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Broadening the stochastic assumptions on the error terms of 
regression models was prompted by the analysis of linear 
multivariate t models in Zellner (1976). We consider a possible 
non-linear regression model under any multivariate elliptical 
data density, and examine Bayesian posterior and productive 
results. The latter are shown to be robust with respect to the 

e� specific choice of a sampling density within this elliptical 
class. In particular, sufficient conditions for such model 
robustness are that we single out a precision factor T 2 on which 
we can specify an improper prior density. Apart from the 
posterior distribution of this nuisance parameter T 2 , the entire 
analysis will then be completely unaffected by departures from 
Normality. Similar results hold in finite mixtures of such 

( elliptical densities, which can be used to average out 
specification uncertainty. 
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e� 1. INTRODUCTION 

The Bayesian analysis of regression models with dependent non-Normal error 

terms has received considerable attention, especially since the seminal paper of Zell­

ner (1976), who considered linear multivariate Student t regression models. This 

assumption was extended to scale mixtures of Normal distributions in Jammala­
e madaka et al. (1987) and in Chib et al. (1988) whereas Osiewalski (1991) and Chib 

et al. (1990a) generalize, in addition, to nonlinear models. Here we shall examine 

a further generalization to the entire class 01 multivariate elliptical or ellipsoidal 

densities, as it was defined in e.g. Kelker (1970), Cambanis et al. (1981) or Dickey 

and Chen (1985). 

e 
In this paper, we show that any multivariate elliptical regression model, com­

bined with an improper reference prior on a "nuisance" scalar precision parameter 

T 2 , will lead to exactly the same posterior and predictive analyses as in the Normal 

case. Thus, in this sense, inference is fully robust with respect to changes in the 

specification of the sampling process within this wide class of elliptical densities. 

e� Remark that this property ditrers from robustness against extreme observations, as 

used e.g. in Ramsay and Novick (1980), who defined a concept of "L robustness". 

The latter relates to the sensitivity of the likelihood to the data, and is based on 

the infiuence function. Instead, we arrive at robustness of posterior and predictive 

results with respect to the sampling model itself, within a broad class of models that 

includes, e.g., multivariate Student or Pearson II models. Thus, we focus on ''model e 
robustness" [see Berger (1985, p. 248)], and in particular, on what Box and Tiao 

(1973, p. 152) call "inference robustness". Classical counterparts of these findings 

were derived by Zellner (1976) for the Student t case and by Girón et al. (1989) 

for scale mixtures of Normals, which is a subclass of the elliptical family [see, e.g., 

Kelker (1970)]. 
c. 

These robustness results are derived for multivariate elliptical distributions, and 

do not generally hold under independent non-Normal error terms. If we assume that 

the errors are independently and identically distributed according to some elliptical 

process other than the Normal, no such robustness occurs. The results in Box and 

Tiao (1973, Ch. 3), West (1984) and Bagchi and Guttman (1988) provide some evi­e dence in this respecto However, if we start from a multivariate elliptical framework, 

where independence can only be accommodated under Normality [see Kelker (1970, 

Lemma 5)], the usual improper reference prior on T 2 does the trick. Only posterior 
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results for 7"2 are affected by departures from Normality, as in Zellner (1976). Given e 
the nuisance character of this scale factor, however, these results are not explicitly 

stated here. Predictive inference and posterior inference on the parameter O, which 

defines the location and shape of the ellipsoids, can then be conducted exactly as in 

the usual Normal case. Any remaining parameters, introduced to index the way the 

density function changes over ellipsoids, will only be updated through their possible 

prior dependence on O. 

A finite mixture of elliptical data densities is then considered for cases in which 

we want to avoid a single specification. The mixing will be preserved in posterior 

and predictive analyses, which allows broadening the class of data densities, without 

really affecting the complexity of the ensuing analysis. It is just like mixing Normal e 
distributions defined over different ellipsoids, where the mixing parameter ,\ will be 

revised by the sample, albeit in a rather moderate way. 

Section 2 introduces the Bayesian model, on the basis of which we derive pos­

terior and predictive results in Sections 3 and 4, respectively. Finite mixtures of 

data densities are examined in Section S, whereas a final section surnmarizes sorne e 
conclusions. 

