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Summary

Cluster analysis is a problem that consists of the analysis of the existence of

clusters in a multivariate sample. This analysis is performed by algorithms that

differ significantly in their notion of what constitutes a cluster and how to find them

efficiently. In this thesis we are interested in large data problems and therefore we

consider algorithms that use dimension reduction techniques for the identification

of interesting structures in large data sets. Particularly in those algorithms that

use the kurtosis coefficient to detect the clusters present in the data.

The thesis extends the work of Peña and Prieto (2001a) of identifying clusters

in multivariate data using the univariate projections of the sample data on the

directions that minimize and maximize the kurtosis coefficient of the projected

data, and Peña et al. (2010) who used the eigenvalues of a kurtosis matrix to

reduce the dimension.

This thesis has two main contributions:

First, we prove that the extreme kurtosis projections have some optimality

properties for mixtures of normal distributions and we propose an algorithm to

identify clusters when the data dimension and the number of clusters present in

the sample are high. The good performance of the algorithm is shown through a

simulations study where it is compared it with MCLUST, K-means and CLARA

methods.

Second, we propose the extension of multivariate kurtosis for functional data,
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and we analyze some of its properties for clustering. Additionally, we propose an

algorithm based on kurtosis projections for functional data. Its good properties

are compared with the results obtained by Functional Principal Components,

Functional K-means and FunClust method.

The thesis is structured as follows: Chapter 1 is an introductory Chapter where

we will review some theoretical concepts that will be used throughout the thesis.

In Chapter 2 we review in detail the concept of kurtosis. We study the

properties of kurtosis. Give a detailed description of some algorithms proposed

in the literature that use the kurtosis coefficient to detect the clusters present in

the data.

In Chapter 3 we study the directions that may be interesting for the detection

of several clusters in the sample and we analyze how the extreme kurtosis directions

are related to these directions. In addition, we present a clustering algorithm for

high-dimensional data using extreme kurtosis directions.

In Chapter 4 we introduce an extension of the multivariate kurtosis for the

functional data and we analyze the properties of this measure regarding the

identification of clusters. In addition, we present a clustering algorithm for

functional data using extreme kurtosis directions.

We finish with some remarks and conclusions in the final Chapter.
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Chapter 1

Introduction and Theoretical

Foundation

Summary

The classification of observations is a basic problem that occurs in many

disciplines. Classification methods can be grouped according to the statistical

techniques used as parametric and non-parametric. Another useful grouping,

based on the consideration of the available information used in the classification, is

supervised classification, or discriminant analysis, and unsupervised classification,

or clustering. In discriminant analysis we know a priori the groups whereas in

clustering they are made from the data. In this work we focus on cluster analysis.

Clustering is a data analysis problem that has been extensively studied during

the last decades. Its main aim is the partitioning of a data set into subsets. These

groups, also called clusters, are constructed in such a way that an object in a

given group should be similar, in some sense, to the rest of objects of the same

group (highly internally homogenous), while objects in different groups should be

significantly different (highly externally heterogenous).
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In this introductory Chapter we will review some well known material that

will be later used in the rest of the thesis. First, we will summarize some

clustering methods divided into three categories: partitional methods, model-based

methods and hierarchical methods. Second, we will present the most often used

supervised classification method: Fisher’s linear discriminant analysis. Finally,

we will analyze some dimension reduction techniques for the identification of

interesting structures in large data sets, these are: Principal Components Analysis,

Independent Component Analysis and Projection Pursuit.

24



CHAPTER 1. INTRODUCTION AND THEORETICAL FOUNDATION

1.1 Cluster Methods

The unsupervised classification is an analytical procedure to find groups

internally as homogeneous as possible. It consists in clustering a set of n objects,

defined by p variables, or by a distance or dissimilarity matrix, in k groups, such

that, 1) each element belongs to one and only one of the groups; 2) all the elements

are classified; and 3) each group is internally homogeneous. The number of groups

can be pre-set or not.

Many authors have proposed methods for cluster analysis. Traditionally they

can be divided into three categories: partitional methods, model-based methods and

hierarchical methods.

1.1.1 Partitional Methods

Given a set data D = {x1, x2, ..., xn}, where xi ∈ Rp, i = 1, ...n. Partitional

methods attempt to find K partitions of D, C = C1, C2, ..., CK , (K ≤ n), such

that the global distance between the data objects within each group is minimized.

The partitional clustering algorithms find all the clusters simultaneously as a

partition of the data and do not impose a hierarchical structure, i.e, if K is the

desired number of clusters, then partitional methods find all K clusters at once.

The most popular partitional methods are: K-Means and K-Medoids. Both

methods represent a cluster by its center point. K-means uses the notion of a

centroid defined by the mean or median coordinates of the elements in the group.

In this case, the centroid has coordinates that may not coincide with to an actual

data object. K-medoid uses the notion of a medoid, which is the most central data

object of a group of objects. According to the definition of a medoid, it is required

to be an actual data object.
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1.1. CLUSTER METHODS

K-Means Algorithm

The K-means method was proposed by MacQueen (1967), who obtained weak

consistency results for the algorithm. Subsequently, Hartigan and Wong (1979)

present a more efficient version. Pollard (1981) proved the strong consistency of

the method, providing conditions that ensure the convergence of the cluster centers

when sample size increases, generalizing one of Hartigan’s results. Subsequently,

Pollard (1982) proved its asymptotic distribution.

The main idea of the algorithm is to assign each point to the cluster whose

center (also called centroid) is the nearest. The centroid is the average of all the

points in the cluster, that is, its coordinates are the arithmetic mean for each

dimension separately over all the points in the cluster. The centroid is updated

iteratively until some convergence criteria are met.

The algorithm requires three user parameters. The first is the number of groups

of the partition K. A common approach is to run the algorithm repeatedly with

different K values and use some validation criteria to select the most appropriate

value. Dubes (1987) provides guidance on this decision. The second parameter is

the initial selection of cluster centers. One possible way to minimize the impact

produced by this parameter is to run the algorithm several times with different

initial partitions and choose the partition with the smallest squared error. The

third parameter is the distance function, the most common is the Euclidean

distance. Mao and Jain (1996) have used the Mahalanobis distance to obtain

hyperellipsoidal clusters, but this requires a higher computational cost.

Once the initial parameters are assigned, the algorithm iteratively reassigns the

observations to clusters according to a criterion of homogeneity. The most intuitive

and frequently used homogeneity criterion in partitional clustering techniques is

the Sum of Squares Within groups (SSW ) for all variables, which is equivalent to

the weighted sum of the variances of the variables in the groups.
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CHAPTER 1. INTRODUCTION AND THEORETICAL FOUNDATION

For a sample of n items with p variables, define the sum of squares within

groups by

SSW =
K∑
k=1

p∑
j=1

nk∑
i=1

(xijk − x̄jk)2, (1.1)

where xijk with i = 1, ..., n, is the value of the jth variable in the ith item belonging

to the kth cluster, from a total number of K clusters, with K ≤ n, and x̄jk is the

mean of the kth cluster. The criterion is written as

minSSW = min
K∑
k=1

p∑
j=1

nks
2
jk, (1.2)

where nk is the number of items in group k and s2
jk is the variance of variable j in

group k. The variances of the variables in the groups are a measure of heterogeneity

in the classification, and by minimizing them, we obtain more homogenous groups.

The K-means algorithm looks for an optimal partition and consists of the

following stages, see Jain and Dubes (1988):

1. Randomly select k items x̄1, x̄2, ..., x̄K as the initial centroids for the K

groups.

2. Calculate the Euclidean distance between each data point and the K

centroids and use the criterion (1.1). Assign the data point i to the group k

that minimizes the Euclidean distance.

3. For every centroid, recalculate the new centroid to the average of the points

assigned to that centroid.

4. Recalculate the distance between each data point and new centroid obtained.

5. Repeat from step 3) until the centroid assignment no longer changes.

The main advantages of this algorithm are its simplicity and speed, which

allows it to run on large datasets. Its disadvantage is that it does not yield the
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1.1. CLUSTER METHODS

same result with each run, since the resulting clusters depend on the initial random

assignments. It maximizes inter-cluster (or minimizes intra-cluster) variance, but

does not ensure that the result has a global minimum variance.

Several variants of the K-means algorithm have been reported in the literature.

Two well-known variants of K-means in pattern recognition literature are Forgy,

see Forgy (1965) and ISODATA, see Ball and Hall (1965). Forgy’s algorithm is

similar to the EM algorithm and consists of two-step major iterations that 1)

reassign all the points to their nearest centroids, and 2) recompute centroids of

newly assembled groups. Iterations continue until a stopping criterion is satisfied

(for example, no reassignments happen), see Kogan et al. (2006). The ISODATA

algorithm employs a technique of merging and splitting clusters. Typically, a

cluster is split when its variance is above a pre-specified threshold, and two

clusters are merged when the distance between their centroids is below another

pre-specified threshold. Using this variant, it is possible to obtain the optimal

partition starting from any arbitrary initial partition, provided proper threshold

values are specified, see Ball and Hall (1967).

Another extension of K-means is Fuzzy c-means (FCM), proposed by Dunn

(1973) and later improved by Bezdek (1981), where each point has a degree of

belongingness to the clusters rather than belonging completely to just one cluster

(soft clustering). Thus, points on the edge of a cluster, may be in the cluster

to a lesser degree than points in the center of the cluster. For each point x we

have a coefficient giving the degree of being in the kth cluster uk(x). Usually, the

sum of those coefficients is defined to be 1, so that uk(x) denotes a probability of

belonging to a certain cluster. With the Fuzzy c-means algorithm the centroid x̄k

of the kth cluster is the mean of all points in that cluster, weighted by their degree

of belongingness to the cluster. The algorithm minimizes intra-cluster variance as

well, but has the same problems as K-means: the minimum is a local minimum
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CHAPTER 1. INTRODUCTION AND THEORETICAL FOUNDATION

and the results depend on the initial choice of weights. A good overview of fuzzy

set based clustering is available in Backer (1978).

Cuesta-Albertos et al. (1997) proposed a modification of the K-means

algorithm with emphasis on its robustness properties, called Trimmed K-means.

This is a robust estimation technique based on removing part of the data,

known as "impartial trimming". The methodology of "impartial trimming"

is a way to obtain a trimmed set with the lowest possible variation. The

Trimmed K-means consisting of the K-mean of the observations remaining after

removing a fixed proportion of outliers observations. Cuesta-Albertos et al. (1997)

proved their consistency for absolutely continuous multivariate distributions and

García-Escudero et al. (1999) its asymptotic distribution.

K- Medoids Methods

The K-medoid method is a clustering algorithm related to the K-means

algorithm. The objective of K-medoid clustering is to find a non-overlapping set

of clusters such that each cluster has a most representative object, i.e., an object

that is most centrally located with respect to some measure, such as distance.

These representative objects are called medoids and a medoid can be defined as

the object of a cluster, whose average dissimilarity to all the objects in the cluster

is minimal, i.e., it is a most centrally located point in the cluster, see Kaufman

and Rousseeuw (1990).

Among many algorithms for K-medoids clustering, Partitioning Around

Medoids (PAM) proposed by Kaufman and Rousseeuw (1990) is the most common.

PAM is an iterative optimization method that combines relocation of points

between clusters with renominating the points as potential medoids. It starts

from an initial set of medoids and iteratively replaces one of the medoids by one

of the non-medoids if it improves the total distance of the resulting clustering.
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However, finding a better medoid requires trying all points that are currently not

medoids and this is computationally expensive. Thus, PAM has the drawback that

it works inefficiently for a large data set due to its time complexity, see Han et al.

(2001).

Kaufman and Rousseeuw (1990) also proposed an algorithm called CLARA

(Clustering LARge Applications), is an adaptation of PAM for handling larger

data sets. Instead of finding representative objects for the whole data set, CLARA,

firstly, draws a sample of the data set by using random sampling method; and then,

applies PAM on the sample to find the medoids of the sample. The point is that,

if the sample drawn in a random way correctly represents the total data set, then

the sample’s medoids would approximate to the medoids of the whole data set.

To come up with better approximations, CLARA draws multiple samples and

gives the best clustering as the output. But the performance of CLARA drops

rapidly with increasing number of clusters. Lucasius et al. (1993) proposed a new

approach of K-medoid clustering using a genetic algorithm, whose performance

is reported as better than CLARA but computational burden increases as the

number of clusters increases. Wei et al. (2003) also compared performance of

CLARA and some other variants for large data sets.

Ng and Han (1994) proposed an efficient algorithm based on a mixture of PAM

and CLARA, CLARANS (Clustering LARge Applications based on RANdomized

Search), this algorithm draws a sample with some randomness in each stage until

it finds a better configuration. The difference between CLARANS and CLARA is

that CLARANS works with all data objects, while CLARA only works with part

of the complete data set.

Most of these algorithms are based on PAM, so the computational load remains

a problem. Park and Jun (2009) proposed a new K-medoids clustering algorithm

that calculates the distance matrix once and uses it for finding new medoids at
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every iterative step. This method has better performance than K-means clustering

and it requires shorter computation times than PAM. It can also be seen that

the initial medoids selection employed in this method performs quite well when

compared with other methods based on naively selecting initial medoids.

1.1.2 Model-Based Methods

In model-based clustering, it is assumed that the data are generated by a

mixture of probability distributions in which each component represents a different

cluster. Given observations x = (x1, ..., xn), let fk(xi|θk) be the density of an

observation xi from the kth component, where θk are the corresponding parameters,

and letK be the number of components in the mixture. The model for clustering is

usually formulated as a mixture likelihood approach, that is, we want to maximize

the likelihood function

L(θ|x) =
n∏
i=1

K∑
k=1

πkfk(xi|θk), (1.3)

where πk is the probability that an observation belongs to the kth component

(πk ≥ 0;
∑K

k=1 πk = 1). The support function of the sample is

L(θ|x) =
n∑
i=1

log

(
K∑
k=1

πkfk(xi|θk)

)
(1.4)

We are mainly interested in the case where fk(xi|θk) is multivariate normal

(Gaussian). Then, the parameters θk consist of a mean vector µk and a covariance

matrix Σk, and the density has the form

fk(xi|µk,Σk) =
exp{−1

2
(xi − µk)TΣ−1

k (xi − µk)}
(2π)p/2|Σk|1/2

(1.5)

where x represents the data, and k is an integer subscript specifying a particular

cluster. Substituting these densities in (1.4), the likelihood will be

L(θ|x) =
n∑
i=1

log

(
K∑
k=1

πk
exp{−1

2
(xi − µk)TΣ−1

k (xi − µk)}
(2π)p/2|Σk|1/2

)
(1.6)
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Introducing the restriction
∑K

k=1 πk = 1 with a Lagrange multiplier in (1.4),

the function to be maximized is

L(θ|x) =
n∑
i=1

log

(
K∑
k=1

πkfk(xi|θk)

)
− λ

(
K∑
k=1

πk − 1

)
(1.7)

Equating to zero the derivative of this function with respect to the probabilities

and multiplying by πk, we obtain

λπk =
n∑
i=1

πik (1.8)

where πik is defined as:

πik =
πkfk(xi|µk,Σk)∑K
k=1 πkfk(xi|µk,Σk)

, (1.9)

which is the so-called probability a posteriori. This is the probability that, once

observed, the data xi have been generated by the normal fk(xi|µk,Σk).

Banfield and Raftery (1993) proposed a model-based framework for clustering

in multivariate normal mixtures by parameterizing the covariance matrix in terms

of its eigenvalue decomposition in the form

Σk = λkDkAkD
T
k , (1.10)

where Dk is the orthogonal matrix of eigenvectors of Σk, Ak is a diagonal matrix

whose elements are proportional to the eigenvalues of Σk, and λk is an associated

constant of proportionality. The orientation of the principal components of Σk

is determined by Dk, while Ak determines the shape of the density contours; λk

specifies the volume of the corresponding ellipsoid, which is proportional to λpk|Ak|,

where p is the data dimension. Conventions for normalizing λk and Ak include

requiring |Ak| = 1, so that λk = |Σk|1/p, see Celeux and Govaert (1995). Or

requiring max(Ak) = 1, so that λk is the largest eigenvalue of Σk, see Banfield and

Raftery (1993). This approach is particularly useful for two and three dimensional
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data, where the geometric features can be identified visually. It may also be

applicable for higher dimensional data when multivariate visualization analysis

reveals some structure. Fraley (1999) developed efficient algorithms for hierarchical

clustering with the various parametrizations (1.10) of Gaussian mixture models.

EM Algorithm

The estimation of (1.6) is performed using the Expectation-Maximization (EM)

algorithm. It is a general approach to maximum likelihood in the presence of

incomplete data. In EM for clustering, the "complete" data are considered to be

yi = (xi, zi), where zi = (zi1, ..., ziK) with

zik =

 1 if xi belongs to group k

0 otherwise
(1.11)

constitutes the "missing" data. The model assumptions are that the density of an

observation xi given zi is given by
∏K

k=1 fk(xi|θk)zik and that each zi is independent

and identically distributed according to a multinomial distribution of one draw

on K categories with probabilities π1, ..., πK . The resulting complete-data

loglikelihood is

L(θ|x) =
n∑
i=1

K∑
k=1

zik[log πkfk(xi|θk)] (1.12)

The quantity ẑik = E[zik|xi, θ1, ..., θK ] for model (1.12) is the conditional

expectation of zik given the observation xi and parameter values.

The EM algorithm iterates between an E-step in which values of ẑik are

computed from the data with the current parameter estimates and an M-step in

which the complete-data loglikelihood (1.12), with each zik replaced by its current

conditional expectation ẑik, is maximized with respect to the parameters. The EM

algorithm is as follows:
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M-step: compute maximum-likelihood parameter estimates given ẑik

nk ←−
n∑
i=1

ẑik

π̂k ←−
nk
n

µ̂k ←−
1

nk

n∑
i=1

ẑikxi

Σ̂k : depends on the model

E-step: compute ẑik given the parameter estimates from the M-step

ẑik ←−
π̂kfk(xi|µ̂k, Σ̂k)∑K
j=1 π̂jfj(xj|µ̂j, Σ̂j)

,

where fk has the form (1.5).

Celeux and Govaert (1995) detail both the E- and M-steps for the

case of multivariate normal mixture models parametrized via the eigenvalue

decomposition in (1.10).

Application to Cluster Analysis

Different implementations of mixtures of normal distributions have been

proposed for solving problems of clusters. Fraley and Raftery (1999) have designed

a method based on mixtures of normal distributions and an algorithm MCLUST,

which works well in practice. MCLUST is a contributed R package for model-based

clustering, classification, and density estimation based on finite normal mixture

modeling. It provides functions for parameter estimation via the EM algorithm

for normal mixture models.

The algorithm assumes the sample has been generated from a mixture of

K normal distributions and estimates the parameters of each population of the

mixture together with the probability of membership for each observation of the

sample, which is the probability a posteriori (1.9). The observation xi will be
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assigned, to the cluster k that maximizes πik. In order to compute (1.9) we need

to estimate the parameters of the mixture, which is done via the logarithm of

the correspondent likelihood function. The estimation is repeated for different

assumptions on the number of components in the mixture and covariance matrices

of the components, and the Bayesian Information Criterion (BIC) is used to choose

the assumption more likely to be true. This allows comparison of models with

differing parameterizations and/or differing numbers of clusters. In general the

larger the value of the BIC, the stronger the evidence for the model and number of

clusters. A standard convention for calibrating BIC differences is that differences

of less than 2 correspond to weak evidence, differences between 2 and 6 to positive

evidence, differences between 6 and 10 to strong evidence, and differences greater

than 10 to very strong evidence, see Kass and Raftery (1995).

MCLUST provides the Mclust function, which aim to provide the optimal

mixture model estimation according to BIC criteria. The input to function Mclust

includes the data, the number of mixture components (clusters) for which the

BIC is to be calculated and the covariance structures to consider. By default,

Mclust compares BIC values for parameters optimized for up to nine components

and all ten covariance structures currently available in the mclust software. The

output includes the parameters of the maximum-BIC model (where the maximum

is taken over all of the models and numbers of components considered), and the

corresponding classification and uncertainty. The object produced by Mclust is a

list with a components describing the estimated model. See Fraley and Raftery

(2012).

Overall, MCLUST works well for low dimensional spaces. However, when the

dimension of space is large, the computational time may become very expensive;

MCLUST estimates several covariance matrices, and thus requires a large sample

if the dimension of the data is large.
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Detailed descriptions and numerous references regarding model-based

clustering can be found in Dempster et al. (1977) and McLachlan and Krishnan

(1997). Examples of this type include, SNOB (Wallace and Dowe, 1994),

AUTOCLASS (Cheeseman and Stutz, 1996), COBWEB, CLASSIT (Chiu et al.,

2001) and CLUSTER/2 (Michalski and Stepp, 1983).

1.1.3 Hierarchical Methods

Hierarchical methods are based on a matrix of distances or similarities between

the elements of the sample and create a hierarchy based on a distance between the

groups constructed from observations. If all variables are continuous, the most used

distance is the Euclidean distance between standardized variables. Hierarchical

algorithms build a series of nested partitions. These partitions can be obtained

from agglomerative shape, in this case the clusters are joined together to form

partitions with fewer clusters, or by division, when the groups are split so that

the partitions produce more clusters. The main advantage of such algorithms is

that they are able to capture the possible hierarchical data structure. A possible

disadvantage is that they are appropriate only if the sample size is small. See Jain

and Dubes (1988) and Kaufman and Rousseeuw (1990).

The graphical representation of a hierarchy of groups is commonly done using

a tree called dendrogram. The leaf nodes represent the first partition on a

agglomerative process (or the last on a divisive process), while internal nodes

represent the union of several groups in an agglomerative process (or the division

of a group on a divisive process). The height of each node generally corresponds to

the distance between their child nodes. In this way, each partition of the hierarchy

can be indicated by a horizontal line that cuts the different branches of the tree.

There are different approaches for computing distances among the groups. The

most important are Single-link (S-link) (Sneath and Sokal,1973), Complete-link
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(Com-link) (King, 1967) and Average-link (Ave-link) (Jain and Dubes, 1988). The

Single-link distance between two subsets is the shortest distance between them, the

Complete-link is the largest distance and Average link the average distance. It has

been observed that the complete- link algorithm produces more useful hierarchies

in many applications than the single-link algorithm, see Jain and Dubes (1988).

