
OOPS: Optimal Ordered Problem
Solver

Jürgen Schmidhuber. 2004. “Optimal
Ordered Problem Solver”. Machine
Learning Journal, 54

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Time is the Key
One of the most precious resources in
(intensive) search-based AIP is time.
Specially if programs can run for some
unknown period of time (loops, recursion)
Two kinds of techniques that handle time:

Saving time and speedup (parallelism, RAT
algorithm, ...)
Allocating time appropriately to candidate
programs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

The Right to Exist
Most search-based AIP techniques allocate
time to individuals in a coarse way
Individuals (candidate programs) either exist
or they don’t
If they exist, total time is shared equally by
all of them (usually until termination or until
timeout)
Better programs should be given more time
to run!
Exception: the coroutine model [Maxwell, 94]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bias in AIP
Bias: (informally) current belief about what
programs are preferrable
For instance, an initial bias could be:

Prefer shorter algorithms to longer ones
Make no preferences among all algorithms with the
same length

If P is a program, |P| is P’s length, and |Q| is
the number of primitives:

Bias = Prob(P) = (1/|Q||P|)*(1/2|P|)
Bias should be updated when the algorithm
gains experience (this is what PIPE does)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Near-Bias-Optimal Allocation
of Time

Allocate time to programs proportionally
to their probability
Time(P) <= Prob(P)* Total-time

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Levin Search

Time iterative deepening (total time
increases exponentially):

1. Phase = 0
2. Test all programs P such that:

1. Time(P) <= Prob(P)*2phase

3. Phase = phase + 1, go to 2

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Optimal Ordered Problem
Solver (OOPS)

Program representation: linear coding
(any language, but more appropriate
for machine code, stack-based, etc.)
Self-delimiting languages
Let t1, t2, ..., tn a sequence of tasks
For instance, t1 = compute factorial(1),
t2 = compute factorial(2), ...
They are solved in sequence by OOPS

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Optimal Ordered Problem
Solver (OOPS)

1. OOPS spends half of its time extending a previously
found successful program for tasks t1 to tn-1, in order to
find a solution to tn (it takes advantage of previous
experience)

2. OOPS spends half of its time triying to find a new
program that solves t1 to tn
The first branch is run on task tn, the second branch
runs all tasks t1 to tn in a time-sharing fashion
Programs can call previous solutions as subroutines, and
take code belonging to previous solutions and edit it

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

OOPS Algorithm

1. FOR n = 1 to number-of-tasks
1. T := 2
2. Spend T/2 extending successful code that

solves t1 to tn-1, with the aim of solving tn
3. Spend T/2 testing fresh programs that

solve all tasks t1 to tn
4. T := 2*T; go to 2 until solution found

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Growing New Programs in OOPS.
Depth Search with Prob(P)*Time

A

+

B

Program prefix

4

First program:

A+B

Second program:

A+4

Backtracking because
Time(“A+B”) >
Prob(“A+B”)*Total-Time

•Programs are grown 1 instruction
when execution requires it

•Programs stop being executed
when they exceed their allocated
time, and then backtracking gives
control to another program

•Program control can be transferred
back (jumps, loops, ...)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

OOPS Metalearning
Programs in OOPS have instructions that can change the
bias (the probability distribution that generates extensions
to programs)
Initially, when an instruction has to be grown, it is selected
randomly
But after bias shift, some instructions can become more
likely than others, taking into account the program prefix
so far (ej: Prob(4/”A+”) >> Prob(B/”A+”)
OOPS found a general solver for Towers-of-Hanoi, taking
advantage of a general solver for creating 2n1n strings

	OOPS: Optimal Ordered Problem Solver
	Time is the Key
	The Right to Exist
	Bias in AIP
	Near-Bias-Optimal Allocation of Time
	Levin Search
	Optimal Ordered Problem Solver (OOPS)
	Optimal Ordered Problem Solver (OOPS)
	OOPS Algorithm
	Growing New Programs in OOPS. Depth Search with Prob(P)*Time
	OOPS Metalearning

