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New Method to Characterize Subgame Perfect 
Nash Equilibria in Differential Games 

J. P. RINCÓN-ZAPATERO,' J. MARTÍNEZ/ and G. MARTÍN-HERRÁN3 

Communicated by G. Leitmann 

Abstract. In this paper, we present a rnethod for computing Nash equil­
ibria in feedback strategies. This method gives necessary and sufficient 
conditions to characterize subgame perfect equilibria by means of a 
system of quasilinear partial ditferential equations. This characterization 
allows one to know explicitly the solution of the game in sorne cases. 
In other cases, this approach rnakes a qualitative study easier, We apply 
this rnethod to nonrenewable resource garnes. 

Key Words. Differential garnes, subgarne perfect Nash equilibria, 
quasilinear partial ditferential equations, characteristic systerns. 

1. Introduction 

Since the creation of game theory by Von Neumann in 1928, remarkable 
efforts have been made in the development of this discipline. The theory of 
differential games provides an adequate framework for the treatment of 
problems appearing in fields as different as economics, engineering, or biol­
ogy (Refs. 1-3). 

There are a great number of applications that use open-Ioop Nash 
equilibria in the literature on nonzero-sum differential games. Due to its 
complexity, the analysis of equilibria based on feedback rules is less usual, 
so Nash equilibrium is not subgame perfect. 

In this paper, we propose a new approach for the study and determina­
tion of Nash equilibrium in feedback strategies. This approach is based on 
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the papers of Bourdache-Siguerdidjane and Fliess (Refs. 4-5) for non linear 
optimal control problems. It consists of characterizing a Nash equilibrium 
by means of a system of quasilinear partial differential equations. This system 
is deduced from the application of the maximum principIe of Pontryagín by 
means of the elimínation of the costate vectors that appear in the Hamilton­
ians associated with the players. 

Section 2 states a dífferential game in general formo In Sectíon 3, we 
apply the necessary condition of the maximum principIe of Pontryagin, 
yielding a new optimality condition for the Nash equilibrium. In Section 4, 
we prove that this necessary condition is also sufficient, taking into account 
appropriate hypotheses on the players' Hamiltonians. These hypotheses are 
not as strict as the concavity sufficient conditions that are usually used in 
this kind of problems. The theorem proved in this sectíon also shows that 
the Nash equilibrium is subgame perfecto In Section 5, we apply the results 
to nonrenewable resource differential games. After giving a condition that 
guarantees the existence and uniqueness of a Nash equilibrium, a qualitative 
study ís performed. We inelude a comparative analysis of solutions obtained 
when considering variations in the model. 

2. Description of the Game 

We consider an N-person noncooperative differential game over a fixed 
bounded time interval, namely, 

{ 
. I N _ f ti i I Ni} mu~x f(to,xo,u, ... ,u)- L(t,x,u, ... ,u )dt+S(tf,X(tf)) , 

s.t. 

x(to) = XO, 

ui(t) E Vi, 

to 

V'tE[to, tf), Vi an open subset of [Rn. 

i= 1, ... , N, 

(2a) 

(2b) 

(3) 

Here, the functions L i, J, Si are assumed to be twice continuously differenti­
able. The vectors x= (Xl, ... , xn)T E[Rn and ui = (u\, ... , U~)T represent the 
state and control variables for the ith player, respectively, where T denotes 
the transposition sign, ui(t) = 4/(t, x(t», the function 4/: [to, tf) x w~ Vi is 
supposed to be differentiable and ui denotes the set of functions </Ji. 

The system 

x= f(t, X, </JI(t, X), ... , </JN(t, X», 

x(to) =Xo, 
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is the closed-Ioop system associated with the N-tuple of feedback strategies 
4>=(4)I, ... ,4>Nf. 