An algorithm suitable for large-scale clustering introduced by Guha et al.

(1998) is CURE (Clustering Using REpresentatives). It takes random samples

to cluster each sample separately and integrates the results in a final step. The

algorithm ROCK, developed by the same researchers, Guha et al. (1999), is an

improvement of CURE for dealing with enumeration data, which takes the effect

on the similarity from the data around the cluster into consideration. Karypis et

al. (1999) propose the CHAMELEON algorithm, which is composed of two phases:

at first, it partitions the original data into sub-clusters with a smaller size based on

the K-nearest neighbour graph, and then the clusters with small size are merged

into a cluster with bigger size, based on an agglomerative algorithm, until the

final clusters are obtained. The algorithm seems to find clusters of diverse shapes,

densities, and sizes in two-dimensional space, see Song et al. (2011). Steinbach

et al. (2000) proposed a hierarchical divisive version of K-means, called bisecting

K-means, that recursively partitions the data into two clusters at each step.

1.2 Supervised Classification

The supervised classification, also called discriminant analysis, is a

classification technique based on knowing the characteristics that differentiate

(discriminate) between two or more groups. It is used to assign new observations

to known groups.

Discriminant Analysis can be considered as a regression analysis where the
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dependent variable is categorical and has as categories the group memberships

labels, and the independent variables are continuous. There are several possible

approaches to this problem, within the most important supervised classification

techniques are: Logic based algorithms, Artificial Neural Networks (ANNs), Radial

Basis Function (RBF), Naive Bayesian networks (NB), Bayesian Network (BN),

Linear Discriminant Analysis (LDA), k-Nearest Neighbour (k-NN) and Support

Vector Machines (SVMs).

In this paper we are particularly interested in the classical discriminant analysis

developed by Fisher (1936) for its relation to kurtosis. We will make a brief

description below

1.2.1 Fisher’s Linear Discriminant

Linear discriminant analysis (LDA), also known as Fisher’s linear discriminant

analysis, is a widely used method aimed at finding linear combinations of observed

features which best characterize or separate two or more classes of objects or

events.

Fisher’s linear function provide a rule for assigning a unit, whose group

membership is unknown, to one out of the K known groups. As a particular

case, the classical discrimination is for K = 2. Let’s consider that the general

matrix of data X, n×p (n individuals and p variables), is divided into K matrices

corresponding to the subpopulations. We will call xijk to the elements of these

submatrices where i represents the individual, j the variable, and k the group. We

let nk be the number of elements in group k and the total number of observations

is: n =
∑K

k=1 nk.

Fisher suggested to look for the linear combination z = aTx, which best

separates the groups. This amounts to look for the vector a such that, the

projection of the data on this direction makes the groups as separated as possible.
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The vector of means within each group, x̄k = 1
nk

∑nk

i=1 xik, is a column vector

of dimension p which contains the p means for the observations of the group k.

The covariance matrix for the elements of group k is

Σk =
1

nk − 1

nk∑
i=1

(xik − x̄k)(xik − x̄k)T (1.13)

The variable z will therefore have overall average z̄ = aT x̄, where x̄ =

1
n

∑K
k=1 x̄knk.

For each group, the average value is z̄k = aT x̄k and V ar(zk) = aTΣka.

Therefore, V ar(z) = aTWa, where

W =
1

n−K

K∑
k=1

(nk − 1)Σk (1.14)

is the within group covariance matrix.

The variability among the group means projected is given by aTBa, where

B =
1

K − 1

K∑
k=1

nk(x̄k − x̄)(x̄k − x̄)T , (1.15)

is the between groups covariance matrix. In the simple two group case the variance

between groups has the simple expression B =
∑2

k=1 nk(x̄k − x̄)(x̄k − x̄)T . After

writing x̄ it becomes

B =
n1n2

n1 + n2

(x̄1 − x̄2)(x̄1 − x̄2)T , (1.16)

The criterion proposed by Fisher is to maximize:

φ =
aTBa

aTWa
(1.17)

In order to find the vector a for which φ is maximum we derive it with respect

to a, we set the derivatives to 0, and we obtain

(W−1B − φI)a = 0, (1.18)
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which implies that φ is an eigenvalue of W−1B and a is the corresponding

eigenvector. As φ is the function we want to maximize we choose the largest

eigenvalue and the corresponding eigenvector as the best discriminant direction.

In the two-group case, the single discriminant direction a can be obtained as

a = W−1(x̄1 − x̄2). The corresponding linear combination will therefore be

z = aTx = (x̄1 − x̄2)TW−1x. Let’s denote by z̄1 the average projection of

group 1 on a, z̄1 = aT x̄1 = (x̄1 − x̄2)TW−1x̄1, and by z̄2 = (x̄1 − x̄2)TW−1x̄2,

the average projection of group 2 on a. Let’s also assume, without loss of

generality, that z̄1 > z̄2. Let x0 be the new unit we want to classify and

z0 = aTx0 = (x̄1 − x̄2)TW−1x0 its projection on a. A natural allocation rule

will consist in assigning x0 to the group whose average it is closest to along a: i.e.

assign x0 to group 1 if |z0− z̄1| < |z0− z̄2| and to group 2 if the opposite inequality

holds. This amounts to assign x0 to K1 if z0 >
z̄1+z̄2

2
, that is, if:

(x̄1 − x̄2)TW−1x0 >
1

2
(x̄1 − x̄2)TW−1(x̄1 + x̄2).

This is known as a linear classification rule as it is a linear function of the observed

vector variable x.

1.3 Clustering for Large Data Sets

A central problem in high dimensional data analysis is to find a small set of

features that summarize the most significant aspects of their behavior.

High dimensionality presents two problems in clustering, see Berkhin (2006).

First, the presence of irrelevant attributes, because they negatively affect proximity

measures. Second, the dimensionality curse, that is a lack of data separation in

high dimensional space. In order to solve this problem, two main approaches

have been used. The first one is variable selection and the second one dimension

reduction.
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Variable selection for clustering consists of reducing the number of variables

and focusing only on the relevant variables that carry discriminating information

for clusters. This is an important feature since fewer variables could give a better

partitioning of the data into clusters closer to the true clustering structure and

could also greatly facilitate the interpretation of results. Variable selection can

be made by some penalty function, as the Lasso method. For instance in model

based clustering we can maximize the likelihood of the mixture of normals adding

some penalty function in order to introduce variable selection, (see Pan and Shen

(2007) and Wang and Zhu (2008)).

Also we can consider the problem of variable select for model-based clustering,

as proposed by Raftery and Dean (2006). They proposed that, if we have a

dataset Y , it can be partitioned into three sets of variables: variables included

in the model (Y (1)), variables currently under consideration (Y (2)), and remaining

variables (Y (3)). The decision for inclusion or exclusion of (Y (2)) from the set of

clustering variables is taken after considering two models. In the formulation of the

Model 1, it is assumed that the inclusion of the variables (Y (2)) does not contribute

to the model improvement as the clustering information is already contained in

the set of already included variables (Y (1)). Model 2 implies that (Y (2)) does

provide additional information about clustering membership, after (Y (1)) has been

observed. The models can be compared through an approximation to the Bayes

factor that can be estimated by means of BIC. This variable selection technique is

available through the R package “clustvarsel”, see Dean et.al (2013). However the

clustvarsel package can be very slow in high-dimensions.

Maugis et al. (2009) proposed a related approach more versatile which

describes three possible roles for each variable: The relevant clustering variables,

the irrelevant clustering variables dependent on a part of the relevant clustering

variables and the irrelevant clustering variables totally independent of all the
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relevant variables. They proposed a model selection criterion and a variable

selection algorithm for this new modeling of variable roles. Finally, Maugis et

al. (2102) extended this approach, denoted “selvarclust”, by adding capabilities for

handling missing values.

In addition to these procedures, other variable selection approaches are due

to Steinley and Brusco (2008), who introduce measures of the capability of each

variable to detect a fixed number of clusters; and to Fraiman et al. (2008), who

propose a method to detect the noninformative variables in clustering. Witten and

Tibshirani (2010) developped a cluster algorithm that can be applied to obtain

sparse versions of K-means and hierarchical clustering. Some comparison of these

methods and other related references can be found in Galimberti et al. (2017) and

for a more comprehensive review of model-based clustering of high-dimensional

data see Bouveyron and Brunet (2014).

The second approach is dimensionality reduction methods, where we try

to identify some relevant subspace which include the relevant information for

clustering. In a high-dimensional space, clustering algorithms that are based on

the distance measure lose their efficiency and accuracy because the distance of a

point to its nearest neighbour approaches the distance to its farthest neighbour as

dimensionality increases, see Beyer et al. (1999). In order to solve this problem,

dimensionality reduction methods have been proposed for cluster analysis, since in

addition to reducing the computational cost, they provide a clearer image of the

data. However, these methods inevitably cause some loss of information and can

damage the interpretability of results, even distort the actual clusters.

In this paper we will be particularly interested in the reduction of the dimension

for the identification of structures of interest in the data. Our approach is based in

the reduction of the dimension of the sample by projecting the data onto a subspace

of smaller dimension; in this subspace, if the group structure of the original sample
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is kept, it should be easier the identify clusters.

Different techniques in multivariate analysis have been designed to reduce the

dimensionality of the data and to help derive a simple description of a data set.

Most of them proceed by defining a small number of new variables that summarize

the information contained in the original ones. These techniques are divided in:

attributes or variables transformations and domain decomposition.

Attribute transformations are simple functions of the existent variables

or attributes. The most popular techniques for dimensionality reduction in

this category, based on the covariance matrix of the variable, are Principal

Components Analysis (PCA) and Singular Value Decomposition (SVD). Other

methods, like projection pursuit and Independent Component Analysis (ICA) are

more appropriate for non-Gaussian distributions since they do not rely on the

second-order property of the data.

Domain decomposition consists in solving a global problem defined on a

domain by iterative and independent resolution of subproblems defined in smaller

subdomains. Based on this approach, McCallum et al. (2000) proposed a

technique for clustering called "Canopy Clustering" for the following situation:

high-dimension, big data and many clusters. The technique is performed in two

stages: 1) canopy generation and 2) clustering. The first stage consists in divide

the data into some number of overlapping subsets, called "canopies". A canopy

is a subset of the data set that are within some distance threshold from a central

point. An element may appear under more than one canopy and every element

must appear in at least one canopy. The elements that not appearing in any

common canopy are far enough apart that they could not possibly be in the

same cluster. In the second stage, some clustering algorithm, such as K-means or

Expectation-Maximization, is executed using the accurate distance measure only

between the points that occur in a common canopy. A difference between this
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method with other clustering methods is that this technique forms overlapping

regions, thus it is tolerant to inaccuracies in the distance measure used to create

the canopies because the canopies may overlap with each other.

We will describe some attributes transformations techniques that are of

particular interest in our work.

1.3.1 Principal Component Analysis

Principal component analysis (PCA) was developed initially by Pearson (1901)

and subsequently it was studied by Hotelling (1930). It is a mathematical

procedure that uses an orthogonal transformation to convert a set of observations

of possibly correlated variables into a set of values of linearly uncorrelated variables

called principal components. The number of principal components is less than or

equal to the number of original variables. This transformation is defined in such

a way that the first principal component has the largest possible variance, that is,

accounts for as much of the variability in the data as possible, and each succeeding

component in turn has the highest variance possible under the constraint that it

be orthogonal to the preceding components, i.e., they are uncorrelated. Principal

components are guaranteed to be independent only if the data set is jointly

normally distributed.

Computing the Principal Components

Suppose that we have the values of p-variables in n elements of a population in

a matrix X of dimensions n× p, where the columns contain the variables and the

rows the elements. Suppose that the variables of matrix X have zero mean and the

covariance matrix is given by S = 1
n
XTX. If we consider point xi = (xi1, ..., xip)

we want to find a new set of variables zi where i = 1, ..., p, uncorrelated each other,

whose variances will decrease progressively. Each zi is a linear combination of xi,
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that is:

zi = ai1xi1 + ...+ aipxip = aTi xi, (1.19)

where aTi = (ai1, ..., aip)
T is a constants vector of unit norm. The vector which

represents the projection of point xi on the direction ai is ziai.

The first principal component is calculated by choosing a1 so that z1 has

maximum variance. The values of this first component of the n individuals will be

represented by a vector z1, given by

z1 = Xa1 (1.20)

Since the original variables have a zero mean, z1 will also have a zero mean.

Its variance will be:

V ar(z1) =
1

n
zT1 z1 =

1

n
aT1X

TXa1 = aT1 Sa1 (1.21)

We want to choose a1 so that the maximization of (2.3) has a solution, subject

to the constraint aT1 a1 = 1. Introducing this restriction using the Lagrange

multiplier, the function to be maximized is

L(a1) = aT1 Sa1 − λ(aT1 a1 − 1) (1.22)

Taking the derivative with respect to the components of a1 and setting the

result to zero, the solution is:

Sa1 = λa1 (1.23)

which implies that a1 is an eigenvector of the matrix S, and λ is its corresponding

eigenvalue. From (2.3) we have

V ar(z1) = aT1 Sa1 = aT1 λa1 = λaT1 a1 = λ (1.24)
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and we conclude that λ is the variance of z1. As this is the quantity that we wish

to maximize, λ will be the largest eigenvalue of the matrix S. Its associated vector,

a1, defines the coefficients of each variable in the first principal component.

The second principal component, z2 = Xa2, is obtained by a similar argument.

In addition, we want z2 is uncorrelated with the previous component z1, that is,

Cov(z2, z1) = 0. Then we have to

Cov(z2, z1) = aT2 Sa1 = 0 (1.25)

From (1.23) and (1.25), we have that aT2 Sa1 = λaT2 a1 = 0, this is equivalent

to aT2 a1 = 0, that is, the vectors are orthogonal. Thus, we have to maximize the

variance of z2, aT2 Sa2, subject to the following constraints: aT2 a2 = 1 and aT2 a1 = 0.

Using the Lagrange multiplier we have the function

L(a2) = aT2 Sa2 − λ(aT2 a2 − 1)− δaT2 a1 (1.26)

Equating to zero the derivative with respect to the components of a2, we obtain

the solution Sa2 = λa2. Using the same reasoning as above, we choose λ as the

second largest eigenvalue of the matrix S, and a2 is its corresponding eigenvector.

The previous reasoning can be generalized. The matrix Z whose columns are

the values of the p components in the n individuals, can be expressed as the product

of the matrix X that containing the original variables, multiplied by a matrix A

formed by the eigenvectors

Z = XA, (1.27)

where ATA = I. Computing the principal components is equivalent to applying an

orthogonal transformation A to the variables X (original axes) in order to obtain

new variables Z which are uncorrelated with each other.

Liu et al. (2003) propose a dimension reduction method for the clustering data

using principal component. However, Peña et al. (2010) illustrate by means of a
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mixture of two normal populations, that the use of principal components to reduce

the dimension is not always suitable, since if the data are projected onto one of

the main components, the groups overlap.

PCA can be appropriate for Gaussian distributions since it relies on

second-order relationships in the covariance matrix. Other linear transforms, like

Independent Component Analysis (ICA) and projection pursuit, which use higher

order statistical information, are more suited for non-Gaussian distributions.

1.3.2 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical technique to find the

independent latent factors in sets of multivariate random variables. The data

variables are assumed to be linear combinations of some unknown latent variables.

The latent variables are assumed to be non-Gaussian and mutually independent,

and are referred to as independent components of the observed data, see Hyvärinen

et al. (2001). In ICA, unlike Principal Components, the data are first standardized

to be uncorrelated and then rotated so that independent factors can be found.

Assume that we observe n linear mixtures x1, ..., xn of n independent

components sk, k = 1, ..., n. In the ICA model, the components of the observed

random vector x = (x1, ..., xn)T are generated as a sum of the independent

components sk

xi = ai1s1 + ai2s2 + ...+ ainsn (1.28)

Let us denote by s the random vector with elements s1, ..., sn and by A the

matrix with elements aij. Using this vector-matrix notation, the above mixing

model is written as

x = As (1.29)
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The ICA model is a generative model, which means that it describes how

the observed data are generated by a process of mixing the components si. The

independent components are latent variables, meaning that they cannot be directly

observed. Also the mixing matrix is assumed to be unknown. All we observe is

the random vector x, and the task is to estimate both A and s using it.

The starting point for ICA is the assumption that the components si are

statistically independent and must have non-Gaussian distributions, We are also

assuming that the unknown mixing matrix A is square, see Hyvärinen et al. (2001).

Then, after estimating the matrix A, we can compute its inverse, and obtain the

independent component by

s = A−1x (1.30)

Huber (1985) emphasized that interesting projections are those that produce

non-Gaussian distributions and therefore non-Gaussianity is one of the criteria

used to find the factors. To use non-Gaussianity in ICA estimation, we must have

a quantitative measure of non-Gaussianity of a random variable, say z. Let us

assume that z is standardized to zero mean and unit variance. As the fourth

moment equals 3, the kurtosis is zero for a Gaussian random variable. For most

non-Gaussian random variables, kurtosis is nonzero.

Typically non-Gaussianity is measured by the absolute value of kurtosis, and

this has been widely used in ICA. The square of kurtosis can also be used. Kurtosis

has also some drawbacks in practice, when its value has to be estimated from a

measured sample. The main problem is that kurtosis can be very sensitive to

outliers (Huber, 1985). Its value may depend on only a few observations in the

tails of the distribution, which may be erroneous or irrelevant observations. In

other words, kurtosis is not a robust measure of non-Gaussianity, see Hyvärinen

and Oja (2000).

There are many proposals to obtain independent components. An interesting
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ICA algorithm was proposed by por Hyvärinen and Oja (1997), called FastICA.

Is a fixed-point algorithm that finds a direction, i.e. a unit vector w such that the

projection wTx maximizes the absolute value of the univariate kurtosis coefficient.

It is interesting to note how the approach to ICA proposed by Hyvärinen and

Oja (2000), makes explicit the connection between ICA and projection pursuit. In

the general formulation, ICA can be considered a variant of projection pursuit. In

particular, the projection pursuit allows us to tackle the situation where there are

less independent components si than original variables xi.

Below we will briefly describe the projection pursuit technique and its

applications.

1.3.3 Projection Pursuit

An alternative to the above procedures is to find directions of data projection

where the different groups can be seen and then to look for groups in these

univariate directions. The advantage to this approach is that it is not necessary to

specify the number of groups a priori, nor to compare solutions with very different

numbers of groups.

Friedman and Tukey (1974) presented an algorithm for the analysis of

multivariate data called Projection Pursuit (PP). This technique is developed for

finding "interesting" projections of multidimensional data. The algorithm consists

in finding directions w such that the projection of the data, wTx, has an interesting

distribution, i.e., displays some structure. Such projections can then be used for

optimal visualization of the clustering structure of the data, and for such purposes

as density estimation and regression.

Most clustering techniques use the information from all variables in the dataset.

With the Projection Pursuit, one may first reduce the dimensionality of the sample

by projecting it on a lower dimensional subspace and then finding the clusters
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there. The curse of dimensionality can thus be avoided, but care needs to be taken

to make sure that the projected data preserve the cluster structure of the original

sample.

Projection Pursuit algorithms usually proceed through the following steps: (1)

Centralize the original data; (2) Choose an index; (3) Find an projection direction;

(4) Project the data and evaluate the index; (5) If the index is not a maximum

(or minimum) return to (3); (6) Analyze the projected data.

The central theoretical problem is the definition of the projection pursuit

index. The index will define how interesting a direction can be and whether it

is worth studying the proposed structure. Usually, the index is some measure

of non-Gaussianity, see Huber (1985) and Jones and Sibson (1987). The

projection index can be formulated to identify subspaces that reveal the presence

of clusters or of outliers. Depending on the formulation of the index under

maximization/minimization analytical methods exist.

1.4 Conclusion

The aim of this Chapter was to provide a comprehensive review of several

clustering methods that are interesting for the development of this work.

In the Independent Component Analysis and Projection Pursuit techniques,

kurtosis has some applications and properties that we will analyze later. In this

thesis we have a particular interest in using the kurtosis coefficient as an interesting

index to derive projections that can reveal the structure of the data. A more

detailed study of the concept of kurtosis and its use in the literature for detecting

outliers and for cluster analysis will be discussed in the next Chapter.

50



Chapter 2

Kurtosis for Cluster Analysis

Summary

The kurtosis coefficient has had different applications and interpretations in

the literature. It has been used as a measure of the peakedness of the probability

distribution and as a measure of bimodality. Peña and Prieto used kurtosis as

projection index to derive projections that can reveal the structure of the data.

They proved that maximization of the kurtosis coefficient of the projected data

can be used to detect outliers in projections, see Peña and Prieto (2001b). On

the other hand, for clustering, they proved that the directions that minimize the

kurtosis can be more useful than the ones that maximize it, since for two groups

of similar size the directions that minimize the kurtosis are optimal to show the

cluster structure. They describe a procedure to identify clusters in multivariate

data using information obtained from the univariate projections of the sample

data on the directions that minimize and maximize the kurtosis coefficient of the

projected data. Under certain conditions, these directions have optimal properties

to visualize the different clusters that may be present in data, see Peña and Prieto

(2001a).
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One interesting property of kurtosis is that the univariate case can be easily

generalized to multivariate kurtosis, which not only has the useful properties of

univariate kurtosis, but also is independent of the choice of the basis for a subspace.

Therefore, related directions can be obtained from a matrix representation of

kurtosis. Peña et al. (2010) propose the eigenvectors associated with the extreme

values of a kurtosis matrix as interesting directions to reveal the possible cluster

structure of a dataset.

In this Chapter we will review in detail the concept of kurtosis. We will study

the univariate kurtosis coefficient and the different interpretations that has been

given to it in the literature, including the use of the kurtosis coefficient for the

outlier detection and as a measure of heterogeneity. We will also study the different

ways in which the kurtosis in a multivariate sample can be defined and we explore

its properties for cluster analysis. In addition, we will give a detailed description

of some algorithms proposed in the literature that use the kurtosis coefficient to

detect the clusters present in the data.
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2.1 Kurtosis of a Univariate Sample

In symmetrical univariate models, the kurtosis is a measure of the peakedness

of the probability distribution of a real-valued random variable. Its value also

reflects the presence of heavy tails or bimodality in the data. These properties

allow the use of the kurtosis for the identification of the possible cluster structure

and the existence of outliers in a data set.