2. THE BAYESIAN MODEL 

2.1. The Elliptical Sampling Model 

( 
A general form of elliptical, also known as ellipsoidal, distributions will be as­

sumed for the sampling process. The observation vector y E JRn has an n-variate 

continuous elliptical distribution, given a set oC exogenous variables X and a suffi­

cient parameterization, say w, if and only if its data density is 

( p(y I X,w) =1 V(X,i1) 1-; gn,,, [(y - h(X,,B))'(V(X,ij))-l(y - h(X,,B))]. (2.1) 

In (2.1) gn,,,(·) is a nonnegative function, which for any n and v has to fulfil the 

condition 

100 uT-1gn,,,(u)du = r(~)ll'-t. (2.2) 

( It can be shown [see Cambanis et al. (1981), Dickey and Chen (1985), Kelker (1970)1 

that (2.2) is both necessary and sufficient to make (2.1) a proper, normalized density 

function. 
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The location vector in (2.1) is the, possibly nonlinear, but known, functione 
h(X, /3), and the scale matrix is V(X, i1), where V is positive definite symmetric 

(PDS) and a known matrix function of X and i1. Therefore, /3 E B ~ JRIc and 

i1 E Éf ~ JRq serve to define the isodensity ellipsoids of y. The labelling function 

g."v that determines the density value for each of these ellipsoids [see e.g. Leamer 

(1978, p. 150)] is indexed by n and v E N ~ E, which may contain parameters 
( 

other than /3 and i1, introduced specifically for the purpose of describing g."v. A well­

known example is found in the multivariate Student t distribution, where v E JR+ 

and 
r(T) • ~.!I. 

g."vO = r(~) (V7l')-~(1 + ~)--,-. 

(� Indeed, from (2.1) we will then obtain a Student t data density with v degrees of 

freedom, location vector h(X, /3) and precision matrix V(X, i1)-1, denoted by 

p(y I X,w) = n(y Iv, h(X,/3), V(X,i1)-1). (2.3) 

A generalization of (2.3), where the dimension of v is extended, can be found in 
( Dickey and Chen (1985, p. 173). However, in sorne cases N wiil be empty and 

g."vO will only depend on n, the dimension oC y. If, in particular, we choose 

our data density in (2.1) will be of the Normal Conn with mean h(X, /3) and covari­

anee matrix V(X,i1) : 

p(y I X,w) = f~(y Ih(X,/3), V(X,i1»,� (2.4) 

where (/3, i1) is now a sufficient parameterization. 

Another type oC multivariate elliptical distribution is the Pearson Type 11 dis­

tribution, as described in, e.g., Johnson (1987) where the entire probability mass 

is located inside a finite ellipsoid, Le., a case with truncated tails.1 The labelling 

function becomes 

(.) = r(I) -t(1 _ .)1-1 
g."v r(~) 7l' 

1The bounded support assumption prompts Spanos (l990b) to suggest this type oC 
distribution Cor modelling stock share returns. 

3 

e 

e.. 



( 

e 

( 

e 

e 

e 

e 

e 

e 

on the support (y - h(X, ¡'3))'(V(X, 1m- l (y - h(X,¡'3)) ~ 1, and with v E JR+, 

whereas gn,lI(-) = oelsewhere. The ensuing density will be denoted as 

p(y I X,w) = /PII(Y I v, h(X,¡'3), V(X,ij)-I). (2.5) 

Finally, the bivariate Laplace and generalized Laplace (or Bessel) distributions have 

received sorne attention in the literature [see, e.g., McGraw and Wagner (1968)]. 

The explanatory variables in X have a sampling distribution whose sufficient 

parameterization is denoted by .A. Ir we assume that the joint prior on w and .A is 

a product of p(w) and p(.A), both O'-finite, we can ignore the process of X for the 

purp05e of conducting inference with (2.1). These assumptions, in fact, amount to 

operating a Bayesian cut [500 e.g. Florens and Mouchart (1985) and Florens et al. 

(1990)]. 

Provided second order moments exist, the covariance matrix for any elliptical 

density in (2.1) will be proportional to V(X, ij). By choosing a diagonal V(X, ij) we 

thus obtain zero correlations, but from Kelker (1970) we know that independence 

then only holds under Normality, Le. (2.4). Non-Normal multivariate elliptical 

densities can combine zero correlation with dependence and a referee suggested this 

may be useful for modelling ARCH-type behaviour [see Engle (1982)1. In fact Span05 

(1990a) examines this connection in sorne detail and finds that,e.g., the Student t 
distribution can indeed be used to treat the issue of dynamic heteroskedasticity in 

a natural fashion. Clearly, in the latter context the dimension n of y relates to 

time. In other contexts, it might be more appropriate to let n be the dimension 

of sorne vector observed at a particular point in time, and possibly consider many 

(independent) observations from (2.1), as e.g., in van Praag and Wesselman (1989) 

or in Span05 (1990b). However, for repeated independent sampling from (2.1) our 

robustness results do not hold. See, e.g., West (1984) who assumes n = 1. 