An N-tuple of strategies ~ is called a subgame perfect equilibrium of 
the game if, for all i= 1, ... , N, 

f(t, x, (4)il~_i)) 

~f(t, x, ~), for all 4>i and for all t, x admissible, 
~ ~I ~i-I ~i+1 ~N 

where 4>-i denotes (4) , ... ,4> ,4> , ... ,4> ) and 

3. Necessary Conditions for Optimality 

In this section, as a consequence of applying the maximum principIe, 
we derive a system of quasilinear first-order partial differential equations 
that must be satisfied for smooth Nash equilibrium. In the following, we 
use the subscript notation for partial differentiation, with the common con­
ventíon that the partíal derívatíve of a scalar functíon with respect to a 
vector and the partial derivative of a vector function with respect to a 
scalar are defined as column vectors. AIso, the partial derivative of a vector 
function with respect to another vector is defined as a matrix, e.g., 

where h and z are n xl and m x 1 vectors, respectively. 
We define the Hamiltonian functions 

Hi(t, x, u, J/) = Li(t, x, u) + ¡T(t, x, u)¡./, 

where ,/ = (11; , •.• , 11 ~ ) T is the vector of ~costate variables associated to the 
ith playero By the maximum principIe, if 4> is a Nash equilibrium of (1)-(3), 
differentiable functions ;./ exist, satisfying the following two-point boundary­
value problem: 

X'=i¡i¡ 
JI ' 

,t(t¡) =S~(t¡, x(t¡», 

x(to)=xo, 

where fil .} means H¡.} evaluated at (t, x,~, ,ti). 

(4) 

(5) 

(6) 

(7) 

3
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Moreover, $i maximizes the Hamiltonian of the ith player, so that the 
following inequality holds: 

Due to the fact that there are no constraints over the admissible controls, 
this last condition implies 

¡¡~,=H~,(t, x, $, )¡/) 
= L~¡(t, x, $) + f"J(t, x, $ )A i =0, 'v'tE[O, ti], i= 1, ... , N. (8) 

The system (8) is linear in the costate variables A! , ... , A~, for each i. Then, 
(8) admits a unique solution in these variables if and only if the determinant 
of fu; is nonzero. In this case, Ai can be regarded as a function of (t, x), so 
we can write 

Ai = - (f;;)-lL~,. (9) 

Since (8) holds for all tE[to, ti], we have 

'v'i=I, ... ,N. (10) 

Substituting in (lO) the expressions for x and ,ti given by Eqs. (4), (5) we 
obtain, for each i = 1, ... , N, 

O=(d/dt)H~,(t, x, $(t, x), Ai) 

=¡¡~I,+ ¡¡~IXX+ ¡¡~¡u($,+ $xx) + ¡¡~il'i,ti 
~ . ~ . ~ . ~ ~ ~ . ~ . ~T ~ . 

= H~,,+ H~'Xf+ H~,U(<P,+ <Pxf) + H~,,/( -H~- <PxH~). 

By replacing (9) in the expression aboye, we get 

[L~,U - f;;u (InNxnN® (f:.TL~i»)][ $, + $xf] 

-f"J$~[L~-f~f-;/L~,] 

(11) 

where InNxnN is the nN-dimensional identity matrix; the symbol ® denotes 
the Kronecker product, defined as follows for the matrices A = (aij)p x q and 
B=(bij)rxs: 

A®B=aijB; 

f"Ju=(f;;)u and f~x=(f~)x denote the partitioned matrices 
(f;;ull' . '1 f"J0.) and (f"Jx,I"" f;;x.), respectively. Hence, we have 
obtained a system of nN quasilinear partíal differential equations that must 
be verified for a sufficiently smooth feedback Nash equilibrium. 