2.1.1 Kurtosis as a Measure of Peakedness

There are different ways to quantify kurtosis: Karl Pearson (1905) introduced

kurtosis as a measure of the flat shape of the top of a symmetrical distribution

compared to a normal distribution with the same variance, and defined the kurtosis

as a measure of deviation from normality, based on the fourth moment of the data.

If X is a random variable with mean µ and standard deviation σ, the univariate

kurtosis coefficient defined by Pearson is given by:

κ =
µ4

σ4
,

where µ4 = E(X − µ)4 is the central moment of the fourth order of X.

It is common to use an adjusted version of Pearson kurtosis, excess kurtosis or

Fisher kurtosis, to provide a comparison of the form of a given distribution to the

distribution of the normal distribution. Excess kurtosis is defined as:

κ′ = κ− 3.

The term "minus 3" is explained as a correction to make the value of the

kurtosis excess for a normal distribution equal to zero, since the normal distribution

has kurtosis equal to 3.

The distributions with negative excess kurtosis κ′ < 0 (κ < 3) are called

platykurtic distributions. Compared to a normal distribution its central peak is
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lower and wider, and shorter and thinner tail. The distributions with positive

excess kurtosis κ′ > 0 (κ > 3) are called leptokurtic distributions. Compared to a

normal distribution its central peak is higher and sharper, and longer and heavier

tail. The normal distribution κ′ = 0 (κ = 3) is called mesokurtic.

Given a univariate random sample x1, x2, . . . , xn, drawn from the random

variable X, the sample univariate kurtosis coefficient is

κ =
1
n

∑n
i=1(xi − x̄)4

s4
=
n
∑n

i=1(xi − x̄)4

[
∑n

i=1(xi − x̄)2]2
, (2.1)

where x̄ = 1
n

∑n
i=1 xi is the sample mean and s2 = 1

n

∑n
i=1(xi − x̄)2 is the sample

variance.

It is easy to see that the kurtosis coefficient is equivariant, and its minimum

value is one.

2.1.2 Kurtosis as a Measure of Bimodality

A relevant interpretation for our purposes is given by Darlington (1970), which

describes the kurtosis not as a measure of peakedness of a distribution, as in most

of the texts, but as a measure of unimodality against bimodality; the smaller the

kurtosis, the greater the bimodality. κ and z calling

κ =
1

n

n∑
i=1

zi
4, (2.2)

where, zi = s−1(xi − x̄), the mean of the squared scores is one and the variance of

the squared scores is

s(z2
i ) =

1

n

n∑
i=1

(z2
i − 1)2 =

1

n

n∑
i=1

z4
i − 1 = κ− 1 (2.3)

Thus the kurtosis can be interpreted as a measure of the degree to which the

values of z2 cluster around their mean value 1. Consequently, if all observations
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of the sample are approximately at the same distance to the mean, the variance

of these distances is near zero, and the kurtosis will have a small value.

From (2.3), we can see that s(z2
i ) = 0 when κ is 1. If z2 = 1, z = 1 or z = −1,

i.e., all z’s are concentrated at +1 and −1. Therefore, κ also can be interpreted

as a measure of the degree to which a distribution’s z-scores cluster around +1

and −1. This is a symmetric two-point distribution and this clustering can be

interpreted as "bimodality". A unimodal distribution is completely concentrated

at one point, while a bimodal distribution is a symmetric two-point distribution

and this is the only distribution for which k is 1.

Considering the family of all two-point distributions with densities p and

q = 1− p respectively, the kurtosis value is proven in Darlington (1970) to be

κ =
1

pq
− 3.

The minimum value of k is reached when p = q = 1
2
, which agrees with the

results above regarding bimodality. On the other hand, k approaches infinity when

p or q approaches zero, i.e. as the distribution concentrates on one point or the

other. Note that the symmetric two point mass distribution is the only distribution

that reaches the minimum kurtosis value of 1.

In the same direction, Hildebrand (1971) considers the family of symmetric

beta distributions and confirms Darlington’s (1970) statement. Otherwise, Moors

(1986) claims that Darlington’s result regarding bimodality should be reexamined

and that the bimodal distributions can have large kurtosis; this occurs if the modes

are not close to the points z = ±1. He formulate that kurtosis measures the

dispersion around the two values µ − σ and µ + σ, instead of the values −1

and +1. According to Moors, high kurtosis may arise in two situations that

explain the confusion about the interpretation of kurtosis: (a) concentration of

probability mass near µ, which corresponds to a peaked unimodal distribution,

and (b) concentration of probability mass in the tails of the distribution.
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2.1.3 Kurtosis Coefficient for Detecting Outliers and as a

Measure of Heterogeneity

The use of the kurtosis coefficient to reveal the presence of outliers was

proposed by Peña and Prieto (2001b). They analyze the effect of outliers on

the kurtosis coefficient considering two cases: (1) The centered case. If we have

outliers generated by an symmetric contaminated model, the kurtosis coefficient

increases due to the presence of outliers. (2) The noncentered case. If we have a

large proportion of outliers generated by an asymmetric contamination model,

the kurtosis coefficient of the data is very small, but if the contamination is

small the kurtosis coefficient will be large. Therefore, they propose a outlier

detection procedure based on the analysis of the projections onto the directions

that maximize and minimize the kurtosis coefficient of the projected data.

The kurtosis coefficient has also been considered as a measure of heterogeneity.

Suppose that we define di = (xi − x̄)2 as the distances of observations to the

mean. If the di’s are very different, this suggests that some observations are very

separated from the mean and therefore we have high heterogeneity. A possible

measure of homogeneity is the variance of the di’s, given by:

1

n

n∑
i=1

(di − s2)2 (2.4)

where the variance of the sample s2 = 1
n

∑n
i=1(xi − x̄)2 = 1

n

∑n
i=1 di is also the

mean of the di’s.

We can define the homogeneity coefficient, as a dimensionless measure

analogous to the coefficient of variation s/x̄ as

H =
1
n

∑n
i=1(di − s2)2

s4
(2.5)

Since
∑n

i=1(di − s2)2 =
∑n

i=1 d
2
i + ns4 − 2s2

∑n
i=1 di =

∑n
i=1 d

2
i − ns4, then we can
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write (2.5) as

H =
1
n

∑n
i=1(xi − x̄)4

s4
− 1 = κ− 1 (2.6)

Therefore, the univariate kurtosis coefficient can be seen as a measure of

heterogeneity.

In the following we comment two situations in which extreme values of the

kurtosis coefficient are presented: (1) If we have a sample with several groups,

the mean of the sample will be located near the largest group. If there are some

outliers, the distances between the mean of the sample and the outliers will be large

compared to the other observations, this will make the variances of the distances

large, as well as the kurtosis coefficient. (2) If all the data in the sample are

separated into two different data clusters of the same size that are approximately

at the same distance to the mean, the variance of these distances is near zero and

the kurtosis coefficient will have a small value. In this case the directions that

minimize kurtosis could reveal the cluster structure.

Therefore, both the directions that minimize the kurtosis coefficient and the

ones that maximize it are interesting in the sense that are able to identify structures

with more than one cluster. Peña and Prieto (2001a) propose a one-dimensional

projection pursuit algorithm based on directions obtained by both maximizing and

minimizing the kurtosis coefficient of the projected data, assigning the observations

to groups according to the clusters found in the directions. They showed that

minimizing the kurtosis coefficient implies maximizing the bimodality of the

projections, whereas maximizing the kurtosis coefficient implies detecting groups

of outliers in the projections.

2.1.4 The Peña and Prieto Clustering Algorithm

The clustering algorithm proposed by Peña and Prieto (2001a) is based on the

analysis of a set of 2p orthogonal directions for a p-dimensional random variable,
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such that each direction minimizes or maximizes the kurtosis coefficient. The data

are projected onto these directions to determine the clusters existence.

The procedure uses the sample spacings or first-order gaps between the ordered

statistics of the projected points to detect patterns that may indicate the presence

of clusters. If the univariate observations come from a unimodal distribution,

there will be large gaps near the extremes of the distribution and small gaps near

the center. However, this pattern will change if there are clusters in the data.

For example, with two clusters of similar size we expect a large first-order gap

separating the clusters, lying towards the center of the observations. The gaps or

spacings of the sample are defined as the differences between two consecutive order

statistics, more details on the properties of the gaps are found in Peña and Prieto

(2001a). The cluster algorithm proceeds as described below.

Assume that we are given a sample of size n, {xi} i = 1, . . . , n, from a

p-dimensional random variable X ∈ Rp.

1. The algorithm starts by computing a direction d that maximizes the kurtosis

coefficient κ(d) of the projected data {xTi d}. Let k = 1, denote this direction

d as d1 and let k = 2.

2. For k = 2, . . . , p − 1, the sample is projected onto the subspace orthogonal

to {d1, . . . , dk−1} (in Rp) and a new search is conducted to obtain a direction

dk that maximizes κ(d) for the projected data among all directions in the

subspace; we then increase k to k + 1.

3. Letting dp denote the unit direction corresponding to the subspace orthogonal

to {d1, . . . , dp−1}, at the end of this procedure we have a set of p orthogonal

directions {d1, . . . , dp} in Rp, maximizing the kurtosis coefficient on a

sequence of nested subspaces.
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4. Another set of p directions is then computed by repeating steps 1 to 3, but

this time minimizing κ. Denote these directions as {dp+1, . . . , d2p}.

These directions will be used to reduce the problem of cluster identification

to that of finding clusters in univariate samples, in the following manner:

5. For each one of the directions dk, k = 1, . . . , 2p, compute the univariate

projections of the original observations uki = xTi dk.

6. Standardize these observations, zki = (uki−mk)
sk

, where mk = 1
n

∑
i uki and

sk = 1
n−1

∑
i(uki −mk)

2.

7. The standardized observations are then transformed using the inverse of

the standard normal distribution function, as z̄ki = Φ−1(zki). Note that if

the original observations were normal, these transformed observations would

follow a uniform distribution.

8. For each k the transformed observations z̄ki are sorted in ascending order, to

obtain their order statistics z̄k(i).

The gaps between consecutive (transformed) values are obtained as

wki = z̄k(i+1) − z̄k(i).

9. A search for the presence of significant gaps is conducted in {wki}.

Each gap is compared with the value of a set threshold to decide if more

than one cluster is present in the data. In particular, they introduce a

threshold δ = ν(c), where ν(c) = 1 − (1 − c)(1/n) denotes the value of the

cth percentile of the distribution of the (uniform) spacings. For simulation

experiments, they used log(1 − c) = log(0.1) − 10
3

log(p), and consequently

δ = 1− (0.1/p10/3)(1/n).
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If a gap is greater than δ, then it is considered to be significant. These

significant gaps are used to assign different labels to observations assumed

to belong to different groups.

The general principle applied to the study of the projections and the gaps will

be that whenever two (or more) groups are identified from these projections

onto one of the directions, these groups will be treated as separate ones for

the analysis of later projections, although they could be further subdivided

if the gaps along these new projections are significant.

At the start, the same label l1 is assigned to all observations.

10. All gaps greater than δ (the significant gaps) for a given direction (index) k

are identified. The observations within each pair of consecutive significant

gaps are assigned to new groups, in the following manner: the observations

between each set of consecutive significant gaps that shared a common label

before still share a common label after relabelling, but these new labels

are different from those corresponding to observations between other sets of

consecutive significant gaps.

11. Go to the next projection direction k and repeat steps 5 to 10 for k =

1, . . . , 2p.

12. As the number of different labels assigned through this algorithm can be

very large, a final step is conducted to reduce it by combining observations

with other groups whenever their Mahalanobis distances to these groups are

small enough.

This method works well when the data dimension is low and when the number

of groups in the sample is small. But the method fails when the data dimension
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increases. The results of an example of simulation where these failures can be

observed are presented in Chapter 3.

In addition to that, Peña and Prieto (2001a) proved that under a mixture of

two normal distributions with proportional scatter matrices, either the direction

that maximizes or the one that minimizes the kurtosis coefficient is Fisher’s linear

discriminant function. Let α be the proportion of one of the normal distributions,

if α ∈ (0, 0.2) then Fisher’s linear discriminant function is the direction that

maximizes the kurtosis coefficient, whereas for α ∈ (0.2, 0.5] the Fisher’s function

is the direction that minimizes it.

2.2 Kurtosis for Multivariate Data

Let X ∈ Rp be a multivariate random vector with mean µ, Σ = E[(X−µ)(X−

µ)T ] its covariance matrix and Z = Σ−1(X − µ) the corresponding standardized

vector. The concept of kurtosis coefficient can be generalized to the multivariate

case. One of the proposals most frequently used is given by Mardia (1970), who

proposes to calculate a scalar value for the kurtosis coefficient of a multivariable

sample as the second moment of the Mahalanobis distances,

β2,p = E[(X − µ)TΣ−1(X − µ)]2 (2.7)

For µ = 0 and S = I, we have β2,p in terms of the standardized vector Z

β2,p = E[ZTZ]2 (2.8)

which is invariant under orthogonal transformations. For a random sample

x1, ..., xn, the measure of kurtosis corresponding to β2,p is

b2,p =
1

n

n∑
i=1

[(xi − x̄)TS−1(xi − x̄)]2 (2.9)
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where x̄ and S are the mean and covariance matrix of the sample. Mardia (1970)

proposes to use b2,p to test for normality. Under a Gaussian distribution,

β2,p = p(p+ 2), (2.10)

therefore values of b2,p differing significantly from p(p+2) indicate non-Gaussianity.

Koziol (1989) proposes the following measure of multivariate kurtosis

K2,p =

p∑
j,k,l,m

E(ZjZkZlZm)2 (2.11)

For a random sample the measure of kurtosis corresponding to β̃2,p is

k2,p =

p∑
j,k,l,m

(
1

n

n∑
i=1

(zjizkizlizmi)
2) (2.12)

The difference between β2,p and K2,p is that β2,p is the sum of just the

symmetric fourth-order moments, whereasK2,p is the sum of squares for all existing

fourth-order moments of Z.

More interesting than a scalar criterion is the possibility to define a matrix

representation of the kurtosis. In this case different alternatives are proposed

in the literature. An interesting proposal, because of its simplicity, is given by

Cardoso (1989) and Móri et al. (1993). They define the following kurtosis matrix

K = E(ZTZZZT ) (2.13)

The matrix K reduces to the univariate kurtosis coefficient in the univariate

case,

K = E(ZZZZ) = E(Z4) =
µ4

σ4
(2.14)

For a random sample, the kurtosis corresponding to K is

Kn =
1

n

n∑
i=1

zTi ziziz
T
i , (2.15)
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where zi = S−1/2(xi − x̄). The trace of K coincides with the Mardia’s kurtosis

coefficient β2,p raised in (2.7),

tr(K) = tr[E(ZTZZZT )] = E[ZTZ tr(ZZT )] = E[ZTZ]2 = β2,p (2.16)

Also, since K is a continuous function of the moments then Kn converges to K in

probability and the matrix Kn is a consistent estimator of K.

There are other variants of these definitions, for example that given by Kollo

(2008),

B = E[(ZT1)2ZZT )] (2.17)

The matrix B is the sum of the p2 blocks of size p × p of the p2 × p2 matrix

M4 = E(ZZT ⊗ ZZT ) that collects all p2 × p2 multivariate fourth-order central

moments, where ⊗ denotes the Kronecker product. This matrixM4 can be written

as

M4 = E



Z2
1


Z1

...

Zp

 [Z1 · · ·Zp] · · · Z1Zp


Z1

...

Zp

 [Z1 · · ·Zp]

... . . . ...

ZpZ1


Z1

...

Zp

 [Z1 · · ·Zp] · · · Z2
p


Z1

...

Zp

 [Z1 · · ·Zp]


(2.18)

For a random sample, the kurtosis corresponding to B is

Bn =
1

n

n∑
i=1

(zTi 1)2ziz
T
i (2.19)

In the univariate case, B also reduces to the univariate kurtosis coefficient

B = E(Z2ZZ) = E(Z4) =
µ4

σ4
(2.20)
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Due to the convergence of moments, Bn converges to B in probability and is a

consistent estimator of B.

The matrix K in (2.13) has an important invariant property which is not present

in B in (3.8). If E is an orthogonal matrix whose columns are eigenvectors of K,

the new coordinate system ETZ is invariant under affine transformations of X.

However, the matrix B does not have this desirable property because its weights

are not invariant under orthogonal transformations, see Peña et al. (2010).

As in the univariate case, from the definitions for kurtosis in the multivariate

case, some proposals has been made in detecting multivariate outliers and the use

of the multivariate kurtosis as a measure of heterogeneity.

2.2.1 Multivariate Kurtosis Matrix for Detecting Outliers

and for Clustering

A classical approach to detecting multivariate outliers that is discussed in

Jobson (2012) is to examine the squared Mahalanobis distance for each case; a

large value indicating a multivariate outlier. Note that the Mahalanobis distances

are also related to Mardia’s measure of multivariate kurtosis, see (2.7). In fact,

Mardia’s measure of multivariate kurtosis has been shown to have good properties

for detecting multivariate outliers in some situations. For example, a large value

of Mardia’s measure, relative to the expected value under multivariate normality,

suggests the presence of one or more cases with large Mahalanobis distances, which

are cases that are far from the centroid of all cases (potential outliers), see Schwager

and Margolin (1982).

The multivariate kurtosis has also been used as a measure of heterogeneity.

Peña et al. (2010) proposed the eigenvectors associated with the extreme values of

a kurtosis matrix as interesting directions to reveal the possible cluster structure

of a data set. In addition, they proved that under a mixture of two elliptical
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distributions with the same scatter matrices, the eigenvectors of the fourth-order

moment matrix corresponds to Fisher’s linear discriminant subspace.

In Peña et al. (2010) they consider that for a p-dimensional random variable X

corresponding to a mixture of two normal distributions with the same covariance

matrix X ∼ α1N(µ1, V ) +α2N(µ2, V ), X ∈ Rp, the matrix K can be expressed as

K = (p+ 2)I + βϕTϕϕϕT , (2.21)

where β = α1α2(1−6α1α2), Σ = V +α1α2(µ2−µ1)(µ2−µ1)T and ϕ = Σ−1/2(µ2−

µ1). The vector ϕ is an eigenvector of K with associated eigenvalue λ = p + 2 +

β(ϕTϕ)2, the rest of the eigenvalues are equal p + 2. Following expression (2.16),

the trace of K is the Mardia’s kurtosis coefficient. From (2.10), if the means of the

two populations are the same then tr(K) = p(p+ 2), but as we are in the mixture

case then the expression for tr(K) using (2.21) is

tr(K) = p(p+ 2) + β(ϕTϕ)2, (2.22)

and det(K) = (p + 2)p + β(p + 2)p−1(ϕTϕ)2. Note that ϕ is Fisher’s best linear

discriminant function in the Z-space. The eigenvalue λ is the largest if β > 0

and the smallest otherwise. β > 0 if α1 ∈ (0, 0.2) and β < 0 if α1 ∈ (0.2, 0.5].

Therefore, if we have homogeneous clusters, the eigenvector associated with the

smallest eigenvalue will be the one that better separates the clusters, while when

the two clusters have very different sizes, the largest eigenvalue is the one that

identifies the significant eigenvector. These values are the same values that arise

in Peña and Prieto (2001a).

For this case both approaches give the same estimates. Therefore, the kurtosis

matrix has similarities with the nonlinear cluster algorithm described in section

2.1.4, but it is necessary to analyze in which situations it is more satisfactory

one than the other. Peña et al. (2010) showed for the case of a mixture of two

normal distributions with equal scatter matrices that if the sample size is small, it
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2.2. KURTOSIS FOR MULTIVARIATE DATA

is better to use the clustering algorithm for univariate kurtosis directions described

in section 2.1.4 instead of the eigenvectors of a kurtosis matrix, since the estimation

of the elements of the matrix has a very low precision and the eigenvalues are not

so useful. On the other hand,if the ratio n/p, where n is the sample size and p

the dimension, is large, the estimation of the autovectors of the kurtosis matrix

can be accurate and useful. To solve this optimization problem, they propose a

computationally intensive nonlinear algorithm based on the eigenvectors of the

kurtosis matrix, which is described below:

2.2.2 An Algorithm for Detecting Clusters Using

Eigenvectors

The algorithm proposed by Peña et al. (2010) based on the eigenvectors of the

kurtosis matrix, proceeds as described below:

1. The algorithm starts by standardizing the sample data, Z = Σ−1(X − µ).

2. Compute a kurtosis matrix K = E(ZTZZZT ).

3. Compute the eigenvectors of this kurtosis matrix, K. Let E = [E1, E2] be a

matrix with two orthogonal columns corresponding to the eigenvectors of K

associated to its maximum and minimum eigenvalues.

4. Obtain the projections of the standardized observations onto each of these

two directions, p = ETZ.

5. Analyze for each of the projections, p1 = ET
1 Z and p2 = ET

2 Z, the existence

of groups by studying their first-order gaps.

The study of the first-order gaps is done in a similar way to that indicated

in the Peña and Prieto Clustering Algorithm described in Section 2.1.4.
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This algorithm is fast and computationally efficient to calculate the eigenvectors

compared to the time needed to calculate the extreme kurtosis directions when

the dimension of the data increases, since with this method a single eigenvalue

computation is performed, while in the optimization of Kurtosis it is necessary to

factorize the corresponding second derivative matrix in each iteration.

Although this method performs well in practice, in some cases, for example

when the matrix K is diagonal, the eigenvectors will not identify the direction of

the means.

2.3 Conclusion

In this Chapter we reviewed the concept of kurtosis and its different

interpretations given in the literature.

For the univariate case, we summarized the interpretations of the kurtosis

coefficient as a measure of the peakedness and as a measure of bimodality. We

also reviewed how the kurtosis coefficient has been used as projection index to

derive projections that can reveal the structure of the data. Then we analyzed the

Peña and Prieto (2001b) proposal, they proved that maximization of the kurtosis

coefficient of the projected data can be used to detect outliers. In Section 2.1.4

we did a detailed description of their clustering algorithm. The algorithm is based

on analyzing a a full set o f 2p orthogonal directions, such that each direction

minimizes or maximizes the kurtosis coefficient. The criteria used to identify the

clusters present in the data are based on the analysis of the first-order gaps between

the ordered statistics of the projections. The method works well when the data

dimension is low and when the number of clusters present in the sample is small,

but fails when the data dimension increases.

