,by) € C(Z) x C(Z), andA:R" — C(Z) x C(Z) is a continuous
linear mapping. ProblerP) is linear and has unknowns and infinitely many constraints.

A.1.2. The dual problem

Let M. (Z) denote the space of signed Borel measures amich have compact support
and are finite on compact sets. This space is the topological dual spac¢e of

Let C(Z) x C(Z) be paired in duality withM.(Z) x M.(Z). The reflexive spac&”
is paired with itself. The two pairings are endowed with their natural bilinear forms (to
highlight the dimensionality of the spacegle pairing we use the dot product and bracket
notation for finite and infinite dimensions, respectively):

(fax>=/dexL+/fdeH, f=UL, fa)eCZ) x C(2),
z A
x=(xr,xp) € Mc(Z) x M(Z);
y'Z=Zijj, yeR", zeR".
j=1

The adjoint ofA, A*: M .(Z) x M.(Z) — %", is defined by the relation

y-(A*x) =(Ay,x), forallye K], x e M., (Z) x Mc,(Z). (A1)
We may writeAy = Z';:lyjfj, wheref; = (fjL, fin) € C(Z)x C(Z)forj=1,...,n.
Then (A.1) can be expressed as

Y (A*x) =D "yi(fj.x), forallyeKp. x e Me(Z) x Mc,(Z). (A.2)
j=1

Write A*x < c as
n
Z}’j((f,/,ﬂ —¢j) <0, Vyek,.
j=1

Thedualproblem is to findv € M (Z) x M.(Z) to solve
(D) sup (b, x)
st (fj,x)<cj, j=1...,m,

(fi.x)=cj, j=m+1...n,
x =>0.

Problem(D) is linear and has infinitely many unknowns andonstraints.



A.2. Proof of Proposition A.1

(a) The “only if” statement Supposex*, y*) is a competitive equilibrium allocation.

Thenx* € X, y* € Y and x* = y*; i.e, (x*, y*) is feasible. Let(a®*, 1*) and
(q'*, B{*, B1) denote the optimal shadow prices in the consumer’s problem and the

firm's problem, respectively. Thep/*, 8/*, g/* > 0 and ¥ > 0. Substituting the
market clearing condition into the firm's cqiementary slackness conditions (4.25)—
(4.27) gives (4.39)—(4.41). Substituting the market clearing condition and the firm’s
complementary slackness conditions2@)—(4.29) into the consumer’'s complemen-

tary slackness conditions (4.19%.20) gives (4.42)—(4.43).

(b) The “if” statement Supposéx*, y*) is feasible and there exigj/*, [* [,*,ac*) €

Sti x N andr* > 0 such that (4.39)—(4.43) hold. Feasibility implig§= x*. It re-
mains to show that* solves both probleraD,.) and problem(D r) for some choice of
the price system. Let the price system be given by (4.44). Sifeex* andy* € Y,

x* is a feasible solution for probleD ;). Conditions (4.39)—(4.41) and (4.44) more-
over imply thate* and(g/*, B} *, /3};*) satisfy (4.25)—(4.29). Hence; is an optimal
solution for problem(D ). Sincex* € X and conditions (4.39)—(4.41) and (4.44) im-
ply (p*, x*) = 0, it follows thatx* is a feasible solution for probleD,). Conditions
(4.42) and (4.43) moreover imply that and («*, A*) satisfy (4.19)—(4.20). Since
(p*,x*) =0, (4.18) is also satisfied. Hence’ is an optimal solution for problem
(D). DO

A.3. Proof of Theorems 4.1, 4.2 and 4.3

Incentive-efficient allocations are the Pareto-optimal allocations in the set of technolog-

ically feasible and incentive-compatible allocations. The problem of the planner is to find
an insurance contra¢ty, xg) € M.(Z) x M.(Z) to solve

(D) sup(EUL,x1)+(EUpn,xH)

S.t.

(T,x)+{(Z,xpg)=1, (A.3)
—(EUL,xL)+ (EUn, x1) <0, (A.4)
(EUL,xn) — (EUny, xn) <0, (A.5)
(re,xL) + (ra,xu) <0, (A.6)
xp,xg =0. (A.7)

The primal problem is to find a quadruple, 8., Bu,q) € R* to solve

(P) infa

S.t.

a > EUL(z) —qri(z) — BL[EUn(z) — EUL(2)] Vz€Z, (A.8)
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o> EUl(z) —qru(z) — Bu[EUL(z) — EUK(2)] Vze Z, (A.9)
BL.Bu.q >0, (A.10)

whereq is the shadow price of the adding-up constraint (Ag).andgy are the shadow
prices of the incentive-compatibility constraints (A.4) and (A.5), anslthe shadow price
of the technological constraint (A.6).

Theorem A.1 below establishes the equivalence between the competitive equilibrium
prices and allocations, on the one hand, and the solutions to probignand(P), on the
other hand.

Theorem A.1.

() Supposéx*, y*, p*) is a competitive equilibrium. Lat/*, {* By and (a*, A*)
be the optimal shadow prices in the problem of the firm and the consumer, respectively.
Since)\* represents the marginaltility of money, the optiad shadow prices in the
firm’s problem can be measured in utils

(q*, BI- 5;1) = )‘*(‘If*’ IBL*’ ﬁH*)‘
Thenx* and («“*, g™, B}, B};,) are optimal solutions for problems (D) and (P), re-
spectively.
(i) Suppose and(«, g, B, Br) are optimal solutions for problems (D) and (P), respec-
tively. Lety = x and definep = (pr, py) as
pi(@) =qri(x) + Bi(EU;(z) — EUij(z)) Vz€Z,i=L,H.

Then(x, y, p) is a competitive equilibrium. Alse, represents the consumers’ indirect
utility in a competitive equilibrium.

Proof of Theorem A.1. An allocation (x, y) is feasible if and only ify = x andx is
feasible for problem(P). SinceA* > 0, the conditions (4.39)—(4.43) that characterize a
competitive equilibrium allocation in Proposition 4.1 can be restated as

q*((re. x[) +{ru. x3)) =0, (A.11)
B;(EUy,x})—(EUL.x})) =0, (A.12)
B ((EUL. x};) — (EUn, x};)) =0, (A.13)
@ > EUL() —q*rL(2) — B{ (EUn(2) — EUL(2)) Vz€Z,

with equality if x} (z) > 0, (A.14)
> EUn(2) —q*ru(z) — B (EUL(z) — EUn(2)) VzeZ,

with equality ifx7;(z) > 0, (A.15)

where (g%, B}, B) = A* (g7, B] ™, ﬁ;}*) e 3. Conditions (A.11)—(A.15) are the com-
plementary slackness conditions for probletd®) and (P). This directly implies (i)
and (ii). O
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Parts (i) and (ii) in Theorem A.1 imply Theems 4.1 and 4.2, respectively. Theorem 4.1
can also be derived using standard arguments.

Proof of Theorem 4.1. Suppose the contrary. That is, theréi$ y') € L?, with x’ € X,
yeY, x'=y,and(EU,x") > (EU,x*). The consumer’s optimization condition (i)
in Definition 4.1 then implies(p*, x’) > (p*, x*). By feasibility, this is equivalent to
(p*,y") > (p*, y*) =0, which contradicts the firm’s optimization condition (ii).0

In Jerez (2003), we establish the existence of optimal solutions to prolglemand
(D). This result and Theorem A.1 imply Theorem 4.3.
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