4
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From the boundary conditions (6) and (8), we can provide a complete 
set of final conditions for the system (11) given by 

L~, (t/, x, ~) + f~(t/, x, ~ )S~(t/, x) = O. (12) 

Remark 3.1. It can be observed that, when N= 1 (e.g., the problem is 
an optimal control problem), (11) is the expression required in Ref. 5. In 
this case, (11) is a system of quasilinear partial differential equations with 
the same principal part, using the terminology of Courant and Hilbert (Ref. 
6). This property permits characterizing the solution of (11), (12) by means 
of a system of ordinary differential equations, caBed the characteristic sys­
tem, which is developed by Bourdache and Fliess (Ref. 5). Unfortunately, 
this is not possible when N> 1, because in that case the equations are coupled 
due to the effects of the cross-influence terms in (4). 

Remark 3.2. We point out the fact that, in the scalar case (n = 1), the 
matricial form (11) is reduced to 

(13) 

with matrices 

whose components are given by 

- Li - l' -f-1Li -aij - u'uj-Ju'u1 ti u', 

b _(Li- - l' -f-1Li)f I'-Li -+1' -Li¡ ij - u'uJ-Ju'u1 u' ti -J,j uJ Ju' u, 

- Li - + I'f-:ILi L - f+ l' Li +f-1Li - l' f Li_¡; Ci- - U'I Jr.lt u' d- u'x ju' x ti u'Ju'x - ,j x· 

From now on we concentrate on the scalar case n = 1 for the sake of 
notational simplicity. However, all the results that we present remain valid 
in the general case. 

4. Sufficient Conditions for Optimality 

The system (13) was obtained by applying a set ofnecessary conditions 
for optimality. We can wonder if a classical solution of that system becomes 
a Nash equilibrium ofthe differential game. The aim ofthe foIlowing results 

5
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is to show that, under suitable hypotheses about the Hamiltonian functions, 
that is so. First, let us define the value function of the ith player as 

vi(t, x) =m",~x{ff L\s, y, (cJ>i¡ $-i» ds+ Si (tf, x(tf»¡ 
t 

y=f(s,y, (cJ>i¡ $-i»,SE(t, t¡);y(t)=x, 

cJ>i(S,Y(S»EOJIi, 'VSE(t, tf)}. 

Theorem 4.1. Let ~ be a global ~ 1 solution of (13), with final condition 
(12), satisfyingfui(t, x, <p)#O and 

Hi(t, x, (cJ>i¡ $-i), ri(t, x)) ~Hi(t, x, $, ri(t, x», 

'VtE[to, t¡], xEIR, i= 1, ... , N, (14) 

where 

ri(t, x) = _fJl(t, x, $ )L~(t, x, $). 

Then, ri(t, x) = V!(t, x) and $ is a subgame perfect Nash equilibrium. 

Proof. The essential observation is that ri(s, y(s)) is the costate vari­
able of the ith player in the problem 

max 
",i 

s.t. 

ff Li(s, y, (cJ>i¡ $_;) ds+ Si(t¡, y(tf», 
t 

y=f(s, y, (<pi¡ $-i)), SE(t, t¡), 

y(t) =x, <pi (s, y(s» EOJI\ 'VSE(t, t¡). 

Proving that ríes, y(s)) verifies (4) is straightforward: 

ri(S, y(s» = -f¡~- $Jf¡~, 

taking (l3) into account. It turns out that y, $, r i satisfy the necessary 
conditions for optimality, in view of hypothesis (14). 

We can readily adapt the proof of the main theorem in Willemstein 
(Ref. 7) to our framework to obtain the equality 

ri(t, x) = (%x)f(t, x, $). 

6
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(ojox)f(t, x, ~) 

= (ojox)Li(s,y, ~(s,y» ds+(ojoX)Si(t¡,y(t¡» J
I! 

I 

= {L~(s,y, ~(s,y»(oyjox)+~~(s,y)L~(s,y, ~(s,y»} ds J
I! 

I 

= ([ -ti(s, y) - hes, y, ~(s, y»r'(s, y) J
I! 