Additionally, we also studied the different interpretations of kurtosis in
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multivariate samples and its matrix representation. We analyzed the Peña et al.

(2010) proposal, where they indicated that the eigenvectors associated with the

extreme values of a kurtosis matrix are interesting directions to reveal the possible

cluster structure of a dataset. In the section 2.2.2 we described the algorithm

for detecting clusters proposed by these authors based on the eigenvectors of the

kurtosis matrix.

Since the methods described in this Chapter have some limitations. We will

propose in the next Chapter a method that could be efficient in its application

when the dimension of the data and the number of clusters in the sample are

large.
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Chapter 3

A Cluster Procedure for

High-Dimensional Data

Summary

The methods for cluster analysis mentioned in the previous Chapter have some

limitations in the presence of multiple clusters in the sample and also when the

dimension of the data is large. In this Chapter we present a theoretical study of

the kurtosis coefficient to identify clusters when we have more than two groups in

the sample data. We also introduce a cluster procedure based on these results.

Peña and Prieto (2001) showed that the extreme kurtosis directions of projected

data are optimal when the data has been generated by mixtures of two normal

distributions. We generalize this result and we prove that the directions of extreme

kurtosis generate the subspace of optimal directions for discrimination when we

have a mixture of normal distribution with the same covariance matrix. We prove

that this subspace contains directions which split the components of the mixture

in two blocks, so that some components are projected jointly in one block and the

others in another block. We call these directions two-block projection directions,
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because they allow the identification of heterogeneity by splitting the data into

two blocks.

We show that extreme kurtosis directions are asymptotically two-block

projection directions. This result suggest a binary decision strategy in order to

separate the groups where it is decided at each step if the data should be split into

two groups or we should stop. The decision is based on fitting to the projected

data both a normal and a mixture of two normal distributions and selecting the

best model by using the BIC criterion. We develop an algorithm based on these

ideas and we analyze its performance through a simulation study, in which we

compare it with different proposals from the literature.
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3.1 Extreme Projected Kurtosis as Optimal

Directions for Discrimination

We are interested in studying the behavior of the kurtosis coefficient when we

have a p-dimensional variable corresponding to a mixture of k normal distributions

with the same covariance matrix. Let X be the p dimensional random variable

such that k ≤ p+ 1

X ∼
k∑
i=1

αiN(µxi ,Σ), X ∈ Rp, (3.1)

where E(X) =
∑k

i=1 αiµ
x
i and

∑k
i=1 αi = 1. In what follows we will assume that the

following condition holds, implying that the mixture is well-defined, as otherwise

we could study an equivalent mixture having less than k components:

A1. It holds that αi > 0 for all i, and µxi 6= µxj for all i, j, i 6= j. Also, the

covariance matrix Σ has full rank.

Without loss of generality we consider the transformation Y = Σ−1/2(X−E(X))

which leads to

Y ∼
k∑
i=1

αiN(µi, I), µi = Σ−1/2(µxi − E(X)), E(Y ) = 0.

Consider now an arbitrary direction d, with ‖d‖ = 1, and the univariate

projection z = dTY . This univariate projected variable has distribution

z ∼
k∑
i=1

αiN(mi, 1), z ∈ R (3.2)

where mi = dTµi, E(z) = dT
∑k

i=1 αiµi = 0.

Our interest is to study those directions d that can reveal the heterogeneity in

the data in the univariate projections z. We will show that the directions obtained
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DISCRIMINATION

as extreme points for the kurtosis coefficient have this property. The coefficient of

kurtosis for a univariate zero mean variable is given by

κz =
mz(4)

mz(2)2
(3.3)

where mz(k) = E[zk]. Let

v2 ≡
k∑
i=1

αim
2
i , v4 ≡

k∑
i=1

αim
4
i , (3.4)

where v2 is the variance and v4 is the kurtosis of the projected means. Then,

mz(2) = 1 + v2, mz(4) = 3 + 6v2 + v4 and the kurtosis coefficient of the projected

data can be written as

κz(d) =
3 + 6v2 + v4

(1 + v2)2
(3.5)

Theorem 1 The stationary points of the problem

mind κz(d)

s.t. dTd = 1

maxd κz(d)

s.t. dTd = 1
(3.6)

satisfy d ∈ span{µi − µk}.

Proof The derivatives of the κz(d) function are

∂κz(v2, v4)

∂v2

=
−2(3v2 + v4)

(1 + v2)3
≡ A, (3.7)

and

∂κz(v2, v4)

∂v4

=
1

(1 + v2)2
≡ B. (3.8)

Therefore,

∇dL(d, λ) = A∇dv2 +B∇dv4 − 2λd, (3.9)
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where

∇dv2 = 2
k∑
i=1

αimiµi (3.10)

∇dv4 = 4
k∑
i=1

αim
3
iµi (3.11)

Thus, we obtain that λ = −2(3v2
2 − v4)/(1 + v2)3. Note that this value will be

different from zero if 3v2
2 6= v4, that is, if the kurtosis coefficient of the projected

means is different from 3. In this case, the kurtosis coefficient (3.5) is constant,

equal to 3, and any direction is a solution of the problem. Assuming that 3v2
2 6= v4,

the stationary points of (3.6) satisfy

d =
k∑
i=1

ciµi, (3.12)

for ci = 1
λ
αimi(A+ 2Bm2

i ).

As a consequence, any stationary point d of (3.6) is a linear combination of

the vectors {µi}. Finally, as µi = µi − µk −
∑k−1

j=1 αj(µj − µk), it holds that

d =
∑k−1

i=1 c̄i(µi − µk), for c̄i = ci − αi
∑k

j=1 cj, the desired result. 2

From Theorem 1, it holds that there exists an optimal direction d in the

subspace generated by {µ1 − µk, . . . , µk−1 − µk}. Note that for k = 2 the optimal

direction is µ1 − µ2 = Σ−1/2(µx1 − µx2), the Fisher linear discriminant direction,

as proved in Peña and Prieto (2001). For k ≥ 3 the optimal direction depend on

the relative positions of the µi and the mixing proportions αi. For instance, if all

the means are colinear and µi = biv where v is p× 1 vector the optimal direction

is v. In the next section we will consider the general case.

In this article we will concentrate in mixtures of normal distributions but

the optimality properties of the extreme kurtosis projections can be extended to

mixture of elliptical distributions, see Peña and Prieto (2001).
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3.1.1 Two-block Projection Directions

We are interested in the study of directions that allow the detection of the

different groups of the mixture from the study of the univariate projections of the

observations. Suppose that we can find directions where the projected data appear

in two separated blocks, each one corresponding to a subset of the components in

the mixture. Then a iterative binary separation applied to Y would be effective

to separate the groups, and the procedure could be applied for a large number of

groups. These two-block projection directions d could be characterized using the

following property:

dTµi = D1 > 0, i ∈ I1 (3.13)

dTµi = D2, i ∈ I2,

for some values D1 and D2, where dTd = 1 and I1, I2 denote a partition of the

labels {1, . . . , k}, assuming both I1 and I2 are nonempty. Letting α̃ =
∑

i∈I1 αi,

the values D1 and D2 are related by D1α̃ = −D2(1− α̃).

These directions would help to separate the groups associated with I1 from the

groups associated with I2, as long as these groups are sufficiently removed from

each other in the data, that is, whenever D1 is large enough. The value D1 is a

function of the vectors µi, a property of the geometry of these centers. In order to

justify the existence of these directions the means should not be colinear, and in

what follows we will assume that the following condition holds:

A2. The vectors {µxi − µxk}k−1
i=1 are linearly independent.

This assumption implies that the vectors {µi − µk}k−1
i=1 are also linearly

independent.

The following result proves that the directions introduced in (3.14) exist, and

that there is a unique such direction in the subspace spanned by {µi − µk}.
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Lemma 1 Under condition A2, the directions d defined in (3.14) always exist and

are unique on span{µi − µk}k−1
i=1 for any non-empty partition (I1, I2).

Proof We consider directions d defined as a linear combination of the vectors

{µi − µk},

d =
k−1∑
i=1

γi(µi − µk) = Mγ,

for M ∈ Rp×(k−1), a full-rank matrix with columns corresponding to the vectors

µi − µk, and γ ∈ Rk−1. Assume without loss of generality that 1 ∈ I1 and k ∈

I2 (otherwise we exchange the numbers of the groups), so that dTµ1 = D1 and

dTµk = D2. We can substitute D1 by dTµ1 and D2 by dTµk in the conditions

(3.14); ignoring the trivial conditions corresponding to i = 1 and i = k we obtain

k − 2 conditions of the form dT (µi − µ1) = 0 for i ∈ I1\{1} and dT (µi − µk) = 0

for i ∈ I2\{k}. We have a system of equations of the form

k−1∑
i=1

γi(µi − µk)T (µj − µ1) = 0 for j ∈ I1\{1}

k−1∑
i=1

γi(µi − µk)T (µj − µk) = 0 for j ∈ I2\{k},

that can be written as Nγ = 0, where

Nij =

 (µi − µk)T (µj − µ1) if j ∈ I1\{1}, i = 1, . . . , k − 1,

(µi − µk)T (µj − µk) if j ∈ I2\{k}, i = 1, . . . , k − 1,

Note that N ∈ R(k−2)×(k−1) and under assumption A2, it has full row rank, k − 2.

From the property that the span of NT and the null space of N are orthogonal

complements of Rk−1, and as dim(span(NT )) = k − 2, it holds that k − 1 =

dim(span(NT )) + dim(null(N)), implying dim(null(N)) = 1. Thus, there exist

a (unique) direction d = Mγ satisfying dTd = 1 with Nγ = 0, and such that

dTµi > 0 for i ∈ I1, completing the proof. 2
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The following result shows the relationship between these two-group projection

directions and the extreme points of the kurtosis coefficient of the projected data

obtained from (3.6). This result is asymptotic in nature, that is, we obtain this

result as a limiting property of a collection of populations with component means

that are progressively further apart from other means, in the sense that D1 →∞.

The result requires a regularity condition on the asymptotic behavior of the means

µi along directions different from d. We introduce the following condition:

A3. There exists a constant L such that for all i = 1, . . . , k

‖µi‖ ≤ LD2
1.

This condition ensures that the separation between means is not too large along

other directions different from d, compared to the separation along d, which is of

order D1.

Theorem 2 If conditions A1, A2 and A3 hold and d satisfies both (3.14) and

dTd = 1, then there exists some multiplier λ̃ such that the gradient of the lagrangian

function of problems (3.6) satisfies

lim
D1→∞

∥∥∥∇dL(d, λ̃)
∥∥∥ = 0.

Proof Assume d satisfies (3.14) and dTd = 1. Using α̃ ≡
∑

i∈I1 αi, it holds that

mi = D1, i ∈ I1, mi = − α̃

1− α̃
D1, i ∈ I2. (3.14)

The gradient of the objective function of (3.6) is given by ∇κz = A∇v2+B∇v4,

and using (3.7), (3.8),(3.10) and (3.11) we have

v2 =
1

1− α̃
α̃D2

1 v4 =
(1− α̃)3 + α̃3

(1− α̃)3
α̃D4

1

∇v2 =
2

1− α̃
D1µ̃ ∇v4 =

4((1− α̃)3 + α̃3)

(1− α̃)3
D3

1µ̃
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A = −2
3(1− α̃)2 + ((1− α̃)3 + α̃3)D2

1

(1− α̃ + α̃D2
1)3

α̃D2
1

B =
(1− α̃)2

(1− α̃ + α̃D2
1)2

,

where µ̃ ≡
∑

i∈I1 αiµi. From these equalities we obtain

∇κz = −4
3(1− α̃)2 + ((1− α̃)3 + α̃3)D2

1

(1− α̃ + α̃D2
1)3

α̃

1− α̃
D3

1µ̃+
(1− α̃)3 + α̃3

(1− α̃ + α̃D2
1)2

4

1− α̃
D3

1µ̃

= 4
1− 6α̃ + 6α̃2

(1− α̃ + α̃D2
1)3

D3
1µ̃,

Define

λ̃ ≡ dT∇κz = 4
1− 6α̃ + 6α̃2

(1− α̃ + α̃D2
1)3

α̃D4
1.

Using this value we have

‖∇dL(d, λ̃)‖ = ‖∇κz − λ̃d‖ = 4

∣∣∣∣(1− 6α̃ + 6α̃2)D4
1

(1− α̃ + α̃D2
1)3

∣∣∣∣ ‖ 1

D1

µ̃− α̃d‖.

From Assumption A3 it holds that ‖µ̃‖ ≤ LD2
1, implying that

‖∇dL(d, λ̃)‖ ≤ 4

∣∣∣∣(1− 6α̃ + 6α̃2)D4
1

(1− α̃ + α̃D2
1)3

∣∣∣∣ (LD1 + α̃)→ 0.

2

This theorem proves that if the groups are well separated the two-group

projection directions will be found by the extreme directions of the kurtosis

projections.

3.2 The Proposed Cluster Algorithm

The previous result suggests an iterative procedure to find the possible clusters,

as follows: (1) The data are projected onto the directions of maximum and

minimum kurtosis; (2) A criterion is applied to decide if the projected points
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can be divided into two groups along these directions; (3) Assuming that the data

are divided into two groups, consider each of the groups as new samples and apply

to each of them steps (1) and (2); (4) The procedure is repeated until no more

groups are identified.

These ideas are used to define to the following algorithm.

1. The algorithm starts by standardizing the sample data, Z = Σ−1(X − µ).

2. Compute the directions dmax and dmin that maximizes and minimizes

the kurtosis coefficient κ(d) of the projected data {dTZ} and obtain the

univariate projections of the standardized observations, pmax = dTmaxZ and

pmin = dTminZ.

3. Analyze in each of projections, pmax and pmin if we have a single distribution

or a mixture of two distributions. This decision is made by fitting both a

normal distribution and a mixture of two normals and comparing these fits

using their BIC criteria.

If the BIC value for the mixture of two distributions is greater than one for

a single distribution, then assume heterogeneity.

We may find heterogeneity in the two directions, only in one of them or in

none of them. In the first case we choose the direction with larger BIC value

and its associated two groups and go to the next step. In the second one, we

select this direction and the associated groups and go to the next step. In

the third case, we stop the procedure.

4. Consider the two groups found in step 3 as new data to be explored for

heterogeneity and repeat steps 1 to 4 for the data in these two group until

more groups are identified in the sample.
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There are several important differences between this algorithm and the one

proposed by Peña and Prieto (2001). First, the algorithm works in a binary way

checking for heterogeneity in the projections, whereas in the PP algorithm several

groups can be identified in one projection. Second, we only look at projections

which are extremes of the kurtosis of the data we are studying for heterogeneity at

each stage, whereas the PP algorithm searches on a set of 2p orthogonal directions

obtained from the original data. Third, we check for heterogeneity by fitting a

mixture of two normal distributions and comparing it with a single distribution

instead of using the maximum gap found in the projections. We have verified

through Monte Carlo experiments that this second approach is less effective than

the proposed approach.

3.2.1 An Illustrative Example

To illustrate the procedure we present an example based on a sample obtained

from a mixture of five populations with normal distribution and with the same

covariance matrix, in dimension 10. The populations are generated as follows:

populations 1 and 2 are generated on the first coordinate axis. The populations

are separated by a distance dst1 as follows: the average of the population 1 is at a

distance dst1/2 from the origin and the average of the population 2 is located at

the same distance dst1/2 from the origin but in an opposite direction to population

1. Population 3 is generated on the second coordinate axis, at a distance dst2 from

the origin. Population 4 is at a distance dst3 from the origin along a direction with

an angle of 60◦. Population 5 is at the same distance dst3 from the origin, but

along a direction with an angle of 120◦.

The parameters in the simulations are given in Table 3.1. The first population

has 400 data, the second population 500, the third population 300, the fourth

population 300 and the fifth population 500 data.
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Parameter

n = 2000 Number of total observations

p = 10 Dimension of the data

α1 = 0.20 Percentage of data in population 1

α2 = 0.25 Percentage of data in population 2

α3 = 0.15 Percentage of data in population 3

α4 = 0.15 Percentage of data in population 4

α5 = 0.25 Percentage of data in population 5

dst1 = 6
√
p/
√

2 Distance between the means of populations 1 and 2

dst2 = 8
√
p/
√

2 Distance from the origin to the mean of the population 3

dst3 = 10
√
p/
√

2 Distance from the origin to the means of the populations 4 and 5

Table 3.1: Simulation Parameters for a Mixture of Five Normal Populations

with the Same Covariance Matrix

In figure 3.1 we plot the first two principal components and we can see that

the populations are mixed.

Figure 3.1: First Two Principal Components for Five Normal Populations Case
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Applying the proposed Clustering Algorithm, we obtain the following results:

with the maximum kurtosis direction (κ = 3.07), the BIC value for the fitting of a

mixture of two normals is −5705.46 and for the fitting of one normal distribution

is −5689.96. Since the BIC value for one distribution is greater than for two

normal distributions, then heterogeneity is not identified with this direction. With

the minimum kurtosis direction (κ = 1.08), the BIC value for the one normal

distribution fitting is −5689.96 and for the fitting of a mixture of two normals is

122.68. Thus, the sample is separated into two blocks of groups: Group 1 contains

900 data and consists of 100% of populations 1 and 2, Group 2 contains 1100 data

and consists of 100% of populations 3, 4 and 5. In Figure 3.2 we plot the projection

of the data onto the direction of minimum kurtosis and we can see the separation

of the sample into two blocks of groups.

Figure 3.2: First Clustering Stage for Five Normal Populations
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We then apply the procedure to Group 1. With the maximum kurtosis direction

(κ = 3.91), the BIC value for the fitting of one normal distribution (−2566.70) is

greater than for the fitting of two normals (−2577.30). Thus, heterogeneity is not

assumed to exist in the projected data.

With the minimum kurtosis direction (κ = 1.13), the BIC value for the fitting of

a mixture of two normal (−309.95) is greater than for the fitting for a single normal

distribution (−2566.70). Therefore, Group 1 is separated into two subgroups.

Subgroup 1 contains 400 data and is composed of 100% of population 1, Subgroup

2 contains 500 data and is composed of 100% of the population 2. In Figure

3.3 we plot the projection on the minimum kurtosis direction and we can see the

separation of Group 1 into two subgroups.

Figure 3.3: Second Clustering Stage for Five Normal Populations
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Implementing the procedure for each of the subgroups obtained from Group

1, we have: for Subgroup 1 (400 data), with the maximum kurtosis direction

(κ = 3.38), the BIC value for the fitting of one normal distribution is greater than

for the fitting of a mixture of two normal distributions. A similar result is obtained

for the minimum kurtosis direction (κ = 2.21), see Table (3.2). Then, the first

subgroup is considered homogeneous.

Subgroup 2 (500 data) is also considered homogeneous, since for both the

maximum kurtosis direction (κ = 3.78) and the minimum kurtosis direction (κ =

2.24), the BIC value for the one normal distribution fitting is greater than for the

fitting of a mixture of two normals, see Table (3.2).

We now apply the method to Group 2: in the maximum kurtosis direction

(κ = 4.13), the BIC value for the fitting of a mixture of two normals (−3128.801)

is greater than for the fitting of a single normal distribution (−3134.67). With the

minimum kurtosis direction (κ = 1.46), the BIC value for the fitting of a mixture of

two normals (−2191.02) is greater than for the fitting for one normal distribution

(−3134.67). Thus, we have found heterogeneity in the two directions. Then, we

choose the direction with larger BIC value for a mixture of two normals. In this

case, it corresponds to the minimum kurtosis direction. Using this direction, Group

2 is separated into two blocks of subgroups. Subgroup 3 contains 500 data and is

composed of 100% of population 5. Subgroup 4 contains 600 data and consists of

100% of populations 3 and 4, see figure 3.4.

In Subgroup 3 (500 data), we obtain with the maximum kurtosis direction

(κ = 24.93) that the BIC value for the fitting of one normal distribution is greater

than for the fitting of a mixture of two normal distributions. A similar result

is obtained for the minimum kurtosis direction (κ = 1.87 ), see Table (3.2).

Therefore, Subgroup 3 is considered homogeneous.
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Figure 3.4: Third Clustering Stage for Five Normal Populations

For Subgroup 4 (600 data), we can see the BIC values for each direction in the

Table (3.2). Since for both directions (κmax = 5.17, κmin = 1.12) the BIC value for

the fitting of a mixture of two normal distributions is greater than for the fit of one

normal distribution, then we have found heterogeneity. We choose the direction

with the largest BIC value for a mixture of two normals. Using the minimum

kurtosis direction, Subgroup 4 is separated into two (further) subgroups. Subgroup

5 contains 300 data and is composed of 100% of population 3 and Subgroup 6

contains 300 and is composed of 100% of population 4, see figure 3.5.

Finally, Subgroup 5 (300 data) and Subgroup 6 (300 data) are considered

homogeneous, since for both subgroups the BIC value for the fitting of one normal

distribution is greater than for the fitting of a mixture of two normals, both in the

case of the maximum kurtosis direction and for the minimum kurtosis direction,

see Table (3.2).
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Figure 3.5: Fourth Clustering Stage for Five Normal Populations

Maximum Kurtosis Minimum Kurtosis

BIC1 BIC2 BIC1 BIC2

Subgroup 1 −1146.13 −1158.20 −1146.13 −1170.97

Subgroup 2 −1430.37 −1439.51 −1430.37 −1441.93

Subgroup 3 −1346.73 −1468.99 −1346.73 −1352.98

Subgroup 4 −1714.52 −1708.83 −1714.52 −486.14

Subgroup 5 −847.16 −851.98 −847.16 −861.77

Subgroup 6 −855.01 −866.23 −855.01 −861.77

Table 3.2: BIC Value for the One Normal Distribution Fitting (BIC1) and BIC

Value for the Fitting of a Mixture of Two Normal Distributions (BIC2) for the

Maximum and Minimum Kurtosis Directions in Each Subgroup

85



3.3. MONTE CARLO EXPERIMENT

From the previous reasoning and from Figures 3.3, 3.4 and 3.5 we can conclude

that the procedure has efficiently identified the existence of the five groups

(Subgroup 1, Subgroup 2, Subgroup 3, Subgroup 5 and Subgroup 6).