Finally, we shall find it useful to reparameterize ij into (TI, T:l) such that 

- 1
V(X, ij) = "2 V(X, TI), (2.6) 

T 

where T 2 E JI4 is a scalar precision parameter and V(X, TI) is a normalized (e.g., 

through imposing tr V(X, TI) = n) scale matrix with TI E H. For notational conve­

nience, we now define 0= (/3, TI) which contains all the information about the location 

and shape of the ellipsoids. We also partition v into (IIt,V:l) where VI = feO) and 

V:l E N:l ~ N only serves to describe the tail behaviour. 
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e� 2.2. Prior Densities 

We now face the task of completing the Bayesian model by assigning a prior 

distribution to w = (0,7"2,112)' Typically, °will be the parameter ofinterest, although 

in sorne cases we may want to conduct inference on 112 (but then we need to specify 

a particular 9n,,,(·)). Accordingly, we leave the specification of the prior density of 
(� (0,112) completely free at this stage. We shall see in Section 3 that if we choose the 

("usual") improper prior structure 

(2.7) 

where e is a positive constant and p(0,1I2) is functionally independent of 7"2, the 

analysis will simplify greatly. More in particular, the actual form of 9n,,,(·) becomes 

completely irrelevant, so that both posterior and predictive analyses are lully robust 

with respect to any departures from Normality in the wide class of multivariate 

elliptical densities. 

The prior (2.7) implicitly excludes certain forms of the labelling function 9n,.,(-) 
e and the scale matrix V(X, ij). In particular, 7"2 and (0,112) are variation free so that 

7"2 is not functionally related to 11 and, therefore, does not index 9n..,(·).2 Also, (2.7) 

allows neither functional dependence between 7"2 and " nor concentrating all prior 

probability mass at one value for 7"2. This excludes, e.g., V(X, ij) = In [ as in Hill 

(1969)] which could be reparameterized as (2.6) by assuming either V(X,,,) = 1(,,)In 
and 7"2 = 1(,,) for any positive function lOor V(X,,,) = In and a Dirac prior ate 
7"2 = l. Clearly, informative prior densities that are natural conjugate for the Normal 

case are excluded by (2.7). Such proper prior structures are discussed in the elliptical 

context by Osiewalski and Steel (1991). 

2AH this parameter does is to infiuence the scale of the ellipsoids; under the first 
(� equality sign in (2.7) the way the density function changes over ellipsoids no longer 

depends on 'T 2 . The fact that the interpretation of 'T2 does not vary over the elliptical 
class in (2.1) allows assigning a specific prior density to 'T2 in the second part of (2.7) 
without actually choosing a particular model. 
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( 3. POSTERIOR INFERENCE 

Assuming (2.6) and combining the general class of elliptical data densities in 

(2.1) with the improper prior family in (2.7), we obtain the joint density 

( 
where we have defined 

d(y, X, O) = (y - h(X, {3»' V(X, r¡)-l (y - h(X, {3». 

Let us now consider the transformation from (y, 0, T 2 , l-",¡) to (y, 0, r 2 , 112), where 
( 

(3.2) 

leading to 

( 
The function gn,lI(-) is not affected by the transformation in (3.2), since it does not 

involve T 2 , so that property (2.2) can directly be applied to integrate out r 2 in (3.3). 

This leaves us with 

p(y,O,l-",¡ 1X) = e r(~) 7l'-t p(O,V'J) IV(X,r¡) 1-' d(y,X,O)-t, (3.4) 

e which no longer depends on the form of gn,II(')' The joint (improper) density of our 
parameters of interest and y is thus completely robust with respect to any departures 

from Normality in the class of elliptical data densities (2.1) when 7 2 is treated by 

assuming the improper prior (2.7). In addition, (3.4) is invariant with respect to 

rescaling V(X, r¡) by any positive scalar function z(X, r¡). 