I 

- ~;(s, y)f¡~(s, y, ~(s, y), ri(s, y))] 

x (oyjox) + ~~(s, y)L~(s, y, ~(s, y»} ds 

+ (OjOX)Si(t¡, y(t¡)) 

= fl {-(oyjox)ti(s,y)-(ojox)f(s,y, ~(S,y»ri(S,y)} ds 
I 

+ (ojoX)Si(t¡, y(t¡» 

= -(oyjox)ri(s, y)1Y 

J
I! 

+ «djds)(oyjox) - (ojox)f(s, y, ~(t, y)))ri(s, y) ds 
I 

+ (ojoX)Si(t¡, y(t¡». 

383 

Now, the derivative with respect to the initial condition satisfies the following 
equation: 

(djdt)(oyjox) = (ojoy)f(s, y, ~(t, y»)(oyjox), 

and finally we arrive at the desired concIusion, 

(ojox)f(t, x, ~) 

= -(oyjoX)ri(S, y)1Y + (ojoX)Si(t¡, y(t¡» 

= -(oyjoX)(t¡)ri(t¡, y(t¡» + ri(t, y(t» + (oyjox)(t¡)S;(t¡, y(t¡» 

=ri(t, x). 

7
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In view of hypothesis (14), for any arbitrary strategy 4/, we have 

Hi(s, z(s), (4)il~_i)' J~(s, z(s), ~»+J~(s, z(s),~) 

~ Hi(s, z(s), ~, J~(s, z(s), ~» + J~(s, z(s), ~), 

where z is the solution of 

x=f(s, x, (4)il~_i)), 

Then, we can write 

x(t)=x, tE[to, t¡). 

(di ds)f(s, z(s), ~) + Li(s, z(s), (4)i I ~-i» 

~ (di ds)f(s, z(s), ~) + Li(s, z(s), ~) = O. 

Integrating the aboye expression between t and t¡, we obtain the fol!owing 
inequality: 

and thus, 

so that 

and ~ is a subgame perfect Nash equilibrium. o 

Let us note that the concavity of each maximized Hamiltonian with 
respect to the state variable, 

max H1(t, x, (d I ~-i)' 1/), for al! t, 1/, i = 1, ... , N, 
u' 

is not required, as is common when the Arrow sufficiency conditions are 
used. 

Remark 4.1. If the function d ~ H i is concave for all t, x, ,/, i = 

1, ... ,N, then a global classical solution ~ of (13) with final conditions (12) 
verifies the hypothesis of Theorem 4.1, because 

H~i(t, x,~, ri)=o, 

by construction. If the function d ~ H i is strictly concave, then it turns out 
that only a unique classical solution of (13), (12) can exist and therefore 
that is a unique Nash equilibrium. 

8
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Remark 4.2. In fact, a global classical solution of (13), (12) verifying 
hypothesis (14) ofthe above theorem has the property of strong time consist­
ency or subgame perfection (Ref. 8). The value functions Vi, i= 1, ... , N, 
defined aboye satisfy the Hamilton-Jacobi-Bellman equations, 

V;(t, x) = -max{ Li(t, x, (4/1 ~-i» + v~(t, x)f(t, x, (4/1 ~-i»}' 
</J' 

Remark 4.3. The system (13) can also be used to characterize open­
loop Nash equilibria. In this case, we consider solutions to the ordinary 
differential system given by 

(didt)~=A-lc, 

(djdt)x=f, 

with the final condition determined by the equality 

L~,(tf' x (tf), ~(tf» + f(tf, x(tf), ~(tf»(O¡OX)Si(tf' x(tf» =0. 

Let us observe that, if (ojox)A-1C=0 and the final condition does not 
depend on x, it is possible that a solution of (13) independent of the state 
variable exists. If this solution is a Nash equilibrium, it is called degenerate 
in the literature. Sufficient conditions that assure this property are given in 
Ref.9. 