3.3 Monte Carlo Experiment

In this section we present some computational results of a Monte Carlo

experiment to compare the proposed algorithm with the Peñaa and Prieto

Clustering Algorithm (2001a), the Mclust Algorithm of Fraley and Raftery (1999),

CLARA and K-means.

We will consider three types of simulations. In the first one we compare the

proposed algorithm with the algorithm of Peña and Prieto by studying a sample

from by a mixture of three populations. This number of clusters has been chosen

to show the details of the improvements of the proposed algorithm with respect

to previous procedures. In the second one we compare the clustering results of

the proposed algorithm with other cluster procedures such as MCLUST, CLARA

and K-means. To determine the number of clusters, in K-means we used the

method proposed by Hartigan (1975) and in CLARA we used "Silhouette", see

Rousseeuw (1987). For the MCLUST algorithm we used general parameters for

the distributions with the "VVV" option. In the third one we make this comparison

for mixtures of different numbers of distributions generated from Normal, Uniform

and Student-t distributions, and normal distributions contaminated by outliers.

We present several tables with the percentage of observations correctly grouped,

obtained from 1000 replications for each model.
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3.3.1 Comparing to the PP Kurtosis Algorithm

We will generate populations as follows: populations 1 and 2 are generated on

the first coordinate axis. The populations are separated by a distance dst1 and

the mean of population 1 is at a distance dst1/2 from the origin and the mean of

population 2 is located at the same distance dst1/2 from the origin but in opposite

direction to population 1. The population 3 is at a distance dst2 from the origin

with an inclination angle. The angles that are used in the simulations are 30◦, 60◦

and 90◦. Figure 3.6 shows an example of data generated with this set-up.

Figure 3.6: Original Data for Three Normal Populations

The parameters in the simulations are given in Table 3.3.

Our interest is to study the existence of clusters in the data using the kurtosis

coefficient when the parameters α1, α2 and α3 change.
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Parameter

n Number of total observations

p Dimension of the data

r Cosine of the angle in which the population 3 is located

α1 Percentage of data in population 1

α2 Percentage of data in population 2

α3 = 1− (α1 + α2) Percentage of data in population 3

dst1: 6
√
p/
√

2 Distance between the means of populations 1 and 2

dst2: 8
√
p/
√

2 Distance from the origin to the mean of the population 3

Table 3.3: Simulation Parameters for a Mixture of Three Normal Populations

with the Same Covariance Matrix

The cases that we will consider in the simulations are in Table 3.4.

Case α1 α2 α3

050590 0.05 0.05 0.90

101080 0.10 0.10 0.80

151570 0.15 0.15 0.70

201070 0.20 0.10 0.70

202060 0.20 0.20 0.60

301060 0.30 0.10 0.60

302050 0.30 0.20 0.50

401050 0.40 0.10 0.50

402040 0.40 0.20 0.40

303040 0.30 0.30 0.40

Table 3.4: Cases to Study for Three Normal Populations
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Success Criteria

In order to compare the algorithms, we need assess the success for the clustering

procedures. In the case of three groups the cluster detection is done in two stages.

The first stage consists in the separation of the first two groups and in the second

stage the missing group is detected. Therefore, the following criteria of success in

the clustering during the two stages have been applied:

• First stage

If two groups are obtained, we compare each group with the three original

populations and analyze the coincidences. If one of the two groups obtained

includes at least 80% of one of the initial populations and the other group at

least 80% of another population, we consider that the clustering is successful

during this stage. Otherwise, it is labeled as a failure.

• Second stage

This stage only happens if the first stage is not a failure. The algorithm

is applied to the two groups obtained in the first stage. We consider the

clustering successful if one of the groups is divided into two subgroups and

each subgroup includes at least 80% of one of the initial populations, and

the other group is not divided into subgroups; note that from the first stage

success criterion, it will include at least 80% of one of the initial populations.

Otherwise the second stage, and the whole procedure, is considered to have

failed.
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Results Table

The results are presented in a table with the percentage representing the

number of cases in which the clustering has been considered to be successful. The

table is divided as follows: in the rows are the proportions n/p = 10, 20, 50, 100

for each p. The columns are divided into four: the first and second columns

indicate p and the corresponding proportions. In the third and fourth columns the

results of success obtained using the Peña and Prieto Clustering Algorithm and

our proposed algorithm respectively are presented. These columns are divided into

three columns corresponding to the angle at which the third population is located,

which may be 30◦, 60◦ y 90◦. The results were obtained from 100 repetitions of

the model.
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Average Success Rate

P&P MMx

p
n/p

Angle
30◦ 60◦ 90◦ 30◦ 60◦ 90◦

10

20 0.15 0.45 0.36 0.84 0.87 0.85

50 0.33 0.56 0.61 1 1 1

100 0.40 0.69 0.70 1 1 1

250 0.40 0.78 0.79 1 1 1

Mean 0.32 0.62 0.61 0.96 0.97 0.96

20

20 0.16 0.25 0.26 0.75 0.85 0.85

50 0.35 0.41 0.41 0.97 0.99 1

100 0.45 0.49 0.50 1 1 1

250 0.48 0.58 0.58 1 1 1

Mean 0.36 0.43 0.44 0.93 0.96 0.96

50

50 0.10 0.12 0.11 0.39 0.41 0.43

50 0.14 0.17 0.15 0.60 0.62 0.63

100 0.20 0.25 0.23 0.94 0.93 0.92

250 0.35 0.37 0.37 0.97 0.96 0.96

Mean 0.20 0.22 0.22 0.73 0.73 0.74

Table 3.5: P&P Cluster Algorithm vs. Proposed Algorithm

In Table 3.5 we have the results comparing the proposed algorithm to the

Peña and Prieto Clustering Algorithm. This table shows that the performance of

both algorithms does not depend on the angle and that they improve with n/p,

as expected. On the other hand, the new algorithm is more powerful than the

previous one.
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3.3.2 Comparing to Other Cluster Procedures

We perform the same simulation experiments with three normal populations

for other methods commonly used in the literature such as MCLUST, CLARA

and K-means. In Table 3.6 we present the average success rate in the coincidence

with the original data using the different methods.

Average Success Rate

Kurtosis MCLUST CLARA Kmeans

p
n/p

Angle
30◦ 60◦ 90◦ 30◦ 60◦ 90◦ 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

10

20 0.84 0.87 0.85 0.17 0.18 0.19 0.44 0.80 1 0.58 0.38 0.32

50 1 1 1 0.78 0.78 0.79 0.44 0.80 1 0.58 0.42 0.37

100 1 1 1 0.90 0.90 0.90 0.41 0.82 1 0.63 0.42 0.37

250 1 1 1 1 1 1 0.40 0.83 1 0.67 0.42 0.39

Mean 0.96 0.97 0.96 0.71 0.71 0.72 0.42 0.81 1 0.61 0.41 0.36

20

20 0.75 0.85 0.85 0 0 0 0.40 0.77 0.80 0.52 0.41 0.43

50 0.97 0.99 1 0.40 0.40 0.40 0.41 0.78 0.70 0.63 0.38 0.41

100 1 1 1 0.70 0.80 0.80 0.40 0.81 0.80 0.63 0.36 0.39

250 1 1 1 0.80 0.90 0.90 0.40 0.83 0.90 0.59 0.34 0.38

Mean 0.96 0.96 0.93 0.48 0.52 0.52 0.40 0.80 0.80 0.59 0.37 0.40

Table 3.6: Comparing to Other Cluster Procedures

From Table 3.6 we can conclude that our proposed algorithm is more efficient

than other methods for detecting the three groups present in the sample. These

other methods tend to fail for large p. In addition, our method has a computational

advantage for large data dimensions. For example, for p greater than 20 we failed

to obtain results from MCLUST.
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3.3.3 Comparing to Other Algorithms for Normal, Uniform,

Student-t Data and Normal with Outliers

In this section we present a more general comparison of the cluster methods.

We generated sets of 20p, 50p and 100p random observations in dimensions

p = 4, 8, 15, 30, 50 from a mixture of k multivariate distributions (Normal, Uniform

and Student-t with p degrees of freedom), with k = 2, 3, 4, 8. The number of

observations in each population is determined randomly, but making sure that

each cluster contains at least 2p observations.

The means for each distribution are chosen as values from a multivariate normal

distribution N(0, fI), see Table 3.7 for the values of f .

p 4 8 15 30 50

k 2 3 4 8 2 3 4 8 2 3 4 8 2 3 4 8 2 3 4 8

f 14 18 22 38 20 25 31 54 27 35 43 74 38 49 60 104 49 64 78 134

Table 3.7: Factors f to Generate the Observations for the Simulations

The covariance matrices are generated as S = UDUT , using a random

orthogonal matrix U and a diagonal matrix D with entries from a uniform

distribution on [10−3, 5
√
p], see Peña and Prieto (2001a).

In Tables 3.8, 3.9 and 3.10, we show for the proportion n/p the average

percentage of the observations that have been labeled correctly. A more detailed

description of these tables is found in the Appendix, where we present for

each p and for the different values of k, the percentage of observations that

coincide with the original groups, obtained from 1000 replications for each

model. To provide better understanding of the behavior of the procedure, we

compare the proposed method with the MCLUST, CLARA and K-means methods.
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From the results in Tables, we can conclude that the proposed procedure works

better than the other commonly used methods to identify several cluster in the

sample. We can see that with our method the success in the clustering remains

stable with the increase of the dimension, while the other methods are considerably

affected.

The results show that K-means has the similar average success regardless

of the distribution, MCLUST is method the most affected with the increase of

the dimension and although CLARA works well, the results are better using our

method.

In the Tables presented in the appendix we can see how the increase in the data

dimension and in the number of groups affects each method. We can conclude that

our proposal is more efficient when we have several clusters in the sample and the

data dimension is high.

Finally, in Table 3.11 we have the results of a simulation study to determine

the behavior of the methods in the presence of outliers. For this study, the data

have been generated as indicated above for the normal case, but 10% of the data

are now outliers. For each cluster in the sample, 10% of its observations have been

generated as a group of outliers at a distance 4χ2
p,0.99 in a group along a random

direction, and a single outlier along another random direction.

The results show that our proposed procedure works better than the MCLUST,

CLARA and K-means methods to detect clusters, even if we have outliers in the

sample.
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Multivariate Normal Distributions

Average Success Rate

p n/p Kurtosis MCLUST CLARA Kmeans

4

20 0.75 0.58 0.77 0.54

50 0.97 0.79 0.69 0.52

100 0.99 0.87 0.68 0.52

Mean 0.90 0.75 0.72 0.53

8

20 0.78 0.47 0.78 0.55

50 0.99 0.76 0.75 0.53

100 1 0.87 0.72 0.54

Mean 0.92 0.70 0.75 0.54

15

20 0.79 0.41 0.70 0.60

50 1 0.66 0.82 0.53

100 1 0.83 0.87 0.55

Mean 0.93 0.63 0.80 0.56

30

20 0.75 0.37 0.70 0.54

50 0.98 0.64 0.89 0.54

100 1 0.82 0.84 0.50

Mean 0.91 0.61 0.81 0.53

50

20 0.66 0.27 0.63 0.59

50 0.96 0.60 0.75 0.56

100 0.98 0.77 0.80 0.54

Mean 0.86 0.55 0.73 0.56

Table 3.8: Average Success in Clustering for the proportion n/p using the

Proposed Method and the MCLUST, CLARA and Kmeans Algorithms.

Normal Observations
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Multivariate Uniform Distributions

Average Success Rate

p n/p Kurtosis MCLUST CLARA Kmeans

4

20 0.89 0.89 0.88 0.53

50 0.99 0.98 0.81 0.56

100 1 0.97 0.80 0.53

Mean 0.96 0.95 0.83 0.54

8

20 0.92 0.90 0.90 0.54

50 1 0.97 0.94 0.50

100 1 0.98 0.94 0.53

Mean 0.97 0.95 0.93 0.52

15

20 0.90 0.73 0.91 0.57

50 1 0.89 0.89 0.54

100 1 0.95 0.89 0.49

Mean 0.97 0.86 0.89 0.53

30

20 0.81 0.55 0.81 0.56

50 0.99 0.77 0.89 0.56

100 1 0.78 0.90 0.51

Mean 0.93 0.70 0.87 0.54

50

20 0.76 0.40 0.75 0.58

50 0.98 0.65 0.78 0.55

100 0.99 0.73 0.92 0.49

Mean 0.91 0.59 0.81 0.54

Table 3.9: Average Success in Clustering for the proportion n/p using the

Proposed Method and the MCLUST, CLARA and Kmeans Algorithms.

Uniform Observations
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Multivariate Student-t Distributions

Average Success Rate

p n/p Kurtosis MCLUST CLARA Kmeans

4

20 0.66 0.50 0.48 0.46

50 0.88 0.76 0.53 0.43

100 0.93 0.77 0.53 0.38

Mean 0.82 0.68 0.51 0.43

8

20 0.73 0.43 0.63 0.56

50 0.96 0.71 0.66 0.51

100 1 0.79 0.62 0.52

Mean 0.89 0.64 0.63 0.53

15

20 0.73 0.39 0.74 0.57

50 1 0.67 0.78 0.55

100 1 0.74 0.80 0.50

Mean 0.91 0.60 0.77 0.54

30

20 0.74 0.34 0.77 0.55

50 0.96 0.65 0.74 0.53

100 0.99 0.74 0.82 0.51

Mean 0.90 0.58 0.78 0.53

50

20 0.72 0.28 0.65 0.59

50 0.95 0.64 0.79 0.55

100 0.99 0.75 0.84 0.51

Mean 0.88 0.56 0.76 0.55

Table 3.10: Average Success in Clustering for the proportion n/p using the

Proposed Method and the MCLUST, CLARA and Kmeans Algorithms.

Student-t Observations
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Normal Observations with Outliers

Average Success Rate

p n/p Kurtosis MCLUST CLARA Kmeans

4

20 0.74 0.34 0.70 0.50

50 0.92 0.27 0.63 0.53

100 0.95 0.17 0.53 0.49

Mean 0.87 0.26 0.62 0.50

8

20 0.78 0.30 0.77 0.50

50 0.98 0.21 0.73 0.55

100 0.98 0.26 0.68 0.51

Mean 0.91 0.26 0.73 0.52

15

20 0.75 0.33 0.80 0.52

50 0.96 0.41 0.76 0.52

100 0.98 0.44 0.71 0.54

Mean 0.90 0.39 0.75 0.52

30

20 0.72 0.17 0.78 0.56

50 0.93 0.56 0.79 0.55

100 0.97 0.84 0.70 0.46

Mean 0.88 0.52 0.76 0.52

50

20 0.71 0.13 0.72 0.52

50 0.88 0.63 0.70 0.62

100 0.98 0.85 0.66 0.49

Mean 0.85 0.53 0.69 0.54

Table 3.11: Average Success in Clustering for the proportion n/p using the

Proposed Method and the MCLUST, CLARA and Kmeans Algorithms.

Normal Observations with Outliers
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3.4 Conclusion

In this Chapter we have presented an iterative binary clustering algorithm

based on directions that project the observations onto two blocks. We have

shown that these directions can be approximated from the extreme directions of

kurtosis. These kurtosis directions have been shown to be asymptotically two-block

projection directions.

Based on this property, we have defined our algorithm to we check for a mixture

of two distributions using the BIC criterion, for each one of the projections of the

data onto the directions of maximum and minimum kurtosis.

Finally, from some simulation examples, we shown that the algorithm with

a mixture of normals is more efficient than the algorithm proposed by Peña and

Prieto (2001a), MCLUST, CLARA and K-means models when the data dimension

and the number of clusters present in the sample are large.
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Chapter 4

Kurtosis for Functional Data

Analysis

Summary

A large number of generalizations of multivariate techniques to the functional

data case have been proposed in the literature in recent years. This chapter

introduces an extension of clustering techniques based on multivariate kurtosis

directions, to the analysis of functional data. This proposal is closely related to

the one presented in the preceding chapter.

We analyze if our proposal preserves some of the good properties of

kurtosis-based procedures applied to the multivariate case, regarding the

identification of cluster structures.

We have also conducted an experimental analysis comparing the performance

of the proposed algorithm with the results obtained by Functional Principal

Components, Functional K-means and the Funclust method on simulated data.
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4.1 A Review of Functional Data Analysis

An area of recent interest has been the development of new statistical

procedures for Functional Data Analysis (FDA). FDA comprises all the statistical

techniques developed for the analysis of curves or surfaces that vary in time.

Initially, the research in this area was intended to be an almost direct extension

of the techniques of classical multivariate analysis. However, the special structure

associated to the functional data implies the need for adapted techniques, and

motivates the development of new methodologies and procedures.

The purpose of any statistical analysis procedure in this setting is to make use

of any time (or other independent variable) dependency structure associated to the

functions generating the data, to obtain better estimates for those magnitudes of

interest in the data. Functional data is very relevant in many fields of application of

statistics such as health sciences, economics, environmental studies, among others.

Well-known references in the field of FDA are the books written by Ramsay and

Silverman (1997) and Ferraty and Vieu (2006). In 2005, Ramsay and Silverman

wrote a second book of a more applied character in which solutions to the problems

associated to concrete datasets were studied. The same authors presented a

considerable number of applications in another book, see Ramsay and Silverman

(2002). Ramsay et al. (2009) includes many Functional Data Analysis applications

and algorithmic implementations in R and MATLAB.

Functional data are inherently high-dimensional. Their numerical treatment

requires reducing this dimension to a manageable size. This is usually done by

approximating the functions through a representation in some appropriate (usually

orthonormal) functional basis. A finite number K of elements in the basis are

chosen to represent the data, transforming the problem into a multivariate setting.

The choice of both the parameter K and the most appropriate basis for the

observed data is a basic one in functional data analysis, but there seems to be
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no universal rule providing an optimal selection.

The value K acts as a smoothing parameter for the functional data. If K is

small we have a very tractable model but possibly relevant information is lost.

While if K is big, the data are represented with high precision but computational

complexity issues become relevant.

The most usual bases in functional data analysis are Fourier bases, B-Splines

bases, Wavelets bases, exponential functions, or polynomial bases, among others,

see Ramsay and Silverman (1997). The choice of basis may have an impact on the

results obtained; this will be an issue we will consider in the experimental analysis

of our proposal.

Regarding specific techniques, Ramsay and Silverman (1997) developed an

adaptation of Principal Component Analysis to the functional case, the Functional

Principal Component Analysis (FPCA) technique. This dimension reduction

technique summarizes the information available in the data by identifying a finite

set of scalar variables obtained as generalized linear combinations of the curves with

maximum variance and has been used as the basic tool to analysing and clustering

functional data. However, the technique has well-known shortcomings, such as a

high sensitivity to the presence of outliers. Also, the summarizing combinations

can be difficult to interpret and do not always provide a completely understandable

presentation of the structure of the variability in the observed data.

Classification for functional data has been recently considered by several

authors. One of the early references on the subject was that of Hastie et al.

(1995). They adapt the general ideas from functional discriminant analysis, based

on a penalized method for regularization. This setting allows them to cast the

classification problem as a regression problem via optimal scoring.

In the framework of supervised classification some extensions have been made

to the functional case. It is worth mentioning the study of Ferraty and Vieu
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(2003), where they proposed a nonparametric supervised classification model

by introducing a consistent kernel estimator applied to a sample of curves.

López-Pintado and Romo (2006) considered the use of continuity information from

the data and proposed robust procedures for the supervised classification of curves

based on this information.

In the context of unsupervised classification, the one most relevant for this

chapter, K-means was one of the first methods to be adapted to the functional

case. Various implementations and variations have emerged, among them those

by Abraham et al. (2003), where they propose a clustering method based on

fitting the functional data using B-splines and partitioning the estimated model

coefficients using a K-means algorithm. Biau et al. (2005) applied K-means in

infinite dimensional Hilbert spaces by using a nonparametric method.

James and Sugar (2003) developed a flexible model-based procedure for

clustering functional data. The technique can be applied to any type of data

generated from curves, but is particularly useful when individuals are observed

at a sparse set of time points. Also they extend the model to handle multiple

functional and finite-dimensional covariates.

Serban and Wasserman (2005), proposed a technique for nonparametrically

estimating and clustering a large number of curves called CATS: Clustering After

Transformation and Smoothing. In this method they estimated the error due to

the fact that we are clustering the estimated curves rather than the true ones.

CATS is quite general, but they described and analyzed the method mostly in the

context of microarray experiments.

Jacques and Preda (2014) presented a review of the different methods for

functional data clustering, classifying them into three categories: (1) two-stage

methods, which first reduce data dimension and then perform clustering. (2)

Non-parametric methods, which use distances or dissimilarities between curves
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combined with K-means or hierarchical clustering. (3) Model-based methods,

which assume an approximation for the probability distribution of the functional

data. But note the associated difficulty that for functional data the notion of

probability density generally does not exist, see Delaigle and Hall (2010). Related

to this last category, the authors proposed a model-based functional clustering

method using the Karhunen-Loève expansion of a stochastic process to define an

approximation to the probability density of the functional coefficients. The method

is called Funclust and is available in R, see Jacques and Preda (2013).

The proposal described in the following sections introduces a method

corresponding to the first class mentioned above: it first reduces the dimension

of the data by projecting it onto certain functions related to a kurtosis operator,

and then it studies the presence of clusters in the projections. It is closely related

to the algorithm proposed in Chapter 3 for the multivariate analysis case, as it also

uses the kurtosis information in the data to reduce its dimension. Furthermore, it

applies the same model-based analysis to the resulting projections.

4.2 Description of the Kurtosis operator

Our proposal for a kurtosis-based clustering algorithm is based on an extension

of multivariate kurtosis matrices to a functional data setting. In particular, it will

be defined as an adaptation of the proposal presented in Peñaa et al. (2010) for

the multivariate case. This proposal generated directions of interest from some

eigenvectors of a kurtosis matrix, and then studied the univariate projections of

the data to analyze the possible presence of clusters in the multivariate data.