Let us now assume that the prior p(O, V'J) is defined as a product of a proper 

p(1I2 I O) and a l1-finite p(O), which makes (3.4) integrable in 112. re the resulting 

density p(y, °I X) is also integrable in °over e ~ B x H, we are sure that the 
posterior of ((J, 112) is well defined as 

p((J,1I21 y,X) cx:p(O,1I2) IV(X,r¡) 1-' d(y,X,O)-t, (3.5)e 
from which we can easily derive the posterior for the location and shape parameters 

O. 
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(� Theorem 1: For anyelliptical data density (2.1), assuming (2.6) and using an 

improper prior (2.7), which is integrable in 1I2, we obtain the same posterior of O: 

p(O 1y, X) oc p(O) IV(X,1/) 1-1 d(y, X, O)-t, (3.6) 

where p(O) = JN1P(O,V2)dv2 and we have assumed that (3.6) is integrable in Oover 

e.� •
( 

Of course, (3.6) is exactly the posterior one obtains for the Normal data density 

(2.4), and may look even more familiar if we consider the simple linear case: 

Corollary 1: In the special linear case of Theorem 1 where h(X, (3) = X (3 and 

e = JRk x H, the posterior densities of Oare given by 
e 

p({3 11/, y, X) =� K(1/)-1 p({3,1/) ¡;({3 1n-k, /3, 8-2 X'V(X, 1/)-1 X) (3.7) 

and 

( where 
/3 = (X'V(X, 1/)-1 X)-1 X'V(X,1/)-l y 

8
2 = ---..!..-k (y -� x/3)' V(X, 1/)-1 (y - x/3)

n­
and K(1/) , the inverse of the nonnalizing constant of (3.7), absorbs the prior infor­

mation on 1/. • 
( 

Implicitly, we have also made the assumption that X is of full column rank in 

Corollary 1, which implies n ~ k in this linear case. If we specify a uniform prior on 

(3, Le. p({3,1/) oc p(1/), we sirnply have a Student t conditional posterior of {3, which 

is proper if n > k. Mornents of (3.7) then exist up to (not including) order n-k. 

Adding sorne prior infonnation will typically lead to the existence of higher order 

mornents. In particular, if p({3, 1/) contains a Student t kernel for {3 with va degrees 

of freedorn, the conditional posterior in (3.7) will be of a 2-0 poly-t fonn [see Dreze 

(1977) and Richard and Tompa (1980)], allowing for posterior mornents up to order 

vo+n. 

The invariance results obtained here are a direct consequence of the fact that, ( 
alter integrating out T 2 under (2.7), we have 

p(y I X, (J, V2) =� p(y I X, (J) ex d(y, X, O)-i , (3.9) 
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irrespective of the form of gn,1I (. ).3 Therefore, we address a particular case of Hill 

(1969), who proposed specifying a spherical model without considering a scale pa­

rameter. In the framework of (2.1) he does not impose (2.6) and introduces spheric­

ity by assuming V(X, T¡) = In directly. The more "traditional" approach, in e.g. Zell­

ner (1976), Jarnmalamadaka et al. (1987), Chib et al. (1988) and Osiewalski (1991), 

implicitly starts from the deeper level of parameterization used here and amounts 

to assuming (2.6). In that case sphericity is induced by taking V(X,77) = In' Hill's 

(1969) specification of general spherical errors is thus made at a level of parame­

terization comparable to the one in (3.9). By not imposing (2.6), with functionally 

independent 77 and r:l and without a Dirac prior of r:l, Hill's approach is slightly 

more general, but at the cost of not obtaining the robustness that follows from (3.9). 

Nevertheless, Hill (1969) does introduce a scale factor in his discussion of Normality. 

At that level, our results imply that it is not the Normality assumption but the use 

of Jeffreys' prior on this scale factor [as in (2.7)1 that accounts for finding the ''usual'' 

posterior results. Therefore, provided one is willing to accept (2.6), Normality does 

not seem to be quite as restrictive as suggested by Hm. 

The joint model in (3.4) clearly illustrates a case of marginal underidentification. 

Florens et al. (1990) discuss this issue in detail and show that it can even occur 

under proper priors. The parameter w is minimal sufficient in the complete Bayesian 

model (3.1), but after marginalizing with respect to r:l in (3.4), (O, &12) are no longer 

minimal sufficient and 1I:l is not identified. This means that given O the sample 

contains no information regarding 1I:l, so that conditionally upon O1I:l is not updated 

through the observations. Thus, under the conditions of Theorem 1, we then have 

p(lI:l I O, y, X) = p(&12 I O). The marginal prior on &12, however, will generally be 

updated [see al50 Dreze and Richard (1983, p.522)1, since the marginal posterior can 

be written as 

p(lI:l Iy, X) (X le p(&12 IO) p(O I y, X) dO 

where p(O Iy, X) was defined in (3.6). Thus, if p(&12 IO) does not depend on O (Le. 