Remark 4.4. In the case of an infinite horizon, tf= 00, if 

foo. I N 
L'(t, x, u , ... , u ) dt 

lO 

converges uniformly for all admissible controls u l
, ••• , UN)" and if ~ is a 

solution to (13) with liml~oo (oyjox)(tf )r'Ú, x) =0, then <fJ is a subgame 
perfeet Nash equilibrium. 

When the game problem is autonomous, we can consider solutions to 
(13) independent of t, so that 

B(djdx)~=C. 

5. Nonrenewable Resource Games 

In this section, we analyze existence and uniqueness of subgame perfect 
Nash equilibrium in finite-horizon nonrenewable resource games. This kind 

9
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of games, but of unbounded horizon, have been widely studied in the litera­
ture; see, for example, Ref. 10. 

Suppose that a nonrenewable common property resource is exploited 
by N agents, with N greater than one, in a noncooperative fashion. The 
evolution of the resource obeys the differential equation 

N 

x=- ¿ ui
, 

i~1 

x(O)=xo>O, (15) 

where Xo is the initial resource endowment. The ith pIayer depletes the 
resource at arate d ~ ° and its payoff is given by 

f
l! 

Ji (O, xo, u)= exp(-rit)Li(Ui) dt 
o 

+ exp( -rit¡) Si (x(t¡», 0< t¡< oo. (16) 

We consider d(t) = q/(t, x(t», with epi: [0, tI] x [O, xo] -+[0, (0) continuousIy 
differentiabIe. 

The instantaneous utility function of the ith pIayer is Li; ri~O and Si 
denote preference rate and saIvage value, respectively. We impose the follow­
ing hypotheses, for all i = 1, ... , N, which impIy risk aversion of the agents: 

(Hl) the function L i is ~3 in (O, (0), monotone increasing, and strictly 
concave; 

(H2) the function Si is ~2 in (O, xo], monotone increasing, and 
concave. 

By ~ i, i = 1, ... , N, we denote the inverse of the risk aversion index of 
Arrow-Pratt, 

With a view to anaIyzing this game, we consider the probIem (13), (12), 
which in this case reads, for i= 1, ... ,N, 

(fJ/fJr)epi+ (JI epJ }fJ;oX)epi_~i(epi) J~i (fJ;ox)epJ 

=ri~i(epi), 

epi(O, x) = q/(x), 

r=t¡-t, 

(17a) 

(l7b) 

(l7c) 

10
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The following results are centered on the symmetric game: 

Li=L, Si=S, ri=r, rllIi=rllI, i= 1, ... , N. 

In this case, the system (17) reduces to 

(aja.)~ + (N~ - (N -l)$(~»)(a¡ax)~ =r$(~), 

<jJ(0, x) = cp(x). 

Its characteristic system is given by 

(djdt¡)r = 1, 

(djdt¡ )x= N~ - (N -1)@"(~), 

(djdt¡)~ = r$(~), 

with initial values 

r(O, f3) = 0, 

x(O, f3) = f3, 

~(O, f3) = cp(f3). 

387 

(18a) 

(18b) 

(19a) 

(19b) 

(19c) 

(20a) 

(20b) 

(20c) 

Theorem 5.1. Let us assume that the following conditions are satisfied: 

(i) $/(u)5,Nj(N-l), VUErllI, 
(ii) r> ° => limu -++ co L'(U) = 0, 
(iii) cp(O) = 0, $(0) = O. 

Then, a unique global classical solution to (18) in [O, 00) x [O, xo 1 exists. 

Proof. It is well known that there is a unique local classical solution 
to (18) near r = O; see Ref. 11. Our task is to extend this solution for all 
r~O. 

From (18), along the characteristic defined by 

(djdr)x=N~ - (N-l)@"(~), 

the solution ~(r, x) satisfies 

(djdr)~=r$(~). 