Our multivariate reference, following Móri et al. (1993), will be the kurtosis

matrix for a multivariate centered random variable X defined as

K = E[(XTΣ−1X)XXT ], (4.1)
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where Σ = Var(X). For clustering applications, this matrix has the property

that one of its eigenvalues corresponds to the Fisher direction for a mixture of

two multivariate normal populations, Σ−1(µ1 − µ2), see Theorem 1 in Peña et

al. (2010), for example. This type of result is the one we aim to replicate in a

functional data setting.

The following sections introduce a kurtosis operator for functional data related

to this kurtosis matrix, and having similar properties with respect to clustering

applications.

4.2.1 Defining a Kurtosis Operator for Functional Data

Our data are real functions defined on an interval T ≡ [a, b] ⊂ R. We assume

that these functions are realizations of a stochastic process with a finite mean

function. We assume that the realizations of the associated centered process (after

subtracting its mean function) belong to a Hilbert space L2(T ). If u, v are in this

Hilbert space, their inner product is defined as 〈u, v〉 =
∫ b
a
u(t)v(t)dt. We will use

the norm ‖u‖2 = 〈u, u〉.

Our proposal for a kurtosis operator starts from a stochastic process ξ̃

with finite mean. To simplify the notation, let ξ ≡ ξ̃ − mξ, where mξ(t) ≡

E[ξ(t)]. We assume that ξ has a continuous and finite covariance operator. The

Karhunen-Loève expansion of ξ is given by

ξ(t) =
∞∑
i=0

Biφi(t), (4.2)

where the Bi are independent random variables satisfying E[Bi] = 0, E[B2
i ] = λi

and φi are orthogonal deterministic functions on T , having unit norm.

The finiteness of the covariance operator is equivalente to assuming that the

following condition holds:

A1.
∑

iE[B2
i ] =

∑
i λi <∞.
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Consider our reference multivariate kurtosis matrix (4.1). A difficulty to

introduce a functional equivalent to this matrix is associated to the fact that, in

general, the Mahalanobis distance may take infinite values in a functional setting.

We propose to use some functional approximation to this Mahalanobis distance, a

function ϕξ, and a kurtosis operator based on it, of the form

k(s, t) ≡ E[ϕξ(ξ)ξ(s)ξ(t)], (4.3)

for some function ϕξ : L2(T )→ R+ satisfying

C1. 0 ≤ ϕξ(x) ≤ C max(C, 〈x, x〉)

and some constant C > 0. If the function ϕ plays the role of the Mahalanobis

distance XTΣ−1X, then the function k shows a direct correspondence to the

definition of the matrix K in (4.1).

To ensure that this kernel k is well-defined, we introduce the following

additional condition on the process ξ:

A2.
∑

iE[B4
i ] <∞.

Condition A2 is equivalent to assuming that E[ξ(s)4] < ∞ for all s ∈ T . Note

that A2 holds for a gaussian process with finite covariance function.
Condition C1 implies

k(s, t) ≤ CE[〈ξ, ξ〉ξ(s)ξ(t)] = CE

∑
i

B2
i

∑
j

Bjφj(s)
∑
k

Bkφk(t)


= C

∑
i

E[B4
i ]φi(s)φi(t) + C

∑
j 6=i

E[B2
i ]E[B2

j ]φi(s)φj(t)

= C
∑
i

(
E[B4

i ]− E[B2
i ]2
)
φi(s)φi(t) + C

(∑
i

E[B2
i ]φi(s)

)∑
j

E[B2
j ]φj(t)

 ≤ C ′,
for some constant C ′, where we have used that assumption A1 implies∑
iE[B2

i ]
2 <∞. Thus, the proposed function k(s, t) is well-defined at all s, t ∈ T

for any ξ ∈ L2(T ), as long as A1, A2 and C1 hold.
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For any (deterministic) function u(t) ∈ L2(T ), we denote the induced kurtosis

operator as K,

K(u, t) ≡ E[〈ξ, u〉ϕξ(ξ)ξ(t)]. (4.4)

As particular examples, for ϕξ(x) ≡ 〈x, x〉 we have a definition of the kurtosis

operator related to (4.1) if we replace Σ−1 with the identity, while if ϕξ(x) ≡ 1 we

have the covariance operator.

4.2.2 Optimal Classification Rules for a Mixture of

Gaussian Processes

Our choice of a particular form for the function ϕξ in (4.3) will be guided by

our interest in ensuring good separation properties for the kurtosis operator K

in (4.4). With this aim, in this section we extend some basic results related to

optimal discriminant functions to the functional case.

Our definition of ϕξ will be a consequence of the study of the optimal

classification rules for functional observations in a particular case of a mixture

of two normal multivariate distributions with the same covariance matrix, the

reference case giving rise to the Fisher discriminant function. In the functional

setting we consider that the (functional) data have been obtained from a mixture

of two gaussian processes with the same covariance operator.

Consider a process ξ̄(t) defined as a mixture, with probability α, of two gaussian

processes ξ̄1 and ξ̄2 with mean functions m̄1 and m̄2 and the same covariance

function r(s, t). Let φi denote the set of orthogonal eigenfunctions for r(s, t) and

λi ≥ 0 their corresponding eigenvalues. Then

r(s, t) =
∞∑
i=0

λiφi(s)φi(t), R(u)(t) =

∫
T

r(s, t)u(s)ds =
∞∑
i=0

λiuiφi(t), (4.5)
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for u =
∑

i uiφi. Also, let

m(t) ≡ m̄1(t)− m̄2(t) =
∞∑
i=0

miφi(t).

We will use the notation ξ̄1(t) = m̄1(t)+
∑

iB1iφi(t), ξ̄2(t) = m̄2(t)+
∑

iB2iφi(t)

and

ξ̄(t) =

 m̄1(t) +
∑

iB1iφi(t) w.p. α

m̄2(t) +
∑

iB2iφi(t) w.p. 1− α,
(4.6)

where B1i and B2i are independent standard normal random variables.

Our goal is to define a kurtosis operator (4.3), that is, to select a function

ϕξ, with the property that the eigenfunctions of k provide information useful to

separate the two components in the mixture defined in (4.6). This is equivalent

to using the eigenvectors of a kurtosis matrix in the multivariate case to construct

the Fisher discriminant function, as described in Peña et al. (2010).

A first step will be to identify a separation criterion appropriate for the

functional case. By analogy with the multivariate case, we will study the ratio

of the variability between groups and the variability within the groups, for the

functional observations projected onto a given function ψ, defined for our data

model as

∆(ψ) ≡ BTG(ψ)

WTG(ψ)
=
α(1− α)〈ψ,m1 −m2〉2∫∫

ψ(s)ψ(t)r(s, t)dsdt
.

A first result establishes an equivalence with the Fisher discriminant function

in the multivariate case.

Lemma 2 Assume that λi > 0 for all i. The function ψ(t) that maximizes the

value of ∆ is given by

ψ(t) =
∞∑
i=0

ω∗i φi(t), ω∗i = C
mi

λi
, (4.7)

for some constant C.
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Proof For ψ(t) =
∑∞

i=0 ωiφi(t), if we rewrite ∆ in terms of the eigenfunctions

and eigenvalues of k we have

∆(ψ) =
α(1− α)(

∑
imiωi)

2∑
i λiω

2
i

.

If λi > 0, the first-order optimality conditions are

2α(1− α)(
∑

imiωi)(
∑

i λiω
2
i )mj − 2α(1− α)(

∑
kmiωi)

2λjωj
(
∑

i λiω
2
i )

2
= 0, (4.8)

and
2α(1− α)(

∑
imiωi)mj∑

i λiω
2
i

= 0.

otherwise.

The solutions for these equations are either
∑

imiωi = 0 (the minimizer of the

problem) or the one indicated in (4.7). 2

The form of ψ in (4.7) is the direct equivalent of the vector Σ−1(µ1 − µ2) in

the multivariate case. But this representation of ψ has the undesirable property

of not having a bounded norm. As in practice we will work with a finite basis

representation of the data, it seems interesting to ensure that the norm of the

functions we use is bounded, to guarantee reasonable truncation properties. A

modification of the preceding lemma is given below.

Lemma 3 The function that solves the problem

max
ψ

∆(ψ) s.t. ‖ψ‖ ≤ V,

is given by

ψ(t) =
∞∑
i=0

ω∗i φi(t), ω∗i = C
mi

λi + δ
, (4.9)

for some constants C and δ > 0.
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Proof If we rewrite ∆(ψ) in terms of the eigenfunctions and eigenvalues of k, as

in (4.8), we have that the problem of interest in this case is

max
ω

α(1− α)(
∑

imiωi)
2∑

i λiω
2
i

s.t.
∑
i

ω2
i ≤ V 2.

Its first-order optimality conditions are

2α(1− α)(
∑

imiωi)(
∑

i λiω
2
i )mj − 2α(1− α)(

∑
imiωi)

2λjωj
(
∑

i λiω
2
i )

2
+ 2µωj = 0.

The optimal solution in (4.9) follows from this equality. 2

If there exists a smallest index i′ such that λi = 0 for all i > i′, the problem has

no (bounded) solution unless mi = 0 for all i > i′, in which case we again obtain

the preceding solution, with ωi = 0 for i > i′.

From this result, an interesting replacement for any computation carried out on

the inverse covariance operator r−1 (such as computing a Mahalanobis distance)

can be implemented by replacing it with a modified inverse covariance operator

r−1
δ , defined as

r−1
δ (s, t) =

∞∑
i=0

1

λi + δ
φi(s)φi(t),

S−1
δ (u)(t) =

∫
r−1
δ (s, t)u(s)ds =

∞∑
i=0

1

λi + δ
〈φi, u〉φi(t), (4.10)

for some positive value δ. This modified operator can be considered as the inverse

of a regularized version of the covariance operator S.

Using this operator, the optimal function ψ in (4.9) can be represented as

ψ(t) = C

∫
r−1
δ (s, t)m(s)ds = CS−1

δ (m). (4.11)

4.2.3 The Proposed Kurtosis Operator

We specify in this section our proposal of a kurtosis operator having the form

introduced in (4.4). This proposal will be inspired by the result obtained in Lemma

3, and it will be based on the regularized inverse covariance operator (4.10).
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For a general stochastic process ξ with mean zero and covariance operator S(u),

we define our proposed function ϕξ,δ as

ϕξ,δ(ξ
′) ≡ 〈ξ′, S−1

δ (ξ′)〉, (4.12)

where the operator S−1
δ (u) is defined according to (4.10). Our kurtosis operator,

obtained by replacing (4.12) in (4.4), will be

K(u, t) ≡ E[〈ξ, S−1
δ (ξ)〉〈ξ, u〉ξ(t)]. (4.13)

4.2.4 Discriminating Properties of Some Eigenfunctions of

the Kurtosis Operator

We now relate the properties of our proposed kurtosis operator (4.13) to the

optimal discriminating properties discussed in Section 4.2.2. Our main goal is the

identification of relationships between the eigenfunctions of this kurtosis operator

and the previously introduced optimal classification function (4.11).

As it was done in Section 4.2.2, due to the difficulties associated to conducting

a theoretical study for a general case, our goal in this section focuses on verifying

that the proposal introduced in (4.13) presents acceptable classification properties

for the case of a mixture of gaussian processes.

Consider the process ξ defined in (4.6), where m = m1 − m2 denotes the

difference of the mean functions, and R(u) =
∑

i λi〈φi, u〉φi denotes the common

covariance operator for both populations. The covariance operator of ξ is given by

S(u) = R(u) + α(1− α)〈m,u〉m.

If we define S−1
δ according to (4.10), it holds that

R−1
δ (u) = (R + δI)−1(u) (4.14)
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S−1
δ (u) = (S + δI)−1(u) = (R + δI + α(1− α)〈m, ·〉m)−1(u) (4.15)

= R−1
δ (u)− γ〈R−1

δ (m), u〉R−1
δ (m)

γ =
α(1− α)

1 + α(1− α)〈m,R−1
δ (m)〉

,

where R−1
δ = (R + δI)−1.

For ξ defined in this manner, ϕ in (4.12) satisfies

ϕξ,δ(ξ
′) = 〈ξ′, R−1

δ (ξ′)〉 − γ〈ξ′, R−1
δ (m)〉2. (4.16)

To simplify the presentation of the proof, we first derive a result providing a

representation for the expected value of a fourth-order moment of ξ.

Lemma 4 For ξ defined in (4.6), i = 1, 2, it holds that

E[〈ξi−mi, S
−1
δ (ξi−mi)〉〈ξi−mi, u〉(ξi−mi)] = ρ1R(u)−ρ2(u)m−2δQδ(u), (4.17)

for some ρ1, ρ2(u) and Qδ(u).

Proof To simplify the notation, we will use ξ̄i ≡ ξi −mi, and also

Ti(u) ≡ E[〈ξi −mi, S
−1
δ (ξi −mi)〉〈ξi −mi, u〉(ξi −mi)].

We have from (4.16)

Ti(u) = E
[
〈ξ̄i, S−1

δ (ξ̄i)〉〈ξ̄i, u〉ξ̄i
]

= E
[
〈ξ̄i, R−1

δ (ξ̄i)〉〈ξ̄i, u〉ξ̄i
]
− γE

[(
〈ξ̄i, R−1

δ (m)〉
)2 〈ξ̄i, u〉ξ̄i

]
.

Using the Karhunen-Loève expansion of ξ̄i, ξ̄i =
∑

k Bikφk, the representation

u =
∑

k ukφk and the normal distribution of Bik, implying E[B2
ik] = λk,
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E[B4
ik] = 3λ2

k, and R
−1
δ (u) =

∑
j

1
λj+δ
〈φj, u〉φj we have

Ti1(u) ≡ E
[
〈ξ̄i, R−1

δ (ξ̄i)〉〈ξ̄i, u〉ξ̄i
]

=
∑
jkl

E[B2
ijBikBil]

λj + δ
ukφl

=
∑
j

3λ2
j

λj + δ
ujφj +

∑
l 6=j

λjλl
λj + δ

ulφl

= 2
∑
j

λ2
j

λj + δ
ujφj +

(∑
j

λj
λj + δ

)
R(u)

=

(
2 +

∑
j

λj
λj + δ

)
R(u)− 2δR−1

δ (R(u)).

Also,

Ti2(u) ≡ E
[
〈ξ̄i, R−1

δ (m)〉2〈ξ̄i, u〉ξ̄i
]

=
∑
kl

E

(∑
j

Bijmj

λj + δ

)2

BikBil

ukφl
=

∑
j

3λ2
jm

2
j

(λj + δ)2
ujφj +

∑
l 6=j

m2
jλjλl

(λj + δ)2
ulφl + 2

∑
l 6=j

mjλjmlλl
(λj + δ)(λl + δ)

ujφl

=
∑
j

m2
jλj

(λj + δ)2
R(u) + 2

(∑
j

mjλj
λj + δ

uj

)(∑
l

mlλl
λl + δ

φl

)
= 〈R−1

δ (m), R−1
δ (R(m))〉R(u) + 2〈R−1

δ (R(u)),m〉R−1
δ (R(m))

= 〈R−1
δ (m), R−1

δ (R(m))〉R(u) + 2〈R−1
δ (R(u)),m〉m

− 2δ〈R−1
δ (R(u)),m〉R−1

δ (m),

where we have used R−1
δ (R(m)) = m− δR−1

δ (m).

Collecting these results we obtain

Ti(u) =

(
2 +

∑
j

λj
λj + δ

− γ〈R−1
δ (m), R−1

δ (R(m))〉

)
R(u)

− 2γ〈R−1
δ (R(u)),m〉m

− 2δ
(
R−1
δ (R(u))− γ〈R−1

δ (R(u)),m〉R−1
δ (m)

)
.
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This equality implies that, letting

ρ1 ≡ 2 +
∑
j

λj
λj + δ

− γ〈R−1
δ (m), R−1

δ (R(m))〉

ρ2(u) ≡ 2γ〈R−1
δ (R(u)),m〉

Qδ(u) ≡ R−1
δ (R(u))− γ〈R−1

δ (R(u)),m〉R−1
δ (m), (4.18)

we have the desired result. 2

We now present our main result, relating the optimal separation functions

studied in Lemma 3, with some functions related to eigenfunctions of the kurtosis

operator (4.13).

The multivariate case has been the reference for our functional kurtosis

operator. In that case the Fisher discriminant direction is associated to an

eigenvector of the kurtosis matrix. Our next result explores this relationship for

the functional case and our proposed kurtosis operator.

It holds that in the functional case, due to the approximation we have

introduced in the definition of the Mahalanobis distance, and the need to

approximate the Fisher discriminant direction in a functional setting, the preceding

equivalence only holds asymptotically. The Fisher discriminant function ψ defined

in (4.9) satisfies an approximate generalized eigenvalue equation based on the

kurtosis operator, with an error term that is arbitrarily small as the regularization

parameter δ goes to zero.

This result provides theoretical support to use eigenfunctions obtained from

the eigenvalue equation as approximations to the Fisher discriminant function.

These functions are thus useful to reveal the presence of clusters by analysing the

univariate projections of the data onto them.

Theorem 3 For the mixture of two gaussian processes with zero mean ξ, defined

in (4.6), let K be the operator defined in (4.13). Also, let R−1
δ , S−1

δ be defined as
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in (4.14)–(4.15). Consider a function ψ(t) of the form

ψ = S−1
δ (m).

For ψ̃ = ψ/‖ψ‖ it holds that

K(ψ̃) = βδS(ψ̃)− δv(δ), (4.19)

for some functions of δ, βδ and v(δ).

Furthermore, if for any δ > 0,

〈m,R−1
δ (m)/‖R−1

δ (m)‖〉 ≥ L > 0, (4.20)

holds for some constant L, then

‖v(δ)‖ ≤ L′max(βδ, 1) (4.21)

for some constant L′ and any δ > 0.

Proof We start by obtaining a representation of K(u) for our mixture of two

gaussian processes. From (4.13) we have

K(u) = E[〈ξ, S−1
δ (ξ)〉〈ξ, u〉ξ]

= αE[〈ξ1, S
−1
δ (ξ1)〉〈ξ1, u〉ξ1] + (1− α)E[〈ξ2, S

−1
δ (ξ2)〉〈ξ2, u〉ξ2]

= αK1(u) + (1− α)K2(u),

where we have introduced Ki ≡ E[〈ξi, S−1
δ (ξi)〉〈ξi, u〉ξi]. Defining ξ̄i ≡ ξi −mi, for

each of these operators we have

Ki = E[〈ξ̄i, S−1
δ (ξ̄i)〉〈ξ̄i, u〉ξ̄i] + 〈mi, S

−1
δ (mi)〉E[〈ξ̄i, u〉ξ̄i] + 2〈mi, u〉E[〈ξ̄i, S−1

δ (mi)〉ξ̄i]

+ 2E[〈ξ̄i, S−1
δ (mi)〉〈ξ̄i, u〉]mi + 〈mi, u〉E[〈ξ̄i, S−1

δ (ξ̄i)〉]mi + 〈mi, S
−1
δ (mi)〉〈mi, u〉mi,

where we have used the symmetry of the distribution of ξ̄i to cancel the first- and

third-order terms in this expansion. This expression is equivalent to

Ki = E[〈ξ̄i, S−1
δ (ξ̄i)〉〈ξ̄i, u〉ξ̄i] + 〈mi, S

−1
δ (mi)〉R(u) + 2〈mi, u〉R(S−1

δ (mi))

+
(
2〈R(S−1

δ (mi)), u〉+ 〈mi, u〉E[〈ξ̄i, S−1
δ (ξ̄i)〉] + 〈mi, S

−1
δ (mi)〉〈mi, u〉

)
mi.

116



CHAPTER 4. KURTOSIS FOR FUNCTIONAL DATA ANALYSIS

Letting mi = ωim, ω1 = 1− α, ω2 = −α, from (4.15),

S−1
δ (mi) = ωiS

−1
δ (m) = ωi(1− γ〈m,R−1

δ (m)〉)R−1
δ (m)

R(S−1
δ (mi)) = ωi(1− γ〈m,R−1

δ (m)〉)R(R−1
δ (m))

= ωi(1− γ〈m,R−1
δ (m)〉)(m− δR−1

δ (m)). (4.22)

Replacing the result from Lemma 4 we obtain

Ki = (ρ1 + 〈mi, S
−1
δ (mi)〉)R(u)

+ (ω2
i (〈m,u〉(1− γ〈m,R−1

δ (m)〉) + 2〈R(S−1
δ (m)), u〉+ 〈m,u〉E[〈ξ̄i, S−1

δ (ξ̄i)〉]

+ω2
i 〈m,S−1

δ (m)〉〈m,u〉)− 2ρ2(u))m

−δ
(
2Qδ(u) + ω2

i (1− γ〈m,R−1
δ (m)〉)〈m,u〉R−1

δ (m)
)
.

As a consequence, using αω2
1 + (1− α)ω2

2 = α(1− α),

K(u) = ρ̄1R(u) + ρ̄2(u)m− δ
(
2Qδ(u) + α(1− α)(1− γ〈m,R−1

δ (m)〉)〈m,u〉R−1
δ (m)

)
= ρ̄1R(u) + ρ̄2(u)m− δ

(
2Qδ(u) + γ〈m,u〉R−1

δ (m)
)
, (4.23)

where

ρ̄1 = ρ1 + α(1− α)〈m,S−1δ (m)〉

ρ̄2(u) = α(1− α)
(
(1− γ〈m,R−1δ (m)〉)〈m,u〉+ 2〈R(S−1δ (m)), u〉+ 〈m,u〉E[〈ξ̄i, S−1δ (ξ̄i)〉]

)
+ (α(1− α)4 + (1− α)α4)〈m,S−1δ (m)〉〈m,u〉 − 2ρ2(u).

Consider now ψ = S−1
δ (m). From (4.23), it holds that

K(ψ) = ρ̄1R(S−1
δ (m)) + ρ̄2(ψ)m− δ

(
2Qδ(ψ) + γ〈m,ψ〉R−1

δ (m)
)
,

and using (4.22) we obtain

K(ψ) =
(
ρ̄1(1− γ〈m,R−1

δ (m)〉) + ρ̄2(ψ)
)
m− δ

(
2Qδ(ψ) + γ〈m,ψ〉R−1

δ (m)
)

= βδm− δ
(
2Qδ(ψ) + γ〈m,ψ〉R−1

δ (m)
)
, (4.24)
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for

βδ ≡ ρ̄1(1− γ〈m,R−1
δ (m)〉) + ρ̄2(ψ).