30ne of the referees has suggested to look for a semiparametric presentation. In prin­
cipIe, we could drop the finitely dimensional index 11 and treat the labelling function 
9 itself as an infinitely dimensional parameter in the space Gn of all nonnegative 
functions satisfying (2.2). We would then interpret (2.1) as p(y I X,O,r:l,g), and 
under (2.6) and the prior structure p(O,r:l,g) = pl¡·:l) p(O,g) = e r-:lp(O,g), we 
would obtain p(y I X, O, g) which no longer depends on g, just as (3.9) does not 
depend on &12. The crucial problem would then be to construct probabilities on Gn , 
which can easily give rise to very subtle and complicated problems, as explained in 
Diaconis and Friedman (1986). 
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e� independence in probability if p(O) is proper and functional independence if it is not) 
the sample cannot revise the marginal prior of l"'l either and we state: 

Theorem 2: Under the conditions of Theorem 1, the prior structure for (0 ,112) 

(3.10) 

(� will prevent updating of the marginal prior information on 112, Le. 

(3.11) 

• 
The lack of dependence in (3.10), which is taken to be integrable in 112, will, 

for any elliptical sampling model (2.1) under (2.6), lead to posterior independence e 
of °and 112, provided we express our prior ignorance about T 2 by the class of im­

proper densities in (2.7), and if the joint posterior exists, which is assured if (3.6) 

is integrable in O. This can be seen directly from (3.5), and, given the fact that the 

sample can only update l"'l through 0, this posterior independence will make sure 

that our marginal opinions regarding l"'l will not be revised through the observations. 
e Of course, inference on l"'l only makes sense given a choice of a particular 9n,II(')' 

Chib et al. (1990a) analyse the subclass of (2.1) where the elliptical densities can 

be described as scale mixtures of Normals. A prominent member of this subclass 

is the Student t model in (2.3), in which case Theorem 2 exactly reduces to their 

Corollary 4, stating a set of sufficient conditions for the impossibility to update the 

prior of the degrees-of-freedom parameter. e 

4. PREDICTIVE ANALYSIS 

Alternatively, we can focus on the predictive properties of Bayesian models 

involving elliptical data densities as in (2.1) and improper priors as in (2.7), main­

e taining also (2.6). 

For this purpose, we partition the n dimensional vector y as follows 

y=(Y(I»), 
Y(2) 

where Y(a) E JJ{'i (i = 1,2); n =ni + n2, and we are interested in forecasting Y(2), 
e given Y(l) and X. Conformably, we partition 

h(X,{3) = [h(I)(X,{3)] == (h(l»)
h(2) ( X, (3)� h(2) 
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(� and 
V(X r¡) = [Vll(X, r¡) VI2 (X, r¡)] = (Vn V12) 

, V21 (X,r¡) V22 (X,r¡) - V21 'V22 

where the defining equalities are just used to economize on notation. From (3.4) it 

is immediately c1ear that the form of 9n,v (.) will not affect the predictive analysis 

either, and we obtain directly 
( 

(4.1) 

with a(Y(I) I X, O) = (Y(l) - h(l»)' V;ll (Y(l) - h(l») and V22.1 = V22 - V21 VIII V12 . 

e� Given our assumption of integrability of the joint prior in 112, it is trivial to integrate 

it out, as in Section 3. The posterior of 9 given the first subsample Y(l) will be of 

exactly the same form as (3.6) in Theorem 1, but with Y(l) instead of y throughout: 

(4.2) 

(� provided (4.2) is integrable in 9 over e. The predictive density thus becomes the 

Student density in (4.1) of Y(2), given Y(l)' X and 9, weighted by this posterior on 

the basis of Y(l) : 

e 
As was to be expected from (3.4), the general elliptical character of the data density 

does not induce any difference in our predictive analysis with respect to the Normal 

framework. Remark that integrating out r 2 in (3.3), under the prior (2.7), always 

leads to a density of y, given 9 and X, proportional to d(y, X, O)-t, as was stressed 

in Section 3. This, of course, implies the Student density of Y(2), given Y(I),9 and 
(� X, but this Student t form will generally be lost when we integrate out 9 in the 

predictive density as in (4.3). 

A predictive analysis on the basis of (4.3) can be called for when e.g. the 

observations on Y(2) are missing, whereas both Y(l) and the entire X matrix are 

observed. However, in actual practice, it is often the case that only a submatrix of 
( 

X, say Xl, is jointly observed with Y(l), so that the posterior information available 

for forecasting is only based on Y(l) and Xl' We then set out to predict Y(2), given 

the observed (Y(l)' Xl) and a set of exogenously given values for the remaining part 
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( oC X, say X 2. Given our maintained assumption oC independence between X and w, 

i't is sufficient to assume 

(4.4) 

in order to have posterior independence between Oand X 2 . 