Thus, the characteristic x = x( r, f3) passing through any point (O, f3), 
f3 E [O, Xo J, and the solution along this characteristic, 

~(r, f3) = ~(r, x( r, f3», 

11
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can be determined by the Cauchy problem 

(d/dr)x=NJ - (N -1)6"(J), 

(d/dr)J=r6"(J), 

r=O, x=f3, J = cp(f3). 

If r = O, then J is constant, and so a solution along aH the time horizon 
exists, due to the increase in the characteristic line slopes. This fact is assured 
by condition (i). 

On the other hand, if r> O, then at least locally, 

f
{fo(r'I3) 

(l/r) (l/6"(z» dz= r. 
",(13) 

For fixed f3E[0, xo], let us consider the foHowing function: 

Ff3(u) = fU (l/6"(z» dz. 
",(13) 

(21) 

The function Ff3 is t(j 1 and monotone increasing, with Ff3( cp(f3» = O. Further­
more, assumption (ii) implies that 

lim Fp(u) = +00. 
u-++oo 

In consequence, we can eonc1ude that, for aH f3 E [O, Xo l, a unique 
J( r, f3) = F¡ 1 ( r) exists for aH r;;::: O. Therefore, the eharacteristics are 

x( r, f3) = f3 + fr (NJ(s, f3) - (N -l)6"(J(s, f3») ds. 
o 

The solution along characteristics will be well defined if and only if its 
envelope is empty (Ref. 12). This is accomplished if and only if 

(8/8f3)x(r, f3) 

= 1 + {r (N-(N-I)6"'(J(s, f3»)(8/8f3)J(s, f3) ds 

= 1 + f r (N - (N - 1 )6"'( J(s, f3»)(6"( J(s, f3»/ 6"( cp(f3)))cp'(f3) ds 
o 

;;:::0. 

In faet, by (i) and taking into aecount that cp'(f3) '2:. O, we get 

(8/of3)x(r, f3) '2:.1. o 

12
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Corollary 5.1. Under the hypotheses of the last theorem, there exists 
a unique symmetric subgame perfect Nash equilibrium of class ct I of the 
game, for fixed arbitrary tj. 

Proof. In view ofthe fact that the Hamiltonian functions ofthe players 
are strictly concave, it is only necessary to prove the admissibility of the 
solution asserted by Theorem 5.1, in order to fulfill all the hypotheses in 
Theorem 4.1. 

Considering the proof of Theorem 5.1, it follows that, along character­
istics x( r, f3), the solution is mono tone increasing. S.ince the initial condition 
cp(f3) is nonnegative, it follows that the solution is nonnegative. More­
over, the unique solution along the characteristic x( r, O) is ~(r, O) "" O. 
This fact assures that the restriction O:s; x :s; Xo is fulfilled along the optimal 
trajectory. O 

Let us observe that, if the time horizon is sufficiently limited, a feasible 
equilibrium can still exist although 

tS'(0) > O or cp(O) > O. 

Note that condition (i) in the aboye theorem is a similar condition to that 
required for two players in Ref. lO, because 

tS"(u):s;N/(N-1) ~ E'(u)~[E(u)/u][l-E(u)N/(N-l)], (22) 

where 

E(u) "" u/ tS'(u) 

is the elasticity ofthe marginal utility. Ifthe relative risk aversion coefficient 
is decreasing [that is, E'(u):S;O], then (22) implies that 

E( u) ~ l - l/N. 

When N = 1, that is, in the optimal control problem, there is no restric­
tion on tS' related to the existence of ~. In the game framework, if the slope 
of tS' is greater than N/(N-I), then the solution becomes discontinuous in 
finite time. In fact, it is the gradient of the strategy which becomes 
unbounded. This behavior is a consequence of the extensive exploitation of 
the resource under noncooperative management. The speed of the change 
in each player's strategy increases without bound. This fact is due to the 
aim of adapting his or her own strategy to the competitors' strategies in an 
optimum way. 

We can provide implicit expressions for the solution in some important 
cases. 