As

S(ψ) = S(S−1
δ (m)) = m− δS−1

δ (m)⇒ m = S(ψ) + δS−1
δ (m) = S(ψ) + δψ,

we can write (4.24) in the form

K(ψ) = βδS(ψ) + δ
(
βδψ − 2Qδ(ψ)− γ〈m,ψ〉R−1δ (m)

)
⇒ K(ψ̃) = βδS(ψ̃) + δ

(
βδψ̃ − 2R−1δ (R(ψ̃)) + γ〈(2R−1δ (R(ψ̃))− ψ̃),m〉R−1δ (m)

)
(4.25)

where we have introduced ψ̃ = ψ/‖ψ‖, and replaced Qδ using (4.18). The desired

result follows for

v(δ) ≡ βδψ̃ − 2R−1
δ (R(ψ̃)) + γ〈(2R−1

δ (R(ψ̃))− ψ̃),m〉R−1
δ (m). (4.26)

Studying the sizes of the terms in (4.26) and using (4.20), it holds that

γ‖R−1
δ (m)‖ =

α(1− α)‖R−1
δ (m)‖

1 + α(1− α)〈m,R−1
δ (m)〉

≤ 1

〈m,R−1
δ (m)/‖R−1

δ (m)‖〉
≤ 1

L

‖R−1
δ (R(ψ̃))‖2 =

∑
i

λ2
i ψ̃

2
i

(λi + δ)2
≤
∑
i

ψ̃2
i = 1,

implying

‖v(δ)‖ ≤ βδ + 2 +
3‖m‖
L

,

and establishing the desired result for the size of ‖v(δ)‖ given in (4.21). 2

This result provides theoretical support for a clustering procedure defined

through the following basic steps: i) obtain a function u from the solution of

the generalized eigenvalue equation K(u) = λS(u); ii) project the functional

observations onto u and study the clustering properties of the resulting univariate

projections. In the following section we present the details of a proposed

implementation for this procedure.
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4.3 Implementation of the Proposed Clustering

Algorithm for Functional Data

In this section we describe the procedure that implements the proposed

clustering algorithm for functional data. This implementation consists of two

main steps:

1. Obtain projection functions from eigenfunctions of the kurtosis operator

defined in Section 4.2.3.

2. Analyze the projected (univariate) observations to detect the possible

presence of clusters in the data.

4.3.1 Implementation of the Proposed Kurtosis Operator

Our first step in the algorithm requires computing a projection function ψ,

obtained from the equation K(ψ) = λS(ψ). This function will be related to the

optimal separation function, as shown in Lemma 3 and Theorem 3.

We assume we are given a sample of multivariate observations, generated from

a functional data model. These data have the form

x̂i(tj), i = 1, . . . , n, tj ∈ [a, b], j = 0, . . . , p (4.27)

The projection functions obtained from the kurtosis operator defined in (4.13)

are computed by performing a series of steps on the data, which are described

below:

1. Representation. We wish to use the structure of the data as functional

objects, to improve on any results obtained from any direct treatment of the

data as multivariate objects. In particular for our case, to perform a cluster
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analysis. Our first step will be to find a reasonable functional representation

for our data.

To obtain this representation, we start by selecting a functional basis. Let

φk(t) for t ∈ [a, b] and k = 1, ...,m denote a truncated basis. We select a value

for m providing a reasonable balance between precision and computational

complexity.

We obtain values for a set of coefficients b̃ik (using regularized least-squares,

or some other related method) such that

x̂i(t) ≈ x̃i(t) =
∑
k

b̃ikφk(t). (4.28)

Extending the usual matrix notation to this (mixed) case, we will write

x̃ ≡ B̃φ to represent the preceding equality, for x̃ and φ vectors of functions

in [a, b] and B̃ ∈ Rn×m. We assume the vector φ having as components the

m functions φk(t) corresponding to our chosen basis, and the vector x̂ having

as components the n (smoothed) sample functions x̃i(t).

2. Centering the functional data. We subtract the mean from the data,

x̄(t) =
1

n

∑
i

x̃i(t) =
1

n

∑
ik

b̃ikφk(t) =
∑
k

(
1

n

∑
i

b̃ik

)
φk(t)

xi(t) = x̃i(t)− x̄(t) =
∑
k

(
b̃ik −

1

n

∑
l

b̃lk

)
φk(t) =

∑
k

bikφk(t),

for bik ≡ b̃ik − 1
n

∑
l b̃lk.

This operation can be written using the preceding compact matrix form as

x(t) = (I − 1
n
eeT )B̃φ(t) = Bφ(t), for B ≡ (I − 1

n
eeT )B̃.

3. Kurtosis operator. Let W denote the (invertible) matrix with elements

wij = 〈φi, φj〉. For an arbitrary function u = γTφ we have that

S(u) =
1

n

∑
i

〈xi, u〉xi =
1

n

∑
i

〈bTi φ, γTφ〉bTi φ = γTW

(
1

n
BTB

)
φ = γTCφ,
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where bi denotes the i-th column of BT and we have defined C ≡ W
(

1
n
BTB

)
.

From this result, it holds that

S−1
δ (u) = γT (C + δI)−1 φ

S−1
δ (xi) = bTi (C + δI)−1 φ

〈xi, S−1
δ (xi)〉 = bTi W (C + δI)−1 bi.

For the kurtosis operator defined in (4.13),

K(u) =
1

n

∑
i

〈xi, S−1
δ (xi)〉〈xi, u〉xi(t)

=
1

n

∑
i

bTi W (C + δI)−1 biγ
TWbib

T
i φ. (4.29)

We can write this equality in more compact form as

K(u) = (Kfγ)Tφ, Kf ≡
1

n
BTDfBW (4.30)

where Kf is a matrix that represents the proposed functional kurtosis

operator, when we use a finite basis representation of our functional data.

This matrix is defined in terms of a diagonal matrix Df with entries

(Df )ii = bTi W (C + δI)−1 bi, that is,

Df ≡ diag(BW (C + δI)−1BT ).

4. Eigenfunctions. From Theorem 3, the eigenfunction and eigenvalue having

optimal separation properties can be approximated from a solution of

K(ψ) = λS(ψ).

Or in our equivalent matrix form, if ψ ≡ γ̄Tφ, this function can be obtained

by solving the generalized eigenvalue problem

BTDfBWγ̄ = λBTBWγ̄.
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The same solution can be obtained from the eigenvalue problem

(
BTB

)−1
BTDfBWγ̄ = λWγ̄.

It may be more efficient numerically to work with the symmetric matrix

Ks =
(
BTB

)−1/2
BTDfB

(
BTB

)−1/2
,

and the eigenfunctions of interest will be obtained from the eigenvectors of

this matrix, γ̂, as

Ksγ̂ = λγ̂, γ̄ = W−1
(
BTB

)−1/2
γ̂.

This representation of the eigenvectors and eigenvalues of the modified kurtosis

operator allows for an interesting comparison with the direct application of

the kurtosis matrix proposed by Móri et al. (1993) to the coefficients in the

representation of the functional data, bik.

From (4.1), the multivariate kurtosis matrix corresponding to the centered

coefficients B is given by

Km =
1

n

n∑
i=1

(
bTi

(
1

n
BTB

)−1

bi

)
bib

T
i =

1

n
BTDmB, (4.31)

where Dm = diag(B( 1
n
BTB)−1BT ).

If we compare (4.31) and (4.30), we have that

Kf =
1

n
BTdiag

(
BW

(
W

1

n
BTB + δI

)−1

BT

)
BW

Km =
1

n
BTdiag

(
B

(
1

n
BTB

)−1

BT

)
B.

From these representations, we conclude that the application of the functional

kurtosis procedure based on the matrix Kf is identical to using the Móri
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multivariate kurtosis matrix Km, computed from the values of the (centered)

coefficients in the basis expansion of the functional data B, that is, letting B = X

in (4.1), whenever the following conditions hold: i) W = I, we represent our data

using an orthonormal basis, and ii) δ = 0, we introduce no regularization in the

definition of our operator.

4.3.2 Cluster Analysis of the Univariate Observations

Once the eigenfunctions of the kurtosis operator have been obtained from the

eigenvectors of the matrixKs, as described in Section 4.3.2, we project the centered

functional data onto the functions associated to its maximum and minimum

eigenvalues.

We perform a cluster analysis on the projected data by studying the existence

of a mixture of two normal distributions on each of the projections, in a manner

similar to that implemented in our algorithm for the multivariate case, following

the procedure described in Section 3.2. We assume heterogeneity if the BIC value

for the fitting of a mixture of two normal distributions is greater than for the

fitting of one normal distribution. If two groups are obtained, they are considered

as new data to be explored for heterogeneity and we repeat the procedure until no

more groups are identified in the sample, see Section 3.2 for additional details.

4.4 Computational Results

In this Section we present several results obtained from the application of the

proposed kurtosis clustering algorithm to functional data.

Our algorithm has been implemented on the R package fda, which includes

some utilities for Functional Data Analysis, using both B-splines and Fourier

functional bases. We have conducted simulation experiments, and we have also
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used publicly available datasets such as Growth, ECG and the CanadianWeather

data set. For more details about these data sets, see Ramsay and Silverman (2005).

The implementation of the procedure to simulated data has been conducted as

described in Section 4.3. We have compared our method with Functional Principal

Components, Functional K-means and the Funclust method. The R packages used

to run each method are: fda, fda.usc and Funclustering, respectively.

4.4.1 Real Data Study

Canadian Daily Weather

The CanadianWeather data set consists of daily measurements at 35 Canadian

weather stations, divided into four climate zones. For this example, we have

compared our classification results to these four distinct classes specified in the

database: Atlantic, Pacific, Continental and Arctic.

The observation locations and the climate regions are plotted on the map of

Canada shown in Figure 4.1, where the black diamonds correspond to the Arctic

zone stations, the red ones to Atlantic stations, the green ones to Continental

stations and the blue ones to Pacific stations.

We have used B-Spline and Fourier bases to represent the data. After applying

our procedure to estimate the kurtosis operator eigenfunctions, we have projected

the data onto the two directions of maximum and minimum kurtosis, as well as

those associated to the two largest functional principal components. The results

are shown in Figures 4.2 and 4.3.
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Figure 4.1: Canadian Weather Regions

Our results provide a much better, although not perfect, separation between the

observations corresponding to different regions, when compared to the groupings

that could be obtained from the principal components directions. In particular,

the Atlantic, Continental and Pacific regions are clearly separated by the minimum

kurtosis directions, while the Arctic region can be separated using the maximum

kurtosis directions.
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Figure 4.2: Fourier Basis to Represent Canadian Weather Regions

Figure 4.3: B-Spline Bases to Represent Canadian Weather Regions
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Growth Data

The Growth data set consists of 93 curves: the heights of 39 boys and 54 girls

as a function of their age. The heights were measured in 31 stages, between 1 and

18 years. Figure 4.4 shows the smoothed curves using 5 Fourier bases. we wish to

identify the clusters present in the sample and to determine if the resulting clusters

correspond to the different genders.

Figure 4.4: Growth Data with 5 Fourier Basis

In Tables 4.1 and 4.2 we present the percentage of successful identifications

for each group (gender differences) using extreme kurtosis directions, Functional

Principal Components, Funclust and Functional K-means. We have performed

several simulations with different base sizes, for Fourier and B-Spline bases.
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Base Method Boys Girls Procedure

B-Spline

Kurtosis 0.98 0.88 0.93

Pr. Comp. 0.59 0.70 0.64

FunClust 0.44 0.90 0.67

Kmeans 0.59 0.69 0.64

Fourier

Kurtosis 0.98 0.85 0.92

Pr. Comp. 0.59 0.69 0.64

FunClust 0.39 0.94 0.66

Kmeans 0.71 0.48 0.59

Table 4.1: Success in Clustering with Growth Data for the Proposed Procedure,

Functional Principal Components, Funclust and Functional K-means Methods

Using 5 Functional Basis (B-Spline or Fourier)

Base Method Boys Girls Procedure

B-Spline

Kurtosis 0.95 0.85 0.90

Pr. Comp. 0.59 0.70 0.64

FunClust 0.35 0.90 0.62

Kmeans 0.58 0.70 0.64

Fourier

Kurtosis 0.89 0.87 0.88

Pr. Comp. 0.59 0.69 0.64

FunClust 0 0 0

Kmeans 0.59 0.72 0.65

Table 4.2: Success in Clustering with Growth Data for the Proposed Procedure,

Functional Principal Components, Funclust and Functional K-means Methods

Using 9 Functional Basis (B-Spline or Fourier)
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ECG Data

The ECG dataset consists of 200 electrocardiograms from 2 patient groups (133

normal and 67 abnormal) at 96 time instants. For this example we have used 21

B-spline basis functions to represent the data. In Figure 4.5 the smoothed curves

are represented and Table 4.3 shows the percentage of successful identifications for

the two patient groups.

Figure 4.5: ECG Data with 21 B-Spline Basis

Base Method Normal Abnormal Procedure

B-Spline

Kurtosis 0.70 1 0.85

Pr. Comp. 0.85 0.52 0.69

FunClust 0.42 1 0.71

Kmeans 0.73 0.60 0.66

Table 4.3: Success in Clustering with ECG Data for the Proposed Procedure,

Functional Principal Components, Funclust and Functional K-means Methods

Using 21 B-Spline Basis
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From the results shown in Tables 4.1, 4.2 and 4.3, we conclude that our

proposed method is more efficient than other methods commonly used for

functional data clustering, to identify the gender difference in the Growth data

and the two groups of patients in the ECG data.

4.4.2 Simulation Study (Gaussian Processes)

We have performed two sets of simulation studies with the aim of comparing

the performance of our proposed kurtosis-based method with Functional Principal

Components, Functional K-means and the Funclust method for unsupervised

functional data clustering. The comparisons have been carried out by applying

the methods to samples generated from different mixtures of gaussian processes.

The models have been selected as they are simple ones and allow us to verify the

existence of a good fit with the theoretical results presented in Section 4.2.4. The

analysis of the results should provide us with interesting insights on the behavior

of the proposed method in a controlled environment.

In both cases the two populations of gaussian processes have been defined

to share the same quadratic covariance operator, (exp(−(x − y)2/2l2)), with

parameter l = 15. The same numbers of observations have been generated

from each group (n1 = n2 = n/2). The observations have been obtained for

t ∈ [1, T ] with T = 20. 20 equidistant observations of each process in [1, 20] have

been selected, with observation noise εit ∼ N(0, 0.1). The values obtained are

multivariate vectors in R20.

Both simulation examples differ in the choice of mean functions for each

group, and in the preprocessing of the information before applying our proposed

procedure.

We have used both Fourier and B-spline bases to represent (and smooth) the

data. From the smoothed data we have obtained the directions corresponding to
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the two largest eigenfunctions obtained using Functional Principal Components.

We have also obtained the two directions corresponding to the smallest

eigenfunctions of the kurtosis operator. We have projected our data onto these

two pairs of directions.

To analyze the results, we have measured inter- vs. intra-group variability

in the projections for each of the two groups, by comparing the traces of the

corresponding covariance matrices. We have also checked the classification results.

Finally, for one example we have prepared a graphical representation of the clusters

obtained by using principal component and kurtosis directions, to illustrate how

the kurtosis directions may be more efficient for cluster identification.

The basis used to represent data (Fourier or B-spline), the number of basis

functions used and the number of observations for each group are modified between

experiments. Each simulation experiment has been replicated 1000 times.

Simulation 1

In the first set of simulations we have used as mean functions for the two

groups mi(t) = sin(2πµit/T ), i = 1, 2. The values µi are selected as −2.2 and 2,

respectively.

In this case we wish to test if our method behaves reasonably well when the

variability information has been removed from the data. To do that, and before

fitting the data to our chosen bases, we have introduced a linear transformation

on the multivariate data so that the mean of the transformed sample is equal

to zero and its covariance matrix is the identity. We might expect principal

components to have some difficulty separating the two modified groups; but note

that functional principal components will work on the functional representation

of the data (which has not been modified), and should still capture some of that

variability information. Our main interest is to check that kurtosis is able to
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identify the groups by using information beyond that of the variability in the data

available through the covariance matrix.

Simulation 1. Fourier Basis Using a Fourier basis and the sample values

described above, we obtain the results shown in Table 4.4 for inter- vs. intra-group

variability.

Bases n Variability Kurtosis Variability PC

7

70 0.68 0.06

140 0.79 0.06

280 0.90 0.06

15

150 0.41 0.01

300 0.60 0.01

600 0.75 0.01

Table 4.4: Inter- vs. Intra-group Variability in Kurtosis and Principal

Components Projections Using Fourier Basis in Simulation 1

(The Variability Information has been Removed From the Data)

From the results in Table 4.4, it is interesting to note that the intra-group

variability information is captured by the relevant directions of the kurtosis

operator. The principal components operator searches for global variability,

and mostly misses the intra-group variability information that would be most

interesting for clustering applications. Thus, the theoretical properties of the

kurtosis operator have a direct translation in practice to the capture of information

relevant for cluster analysis.

Table 4.5 presents the success percentage in clustering when the projections

have been obtained using Kurtosis and Functional Principal Components
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directions. In this second case, and in a manner similar to the proposed kurtosis

algorithm, we have analyzed if we have the mixture of two distributions according

to the BIC criteria for each projection direction. In the table we also include the

results obtained when using Functional K-means and the Funclust method.

To compare the methods, we have used the following success criteria for

clustering: if two groups are identified, we compare each group with the two

original populations and analyze the coincidences. If one of the groups includes at

least 50% of the observations from one of the initial populations and the other

group includes at least 50% of the observations in the second population, we

consider that the clustering algorithm has been successful.

Bases n Kurtosis Pr. Comp. Kmeans FunClust

7

70 0.82 0.28 0.16 0.32

140 1 0.51 0.18 0.34

280 1 0.58 0.24 0.41

15

150 0.22 0.25 0.02 0.46

300 0.94 0.33 0.06 0.64

600 1 0.42 0.10 0.71

Table 4.5: Success in Clustering for the Proposed Procedure, Functional Principal

Components, Funclust and Functional K-means Using 7 and 15 Fourier Basis in

Simulation 1 (The Variability Information has been Removed From the Data)

The results obtained from the kurtosis algorithm are better than those obtained

for the principal components directions. Also, the results are better than

those obtained with Functional K-means and Funclust method, implying a clear

advantage of the use of kurtosis directions for functional data clustering.

Figure 4.6 shows the plots corresponding to n = 280. The projections have been
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obtained for the directions that minimize the kurtosis and principal components,

using 7 functions in the basis representation.

Figure 4.6: Simulation 1 with 7 Fourier Basis and n = 280

Simulation 1. B-Spline Bases For the next set of results we use a B-Splines

basis and the same samples as in the preceding experiment. We analyze the success

from the application of the algorithms as in the previous example. Table 4.6

presents the proportion of successful identifications.

Bases n Kurtosis Pr. Comp. Kmeans FunClust

7

70 0.40 0.32 0.15 0.59

140 0.93 0.67 0.18 0.57

280 1 0.89 0.25 0.78

15

150 0.24 0.30 0.09 0.61

300 0.93 0.44 0.11 0.78

600 1 0.54 0.15 0.87

Table 4.6: Success in Clustering for the Proposed Procedure, Functional Principal

Components, Funclust and Functional K-means Using 7 and 15 B-Spline Bases in

Simulation 1 (The Variability Information has been Removed From the Data)
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The results obtained for the proposed kurtosis method using a B-spline basis

are interestingly worse than those using a Fourier basis. We believe this may be

due to the basis providing a worse representation for the objects of interest (mean

functions, covariance operator). This implies that the performance of the kurtosis

operator may be sensitive to the choice of basis, at least in some cases, although

this dependence would require a more detailed analysis.

Simulation 2

We conduct a second experiment, similar to the preceding one, where we use

mean functions equal to zero for the first group, and 0.2 cos(2πt/(T/r)), for r = 1.5.

Again, we have used both a Fourier and a B-Splines basis; in both simulations the

number of functions chosen for the basis is equal to 7. We have not included

other basis sizes, as the preceding experiment seemed to indicate that this was a

reasonable choice.

In this case we have not carried out any additional transformation of the

multivariate data. Our goal is to test how well our proposed method performs

when compared with functional principal components, if variability information is

available in the covariance matrix to help classify the data. In this case we still

expect our method to perform reasonably well, as we are using a model under which

we have shown the proposed method has good classification properties. We wish

to compare how much difference there may be between the use of the functional

principal component directions and the kurtosis directions to reveal heterogeneity

in the data.

Using a Fourier base and the values mentioned above, we present in Table 4.7

the percentage of success in the clustering results using our proposed method and

Functional Principal Components, including also the results for the Functional

K-means and Funclust methods.
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Bases n Kurtosis Pr. Comp. Kmeans FunClust

7

70 0.31 0.16 0.22 0.20

140 0.81 0.16 0.13 0.44

280 1 0.11 0.06 0.50

1400 1 0.09 0.01 0.53

Table 4.7: Success in Clustering for the Proposed Procedure, Functional Principal

Components, Funclust and Functional K-means Using 7 Fourier Bases in

Simulation 2 (The Variability Information has not been Removed From the Data)

We can see that we again obtain significantly improved results with respect to

Functional Principal Components, Functional K-means and Funclust method. It

seems interesting to note that the performance of the proposed method improves

markedly with the sample size.

In Table 4.8 we present the percentage of success in the clustering using a

B-Splines basis and the values mentioned above.

Bases n Kurtosis Pr. Comp. Kmeans FunClust

7

70 0.40 0.18 0.24 0.42

140 0.92 0.17 0.13 0.43

280 1 0.10 0.08 0.51

1400 1 0.11 0.01 0.57

Table 4.8: Success in Clustering for the Proposed Procedure, Functional Principal

Components, Funclust and Functional K-means Using 7 B-Spline Bases in

Simulation 2 (The Variability Information has not been Removed From the Data)
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In this case, the dependence of the results on the choice of basis is very limited,

as the values we obtain are nearly identical for both basis choices.