Theorem 3: Under the conditions oC Theorem 1 and (4.4) any elliptical sa.mpling 

model (2.1) will allow conditional Corecasting based on the predictive density 

e 
(4.5) 

and p(O IY(1)'X¡) is obtained from (4.2) but now with (4.4) holding. • 

e 

The improper prior on 7"2 in (2.7) and the existence oC the posterior thus lead to 

perfect predictive robustness which can be used in praetice under assumption (4.4). 

In the simplest linear case with a unifonn prior on 0= (3, we can write: 

Corollary 2: If h(X,{3) = X{3, V(X,17) = V is assumed known and e = JR!e, 
then under a uniConn prior on O= (3 the predictive (4.5) in Theorem 3 reduces to 

the Student density 

( 

with a
1-'1 = 

( 

2S1 = 

W = 

(x/v'-1x )-1X/tr-1
1 Yll 1 1 Yll Y(1) 

1 ( a)' -1 ( a ) --k Y(i) - Xil-'i Vll Y(i) - Xil-'i 
ni ­

(X2 - V2i Viii Xi)(X~ViiiX¡)-1(X2 - V2i Viii X¡)' + V22.i 

( 

and V22.i defined as in (4.1). • 
A unifonn prior of (3 has to be used for obtaining the Student predictive in 

(4.6), since we have left the class oC prior densities that are natural conjugate Cor 

the Normal case (2.4) by assuming that P(O,V2) does not depend on 7"2 in (2.7). 
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5. FINITE MIXTURES OF ELLIPTICAL DATA DENSITIES 

Although the class of sampling models described in (2.1) and (2.6) can already 

cover many cases used in practical applications, it still forces us to choose one par­

ticular functional form for the location vector and the covariance structure. If we 

wish to consider various alternatives, we can use finite mixtures of data densities 

as in (2.1), with (2.6) holding. In case we would allow for repeated sampling from 

such a finite mixture, the assumption of symmetry, inherent to elliptical densities, 

can be circumvented. However, Bernardo and Girón (1988) show that this seriously 

complicates the analysis. Therefore, we restrict ourselves here to the case of one 

vector observation which can come from any of the elements in the mixture. 

Finite mixtures of conjugate prior densities were used to approximate more 

general classes of priors in Dalal and Hall (1983) and Diaconis and Y1visaker (1985), 

but here we introduce the mixing in the sampling model instead. This, of course, 

widens the family of data densities we can accommodate, and, in principie, p(O, &1) 

can also involve prior mixtures in our framework, although the latter point will not be 

elaborated here. We feel it is important to allow for a large enough class of sampling 

models, since the likelihood is (too) often felt to have sorne "externa! validity" [see 
Berger (1985, p. 249)], and therefore not questioned, whereas we "agree to disagree" 

on the formu!ation of the prior. In the terminology of Poirier (1988, p. 130) the 

"window" entertained shou!d be large enough to interest a "sizeable audience of 

like-minded researchers". For practical purposes, we only consider finite mixtures. 

Assessment methods for such mixtures are found in Dickey and Chen (1985, Section 

5), based on elicited quantiles. We are not really treating these mixtures in a model 

selection context, as we see no reason to choose any particular ellipticaI submodel 

(pretest). We would rather find it natura! to average out our uncertainty over models 

[see aIso Poirier (1991) and Chib et al. (1990b)]. 

If we suitably extend o= ({j, TI) and &12 to parameterize a finite number of 

densities as in (2.1), each of which has the same scalar precision parameter T 2 , we 

still have to introduce a mixing parameter A. Let us, more in detail, anaIyse the case 

where we mix oniy two elliptical densities, implying that A is scalar. The relevant 
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e� 

e� sampling model becomes 

p(y 1x, w, >') =� >. I ~ V(X, 1]) I-! 9n,v[(Y - h(X, ,B))'(~ V(X, 1]))-1 (y - h(X, ,B))]
T� T 

1 _;� 1
+(1->') 1 T2W(X,1]) 1 kn.v[(y-m(X,,B))'(T2 W(X,1]))-I(y-m(X,,B))], 

0$>' $ 1, 
(5.1) 

where both 9n,vO and kn,vO satisfy condition (2.2), and m(·) and W(·) are known 

functions in JRn and the space of aH n x n PDS matrices, respectively. The nuisance 

parameter T 
2 does not index either of the functions 9n,vO and kn,vO, since we 

assume the improper prior structure, integrable in V2 over N2: 

e� e 
p(w, >') = 2" p(O, V2, >.).� (5.2) 