13
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Theorem 5.2. The unique global classical solution of (18) is determined 
as follows: 

(i) constant elasticity of the marginal utility, 

E(u)=-y, yE[-I, -1 + l/N], r>O, (23a) 

~(r, x) =exp( -(r !r)r)cp[x + (y /r)(1- exp«r /y)r» 

X«N-I)/y+N)~(r,x)]; (23b) 

(ii) elasticity of the marginal utility satisfying (22) and r = O, 

~(r, x) = cp[x + r«N -1)tS'( ~(r, x» - N~( r, x»]. (24) 

Furthermore, in all cases the solution is monotone increasing with respect 
to x. In (i), if the solution is 'fi2 and cp"?O, then it is convex with respect 
to x. In (ii), ifthe solution is 'fi2, cp"?O, and S"?O, then it is convex with 
respect to x. 

Proof. It is easy to show that, in all cases, the hypotheses of Theorem 
5.1 are fulfilled. The respective expressions are obtained after integration in 
the ordinary differential equations system (19)-(20). The second part of the 
theorem is straightforward by differentiation of (23b)-(24). O 

Next, we study the properties of the equilibrium along the optimal 
trajectory. We define 4>*(t) = ~(t, x*(t», where x* is the unique solution to 
the closed-Ioop equation 

x(t) = -N~(t, x(t». 

Theorem 5.3. In all cases considered in Theorem 5.2, x* is a convex 
function. 

Proof. Clearly, it is sufficient to prove that 4>* is mono tone decreasing. 
The relation 

<fi*(t) = (iJ/iJt)~(t, x*(t» - N~(t, x*(t»(iJ¡Ox)~(t, x*(t»::;;O 

shows this fact. o 

Other important aspects of resource games are the effects on competitive 
extraction of variations in the number of players, utility function, and salv­
age value. We carry out an analytical study in the following theorems. 

14
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Theorem 5.4. Consider the following Cauchy problems: 

(PI) (8/81')u+ f(u)(8/8x)u=h(u), 

u(O, X) = qJ(x); 

(P2) (8/81')v+ g(v)(8/8x)v=h(v), 

v(O, x) = lf/(x). 

391 

Here, r ~ O, XE IR; /, g, qJ, lf/ are C(i 1 functions, monotone increasing, and 
satisfyingf~g and qJ~ lf/. Furthermore, let h be a nonnegative continuous 
function. If u, vare the unique global classical solutions to (PI) and (P2) 
respectively, then u~v. 

Proof. Suppose that there exist • > O and XE IR such that 
u( r, x) > v( r, x). Let 13 and 13' be real numbers such that the characteristics 
x(s, 13) and x(s, 13'), associated to (PI) and (P2) passing through (O, 13) and 
(O, 13'), respectively, intersect in (r, x). Then, note that 

x( r, 13) = 13 + r f (u(s, x(s, 13))) ds, 

x(1', 13') = 13' + {T g(v(s, x(s, 13'))) ds, 

and by subtraction, 

13 - 13'= {T [g(v(s, x(s, 13'))) - f(u(s, x(s, 13)))] ds. (25) 

Now, taking into account that qJ~ lf/ and that these functions are increasing, 
then it follows that 13 > 13', and due to the nonnegativity of h, 

u(s, x(s, 13)) > v(s, x(s, 13'», 'v'SE [O, r l. 

So, the right-hand side of (25) is positive, in contradiction with the 
hypotheses. O 

Theorem 5.5. Consider problems (PI) and (P2) with h=.O. Suppose 
that r~O, XEIR, and that/, g, qJ, lf/ are C(il functions, monotone increasing, 
with qJ, lf/ bounded, and satisfying max qJ ~ min lf/. If u, vare the unique 
global classical solutions to (Pl) and (P2) respectively, then u ~ v. 