In summary, from the results in the preceding tables it follows that, under the

models considered in the experiments, using the kurtosis algorithm provides an

efficient way to reduce the dimension without affecting the heterogeneity in the

data, and to perform clustering analysis. It would also seem to provide a powerful

tool for the exploratory analysis of these data.

These results illustrate a marked improvement on the corresponding success

rates obtained using Functional Principal Components, Functional K-means or the

Funclust method. Thus, we believe that in many cases our proposed method may

provide clear advantages for the study of heterogeneous data, and the application

of clustering techniques to these data.

4.5 Conclusion

In this Chapter we have introduced a kurtosis operator for functional data,

inspired by the multivariate kurtosis matrix proposed by Móri et al. (1993), and

adapted to ensure good clustering properties in a functional setting.

The modifications in the proposed procedure are motivated by the form in the

functional setting of an optimal discriminant function with bounded norm, which

has been derived in the thesis. This function has been used to define a bounded

Mahalanobis distance, and from it the proposed kurtosis operator.
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Regarding its theoretical properties, and for the case of gaussian processes with

the same covariance operator, we have shown that there exists an eigenfunction of

the operator that is asymptotically optimal, in the sense that it is arbitrarily close

to the optimal separation function we have derived for this case. These results

approximate the corresponding properties of the multivariate proposal studied in

Peña et al. (2010).

We have also shown, through some examples based on real and simulated data,

that the proposed method is more efficient than other clustering methods described

in the literature for functional data, such as Functional Principal Components,

Functional K-means and FunClust. In summary, the proposed method is an

interesting contribution to identify structures removed from normality and in

particular to identify clusters in functional data sets.
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Conclusions

In this thesis we have considered two main lines of research, both of them

related to extending and improving existing algorithms for clustering applications

based on kurtosis directions. These methods are motivated by the method

proposed by Peña and Prieto (2001a), which has been shown to work well when

the dimension of the data is low and when the number of clusters present in the

sample is small.

Our first interest has been to propose a cluster identification method suitable

for high-dimensional data when a large number of clusters is present in the sample.

In Chapter 3 we have proposed a procedure based on the iterative binary separation

of the existing clusters that works very efficiently in practice.

The proposed algorithm detects the presence of clusters by applying a two-step

procedure: i) it projects the data onto directions that minimize or maximize

the kurtosis coefficient; and ii) for each one of the projections we analyze if we

have a mixture of two distributions using the BIC model selection criterion. The

procedure is applied recursively in the case in which the BIC value for the mixture

of two distributions is greater than the BIC value for one distribution, otherwise

the procedure is finalized.
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The main improvements associated to this method are the search for binary

separations in the projections, and the use of a model-based approach to the

identification of the univariate clusters. The proposed method presents some

advantages over the method in Peña and Prieto (2001a): (1) compared to the use

of first-order gaps to identify clusters in the univariate data, it is less susceptible

to the presence of outliers and therefore provides better results when the clusters

are close; (2) its theoretical properties indicate that the projection directions tend

to identify pairs of groups, implying that a binary division procedure should work

better than trying to identify many clusters at the same time; (3) this procedure

tends to avoid an excessive subdivision of the observations.

We have conducted several simulation studies. We have started by considering

the case of samples formed by a mixture of three normal populations. Comparing

the results obtained by applying our proposed clustering algorithm with the

methods MCLUST, CLARA, K-means and the one proposed by Peña and Prieto

(2001a), we conclude that our method is more efficient for the identification of the

three groups.

In a second simulation study we have considered random observations generated

from a mixture of Normal, Uniform, and Student-t multivariate distributions.

From the results we again conclude that our proposed method is more efficient

to identify clusters present in the sample than other methods commonly used in

the literature. Additionally, we have also shown the efficiency of our method when

we have a mixture of several normal distributions with outliers.

We have also conducted a theoretical study of the properties of the extreme

kurtosis directions regarding the identification of the different clusters in the

sample. In the presence of many groups, some interesting projection directions

are those that project the observations into two blocks of groups. We have

characterized these projection directions, and we have proved that they can
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be approximated by the extreme kurtosis directions, through an asymptotic

relationship that ensures the equivalence of the directions when there exists an

arbitrarily large separation between the groups in the data.

Our second interest in the thesis has been to extend the kurtosis-based

clustering procedure to the case in which we wish to analyze functional data.

This extension has been presented in Chapter 4.

We have defined a kurtosis operator for functional data based on an extension

of a multivariate kurtosis matrix, as an adaptation of the proposal presented

in Peña et al. (2010). The definition of this operator has been based on the

characterization of optimal classification functions in the case of a mixture of

gaussian processes. Based on the form of an optimal classification function, we have

defined a Mahalanobis distance with finite values, based on a regularized inverse

covariance operator. This definition has been used as a reference to introduce

our proposed kurtosis operator. We have shown that this kurtosis operator has

the property that the eigenfunctions corresponding to a generalized eigenvalue

problem are asymptotically equivalent to the optimal classification function, as

the regularization parameter goes to zero, in the case of a mixture of two gaussian

processes.

From this definition of a kurtosis operator, and based on an implementation of

the calculation of the eigenfunctions for the operator, we complete our clustering

algorithm for functional data by analyzing the univariate projections obtained

for the relevant eigenfunctions using the same model-based approach presented in

Chapter 3.

We have presented several results for the application of the proposed kurtosis

operator to the clustering problem in functional data. For the CanadianWeather,

Growth and ECG data sets we obtain better results compared to the groupings

obtained from several clustering algorithms, such as Functional Principal
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Components, Functional K-means and FunClust. We have also conducted

simulation experiments and compared the results to these other functional

clustering methods. From the results obtained in these simulation experiments

we conclude that the proposed algorithm obtains results that outperform those of

the alternative algorithms used in the comparison.

Further Research

The theoretical and computational results obtained for the algorithms proposed

in this thesis pose several open problems that would be of interest to analyze in

further work. Some of those we consider most relevant are:

• The proposed multivariate algorithm tends to present worse results when the

ratio n/p is small. It would be interesting to find ways to complement the

method with other procedures that may work better in those cases.

• In the case of very large dimensional data (thousands of dimensions), the

method becomes computationally very expensive. For those cases, it would

be interesting to explore the application of an initial dimension-reduction

stage, with reduced computational cost, before continuing with the

application of the proposed procedure.

• In the functional case, an open problem is the choice of basis for the

representation of the data. One possible approach would be to use a

data-defined basis. It would be of interest to study the efficiency of

representation of the data in terms of eigenfunctions of the covariance or

the kurtosis operators, for example.

• Another relevant aspect in this functional case has to do with the

introduction of a method for the computation of projection functions based
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on the optimization of a kurtosis coefficient, instead of working with

eigenfunctions of a kurtosis operator. This approach provides better results

for the multivariate case, for example, but implies significant complications

in the extension of the corresponding procedure in the functional case. One

possible approach for this case could be based on the use of local linear

approximations, for example.
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Appendix

In this additional chapter, we show in more detail the results presented in

Tables 3.8, 3.9, 3.10 and 3.11. We will present the results obtained for each

distribution with the different values of p and k = 2, 3, 4, 8.

Tables show the percentage of observations that coincide with the original

clusters.
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Multivariate Normal Distributions

p = 4 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.98 0.92 0.92 0.99

3 0.90 0.76 0.74 0.73

4 0.79 0.52 0.73 0.42

8 0.31 0.12 0.69 0.02

Mean 0.75 0.58 0.77 0.54

50

2 0.99 0.98 0.90 0.97

3 0.99 0.84 0.69 0.66

4 0.96 0.78 0.65 0.39

8 0.93 0.57 0.53 0.07

Mean 0.97 0.79 0.69 0.52

100

2 1 0.99 0.89 0.98

3 1 0.90 0.69 0.71

4 0.98 0.85 0.63 0.35

8 0.96 0.75 0.53 0.03

Mean 0.99 0.87 0.68 0.52

Table 4.9: Average Success in Clustering for the Proposed Method

and the MCLUST, CLARA and Kmeans Algorithms with Normal

Observations and p = 4
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Multivariate Normal Distributions

p = 8 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 1 0.93 0.93 1

3 0.91 0.59 0.89 0.70

4 0.87 0.33 0.75 0.47

8 0.35 0.02 0.55 0.04

Mean 0.78 0.47 0.78 0.55

50

2 1 0.99 0.93 1

3 1 0.88 0.90 0.70

4 1 0.72 0.74 0.43

8 0.98 0.44 0.43 0

Mean 0.99 0.76 0.75 0.53

100

2 1 1 0.93 1

3 1 0.94 0.90 0.78

4 1 0.82 0.79 0.36

8 0.98 0.71 0.26 0

Mean 1 0.87 0.72 0.54

Table 4.10: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations and p = 8
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Multivariate Normal Distributions

p = 15 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 1 0.91 1 0.98

3 0.93 0.58 0.93 0.77

4 0.89 0.15 0.70 0.52

8 0.34 0 0.17 0.11

Mean 0.79 0.41 0.70 0.60

50

2 1 0.99 0.97 0.97

3 1 0.86 0.91 0.72

4 1 0.66 0.86 0.36

8 0.99 0.11 0.52 0.08

Mean 1 0.66 0.82 0.53

100

2 1 1 0.96 0.96

3 1 0.93 0.89 0.68

4 1 0.90 0.90 0.49

8 0.98 0.47 0.73 0.05

Mean 1 0.83 0.87 0.55

Table 4.11: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations and p = 15
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Multivariate Normal Distributions

p = 30 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.98 0.97 0.97 0.96

3 0.92 0.43 0.90 0.73

4 0.79 0.08 0.69 0.45

8 0.30 0.02 0.23 0.03

Mean 0.75 0.37 0.70 0.54

50

2 1 0.96 0.95 0.94

3 0.95 0.84 0.91 0.77

4 0.98 0.67 0.93 0.41

8 0.98 0.07 0.75 0.03

Mean 0.98 0.64 0.89 0.54

100

2 1 1 0.94 0.94

3 1 1 0.90 0.63

4 0.99 0.75 0.93 0.42

8 0.99 0.53 0.61 0.01

Mean 1 0.82 0.84 0.50

Table 4.12: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations and p = 30
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Multivariate Normal Distributions

p = 50 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.98 0.87 0.97 1

3 0.86 0.09 0.87 0.71

4 0.55 0.11 0.55 0.56

8 0.23 0 0.12 0.07

Mean 0.66 0.27 0.63 0.59

50

2 1 0.98 0.95 1

3 0.93 0.84 0.93 0.70

4 0.95 0.55 0.77 0.52

8 0.96 0.04 0.35 0

Mean 0.96 0.60 0.75 0.56

100

2 1 0.99 0.88 1

3 0.98 0.92 0.94 0.71

4 0.98 0.85 0.87 0.45

8 0.96 0.32 0.53 0

Mean 0.98 0.77 0.80 0.54

Table 4.13: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations and p = 50
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Multivariate Uniform Distributions

Multivariate Uniform Distributions

p = 4 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.99 0.98 0.98 0.99

3 0.95 0.93 0.88 0.64

4 0.95 0.92 0.84 0.47

8 0.65 0.71 0.80 0.03

Mean 0.89 0.89 0.88 0.53

50

2 1 0.99 0.97 0.98

3 0.98 1 0.81 0.75

4 0.99 0.98 0.79 0.44

8 0.99 0.96 0.67 0.05

Mean 0.99 0.98 0.81 0.56

100

2 1 0.99 0.94 0.99

3 1 0.98 0.85 0.71

4 1 0.96 0.79 0.37

8 0.99 0.94 0.61 0.04

Mean 1 0.97 0.80 0.53

Table 4.14: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Uniform Observations and p = 4
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Multivariate Uniform Distributions

p = 8 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 1 1 1 1

3 1 0.96 0.98 0.63

4 0.94 0.92 0.93 0.43

8 0.72 0.70 0.70 0.09

Mean 0.92 0.90 0.90 0.54

50

2 1 1 1 0.99

3 1 0.99 0.99 0.58

4 0.99 0.99 0.93 0.36

8 0.99 0.89 0.84 0.07

Mean 1 0.97 0.94 0.50

100

2 1 1 1 0.98

3 1 1 0.91 0.64

4 1 0.99 0.91 0.45

8 0.99 0.93 0.93 0.05

Mean 1 0.98 0.94 0.53

Table 4.15: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Uniform Observations and p = 8
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Multivariate Uniform Distributions

p = 15 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 1 1 1 1

3 1 0.97 0.99 0.72

4 0.90 0.84 0.90 0.52

8 0.70 0.11 0.73 0.02

Mean 0.90 0.73 0.91 0.57

50

2 1 1 1 1

3 1 1 1 0.70

4 1 0.94 0.86 0.40

8 1 0.60 0.69 0.06

Mean 1 0.89 0.89 0.54

100

2 1 1 0.99 1

3 1 1 0.99 0.62

4 1 0.98 0.88 0.30

8 1 0.83 0.70 0.04

Mean 1 0.95 0.89 0.49

Table 4.16: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Uniform Observations and p = 15
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Multivariate Uniform Distributions

p = 30 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 1 1 1 1

3 0.98 0.79 1 0.67

4 0.83 0.32 0.92 0.52

8 0.43 0.10 0.32 0.05

Mean 0.81 0.55 0.81 0.56

50

2 0.99 1 1 0.99

3 0.99 0.99 0.99 0.71

4 0.98 0.87 0.87 0.42

8 0.98 0.22 0.71 0.11

Mean 0.99 0.77 0.89 0.56

100

2 1 1 1 1

3 1 0.91 0.97 0.70

4 1 0.79 0.87 0.33

8 1 0.43 0.75 0

Mean 1 0.78 0.90 0.51

Table 4.17: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Uniform Observations and p = 30
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Multivariate Uniform Distributions

p = 50 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.98 0.99 1 1

3 0.92 0.34 0.95 0.71

4 0.74 0.23 0.89 0.51

8 0.39 0.05 0.14 0.10

Mean 0.76 0.40 0.75 0.58

50

2 0.97 0.98 0.98 1

3 0.98 0.94 0.93 0.72

4 0.96 0.55 0.80 0.45

8 1 0.13 0.41 0.01

Mean 0.98 0.65 0.78 0.55

100

2 1 0.99 1 0.98

3 0.99 0.95 0.96 0.68

4 0.99 0.56 0.88 0.28

8 0.98 0.40 0.82 0.02

Mean 0.99 0.73 0.92 0.49

Table 4.18: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Uniform Observations and p = 50
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Multivariate Student-t Distributions

Multivariate Student-t Distributions

p = 4 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.92 0.86 0.67 0.83

3 0.81 0.66 0.50 0.60

4 0.68 0.42 0.46 0.37

8 0.21 0.04 0.29 0.05

Mean 0.66 0.50 0.48 0.46

50

2 0.98 0.96 0.78 0.87

3 0.94 0.80 0.44 0.52

4 0.86 0.75 0.45 0.30

8 0.75 0.53 0.46 0.04

Mean 0.88 0.76 0.53 0.43

100

2 0.98 0.97 0.79 0.82

3 0.94 0.93 0.44 0.48

4 0.93 0.85 0.43 0.22

8 0.86 0.33 0.44 0

Mean 0.93 0.77 0.53 0.38

Table 4.19: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Student-t Observations and p = 4
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Multivariate Student-t Distributions

p = 8 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.97 0.93 0.90 0.97

3 0.96 0.52 0.73 0.80

4 0.74 0.24 0.66 0.41

8 0.25 0.01 0.21 0.07

Mean 0.73 0.43 0.63 0.56

50

2 1 0.98 0.89 0.96

3 1 0.82 0.72 0.68

4 0.96 0.75 0.64 0.34

8 0.86 0.28 0.39 0.04

Mean 0.96 0.71 0.66 0.51

100

2 1 1 0.83 0.91

3 1 0.93 0.71 0.76

4 1 0.78 0.61 0.37

8 0.99 0.44 0.31 0.04

Mean 1 0.79 0.62 0.52

Table 4.20: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Student-t Observations and p = 8
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Multivariate Student-t Distributions

p = 15 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.99 0.93 0.94 0.99

3 0.98 0.51 0.92 0.71

4 0.73 0.11 0.76 0.48

8 0.21 0 0.35 0.11

Mean 0.73 0.39 0.74 0.57

50

2 1 1 0.93 1

3 1 0.89 0.93 0.70

4 1 0.75 0.83 0.42

8 1 0.04 0.41 0.07

Mean 1 0.67 0.78 0.55

100

2 1 1 0.95 1

3 0.99 0.86 0.91 0.61

4 0.99 0.80 0.84 0.34

8 1 0.29 0.50 0.05

Mean 1 0.74 0.80 0.50

Table 4.21: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Student-t Observations and p = 15
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Multivariate Student-t Distributions

p = 30 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.98 0.91 0.97 1

3 0.90 0.35 0.98 0.68

4 0.76 0.08 0.79 0.44

8 0.32 0.02 0.32 0.06

Mean 0.74 0.34 0.77 0.55

50

2 0.99 1 0.91 1

3 0.95 0.94 0.92 0.66

4 0.95 0.64 0.78 0.37

8 0.93 0 0.35 0.09

Mean 0.96 0.65 0.74 0.53

100

2 1 0.97 0.90 1

3 1 0.92 0.92 0.70

4 0.99 0.73 0.89 0.32

8 0.98 0.34 0.58 0.02

Mean 0.99 0.74 0.82 0.51

Table 4.22: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Student-t Observations and p = 30
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Multivariate Student-t Distributions

p = 50 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.99 0.85 0.95 1

3 0.87 0.13 0.90 0.75

4 0.75 0.10 0.57 0.52

8 0.25 0.05 0.18 0.07

Mean 0.72 0.28 0.65 0.59

50

2 0.98 0.98 0.93 0.98

3 0.93 0.84 0.92 0.74

4 0.92 0.61 0.76 0.46

8 0.98 0.12 0.55 0

Mean 0.95 0.64 0.79 0.55

100

2 1 1 1 0.95

3 1 0.93 0.96 0.68

4 0.98 0.83 0.90 0.41

8 0.96 0.25 0.51 0

Mean 0.99 0.75 0.84 0.51

Table 4.23: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Student-t Observations and p = 50
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Normal Observations with Outliers

p = 4 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.94 0.52 0.86 0.91

3 0.91 0.49 0.58 0.76

4 0.72 0.29 0.61 0.25

8 0.40 0.06 0.73 0.08

Mean 0.74 0.34 0.70 0.50

50

2 0.99 0.21 0.83 0.94

3 0.91 0.19 0.56 0.75

4 0.90 0.26 0.53 0.39

8 0.88 0.42 0.61 0.02

Mean 0.92 0.27 0.63 0.53

100

2 1 0.25 0.81 0.89

3 0.93 0.09 0.43 0.67

4 0.95 0.05 0.36 0.36

8 0.90 0.29 0.50 0.03

Mean 0.95 0.17 0.53 0.49

Table 4.24: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations with Outliers and p = 4
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Normal Observations with Outliers

p = 8 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.98 0.67 0.90 0.90

3 0.93 0.34 0.63 0.71

4 0.76 0.17 0.69 0.32

8 0.43 0.01 0.86 0.08

Mean 0.78 0.30 0.77 0.50

50

2 0.99 0.11 0.85 0.94

3 0.98 0.19 0.60 0.74

4 0.98 0.27 0.64 0.43

8 0.96 0.28 0.82 0.08

Mean 0.98 0.21 0.73 0.55

100

2 1 0.40 0.82 0.96

3 0.98 0.16 0.53 0.69

4 0.97 0.11 0.60 0.34

8 0.98 0.35 0.77 0.06

Mean 0.98 0.26 0.68 0.51

Table 4.25: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations with Outliers and p = 8
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p = 15 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.96 0.55 0.93 0.87

3 0.92 0.43 0.65 0.68

4 0.73 0.33 0.75 0.43

8 0.40 0 0.85 0.08

Mean 0.75 0.33 0.80 0.52

50

2 0.97 0.66 0.90 0.95

3 0.97 0.38 0.60 0.66

4 0.96 0.30 0.72 0.38

8 0.95 0.29 0.80 0.08

Mean 0.96 0.41 0.76 0.52

100

2 0.99 0.66 0.87 0.95

3 0.98 0.34 0.55 0.80

4 0.98 0.25 0.68 0.39

8 0.97 0.50 0.73 0.02

Mean 0.98 0.44 0.71 0.54

Table 4.26: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations with Outliers and p = 15
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p = 30 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.95 0.44 0.95 0.84

3 0.90 0.21 0.63 0.70

4 0.75 0.02 0.77 0.57

8 0.29 0 0.75 0.11

Mean 0.72 0.17 0.78 0.56

50

2 0.97 0.99 0.95 0.96

3 0.94 0.70 0.69 0.76

4 0.92 0.45 0.75 0.37

8 0.90 0.10 0.77 0.09

Mean 0.93 0.56 0.79 0.55

100

2 0.99 0.93 0.93 0.86

3 0.98 0.91 0.60 0.61

4 0.98 0.90 0.69 0.37

8 0.93 0.63 0.59 0

Mean 0.97 0.84 0.70 0.46

Table 4.27: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations with Outliers and p = 30
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Normal Observations with Outliers

p = 50 Average Success Rate

n/p k Kurtosis MCLUST CLARA Kmeans

20

2 0.93 0.40 0.90 0.82

3 0.87 0.08 0.61 0.63

4 0.75 0.02 0.75 0.53

8 0.27 0 0.60 0.10

Mean 0.71 0.13 0.72 0.52

50

2 0.96 0.97 0.89 1

3 0.92 0.90 0.63 0.84

4 0.82 0.55 0.73 0.55

8 0.80 0.08 0.54 0.08

Mean 0.88 0.63 0.70 0.62

100

2 1 0.95 0.86 0.97

3 0.99 0.89 0.60 0.50

4 0.98 0.90 0.69 0.46

8 0.95 0.65 0.50 0.02

Mean 0.98 0.85 0.66 0.49

Table 4.28: Average Success in Clustering for the Proposed

Method and the MCLUST, CLARA and Kmeans Algorithms with

Normal Observations with Outliers and p = 50
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