T 

As in Section 3, this results in a joint density of (y, O, V2, >. X) that no longer 1 

involves the functions 9n,vO or kn,v(·). We obtain 

p(y, O, V'2, >. 1 X) = e r(i) 71'-t p(O, V'2, >') [>.a, + (1 - >')b,],
e 

where we have defined 

a, =1 V(X,1]) 1-' d(y, X, O)-t 

b, =1 W(X,1]) 1-' [(y - m(X,,B))'W(X,1])-I(y - m(X,,B))]-t. 

e� Under the prior in (5.2), mixing anyelliptical data densities with common T 2 has 

the same consequences for both p06terior ron (O, >')1 and predictive inference as the 

mixing of Normals. In particular, if the joint density of (y, O, >. I X) is integrable in 

(O, >'), the posterior oC (O, >') will be 

p(O, >'1 y, X) oc p(O, >') [>'a, + (1 - >')b,I,� (5.3) 
e 

whereas the prior density 

p(O, >') = r p(O, V'2, >') CÜI2
JN~ 

must be at least integrable in those elements of O ·l¡at appear in only one of the 
( 

mixed densities in (5.1), due to the summation character oC mixtures. Note that 
2the assumption oC a common -r2 is not restrictive. Ir instead we asswne that -r

is multiplied by any positive scalar function oC (X, 1]) that varies over models, the 
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( 

density p(y, o, 112, A I X) remains unaffected under (5.2). The condition that TJ is not 

functionally related to T 2 , implicit in (5.2), is what really matters. The posterior 

density in (5.3) is a generalization of (3.6), which it reduces to for A = 1. For 

nondegenerate A, however, the mixing in the data density (5.1) is carried over to the 

posterior. A convenient choice for the prior of Amay be a beta density, independent 

of O, Le. 

p(O, A) =p(O) fB(A Ip, q) 

with O:5 A :5 1 and p, q > O. 

(5.4) 

( 

From (5.3) we then obtain the conditional posterior of A as a mixture of beta 

densities 

The marginal posterior density of O will be given by 

e p(O Iy, X) oc p(O) (pa, + qb,), 

which can be written as the following mixture of the "individual" posteriors, each 

calculated as in (3.6) on the basis of one of the elliptical models in (5.1): 

e 

C· 

( 

where Q = E(A) = ¡&q, and 

PQ(O I y, X) = K¡l p(O) a, 
Pb(O I y, X) = K;l p(O) b,. 

The marginal posterior of Odepends on the prior of Aonly through its mean. If, as 

in Chib et al. (1990b), we interpret Aas the prior probability ofthe first model given 

A, then Q = E(A) is the marginal prior probability that this model generates the 

observation. Marginal posterior model probabilities are then given by the weights in 

(5.6), namely QK.:(~:!.Q)K. and QK~I¡(~~~)K•.4 The latter and, more generally, all 
results on (y,w) given X are only affected by the prior mean of A. Of course, (5.6) 

4These are not the posterior means of A. In the extreme case a, =O the posterior 
mean of Ais E(A IO, y, X) = E(A I y, X) = ~, whereas the posterior probability 
of the corresponding model becomes O. Only if p and q tend to zero will the posterior 
mean of Atend to the relevant model probability [see Chib et al. (1990b)]. 
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e� 

e� reduces to (3.6) for q = 0, in which case (5.4) groups all the prior mass at the point 

A=1. 

Prom the posterior density in (5.3) it becomes apparent that, unless the func­

tional forms of h(·) and m(·) or those of V(·) and W(·) differ,s the mixing in (5.1) 

will not affect the inference at all. Indeed, then the posterior of A in (5.5) will reduce 
e� to the beta density in the prior (5.4) as a9 = b9, and the posterior of (J will be the 

same as (3.6) in Section 3. 

Let us now generalize the main results ofthis section to mixtures of 1. > 2 proper 

elliptical densities. We shall retain the improper prior as in (5.2) for the common 

nuisance parameter r 2 , but A will now be of dimension l., and we shall, therefore, 
e generalize the beta prior in (5.4) to a Dirichlet prior on A, with the parameter vector 

So = S(Ol" .oty, o, > 0, 'V i; E:=l o, = 1,S > O: 

p(A I (J) = p(A) = fb(A ISo),� (5.1) 

e� where Ais restrained to the set P E R! : A, > 0, 'V i; E:=l A, = 1}. Analogously 

to a9 and b9 in the case 1. = 2, we define 4 for the i th density in the mixture, 

and we denote by e' the l.-dimensional vector with one in the i th position and zeros 

elsewhere. Then we can state: 