Proof. The conditions imposed assure existence and uniqueness of 
solution for both equations (Ref. 12). Furthermore, the solution is constant 

15
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along characteristics that are straight lines. The values of the solution 
throughout the characteristic passing (O, f3) are cp(f3) and t¡I(f3), respectively. 
In consequence, 

u(r, x)smax cpsmin t¡lsv(r, x), forall rzO,xE~. o 

Corollary 5.2. Let us suppose that condition (22) holds. Then, the 
depletion rate of each player's resource increases (decreases) when N grows, 
if and only if E < 1 (E> 1). When E = 1, the extraction is independent of the 
player number. 

Proof. Let us define 

aN(u) = Nu - (N - l)6"(u), N> 1. 

We assume that N> M. Then, one can get 

We apply Theorem 5.4, with 

to reach the desired conclusion. o 

The results established show that, for E< 1, the entry of new players 
would speed the extraction of aH the players' resources, whereas, if E= 1, 
the entry of new players would not change the resource depletion rateo 

Now, we proceed to compare two separate models of resource extrac­
tion characterized by functions E(l), E(2) and final conditions cp(l), cp(2), with 
the same number of players. 

Corollary 5.3. Suppose that (22) hold. Then: 

(i) cp(l)=.qP) and E(l)zE(2), with E(I)(U»E(2)(U) for some u, 
imply ~(l) S ~(2), with ~(l)(t, x) < ~(2)(t, x) for some (t, x). 

(ii) E(I)=.E(2) and cp(l)::;;cp(2), with cp(l) < cp(2) for some x, 
imply ~(l)::;; ~(2), with ~(l)(t, x) < ~(2)(l, x) for some (l, x). 

Proof. The proof foHows the lines of the demonstration of Theorem 
5.4. O 

16
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The first result establishes that for identical boundary functions, the 
greater the marginal utility elasticity, the smaller the exploitation activity 
rateo The second one shows a more rapid extraction speed for a bigger 
boundary function when the elasticity of the marginal utility remains the 
same. 

Remark 5.1. If we consider the symmetric cooperative game, then we 
have the associated Cauchy problem 

(ov/or) + Nv(ov/ox) = rcB'(v) , 

veO, x) = (L,)-I(NS'(x)). 

Now, using Theorem 5.4, we obtain that the resource extraction is smaller 
than in the noncooperative game. The smaller exploitation intensity in the 
cooperative case allows the possibility of leaving more resources to be 
extracted in the future. 

Remark 5.2. The renewable resource game with linear recruit function 
and isoelastic utility function, 

max 
d J

I! 

o exp( -rit)(d)1 +y, dt+ Si (tf' x(tf», i=l, ... ,N, 

N 

S.t. x=a(x-x)- L d, 
i~1 

x(O)=xo>o, Yi>O, 

can easily be con verted to an autonomous nonrenewable resource model, 
such as the one studied in this section, by means of a one-to-one state and 
control transformation. Let 

y = (x - x) exp(at), d=exp(at)ui
, i= 1, ... , N. 

Then, the game becomes 

i=l, ... , N, 

N 

S.L y= - LVi, 
i~1 

y(O)=xo-x, 

Si(t, y) = Si(t, x) = Si(t, y exp( -at) + x), rí=ri+ a(1 + y¡). 

17
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In consequence, aH the results displayed in this section for the symmetric 
game are applicable to this mode!. In addition, the optimal strategy for each 
player is 

u(t, x) = exp( -at)v(t, (x- x) exp(at». 

6. Conclusions 

We have given necessary and sufficient conditions to characterize 
subgame perfect Nash equilibria. This way aHows us to find the equilibria 
explicitIy in sorne games where classical methods, such as the Hamilton­
Jacobi-Bellman equation, are usually more complex to apply. Moreover, if 
the explicit solution cannot be computed, our method helps to analyze the 
qualitative features of the equilibrium. 

This approach for the determination of the Nash equilibrium in feed­
back strategies do es not need the usual concavity hypotheses on the player's 
Hamiltonians. 
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