Theorem 4: Finite mixtures of 1. elliptical densities, Le. an obvious extension 

of (5.1), with common nuisance parameter r 2 on which the improper prior (5.2) is 

defined, will, under (5.1), lead to 

and 

(5.9) 

where p,((J Iy,X) = K¡l p(9) 4, 'V i, provided all these posterior densities are well 

~~. . 
e SIf h(·) = m(.), then V(·) and W(·) should differ by more than just a multiplicative 

scalar. If both are proportional and h(.) = m(·), then a9 = b, and we are still in 
the elliptical class. A special case of this would be the scale contaminated Normal 
distribution mentioned in Johnson (1987, p. 123). 
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Since the posterior results in (5.8) and (5.9) are also finite mixtures, their anal­

ysis is not more difficult than with a single elliptical sampling density. Just like in 

the previous section, prediction can also be based on mixed sampling models, now 

using the posterior densities for both Aand O. Again, we end up with a mixture, as 

formally stated in the final theorem. 

Theorem 5: Under the conditions of Theorem 4, we can base our predictions for 

a finitely mixed elliptical model on the predictive density 

(� which is itself a mixture of 

where P'(Y(2) IY(l), X, O) is the Student t density in (4.1) now corresponding to the 
i th data density in the mixture, and 

e 

as in (4.2), where each L, must be finite, and indices i reCer to the i th data density 

throughout. • 

( As in Section 4, iC we wish to use posterior densities for O, computed after 

observing Y(l) and only part of X, namely XI. we need a bit more. Imposing 

condition (4.4) on every data density that is used in the sampling model wil\ be 

sufficient. 

We suggest treating specification uncertainty by such finite mixtures of elliptical 
e� densities, since the mixing will be preserved in both posterior and predictive analyses. 

We thus have a way oC considerably broadening the class oC data densities, without 

really adding to the complexity oC the analysis. 

( 
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6. CONCLUDING REMARKS 

Under certain conditions, it was shown that Bayesian posterior and predictive 

analysis is perfectly robust with respect to the choice of a sampling density within 

the entire class of elliptical densities. Sufficient conditions are that we can single out 

a scale factor T 2 on which we can specify an improper prior density. 
e 

Once the scale factor is then integrated out, the tai1s of the sampling density 

do not matter anyrnore, only the location and shape of the ellipsoids, parameterized 

by e, are relevant. The posterior of e will then be given by the simple expression 

in Theorem 1, which is the same as in the Normal case. The only purp06e of the 

parameter 112 is to describe the tails of the data density. Thus, if the latter become 

irrelevant, then, clearly, the sample can not directly revise our opinion about 112. It 

can only do so through revising e if there is prior dependence between e and 112. 

This is the object of Theorem 2. 

Our conclusions are similar for prediction: given an improper prior on the nui­

e sance parameter T 2 , everything is just like in the Normal regression model. Theorem 

3 summarizes these findings. 

If the choice of a single elliptical data density is found to be too restrictive, we 

can make use of finite mixtures of elliptical densities to average out over specification 

uncertainty. These mixtures are then carried over to posterior and predictive results, 

without leading to an increase in complexity (see Theorems 4 and 5, respectively). 

Note that the contenders have to correspond to different ellipsoids, e.g. through 

different functionai form or choice of regressors. Mixing e.g. a Normal and a Cauchy 

defined over the same ellipsoid will, of course, give the same results as with a single 

Normal data density. 

,-(

( 
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( The findings in this paper generalize and explain several results that have ap­

peared in the literature,6 and give remarkably weak sufficient conditions for robust­

ness with respect to the data density within the multivariate elliptical family. 

( 

( 

e 

6The results from Sections 1 through 4 can be related to previous work in this ( 
area; in particular, our paper extends the framework of scale mixtures of Nonnal 
densities, found in Jammalamadaka et al. (1987), Chib et al. (1988), Osiewalski 
(1991) and Chib et al. (1990a), to general elliptical densities. It also broadens the 
linear regression model, used in the first two oC the aboye reCerences, to a possibly 
nonlinear one. Taking into account that only a diffuse prior Cor T 2 was considered 
in the present paper, we can establish the Collowing correspondences. Within the 
class oC scale mixtures oC Normals, Proposition 1 of Jammalamadaka et al. (1987) 

( is a special case of our Corollary 2 for V(X,11) = In, whereas Theorem 3 generalizes 
Proposition 1 of Chib et al. (1988), who assumed linearity and a uniform prior on (3. 
Both Theorems 1 and 3 extend results obtained under scale mixtures of Normals in 
Osiewalski (1991) to general elliptical densities, and Theorem 2 generalizes Theorem 
2 in Chib et al. (1990a) in the same way. 
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